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General information and references

These lecture notes accompany the course Functional Analysis. The notes are based on the books
[Con] and [Ped]. The notes do not provide a complete and finished text. There are a lot of exercises
and parts of arguments that you have to fill in yourself. The main places where you have to work

yourself are indicated by . Often we add a reference to one of the text books [Con] and [Ped]
where detailed proofs and a lot of extra material can be found.

Functional analysis is the analysis of infinite dimensional vector spaces, typically spaces of func-
tions of all possible kinds, and of linear operators on them, for instance differential operators.
Sometimes the results and topics of this functional analysis course might have a flavor of “abstract
nonsense”. But these abstract results are used all the time in all possible mathematical theories. In
this course itself we focus on one particular application: analysis on infinite discrete groups and
the notion of amenability.

The course consists of 11 lectures of two hours. The lecture notes are structured accordingly.
During the lectures you are often asked to fill in proofs yourself. It is therefore very useful to
prepare the lecture by browsing the corresponding chapter and checking whether you master all
prerequisites.

The lecture notes start with a 0’th lecture. This 0’th lecture contains material that you should know
from earlier courses. This material will only be very quickly reminded during the first real lecture
1.

These lecture notes were seriously revised in September 2011 and in September 2019. There could
be misprints or mistakes in these notes. We would be very glad if you could indicate them, during
the course or by e-mail at stefaan.vaes@kuleuven.be and mateusz.wasilewski@kuleuven.be.

Bibliography

[Con] John Conway, A course in functional analysis. Second Edition. Springer-Verlag, Graduate
Texts in Mathematics 96, New York, 1990.

[Ped] Gert K. Pedersen, Analysis Now. Springer-Verlag, Graduate Texts in Mathematics 118,
New York, 1989.
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Lecture 0

Banach spaces

This zero’th lecture only serves to remind everybody of known concepts concerning Banach spaces.
We will very quickly go through it and immediately go on with the real first lecture.

0.1 Normed spaces, Banach spaces

I guess everybody is acquainted with the notion of a norm on a vector space.

Definition 0.1. Let X be a vector space over C. A map

X ! Œ0;C1/ W x 7! kxk

is called a norm on X if the following conditions hold.

� kxk D 0 if and only if x D 0,

� kx C yk � kxk C kyk for all x; y 2 X (the triangle inequality),

� k�xk D j�j kxk for all x 2 X and � 2 C.

The pair .X; k � k/ is called a normed space.

The concept of a normed space is extremely general, as shown by the following variety of exam-
ples.

Example 0.2. (i) The vector space Cn can be equipped with several different norms.

� k.z1; : : : ; zn/k1 D maxfjz1j; : : : ; jznjg.

� For all 1 � p <1, we have the norm

k.z1; : : : ; zn/kp D .jz1j
p
C � � � C jznj

p/1=p :

In the case p D 2, we retrieve the usual Euclidean norm on Cn. If you never did so, it
is probably not so easy to prove the triangle inequality when p > 1. This can be done
in a way analogous to Theorem 0.9 below.

6



Lecture 0. Banach spaces 7

(ii) Consider the vector space C.Œ0; 1�;C/ of continuous functions from Œ0; 1� to C. Because
a continuous function on a compact set is automatically bounded, we define the following
norm:

kf k1 D supfjf .x/j j x 2 Œ0; 1�g :

(iii) Set X D fz W N ! C j z.n/ D 0 for n large enough g. This means that X consists of the
sequences in C that are 0 from a certain point onwards. Define the norm

kzk D

1X
nD0

jz.n/j :

Normed spaces fall apart in two different families. This is already clear in the previous examples.
In the first two examples we have the impression to have defined a very natural normed space.
In the last example, that is not the case: it would be much more natural to consider all functions
N ! C that are absolutely summable, i.e. for which

P1
nD0 jz.n/j <1.

The precise difference between examples 1 and 2 on the one hand and example 3 on the other hand,
lies in the notion of completeness. Before introducing this concept, we recall a few definitions.

Definition 0.3. Let .X; k � k/ be a normed space.

� We say that a sequence .xn/ in X is convergent, if there exists x 2 X such that for all " > 0,
there exists n0 satisfying kx � xnk < " for all n � n0.

� We say that a sequence .xn/ in X is a Cauchy sequence, if for all " > 0, there exists n0
satisfying kxn � xmk < " for all n;m � n0.

� Look up, in earlier courses or in the literature, the concepts of open subsets, closed subsets
and dense subsets of a normed space. In Lecture 7 we will recall basic notions of general
topology. In the first lectures only the norm topology on a normed space will be used.

Exercise 1. Take X D Cn with any of the norms defined in Example 0.2.(i). Let .zk/ be a
sequence in Cn and write zk D .zk1; : : : ; zkn/. Prove that .zn/ converges to y D .y1; : : : ; yn/ 2

Cn if and only if .zki/k converges to yi in C for all i D 1; : : : ; n.
Exercise 2. Consider X D C.Œ0; 1�;C/ as in Example 0.2.(ii). Prove that the sequence fn con-
verges to f if and only if fn ! f uniformly on Œ0; 1�.

Definition 0.4. A normed spaceX is called complete if every Cauchy sequence inX is convergent.
A complete normed space is called a Banach space.

Proposition 0.5. The normed space X D C.Œ0; 1�;C/ with norm k � k defined in Example 0.2.(ii),
is a Banach space.

Proof. Prove yourself this proposition according to the following steps. See [Con, Example III.1.6]
for details.

1. Realize that the only nontrivial part consists in proving the completeness of X .

2. Take a Cauchy sequence .fn/n2N in X . Prove that for every x 2 Œ0; 1� the sequence
.fn.x//n2N is a Cauchy sequence in C. By the completeness of C, denote its limit by
f .x/.
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3. Prove that fn ! f uniformly on Œ0; 1�. Deduce that f 2 X and that fn ! f in the normed
space X .

The following principle makes it easy to prove the noncompleteness of certain normed spaces.
Roughly the criterion says that if a sequence .xn/ in a normed space X converges in some larger
normed space Y to a limit x that lies outside X , then X is not complete.

Proposition 0.6. Let Y be a normed space and X � Y a vector subspace. Assume that .xn/ is
a sequence in X such that in the normed space Y the sequence .xn/ converges to x with x 62 X .
Then X is not complete.

Proof. Assume that X is complete. We prove that x 2 X . Since .xn/ is a convergent sequence in
Y , it also is a Cauchy sequence. So it is a Cauchy sequence in X as well. Since X is complete,
xn ! z for some z 2 X . It follows that in Y the sequence .xn/ also converges to z. Since a
convergent sequence can only have one limit, we conclude that z D x. Hence x 2 X .

Example 0.7. Consider the vector space X D fz W N ! C j z.n/ D 0 for n large enough g
equipped with the norm

kzk1 D

1X
nD0

jz.n/j :

Then X is not complete. Indeed, we can view X � `1.N/, where

`1.N/ D fz W N ! C j
X
n2N

jz.n/j <1g

with the obvious norm k � k1. Define the element x 2 `1.N/ given by x.n/ D .1C n2/�1. Note
that x 62 X . Define the sequence .xk/k2N in X given by

xk.n/ D

(
x.n/ if 0 � n � k ;
0 if n > k :

Prove that xk ! x. By Proposition 0.6 it follows that X is not complete.

0.2 Further examples of Banach spaces

Whenever p � 1 and x W N ! C, we define

kxkp WD
�X
n2N

jx.n/jp
�1=p

:

We also define
kxk1 D sup

n2N
jx.n/j :

For general sequences x W N ! C, it is of course possible that kxkp D1 or kxk1 D1.
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Definition 0.8. Define for p � 1,

`p.N/ D fx W N ! C j kxkp < C1g ;

`1.N/ D fx W N ! C j kxk1 <1g ;

c0.N/ D fx W N ! C j lim
n!1

jx.n/j D 0g :

Prove yourself that `1.N/ equipped with k � k1 and `1.N/ equipped with k � k1 are Banach
spaces. Prove also that c0.N/ is a closed vector subspace of `1.N/ equipped with k � k1. It is
less obvious to prove for p > 1 that `p.N/ is a vector space and that k � kp is a norm on it. In
order to do so, you need the Hölder and Minkowski inequalities in the following theorem.

Theorem 0.9. Let x; y W N ! C and take 1 < p; q <1 satisfying 1
p
C
1
q
D 1. Then the following

inequalities hold.

kxyk1 � kxkp kykq (Hölder inequality)
kx C ykp � kxkp C kykp (Minkowski inequality)

Proof. Look this up in an earlier course or in the literature.

Proposition 0.10. For all 1 � p � 1 the vector space `p.N/ equipped with k � kp is a Banach
space.

Proof. It follows from the Minkowski inequality that `p.N/ is a vector space and that k � kp
is a norm on this vector space. Choose a Cauchy sequence .xk/ in `p.N/. As in the proof of
Proposition 0.5, we find a function x W N ! C such that xk ! x pointwise. We have to prove
that x 2 `p.N/ and that kx � xkkp ! 0. Choose " > 0. Take k0 such that kxr � xkkp � " for
all k; r � k0. We claim that kx � xkkp � " for all k � k0. To prove this claim, fix a k � k0. Fix
N 2 N. For every r � k0 we have

NX
nD0

jxr.n/ � xk.n/j
p
� kxr � xkk

p
p � "

p :

Taking the limit for r !1, it follows that

NX
nD0

jx.n/ � xk.n/j
p
� "p :

Since this holds for all N 2 N, we also have kx � xkkp � ", as in the claim. In particular
x 2 `p.N/ and kx � xkkp � " for all k � k0. This completes the proof of the proposition.

0.3 Dual Banach space

Let X be a Banach space. We study linear maps ! W X ! C. Linear maps from X to C will be
called functionals on X . As to be expected in a functional analysis course, we are not particularly
interested in arbitrary functionals, but impose a continuity condition.
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Proposition 0.11. Let X be a Banach space and ! W X ! C a linear map. The following
conditions are equivalent.

� ! is continuous in 0.

� ! is continuous.

� There exists an M > 0 such that j!.x/j �Mkxk for all x 2 X .

Proof. Prove Proposition 0.11 yourself or see [Con, Proposition III.2.1].

Definition 0.12. Define

X� D f! j ! W X ! C is a continuous linear map g :

When ! 2 X�, we set
k!k D supfj!.x/j j x 2 X; kxk � 1g :

Note that Proposition 0.11 implies that k!k is finite for all ! 2 X�.
Exercise 3. Prove that k!k �M if and only if j!.x/j �Mkxk for all x 2 X .

It is clear that X� is a vector space for the obvious operations

.!1 C !2/.x/ D !1.x/C !2.x/ and .�!/.x/ D �!.x/ :

Proposition 0.13. Equipped with the norm ! 7! k!k, the vector space X� is a Banach space.

Proof. Prove Proposition 0.13 yourself or see [Con, Proposition III.5.4].

Theorem 0.14. Let 1 < p; q < 1 and 1
p
C

1
q
D 1. In the following precise sense, the dual of

`p.N/ is `q.N/.

� For every y 2 `q.N/ the formula

!y W `
p.N/! C W !y.x/ D

1X
nD0

y.n/ x.n/

yields a well defined element !y 2 `p.N/�.

� We have k!yk D kykq.

� Every ! 2 `p.N/� is of the form ! D !y for a unique y 2 `q.N/.

In more advanced terminology, the map

`q.N/! `p.N/� W y 7! !y

is an isometric isomorphism.

Proof. Prove the theorem yourself according to the following steps.
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1. Use the Hölder inequality to prove that for y 2 `q.N/ we have that !y is a well defined
linear functional on `p.N/ and that k!yk � kykq.

2. Fix y 2 `q.N/ with kykq D 1 and prove that k!yk � 1. To do so, write in a smart way an
element x 2 `p.N/ (in terms of y) satisfying kxkp D 1 and !y.x/ D 1. Together with the
previous point we have k!yk D 1 whenever kykq D 1. Deduce that k!yk D kykq for every
y 2 `q.N/.

3. Finally choose an arbitrary ! 2 `p.N/�. Define the elements ın 2 `p.N/ given by ın.m/ D
1 if m D n and ın.m/ D 0 if m ¤ n. Define y W N ! C given by y.n/ D !.ın/. Use the
following steps to prove that y 2 `q.N/ and that !y D !.

(a) Whenever z W N ! C is a function and N 2 N, denote by .z/N the truncated function
.z/N .k/ D z.k/ if 0 � k � N and .z/N .k/ D 0 if k > N . Observe that .y/N 2
`q.N/. By point 2 we have k.y/Nkq D k!.y/N k. Check that !.y/N .x/ D !..x/N / for
all x 2 `p.N/ and deduce that k!.y/N k � k!k for all N 2 N. Finally deduce that
kykq � k!k.

(b) By construction ! and !y are continuous linear maps from `p.N/ to C that coincide
on the functions x 2 `p.N/ that are finitely supported. Prove that the finitely supported
elements are dense in `p.N/ and deduce that ! D !y .

Exercise 4. Write isometric isomorphisms `1.N/ Š c0.N/� and `1.N/ Š `1.N/�.

0.4 The Banach spaces Lp.A;�/

We consider the Lebesgue measure � on Rn. For every measurable subset A � Rn, we construct
a Banach space Lp.A; �/. We do not provide proofs in this section and you are not supposed to
be able to give them yourselves. Either you have seen proofs in a course on measure theory, either
you just accept the statements at face value. Those who followed a course on abstract measure
theory, can of course replace everywhere .A; �/ by an abstract measure space.

Definition 0.15. Let A � Rn be a Borel set and f W A ! C a Borel measurable function. For
p � 1, we define

� kf kp D
�Z
A

jf jp d�
� 1

p

:

� Lp.A; �/ D ff W A! C j f is Borel measurable and kf kp <1g :

Note that L1.A; �/ consists exactly of the integrable functions from A to C.

If 1 < p; q < 1 and 1
p
C

1
q
D 1, the following Hölder inequality holds for all Borel measurable

functions f; g W A! C :
kfgk1 � kf kp kgkq :
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For all p � 1 and all Borel measurable functions f; g W A! C, the following Minkowski inequal-
ity holds

kf C gkp � kf kp C kgkp :

The Minkowski inequality implies that Lp.A; �/ is a vector space. We have the following vector
subspace of Lp.A; �/ :

L0.A; �/ WD ff W A! C j f is Borel measurable and f .x/ D 0 for almost all x 2 Ag :

Note that kf kp D 0 if and only if f 2 L0.A; �/.
We define Lp.A; �/ as the quotient of Lp.A; �/ by the subspace L0.A; �/. Intuitively, this means
that we identify two functions in Lp.A; �/ once they are equal almost everywhere.

Because the integral of a function remains the same when we change the function on a set of
measure zero, one can check that the map f 7! kf kp yields a well defined norm on Lp.A; �/.
Here we already started to make a big abuse of notation: in principle, the elements of Lp.A; �/
are equivalence classes of measurable functions, but we nevertheless write elements of Lp.A; �/
as functions, always keeping in mind that we identify functions that are equal almost everywhere.

One can prove that Lp.A; �/ is a Banach space.

0.5 Completion of a normed space (optional)

We have seen above that a normed space is called complete if every Cauchy sequence has a limit.
There is a procedure to complete an arbitrary normed space by adding in a certain sense all limits
of Cauchy sequences. Look again at the normed space X in Example 0.2.(iii). Nobody will be
surprised that `1.N/ is the completion of X . The Banach space `1.N/ satisfies the following
abstract properties with respect to X .

� `1.N/ is a Banach space.

� X ,! `1.N/ in a way preserving the norm.

� If we consider X as a vector subspace of `1.N/, we have that X is dense in `1.N/.

In Theorem 0.17 below, we prove that such a completion exists for any normed space. Moreover,
the completion is essentially unique, but we have to give a careful formulation of this uniqueness.
And if we want to understand uniqueness of the completion, we first have to say what it means to
be ‘the same normed space’.

Definition 0.16. Let X and Y be normed spaces and � W X ! Y a linear map.

� We call � an isometry if k�.x/k D kxk for all x 2 X .

� We call � an isometric isomorphism if � is a bijective isometry.
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In words, an isometric isomorphism is a map between normed spaces preserving all the available
structure: a bijective linear map preserving the norm.

The formulation of the following theorem might scare some of you. It is one of the most abstract
results in these notes. The proof of the theorem might remind some of you of one of the construc-
tions of the field of real numbers out of the field of rational numbers. Indeed, one can view R as a
completion of Q.

Theorem 0.17. Let X be a normed space. Then, there exist a Banach space Y and a linear map
� W X ! Y satisfying

� � is isometric;

� �.X/ is a dense subspace of Y .

The pair .Y; �/ is unique in the following sense: if .Y 0; � 0/ satisfy the same properties, there exists
a unique isometric isomorphism � W Y ! Y 0 satisfying � ı � D � 0.

We view X as a subspace of Y through � and call Y the completion of X .

Proof. We leave the proof of the uniqueness statement as an exercise: one first defines �0 from
�.X/ to Y 0 by the formula �0.�.x// D � 0.x/ for all x 2 X . One next takes the unique isometric
map from Y to Y 0 extending �0.

We now prove the existence of Y and � . Define Y as the vector space of all Cauchy sequences in
X . Addition in Y is defined as .xn/C.yn/ D .xnCyn/ and we observe that the sum of two Cauchy
sequences is again a Cauchy sequence. Scalar multiplication is defined analogously. Define the
vector subspace Y0 of Y consisting of sequences .xn/ converging to 0. Define Y as the quotient
vector space Y WD Y

Y0
and denote the quotient map by q W Y ! Y .

We claim that the formula

kyk D lim
n!1

kxnk whenever y D q..xn/n2N/ and .xn/ 2 Y

yields a well defined norm on Y . In order to prove this claim, you have to check the following
facts.

1. The right hand side makes sense (i.e. is convergent) for all Cauchy sequences .xn/ in X .

2. The right hand side is independent of the representative .xn/n2N that we have chosen for
y 2 Y . This means that you have to prove that

lim
n!1

kxnk D lim
n!1

kynk

whenever .xn/ and .yn/ are Cauchy sequences and q..xn/n2N/ D q..yn/n2N/.

3. The map y 7! kyk defines a norm on Y .
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Define � W X ! Y as follows: given x 2 X , consider the constant sequence xn D x for all n and
set �.x/ D q..xn/n2N/. Check that k�.x/k D kxk. Prove that �.X/ is dense in Y by proving
the following statement: whenever .xn/n2N is a Cauchy sequence in X , the sequence .�.xn//n2N

converges to q..xn/n2N/. Note that the previous statement is slightly subtle: first of all .xn/ is a
Cauchy sequence in X and hence, q..xn/n2N/ is an element of Y ; on the other hand, .�.xn//n2N

is a sequence in Y .

It remains to prove that Y is complete. Let .yn/n2N be a Cauchy sequence in Y . Take for every n,
an element xn 2 X such that kyn � �.xn/k < 1=n. It follows that

kxn�xmk D k�.xn/��.xm/k � k�.xn/�ynkCkyn�ymkCkym��.xm/k �
1

n
C
1

m
Ckyn�ymk :

Deduce from this that .xn/n2N is a Cauchy sequence in X . Define y D q..xn/n2N/. We already
proved that �.xn/ ! y in Y . Since kyn � �.xn/k ! 0, it follows that yn ! y. So, we have
proved that .yn/ is convergent.

0.6 Exercises

Exercise 5. Prove that a closed vector subspace of a Banach space is again a Banach space.
Exercise 6. Let X and Y be Banach spaces. Consider the vector space

X ˚ Y WD f.x; y/ j x 2 X; y 2 Y g

with the obvious componentwise vector space operations. Define the norms

k.x; y/kmax WD maxfkxk; kykg and k.x; y/ksum WD kxk C kyk :

Prove that k � kmax and k � ksum are norms on X ˚ Y . We denote the corresponding normed
spaces as X ˚max Y and X ˚sum Y .

Prove that X ˚max Y and X ˚sum Y are Banach spaces. Write an isometric isomorphism1

.X ˚max Y /
�
! X� ˚sum Y

� :

1An isometric isomorphism is a linear bijection that preserves the norm.
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Hilbert spaces

1.1 Definition

We introduce the special class of Banach spaces called Hilbert spaces.

Definition 1.1. LetH;K be vector spaces over the field C of complex numbers. A mapH �K !
C W .x; y/ 7! hx; yi is called a sesquilinear form if h � ; � i is linear in the first variable and anti-
linear in the second variable:

� h�x C �y; zi D �hx; zi C �hy; zi for all x; y 2 H , z 2 K, �;� 2 C;

� hx; �y C �zi D �hx; yi C �hx; zi for all x 2 H , y; z 2 K, �;� 2 C.

Suppose now that H D K. A Hermitian form is a sesquilinear form that is symmetric: hy; xi D
hx; yi.

A Hermitian form is said to be positive if hx; xi � 0 for all x 2 H and positive-definite if hx; xi >
0 for all x 2 H with x ¤ 0.

The following are standard examples of positive-definite Hermitian forms.

Example 1.2. (i) Take H D Cn and h.x1; : : : ; xn/; .y1; : : : ; yn/i D x1y1 C � � � C xnyn :
(ii) Consider the Banach space `2.N/ as in Definition 0.8. The Hölder inequality allows to

define

hx; yi D

1X
nD0

x.n/y.n/ for all x; y 2 `2.N/ :

(iii) On C.Œ0; 1�/, the vector space of continuous functions from Œ0; 1� to C, we can define

hf; gi D

Z 1

0

f .x/g.x/ dx :

(iv) The previous example is not very natural. Its more natural version is given as follows. Let
A � Rn be a Borel set and define on the vector space L2.A; �/ the inner product

hf; gi D

Z
A

f .x/g.x/ dx :

Check that h � ; � i is well defined, keeping in mind that L2.A; �/ is defined as a quotient of
L2.A; �/ by identifying functions equal almost everywhere.

15



Lecture 1. Hilbert spaces 16

Proposition 1.3. Let h � ; � i be a positive Hermitian form on H . Define kxk D
p
hx; xi for all

x 2 H . For all x; y 2 H , the following holds.

1. Cauchy-Schwartz inequality: jhx; yij � kxk kyk.

2. Minkowski inequality: kx C yk � kxk C kyk.

3. Parallelogram law: kx C yk2 C kx � yk2 D 2.kxk2 C kyk2/.

4. Polarization formula: hx; yi D
1

4

3X
kD0

ikkx C ikyk2.

If h � ; � i is a positive-definite Hermitian form, k � k defines a norm on H .

Proof. Prove Proposition 1.3 yourself or see [Con, I.1.4].

Definition 1.4. 123 We call H a Hilbert space if H is a complex vector space equipped with a
positive-definite Hermitian form h � ; � i in such a way that H is complete with respect to the norm
defined by the Hermitian form.

Example 1.5. The positive-definite Hermitian forms in Example 1.2 turn Cn, `2.N/ and L2.A; �/
into Hilbert spaces. But the positive-definite Hermitian form onC.Œ0; 1�/ in 1.2.(iii) does not define
a complete norm on C.Œ0; 1�/ (check this by viewing C.Œ0; 1�/ � L2.Œ0; 1�/ and using Proposition
0.6!).

1.2 Orthogonal projections and Riesz theorem

In Definition 0.12 we introduced the dual Banach spaceX� of a Banach spaceX . In Theorem 0.14,
we have seen that the dual Banach space of `p.N/ is isomorphic with `q.N/ when 1

p
C

1
q
D 1. It

follows in particular that the dual Banach space of `2.N/ is isomorphic with `2.N/ itself. The same
phenomenon appears for arbitrary Hilbert spaces1. That is the content of the Riesz representation
theorem that we prove below. We first need to study the notion of orthogonality.

We have seen that Cn is a Hilbert space. From geometry we know that every vector subspaceK �
Cn has an orthogonal complementK? and that every vector in x 2 Cn has a unique decomposition
of the form x D y C z with y 2 K and z 2 K?. The same result holds for Hilbert spaces.

Definition 1.6. Let H be a Hilbert space and A a subset of H . We set

A? D fx 2 H j hx; yi D 0 for all y 2 Ag :

We call A? the orthogonal complement of A. We say that the two vectors x; y 2 H are orthogonal
if hx; yi D 0. We denote this by x ? y.

Check that orthogonal vectors x; y satisfy kx C yk2 D kxk2 C kyk2 (known as Pythagoras’
theorem).

1Further on, it will become clear that an arbitrary Hilbert space is in fact not that arbitrary and very often isometri-
cally isomorphic with `2.N/.
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Theorem 1.7. LetH be a Hilbert space andK � H a closed vector subspace ofH . Every vector
x 2 H has a unique decomposition of the form x D y C z with y 2 K and z 2 K?.

The proof of Theorem 1.7 is based on the following lemma.

Lemma 1.8. Let H be a Hilbert space and S � H a nonempty convex closed subset. Let x 2 H .
There exists a unique y 2 S satisfying

kx � yk D inffkx � ak j a 2 Sg :

Proof. Prove the lemma yourself according to the following steps. Details can be found in [Con,
Theorem I.2.5].

1. Fix x 2 H and put d D inffkx � ak j a 2 Sg. Take a sequence .an/ in S such that
kx � ank ! d . The main idea is to prove that the sequence .an/ converges and that its
limit is the required y 2 S . Apply the parallelogram law to the vectors .x � an/=2 and
.x � am/=2 and deduce that k.an � am/=2k is small for n;m large. Conclude that .an/ is a
Cauchy sequence in H . Denote its limit by y. Observe that y 2 S .

2. Prove that kx � yk D d . It remains to prove the uniqueness of such a y 2 S . Assume
that y 0 2 S and kx � y 0k D d . Apply the parallelogram law to the vectors .x � y/=2 and
.x � y 0/=2. Conclude that .y � y 0/=2 D 0, i.e. y D y 0.

Proof of Theorem 1.7. Prove Theorem 1.7 yourself using the following scheme. Details can be
found in [Con, Theorem I.2.6].

1. Prove the uniqueness of the decomposition x D y C z.

2. Fix x 2 H . Observe that K is a closed and convex subset of H . Apply Lemma 1.8 and
denote by y 2 K the element that is closest to x. Put z D x � y. It remains to prove that
z 2 K?. Fix a 2 K. You have to prove that z ? a. To prove this write explicitly that for all
t 2 R the distance from y C ta to x is longer than the distance from y to x.

Corollary 1.9. Let H be a Hilbert space and K � H a vector subspace. Then .K?/? equals the
closure of K.

Proof. See exercise 5.

An immediate consequence of Theorem 1.7 is the Riesz representation theorem, for which a proof
is given in [Con, I.3.4].

Theorem 1.10 (Riesz Representation theorem). Let H be a Hilbert space and ! W H ! C a
continuous linear map. There exists a unique vector y 2 H satisfying

!.x/ D hx; yi for all x 2 H :

The vector y satisfies k!k D kyk.



Lecture 1. Hilbert spaces 18

Definition 1.11. Let K � H be a closed vector subspace of a Hilbert space. Theorem 1.7 implies
that every vector x 2 H has a unique decomposition x D yC z with y 2 K and z 2 K?. We call
y the orthogonal projection of x on K and we write y D PK.x/. The map

PK W H ! K

is called the orthogonal projection on K.

Exercise 1. Use the uniqueness of the orthogonal decomposition x D y C z to prove that PK is a
linear map.
Exercise 2. Let x 2 H . Prove that PK.x/ is the element of K that lies closest to x, i.e.

kx � PK.x/k D inffkx � yk j y 2 Kg :

In words, we can say that PK.x/ is the best approximation of x by an element from K.

1.3 Orthonormal families in Hilbert spaces

If K is a closed vector subspace of a Hilbert space H , we have seen that the orthogonal projection
PK.x/ of x 2 H onto K corresponds to the best approximation of x by an element from K. This
has several quite concrete applications, but before being useful, one needs an explicit formula to
compute PK.x/. This will be given by using orthonormal bases. As a result, concrete orthonormal
bases for a Hilbert space, will give concrete approximation procedures. Typical examples include
approximations by Fourier series or the usage of wavelet bases used in JPEG compressions of
images.

Definition 1.12. A family of vectors .ei/i2I in a Hilbert space H is called an orthonormal family
if

� keik D 1 for all i 2 I ,

� hei ; ej i D 0 if i ¤ j .

In words: an orthonormal family is a family of two by two orthogonal vectors having norm one.

Example 1.13. (i) The standard basis vectors e1; : : : ; en in Cn form an orthonormal family for
the standard inner product.

(ii) Similarly, we define unit vectors en 2 `2.N/ by en.k/ D 1 if k D n and en.k/ D 0 if k ¤ n.
Check that fen j n 2 Ng is an orthonormal family in `2.N/.

(iii) Consider the Hilbert space L2.Œ0; 2��; �/. Check that the vectors .en/n2Z defined by

en.x/ D
1
p
2�
einx

form an orthonormal family.

Definition 1.14. An orthonormal basis of a Hilbert space H is a maximal orthonormal family, i.e.
an orthonormal family .ei/i2I in H that cannot be enlarged: if x 2 H and x ? ei for all i 2 I ,
then x D 0.
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Proposition 1.15. An orthonormal family .ei/i2I in a Hilbert space H is maximal if and only if
the linear span spanfei j i 2 I g is a dense vector subspace of H .

Note that by definition spanfei j i 2 I g consists of all finite linear combinations of vectors ei ,
i 2 I . A priori infinite linear combinations do not make sense because they should be regarded as
limits of series. Recall that a basis of a vector space X is a family of linearly independent vectors
whose linear span is the whole of X . The linear span of an orthonormal basis of a Hilbert space
is not necessarily the whole of X . So in general, an orthonormal basis of a Hilbert space H is not
a basis of H as a vector space. We will see that the only case where it actually is a vector space
basis, is the case where H is finite dimensional.

Proof of Proposition 1.15. Let .ei/i2I be an orthonormal family in a Hilbert space H . Denote
K0 WD spanfei j i 2 I g and denote by K the closure of K0. Check yourself that x 2 K? if and
only if x ? ei for all i 2 I .

So if .ei/i2I is a maximal orthonormal family, we conclude that K? D f0g and hence, using
Corollary 1.9, that H D .f0g/? D .K?/? D K.

Conversely, if K D H , it follows that K? D f0g and hence that .ei/i2I is a maximal orthonormal
family.

Example 1.16. (i) In Example 1.13.(ii), we defined the orthonormal family .en/n2N in `2.N/.
Prove that this is an orthonormal basis.

(ii) The orthonormal family .en/n2Z in L2.Œ0; 2��; �/ that we defined in Example 1.13.(iii) is
also an orthonormal basis. This is not entirely trivial to prove and we refer to a course in
Fourier analysis. Indeed, if � 2 L2.Œ0; 2��; �/, we have

h�; eni D
1
p
2�

Z 2�

0

�.x/e�inx dx :

Up to a conventional normalization, this expression coincides with the n-th Fourier coeffi-
cient of � . The fact that .en/n2Z is an orthonormal basis follows from the fact that a function
vanishes almost everywhere if all its Fourier coefficients are zero.

Our main questions now are the following.

� Does every Hilbert space admit an orthonormal basis?

� Given an orthonormal basis .ei/i2I for H , we know from Proposition 1.15 that every vector
x 2 H lies in the closure of the linear span of the vectors .ei/i2I . But, is there an explicit
way to write x as a limit of finite linear combinations of the .ei/i2I ?

Both questions are answered in the following sections. We first need a set theoretic intermezzo.

1.4 Zorn’s lemma

We all know how to find an orthonormal basis in a finite dimensional Hilbert space: use the Gram-
Schmidt orthogonalization procedure. This is still possible in infinite dimensional Hilbert spaces,
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up to a certain extent (for separable Hilbert spaces, see below). Every Hilbert space that you
encounter in real life is separable. So there is no real need to prove in general the existence of an
orthonormal basis. It is however a good excuse to discuss Zorn’s lemma that we will use often in
the final lectures of this course.

The need for Zorn’s lemma can be felt as follows. Assume that H is a Hilbert space and that you
want to prove the existence of an orthonormal basis. Start with a norm one vector e0. If the span of
e0 is the whole ofH , you are done. Otherwise you can add a norm one vector e1 that is orthogonal
to e0. Either H is the span of fe0; e1g or you continue. If the process never stops, you end up
with an orthonormal family .en/n2N . Maybe this family is maximal and you are done. Otherwise
you can add one more vector, and again a vector, and maybe again an infinite number of vectors.
You might be done at that point, or still not... How long do you have to continue? The answer is
provided by Zorn’s lemma.

Terminology 1.17. Let .I;�/ be a partially ordered set.

� The subset J � I is called a totally ordered subset (or chain) if for all i; j 2 J we have
i � j or j � i .

� If J � I and i 2 I , we say that i is an upper bound of J if j � i for all j 2 J . Note that
we do not require that i 2 J .

� We call i 2 I a maximal element of I if the following condition holds: if i � j and j 2 I ,
then i D j . Note that if i is a maximal element I , this does not mean that j � i for all
j 2 I .

Theorem 1.18 (Zorn’s Lemma). If .I;�/ is a partially ordered set such that every totally ordered
subset of I admits an upper bound, then I admits a maximal element.

It is probably not a good idea to give Zorn’s Lemma the status of a ‘theorem’ or a ‘lemma’. Indeed,
it is rather an axiom of set theory. One can show that Zorn’s Lemma is equivalent with the Axiom
of Choice which says the following: if .Xi/i2I is a family of nonempty subsets of X , there exists
a function f W I ! X such that f .i/ 2 Xi for all i 2 I . In words: when we have a family of
nonempty sets, we can choose one element in every set.

The Axiom of Choice has some intuitive evidence. This is already less the case for Zorn’s Lemma,
the idea being the following: take an element i0 2 I . If i0 is a maximal element, we are done. If
i0 is not a maximal element, we find i1 � i0 with i1 ¤ i0. We continue like this and find a strictly
increasing sequence i0 < i1 < � � � . This strictly increasing sequence in I is a totally ordered
subset. So, it admits an upper bound j0. We continue the same game with j0, and so on, and so on.
The trouble is that this seemingly inductive type argument, never comes to an end. And indeed, the
Axiom of Choice is also equivalent with the Principle of Transfinite Induction, a kind of induction
beyond countability.

So, is the Axiom of Choice true? We know that the Axiom of Choice cannot be proven, neither
disproved from the other Zermelo-Fraenkel axioms of set theory. On the other hand, the Axiom
of Choice does have some consequences that are hard to believe, the most well known being the
Banach-Tarski paradox: it is possible to partition the unit ball of R3 into a finite number of subsets
and then to reassemble this finite number of pieces by only using rotations and translations, in such
a way that we end up with ... two balls of radius 1.
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1.5 Existence and construction of orthonormal bases

Theorem 1.19. Every Hilbert space H admits an orthonormal basis.

Proof. Define I to be the set of orthonormal families F � H . Define the partial order � on I
given by F � F 0 if F � F 0. Prove yourself that .I;�/ satisfies the conditions of Zorn’s lemma.
So .I;�/ admits a maximal element. Prove that this maximal element is an orthonormal basis of
H .

Hilbert spaces that one encounters in real life are separable, meaning that they are not too big in
the following precise sense.

Definition 1.20. A metric space .X; d/ is called separable if it admits a countable dense subset.

Proposition 1.21. A Hilbert space H is separable if and only if it admits an orthonormal basis
with at most countably many vectors, i.e. of the form fe1; : : : ; eng or of the form .en/n2N .

Proof. Prove the proposition yourself according to the following steps. If H is finite dimensional
or admits an orthonormal basis .en/n2N , use finite linear combinations of the basis vectors with
coefficients in QC iQ to conclude that H is separable.

Conversely assume that H is separable and infinite dimensional. Choose a countable dense subset
of H . Remove redundancies and find a sequence of linearly independent vectors .xn/n2N in H
such that spanfxn j n 2 Ng is dense inH . Apply the Gram Schmidt orthonormalization procedure
to the vectors .xn/n2N and prove that the resulting orthonormal family .en/n2N is an orthonormal
basis.

1.6 Parseval and Plancherel formulae

Exercise 3. Let e1; : : : ; en be an orthonormal family in H and denote K D spanfe1; : : : ; eng.
Prove the following statements.

1.



 nX
kD1

�kek




2 D nX
kD1

j�kj
2 for all �1; : : : ; �n 2 C :

2. The vectors e1; : : : ; en are linearly independent.

3. For all x 2 H , we have PK.x/ D
nX
kD1

hx; ekiek :

Proposition 1.22. Let .en/n2N be an orthonormal sequence in H . Define K as the closure of

spanfen j n 2 Ng. For all x 2 H , the sequence
nX
kD0

hx; ekiek is convergent and we have

PK.x/ D

1X
kD0

hx; ekiek and kPK.x/k
2
D

1X
kD0

jhx; ekij
2 :
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In particular, we have Bessel’s inequality

1X
kD0

jhx; ekij
2
� kxk2 :

Proof. Define Kn D spanfe0; : : : ; eng. Because of Exercise 3, we only have to prove that the
sequence PKn

.x/ is convergent, with limit PK.x/. We first prove that .PKn
.x//n2N is a Cauchy

sequence. Since
nX
kD0

jhx; ekij
2
D kPKn

.x/k2 � kxk2 ;

it follows that
1X
kD0

jhx; ekij
2 <1. Moreover, for m > n, we have

kPKm
.x/ � PKn

.x/k2 D

mX
kDnC1

jhx; ekij
2 ;

implying that .PKn
.x//n2N is a Cauchy sequence.

Set y D limn PKn
.x/. By definition y 2 K. It remains to prove that x � y 2 K? or, equivalently,

hx � y; eki D 0 for all k 2 N. But for all n � k, we have hx �PKn
.x/; eki D 0. Letting n!1,

we are done.

Proposition 1.22 has the following immediate consequence.

Proposition 1.23. Let H be a Hilbert space with orthonormal basis .en/n2N . For all x 2 H , we
have

x D

1X
nD0

hx; enien (Plancherel formula)

kxk2 D

1X
nD0

jhx; enij
2 (Parseval equality)

1.7 Exercises

Exercise 4. Suppose that .X; k � k/ is a normed space satisfying the parallelogram law. Follow
the steps below and prove that the polarization formula defines a positive-definite Hermitian form
on X satisfying kxk D

p
hx; xi.

1. Prove that hy; xi D hx; yi and that hix; yi D ihx; yi.

2. Prove that hx; 2yi D 2hx; yi.

3. Prove that hx1 C x2; yi D hx1; yi C hx2; yi.

4. Prove that hqx; yi D qhx; yi first when q 2 N and next when q 2 Q.
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5. Take limits and prove that h�x; yi D �hx; yi for all � 2 R. Deduce that the same holds for
� 2 C.

Exercise 5. Prove Corollary 1.9 yourself using the following scheme.

1. First prove Corollary 1.9 in the case where K � H is a closed vector subspace. Realize
that K � .K?/? is trivial. Conversely, take x 2 .K?/?. Use Theorem 1.7 to decompose
x D y C z with y 2 K and z 2 K?. Use that x 2 .K?/? to conclude that z D 0.

2. Denote by NK the closure of K. Prove that K? D . NK/?.

3. Use the previous two steps to conclude.

Exercise 6. Use Zorn’s lemma to prove that every vector space admits a basis (a maximal linearly
independent subset).
Exercise 7.

Definition 1.24. Let .xi/i2I be a family of elements of a Banach space X . We call .xi/i2I uncon-
ditionally summable if there exists an x 2 X satisfying the following condition: for all " > 0, there
exists a finite subset I0 � I such that


x �X

i2I1

xi




 < " for all finite subset I1 � I with I0 � I1.

We write x D
P
i2I xi .

Those who are familiar with the notion of a net (generalized sequence, see Section 7.4 in Lecture
7), will recognize that unconditional summability of .xi/i2I is the same as convergence of the net�P

i2I0
xi
�
I0�I

indexed by the finite subsets I0 � I .

Let .ei/i2I be an orthonormal family inH . DefineK as the closure of spanfei j i 2 I g. Prove that
for all x 2 H , the family .hx; eiiei/i2I is unconditionally summable and

PK.x/ D
X
i2I

hx; eiiei :
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Bounded operators on a Hilbert space

Hilbert spaces as such are not really interesting mathematical objects, but linear maps between
Hilbert spaces definitely are. A linear map from H to H is called an operator on H and such
operators appear in different contexts.

� In a mathematical approach to quantum mechanics, operators play the role of observables.

� In the study of differential equations, one encounters differential operators. We will not
meet them in this functional analysis course, because they are unbounded (this notion is
introduced below). Nevertheless, the theory of differential operators is a major application
of functional analysis.

� When studying groups (and more specifically Lie groups), one is interested in group repre-
sentations by means of Hilbert space operators.

� The bounded operators on a Hilbert space form an algebra. This algebra has many interest-
ing subalgebras, leading to the study of operator algebras: C�-algebras and von Neumann
algebras. This branch of mathematics has many relations with group theory, but also group
actions, mathematical physics, etc. We refer to the course Spectral Theory and Operator
Algebras for details.

2.1 Definition and first examples

Definition 2.1. Let H and K be Hilbert spaces. An operator T from H to K is a linear map
T W H ! K.

Example 2.2. (i) Let H D `2.N/. Define the operator

T W H ! H W .T x/.n/ D x.nC 1/ for all x 2 `2.N/; n 2 N :

Check that T .x/ belongs to `2.N/ whenever x 2 `2.N/.

24
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(ii) Let H D L2.Œ0; 1�; �/. Because a square integrable function on Œ0; 1� is automatically inte-
grable, we can define the following integral operator, which is sometimes called the Volterra
operator.

T W H ! H W .Tf /.x/ D

Z x

0

f .y/ dy for all f 2 L2.Œ0; 1�; �/; x 2 Œ0; 1� :

Prove that Tf belongs to L2.Œ0; 1�/ by proving that for all f 2 L2.Œ0; 1�; �/, Tf is in fact a
continuous function on Œ0; 1�.

(iii) Fix � 2 `1.N/ and set H D `2.N/. Define the multiplication operator

M� W H ! H W .M�x/.n/ D �.n/x.n/ for all x 2 `2.N/; n 2 N :

Exactly as in the study of functionals on a Banach space, we are not interested1 in arbitrary opera-
tors on a Hilbert space, but we impose a continuity condition.

Proposition 2.3. LetH andK be Hilbert spaces and T W H ! K an operator. Then the following
conditions are equivalent.

1. T is continuous.

2. T is continuous in 0.

3. T is bounded, i.e. there exists M � 0 such that kT xk �Mkxk for all x 2 H .

An operator satisfying one of these equivalent conditions is called a bounded operator.

Exercise 1. Prove Proposition 2.3. Prove that all operators in Example 2.2 are bounded. Prove
that every linear map Cn ! Cm is bounded.

Definition 2.4. The set of bounded operators from H to K is denoted as B.H;K/. We also use
the short-hand notation B.H/ D B.H;H/.

The norm of T 2 B.H;K/ is defined as the smallest positive real number M � 0 satisfying
kT xk �Mkxk for all x 2 H , i.e.

kT k D supfkT xk j x 2 H; kxk � 1g :

Exercise 2. Prove that B.H;K/ equipped with the norm of Definition 2.4 is a Banach space. Also
prove that the composition ST of T 2 B.H1;H2/ and S 2 B.H2;H3/ belongs to B.H1;H3/ and
satisfies

kST k � kSk kT k :

Remark 2.5. It follows that B.H/ is a vector space and that composition of operators defines a
product on B.H/, turning B.H/ into an algebra. The precise definition of an algebra A over C
goes as follows: A is at the same time a ring and a vector space over C such that the multiplication
map A � A! A W .a; b/ 7! ab is bilinear.

What we have to keep in mind, is that we can make little computations with the elements of B.H/.
If for instance S; T 2 B.H/, the expression S3T C �S � iT 2 defines again an operator in B.H/.
Moreover, the algebra B.H/ has a unit element, given by the operator

1 W H ! H W 1x D x for all x 2 H :

1It should be stressed that specific types of noncontinuous operators (so called unbounded operators) are of crucial
importance, but are not treated in this functional analysis course. Examples include the differential operators.
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2.2 Sesquilinear forms, bounded operators, adjoints

In 1.1, we defined the notion of a sesquilinear form. A sesquilinear form s W H �K ! C is called
bounded if there exists M � 0 such that

js.x; y/j �M kxk kyk :

The smallest M satisfying the above inequality is called the norm of s and denoted by ksk. So,

ksk D supfjs.x; y/j j x 2 H;y 2 K; kxk � 1; kyk � 1g :

The importance of bounded sesquilinear forms lies in the following lemma.

Lemma 2.6. Let H;K be Hilbert spaces. Define for every bounded operator T W H ! K, the
sesquilinear form

sT W H �K ! C W sT .x; y/ D hT x; yi :

The map T 7! sT is a bijection between B.H;K/ and the bounded sesquilinear formsH�K ! C,
satisfying ksT k D kT k.

Proof. It is easy to check that for every T 2 B.H;K/, the sesquilinear form sT is bounded with
ksT k � kT k. Observing that for all z 2 K we have

kzk D supfjhz; yij j y 2 K; kyk � 1g ;

it follows that
ksT k D supfkT .x/k j x 2 H; kxk � 1g D kT k :

Conversely assume that s W H � K ! C is a bounded sesquilinear form. Fix x 2 H . One
checks that the formula K ! C W y 7! s.x; y/ is a bounded linear functional on K. By the Riesz
representation theorem 1.10 there is a unique vector in K, that we denote by T .x/, such that

s.x; y/ D hy; T .x/i

for all y 2 K. The uniqueness of the vector T .x/ implies that x 7! T .x/ is a linear map from H

to K. The boundedness of s implies that T is bounded. By construction s D sT .

The relation between sesquilinear forms and operators allows to define the adjoint of a bounded
operator. It is a generalization of the Hermitian adjoint of a matrix.

Theorem 2.7. Let H;K be Hilbert spaces and T W H ! K a bounded operator. There exists a
unique bounded operator T � W K ! H satisfying

hT �y; xi D hy; T xi for all x 2 H;y 2 K :

We call T � the adjoint of T . We have the following.

1. .�T C �S/� D �T � C �S� for all S; T 2 B.H;K/ and �;� 2 C.

2. .T �/� D T for all T 2 B.H;K/.
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3. .ST /� D T �S� for all T 2 B.H1;H2/ and S 2 B.H2;H3/.

4. kT �k D kT k for all T 2 B.H;K/.

Proof. Let T 2 B.H;K/. Check that

s W K �H ! C W s.y; x/ D hy; T xi

defines a bounded sesquilinear form. Lemma 2.6 yields a unique operator from K to H that we
denote by T � and that satisfies

s.y; x/ D hT �y; xi for all x 2 H;y 2 K :

This proves the existence of T �. Uniqueness of T � is obvious and the proof of the remaining
statements is left as an exercise.

Exercise 3. Let A 2 Mn;m.C/ be an n �m matrix defining the linear map

T W Cm
! Cn

W .T x/i D

mX
jD1

Aijxj :

Prove that the matrix of the adjoint T � corresponds to the Hermitian adjoint of A.

Proposition 2.8. For all T 2 B.H;K/, we have

� kT �T k D kT k2.

� KerT D .ImT �/?.

Proof. First observe that kT �T k � kT �k kT k D kT k2. On the other hand, for every x 2 H we
have

kT .x/k2 D hT .x/; T .x/i D hT �T x; xi � kT �T xk kxk � kT �T k kxk2 :

It follows that kT k2 � kT �T k.

Finally we have x 2 KerT iff T .x/ D 0 iff hT .x/; yi D 0 for all y 2 K iff hx; T �.y/i D 0 for all
y 2 K iff x ? T �.K/.

2.3 Integral operators

The following proposition provides us with a large family of bounded operators, the so called
integral operators.

Proposition 2.9. Let A � Rn be a Borel set and K W A�A! C a measurable function. Suppose
that one of the following conditions hold.

(a) K is square integrable.
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(b) There exist c1; c2 � 0 such thatZ
A

jK.x; y/j dy � c1 for almost all x 2 A ;Z
A

jK.x; y/j dx � c2 for almost all y 2 A :

Then, the formula

.Tf /.x/ D

Z
A

K.x; y/f .y/ dy for all f 2 L2.A; �/

defines a bounded operator T on L2.A; �/. Under condition (a), we have kT k � kKk2, while
under condition (b), we have kT k �

p
c1c2.

We call T the integral operator with kernel K. The adjoint T � is again an integral operator with
kernel K�.x; y/ D K.y; x/.

Proof. We first study case (a). So, let K 2 L2.A � A; �/. The Hölder inequality implies that

j.Tf /.x/j2 �
�Z
A

jK.x; y/j2 dy
� �Z

A

jf .y/j2 dy
�
:

It follows that kTf k2 � kKk2 kf k2. So, T is a bounded operator and kT k � kKk2. The formula
for T � is left as an exercise.

For case (b), see [Con, II.1.6]. The estimates to be made are more subtle.

2.4 Orthogonal projections

In Definition 1.11, we have already seen that every closed vector subspace K of a Hilbert space
H admits an orthogonal projection PK W H ! K. For every x 2 H , the vector PK.x/ 2 K is
the best approximation of x by a vector in K. We already observed that kPK.x/k � kxk and it
follows that PK is a bounded operator.

The following proposition gives an abstract characterization of orthogonal projections.

Proposition 2.10. A bounded operator P on a Hilbert space H is an orthogonal projection onto
a closed vector subspace of H if and only if P D P � and P 2 D P .

Proof. Suppose first that P D PK for some closed vector subspace K � H . It is clear that
P 2 D P . Take x; y 2 H and write x D x1C x2, y D y1C y2 with x1; y1 2 K and x2; y2 2 K?.
It follows that Px D x1 and Py D y1. So,

hPx; yi D hx1; y1 C y2i D hx1; y1i D hx1 C x2; y1i D hx; Pyi :

Hence, P D P �.

Suppose conversely that P D P � and P 2 D P . Define K D ImP and observe that K D fx 2
H j Px D xg, proving that K is closed. We claim that P D PK . Since x D PxC .x �Px/, it is
sufficient to prove that x � Px 2 K? for all x 2 H . But this follows because

hPy; x � Pxi D hy; P.x � Px/i D 0 for all x; y 2 H :
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2.5 Unitary operators

Definition 2.11. A bounded operator T W H ! K is called unitary if T is a bijection satisfying
hT x; Tyi D hx; yi for all x; y 2 H .

In other words, a unitary operator is “an isomorphism in the category of Hilbert spaces”, which is
just an expensive way of saying that a unitary operator between two Hilbert spaces is nothing else
than a bijection that preserves all structure (vector space, sesquilinear form, norm).

Example 2.12. (i) The operator

U W `2.Z/! `2.Z/ W .Ux/.n/ D x.n � 1/ for all x 2 `2.Z/; n 2 Z

is unitary.
(ii) The operator

V W `2.N/! `2.N/ W .Vx/.n/ D

(
x.n � 1/ if n � 1 ;
0 if n D 0 :

is isometric, but not unitary.
(iii) The Fourier transform

F W L2.Œ0; 2��; �/! `2.Z/ W .Ff /.n/ D 1
p
2�

Z 2�

0

f .x/e�inx dx

is unitary.

Exercise 4. Prove the statements in Examples 2.12.(i) and 2.12.(ii). The remaining Example
2.12.(iii) is usually proved in a course on Fourier analysis. If you admit Example 1.13.(iii), you
can prove it yourself though.

2.6 Self-adjoint operators

Definition 2.13. 230 A bounded operator T 2 B.H/ is called self-adjoint if T D T �.

If H D Cn with the standard scalar product, bounded operators on H correspond to matrices.
Self-adjoint operators correspond to so called Hermitian matrices, i.e. matrices A that are equal to
the complex conjugate of their transpose.

2.7 Exercises

Exercise 5. Let P;Q be orthogonal projections on closed vector subspaces of H . Prove that the
following statements are equivalent.

1. The operator P CQ is an orthogonal projection.
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2. PQ D 0.

3. The subspaces ImP and ImQ are orthogonal.

Exercise 6. Let T W H ! K be a bijective linear map that preserves the norm: kT .x/k D kxk
for all x 2 H . Use the polarization formula to prove that T is unitary.
Exercise 7. Let T W H ! K be a bounded operator and .en/n2N an orthonormal basis for H .

1. Prove that T is an isometry if and only if T �T D 1,

2. Prove that T is unitary if and only if T �T D 1 and T T � D 1.

3. Prove that T is unitary if and only if .Ten/n2N is an orthonormal basis of K.

4. Let .fn/n2N be an orthonormal basis forK. Prove that there exists a unique unitary operator
U W H ! K satisfying Uen D fn for all n 2 N.

Exercise 8. Prove that the operator T in Example 2.2.(i) has adjoint

T � W `2.N/! `2.N/ W .T �y/.n/ D

(
y.n � 1/ if n � 1 ;
0 if n D 0 :

Exercise 9. Prove that the Volterra operator T defined in 2.2.(ii) has adjoint given by

.T �f /.x/ D

Z 1

x

f .y/ dy :

Exercise 10. Prove that the multiplication operator M� defined in 2.2.(iii) has adjoint M� where
�.n/ D �.n/.
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Compact operators

Before starting the actual contents of this lecture we remind a number of properties about compact
metric spaces.

3.1 Compact metric spaces

By definition (see 7.9 below) a metric space .X; d/ is called compact if every covering of X by a
family of open subsets admits a finite subcovering, i.e. a finite subfamily that still covers the whole
of X . This definition is not very intuitive, but makes sense for arbitrary topological spaces. For
metric spaces, several more natural conditions are equivalent with compactness.

Theorem 3.1. Let .X; d/ be a metric space and K � X . Then, the following statements are
equivalent.

(i) Every sequence in K has a subsequence converging to an element of K.

(ii) Every infinite subset of K has an accumulation point in K.

(iii) The metric space .K; d/ is complete and for every " > 0, there exists a finite subset I � X
such that

K �
[
x2I

B.x; "/ :

(iv) K is compact.

Proof. Prove as an exercise that 1 and 2 are equivalent.

(i) H) (iii). Suppose that (i) holds. We first prove that .K; d/ is complete. Let .xn/ be a Cauchy
sequence in K. Let .xnk

/ be a convergent subsequence with limit x 2 K. Choose " > 0. Take n0
such that d.xn; xm/ < "=2 for all n;m � n0. Take k such that nk � n0 and d.x; xnk

/ < "=2. It
follows that for all n � n0 we have

d.xn; x/ � d.xn; xnk
/C d.xnk

; x/ < " :

31
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So xn ! x and .K; d/ is complete. Next choose " > 0. Suppose that there is no finite subset
I � X such that K �

S
x2I B.x; "/. We can then choose inductively a sequence .xn/ in K

satisfying

xnC1 2 K n
� n[
iD0

B.xi ; "/
�
:

Let .xnk
/ be a subsequence of .xn/ converging to x 2 K. Take k0 such that d.x; xnk

/ < "=2

for all k � k0. It follows in particular that d.xnk0C1
; xnk0

/ < ". This is in contradiction with the
construction of xnk0C1

.

(iii) H) (ii). Suppose that (iii) holds and that A � K is an infinite subset. We claim that we can
inductively construct a decreasing sequence of infinite subsets An � A as well as a sequence .xn/
in X such that An � B.xn; 1=n/. Suppose that we have constructed A � A1 � � � � � An and
x1; : : : ; xn. Take a finite subset I � X such that

K �
[
x2I

B.x;
1

nC 1
/ :

Because An is infinite, the pigeon hole principle provides us with an infinite subset AnC1 � An
and an element xnC1 2 I such that AnC1 � B.xnC1; 1

nC1
/. This proves the claim. Take mutually

different elements an 2 An. If n;m � n0, it follows that d.an; am/ � 2=n0. So, .an/ is a Cauchy
sequence in K. Because of 3, the sequence .an/ converges to a 2 K. By construction, a is an
accumulation point of A.

(i) H) (iv). Suppose that (i) holds. Let .Ui/i2I be an open covering of K. Because we already
know that (iii) holds, it is sufficient to prove the existence of " > 0 with the following property:
for all x 2 K, there exists i 2 I such that B.x; "/ � Ui . Suppose that the contrary holds. Take for
every n � 1 an element xn 2 K such that

B.xn;
1

n
/ 6� Ui for all i 2 I :

Let .xnk
/ be a subsequence of .xn/ converging to x 2 K. Take i 2 I such that x 2 Ui . Take ı > 0

such that B.x; ı/ � Ui . Finally take k such that 1
nk
< ı

2
and d.x; xnk

/ < ı
2
. It follows that

B.xnk
;
1

nk
/ � B.x; ı/ � Ui

yielding a contradiction.

(iv) H) (ii). Finally suppose that K is compact and let A � K be an infinite subset. Assume that
A has no accumulation point in K. Whenever x 2 K, we thus know that x is not an accumulation
point of A, meaning that there exists "x > 0 such that

B.x; "x/ \ A � fxg :

Then, fB.x; "x/ j x 2 Kg is an open covering of K. Take a finite subcovering fB.x; "x/ j x 2 I g,
with I � K finite. It follows that

A D K \ A D
�[
x2I

B.x; "x/
�
\ A D

[
x2I

.B.x; "x/ \ A/ � I :

This is a contradiction with the assumption that A is infinite.
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Corollary 3.2. Let .X; d/ be a complete metric space and K0 � X . Then, the following two
conditions are equivalent.

� The closure of K0 is compact.

� For every " > 0, there exists a finite subset I � X such that

K0 �
[
x2I

B.x; "/ :

3.2 Compact operators

Definition 3.3. Let H;K be Hilbert spaces. A bounded operator T W H ! K is called compact if
the set

fT x j x 2 H; kxk � 1g

has compact closure in K.

The set of compact operators fromH toK is denoted by K.H;K/ and the set of compact operators
on H is denoted by K.H/.
We define the rank of an operator T W H ! K as the vector space dimension of ImT . So, T has
finite rank if the image of T is a finite-dimensional vector subspace of K. Since the unit ball of
Cn is compact, it follows that all finite rank operators are compact. The converse does not hold,
but every compact operator can approximated in the norm topology by finite rank operators, as we
prove now.

Theorem 3.4. Let H be a Hilbert space. Then K.H/ is a closed two-sided ideal in B.H/. This
means that

� K.H/ is a closed vector subspace of B.H/;

� ST 2 K.H/ and TS 2 K.H/ for all T 2 K.H/ and S 2 B.H/.

If T 2 B.H/, the following conditions are equivalent.

� T is compact.

� T � is compact.

� There exists a sequence .Tn/ of finite rank operators such that kT � Tnk ! 0.

Proof. The proof can be found in [Con, II.4.2 and II.4.4]. You can however write a proof yourself
according to the following steps. For simplicity we assume that H is separable.

Use the following scheme to prove that K.H/ is a closed vector subspace of B.H/. Take a se-
quence Tn 2 K.H/ and a T 2 B.H/ such that kT � Tnk ! 0. You have to prove that T 2 K.H/.
Choose " > 0. You have to prove that fT x j kxk � 1g can be covered by finitely many balls of
radius ".
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1. Take n such that kT � Tnk < "=2.

2. Since Tn is compact, choose finitely many vectors y1; : : : ; yk 2 H such that the balls
B.yi ; "=2/, i D 1; : : : ; k, cover fTnx j kxk � 1g.

3. Prove that the balls B.yi ; "/, i D 1; : : : ; k, cover fT x j kxk � 1g.

Next take T 2 K.H/ and S 2 B.H/.

1. To prove that ST 2 K.H/ use that the continuous map S W H ! H maps compact sets to
compact sets.

2. To prove that TS 2 K.H/ use that the bounded operator S W H ! H maps the unit ball of
H into the ball around 0 with radius kSk.

We already observed that finite rank operators are compact. Since K.H/ is closed inside B.H/
all limits of finite rank operators are compact as well. Since the adjoint of a finite rank operator
is still of finite rank, the only remaining property to prove is that every compact operator can
be approximated by finite rank operators. Take T 2 K.H/. Let .en/n2N be an orthonormal
basis of H . Denote by Pn the orthogonal projection of H onto spanfe0; : : : ; eng. We know from
Proposition 1.22 that for all y 2 H we have Pny ! y.

Prove as follows that Pny ! y uniformly on compact subsets of H . So let K � H be a compact
subset. Choose " > 0.

1. Cover K with finitely many balls B.yi ; "=3/, i D 1; : : : ; k.

2. Take n0 such that kPn.yi/ � yik < "=3 for all n � n0 and all i D 1; : : : ; k.

3. Prove that kPn.y/ � yk < " for all n � n0 and all y 2 K.

Deduce that PnT x ! T x uniformly on the unit ball of H . Conclude that this means that kPnT �
T k ! 0. Since PnT is a finite rank operator, we are done.

The next criterion proves that all integral operators with square integrable kernel are compact. In
fact, operators satisfying (3.1) are called Hilbert-Schmidt operators and are studied in more detail
in Section 3.6.

Proposition 3.5. Let H be a Hilbert space with orthonormal basis .en/n2N . If T 2 B.H/ and

1X
nD0

kTenk
2 <1 ; (3.1)

then T is a compact operator.

Proof. We claim that for all S 2 B.H/

kSk2 �

1X
nD0

kSenk
2 :
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Indeed, since kSk D kS�k, it suffices to observe that

kS�xk2 D

1X
nD0

jhen; S
�xij2 D

1X
nD0

jhSen; xij
2
�

1X
nD0

kSenk
2
kxk2 :

Suppose that T 2 B.H/ satisfies (3.1). Set

"n D

1X
kDnC1

kTekk
2 :

Observe that "n ! 0. Moreover, if Pn denotes the orthogonal projection onto spanfe0; : : : ; eng, it
follows that

kT � TPnk
2
D kT .1 � Pn/k

2
�

1X
kD0

kT .1 � Pn/ekk
2
D "n ! 0 :

So, T is compact.

Corollary 3.6. An integral operator T defined by a square integrable kernel K 2 L2.A�A; �/ as
in Proposition 2.9, is compact.

Proof. Let .en/n2N be an orthonormal basis for L2.A; �/. Define fm;n.x; y/ D em.x/en.y/ and
check that .fm;n/m;n2N is an orthonormal family in L2.A � A; �/. (One can actually prove that
.fm;n/m;n2N is an orthonormal basis but this is not needed to prove this corollary.) It follows that

1X
nD0

kTenk
2
D

1X
n;mD0

jhTen; emij
2
D

1X
n;mD0

jhK; fm;nij
2
� kKk22 <1 :

By Proposition 3.5, the operator T is compact.

3.3 Diagonalizable operators

In linear algebra, one proves that every Hermitian matrix can be diagonalized: there exists a basis of
eigenvectors. We prove that this holds in general for compact self-adjoint operators. We introduce
the following obvious definition.

Definition 3.7. Let T 2 B.H/ be a bounded operator.

� A vector x 2 H is called an eigenvector of T if x ¤ 0 and T x D �x for some � 2 C. We
call � the eigenvalue of x.

� A complex number � 2 C is called an eigenvalue of T if there exists an eigenvector with
eigenvalue �.

� We call T diagonalizable if H admits an orthonormal basis consisting of eigenvectors of T .

Example 3.8. The multiplication operator M� in Example 2.2.(iii) is diagonalizable for all � 2
`1.N/. Indeed, the standard orthonormal basis .en/n2N for `2.N/ consists of eigenvectors.

Exercise 1. Let H be a separable infinite dimensional Hilbert space and T 2 B.H/. Prove that
T is diagonalizable if and only if there exists � 2 `1.N/ and a unitary operator U W `2.N/! H

such that T D UM�U
�, where againM� is the multiplication operator defined in Example 2.2.(iii).
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3.4 Diagonalization of compact self-adjoint operators

The main aim of this section is to prove the following theorem.

Theorem 3.9. Every compact self-adjoint operator is diagonalizable.

To prove Theorem 3.9, we start with the modest lemma 3.10 below telling us that a compact self-
adjoint operator has at least one eigenvector. But first of all, we need the following.

Lemma 3.10. Let T 2 B.H/ be self-adjoint. Then,

kT k D supfjhT x; xij j x 2 H; kxk � 1g :

Proof. Denote M D supfjhT x; xij j x 2 H; kxk � 1g. Check that M � kT k. Also observe
that ˙hT x; xi � Mkxk2 for all x 2 H (this inequality makes sense: because T is self-adjoint,
hT x; xi 2 R for all x 2 H ).

Take x; y 2 H . Then,

hT .x C y/; x C yi �Mkx C yk2 ;

�hT .x � y/; x � yi �Mkx � yk2 :

Adding these two inequalities and making a little computation, we arrive at

4RehT x; yi � 2M.kxk2 C kyk2/ :

It follows that RehT x; yi �M for all x; y with kxk; kyk � 1. Hence, kT k �M .

Lemma 3.11. Let T be a compact self-adjoint operator. Then T has an eigenvector with eigen-
value kT k or �kT k.

Proof. If T D 0, nothing has to be proven. Suppose T ¤ 0.

Write B D B.0; 1/ � H . By Lemma 3.10, take a sequence .xn/ in B such that jhT xn; xnij !
kT k. Theorem 3.1 ensures that we can pass to a subsequence and suppose that T xn ! y and
hT xn; xni ! � with � D ˙kT k. In particular, � ¤ 0. Check that kyk D j�j and hence, also
y ¤ 0.

Observe now that

kT xn � �xnk
2
D kT xnk

2
� 2�RehT xn; xni C �2kxnk2 � 2.�2 � �RehT xn; xni/! 0 :

Because T xn ! y, it follows that �xn ! y and hence xn ! 1
�
y. By continuity of T , we get

T xn !
1
�
Ty and so, Ty D �y.

Proof of Theorem 3.9. By Zorn’s lemma take a maximal orthonormal family .ei/i2I of eigenvec-
tors for T . Denote byK � H the closure of the linear span of the vectors ei , i 2 I . We shall prove
that K D H . Check that TK � K. Use the self-adjointness of T to deduce that TK? � K?.
Denote by T0 the restriction of T to K?. View T0 as a bounded operator on the Hilbert space K?.
Prove that T0 is compact and self-adjoint. So if K? ¤ f0g, Lemma 3.11 provides a norm one
eigenvector f for T0. Then we can add f to the family .ei/i2I contradicting its maximality. So
K? D f0g meaning that K D H .
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3.5 Positive operators (optional)

Definition 3.12. A bounded operator T 2 B.H/ is called positive if

hT x; xi � 0 for all x 2 H :

We denote the set of positive operators by B.H/C. We also write T � 0 to denote that T is a
positive operator.

Observe that a positive operator is automatically self-adjoint. Indeed, for all x 2 H , we have

hT x; xi D hT x; xi D hx; T xi

and polarization implies that hT x; yi D hx; Tyi for all x; y 2 H .
Exercise 2. Prove that T D 0 whenever T 2 B.H/C and �T 2 B.H/C.

Definition 3.13. Because of the previous exercise, we can define a partial order on the set of self-
adjoint operators, by putting

T � S if and only if S � T 2 B.H/C :

Exercise 3. Prove the following statements.

1. If S is self-adjoint, we have �kSk1 � S � kSk1.

2. If S � T and R 2 B.H/, then RSR� � RTR�.

Observe that the first item of the previous exercise implies that every self-adjoint operator can be
written as the difference of two positive operators. This provides the first indication that self-adjoint
operators behave much like real numbers with the positive operators corresponding to the positive
real numbers. This becomes more clear in the course Spectral Theory and Operator Algebras.

Another illustration is provided by the following theorem.

Theorem 3.14. Let T 2 B.H/C be a positive operator. There exists a unique positive operator
S 2 B.H/C satisfying S2 D T . In words: every positive operator has a unique positive square
root. We write S D T 1=2.

An elegant proof of Theorem 3.14 can only be given by invoking the spectral theorem for arbitrary
self-adjoint operators, which we will do in Lecture 4 (see 4.14. For compact operators we did prove
a spectral theorem in 3.9 and this will allow us to prove easily Theorem 3.14 when T is compact.

Proof of Theorem 3.14 when T is compact. We first prove the existence of a positive square root
S . By Theorem 3.9, take an orthonormal basis .ei/i2I of H satisfying Tei D �iei for all i 2 I .
By positivity of T , it follows that �i � 0 for all i 2 I . Define S 2 B.H/ such that Sei D

p
�iei

for all i 2 I . Check that S 2 B.H/C and S2 D T .

In order to prove uniqueness of S , it suffices to prove the following statement: whenever R 2
B.H/C, R2 D T and x 2 H is an eigenvector for T with eigenvalue � � 0, then Rx D

p
�x.

First note that if � D 0, we have T x D 0 and hence

kRxk2 D hRx;Rxi D hT x; xi D 0
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implying that alsoRx D 0. If � > 0, first observe that Ker.RC�/ D f0g. Indeed, if .RC�/x D 0,
it follows that

0 D h.RC �/x; xi D hRx; xi C �kxk2 � �kxk2

implying that x D 0. But, when T x D �x and � ¤ 0, the vector .R�
p
�/x belongs to the kernel

of RC
p
�, implying that Rx D

p
�x.

3.6 Trace-class and Hilbert-Schmidt operators (optional)

The trace of an n � n matrix A 2 Mn.C/ is defined as

Tr.A/ D
nX
iD1

Ai i :

If we consider A as an operator on Cn, the formula for the trace can be rewritten as

Tr.A/ D
nX
iD1

hAei ; eii ;

where e1; : : : ; en denotes the standard orthonormal basis of Cn.

All this makes the following definition not so surprising, but we have to take care because the
Hilbert spaces involved are infinite dimensional and so, finite sums become series.

Throughout this section, all Hilbert spaces are supposed to be separable.

Definition 3.15. Let .en/n2N be an orthonormal basis for a Hilbert space H . We define the map

Tr W B.H/C ! Œ0;C1� W Tr.A/ D
1X
nD0

hAen; eni :

We call Tr the trace on B.H/.

There is no problem in summing the series in Definition 3.15. Indeed, for the moment we are only
dealing with positive operators and a series with positive terms can always be summed provided
that we allowC1 as a value for the sum.

Proposition 3.16. The trace Tr is independent of the choice of orthonormal basis. Moreover, the
trace satisfies the following properties.

1. Tr.T �T / D Tr.T T �/ for all T 2 B.H/.

2. For all � � 0, the set fT 2 B.H/C j Tr.T / � �g is closed. In words: the trace is lower
semicontinuous.

3. If 0 � S � T , we have 0 � Tr.S/ � Tr.T /.
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Proof. Suppose that .en/ and .fn/ are two orthonormal bases forH . Let T 2 B.H/C with positive
square root S as in Theorem 3.14. Then the Parseval equality yields

1X
nD0

hTen; eni D

1X
nD0

kSenk
2
D

1X
n;mD0

jhSen; fmij
2

D

1X
n;mD0

jhSfm; enij
2
D

1X
mD0

kSfmk
2

D

1X
mD0

hTfm; fmi ;

proving that the definition of Tr is independent of the choice of orthonormal basis. The formula
Tr.T �T / D Tr.T T �/ follows by an analogous application of the Parseval equality. The remaining
statements are left as an exercise.

Definition 3.17. We define

T C.H/C D fT 2 B.H/C j Tr.T / <1g ;

T C.H/ D span T C.H/C ;
HS.H/ D fT 2 B.H/ j Tr.T �T / <1g :

The elements of T C.H/ are called trace-class operators. We define for T 2 T C.H/,

Tr.T / D
1X
nD0

hTen; eni

and observe that the series on the right hand side is absolutely summable.

The elements of HS.H/ are called Hilbert-Schmidt operators.

Example 3.18. The integral operators T with square integrable kernel K (see Proposition 2.9)
are Hilbert-Schmidt operators. Indeed, in the proof of Corollary 3.6 we checked that Tr.T �T / �
kKk22. In fact, equality holds if you accept that the orthogonal family .fn;m/n;m2N defined in the
proof of Corollary 3.6 is in fact an orthonormal basis of L2.A � A; �/.

The next proposition is conceptually nontrivial: the set of Hilbert-Schmidt operators on H forms
itself a Hilbert space.

Proposition 3.19. (i) The Hilbert-Schmidt operators form a vector subspace of B.H/.

(ii) If T; S 2 HS.H/, we have TS; ST 2 T C.H/ and Tr.TS/ D Tr.ST /.

(iii) Equipped with the inner product

hT; Si D Tr.TS�/ ;

the vector space HS.H/ becomes a Hilbert space. We denote the corresponding norm as

kT k2 D
p

Tr.T �T / :
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(iv) Further, HS.H/ is a two-sided ideal in B.H/, meaning that ST; TS 2 HS.H/ whenever
T 2 HS.H/ and S 2 B.H/. Moreover, the following inequalities hold.

kST k2 � kSk kT k2 and kTSk2 � kSk kT k2 :

(v) Finally, HS.H/ � K.H/.

Proof. (i) Take S; T 2 B.H/. Observe that

.S C T /�.S C T /C .S � T /�.S � T / D 2.S�S C T �T / :

Hence, .S C T /�.S C T / � 2.S�S C T �T / implying that HS.H/ is a vector subspace of B.H/.

(ii) If T 2 HS.H/, we have by definition and Proposition 3.16 that T �T; T T � 2 T C.H/ with
Tr.T �T / D Tr.T T �/. By polarization, we get that TS�; S�T 2 T C.H/ for all T; S 2 HS.H/
and that Tr.TS�/ D Tr.S�T /.

(iii) From 2 we know that hT; Si D Tr.TS�/ yields a well defined positive Hermitian form on
HS.H/. In the proof of Proposition 3.5, we have already seen that Tr.T �T / � kT k2, implying
that the above Hermitian form is positive-definite. So, it remains to prove that HS.H/ equipped
with the norm k � k2 is complete. Suppose that .Tn/ is a Cauchy sequence in HS.H/. The
inequality kT k � kT k2 for all T 2 HS.H/, implies that .Tn/ is also a Cauchy sequence in B.H/.
So, Tn ! T in B.H/. It remains to show that kT � Tnk2 ! 0. Choose " > 0. Take n0 such that
kTm � Tnk2 � " for all n;m � n0. By lower semicontinuity of Tr, we can take the limit m!1
and get kT � Tnk2 � " for all n � n0.

(iv) Let T 2 HS.H/ and S 2 B.H/. The inequality .ST /�ST D T �S�ST � kSk2T �T

implies that ST 2 HS.H/ and kST k2 � kSk kT k2. The fact that TS 2 HS.H/ with kTSk2 �
kSk kT k2 is proven similarly.

(v) This follows from Proposition 3.5.

Exercise 4. Let M� be the multiplication operator defined in Example 2.2.(iii). Prove that

1. M� is compact if and only if � 2 c0.N/;

2. M� is trace-class if and only if � 2 `1.N/; compute Tr.M�/ in that case;

3. M� is Hilbert-Schmidt if and only if � 2 `2.N/.

Conclude that the inclusion HS.H/ � K.H/ is strict when H is infinite dimensional.

Before making a more detailed study of trace-class operators, we introduce a new tool: the polar
decomposition of a bounded operator. Recall that every complex number can be written as the
product of a number of modulus 1 and a positive real number. In a certain sense, a similar thing
can be done with bounded operators on a Hilbert space.

Definition 3.20. Let T 2 B.H/. Define the absolute value of T as

jT j D .T �T /
1
2 :



Lecture 3. Compact operators 41

Theorem 3.21. Let T 2 B.H/. Denote by P the orthogonal projection onto .KerT /?. There
exists a unique operator U 2 B.H/ satisfying

T D U jT j and U �U D P :

We call the expression T D U jT j, the polar decomposition of T .

Proof. Check that the formula U �U D P is equivalent with the following statement

kUxk D kxk for all x 2 .KerT /? and Ux D 0 for all x 2 KerT :

Also observe that kT xk D k jT jx k for all x 2 H . It follows in particular that KerT D Ker jT j
and so .KerT /? coincides with the closure of Im jT j. So, we uniquely defineU 2 B.H/ satisfying
U �U D P and U jT jx D T x for all x 2 H .

Exercise 5.

1. Let � 2 `1.Z/. Define the operator

T W `2.Z/! `2.Z/ W .T x/.n/ D �.n/x.nC 1/ :

Prove that T is a bounded operator and compute its polar decomposition.

2. Let U 2 B.H/. Prove that the following statements are equivalent.

(a) U �U is an orthogonal projection.

(b) UU � is an orthogonal projection.

(c) There exists a closed subspace K � H such that the restriction of U to K is isometric
and Ux D 0 for all x 2 K?.

An operator satisfying one of these equivalent conditions is called a partial isometry. Note
that the polar part U in the polar decomposition given by Theorem 3.21 is a partial isometry.

3. Let T D U jT j be the polar decomposition of a bounded operator T . Prove that U is unitary
if and only if KerT D Ker.T �/ D f0g.

We gathered enough material to prove the following duality theorem. First recall Exercise 4, saying
that the multiplication operator M� is compact if and only if � 2 c0.N/ and is trace-class if and
only if � 2 `1.N/. Finally recall the Banach space duality `1.N/ Š c0.N/� and `1.N/ Š
`1.N/�. The same results holds true for operators: T C.H/ Š K.H/� and B.H/ Š T C.H/�. A
more precise statement is given now.

Theorem 3.22. (i) The vector space T C.H/ is a two-sided ideal in B.H/ and Tr.ST / D
Tr.TS/ for all T 2 T C.H/ and S 2 B.H/.

(ii) A bounded operator T 2 B.H/ belongs to T C.H/ if and only if Tr.jT j/ < 1. Moreover,
the formula

kT k1 D Tr.jT j/

defines a norm on T C.H/ and equipped with this norm, T C.H/ is a Banach space.
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(iii) The maps

T C.H/! K.H/� W T 7! !T with !T W K.H/! C W !T .S/ D Tr.ST / ;
B.H/! T C.H/� W S 7! �S with �S W T C.H/! C W �S.T / D Tr.ST / ;

are isometric isomorphisms.

(iv) We have the inclusions T C.H/ � HS.H/ � K.H/ with corresponding inequalities

kT k2 �
p
kT k kT k1 and kSk � kSk2

for all T 2 T C.H/ and S 2 B.H/.

Proof. (i) By linearity, we may assume that T 2 T C.H/C. Set R D T
1
2 . Then, R 2 HS.H/

and Proposition 3.19 implies firstly that SR;RS 2 HS.H/, secondly that ST D .SR/R and
TS D R.RS/ are trace-class operators and finally that

Tr.ST / D Tr..SR/R/ D Tr.R.SR// D Tr..RS/R/ D Tr.R.RS// D Tr.TS/ :

(ii) Let T D U jT j be the polar decomposition of T . Since T D U jT j and jT j D U �T , it follows
from (i) that T 2 T C.H/ if and only if jT j 2 T C.H/. And the latter is by definition equivalent
with Tr.jT j/ <1. The rest of (ii) will be proven below.

(iii) We first prove that for all T 2 T C.H/,

Tr.jT j/ D supfjTr.ST /j j S 2 K.H/; kSk � 1g D supfjTr.ST /j j S 2 B.H/; kSk � 1g :
(3.2)

Choose S 2 B.H/ with kSk � 1. Take the polar decomposition T D U jT j. Using the inner
product on HS.H/ and the results of Proposition 3.19, we get

jTr.ST /j D jhSU jT j
1
2 ; jT j

1
2 ij � kSU jT j

1
2k2 k jT j

1
2k2 � kSU k Tr.jT j/ � Tr.jT j/ :

We have shown that

supfjTr.ST /j j S 2 B.H/; kSk � 1g � Tr.jT j/ :

Next, let .en/n2N be an orthonormal basis of H and denote by Pn the orthogonal projection onto
spanfe0; : : : ; eng. It follows that

Tr..PnU �/T / D Tr.PnjT j/ D
nX
kD0

hjT jek; eki :

Because PnU � is a compact operator with kPnU �k � 1, we have shown that

Tr.jT j/ � supfjTr.ST /j j S 2 K.H/; kSk � 1g :

Altogether, we have proven (3.2). It follows that the formula kT k1 D Tr.jT j/ defines a norm on
T C.H/ in such a way that the map ‚ W T C.H/ ! K.H/� W T 7! !T is an isometry. If we
now prove that ‚ is surjective, it follows that ‚ is an isometric isomorphism and that T C.H/ is a
Banach space (concluding in particular the proof of (ii)).
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Suppose that ! 2 K.H/�. Denote for all x; y 2 H by �x;y the rank one operator defined as

�x;y.z/ D hz; yix :

It follows that H �H ! C W .x; y/ 7! !.�x;y/ is a bounded sesquilinear form on H . So, we find
a bounded operator T 2 B.H/ such that

!.�x;y/ D hT x; yi D Tr.T �x;y/ for all x; y 2 H :

We prove now that T 2 T C.H/. Since the finite rank operators are dense in K.H/, it then
follows that ! D !T , proving the surjectivity of ‚. Let T D U jT j be the polar decomposition
of T and let .en/n2N be an orthonormal basis of H . Denote by Pn the orthogonal projection onto
spanfe0; : : : ; eng. For every n, we have

hjT jen; eni D hTen; Ueni D !.�en;Uen
/ D !.�en;en

U �/ :

It follows that
nX
kD0

hjT jek; eki D !.PnU
�/ � k!k

for all n. Hence, Tr.jT j/ <1 and T 2 T C.H/.
To conclude the proof of (iii), it remains to study S 7! �S . By the above results, k�Sk � kSk for
all S 2 B.H/. Moreover, hSx; yi D Tr.S�x;y/ D �S.�x;y/, implying that kSk � k�Sk. So, we
obtain 3 once we have shown that every � 2 T C.H/� is of the form �S for some S 2 B.H/. But
given �, we find in exactly the same way as above, a bounded operator S 2 B.H/ such that

hSx; yi D �.�x;y/ for all x; y 2 H :

We claim that the finite rank operators are dense in T C.H/, implying that � D �S and concluding
the proof of (iii).

It is sufficient to prove that every T 2 T C.H/C can be approximated in k � k1-norm by finite rank
operators. Let again .en/n2N be an orthonormal basis of H and Pn the orthogonal projection onto
spanfe0; : : : ; eng. Then,

k.1 � Pn/T .1 � Pn/k1 D

1X
kDnC1

hTek; eki ! 0 :

But .1�Pn/T .1�Pn/ D T � .PnT CTPn�PnTPn/. Since PnT CTPn�PnTPn is an operator
of finite rank, we are done with 3.

(iv) Only the first inequality still has to be shown. But,

kT k22 D Tr.T �T / D Tr.jT j
1
2 jT j jT j

1
2 / � k jT j k Tr.jT j/ D kT k kT k1 :
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3.7 Exercises

Exercise 6. Let H be a Hilbert space. Prove that one of the following holds.

1. Either there exists an n 2 N and a unitary operator U W Cn ! H ,

2. or there exists an isometry V W `2.N/! H .

Deduce that the unit ball of the Hilbert space H is compact if and only if H is finite-dimensional.
In fact, the same statement holds for arbitrary normed spaces, but is slightly harder to prove (cf.
[Ped, 2.1.9]).
Exercise 7. Consider the following variant of the Volterra operator. Define

H D ff 2 L2.Œ0; 2��/ j
Z 2�

0

f .x/ dx D 0g :

Define T 2 B.H/ by the formula

.Tf /.x/ D i

Z x

0

f .y/ dy C
i

2�

Z 2�

0

yf .y/ dy :

Prove the following statements

1. T is a compact self-adjoint operator on H .

2. For all f 2 H , Tf is a continuous function.

3. If Tf D �f with � ¤ 0, the function f is infinitely differentiable and satisfies �f 0 D if .

4. Deduce that � ¤ 0 is an eigenvalue of T if and only if � D 1
n

with n 2 Z n f0g. Compute
the corresponding eigenvectors.

5. Define en 2 L2.Œ0; 2��/ by en.x/ D .2�/�1=2einx . Accept for the moment that KerT D
f0g. Conclude that .en/n2Znf0g is an orthonormal basis for H and hence, .en/n2Z is an
orthonormal basis for L2.Œ0; 2��/.

6. Suppose that f 2 KerT . We want to prove that f D 0. First prove thatZ b

a

f .x/ dx D 0 for all 0 � a � b � 2� :

Use your knowledge of measure theory to deduce that f .x/ D 0 for almost all x.



Lecture 4

Spectral theorem

The aim of this lecture is to prove that any self-adjoint operator can be put in a special form, just like
any compact operator can be diagonalized. The motivating example is the following multiplication
operator on the Hilbert space L2Œ0; 1�

.Mxf /.t/ WD tf .t/:

The subscript x denotes here the identity function f .x/ � x and should not be confused with
the variable y. In a certain sense this operator is diagonal, if we view the interval Œ0; 1� as some
sort of ‘continuous’ orthonormal system. But this operator does not have any eigenvalues, so we
cannot study it using the same tools as the ones applied in the case of compact operators; we need
something more general.

4.1 The spectrum

Definition 4.1. Let T 2 B.H/. Define the spectrum �.T / and spectral radius �.T / of T as

�.T / D f� 2 C j T � �1 is not invertible g ;
�.T / D supfj�j j � 2 �.T /g :

The spectrum can be divided into 3 disjoint parts:

� point spectrum – the eigenvalues;

� continuous spectrum – � 2 �.T / such that � is not an eigenvalue but the range of T � �1 is
dense in H ;

� residual spectrum – none of the above.

Lemma 4.2. The residual spectrum of a self-adjoint operator T is empty.

Proof. Suppose that � belongs to the residual spectrum, so .Im.T � �1//? ¤ f0g. But .Im.T �
�1//? D ker.T ��1/ by Proposition 2.8, so � is an eigenvalue of T . As eigenvalues of self-adjoint
operators are real, � D � is an eigenvalue, so it does not belong to the residual spectrum.

45
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Lemma 4.3. Let T 2 B.H/ be self-adjoint. Then � 2 �.T / if and only if there exists a sequence
of unit vectors �n 2 H such that

kT �n � ��nk ! 0 : (4.1)

So, contrary to the finite-dimensional and the compact case, elements of �.T / need not be eigen-
values, but they do arise from approximate eigenvectors.

Proof. The statement is clear for eigenvalues, so we may assume that � belongs to the continuous
spectrum.

If there is no sequence of unit vectors �n 2 H satisfying (4.1), then we find " > 0 such that
k.T ��1/�k � " k�k for all � 2 H . So, T ��1 has closed range and is an invertible operator from
H onto this closed range. But the range is also, so it is all of H . Therefore T � �1 is an invertible
operator, thus � … �.T /.

Corollary 4.4. If T 2 B.H/ is self-adjoint and � 2 �.T / then there exists a sequence of unit
vectors �n 2 H such that hT �n; �ni ! �.

Proof. By the previous corollary, there is a sequence of unit vectors �n 2 H such that kT �n �
��nk ! 0. It follows from Cauchy-Schwarz inequality that hT �n; �ni � � h�n; �ni„ ƒ‚ …

D1

! 0.

Corollary 4.5. Spectrum of a self-adjoint operator T is real.

Proof. We hT �; �i 2 R for any � 2 H .

Lemma 4.6. If T 2 B.H/ is self-adjoint, then �.T / contains kT k or �kT k.

Proof. It follows from the proof of Lemma 3.11.

Lemma 4.7. If S 2 B.H/ and kSk < 1, then 1 � S is invertible.

Proof. The sequence
Pn
kD0 S

k converges in operator norm and its limit is the inverse of 1�S .

Lemma 4.8. For all T 2 B.H/, we have �.T / � kT k.

Proof. Let � 2 C with j�j > kT k. Write S D ���1T . By Lemma 4.7, T � �1 D ��.1 � S/ is
invertible. So, � 62 �.T /.

Proposition 4.9. If T 2 B.H/ is self-adjoint, then �.T / is a closed subset of Œ�kT k; kT k� and
�.T / D kT k.

Proof. By Lemmas 4.6 and 4.8, it only remains to prove that �.T / is closed. Take � 62 �.T /.
Write S D T � �1. Whenever j�j < kS�1k�1, we get that

T � .�C �/1 D S � �1 D S.1 � �S�1/

is invertible by Lemma 4.7. So, �C � 62 �.T / for all � small enough.

Lemma 4.10. Let S; T 2 B.H/. Then ST and TS are both invertible if and only if S and T are
both invertible.
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Proof. Assume that ST and TS are both invertible. Then, .ST /�1S and S.TS/�1 are a left,
respectively right inverse of T , so that T is invertible. Similarly, S is invertible. The converse is
trivial.

Lemma 4.11. Let p 2 CŒX� be a polynomial and T 2 B.H/. Then, �.p.T // D p.�.T //.

Proof. Since p.T / � �1 D .p � �/.T /, it suffices to prove that p.T / is invertible if and only if
all zeros of p lie outside �.T /. Writing p.X/ D .X � �1/ � � � .X � �n/ with �i 2 C, this follows
from Lemma 4.10.

Lemma 4.12. Let T 2 B.H/ be self-adjoint and p 2 CŒX�. Then,

kp.T /k D supfjp.�/j j � 2 �.T /g :

Proof. Define the polynomial p� by taking the complex conjugate of each coefficient of p. Write
q D p�p. Since T D T �, we get that q.T / D p.T /�p.T /. It follows that q.T / is self-adjoint
and that kp.T /k2 D kq.T /k. By Proposition 4.9 and Lemma 4.11, we get that

kp.T /k2 D kq.T /k D �.q.T // D supfjq.�/j j � 2 �.T /g D
�
supfjp.�/j j � 2 �.T /g

�2
:

We can apply polynomial functions to operators and our next goal will be to show that in the case
of self-adjoint operators we can also apply continuous functions defined on the spectrum; Lemma
4.12 will be a crucial tool.

4.2 Continuous functional calculus

Given a compact subset K � R, we denote by C.K/ the space of bounded continuous functions
K ! C with the supremum norm k � k1.

Proposition 4.13. Let T 2 B.H/ be self-adjoint. There is a unique unital �-homomorphism
ˆ W C.�.T // ! B.H/ (it means that ˆ is a linear map that satisfies ˆ.fg/ D ˆ.f /ˆ.g/,
ˆ. Nf / D .ˆ.f //� and ˆ.1/ D 1) such that kˆ.f /k D kf k1 and ˆ.p/ D p.T / for all f 2
C.�.T // and p 2 CŒX�.

We write f .T / instead of ˆ.f /. Then the following properties hold for all f 2 C.�.T //.

1. If S 2 B.H/ and ST D TS , then S f .T / D f .T / S .

2. If � 2 H n f0g is an eigenvector of T with eigenvalue �, then � is also an eigenvector of
f .T /, with eigenvalue f .�/.

3. �.f .T // D f .�.T //.

4. When f W �.T / ! R and g W f .�.T // ! C are continuous functions, we have that
g.f .T // D .g ı f /.T /.
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Proof. The existence and uniqueness of ˆ, as well as properties 1 and 2, follow immediately from
Lemma 4.12 and the density of polynomial functions in C.�.T /.

It remains to prove properties 3 and 4. Note that f .�.T // is a compact subset of C. If � 62
f .�.T //, we define g 2 C.�.T // by g.x/ D .f .x/��/�1. Then, g.T / is the inverse of f .T /��1,
so that � 62 �.f .T //. Conversely, assume that � D f .�/ with � 2 �.T /. By Lemma 4.3, we can
take a sequence of unit vectors �n 2 H such that kT �n � ��nk ! 0. It follows that kp.T /�n �
p.�/�nk ! 0 for every p 2 CŒX�. By density, it also follows that kf .T /�n�f .�/�nk ! 0. This
implies that f .T / � f .�/1 is not invertible. So, � D f .�/ belongs to �.f .T //.

Property 4 is immediate when g is a polynomial function and thus holds in general by density.

Recall that an operator T 2 B.H/ is said to be positive if hT �; �i � 0 for all � 2 H . Note that
positive operators are always self-adjoint. We include the following characterization of positive
operators as a corollary of the continuous functional calculus (cf. 3.14).

Corollary 4.14. Let T 2 B.H/ be self-adjoint. Then the following statements are equivalent.

(i) T D S2 for some self-adjoint S 2 B.H/.

(ii) T D S�S for some S 2 B.H/.

(iii) T is positive.

(iv) �.T / � Œ0;C1/.

Also, for every positive operator T 2 B.H/, there exists a unique positive operator S 2 B.H/
such that T D S2.

Proof. The implications (i)) (ii)) (iii) 3 are easy.

(iv) ) (i). Define f 2 C.�.T // given by f .x/ D
p
x for all x 2 �.T / � Œ0;C1/. Write

S D f .T /. Then S D S� and S2 D T .

(iii)) (iv). It follows from Lemma 4.4.

For the remaining statement, let T 2 B.H/ be positive. Define the continuous function f W
Œ0;C1/ ! R W f .x/ D

p
x. Then, f .T / is positive and f .T /2 D T . When also S 2 B.H/ is

positive and T D S2, we get that f .T / D f .S2/ D f .g.S//, where g W R ! R W g.x/ D x2.
Since �.S/ � Œ0;C1/, we get that f .g.x// D x for all x 2 �.S/. Using property 4 in Proposition
4.13, it follows that f .T / D .f ı g/.S/ D S .

4.3 Spectral theorem vol. 1 – mutliplication operator form

We will now show that any self-adjoint operator is unitarily equivalent to a multiplication operator
on some measure space. To this end we are going to need the following result.

Theorem 4.15 (Riesz representation theorem). Let K be a compact space and let ' W C.K/! C
be a bounded functional. Then there exists a Borel measure � on K such that '.f / D

R
X
fd�.

Moreover, if ' is a positive functional, i.e. '.f / > 0 for any f > 0, then � is a positive measure.
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We start with a lemma.

Lemma 4.16. Let T 2 B.H/ be a self-adjoint operator. Assume that it admits a cyclic vector v, i.e.
a unit vector such that spanfT nv W n 2 Ng is dense in H . Then there is a measure � on �.T / and
unitary operator U W H ! L2.�.T /; �/ such that UT U � D Mx, where Mx W L

2.�.T /; �/ !

L2.�.T /; �/ is the operator given by .Mxf /.t/ WD tf .t/.

Proof. By Proposition 4.13, we may consider a functional 'v W C.�.T //! C given by 'v.f / WD
hf .T /v; vi. By the Riesz representation theorem 4.15 we get a positive measure � on �.T / such
that hf .T /v; vi D

R
�.T /

fd�. We may now consider the map H 3 f .T /v 7! f 2 L2.�.T /; �/,
which is defined on a dense subspace ofH and its range is also dense, because continuous functions
are dense in the L2-space. This map is isometric

kf k22 D

Z
�.T /

jf j2d� D hjf j2.T /v; vi

D hf .T /f .T /v; vi D hf .T /v; f .T /vi

D kf .T /vk2:

It follows that it extends to a unitary operator U W H ! L2.�.T /; �/. We will check that the
equality UT U � D Mx holds on the dense subspace formed by continuous functions. Indeed, we
have UT U �f D UTf .T /v D U.x � f /.T /v D x � f DMxf .

Exercise 1. Let T D T � 2 Mn be an Hermitian matrix. Prove that it admits a cyclic vector iff it
has no repeated eigenvalues.

Theorem 4.17. Let T 2 B.H/ be a self-adjoint operator. Then there exists a measure space
.X; �/, a bounded measurable function g W X ! �.T / and a unitary operator U W H ! L2.X; �/

such that UT U � DMg .

Proof. Let v 2 H be a unit vector. Consider the subspace H1 WD spanfT nv W n 2 Ng. By
Lemma 4.16 there is a measure �1 on �.T / and a unitary operator U1 W H1 ! L2.�.T /; �1/. If
H1 D H then we are done. IfH1 ¤ H , we pick a unit vector inH?1 and repeat the construction; as
T .H1/ � H1 and T is self-adjoint, we also have T .H?1 / � H

?
1 . Since we can always continue the

procedure, we will exhaust the whole spaceH at some point – we get an orthogonal decomposition
H D

Ln
iD1Hi , where we allow n D 1. We also have the corresponding unitary operators

Uk W Hk ! L2.�.T /; �k/, which allow us to build a unitary U W H !
Ln

iD1L
2.�.T /; �i/,

given by U WD
Ln

iD1 Ui . To finish the proof, we have to view the space
Ln

iD1L
2.�.T /; �i/ as

L2.X; �/ for some measure space .X; �/. As X we take a disjoint union of n copies of �.T / and
the measure � will be given as disjoint union of the measures �i , i.e. the restriction of � to the
i -th copy of �.T / will be given by �i . Finally, the function g restricts to the identity function on
each of the copies of �.T /.

We will now be able to extend the continuous functional calculus to Borel functional calculus.
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4.4 Spectral theorem vol. 2 – Borel functional calculus

Let K � R be a compact subset. We denote by Bb.K/ the space of bounded Borel functions
f W K ! C and we equip Bb.K/ with the supremum norm k � k1.

We say that a sequence fn 2 Bb.K/ converges boundedly pointwise to f 2 Bb.K/ if supn kfnk1 <
1 and fn.x/! f .x/ for every x 2 K.

Theorem 4.18. Let T 2 B.H/ be self-adjoint. There is a unique unital �-homomorphism ˆ W

Bb.�.T //! B.H/ with the following properties.

(i) ˆ.f / D f .T / for all f 2 C.�.T //.

(ii) kˆ.f /k � kf k1 for all f 2 Bb.�.T //.

(iii) If fn 2 Bb.�.T // and fn ! f boundedly pointwise, then ˆ.fn/ ! ˆ.f / strongly, i.e.
limn!1ˆ.fn/v D ˆ.f /v for any v 2 H .

We write f .T / instead of ˆ.f /. Then the following properties hold for all f 2 Bb.�.T //.

1. If S 2 B.H/ and ST D TS , then S f .T / D f .T / S .

2. If � 2 H n f0g is an eigenvector of T with eigenvalue �, then � is also an eigenvector of
f .T /, with eigenvalue f .�/.

3. �.f .T // � f .�.T //.

4. When f W �.T / ! R and g W f .�.T // ! C are bounded Borel functions, we have that
g.f .T // D .g ı f /.T /.

Proof. The existence of extension follows from Theorem 4.17. Indeed, if UT U � D Mg and
f W �.T / ! C is a Borel function, we define f .T / WD U �Mf ıgU . It is clearly a unital �-
homomorphism and(i) and (ii) hold. Let us prove (iii). Assume that the sequence .fn/n2N con-
verges boundedly pointwise to f . For any v 2 H we have

kf .T /v � fn.T /vk
2
D kU �.Mf ıg �Mfnıg/Uvk

2

D

Z
X

jf ı g � fn ı gj
2
� jUvj2d�:

Since jf ıg�fn ıgj 6 M for some constantM > 0, the integrand is dominated by the integrable
function M jUvj2, so Lebesgue’s dominated convergence theorem shows that limn!1 kf .T /v �

fn.T /vk D 0. The Lemma 4.20 shows that the extension is unique.

To check properties 1. and 2. consider the class of Borel functions for which they hold. By Propo-
sition 4.13 this class contains the continuous functions. It suffices to check that it is closed under
bounded pointwise limits and then appeal to Lemma 4.20. But bounded pointwise convergence
translates to strong convergence of the corresponding operators, so it is clear. Property 3. follows
from the easy observation that if Mg is a mutliplication operator then its spectrum is contained in
the closure of the image of g; otherwise you can easily write a formula for the inverse. Since g
takes values in �.T /, it follows that �.f .T // D �.Mf ıg/ � f .g.X/ � f .�.T //. Now you can
verify property 4. exactly the same as properties 1. and 2.

We can now provide yet another formulation of the spectral theorem. In what follows we denote
by P.H/ the set of all orthogonal projections onto closed subspaces of H .
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4.5 Spectral theorem vol. 3 – the spectral measure (optional)

Theorem 4.19. Let T 2 B.H/ be self-adjoint. Denote by B the Borel � -algebra on �.T /. There
is a unique map E W B! P.H/ with the following properties.

1. E.;/ D 0 and E.�.T // D 1.

2. E.U \ V/ D E.U/E.V/ for all U ;V 2 B.

3. E.
S
n Un/ D

P
nE.Un/ if the Un 2 B are disjoint.

4. E.U/ T D T E.U/ for all U 2 B.

5. For all U 2 B, the spectrum of T jE.U/H is contained in the closure U .

When Un 2 B are disjoint, property 2 implies that the projections E.Un/ have orthogonal ranges,
so that

P
nE.Un/ is a well defined orthogonal projection, with the series converging in the strong

topology.

The map E W B! P.H/ in Theorem 4.19 is called the (projection valued) spectral measure of T .
When H is finite dimensional, we have

E.U/ D
X

�2U\�.T /
E� ;

where E� is the orthogonal projection onto the eigenspace with eigenvalue �.

Proof. By Theorem 4.18, the map E.U/ D 1U.T / satisfies properties 1–5.

When F W B! P.H/ is another map satisfying properties 1–5, it follows from Theorem 4.18 that
E.U/ F.V/ D F.V/E.U/ for all U ;V 2 B. To prove the uniqueness ofE, it thus suffices to prove
that E D F whenever E and F satisfy properties 1–5 and E, F have commuting ranges.

Let K � �.T / be closed. We first prove that E.K/ D F.K/. Let L � �.T / n K be closed.
We start by proving that E.L/F.K/ D 0. The projections E.L/ and F.K/ commute, and they
commute with T . By property 5, the spectrum of the restriction of T toE.L/F.K/H is contained
in L \K D ;. So, E.L/F.K/ D 0. Writing �.T / nK as the increasing union of a sequence of
closed subsets, it follows that alsoE.�.T /nK/F.K/ D 0. This means that .1�E.K// F.K/ D 0
and thus, F.K/ D E.K/F.K/. Since our assumptions on E and F are symmetric, we also have
E.K/ D F.K/E.K/ D E.K/F.K/. So, E.K/ D F.K/ for all closed subsets K � �.T /.

Properties 1–3 imply that fU 2 B j E.U/ D F.U/g is a � -algebra. It thus follows that E.U/ D
F.U/ for all U 2 B.

4.6 Borel functional calculus strikes again

We will now give an alternative proof of Theorem 4.18, which does not rely on the Riesz represen-
tation theorem. We present the necessary prerequisites in Section 4.6. We will be following [Ped,
Section 6.1].
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Alternative proof of Theorem 4.18. By Lemma 4.20 below, the uniqueness of ˆ is immediate.

By Lemma 4.23 below, for all �; � 2 H , there is a unique linear map !�;� W Bb.�.T // ! C
that is continuous under bounded pointwise limits and that satisfies !�;�.f / D hf .T /�; �i for all
f 2 C.�.T //. Given f 2 Bb.�.T //, it also follows from Lemma 4.23 that .�; �/ 7! !�;�.f / is a
bounded sesquilinear form. We can therefore uniquely define ˆ.f / 2 B.H/ satisfying

hˆ.f /�; �i D !�;�.f / for all �; � 2 H .

The uniqueness of the extension of !�;� from C.�.T // to Bb.�.T // implies that !�;�.f / D
!�;�.f / for all f 2 Bb.�.T //. It follows that ˆ.f / D ˆ.f /�.

Let g 2 C.�.T //. Again, the uniqueness of the extension implies that !g.T /�;�.f / D !�;�.fg/ for
all f 2 Bb.�.T //. It follows that ˆ.fg/ D ˆ.f /ˆ.g/ for all f 2 Bb.�.T // and g 2 C.�.T //.
This means that

!�;ˆ.f /��.g/ D !�;�.fg/ for all g 2 C.�.T //.

It follows that the same equality holds for all g 2 Bb.�.T //. We conclude thatˆ is a �-homomor-
phism.

Since kˆ.f /�k2 D hˆ.f /�ˆ.f /�; �i D hˆ.f f /�; �i D !�.jf j
2/ � k�k2 kf k21, we conclude

that kˆ.f /k � kf k1 for all f 2 Bb.�.T //.

The continuity of !�;� implies that ˆ.fn/ ! ˆ.f / weakly whenever fn ! f boundedly point-
wise. Then also,

kˆ.fn/� �ˆ.f /�k
2
D hˆ.jfn � f j

2/�; �i D !�.jfn � f j
2/! 0 :

This means that ˆ.fn/! ˆ.f / strongly.

Let S 2 B.H/ such that ST D TS . By Proposition 4.13, we have S f .T / D f .T / S for all
f 2 C.�.T //. It follows that !�;S��.f / D !S�;�.f / for all f 2 C.�.T // and hence, for all
f 2 Bb.�.T //. We conclude that S f .T / D f .T / S for all f 2 Bb.�.T //. We similarly prove
that f .T /� D f .�/ � whenever T � D � � and � ¤ 0.

When f 2 Bb.�.T // and � 62 f .�.T //, the function g W x 7! .f .x/��/�1 is bounded and Borel
on �.T /. Then, g.T / is the inverse of f .T / � �1, proving that � 62 �.f .T //.

Finally, let f W �.T / ! R be a bounded Borel function and define K D f .�.T //. When
p 2 CŒX�, we immediately get that p.f .T // D .p ıf /.T /. Approximating g 2 C.K/ uniformly
by polynomial functions, we conclude that g.f .T // D .g ı f /.T / for all g 2 C.K/. This means
that for all �; �, the linear maps C.K/! C given by

g 7! hg.f .T //�; �i and g 7! h.g ı f /.T /�; �i

coincide on C.K/. By definition, the first one has a unique extension to a linear map on Bb.K/
that is continuous under bounded pointwise convergence on K and that is given by

Bb.K/! C W g 7! hg.f .T //�; �i :

For the second one, denote by !�;� the unique extension of C.�.T // ! C W h 7! hh.T /�; �i to
a linear map Bb.�.T // ! C that is continuous under bounded pointwise convergence on �.T /.
Then also

Bb.K/! C W g 7! !�;�.g ı f /

is continuous under bounded pointwise convergence on K. We conclude that !�;�.g ı f / D
hg.f .T //�; �i, so that .g ı f /.T / D g.f .T //.
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Some measure theoretic background

Using the approach of [Ped, Section 6.1], one can avoid using measure theory and the Riesz rep-
resentation and give a reasonably short self-contained presentation. We reproduce part of [Ped,
Section 6.1], adapted to our notations. The following results hold for arbitrary compact second
countable spaces K, with the same proof. Even second countability can be removed, but one then
has to replace all sequences by nets.

Lemma 4.20. Let K � R be compact. Then Bb.K/ is the smallest vector space of functions from
K to C containing C.K;R/ and being closed under bounded pointwise limits.

Proof. Denote by V the smallest vector space of functions from K to R containing C.K;R/ and
being closed under bounded pointwise limits. Then, C.K/ � V � Bb.K/.

For every g 2 C.K/, the set ff 2 V j fg 2 V g is a vector space of functions containing C.K/
and being closed under bounded pointwise limits. So this set is equal to V . This means that
fg 2 V for all f 2 V and g 2 C.K/. We then similarly prove that V is an algebra. It follows
that B0 D fU � R j 1U 2 V g is a � -algebra. When U � K is open, we can write 1U as the limit
of an increasing sequence in C.K/. It follows that B0 is the Borel � -algebra. Since the linear span
of f1U j U � K Borel g is uniformly dense in Bb.K/, we get that V D Bb.K/.

Theorem 4.21. Let K � R be compact. Every R-linear map ! W C.K;R/ ! R that is positive,
meaning that !.f / � 0 whenever f 2 C.K; Œ0;C1//, has a unique extension to a C-linear
map e! W Bb.K/ ! C that is continuous under bounded pointwise convergence. Moreover, e! is
positive, e!.f / D e!.f / for all f 2 Bb.K/ and ke!k D !.1/.
Proof (taken from [Ped, Section 6.1]). If f 2 C.K;R/, we have �kf k1 1 � f � kf k1 1 and
conclude that j!.f /j � !.1/ kf k1.

Denote by U.K;R/ the space of bounded functions f W K ! R that can be written as the point-
wise limit of a bounded increasing sequence in C.K;R/. Define the map

!u W U.K;R/! R W !u.f / D supf!.g/ j g 2 C.K;R/ ; g � f g :

Note that the following two properties hold by definition. If g 2 C.K;R/, then g 2 U.K;R/ and
!u.g/ D !.g/. When f; g 2 U.K;R/ and f � g, then !u.f / � !u.g/.

1. Whenever fn 2 C.K;R/ is a bounded increasing sequence and f D supn fn, we have !u.f / D
limn !.fn/.

To prove 1, fix g 2 C.K;R/ with g � f . Then g ^ fn is an increasing sequence of continuous
functions converging pointwise to the continuous function g. Therefore, the convergence is uni-
form and !.g/ D limn !.g ^ fn/ � limn !.fn/ � !u.f /. Since this holds for all g 2 C.K;R/
with g � f , statement 1 follows.

2. If f; g 2 U.K;R/ and a; b � 0, we have that af C bg 2 U.K;R/ and !u.af C bg/ D

a!u.f /C b!u.g/.

This follows immediately by writing f and g as the limit of a bounded increasing sequence of
continuous functions and then applying 1.

3. If fn 2 U.K;R/ is a bounded increasing sequence and f D supn fn, then also f 2 U.K;R/
and !u.f / D limn !u.fn/.
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Note that !u.fn/ is a bounded increasing sequence, so that limn !u.fn/ is well defined. Choose
bounded increasing sequences .gn;k/k in C.K;R/ such that fn D supk gn;k. Define gn 2 C.K;R/
given by

gn D

n_
mD1

gm;n :

Then .gn/n is an increasing sequence with f D supn gn. So, f 2 U.K;R/. Also, gn � fn � f .
By 1, we get that

!u.f / D lim
n
!u.gn/ � lim

n
!u.fn/ � !u.f / ;

ending the proof of 3.

We now similarly define L.K;R/ D �U.K;R/ and !l W L.K;R/ ! R W !l.f / D �!u.�f /.
Then, L.K;R/ and !l satisfy 1, 2 and 3, replacing increasing sequences by decreasing sequences.

We extend !u and !l to arbitrary bounded functions f W K ! R by

!u.f / D inff!u.g/ j g 2 U.K;R/; f � gg ;
!l.f / D supf!l.g/ j g 2 L.K;R/; g � f g :

4. For every bounded function f W K ! R, we have that !l.f / � !u.f /.

Let g 2 L.K;R/, h 2 U.K;R/ and g � f � h. We have to prove that !l.g/ � !u.h/. Since
0 � h � g D hC .�g/, it follows from 2 that h � g 2 U.K;R/ and

0 � !u.h � g/ D !u.h/C !u.�g/ D !u.h/ � !l.g/ ;

concluding the proof of 4.

Denote by I.K;R/ the set of bounded functions f W K ! R with the property that !u.f / D
!l.f /. We denote this common value as e!.f /. By 4, we get that I.K;R/ consists of all bounded
functions f W K ! R with the following property: for every " > 0, there exist g 2 L.K;R/ and
h 2 U.K;R/ such that g � f � h and !u.h/ � !l.g/ < ". Combining this characterization with
2, it follows that I.K;R/ is a real vector space and that e! W I.K;R/ ! R is an R-linear map.
Similarly, I.K;R/ is closed under _ and ^. When f W K ! R is a bounded positive function, we
have !u.f / � 0. Therefore, e! W I.K;R/! R is positive as well.

5. For every f 2 U.K;R/, we have that f 2 I.K;R/ and e!.f / D !u.f /. Similarly, for every
f 2 L.K;R/, we have that f 2 I.K;R/ and e!.f / D !l.f /.
Given f 2 U.K;R/ and " > 0, we can find g 2 C.K;R/ with g � f and !u.f / � !.g/ < ".
Then g 2 L.K;R/ and !l.g/ D !.g/. So, f 2 I.K;R/ and e!.f / D !u.f /. The second
statement holds by symmetry, so that 5 is proven.

6. If fn 2 I.K;R/ is a bounded increasing sequence and f D supn fn, then also f 2 I.K;R/
and e!.f / D limne!.fn/.
By the positivity of e!, the sequence e!.fn/ is bounded and increasing, so that its limit is well
defined. Choose " > 0 arbitrarily. Denote g0 D f0 and gn D fn � fn�1 for all n � 1. Since
gn 2 I.K;R/, we can choose kn 2 U.K;R/ such that gn � kn and !u.kn/ � e!.gn/ C 2�n".
Write M D kf k1 and define

k WDM ^
� 1X
nD0

kn/ D sup
n

�
M ^

nX
mD0

km
�
:
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By 3, we get that k 2 U.K;R/. By construction, f � k. Also by 3 and by the linearity of e!, we
have that

!u.k/ �

1X
nD0

!u.kn/ � 2"C

1X
nD0

e!.gn/ D 2"C sup
n

e!� nX
mD0

gm
�
D 2"C sup

n

e!.fn/ :
For every n, we have

e!.fn/ D !l.fn/ � !l.f / � !u.f / � !u.k/ � 2"C sup
n

e!.fn/ :
Taking the supremum over n, we conclude that

sup
n

e!.fn/ � !l.f / � !u.f / � 2"C sup
n

e!.fn/ :
Since this holds for all " > 0, we get that f 2 I.K;R/ and that e!.f / D supne!.fn/. This
concludes the proof of 6.

By symmetry, 6 also holds for bounded decreasing sequences and their infimum.

7. If fn 2 I.K;R/ is a bounded sequence and f D lim infn fn, then also f 2 I.K;R/ ande!.f / � lim infne!.fn/.
Define hn D infm�n fm D limm.fn ^ fnC1 ^ � � � ^ fm/. The decreasing variant of 6 implies
that hn 2 I.K;R/. Since f D supn hn, it follows from 6 that f 2 I.K;R/ and that e!.f / D
supne!.hn/. We have e!.hn/ � e!.fm/ for all m � n and conclude that 7 holds.

8. If fn 2 I.K;R/ is a bounded sequence converging pointwise to f , then also f 2 I.K;R/ and
the sequence e!.fn/ converges to e!.f /.
Applying 7 to the sequences fn and �fn, we find that f 2 I.K;R/ and

lim sup
n

e!.fn/ � e!.f / � lim inf
n

e!.fn/ :
So, 8 holds.

We have proven that I.K;R/ is a real vector space of bounded functions on K that is closed
under bounded pointwise convergence and that contains C.K;R/. By Lemma 4.20, we get that
Bb.K;R/ � I.K;R/. The restriction of e! to Bb.K;R/ is the (necessarily unique) extension of !
to an R-linear map Bb.K;R/! R that is continuous under bounded pointwise convergence.

For f 2 Bb.K/, we finally define e!.f / D e!.Ref /C ie!.Imf /. We get that e! W Bb.K/! C is
linear, positive, continuous under bounded pointwise convergence and that e!.f / D e!.f / for all
f 2 Bb.K/.

Finally, whenever f 2 Bb.K/, take ˛ 2 C with j˛j D 1 such that je!.f /j D ˛e!.f /. It follows
that

je!.f /j D Re.˛e!.f // D Ree!.˛ f / D e!.Re.˛ f // � !.1/ kRe.˛ f /k � !.1/ kf k1 :
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Remark 4.22. Theorem 4.21 provides the following construction for the Lebesgue measure on the
interval Œ0; 1�. Define ! W C.Œ0; 1�;R/! R using the Riemann integral

!.f / D

Z 1

0

f .x/ dx :

Then extend to e! W Bb.Œ0; 1�/! C. The Lebesgue measure �.U/ of a Borel set U � Œ0; 1� is now
given by

�.U/ D e!.1U/ :
Lemma 4.23. Let T 2 B.H/ be self-adjoint. For every �; � 2 H , the functional !�;� W C.K/ !
C W !�;�.f / D hf .T /�; �i has a unique extension to a functional !�;� W Bb.K/ ! C that is
continuous under bounded pointwise convergence. Moreover, k!�;�k � 4 k�k k�k. Also, for every
f 2 Bb.K/, the map .�; �/ 7! !�;�.f / is sesquilinear.

One can actually prove that the norm of k!�;�k is bounded by k�k k�k, but we do not need this in
our approach to spectral theory.

Proof. For every � 2 H , define !� W C.K/! C W !�.f / D hf .T /�; �i. Note that !� is a positive
linear map. By Theorem 4.21, !� has a unique extension to a positive linear map !� W Bb.K/! C
that is continuous under bounded pointwise convergence and that satisfies k!�k D k�k2.

Given �; � 2 H , define by polarization

!�;� W Bb.K/! C W !�;� D
1

4

3X
kD0

ik !�Cik� : (4.2)

Then !�;� is continuous under bounded pointwise convergence and !�;�.f / D hf .T /�; �i for all
f 2 C.K/. This proves the existence of the extension. Its uniqueness follows from Lemma 4.20.

The uniqueness of the extension implies that for every f 2 Bb.K/, the map .�; �/ 7! !�;�.f /

is sesquilinear. To finally prove that k!�;�k � 4 k�k k�k, we may thus replace � by t � and � by
t�1 �, so that we can assume that k�k D k�k. Then,

k!�Cik�k D k� C i
k�k2 � .k�k C k�k/2 D 4 k�k2 D 4 k�k k�k :

It then follows from (4.2) that k!�;�k � 4 k�k k�k.
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The Hahn-Banach extension theorem

We discuss in this and the following lectures Stefan Banach’s classical theorems on, what we
nowadays call, Banach spaces.

The three main theorems are the following.

� The Hahn-Banach theorem. It allows to extend a functional defined on a vector subspace of
a Banach space to the whole space in a norm-preserving way. Convince yourself that such a
thing is nontrivial. Indeed, try (and probably fail) to prove yourself that every Banach space
different from f0g admits a nonzero continuous functional.

� The open mapping theorem and the closed graph theorem. These theorems deduce continuity
of linear maps out of seemingly weaker assumptions.

� The uniform boundedness principle. This theorem allows in certain cases to prove that a
family of linear maps is uniformly bounded once it is pointwise bounded.

The Hahn-Banach theorem deals with arbitrary seminormed spaces and the proof is a quite easy
application of Zorn’s lemma. The two other theorems are very specific for Banach spaces and use
the remarkable Baire category theorem. That theorem says that in a complete metric space, the
intersection of countably many open dense subsets is still dense.

Important convention. As long as the opposite is not explicitly stated, all vector spaces are over
the field C of complex numbers. Nevertheless, all vector spaces over C can be regarded as vector
spaces over R and we sometimes exploit this.

5.1 Hahn-Banach extension theorem – a first version

Suppose that X is a vector space over the field R and that Y � X a vector subspace. Assume that
! W Y ! R is a linear functional. Can you extend ! to a linear functional from X to R ? The
answer is yes and the proof is easy, but nonconstructive: choose a vector space basis for Y and
extend this basis for Y to a basis for the whole of X ; extend ! to X by imposing that ! equals 0
on the new basis vectors.

Now assume thatX is a normed vector space over R and that Y � X is a vector subspace. Assume
that ! W Y ! R is a bounded linear functional. Can you extend ! to a bounded linear functional
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from X to R ? Without increasing the norm of ! ? The above proof no longer works because a
vector space basis for X has no relation at all with the norm on X . But the same idea still works:
we add one by one new basis vectors, extend ! at every step and are careful enough to ensure that
the norm never increases. The precise proof goes as follows.

Theorem 5.1. Let X be a normed vector space over the field R. Let Y � X be a vector subspace
and assume that ! W Y ! R is a bounded linear map. Then ! can be extended to a bounded linear
map e! W X ! R satisfying ke!k D k!k.
We provide the following sketch of proof where you have to fill in the details yourself. A more
general result will be stated below as Theorem 5.6, for which you can find a detailed proof in [Con,
III.6.9 and paragraph after 6.9].

Proof. Let x0 2 X n Y . Use the following steps to prove that ! can be extended to a bounded
linear map e! W Y CRx0 ! R without increasing the norm.

1. Replacing ! by a multiple, we may assume that k!k D 1.

2. Realize that we need to prove the existence of a real number ˛ 2 R such that the linear map

e! W Y CRx0 ! R W e!.y C tx0/ D !.y/C t˛ for all y 2 Y; t 2 R

satisfies ke!k D 1.

3. Note that to prove that ke!k D 1, it suffices to prove that e!.y C tx0/ � ky C tx0k for all
y 2 Y , t 2 R. So we need to find ˛ 2 R such that

!.y/C t˛ � ky C tx0k for all y 2 Y; t 2 R :

4. Consider separately the cases t D 0; t > 0; t < 0 and observe that it suffices to find an
˛ 2 R such that

!.y/C ˛ � ky C x0k for all y 2 Y and
!.y/ � ˛ � ky � x0k for all y 2 Y :

(5.1)

5. Prove that one can find an ˛ 2 R satisfying (5.1) provided that

!.y/ � ky � x0k � �!.z/C kz C x0k for all y; z 2 Y :

6. The above inequality can be rewritten as

!.y C z/ � ky � x0k C kz C x0k for all y; z 2 Y :

Deduce this new inequality from the fact that k!k D 1.

So far we have proven that we can always extend a bounded functional to a vector space of one
dimension higher without increasing the norm. We now return to our initial problem. Intuitively
we add one by one more and more vectors to Y and extend ! at every step without increasing the
norm. But how can we make sure that the procedure stops? For this we again need Zorn’s lemma.
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Denote by I the “set of extensions” of !. More precisely I is defined as the set of pairs .Y1; !1/
where Y1 � X is a vector subspace containing Y and !1 W Y1 ! R is an R-linear map that extends
! and satisfies k!1k D k!k. Define the partial order � on I by declaring .Y1; !1/ � .Y2; !2/ if
Y1 � Y2 and if !2 is an extension of !1. Check yourself that .I;�/ satisfies the assumptions of
Zorn’s lemma.

By Zorn’s lemma, take a maximal element .eY ;e!/ in I. It suffices to prove that eY D X because we
then have found the required extension of !. If eY ¤ X , we can find x0 2 X n eY . The first half of
the proof then allows to extend e! to eY C Rx0 without increasing its norm. This would contradict
the maximality of .eY ;e!/. So, eY D X .

Theorem 5.2. The same theorem as 5.1 holds over the field C.

Proof. Let X be a normed vector space over the field C. Let Y � X be a vector subspace and
assume that ! W Y ! C is a bounded linear map. View X as a normed space over R. Then
Re! W Y ! R is a bounded R-linear map with kRe!k � k!k (actually equality holds). By
Theorem 5.1 we can choose an R-linear extension� W X ! R of Re! to the whole ofX satisfying
k�k D kRe!k. Define e! W X ! C W e!.x/ D �.x/ � i�.ix/. Check yourself that e! is C-linear
and that e!.y/ D !.y/ for all y 2 Y .

It remains to prove that ke!k � k!k. Choose x 2 X with kxk � 1. It suffices to prove that
je!.x/j � k�k. Take � 2 C with j�j D 1 such that je!.x/j D �e!.x/. Since je!.x/j is a real
number, it equals its real part and we find that

je!.x/j D Re je!.x/j D Re.�e!.x// D Ree!.�x/ D �.�x/ � k�k k�xk � k�k :
Corollary 5.3. Let X be a normed space. If x 2 X n f0g, there exists ! 2 X� with k!k D 1 and
!.x/ D kxk. In more abstract language: denoting the dual of X� by X�� D .X�/�, the map

i W X ! X�� W i.x/.!/ D !.x/

is an isometry.

Proof. Put Y D Cx and define ! W Y ! C given by !.�x/ D �kxk for all � 2 C. Check that
k!k D 1. Extend ! to the whole of X using Theorem 5.2.

If X is a normed space and Y � X a vector subspace, we define for x 2 X ,

d.x; Y / D inffkx � yk j y 2 Y g :

Observe that d.x; Y / D 0 if and only if x belongs to the closure of Y .

We prove the following last corollary to the Hahn-Banach extension theorem.

Corollary 5.4. Let X be a normed space and Y � X a vector subspace. If x 2 X and d.x; Y / D
1, there exists a continuous functional ! 2 X� satisfying !.x/ D 1, !.y/ D 0 for all y 2 Y and
k!k D 1.
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Proof. Define ! W Y C Cx ! C W !.y C �x/ D � for all y 2 Y , � 2 C. We only need to prove
that k!k D 1, because then Theorem 5.2 provides an extension of ! to the whole of X without
increasing its norm. So we have to prove that

j�j � ky C �xk for all y 2 Y; � 2 C :

Divide both sides of the inequality by j�j and deduce the inequality from the fact that d.x; Y / �
1.

5.2 Hahn-Banach extension theorem – a second version

In Theorem 5.1 we extended linear functionals from subspaces of a normed space to the whole
normed space without increasing the norm. In later lectures it will be useful to work with more
general “pseudo-quasi-almost-norms” that we call sublinear maps.

Definition 5.5. Let X be a vector space over the field R. A map f W X ! R is called sublinear if

� f .x C y/ � f .x/C f .y/ for all x; y 2 X ,

� f .tx/ D tf .x/ for all x 2 X and t � 0.

Observe that we do not assume that f takes its values in the positive real numbers and that we do
not say anything about f .tx/ when t < 0. So, a sublinear map is more general than a seminorm
and certainly much more general than a norm.

Theorem 5.6 (The Hahn-Banach extension theorem). Let X be a vector space over R and f W
X ! R a sublinear map. If Y � X is a vector subspace and ! W Y ! R is an R-linear map
satisfying !.x/ � f .x/ for all x 2 Y , then ! can be extended to an R-linear map e! W X ! R
that satisfies e!.x/ � f .x/ for all x 2 X .

Exercise 1. Prove yourself Theorem 5.6 following the same method as in the proof of Theorem
5.1. Details can be found in [Con, III.6.9 and paragraph after 6.9].

In the same way as Theorem 5.2 is a complex version of the real Theorem 5.1, we have the follow-
ing result.

Corollary 5.7. Let X be a vector space and p W X ! Œ0;C1/ a seminorm. If Y � X is a vector
subspace and ! W Y ! C a linear map satisfying j!.y/j � p.y/ for all y 2 Y , there exists a
linear map e! W X ! C extending ! and satisfying je!.x/j � p.x/ for all x 2 X .

Exercise 2. Prove yourself Corollary 5.7 in exactly the same way as we have proven Theorem 5.2.

5.3 Illustration: Banach limits

As an illustration of the Hahn-Banach theorem, we discuss the following: although a bounded
sequence in C is not necessarily convergent, there exist (noncanonical) ways to attach a kind of
limit to an arbitrary bounded sequence in C. In order to interpret the following theorem, you have
to realize that a bounded sequence in C is the same thing as an element of `1.N/.
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Theorem 5.8. There exists a linear map L W `1.N/ ! C, called a Banach limit, satisfying the
following properties.

(i) L.x/ D lim
n!1

x.n/ if this limit exists.

(ii) L.y/ D L.x/ whenever y.n/ D x.nC 1/ for all n � 0.

(iii) If x.n/ � 0 for all n, then L.x/ � 0.

(iv) kLk D 1.

It is crucial to keep in mind that a Banach limit L is by no means unique or canonical. To get some
feeling for its properties, first make the following exercise.
Exercise 3. Let L be a Banach limit on `1.N/.

1. Prove that L.0; 1; 0; 1; 0; 1; : : :/ D 1
2
.

2. Prove that there exist x; y 2 `1.N/ such that L.xy/ ¤ L.x/L.y/. So we can never arrange
for a Banach limit to have the property that the limit of the product of two sequences is the
product of the limits.

3. Prove that L.xy/ D L.x/L.y/ if at least one of the sequences .x.n// or .y.n// is conver-
gent.

Proof of Theorem 5.8. Complete the following sketch to give yourself a proof of Theorem 5.8.
Details can be found in [Con, III.7].

Put X D `1.N;R/ (real-valued bounded sequences) equipped with the supremum norm k � k1.
For a sequence x 2 `1.N/we define its sequence of Cesàro means by Cnx WD x1C���Cxn

n
. Consider

the following subspace
Y WD fx 2 `1.N;R/ W Cnx convergesg:

On Y we can define the following functional eL W Y ! R given by eL.x/ WD limn!1 Cnx. We
clearly have keLk D 1, so by the Hahn-Banach theorem (Theorem 5.1) we get an extension
L W `1.N;R/ ! R. We can extend it uniquely to a complex linear functional L W `1.N/ ! C.
We just need to verify that L is a Banach limit.

We get (i) because if the sequence .xn/ converges then also its sequence of Cesàro averages con-
verges and the limits agree. If we take x 2 `1.N/ and y 2 `1.N/ is defined by yn WD xnC1 then
Cn.x � y/ D

x1�xnC1

n
! 0, so L.y/ D L.x/, which establishes (ii). If x > 0 and kxk D c then

c1 � x > 0, hence kc1 � xk 6 c. We therefore get1 c � L.x/ D L.c1 � x/ 6 c , i.e. L.x/ > 0,
thus we get (iii). The last part (iv) is immediate.

5.4 Exercises

Exercise 4. A Banach space is called reflexive if the isometric map i W X ! X�� in Corollary 5.3
is an isomorphism. So, X is reflexive if and only if X�� D i.X/.

1We can write this inequality because x is real, hence L.x/ D L.x/, so we are dealing with real numbers.
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1. Prove that the Banach space `p.N/ with 1 < p < 1 is reflexive. A way of doing so, goes
as follows. Take 1 < q < C1 such that 1

p
C

1
q
D 1. Theorem 0.14 yields an isomorphism

�1 W `
p.N/ ! `q.N/� and an isomorphism �2 W `

q.N/ ! `p.N/�. Dualizing �2, you get
an isomorphism ��2 W `

p.N/�� ! `q.N/�. Prove that .��2 /
�1 ı �1 W `

p.N/ ! `p.N/��

coincides with the embedding i .

2. Use the same technique as in 1 to prove that every Hilbert space is a reflexive Banach space.

3. Prove that `1.N/ is not reflexive.



Lecture 6

Baire category, open mapping, closed graph,
uniform boundedness

6.1 The Baire category theorem

The Baire category theorem says that in a complete metric space, the intersection of countably
many open dense subsets, is still dense. Before proving this result and in order to get some intuition,
you should think about the following facts.

� It is crucial to look at open sets: give an example of two dense subsets of R that have an
empty intersection.

� Prove that a subsetK of a metric space .X; d/ is dense if and only ifK intersects nontrivially
every nonempty open subset.

� The intersection of two (and hence of finitely many) open dense subsets, is dense (and, of
course, open). Prove this.

� It is crucial to look at only countably many open dense subsets: give an uncountable family
of open dense subsets of R that have an empty intersection.

Theorem 6.1 (Baire category theorem). Let .X; d/ be a complete metric space. If .Un/ is a se-
quence of open dense subsets of X , the intersection

T
n2N Un is still dense.

The strange name category theorem has the following origin: a subset of a topological space is said
to be of the first category if it can be written as the union of countably many closed subsets with
empty interior. It is said to be of the second category if it is not of the first category. An equivalent
formulation of the Baire category theorem then says that in a complete metric space every subset
of the first category has empty interior.

Proof of Theorem 6.1. Use the following hints to give yourself a proof of Theorem 6.1. Details
can be found in [Ped, 2.2.2].

Put K WD
T
n2N Un. We have to prove that K is dense in X . So choose a nonempty open subset

V � X . We have to prove that V \K is nonempty. We use the notations

B.x; "/ WD fy 2 X j d.y; x/ < "g and B.x; "/ WD fy 2 X j d.y; x/ � "g :
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1. Note that V \ U0 is open and nonempty. So, choose x0 2 X and "0 > 0 such that

B.x0; "0/ � V \ U0 :

Make sure that 0 < "0 < 1.

2. Since B.x0; "0/ \ U1 is open and nonempty, similarly choose x1 2 X and 0 < "1 < 1=2

such that
B.x1; "1/ � B.x0; "0/ \ U1 :

3. Continue by choosing inductively xn 2 X and 0 < "n < 1=.nC 1/ satisfying

B.xn; "n/ � B.xn�1; "n�1/ \ Un :

4. Prove that .xn/n2N is a Cauchy sequence in X . Since .X; d/ is complete, xn ! x for some
x 2 X . Prove that x 2 V \K.

Corollary 6.2. Let .X; d/ be a complete metric space and .Kn/ a sequence of closed subsets of X
with empty interior. Then the union

S
n2N Kn still has empty interior.

Proof. A subset of a metric space has empty interior if and only if its complement is dense. So
Corollary 6.2 is tautologically equivalent with Theorem 6.1 by taking complements.

6.2 Illustration: there are many continuous functions that are
nowhere differentiable

Maybe you already had the occasion to construct by hand a continuous function f W Œ0; 1� ! R
that is nowhere differentiable. Then you certainly remember that such a construction is nontrivial.
We will see now that an application of the Baire category theorem yields rather easily that the
continuous nowhere differentiable functions are uniformly dense in the space of all continuous
functions.

Define the complete metric space

X D ff W Œ0; 1�! R j f is continuousg with d.f; g/ D kf � gk1 :

Define the subsets

Kn D ff 2 X j There exists x 2 Œ0; 1� such that jf .x/ � f .y/j � njx � yj for all y 2 Œ0; 1�g :

We prove two statements.

1. If f W Œ0; 1�! R is continuous on Œ0; 1� and differentiable in x, there exists n 2 N such that
f 2 Kn. In other words, if f belongs to the complement of

S
n2N Kn, then f is nowhere

differentiable.
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2. The subsets Kn � X are closed and have empty interior.

Both statements together and Corollary 6.2 yield that the nowhere differentiable continuous func-
tions are dense in X .
Exercise 1. Prove the first statement and prove that Kn is closed. Hint: use the compactness of
Œ0; 1�.

We now prove that Kn has empty interior. We define for every n � 1 a continuous function
hn W Œ0; 1�! R with the following properties: khnk1 D 1

n
and hn 62 Kk if k < 4n. The graph of

h3 looks like
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2. De verzamelingen Kn zijn gesloten en hebben een leeg inwendige.

Van zodra beide uitspraken bewezen zijn, levert de Stelling van Baire (Gevolg 3.11) dat de
nergens afleidbare functies dicht zijn in X.

Oefening 8. Bewijs de eerste uitspraak en bewijs dat Kn gesloten is.

We bewijzen nu de tweede uitspraak. Definieer voor elke n ≥ 1, de continue functie hn :
[0, 1] → R. De grafiek van h3 ziet er bijvoorbeeld als volgt uit:

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1

x

Een formeel functievoorschrift voor hn kan je hieruit makkelijk afleiden:

hn : [0, 1] → R : hn(x) =

{
4nx− 4k−3

n
als x ∈

[
k−1
n2 ,

2k−1
2n2

]
en k = 1, . . . , n2 ,

−4nx+ 4k−1
n

als x ∈
[
2k−1
2n2 ,

k
n2 ] en k = 1, . . . , n2 .

Het enige wat ons aanbelangt, is het volgende: ‖hn‖∞ = 1
n
en hn 6∈ Kk van zodra k < 4n.

Om te bewijzen dat Kn een leeg inwendige heeft, moeten we bewijzen dat voor alle m ∈ N0,
alle f ∈ X en alle ε > 0 geldt dat B(f, ε) 6⊂ Km. Omdat zelfs de veeltermfuncties dicht
zijn in X (Stelling van Weierstrass), mogen we veronderstellen dat f continu afleidbaar is.
Fixeer verder ε > 0 en m. Neem k zodat k ≥ |f ′(x)| voor alle x ∈ [0, 1]. Neem n ∈ N0

zodat 4n > m + k en 1
n
< ε. Dan behoort de functie f + hn tot B(f, ε). We beweren dat

f + hn 6∈ Km. Als dit immers toch het geval zou zijn, dan is hn = (f + hn) − f , zodat
hn ∈ Km+k. Omdat 4n > m + k is dit een contradictie en dus zijn alle beweringen en
uitspraken bewezen.

3.3 De stellingen van de open afbeelding en van de

gesloten grafiek

Definitie 3.12. We noemen een afbeelding f : X → Y tussen de metrische ruimten X en
Y , open als f(U) open is voor elk open U . N

Oefening 9. Zij X en Y genormeerde ruimten en T : X → Y een lineaire afbeelding. Noteer
met B de open eenheidsbol van X. Dan is T open als en slechts als 0 behoort tot het
inwendige van T (B).

A formal definition of hn can be given as

hn W Œ0; 1�! R W hn.x/ D

(
4nx � 4k�3

n
if x 2

�
k�1
n2 ;

2k�1
2n2

�
and k D 1; : : : ; n2 ;

�4nx C 4k�1
n

if x 2
�
2k�1
2n2 ;

k
n2

�
and k D 1; : : : ; n2 :

In order to prove that Km has empty interior, we have to prove the following: given m 2 N0,
f 2 X and " > 0, we have B.f; "/ 6� Km. Because polynomial functions are dense in X by
Weierstrass’ theorem, we may assume that f is continuously differentiable. Take k such that
k � jf 0.x/j for all x 2 Œ0; 1�. Take n 2 N0 such that 4n > mCk and 1=n < ". Then, the function
f C hn belongs to B.f; "/. We claim that f C hn 62 Km. Indeed, if f C hn 2 Km, it follows that
hn D .f C hn/ � f belongs to KmCk . Because 4n > mC k, this is a contradiction.

6.3 Open mapping and closed graph theorem

Definition 6.3. A map f W X ! Y between topological spaces is called open if f .U/ is open for
every open subset U � X .

From now on we will often use the following notation when X is a vector space, � 2 C, x 2 X
and U ;V � X :

x C U WD fx C u j u 2 Ug ;
U C V WD fuC v j u 2 U ; v 2 Vg ;
U � V WD fu � v j u 2 U ; v 2 Vg ;
�U WD f�u j u 2 Ug :
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Lemma 6.4. Let X and Y be normed spaces and T W X ! Y a linear map. Assume that 0 lies in
the interior of T .B.0; r// for some r > 0. Then T is open.

Proof. Use the following scheme to prove yourself the lemma. So assume that T W X ! Y is a
linear map and that 0 lies in the interior of T .B.0; r//.

1. Observe that B.0; "/ D ."=r/B.0; r/. Use the linearity of T to show that 0 lies in the interior
of T .B.0; "// for every " > 0.

2. Note that B.x; "/ D x C B.0; "/ and hence that T .x/ lies in the interior of T .B.x; "// for
every x 2 X , " > 0.

3. Deduce that for every open V � X and every x 2 V we have that T .x/ lies in the interior of
T .V/. Note that this precisely means that T is an open map.

Theorem 6.5 (Open mapping theorem). Let X and Y be Banach spaces and T W X ! Y a
surjective bounded operator. Then, T is open.

Proof. The following scheme should allow you to prove the theorem yourself. Details can be
found in [Con, III.12.1]. Denote by intK the interior of a subset K � X . Denote by clL the
closure of a subset L � X .

Part 1 of the proof. Use the following steps to prove that 0 2 int clT .B.0; r// for every r > 0.

1. For n � 1 write Kn D clT .B.0; n//. Prove that
S1
nD1Kn D Y . Use Corollary 6.2 to

deduce the existence of an n 2 N such that intKn is nonempty.

2. Deduce that clT .B.0; 1// has nonempty interior and take y 2 Y , " > 0 such that B.y; "/ �
clT .B.0; 1//.

3. Write B.0; "/ D y � B.y; "/ and deduce that B.0; "/ � clT .B.0; 2//.

4. Deduce part 1 of the proof.

Part 2 of the proof. Use the following steps to prove that clT .B.0; 1// � T .B.0; 2//. Choose
y0 2 clT .B.0; 1//.

1. Since 0 lies in the interior of clT .B.0; 1=2// and y0 lies in the closure of T .B.0; 1//, it
follows that y0 � clT .B.0; 1=2// intersects T .B.0; 1//. So, take y1 2 clT .B.0; 1=2// and
x0 2 B.0; 1/ such that y0 � y1 D T .x0/.

2. Continue inductively and prove that you can choose ynC1 2 clT .B.0; 2�n�1// and xn 2
B.0; 2�n/ such that yn � ynC1 D T .xn/.

3. Prove that the sequence
Pn
kD0 xk is a Cauchy sequence in X . Denote its limit by x. Prove

that x 2 B.0; 2/.

4. Prove that T .
Pn
kD0 xk/ D y0 � ynC1.
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5. Prove that kynk � 2�nkT k and conclude that yn ! 0. Deduce that T .x/ D y0. So,
y0 2 T .B.0; 2//.

Combining parts 1 and 2, we conclude that 0 lies in the interior of T .B.0; 2//. By Lemma 6.4 we
are done.

In the proof of the open mapping theorem, both the completeness of X and the completeness of Y
are used. In Exercises 4 and 5 below we see that both completeness assumptions are crucial.

Corollary 6.6. Let X and Y be Banach spaces. If T W X ! Y is a bounded and bijective linear
map, then the inverse T �1 is bounded as well.

In Exercise 6 of Lecture 0 we put several norms on a direct sum X ˚ Y of normed spaces X and
Y . Since the norms k � ksum and k � kmax are equivalent (see Exercise 10 in Lecture 7), we do not
specify a choice and simply speak about the Banach space X ˚ Y .

Definition 6.7. Let X and Y be Banach spaces. The graph of the map f W X ! Y is the subset
of X ˚ Y defined as

graphf D f.x; f .x// j x 2 Xg :

We say that f has closed graph if graphf is a closed subset of X ˚ Y .

Theorem 6.8 (Closed graph theorem). Let X and Y be Banach spaces and T W X ! Y a linear
map. Then, T is bounded if and only if T has closed graph.

Proof. We leave it as an exercise to prove that bounded operators have closed graph. Suppose
conversely that graphT is closed. Then, graphT � X ˚ Y is a Banach space and the restriction
of X ˚ Y ! X W .x; y/ 7! x to graphT yields a bounded bijective linear map p W graphT ! X .
By Corollary 6.6 the inverse of p is bounded and so, T is bounded.

6.4 The uniform boundedness principle

Theorem 6.9 (Uniform boundedness principle). Let X be a Banach space and Y a normed space.
Let A be a family of bounded operators from X to Y satisfying

supfkAxk j A 2 Ag <1 for all x 2 X :

Then, supfkAk j A 2 Ag <1.

So, the uniform boundedness principle provides a conclusion that is hard to believe: if a family
of bounded operators on a Banach space is pointwise bounded, then it is uniformly bounded.
Nevertheless, the proof of the uniform boundedness principle is an easy application of the Baire
category theorem.

Proof. Define the closed subsets Kn � X as

Kn D fx 2 X j kT xk � n for all T 2 Ag :
The assumption of the theorem says thatX D

S
n2N Kn. SinceKn is closed, Corollary 6.2 implies

the existence of at least one n such that Kn has a nonempty interior. Since Kn � Kn � K2n, it
follows that 0 lies in the interior of K2n. Take � > 0 such that B.�/ � K2n. It follows that
kT k � 2n=� for all T 2 A.
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In Exercise 7 you will see that the completeness of X is a crucial assumption.

As a consequence of the uniform boundedness principle, we get the following result: if a sequence
of bounded operators on a Banach space is pointwise convergent, the limiting operator is necessar-
ily bounded.

Theorem 6.10 (Banach-Steinhaus theorem). LetX be a Banach space and Y a normed space. Let
Tn W X ! Y be a sequence of bounded operators. If .Tnx/ is a convergent sequence for every
x 2 X , the linear map T W X ! Y W T x D limn Tnx is bounded and supn kTnk <1.

Proof. The theorem follows immediately from the uniform boundedness principle once you ob-
serve that a convergent sequence in a Banach space is bounded.

Remark 6.11. The Banach-Steinhaus theorem does not hold for nets of bounded operators con-
verging pointwise. The point is that a convergent net in a normed space is not necessarily bounded.

6.5 Exercises

Exercise 2. A topological space is called Hausdorff if there exist for every two points x ¤ y in
X open neighborhoods U of x and V of y such that U \ V D ;. A compact Hausdorff space X
has the following property that you may use in this exercise without proving it: whenever U is a
nonempty open subset of X , there exists a nonempty open subset W such that the closure W of W
is contained in U .

Prove now, inspired by the proof of the Baire category theorem, the following variant: if X is
a compact Hausdorff space and .Un/ a sequence of open dense subsets, then the intersectionT
n2N Un is still dense.

Exercise 3. Let X be a topological space and f W X ! R a function. Then f is called lower
semicontinuous if

fx 2 X j f .x/ > ˛g

is open for all ˛ 2 R. The function f is called upper semicontinuous if

fx 2 X j f .x/ < ˛g

is open for all ˛ 2 R.

Check that a function f W X ! R is continuous if and only if f is both lower and upper semicon-
tinuous. The aim of the exercise is to prove the following statement: if X is a compact Hausdorff
space and f W X ! R is a lower semicontinuous function, then

C D fx 2 X j f is continuous in xg

is a dense subset of X .

1. Replacing f by f

1Cjf j
, we can assume that f is bounded.
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2. Define the function

g W X ! Œ0;C1/ W g.x/ D .lim sup
y!x

f .y// � f .x/ :

Here we used the notation

lim sup
y!x

f .y/ WD inf
U neighborhood of x

�
sup
y2U

f .y/
�
:

Prove that g is upper semicontinuous.

3. Define Un D fx 2 X j g.x/ < 1=ng and prove that C DTn2N0
Un.

4. Because of Exercise 3, it remains to prove that Un is dense for every n. Suppose that V is a
nonempty open set and V � X n Un. Take x0 2 V . Construct inductively a sequence .xk/ in
V with the property that f .xkC1/ � f .xk/C 1

2n
. Obtain a contradiction with the assumption

that f is bounded.

Exercise 4. Let X D `1.N/ with norm k � k1. Consider Y D `1.N/ with the norm k � k1. Then,
Y is a normed space but not a Banach space. The identity map id W X ! Y W x 7! x is a bounded,
bijective linear map. Prove that id is not open.
Exercise 5. Let Y be a Banach space and ! W Y ! C an unbounded linear map. Define for y 2 Y
the new norm kykbizarre D kykC j!.y/j. Define X as the normed space .Y; k � kbizarre/. Prove that
the identity map id W X ! Y is bounded and bijective, but not open.

Use a vector space basis for Y to prove that every infinite dimensional Banach space Y admits un-
bounded linear maps ! W Y ! C. The following exercise gives an indication why it is impossible
to give an explicit unbounded linear functional on an infinite dimensional Banach space.
Exercise 6. Let x W N ! C be a sequence such that xy 2 `1.N/ for all y 2 `2.N/. Use the
closed graph theorem to prove that x 2 `2.N/. I personally do not know a more elementary proof
of this fact.
Exercise 7. Define for every n 2 N, the operator Tn 2 B.`2.N// given by

.Tnx/.k/ D

(
k x.k/ if k � n ;
0 if k > n :

Define

X0 D fx 2 `
2.N/ j There exists n0 such that x.k/ D 0 for all k � n0g :

Check that supfkTnxk j n 2 Ng <1 for all x 2 X0. Deduce that completeness of X is crucial in
the formulation of the uniform boundedness principle.

A series of exercises: continuous functions with divergent Fourier series

A function f W R ! C is called 2�-periodical if f .x C 2�/ D f .x/ for all x 2 R. If f is
2�-periodical and integrable on Œ0; 2��, one defines the Fourier coefficients of f as

bf .n/ D 1

2�

Z 2�

0

f .x/e�inx dx for all n 2 Z :
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The Fourier series of f is given as
C1X
nD�1

bf .n/einx :
More precisely, we associate to f the sequence of 2�-periodical functions sn defined by

sn.x/ D

nX
kD�n

bf .k/eikx :
An important aspect of Fourier theory is to study under which conditions sn.x/ ! f .x/. Dirich-
let’s theorem says for example the following: if f is continuous in x and admits a left and a right
derivative in x, then sn.x/! f .x/.

Starting from Dirichlet’s theorem, it is a natural question whether sn.x/ ! f .x/ for every 2�-
periodical continuous function f and every x 2 R. The answer is no, but it is not entirely trivial to
provide an explicit continuous 2�-periodical function f such that, say, sn.0/ 6! f .0/. But, using
the Banach-Steinhaus theorem, we will easily prove the existence of such functions f .

Consider the Banach space X of continuous 2�-periodical functions from R to C equipped with
the supremum norm k � k1. Check that jbf .n/j � kf k1 for all f 2 X and all n 2 Z. It follows
that

Tn W X ! C W Tn.f / D sn.0/

is a sequence of bounded linear maps from X to C. We claim that supn kTnk D C1. It then
follows from the Banach-Steinhaus theorem that Tn.f / is divergent for at least one f 2 X .

In order to prove the claim, we have to take a closer look at some (elementary) aspects of Fourier
theory. We rewrite the Fourier series sn as a convolution of f and the Dirichlet kernel: using the
fact that the integral of a 2�-periodical function over Œa; aC 2�� is independent of a, we get

sn.x/ D

nX
kD�n

bf .k/eikx D 1

2�

Z 2�

0

f .y/eik.x�y/ dy

D
1

2�

Z �

��

f .x � y/
� nX
kD�n

eiky
�
dy

D

Z �

��

f .x � y/Dn.y/ dy with Dn.y/ D
1

2�

sin
�
.nC 1

2
/y
�

sin
�
y

2

� :

Prove that for all g 2 L1.Œa; b�; �/, we have

kgk1 D sup
n ˇ̌̌ Z b

a

f .x/g.x/ dx
ˇ̌̌ ˇ̌
f 2 C.Œa; b�/; kf k1 � 1

o
: (6.1)

You may use without proving it that C.Œa; b�/ is dense in L1.Œa; b�; �/.

Hint. It is easy to prove that the right hand side is smaller or equal than the left hand side. Check
that it is sufficient to prove the converse inequality when g 2 C.Œa; b�/. Take g 2 C.Œa; b�/. Define
for every " > 0, the function

'" W C ! C W '".z/ D

(
z
jzj

if jzj � " ;
z
"

if jzj � " :
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Prove that for all " > 0, the function f" D '" ı g is continuous and satisfies kf"k1 � 1. Also,
f".x/g.x/! jg.x/j uniformly in x 2 Œa; b� when "! 0.

Using (6.1) we get that

kTnk D

Z �

��

jDn.y/j dy D 2

Z �

0

jDn.y/j dy :

If y 2
hk C 1

4

nC 1
2

�;
k C 1

2

nC 1
2

�
i

and k D 0; : : : ; n, we have

ˇ̌̌
sin
�
.nC

1

2
/y
�ˇ̌̌
�

1
p
2

and 0 < sin
�y
2

�
�
y

2
�
.k C 1/�

2nC 1
:

It then follows that for the same y, jDn.y/j �
nC 1

2
p
2�2.k C 1/

: We conclude that

Z �

0

jDn.y/j dy �
1

4
p
2�

nC1X
kD1

1

k
:

Because the harmonic series diverges, it follows that kTnk ! C1.



Lecture 7

A quick course in topology

From this lecture onwards we deal with the heart of functional analysis. The basic idea is that
the same vector space can often be equipped in a natural way with several topologies. In the case
of a Banach space X , these are for instance the well known norm topology and another, weaker,
topology defined by the continuous functionals on X . Only when X is finite-dimensional, both
topologies coincide.

In this lecture we remind a number of results in general topology. We strongly emphasize topolo-
gies defined by a family of pseudometrics (see Definition 7.2). Intuitively, pseudometric spaces
are almost the same as ordinary metric spaces, but they are nevertheless sufficiently general for our
purposes.

Definition 7.1. A topology T on a set X is a collection of subsets of X satisfying the following
conditions.

� The empty set ; and the whole set X belong to T .

� If U ;V 2 T , then U \ V 2 T .

� If .Ui/i2I is a family of elements of T , then
S
i2I Ui is an element of T .

A set X equipped with a topology T is called a topological space. The elements of T are called
open subsets of X , or simply opens. We say that K � X is closed if X nK is open.

7.1 Metric and pseudometric spaces

If .X; d/ is a metric space, the associated metric topology is defined as follows: a subset U � X
is open if and only if there exists for every x 2 U , a � > 0 satisfying B.x; �/ � U . Here, B.x; �/
denotes the ball with center x and radius �, i.e.

B.x; �/ D fy 2 X j d.y; x/ < �g :

In particular, every normed space is equipped with its norm topology. Even more specifically, Rn

and Cn get a topology in this way. In whole this course, the usual norm topology on Rn and Cn is

72
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the only topology that we consider on Rn, Cn. But it is absolutely crucial that we consider more
than just the norm topology on infinite dimensional normed spaces.

The most general type of topology that we will be interested in, is induced by a family of pseudo-
metrics.

Definition 7.2. Let X be a set.

� A map d W X �X ! Œ0;C1/ is called a pseudometric if the following conditions hold.

– d.x; x/ D 0 for all x 2 X ,

– d.x; y/ D d.y; x/ for all x; y 2 X ,

– d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X .

� The pair .X;D/ is called a pseudometric space if D is a family of pseudometrics on X with
the following property : if d.x; y/ D 0 for all d 2 D, then x must be equal to y.

� If .X;D/ is a pseudometric space, the pseudometric topology on X is defined as follows:
U � X is open if and only if for all x 2 U , there exist � > 0 and d1; : : : ; dn 2 D such that

Bd1
.x; �/ \ � � � \ Bdn

.x; �/ � U where Bd .x; �/ D fy 2 X j d.y; x/ < �g :

Example 7.3. Let H be a Hilbert space. Define for every x 2 H the pseudometric

dx.y; z/ D jhx; y � zij :

Check that the family fdx j x 2 H g of pseudometrics turns H into a pseudometric space. The
associated pseudometric topology is called the weak topology on H .

Example 7.4. Let X be a set and let K WD F.X;C/ be the space of complex-valued functions.
For any x 2 X consider the pseudometric dx.f; g/ D jf .x/ � g.x/j. The associated topology on
K is called the topology of pointwise convergence.

7.2 Continuity, convergence, interior, closure and the subspace
topology

The motivation to speak abstractly about a topology, is the following: it provides the natural frame-
work to introduce continuity of functions, convergence of sequences (or nets) and other topological
notions like closure, compactness, etc.

We recall in this section several of these abstract definitions and, more importantly, say what they
mean in the case of interest for us, namely for pseudometric spaces.

Definition 7.5. Let X; Y be topological spaces, f W X ! Y a function and x 2 X .

� A subset K � X is called a neighborhood of x if there exists an open subset U � X such
that x 2 U and U � K.
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� We say that f is continuous in x if f �1.V/ is a neighborhood of x whenever V is a neigh-
borhood of f .x/.

� We say that f is continuous if f �1.V/ is open whenever V � Y is open.

� We call f a homeomorphism if f is bijective and f and f �1 are both continuous.

� The closure of K � X is the smallest closed subset of X containing K.

� The interior of K � X is the largest open subset of X contained in K.

� The sequence .xn/ is said to converge to x if there exists for every neighborhood U of x an
n0 such that xn 2 U for all n � n0.

� We say that x is an accumulation point of K � X if there exists for every neighborhood U
of x an element y 2 U \K with y ¤ x.

� Let .xn/ be a sequence in X . We say that x 2 X is a limit point of the sequence .xn/ if there
exists for every neighborhood U of x and every n0, an n � n0 with xn 2 U .

Exercise 1. Let X; Y be topological spaces.

1. Prove that f W X ! Y is continuous if and only if f is continuous in every x 2 X .

2. Prove that x belongs to the closure of K � X if and only if U \ K is nonempty for every
neighborhood U of x.

3. Prove that x belongs to the interior of K � X if and only if K is a neighborhood of x.

If X is a topological space and Y � X is a subset, the subspace topology on Y is defined as
follows: a subset V � Y is open if and only if there exists an open subset U � X such that
V D U \ Y .

If T and T 0 are topologies on the same set X , we say that T is weaker than T 0 (or T 0 stronger
than T ) if T � T 0. We say that T is strictly weaker if moreover T ¤ T 0. In Example 7.3, we
have seen that a Hilbert space H admits its so called weak topology. Prove as an exercise that if
.en/ is an orthonormal family in H , then en ! 0 weakly. But of course, .en/ does not converge to
0 in the norm topology. So, for infinite dimensional Hilbert spaces, the weak topology is strictly
weaker than the norm topology.

7.3 Continuity, convergence, etc. for pseudometric spaces

We specify the notions of interior, closure, convergence, continuity, ... to the special case of pseu-
dometric spaces. The following exercises should make you familiar enough with pseudometric
spaces.
Exercise 2. Let .X;D/ be a pseudometric space equipped with its pseudometric topology. Prove
the following statements.
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1. A point x 2 X lies in the interior of a subsetZ � X if and only if there exist d1; : : : ; dn 2 D
and " > 0 such that

Bd1
.x; "/ \ � � � \ Bdn

.x; "/ � Z :

2. A point x 2 X lies in the closure of a subset Z � X if and only if for all d1; : : : ; dn 2 D
and all " > 0 there exists z 2 Z satisfying di.x; z/ < " for all i D 1; : : : ; n.

3. A sequence .xn/ in X converges to x if and only if for all d 2 D we have that d.xn; x/! 0

as n!1.

Exercise 3. Let .X;D/ and .X 0;D0/ be pseudometric spaces. Let f W X ! X 0. Prove that f is
continuous in x 2 X if and only if for all d 0 2 D0 and all " > 0, there exist d1; : : : ; dn 2 D and
ı > 0 satisfying d 0.f .x/; f .y// < " whenever di.x; y/ < ı for all i D 1; : : : ; n.
Exercise 4. Let .X;D/ be a pseudometric space equipped with its pseudometric topology. Assume
that Z � X . Prove the following statements.

1. Restricting every d 2 D to Z, the set Z becomes a pseudometric space itself.

2. The pseudometric topology on Z coincides with the subspace topology as a subset of X .

7.4 Be careful with sequences ... and say hello to nets

Without going into details, we point out some pitfalls when working with sequences in general
topological spaces. Recall the following two properties of a metric space .X; d/ :

� A point x belongs to the closure of a subset K � X if and only if there exists a sequence
.xn/ in K converging to x.

� A function f W X ! Y is continuous in the point x 2 X if and only if .f .xn//n2N converges
to f .x/ whenever .xn/ is a sequence in X converging to x.

None of both properties holds true in arbitrary topological spaces. And the crucial point is that
this is not a pathological phenomenon. In Exercise 12 you see that both properties fail for instance
when X is an infinite dimensional Hilbert space equipped with the weak topology of Example 7.3.

The correct generalization of a sequence is the notion of a net. We give here the definition and an
illustration.

Definition 7.6. We call .I;�/ a directed set if .I;�/ is a partially ordered set such that for all
i; j 2 I , there exists a k 2 I satisfying i � k and j � k.

A net .xi/i2I in a set X is a map I ! X W i 7! xi from a directed set I to the set X .

Let X be a topological space and x 2 X . We say that the net .xi/i2I converges to x if for every
neighborhood U of x there exists an i0 2 I such that xi 2 U whenever i � i0.

We say that x is a limit point of the net .xi/i2I if for every neighborhood U of x and for every
i0 2 I there exists an i � i0 such that xi 2 U .
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Exercise 5. Let X be a topological space and x 2 X . Define I as the set of neighborhoods of x
and order I by inverse inclusion: U � V if and only if U � V . Check that I is a directed set.

Use the directed set of neighborhoods of x to prove the following two statements.

1. The point x belongs to the closure of a subsetK � X if and only if there exists a net .xi/i2I
in K converging to x.

2. Let Y be a topological space. A function f W X ! Y is continuous in x if and only if the
net .f .xi//i2I converges to f .x/ whenever .xi/i2I is a net in X converging to x.

Exercise 6. Let I be a set. Let J be the family of finite subsets of I , ordered by inclusion. Prove
that J is a directed set.

Let .xn/n2N be a sequence in a normed space. We say that the series
P1
nD1 xn converges un-

conditionally to x if
P1
nD1 x�.n/ D x for any bijection � W N ! N. Define a net .SF /F 2J

via SF WD
P
n2F xn. Show that the series

P1
nD1 xn converges unconditionally to x iff the net

.SF /F 2J converges to x.
Exercise 7. Let .X;D/ be a pseudometric space equipped with the pseudometric topology. Let
.xi/i2I be a net in X and x 2 X . Prove that xi ! x if and only if d.xi ; x/! 0 for every d 2 D.

One can work with nets in essentially the same way as with sequences. The only tricky point is to
define the notion of a subnet.

Definition 7.7. Let .xi/i2I be a net in a set X . A subnet of .xi/i2I is a net .yj /j2J of the form
yj D xh.j / where h W J ! I is a map such that for every i 2 I there exists a j0 2 J satisfying
h.j / � i for all j � j0.

In most cases the map h in the definition of a subnet will be nondecreasing, i.e. h.j / � h.j 0/

whenever j � j 0, but it is more convenient not to make this a hypothesis.
Exercise 8. Let .xi/i2I be a net in a topological space X . Assume that .xi/i2I converges to x.
Prove that every subnet of .xi/i2I converges to x.

Lemma 7.8. Let .xi/i2I be a net in a topological space X and take x 2 X . Then x is a limit point
of the net .xi/i2I if and only if .xi/i2I admits a subnet that converges to x.

Proof. Assume first that h W J ! I such that yj WD xh.j / defines a subnet of .xi/i2I that converges
to x. We have to prove that x is a limit point of .xi/i2I . Take a neighborhood U of x and take
i0 2 I . We have to prove the existence of i 2 I such that i � i0 and xi 2 U . From the definition
of a subnet we find j0 2 J such that h.j / � i0 whenever j � j0. Since yj ! x there exists
j1 2 J such that yj 2 U for all j � j1. Take j 2 J such that j � j0 and j � j1. Put i WD h.j /.
It follows that i � i0 and xi D yj 2 U .

Conversely assume that x is a limit point of .xi/i2I . Denote by N the set of neighborhoods of x
ordered by inverse inclusion. Define on I �N the partial order given by .i;U/ � .j;V/ if and only
if i � j and U � V . Since x is a limit point of .xi/i2I we can choose for every .i;U/ 2 I �N an
element h.i;U/ 2 I such that h.i;U/ � i and xh.i;U/ 2 U . Define y.i;U/ WD xh.i;U/. Prove yourself
that .y.i;U//.i;U/2I�N is a subnet of .xi/i2I that converges to x.
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7.5 Compactness

Definition 7.9. Let X be a topological space and K � X . We say that K is compact if every open
cover of K admits a finite subcover: whenever O is a family of open subsets of X covering K, i.e.
satisfying

K �
[
U2O

U ;

there exists a finite subset O1 � O such that still

K �
[

U2O1

U :

Note that compactness is in fact an intrinsic property of K. Indeed, one easily checks that K � X
is compact if and only if K is compact when we equip K with the subspace topology.

Proposition 7.10. A family of subsets is said to have the finite intersection property if every finite
subfamily has a nonempty intersection.

A topological space K is compact if and only if every family of closed subsets of K having the
finite intersection property, actually has a nonempty intersection.

Proof. The proof is almost tautological. Taking complements, families of closed subsets of K are
in one-to-one correspondence with families of open subsets. The family of closed subsets has the
finite intersection property if and only if the corresponding family of open subsets has no finite
subfamily that covers K. On the other hand the whole family of closed subsets has a nonempty
intersection if and only if the corresponding family of open subsets does not cover K.

For metric spaces, several more natural conditions are equivalent with compactness, see Section
3.1. Existence of convergent subsequences is particularly useful. Using nets, we can arrive at an
analogous characterization of compactness for general topological spaces.

Proposition 7.11. Let X be a topological space. Then the following statements are equivalent.

(i) X is compact.

(ii) Every net in X has a limit point.

(iii) Every net in X admits a convergent subnet.

Proof. Not (ii)H) not (i). Assume that .xi/i2I is a net in X without limit point. For every x 2 X
choose a neighborhood Ux of x and an index ix 2 I such that xi 62 Ux for all i � ix . Then
fUx j x 2 Xg is an open covering of X . Finitely many Ux1

; : : : ;Uxn
never cover the whole of X

because we can find i 2 I such that i � ixk
for all k D 1; : : : ; n. Then xi 2 X belongs to none of

the sets Uxk
, k D 1; : : : ; n.

(ii), (iii). This follows immediately from Lemma 7.8.

Not (i) H) not (ii). Suppose that U D .Oi/i2I is an open cover of X without a finite subcover.
Let J be the directed set of finite subsets of I . For any F 2 J the subfamily .O/i2F does not
cover X , so there exists xF 2 X n

S
i2F Oi . The net .xF /F 2J does not have a limit point. Indeed,

suppose that x is a limit point. There exists i 2 I such that x 2 Oi . If we choose F D fig then
any G 2 J satisfying F � G will give an element xG … Oi , so x cannot be a limit point.
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7.6 Infinite products of topological spaces and Tychonoff’s
theorem

The main aim of this section is to define infinite cartesian products and to prove the Tychonoff
theorem on compactness of an infinite cartesian product of compact spaces.

Definition 7.12. Let I be a set and suppose that for all i 2 I , we are given a set Xi . Then, the
infinite cartesian product of the sets Xi is defined and denoted asY

i2I

Xi WD f.xi/i2I j xi 2 Xi for all i 2 I g :

If Xi D X for all X , check that
Q
i2I Xi is in fact the set of all functions from I to X .

Definition 7.13. Let .Xi/i2I be a family of topological spaces. Set X D
Q
i2I Xi . A set U � X

is a basic open subset if there exist finitely many indices i1; : : : ; in 2 I and open sets Uk 2 Xik
such that U D f.xi/i2I W xik 2 Uk for 1 6 k 6 ng. A set is open if it is equal to a union of basic
open subsets.

Remark 7.14. For every i 2 I we have map �i W X ! Xi that maps an element of the product to
its i -th coordinate. The topology in the product is the smallest topology that makes all these maps
continuous.

Exercise 9. Let .Xi/i2I be a family of topological spaces. Set X D
Q
i2I Xi , equipped with the

product topology. Let .xj /j2J be a sequence in X . Prove that limj2J xj D x if and only if for
every i 2 I we have limj inJ �i.xj / D �i.x/.

For those familiar with the usual definition of the product topology, the following exercise shows
that both definitions are equivalent.

Theorem 7.15 (Tychonoff theorem). Let .Xi ;Di/i2I be a family of compact pseudometric spaces.
Then, X D

Q
i2I Xi equipped with the product topology, is compact.

Proof. Let .xk/k2K be a net in X . We will show that it admits a limit point. For any J � I define
the projection map �J W X ! XJ WD

Q
i2J Xi by choosing only the coordinates indexed by J .

We say that gJ 2 XJ is a partial limit point of .xk/k2K if its a limit point of the net .�J .xk//k2K .
We introduce a partial order on the set of partial limit points in the following way: gJ 6 gJ 0 if
J � J 0 and �J .gJ 0/ D gJ , i.e. gJ 0 is an extension of gJ .

We will show that there exists a maximal partial limit point, using Zorn’s lemma. First of all, since
each of the spaces Xi is compact, if we take J D fig we can find a partial limit point gi . Now
we have to show that any linearly ordered family of partial limit points admits an upper bound.
Suppose that .gJ /J2Y , where Y � P.I /, is such a family. Consider eJ WD S

J2Y J . For any
j 2 eJ there exists J 2 Y such that j 2 J , so we may define geJ .j / WD gJ .j /; the definition does
not depend on the choice of J . It remains to check that geJ is a limit point of .�eJ .xk//k2K . Let U
be a basic neighborhood around geJ in XeJ . For any k 2 K we would like to find k0 > k such that
�eJ .xk0/ 2 U . Since U is a basic neighbourhood, there are only finitely many indices j1; : : : ; jn
that we have to care about. We can find J 2 Y such that j1; : : : ; jn 2 J and now use the fact that
gJ is a partial limit point to conclude.
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Let now gJ be a maximal partial limit point of the net .xk/k2K . We claim that J D I . If not,
there exists i … J and we will find a partial limit point gJ[fig. Indeed, there exists a subnet of
.�J .xk//k2K converging to gJ and we can ensure the convergence of .�i.xk//k2K after passing to
a further subnet, simply by using the compactness of Xi . So if J ¤ I , then the partial limit point
gJ cannot be maximal. Therefore J D I and gI is a genuine limit point.

Remark 7.16. The proof above is similar in spirit to the proof of the Hahn-Banach theorem (The-
orem 5.1. We have partial limit points and we want to extend them to the full product. What we
can do, using compactness, is to extend the partial limit points a single coordinate at a time. Then
Zorn’s lemma gives extension to the whole space.

7.7 Topological vector spaces

Definition 7.17. A topological space X is said to be Hausdorff if for every x ¤ y in X there exist
neighborhoods U of x and V of y that are disjoint, i.e. U \ V D ;.

Proposition 7.18. Let .X;D/ be a pseudometric space. The pseudometric topology is Hausdorff.

Proof. Let x ¤ y be two distinct points in X . Take d 2 D such that d.x; y/ ¤ 0. Put " WD
d.x; y/=2. Define U WD Bd .x; "/ and V WD Bd .y; "/. Then U and V are neighborhoods of x and
y respectively and U \ V D ;.

When dealing with vector spaces, metrics are usually given by norms on the vector space. Simi-
larly, pseudometrics are usually given by seminorms.

Definition 7.19. Let X be a vector space over C.

� A map p W X ! Œ0;C1/ is called a seminorm on X if the following conditions hold.

– p.�x/ D j�jp.x/ for all x 2 X; � 2 C,

– p.x C y/ � p.x/C p.y/ for all x; y 2 X .

� The pair .X;P/ is called a seminormed space if P is a family of seminorms on X such that
x D 0 whenever p.x/ D 0 for all p 2 P .

� If .X;P/ is a seminormed space, the seminorm topology onX is defined as the pseudometric
topology on X given by the family of pseudometrics fdp j p 2 Pg defined by dp.x; y/ D
p.x � y/.

Definition 7.20. A topological vector space is a vector space X equipped with a Hausdorff topol-
ogy such that the maps

X �X ! X W .x; y/ 7! x C y and C �X ! X W .�; x/ 7! �x

are continuous when we put on X �X , respectively C �X , the product topology.

Proposition 7.21. Let .X;P/ be a seminormed vector space. The seminorm topology turns X into
a topological vector space.
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Proof. We use nets to check the continuity of the addition. Let ..xi ; yi//i2I be a net in X � X
converging to .x; y/, which means that limi2I xi D x and limi2I yi D y. We want to check that
the net .xi C yi/i2I converges to x C y. We have to check that for any seminorm p 2 P we
have limi2I p.xi C yi � x � y/ D 0. By the triangle inequality we have p.xi C yi � x � y/ 6
p.xi �x/Cp.yi �y/ and both terms on the right-hand side converge to 0, because limi2I xi D x

and limi2I yi D y.

Prove yourself the continuity of the scalar multiplication.

Remark 7.22. All topological vector spaces that we encounter in these lecture notes are semi-
normed spaces. The terminology ‘seminormed space’ is not a standard one. On page 92, a series
of exercises will lead to the following alternative characterization of seminormed spaces: they are
exactly the locally convex topological vector spaces. So, the class of seminormed spaces (with
their seminorm topology) is the same as the class of locally convex spaces. This last terminology
is much more standard. The reason for our unorthodox terminology is our belief that seminormed
spaces are intuitively much easier to understand than locally convex spaces.

7.8 Exercises

Exercise 10. The norms k � ka and k � kb on the vector space X are called equivalent if there exist
constants C1; C2 > 0 such that

C1kxka � kxkb � C2kxka for all x 2 X :

Prove that equivalent norms induce the same norm topology on X .
Exercise 11. Let H be a Hilbert space with its weak topology defined in Example 7.3. Sup-
pose that the sequence .xn/n!1 converges in the weak topology. Using the uniform boundedness
principle, show that this sequence is bounded, i.e. supn inN kxnk <1.
Exercise 12. Let H be an infinite dimensional Hilbert space. Let .en/n2N be an orthonormal
family in H . Follow the hints below to prove the following statements.

(i) The point 0 belongs to the weak closure of K WD f
p
nen j n 2 N0g.

(ii) There is no sequence in K that converges to 0 weakly.

To prove (i), you have to prove that there exists for all x1; : : : ; xk and all " > 0 an n 2 N0 such
that

jh
p
nen; xiij < " for all i D 1; : : : ; k :

This can be done by contradiction.

To prove (ii) use Exercise 11.
Exercise 13. Let H and K be as in Exercise 12. Define the function

f W H ! R W f .x/ D

(
1 if x 2 K ;

0 if x 62 K :

Prove that f is not weakly continuous in 0 but that nevertheless .f .xn// converges to 0 whenever
.xn/ is a sequence in H converging weakly to 0.



Lecture 8

Weak topologies and the Banach-Alaoglu
theorem

8.1 Examples of topological vector spaces

We will systematically equip one and the same space (typically a Banach space) with different
topologies1 and that is the crucial aspect of the list of examples in this section. It is extremely useful
to consider several topologies on the same vector space, motivated by the following simplistic
reasoning. In a weaker topology, there are fewer open sets. Therefore, subsets are more often
compact. Compactness is very useful, since it allows to take limit points. A typical illustration of
this phenomenon is the Banach-Alaoglu theorem below.

Our first example was already given as Example 7.3.

Example 8.1. Let H be a Hilbert space. Define the family P of seminorms on H given by

P D fpy j y 2 H g with py.x/ D jhy; xij for all x 2 H :

The resulting seminorm topology on H is called the weak topology on the Hilbert space H .

In the last paragraph of Section 7.2, it was shown that the weak topology on an infinite dimensional
Hilbert space H , is strictly weaker than the norm topology.

Example 8.2. This example generalizes the previous Example 8.1. Let X be a Banach space.
Define the family P of seminorms on X as

P D fp! j ! 2 X�g with p!.x/ D j!.x/j for all x 2 X :

The seminorm topology defined by P is called the weak topology on the Banach space X .

Since every Hilbert space is a Banach space, Examples 8.1 and 8.2 could lead to a potential problem
of terminology, but the Riesz representation theorem 1.10 tells us that this is not the case.

1Browsing some books, you will find at least seven seminorm topologies on B.H/ that are all different when H is
an infinite dimensional Hilbert space. In Example 8.5 and Exercises 5 and 6, we treat five of them.
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Example 8.3. Let X be a Banach space and X� its dual Banach space. Define the family P of
seminorms on X� as

P D fpx j x 2 Xg where px.!/ D j!.x/j for all ! 2 X� :

The seminorm topology defined by P is called the weak� topology on the dual Banach space X�.

The Banach-Alaoglu theorem below tells us that the unit ball of X� is compact in the weak�

topology for every Banach space X . Using Theorem 1.10, it follows that the unit ball of a Hilbert
space is compact in the weak topology. More generally, the same holds for the unit ball in an
arbitrary reflexive Banach space, but not in other Banach spaces.

Example 8.4. Let X D C.R/ be the space of continuous functions on R. We define two families
of seminorms on X : P1 WD fpK W K � R is compactg, where pK.f / WD supx2K jf .x/j, and
P2 WD fpx W x 2 Rg, where px.f / WD jf .x/j. The topology induced by P1 is called the topology
of convergence on compact subsets, whereas the topology defined by P2 is called the topology of
pointwise convergence.

Example 8.5. Let H be a Hilbert space. On the Banach space of bounded operators B.H/, we
have the following families of seminorms.

P1 consisting of the seminorms T 7! jhT x; yij for all x; y 2 H :

P2 consisting of the seminorms T 7! kT xk for all x 2 H :

P3 consisting of the seminorms T 7! kT xk C kT �xk for all x 2 H :

The family P1 defines the weak topology on B.H/. The family P2 defines the strong topology on
B.H/. The family P3 defines the strong� topology on B.H/.

Remark 8.6. It is unfortunate but crucial to observe that the weak topology on B.H/ defined
in Example 8.5 does not coincide with the weak topology on B.H/ when viewing B.H/ as a
Banach space. Whenever we deal with B.H/, the terminology ‘weak topology’ will refer to the
terminology introduced in Example 8.5.

8.2 The Banach-Alaoglu theorem

Theorem 8.7 (Banach-Alaoglu theorem). Let X be a Banach space. The unit ball .X�/1 of the
dual Banach space X� is compact in the weak� topology defined in 8.3.

Proof. We will identify .X�/1 with a closed subset of an infinite product of compact metric spaces.
Tychonoff’s theorem 7.15 will then yield the compactness of .X�/1.

Elements of X� are, in particular, functions from X to C, so we can identify them with a subset
of
Q
x2X C. But this space is not compact, so we have to use something else. Every element

! 2 .X�/1 satisfies j!.x/j 6 kxk, so we may identify .X�/1 with a subset of the product K WDQ
x2X Bkxk, where for r � 0 we define Br D fz 2 C j jzj � rg – a compact subset of C. By

Tychonoff’s theorem 7.15 this product is compact.

More formally, we define a map

� W .X�/1 ! K W �.!/x D !.x/ :
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We have to check two things: that the topology on �..X�/1/ induced from K agrees with the
topology of .X�/1 (so � is a homeomorphism onto its image) and that �..X�/1/ is closed in K,
because this would imply that �..X�/1/ is compact.

The first part is simple: both topologies are given by pointwise convergence on X , so a net .!i/i2I
in .X�/1 converges iff the net .�.!i//i2I converges.

To check that �..X�/1/ is closed in K, we also use nets. Elements of K are functions f from
X to C that satisfy jf .x/j 6 kxk, while the subset �..X�/1/ consists of linear functions. Prove
yourself that linearity is preserved under convergence of nets. The condition jf .x/j 6 kxk for
a linear functional f implies that kf k 6 1, so any element in the closure of �..X�/1/ actually
belongs to �..X�/1/, i.e. this set is closed.

8.3 Illustration: an invariant mean on the group of integers

Definition 8.8. Let X be a set. A mean or finitely additive probability measure m on X is a map
that assigns to every subset A � X a number m.A/ 2 Œ0; 1� such that

� m.;/ D 0 and m.X/ D 1,

� m.A [ B/ D m.A/Cm.B/ whenever A and B are disjoint subsets of X .

Definition 8.9. Let G be a group. An invariant mean m on G is a finitely additive probability
measure m on G satisfying

m.gA/ D m.A/ for all g 2 G;A � G :

In words, an invariant mean is a translation invariant finitely additive probability measure on the
group. A group G that admits an invariant mean, is called an amenable group.

Exercise 1. Denote by jAj the number of elements of a finite set A. Let G be a finite group. Prove
that

m.A/ D
jAj

jGj

is the unique invariant mean on G.

It is far from obvious that certain infinite groups can have an invariant mean. This is already
illustrated by the following exercise.
Exercise 2. Let G be an infinite group and m an invariant mean on G. Prove that m.A/ D 0 for
every finite subset A � G.

Using the Banach-Alaoglu theorem, we can prove the following.

Theorem 8.10. The group G D Z has an invariant mean.

The idea of the proof of Theorem 8.10 is the following. For every n 2 N, we define the finitely
additive probability measure mn on Z as

mn.A/ D
jA \ Œ�n; n�j

2nC 1
:
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In a sense to be made precise, the finitely additive probability measure mn is more and more
invariant as n ! 1. The Banach-Alaoglu theorem will allow us to take a limit point of the
sequence .mn/n2N . This limit point will be an invariant mean.

Proof of Theorem 8.10. Define the Banach space X D `1.Z/ with the supremum norm k � k1.
Define for every n 2 N, the linear maps

!n W `
1.Z/! C W !n.f / D

1

2nC 1

nX
iD�n

f .i/ :

Check that k!nk D 1 for every n.

Define for every ! 2 `1.Z/� and every k 2 Z, the element k � ! 2 `1.Z/� by the formulae

.k � !/.f / D !.f � k/ where .f � k/.n/ D f .k C n/ :

We claim that for every k 2 Z,

kk � !n � !nk ! 0 when n!1 :

You easily check that for all n > k � 1, we have

.k � !n � !n/.f / D
1

2nC 1

�
�

�nCk�1X
iD�n

f .i/C

nCkX
iDnC1

f .i/
�
:

Hence, kk � !n � !nk � 2k
2nC1

proving the claim.

Combining the Banach-Alaoglu theorem and Proposition 7.11 we find a subnet .�j /j2J of the
sequence .!n/n2N such that �j ! � 2 `1.Z/�. Write �j D !h.j / where h W J ! N is a map
such that for every n0 2 N there exists a j0 2 J satisfying h.j / � n0 for all j � j0. The fact that
�j ! � in the weak� topology means that �j .f / ! �.f / for every f 2 `1.Z/. Deduce from
this that

1. k � � D � for all k 2 Z,

2. �.f / 2 Œ0; 1� if 0 � f .i/ � 1 for all i 2 Z,

3. �.1/ D 1.

Conclude that denoting by �A the indicator function of a subsetA � Z, the formulam.A/ D �.�A/
provides us with an invariant mean on Z.

8.4 Exercises

Exercise 3. Let X be a Banach space and suppose that its norm topology and weak topology
coincide. Find !1; : : : ; !n 2 X� such that

kxk � max
iD1;:::;n

j!i.x/j for all x 2 X :

Deduce that the linear map X ! Cn W x 7! .!1.x/; : : : ; !n.x// is injective and hence, X is finite
dimensional.
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Exercise 4. Let X and Y be Banach spaces and let T W X ! Y be a bounded operator. Use the
basic neighborhood in the weak topology to prove that T remains continuous, when X and Y are
endowed with their respective weak topologies. Try to prove this continuity using nets.
Exercise 5. Consider the different seminorm topologies on B.H/ defined in Example 8.5. Prove
that the weak topology is weaker than the strong topology; that the strong topology is weaker than
the strong� topology and that the strong� topology is weaker than the norm topology.

Use next the following examples to prove that we can replace ‘weaker’ by ‘strictly weaker’ ev-
erywhere in the previous paragraph, whenever H is infinite dimensional. Define the sequences of
operators.

1. Un W `2.Z/! `2.Z/ W .Unx/.k/ D x.nC k/ for all x 2 `2.Z/; k 2 Z ;

2. Vn W `2.N/! `2.N/ W .Vnx/.k/ D x.nC k/ for all x 2 `2.N/; k 2 N ;

3. Pn W `2.N/! `2.N/ W .Pnx/.k/ D

(
x.k/ if k � n ;
0 if k < n :

Check that Un ! 0 in the weak topology, but not in the strong topology; that Vn ! 0 in the strong
topology, but not in the strong� topology and that Pn ! 0 in the strong� topology, but not in the
norm topology.
Exercise 6. In Theorem 3.22, we have seen that B.H/ Š T C.H/�. Prove that the weak� topology
on B.H/ (defined through the identification of B.H/ and T C.H/�) and the weak topology on
B.H/ defined in Example 8.5, coincide on the unit ball .B.H//1.
Exercise 7. Prove that the map B.H/ ! B.H/ W T 7! T � is continuous if we equip B.H/ with
its weak topology. Is this still true for the strong topology?

Denote by .B.H//1 the unit ball of B.H/ and prove that the multiplication map

.B.H//1 � B.H/! B.H/ W .S; T / 7! ST

is continuous if we equip .B.H//1 � B.H/ with the product of the strong topologies and B.H/
with the strong topology.
Exercise 8. Let H be an infinite dimensional Hilbert space. Prove as follows that the multiplica-
tion map

m W B.H/ � B.H/! B.H/ W .S; T / 7! ST

is not continuous for the strong topology. Denote by �x;y the rank one operator defined by

�x;y.z/ D hz; yix :

Assume that the multiplication map is strongly continuous. It follows that also the map B.H/ !
B.H/ W T 7! T 2 is strongly continuous. Let .en/n2N be an orthonormal family in H . Consider
the subset A � B.H/ given by

A D f
p
n�en;en

j n 2 N0g :

Use Exercise 12 in Lecture 7 to prove that 0 belongs to the closure of A in the strong topology. By
continuity of T 7! T 2, it follows that 0 belongs to the strong closure of

B D fn�en;en
j n 2 N0g :



Lecture 8. Weak topologies and the Banach-Alaoglu theorem 86

Find a vector x 2 H such that kT xk D 1 for all T 2 B. Derive a contradiction.

Finally prove as follows that the multiplication map m does preserve limits of sequences. Indeed,
if .Sn; Tn/! .S; T / in the product of the strong topologies, it follows that Sn ! S and Tn ! T

strongly. Use the Banach-Steinhaus theorem and Exercise 7 to conclude that SnTn ! ST strongly.

We conclude that the multiplication map, although preserving limits of sequences, is not a con-
tinuous map. We already met this phenomenon in Exercise 13 of Lecture 7, but now it appears
in a seemingly innocent case, namely for the map T 7! T 2 on B.H/ equipped with the strong
topology.
Exercise 9. This exercise complements Theorem 5.8 in Lecture 5, where the necessary terminol-
ogy is introduced. Imitate the proof of Theorem 8.10 to give a different proof for the existence
of a Banach limit L on `1.N/ satisfying L.x/ D � whenever the sequence of Cesàro means of
.x.n//n2N converges to �.



Lecture 9

The Hahn-Banach separation theorem

Let A and B be disjoint subsets of R3. Under which assumptions does there exist a plane P � R3

such that A lies entirely on one side of P and B entirely on the other side? Depending on whether
we want A and B to lie strictly on both sides of P (i.e. not intersecting P ), sufficient conditions
vary but all have a common ground: A andB should be convex. If we replace R3 by Rn, the natural
question becomes to separate A and B by a hyperplane, i.e. an affine subspace of dimension n� 1.

The main subject of this lecture is to prove such a separation-by-a-hyperplane theorem for convex
disjoint subsets of infinite dimensional topological vector spaces. At first this sounds as a very
abstract, almost nonsensical topic. But as we will see, the so called Hahn-Banach separation
theorem reveals deep properties about the weak topology of Banach spaces. This will be applied
to prove striking results in group theory.

9.1 The Hahn-Banach separation theorem

Theorem 9.1 (Hahn-Banach separation theorem). Let X be a topological vector space. If A and
B are nonempty disjoint convex subsets of X and if A is open, there exists a continuous linear
functional ! W X ! C and a number ˛ 2 R such that

Re.!.a// < ˛ � Re.!.b// for all a 2 A; b 2 B :

The Hahn-Banach separation theorem may seem more innocent than it really is. Given a topo-
logical vector space, it is not obvious to find open convex subsets. Indeed, there exist topological
vector spaces such that the only open convex subsets are ; and X . For such topological vector
spaces, the statement of the Hahn-Banach separation theorem is empty. Remark also that such
topological vector spaces have only one continuous functional ! W X ! C, namely ! D 0. But,
if .X;P/ is a seminormed space with its seminorm topology, there are plenty of open convex sets,
e.g. the sets given by

U D fx 2 X j p1.x/ < "1; : : : ; pn.x/ < "ng (9.1)

whenever p1; : : : ; pn 2 P and "1; : : : ; "n > 0. The relation between open convex sets and semi-
norms goes much further, see the exercises on page 92.

Before proving the Hahn-Banach separation theorem, we need a number of preliminary results.
The main point in the proof will be an application of the Hahn-Banach extension theorem 5.6. So,
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we will need to construct sublinear maps onX . Such sublinear maps (called Minkowski functionals
in [Ped]) are provided by the following result.

Lemma 9.2. LetX be a topological vector space and U an open convex neighborhood of 0. Define
for every x 2 X ,

m.x/ D infft j t � 0; t�1x 2 Ug :
Then, m.x/ 2 Œ0;C1/ for all x 2 X . Moreover, m is a sublinear map on X in the sense of
Definition 5.5. Finally,

U D fx 2 X j m.x/ < 1g :

Proof. Prove yourself this lemma according to the following steps. Details can be found in [Ped,
2.4.6].

1. Let x 2 X and t > 0 such that t�1x 2 U . Prove that s�1x 2 U for all s � t .

2. Let x 2 X . Prove that n�1x ! 0 as n!C1. Deduce that m.x/ <1.

3. Prove that m.sx/ D sm.x/ for all x 2 X and s � 0.

4. For all s; t > 0 and x; y 2 X one has

.s C t /�1.x C y/ D
s

s C t
s�1x C

t

s C t
t�1y :

Deduce that m.x C y/ � m.x/Cm.y/.

5. Let x 2 U . Use the fact that U is open to find " > 0 satisfying .1C "/x 2 U . Deduce that
m.x/ < 1.

6. Conversely, prove that if m.x/ < 1, then x 2 U .

Example 9.3. Let X be a normed space and let B be the open unit ball, i.e. B WD fx 2 X W kxk <
1k. Then the associated Minkowski functional is equal to the norm.

We also need the following characterization of continuous functionals on a topological vector
space. We formulate the result over the field R, which is the version that we will apply below, but
the same result holds of course over the field C.

Lemma 9.4. Let X be a topological vector space over R and ! W X ! R a linear functional.
Then, the following statements are equivalent.

(i) ! is continuous.

(ii) ! is continuous in 0.

(iii) There exists a neighborhood U of 0 such that j!.x/j � 1 for all x 2 U .
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Proof. (i) H) (ii). Obvious.

(ii) H) (iii). Since ! is continuous in 0, since !.0/ D 0 and since the unit interval Œ�1; 1� is a
neighborhood of 0 in R, there exists a neighborhood U of 0 in X such that !.U/ � Œ�1; 1�. This
means that j!.x/j � 1 for all x 2 U .

(iii) H) (i). Take a neighborhood U of 0 in X such that j!.x/j � 1 for all x 2 U . Choose
x0 2 X and " > 0. Put V WD x0 C "U . Check that V is a neighborhood of x0 in X and that
j!.x/ � !.x0/j � " for all x 2 V . So ! is continuous at x0 for every x0 2 X .

Lemma 9.5. Let X be a vector space over R and ' W X ! R a nonzero linear functional. Let
U � X be a nonempty convex subset. Then '.U/ is a nonempty interval. If X is a topological
vector space and U is open, then '.U/ is an open interval.

Proof. Also the proof of this lemma is left as an exercise.

(i) Prove that '.U/ is convex.

(ii) Prove that intervals (open, closed, half open, etc.) are the only convex subsets of R. Deduce
that '.U/ is a nonempty interval whenever U � X is nonempty and convex.

(iii) Finally assume that X is topological and that U is open. Fix a 2 X such that '.a/ ¤ 0.
Choose x 2 U . Prove the existence of " > 0 such that x C sa 2 U for all s 2 .�"; "/.
Deduce that '.x/ lies in the interior of '.U/. Conclude that '.U/ is open.

Contemplating about the previous lemma it might sound strange that we make a statement about a
topological vector space without assuming continuity of '. Actually we only used the following
algebraic weakening of U being open: for every x 2 U and every a 2 X , there exists an " > 0

such that x C sa 2 U for all s 2 .�"; "/.

We are now ready to prove the Hahn-Banach separation theorem.

Proof of Theorem 9.1. Give a proof yourself according to the following steps. Details can be found
in [Ped, 2.4.7].

(i) Fix a0 2 A and b0 2 B . Put c0 WD b0 � a0 and C WD A � B C c0. Prove that C is convex.
Write

C D
[
b2B

.A � b C c0/

and conclude thatC is an open neighborhood of 0. Denote bym the sublinear map associated
with C as in Lemma 9.2.

(ii) Check that m.c0/ � 1.

(iii) Define the linear map '0 W Rc0 ! R W '0.sc0/ D s. Check that '0.x/ � m.x/ for all
x 2 Rc0. Apply the Hahn-Banach extension theorem 5.6 to get a linear map ' W X ! R
satisfying '.x/ � m.x/ for all x 2 X and '.c0/ D 1.



Lecture 9. The Hahn-Banach separation theorem 90

(iv) Prove that j'.x/j � 1 whenever x 2 C \ .�C/. Use Lemma 9.4 to deduce that ' is
continuous.

(v) Use the fact that m.x/ < 1 for all x 2 C to deduce that '.a/ < '.b/ for all a 2 A, b 2 B .

(vi) Use Lemma 9.5 to find ˛ 2 R such that '.a/ < ˛ � '.b/ for all a 2 A, b 2 B .

(vii) Define ! W X ! C W !.x/ D '.x/ � i'.ix/ to conclude the proof of the theorem.

Corollary 9.6. Let X be a seminormed space with its seminorm topology. Suppose that A and B
are nonempty disjoint convex subsets of X such that A is compact and B is closed. Then, there
exists a continuous linear map ! W X ! C and numbers ˛1; ˛2 2 R such that

Re.!.a// � ˛1 < ˛2 � Re.!.b// for all a 2 A; b 2 B :

Proof. We claim that there exists an open convex subset A1 � X such that A � A1 and A1\B D
;. Indeed, for every a 2 A, we find by (9.1), an open convex neighborhood Ua of 0 such that
.aCUaCUa/\B D ;. Take a1; : : : ; an such thatA �

Sn
iD1.aiCUai

/. Define U D Ua1
\� � �\Uan

.
Then, U is an open convex neighborhood of 0 and .AC U/ \ B D ;. Check this and check that
we can take A1 D AC U .

By Theorem 9.1, we find a continuous linear map ! W X ! C and a real number ˛2 such that

Re.!.a// < ˛2 � Re.!.b// for all a 2 A1; b 2 B :

Set ˛1 D supfRe.!.a// j a 2 Ag. Since A is compact and ! continuous, the supremum ˛1 is
attained in some a 2 A. So, ˛1 < ˛2 and we are done.

Our final corollary to the Hahn-Banach extension theorem may seem very abstract, but it has far
reaching consequences. The idea is the following: if in a Banach space X , we can approximate an
element x in the weak topology by elements of some subset A � X , then we can approximate x in
norm by elements of conv.A/, where

conv.A/ D
n nX
iD1

tiai

ˇ̌̌
n 2 N0; ti 2 Œ0; 1� and ai 2 A for all i D 1; : : : ; n ;

nX
iD1

ti D 1
o
:

In words, conv.A/ is the smallest convex subset of X that contains A.

Corollary 9.7. Let X be a Banach space and A � X a convex subset that is closed in the norm
topology. Then, A is closed in the weak topology.

Also, if A � X and if x belongs to the weak closure of A, then x belongs to the norm closure of
conv.A/.

Proof. Take x 2 X nA. We have to find a weak neighborhood U of x such that U \A D ;. Apply
Corollary 9.6 to the Banach space X equipped with the norm topology. Since fxg is compact and
convex, while A is convex and closed, we can take ! 2 X� and ˛ 2 R such that

Re.!.x// < ˛ � Re.!.a// for all a 2 A :

Defining U D fy 2 X j Re.!.y// < ˛g, we are done.
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9.2 Linear functionals that are continuous for a weak topology

The Hahn-Banach separation theorem can only be interpreted in a concrete situation if we know
which are the continuous functionals on X . In this course, all concrete topological vector spaces
are seminormed spaces and most of the time, they are even defined as follows.

Let X be a vector space and F a faithful family of linear maps ! W X ! C, meaning thatT
!2F Ker! D f0g. Define for every ! 2 F the seminorm p! on X as p!.x/ D j!.x/j for all

x 2 X . Set P D fp! j ! 2 Fg. Then, .X;P/ is a seminormed space and hence, a topological
vector space when equipped with the seminorm topology.

This brings us to the following natural question: describe the linear mapsX ! C that are continu-
ous for the seminorm topology described above. The answer to this problem is surprisingly simple:
these are exactly the linear maps belonging to spanF . This is the contents of the next proposition
and is concretely interpreted below in Example 9.9.

Proposition 9.8. Let X be a vector space, F a faithful family of linear functionals from X to C
and P the associated family of seminorms on X . If we equip X with the seminorm topology given
by P , a linear functional ! W X ! C is continuous if and only if ! 2 spanF .

Proof. It is straightforward to check that functionals in spanF are continuous. Suppose conversely
that ! W X ! C is continuous. Take !1; : : : ; !n 2 F and " > 0 such that j!.x/j � 1 whenever
j!i.x/j < " for all i D 1; : : : ; n. Use the linearity of !;!1; : : : ; !n to conclude that !.x/ D 0

whenever !i.x/ D 0 for all i D 1; : : : ; n. Define the linear map

� W X ! Cn
W �.x/ D .!1.x/; : : : ; !n.x// :

Set K D �.X/. Then, K is a vector subspace of Cn. Also, Ker� � Ker!, allowing to define
the linear map � W K ! C such that !.x/ D �.�.x// for all x 2 X . Extending � to a linear
functional on the whole of Cn, we find �1; : : : ; �n 2 C such that �.z1; : : : ; zn/ D

Pn
iD1 �izi for

all .z1; : : : ; zn/ 2 K. But this means that ! D
Pn
iD1 �i!i , proving that ! 2 spanF .

Example 9.9. We apply Proposition 9.8 to the following more concrete cases.

� If X is a Banach space, a linear functional X ! C is continuous for the weak topology if
and only if it is continuous for the norm topology.

� If X� is the dual of a Banach space X , a linear functional � W X� ! C is continuous for the
weak� topology if and only if there exists x 2 X with �.!/ D !.x/ for all ! 2 X�.

9.3 Exercises

Exercise 1. Use the hints below to prove the following theorem (Goldstine’s theorem).

Let X be a Banach space and i W X ! X�� the isometry given by i.x/.!/ D !.x/ introduced in
Corollary 5.3. Then, the image i..X/1/ of the unit ball .X/1 in X is weak� dense in the unit ball
.X��/1 of X��.

Hints. Equip X�� with its weak� topology. Denote by K the weak� closure of i..X/1/. Suppose
that � 2 X�� n K. You have to prove that k�k > 1. Apply Corollary 9.6 to the closed convex
subset K and the compact convex subset f�g. Use Example 9.9 to prove that k�k > 1.
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Exercise 2. We know that in reflexive Banach spaces the unit ball is weakly compact (by the
Banach-Alaoglu theorem). Prove the converse, according to the following steps:

(i) Check that the embedding � W X ! X�� is continuous when X is endowed with its weak
topology and X�� D .X�/� with its weak� topology.

(ii) Deduce that the image of the unit ball �..X/1/ is compact in the weak� topology, hence
closed.

(iii) Use Exercise 1 to show that �..X/1/ D .X��/1.

(iv) Conclude that �.X/ D X��.

The following is a series of exercises that leads to a proof of the equivalence of the following two
statements about a topological vector space X :

� the topological vector space X is a seminormed space; this means that there exists a family
P of seminorms on X such that the topology on X coincides with the seminorm topology
defined by P;

� the topological vector space X is locally convex; this means1 that every neighborhood U of
0 contains a convex neighborhood of 0.

Exercise 3. Let .X;P/ be a seminormed space and consider on X the seminorm topology. Let U
be a neighborhood of 0. Prove that there exist p1; : : : ; pn 2 P and an " > 0 such that

fx 2 X j pi.x/ < " for all i D 1; : : : ; ng

is a convex neighborhood of 0 contained in U .

So, you have shown that every seminormed space is locally convex.
Exercise 4. Let X be a topological vector space and U an open convex neighborhood of 0. Define
the associated sublinear mapm as in Lemma 9.2. Prove thatm is a seminorm if and only if �U D U
for all � 2 C with j�j D 1.

We call a convex neighborhood U of 0 balanced if �U D U for all � 2 C with j�j D 1.
Exercise 5. Let X be a topological vector space.

1. Use the compactness of the circle S1 WD f� 2 C j j�j D 1g to prove that

V D
\
�2S1

�U

is a balanced convex neighborhood of 0 whenever U is a convex neighborhood of 0.

2. Prove that the interior of a balanced convex neighborhood of 0 is still a balanced convex
neighborhood of 0.

1In the terminology of general topology, this means that the topology on X has a basis consisting of convex open
sets.
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3. Assume that X is locally convex. Prove that every neighborhood of 0 contains an open
balanced convex neighborhood of 0.

Exercise 6. Let X be a locally convex topological vector space. Define O as the set of all open
balanced convex neighborhoods of 0. Define for every U 2 O the map

pU.x/ D infft 2 Œ0;C1/ j t�1x 2 Ug :

By Exercise 4, P D fpU j U 2 Og is a family of seminorms on X . Use Exercise 5 to prove that
the seminorm topology on X defined by P coincides with the original topology on X .



Lecture 10

The Krein-Milman theorem

In this lecture we make a careful study of compact convex sets in a seminormed space. Keeping in
mind the intuition about convex sets in the plane, the notion of an extreme point is probably not so
surprising: we say that a point in a convex subsetK of a vector spaceX is extreme if the point does
not lie on an interval contained in K. The Krein-Milman theorem says that a compact convex set
K has “enough” extreme points, in the sense that K can be retrieved as the closure of the convex
hull of its extreme points.

As an application we prove a result in the representation theory of groups: all groups have “enough”
irreducible representations.

10.1 The Krein-Milman theorem

Definition 10.1. Let X be a vector space and K � X a convex subset. We say that x 2 K is
an extreme point of K if the following holds: whenever x D ty C .1 � t /z with y; z 2 K and
t 2 .0; 1/, we have x D y D z.

The set of extreme points of K is denoted as extK.

A non-empty subset F � K is called a face if the following condition holds: whenever ty C .1 �
t /z 2 F with y; z 2 K and t 2 .0; 1/ then y; z 2 F . We usually assume that the faces are convex;
if not mentioned otherwise, the word face will always mean a convex face.

Remark 10.2. An extreme point is a face that consists of a single point.

If you want to find a maximum of convex function defined on a convex set, knowing the extreme
points might be very helpful.
Exercise 1. Let X be a vector space and let K � X be a convex subset. Suppose that f W K ! R
is a convex function that attains a maximum. Show that the set of points, where f attains a
maximum is a (not necessarily convex) face of K. In particular, if the maximum is unique, it is
attained at an extreme point.

Remark 10.3. In many cases (see the proof of Theorem 10.4) one can find an extreme point inside
a face, so even in the case of a non-unique maximum, one can often conclude that there is an
extreme point at which the maximum is attained.
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The central question of this section is the following: do convex subsets always have extreme points?
If we think about convex subsets of the plane, a few natural conditions pop up: an open convex set
never has extreme points and also a line in the plane has no extreme points. But a convex subset
K of the plane seems to have extreme points whenever it is closed and bounded, i.e. compact.
Moreover, in that case, you can recover K by taking convex combinations of its extreme points.

Such a geometric intuition holds in arbitrary seminormed spaces and that is the content of the
Krein-Milman theorem. The way that we find extreme points in the proof of the Krein-Milman
theorem is by proving that minimal closed faces consist of a single point. In order to do that, we
need a bit more information about faces.
Exercise 2. Let X be a vector space and K � X a convex subset. Assume that F1 � K is a face
and that F2 � F1 is a face (of F1). Prove that F2 is a face of K.
Exercise 3. Let X be a seminormed space and let K be a convex compact subset. Let ' W X ! R
be a bounded linear functional. Prove that F' WD fx 2 K W '.x/ D supy2K '.y/g is a closed face
of K.

Theorem 10.4 (Krein-Milman Theorem). Let X be a seminormed space and K � X a nonempty
compact convex subset. Then, K equals the closure of conv.extK/.

Proof. The proof will consist of two parts. In the first one we will show that extreme points exist.
In the second one we will upgrade this statement to K D conv.extK/.

Let F denote the set of closed faces of K, ordered by reverse inclusion. We claim that there exists
a maximal element of this set, a minimal closed face. In order to apply Zorn’s lemma, we have to
show that any decreasing family of faces has a lower bound. By compactness, the intersection will
be non-empty and you should check that it is a face. Therefore we get a minimal face F and our
aim is to show that it consists of a single point. If there are two distinct points x; y 2 F , then we
can find a functional ' W X ! R such that '.x/ ¤ '.y/, using the Hahn-Banach theorem. Define
now F1 WD fx 2 F W '.x/ D supy2F '.y/g. By Exercise 3 F1 is a face of F , hence a face ofK by
Exercise 2. But F1 ¤ F , because at most one of the points x and y belongs to F1. It contradicts
the minimality of F , so F D fxg for some point x 2 K; we thus have an extreme point.

Let us consider the setK1 WD conv.extK/. It is a compact convex set. IfK1 ¤ K then there exists
a point y 2 K n K1. Using the Hahn-Banach separation theorem 9.6, we can find a functional
' W X ! R such that supx2K1

'.x/ < '.y/. Now define a face F' as in Exercise 3. By the first
part of the proof, we can find an extreme point belonging to F' . But F' \K1 D ;, so K1 did not
contain all of the extreme points of K; this is a contradiction.

In applications, as for instance in the proof of the Ryll-Nardzewski fixed point theorem below, it
is often not sufficient just to know that a compact convex set has a lot of extreme points, but it is
often also needed to locate the extreme points. The following theorem provides a tool for that.

Theorem 10.5. Let X be a seminormed space and K � X a nonempty convex compact subset of
X . If F � K is closed and if K is equal to the closure of conv.F /, then extK � F .

Proof. Suppose by contradiction that x 2 ext.K/ n F . Since F is closed, we can take a neigh-
borhood V of 0 in X such that V is closed convex and x 62 F C V . Since F is compact, take
y1; : : : ; yn 2 F such that

F �

n[
kD1

.yk C V / :
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Define Kk as the closure of conv.F \ .yk C V //. Since yk C V is closed and convex, it follows
that Kk � yk C V for all k. Moreover, F �

Sn
kD1Kk , implying that K is the closure of

conv.K1 [ � � � [Kn/. Because the Kn are compact convex, the set conv.K1 [ � � � [Kn/ is already
closed and we conclude that

K D conv.K1 [ � � � [Kn/ :

Write x D
Pn
kD1 tkxk with xk 2 Kk, tk 2 Œ0; 1� and

Pn
kD1 tk D 1. Since x is an extreme point of

K, there exists a k such that x D xk. It follows that x 2 Kk � yk C V � F C V . This yields the
required contradiction.

10.2 Irreducible representations of groups

Definition 10.6. A unitary representation of a group G on a Hilbert space H is a homomorphism
of G to the group U.H/ of unitary operators on H . In other words, it is a map � W G ! U.H/
satisfying �.e/ D 1 and �.gh/ D �.g/�.h/ for all g; h 2 G.

Example 10.7. Every group has at least the following two unitary representations.

� The trivial representation on the one dimensional Hilbert space H D C given by �.g/ D 1
for all g 2 G.

� The regular representation on the Hilbert space H D `2.G/ given by �.g/� D � � g�1, i.e.
.�.g/�/.h/ D �.g�1h/ for all g; h 2 G, � 2 `2.G/.

Often unitary representations are built up out of subrepresentations. More precisely, assume that
�i W G ! U.Hi/ are two unitary representations of G. Then we can construct the unitary rep-
resentation �1 ˚ �2 of G on the Hilbert space H1 ˚ H2 given by .�1 ˚ �2/.g/ W �1 ˚ �2 7!
�1.g/�1 ˚ �2.g/�2.

Unitary representations that cannot be broken up into a direct sum of two subrepresentations, are
called irreducible. The precise definition goes as follows.

Definition 10.8. Let � W G ! U.H/ be a unitary representation of the group G.

� A vector subspace K � H is called a �-invariant subspace if �.g/K D K for all g 2 G.

� The representation � is called irreducible if f0g andH are the only �-invariant closed vector
subspaces of H .

Obviously the trivial representation is irreducible, since f0g and C simply are the only vector
subspaces of C. A priori it is not clear that a group admits other irreducible representations. The
fact that they always do, is a consequence of the Krein-Milman theorem, as we shall see below.
Exercise 4. Prove that the direct sum of two unitary representations �1; �2 (with Hi ¤ f0g) is
never irreducible.

Conversely prove that if � W G ! U.H/ is a unitary representation and K � H a closed �-
invariant vector subspace, then � can be written as the direct sum of two unitary representations,
on K and K? respectively.
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10.3 Unitary representations and positive definite functions

Let G be a group and � W G ! U.H/ a unitary representation. Whenever � 2 H , the function

'� W G ! C W '�.g/ WD h�.g/�; �i

has a very special property. Indeed, whenever gi 2 G and �i 2 C, we have
nX

i;jD1

�i �j '�.g
�1
j gi/ D

nX
i;jD1

�i �j h�.g
�1
j gi/�; �i

D

nX
i;jD1

�i �j h�.gj /
��.gi/�; �i

D h

nX
iD1

�i�.gi/�;

nX
jD1

�j�.gj /�i

D




 nX
iD1

�i�.gi/�



2

� 0 :

Functions from G to C satisfying this property are called positive definite.

Definition 10.9. Let G be a group. A function ' W G ! C is called positive-definite if for all
n 2 N, all g1; : : : ; gn 2 G and all �1; : : : ; �n 2 C we have

nX
i;jD1

�j�i'.g
�1
j gi/ � 0 : (10.1)

This exactly means that the matrix .'.g�1j gi//i;j is positive (semi)definite.

We have seen above that unitary representations give rise to positive definite functions '� . We now
prove that also the converse holds. Before we can have any chance to prove this statement, we
have to check that every positive definite function ' on G satisfies '.g�1/ D '.g/ for all g 2 G.
Indeed, the positive definite functions of the form '� satisfy

'�.g
�1/ D h�.g�1/�; �i D h�.g/��; �i D h�; �.g/�i D h�.g/�; �i D '�.g/ :

Lemma 10.10. Let ' W G ! C be a positive definite function on the group G. Then for all g 2 G
we have

� '.g�1/ D '.g/,

� '.e/ � 0 and j'.g/j � '.e/.

Proof. Choose g1 D e and g2 D g. As ' is positive definite, the matrix
�
'.e/ '.g�1/

'.g/ '.e/

�
is positive semidefinite. It follows that the diagonal entries are non-negative, i.e. '.e/ 6 0,
that the matrix is Hermitian, i.e. '.g�1/ D '.g/, and that the determinant is non-negative, i.e.
j'.g/j2 D '.g/'.g�1/ 6 '.e/2.
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Proposition 10.11. Let ' W G ! C be a positive-definite function on a countable group G. There
exists a Hilbert space H' , a unitary representation �' W G ! U.H'/ and a vector �' 2 H' such
that

'.g/ D h�'.g/�'; �'i for all g 2 G and spanf�'.g/�' j g 2 Gg is dense in H' . (10.2)

Proof. Denote by Fun0.G/ the vector space of finitely supported functions from G to C. For all
�; � 2 Fun0.G/, we define

h�; �i D
X
g;h2G

�.h/ �.g/ '.h�1g/ :

By (10.1) we have that h�; �i � 0 for all � 2 Fun0.G/. By Lemma 10.10 we get that h�; �i D h�; �i.
So we have defined a positive Hermitian form on Fun0.G/.

Denote by Fun00.G/ � Fun0.G/ the vector subspace consisting of the functions � 2 Fun0.G/
satisfying h�; �i D 0. The same formula as above defines a positive-definite Hermitian form on
the quotient Fun0.G/=Fun00.G/. Denote by k � k the associated norm. Define H' to be the
completion of Fun0.G/=Fun00.G/ with respect to the norm k � k. Define �' to be the vector inH'

that corresponds to the function in Fun0.G/ that equals 1 on e and 0 elsewhere.

For every g 2 G and � 2 Fun0.G/ define � � g 2 Fun0.G/ as the translated function .� � g/.h/ D
�.gh/. One checks easily that h� � g; � � gi D h�; �i for all �; � 2 Fun0.G/ and g 2 G. Therefore
the formula

�'.g/.� C Fun00.G// D � � g�1 C Fun00.G/

provides a well defined linear operator �'.g/ on the vector space Fun0.G/=Fun00.G/. Moreover
�'.g/ preserves the norm k � k so that �'.g/ extends in a unique way to an isometric operator
�'.g/ W H' ! H' . By construction �' is a unitary representation satisfying (10.2).

10.4 Application of the Krein-Milman theorem: all groups ad-
mit many irreducible representations

We denote by PD1.G/ the set of all positive-definite functions ' on G satisfying '.e/ D 1. Note
that PD1.G/ is a convex subset of the vector space Fun.G/.

Proposition 10.12. Let G be a group and ' W G ! C a positive-definite function satisfying
'.e/ D 1. Assume that ' is an extreme point of PD1.G/. Then the unitary representation �'
given by Proposition 10.11 is irreducible.

Proof. Assume that �' is reducible. We have to show that ' is not an extreme point of PD1.G/.
Take a closed vector subspaceK � H' such that f0g ¤ K ¤ H' and �'.g/K D K for all g 2 G.
Denote by pK the orthogonal projection of H' onto K. Check that �'.g/pK D pK�'.g/ for all
g 2 G. Define the positive-definite functions '1 and '2 by the formulae

'1.g/ D h�'.g/pK�'; �'i and '2.g/ D h�'.g/.1 � pK/�'; �'i :

By construction '.g/ D '1.g/C '2.g/. Put ˛ D '1.e/. Note that 1 � ˛ D '2.e/.



Lecture 10. The Krein-Milman theorem 99

We prove that '1 ¤ ˛'. Assume the contrary. It follows that for all g; h 2 G we have

h˛ 1 �'.g/�'; �'.h/�'i D ˛'.h
�1g/ D '1.h

�1g/ D hpK �'.g/�'; �'.h/�'i :

The second condition in (10.2) now implies that pK D ˛ 1. This means that either K D f0g,
˛ D 0 or K D H' , ˛ D 1. Both are absurd and it follows that '1 ¤ ˛'. We analogously get that
'2 ¤ .1 � ˛/'.

Note that it also follows that 0 < ˛ < 1. Indeed, if ˛ D 0 we have '1.e/ D 0 and Lemma 10.10
implies that '1 D 0. Hence ' D '2, which we contradicted above. So, ˛ ¤ 0. We similarly prove
that ˛ ¤ 1.

Finally the formula

' D ˛
1

˛
'1 C .1 � ˛/

1

1 � ˛
'2

shows that ' is not an extreme point of PD1.G/.

The converse of Proposition 10.12 also holds but is not needed to prove Theorem 10.13 below:
if �' is irreducible, then ' is an extreme point of PD1.G/. To prove this converse one needs to
prove first Schur’s lemma: if �' is irreducible and T 2 B.H'/ is an operator satisfying �'.g/T D
T�'.g/ for all g 2 G, then T must be a multiple of the identity operator 1.

Theorem 10.13. LetG be a countable group and g; h 2 G two distinct elements inG. There exists
an irreducible unitary representation � of G satisfying �.g/ ¤ �.h/.

In other words: a countable group admits sufficiently many irreducible representations to distin-
guish the group elements.

Proof. For every g 2 G define the seminorm pg on Fun.G/ given by pg.F / D jF.g/j. The family
of seminorms fpg j g 2 Gg turns Fun.G/ into a seminormed space. We claim that PD1.G/ �

Fun.G/ is a compact subset. By Lemma 10.10 we know that j'.g/j � 1 for all ' 2 PD1.G/ and
all g 2 G. Imitating the proof of the Banach-Alaoglu theorem 8.7, one identifies PD1.G/ with a
closed subset of

Q
g2GD, where D � C denotes the unit disc. The compactness of PD1.G/ then

follows from Tychonoff’s theorem.

We claim that PD1.G/ admits an extreme point ' 2 PD1.G/ satisfying '.g/ ¤ 1. Assuming
the contrary the Krein-Milman theorem 10.4 implies that '.g/ D 1 for all ' 2 PD1.G/. Denote
by � W G ! U.`2.G// the regular representation of G as defined in Example 10.7. Let ıe be the
function that is equal to 1 in e and equal to 0 elsewhere. Then the function  .g/ D h�.g/ıe; ıei
belongs to PD1.G/ and satisfies  .g/ D 0, contradiction.

So we can take an extreme point ' of PD1.G/ satisfying '.g/ ¤ 1. Proposition 10.11 provides
a unitary representation �' of G satisfying (10.2). Proposition 10.12 says that �' is irreducible.
Since

h�'.g/�'; �'i D '.g/ ¤ 1 D '.e/ D h�'; �'i ;

it follows that �'.g/ ¤ 1. This proves the theorem.
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10.5 Exercises

Exercise 5. Let H be a Hilbert space and K D fx 2 H j kxk � 1g. Prove that x 2 extK if and
only if kxk D 1.
Exercise 6. Prove that the unit balls of L1.Œ0; 1�/ (with k � k1) and c0.N/ D fx W N ! C j
limn x.n/ D 0g (with k � k1) have no extreme points (see [Con, V.7.2,V.7.7]).



Lecture 11

Applications to amenability of groups

Recall the following definition of amenability of a countable group G.

Definition 11.1. Let G be a group. An invariant mean m on G is a finitely additive probability
measure m on G satisfying

m.gA/ D m.A/ for all g 2 G;A � G :

In words, an invariant mean is a translation invariant finitely additive probability measure on the
group. A group G that admits an invariant mean is called an amenable group.

In this lecture we show the strength of the abstract theorems proven in the previous lectures and
obtain a number of deep results on amenability of groups.

11.1 The Markov-Kakutani fixed point theorem

There are quite a few fixed point theorems in mathematics that have remarkable consequences. In
Analysis I and II, you met the theorem that says that a (strict) contraction on a complete metric
space has a unique fixed point. That theorem is used in the Picard iteration method to prove
existence and uniqueness of solutions of certain differential equations. But it is also used to prove
the inverse function theorem.

In this section, we prove a fixed point theorem of a different nature. As an application, we will study
invariant means on abelian groups. In the final “extra” lecture we will prove the more powerful
Ryll-Nardzewski fixed point theorem.

Definition 11.2. Let X and Y be vector spaces and K � X a convex subset. A map T W K ! Y

is called affine if

T .˛x C .1 � ˛/y/ D ˛T .x/C .1 � ˛/T .y/ for all ˛ 2 Œ0; 1� ; x; y 2 K :

Check that an affine map T W K ! Y satisfies

T
� nX
iD1

˛ixi

�
D

nX
iD1

˛iT .xi/

101
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whenever n 2 N0, ˛i 2 Œ0; 1�, xi 2 K for all i D 1; : : : ; n and
Pn
iD1 ˛i D 1.

Obvious examples of affine maps are of course restrictions to K of linear maps from X to Y .

Theorem 11.3 (Markov-Kakutani fixed point theorem). LetX be a seminormed space andK � X
a compact convex subset. Let F be a family of continuous affine maps from K to K. Assume that
ST D TS for all S; T 2 F . Then, there exists an x0 2 K such that T .x0/ D x0 for all T 2 F .

Proof. Prove yourself this theorem according to the following steps. Details can be found in [Con,
V.10.1].

Whenever T 2 F and n 2 N0, we write T .n/ W K ! K given by

T .n/.x/ WD
1

n

n�1X
kD0

T k.x/ ;

where T k denotes the k-fold composition T k D T ı � � � ı T and where by convention T 0.x/ D x
for all x 2 K.

1. Check that T .n/ indeed maps K into K. Check that T .n/S .m/ D S .m/T .n/ for all S; T 2 F
and n;m 2 N0.

2. Consider the family of sets K WD fT .n/.K/ j T 2 F ; n 2 N0g. Prove that each set in K is
compact.

3. Observe that for all T1; : : : ; Tp 2 F and n1; : : : ; np 2 N0 we have that

T
.n1/
1 � � �T

.np/
p .K/ �

p\
kD1

T
.nk/

k
.K/ :

Deduce that the family K has the finite intersection property. Deduce the existence of x0 2 K
such that x0 2 T .n/.K/ for all T 2 F and all n 2 N0.

4. It remains to prove that T .x0/ D x0 for all T 2 F . So fix T 2 F and n 2 N0. Write
x0 D T

.n/.x/ for some x 2 K and prove that

T .x0/ � x0 D
1

n
.T n.x/ � x/ :

Deduce that T .x0/ � x0 2 1
n
.K �K/ for all n 2 N0.

5. Use the continuity of the map X � X ! X W .x; y/ 7! x � y to prove that K � K is a
compact subset of X .

6. Prove as follows that T .x0/�x0 2 U for every T 2 F and every convex open neighborhood
of 0. Fix such T and U . Prove that .nU/n2N0

is an open covering ofX . Deduce the existence
of n 2 N0 such that 1

n
.K �K/ � U . Conclude that T .x0/ � x0 2 U .

7. By definition a topological vector space is Hausdorff. Hence the statement above implies
that T .x0/ D x0 for all T 2 F .
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11.2 Abelian groups are amenable

If G is a countable group and � W G ! C a function, we define for every g 2 G, the translated
function

� � g W G ! C W .� � g/.h/ D �.gh/ :

Recall that we have proven in Theorem 8.10 that the group Z is amenable. As an application of
the Markov-Kakutani fixed point theorem, we can prove that every abelian group is amenable.

Theorem 11.4. Every abelian group is amenable.

Proof. Define

K D f‰ 2 `1.G/� j k‰k � 1 ; ‰.1/ D 1 ; ‰.F / � 0 whenever F.g/ � 0 for all g 2 G g :

We equip `1.G/� with the weak� topology.

1. Prove that K is weak� compact and convex.

2. Define for every g 2 G the map

Tg W K ! K W .Tg‰/.F / D ‰.F � g/ :

Prove that every Tg , g 2 G, is weak� continuous and affine.

3. Since G is a commutative group, we can apply the Markov-Kakutani fixed point theorem to
the family fTg j g 2 Gg of affine maps fromK toK. So, we get‰ 2 K such that Tg‰ D ‰
for all g 2 G. Define m.A/ D ‰.�A/ whenever A � G and check that m is an invariant
mean on G.

11.3 The compact space of means

Let G be a countable set. Denote by P.G/ the power set of G, i.e. the set of all subsets of G.
Recall that a mean m on the set G is a finitely additive probability measure on G, i.e. a map
m W P.G/! Œ0; 1� satisfying m.;/ D 0, m.G/ D 1 and m.A[B/ D m.A/Cm.B/ whenever A
and B are disjoint subsets of G.

Then define

M.G/ WD the set of means on G
WD fm W P.G/! Œ0; 1� j m is a mean g :

Whenever A � G the formula dA.m;m0/ WD jm.A/ � m0.A/j defines a pseudometric on M.G/.
The family D WD fdA j A � Gg turns M.G/ into a pseudometric space.

Proposition 11.5. The space M.G/ of means on a countable set G equipped with the pseudomet-
ric topology given by D is compact.
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Proof. Prove this proposition yourself. The proof is almost identical to the proof of the Banach-
Alaoglu theorem 8.7, identifying M.G/ with a closed subset of the infinite Cartesian productQ
A�GŒ0; 1�.

The most obvious means on G are given as follows. Assume that � W G ! Œ0; 1� is a finitely
supported function with

P
g2G �.g/ D 1. Define

m� W P.G/! Œ0; 1� W m�.A/ D
X
g2A

�.g/ :

Check that m� is indeed a mean on G. We denote by S.G/ the set of these easy means :

S.G/ WD fm� j � W G ! Œ0; 1� is finitely supported and
X
g2G

�.g/ D 1g : (11.1)

Proposition 11.6. Equip the space of means M.G/ with the pseudometric topology given by D.
Then S.G/ is a dense subset of M.G/.

Proof. Fix m 2 M.G/. We have to prove that m lies in the closure of S.G/. By definition we
have to prove that for all A1; : : : ; An � G and every " > 0 there exists � 2 S.G/ such that
dAi
.m;m�/ < " for all i D 1; : : : ; n. We will actually do better and prove that we can find

� 2 S.G/ such that m.Ai/ D m�.Ai/ for all i D 1; : : : ; n.

1. Take intersections of Ai ’s and complements G n Aj to find a partition of G into nonempty
disjoint subsetsD1; : : : ;Dm � G with the property that every Ai can be written as the union
of some Dj ’s.

2. Choose points gi 2 Di . Define

� W G ! Œ0; 1� W

(
�.gi/ D m.Di/ for all i D 1; : : : ; m ;

�.g/ D 0 if g 62 fg1; : : : ; gmg :

Prove that � 2 S.G/ and that m.Di/ D m�.Di/ for all i D 1; : : : ; m.

3. Deduce that m.Ai/ D m�.Ai/ for all i D 1; : : : ; n.

11.4 A first characterization of amenability: approximately in-
variant functions

We already saw in Theorem 11.4 that every abelian group is amenable. Actually many more groups
are amenable as we shall see below. However once the group is infinite, it is impossible to give a
concrete formula for an invariant mean. When proving the amenability of the group Z (Theorem
8.10) we nevertheless started with very concrete “approximate” invariant means

mn W `
1.Z/! C W mn.F / D

1

2nC 1

nX
kD�n

F.k/ : (11.2)
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The really invariant mean then arises as a (highly nonconcrete and nonunique) weak� limit point
of the sequence .mn/n2N .

The first result that we prove in this section is the following: any invariant mean on a countable
group G arises as the weak� limit point of a concrete sequence of “approximate” invariant means.

We first introduce the following notation. Throughout G denotes a countable group. Whenever
1 � p <1 and � W G ! C, we put

k�kp D
�X
g2G

j�.g/jp
�1=p

:

We define `p.G/ WD f� W G ! C j k�kp < 1g. By Proposition 0.10 we know that `p.G/,
equipped with k � kp, is a Banach space.

Also recall that the following concrete formula provides an isometric embedding of `1.G/ into the
dual of `1.G/. Whenever � 2 `1.G/, define

m� W `
1.G/! C W m�.F / D

X
g2G

�.g/ F.g/ : (11.3)

Then km�k D k�k1.

In the case G D Z, we define �n WD 1
2nC1

�Œ�n;n� and observe that the approximate invariant
means mn in (11.2) are precisely equal to mn D m�n

. One checks that for all g 2 Z we have
k�n � g � �nk1 ! 0 as n!1. All this motivates the following theorem.

Theorem 11.7. Let G be a countable group. Then, the following statements are equivalent.

1. The group G is amenable.

2. There exists a sequence �n W G ! Œ0;C1/ of finitely supported functions such thatX
g2G

�n.g/ D 1 for all n 2 N and lim
n!1

k�n � g � �nk1 D 0 for all g 2 G :

3. There exists a sequence �n 2 `2.G/ satisfying

k�nk2 D 1 for all n 2 N and lim
n!1

k�n � g � �nk2 D 0 for all g 2 G :

Before proving the theorem we need the following easy lemma.

Lemma 11.8. Let G be a countable set. The finite rank functions from G to C

spanf�A j A � Gg

form a k � k1-norm dense subspace of `1.G/.

Proof. Fix F 2 `1.G/ and " > 0. Take finitely many balls B.zi ; "/, i D 1; : : : ; n, of radius "
that cover fz 2 C j jzj � kF k1g. Put Bi WD F �1.B.zi ; "//. Observe that

Sn
iD1Bi D G. Write

A1 WD B1 and Ai WD Bi n .B1 [ � � � [ Bi�1/ for i D 2; : : : ; n. Define the function

� WD

nX
iD1

zi�Ai
:

By construction kF � �k1 � ".
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Proof of Theorem 11.7. 1 H) 2 (due to Day). Let m W P.G/ ! Œ0; 1� be an invariant mean on
G. Using the notation in (11.1) and Proposition 11.6 we can take a net .�i/i2I in S.G/ such that
m�i
! m in the pseudometric topology on M.G/. This concretely means that for all A � G we

have that limi2I m�i
.A/ D m.A/. Check that m�i

.gA/ D m�i �g.A/ for all g 2 G and A � G. The
invariance of m implies that

lim
i2I
.m�i

.A/ �m�i �g.A// D 0 for all g 2 G ; A � G :

Whenever � W G ! C is a finitely supported function, we view m� as an element of `1.G/� as in
formula (11.3). Because of Lemma 11.8 it follows that

lim
i2I

m�i��i �g.F / D 0 for all g 2 G ; F 2 `1.G/ :

This means that for all g 2 G we have that �i � �i � g converges to zero weakly in `1.G/. We want
to turn this weak convergence into norm convergence.

Fix a finite subset F � G and an " > 0. We will prove the existence of � 2 S.G/ such that
k� � � � gk1 < " for all g 2 F . Define the vector space

X D
M
g2F

`1.G/

and turn X into a Banach space using the norm k � kmax of Exercise 6 in Lecture 0. Observe that
X is defined as a direct sum of finitely many Banach spaces. Define the convex subset K � X as

K D
nM
g2F

.� � g � �/
ˇ̌̌
� 2 S.G/

o
:

Since the net
�L

g2F.�i � g � �i/
�
i2I

converges weakly to 0, it follows that 0 belongs to the weak
closure of K. But then Corollary 9.7 guarantees that 0 belongs to the norm closure of K. This in
turn means that there exists a � 2 S.G/ such that k� � � � gk1 < " for all g 2 F .

Let G D fg0; g1; : : :g be an enumeration of the elements of G. Because of the previous paragraph
we can choose for every n 2 N an element �n 2 S.G/ such that k�n � �n � gk1 < 1=n for all
g 2 fg0; : : : ; gng. By construction we have that limn!1 k�n � g � �nk1 D 0 for every g 2 G.

2 H) 3. Given �n 2 S.G/ satisfying limn!1 k�n � g � �nk1 D 0 for every g 2 G, we put

�n W G ! C W �n.g/ D
p
�n.g/ :

One checks easily that �n 2 `2.G/ with k�nk2 D 1 for all n 2 N. It remains to prove that
limn!1 k�n��n �gk2 D 0 for all g 2 G. To prove this statement, first observe that for all positive
real numbers a; b 2 Œ0;C1/ we have

j
p
a �
p
bj2 � j

p
a �
p
bj j
p
aC
p
bj D ja � bj :

It follows that k�n � �n � gk22 � k�n � �n � gk1 ! 0.
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11.5 A second characterization of amenability: positive defi-
nite functions

A related characterization can be obtained using positive definite functions.

Proposition 11.9. Let G be a countable group. Then G is a amenable if and only if there exists
a sequence .'n/n2N of finitely supported positive definite functions that converges pointwise to 1,
i.e. limn!1 'n.g/ D 1 for any g 2 G.

Proof. Suppose that G is amenable. By theorem 11.7 we get a sequence .�n/n2N of finitely sup-
ported unit vectors in `2.G/ which are approximately invariant. We can define the positive definite
functions 'n.g/ WD h�.g/�n; �ni. They are finitely supported, because �n’s are finitely supported
and they converge to 1 pointwise, because k�g.�n/ � �nk ! 1.

Suppose now that we have a sequence .'n/n2N of positive definite functions with the desired
properties. We may assume that 'n.e/ D 1, because 'n.e/ converges to 1 and we can replace the
function 'n bye'n WD 'n

'n.e/
if needed. We will now construct the approximately invariant vectors

in `2.G/. We could have applied Proposition 10.11 in order to get some unitary representations
and unit vectors, but we have to insist on finding those vectors inside `2.G/ and using the � as
our representation, so we need to find another way. Our aim is to construct a positive operator
Tn W `2.G/ ! `2.G/ that commutes with �.g/ and Tnıe D 'n. Indeed, if we have that, we may
define �n WD

p
Tnı, and then we have

'n.g/ D h'n; ıgi D h'n; �.g/ıei

D hTnıe; �.g/ıei D h
p
Tnıe;

p
Tn�.g/ıei

D h�n; �.g/
p
Tnıei D h�n; �.g/�ni

How do we construct the operators Tn? We want them to commute with �.g/, which multiply from
the left, so they should be built from operators of multiplication from the right. We declare

.Tnf /.g/ WD .f � 'n/.g/ D
X
h2G

f .gh�1/'n.h/:

Because 'n is finitely supported, the sum above is always finite and it is easy to see that Tn is a
bounded operator. Show that Tn is positive, using the fact that 'n is positive definite. We clearly
have Tnıe D 'n, so we get we wanted: unit vectors �n such that 'n.g/ D h�n; �.g/�ni. Let us now
check that the condition limn!1 k�.g/�n � �nk D 0 follows from the condition limn!1 'n.g/ D

1. Indeed, we have

k�.g/�n � �nk
2
D k�.g/�nk

2
� 2Reh�n; �.g/�ni C k�nk2

D 2.1 � Reh�n; �.g/�ni/ D 2.1 � Re'n.g//;

which tends to 0.
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11.6 A third characterization of amenability: existence of fixed
points

In Theorem 11.4 we proved that every abelian group is amenable. The method of the proof went
as follows: we defined the convex, weak� compact subset of `1.G/� given by

K WD f‰ 2 `1.G/� j k‰k � 1 ; ‰.1/ D 1 ; ‰.F / � 0 if F.g/ � 0 for all g 2 Gg

and we considered the action of G onK by translation. The Markov-Kakutani fixed point theorem
provided us with the invariant mean.

We now prove that conversely amenability can be characterized by a fixed point property: a group
is amenable if and only if every “affine action” on a convex compact set has a fixed point. We first
recall some terminology.

� We call .˛g/g2G an action of the group G on a set K if every ˛g , g 2 G, is a permutation
of the set K and if the following two conditions hold: ˛e.x/ D x for all x 2 K and
˛g.˛h.x// D ˛gh.x/ for all g; h 2 G, x 2 X . In other words, an action of G on K is
nothing else than a homomorphism from G to the permutation group of K.

� If X is a vector space and K � X a convex subset, we say that .˛g/g2G is an affine action
of G on K if every ˛g , g 2 G, is an affine map from K to K.

� We call .˛g/g2G an action by homeomorphisms if K is a topological space and every ˛g W
K ! K is a homeomorphism.

� We call x 2 K a fixed point for the action .˛g/g2G of G on K if ˛g.x/ D x for all g 2 G.

Theorem 11.10. A countable group G is amenable if and only if every action of G by affine
homeomorphisms of a nonempty compact convex subsetK � X of a seminormed space X , admits
a fixed point.

Proof. Assume first that every action of G by affine homeomorphisms of a nonempty compact
convex subset K � X of a seminormed space X , admits a fixed point. We can repeat the proof of
Theorem 11.4 to find an invariant mean on G.

Conversely assume that G is amenable. Let X be a seminormed space, K � X a nonempty
compact convex subset and .˛g/g2G an action of G on K by affine homeomorphisms. Fix an
arbitrary point x0 2 K. By Theorem 11.7 and using notation (11.1) take a sequence .�n/ in S.G/
such that limn!1 k�n � �n � gk1 D 0 for all g 2 G. Since �n.g/ 2 Œ0; 1� and

P
g2G �n.g/ D 1 and

since K is convex, we can define the sequence

xn WD
X
g2G

�n.g/˛g.x0/ :

Check that for all h 2 G and n 2 N we have

˛h.xn/ D
X
g2G

.�n � h
�1/.g/˛g.x0/ :
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Denote by P the family of seminorms on X that define its topology. Check that for all p 2 P and
all h 2 G, n 2 N, we have that

p.xn � ˛h.xn// � .sup
k2K

p.k//k�n � �n � hk1 :

Since K is compact we can take a limit point x 2 K of the sequence .xn/n2N . Check that p.x �
˛h.x// D 0 for all p 2 P . Deduce that x is a fixed point for .˛g/g2G .

11.7 A large class of amenable groups

The following theorem shows that amenability is preserved under several constructions of groups.
In combination with the fact that all finite groups and all abelian groups are amenable, it follows
that the class of amenable groups is really large.

Theorem 11.11. The following properties hold.

1. If the countable group G is amenable, then all its subgroups are amenable.

2. Let G be a countable group and N C G a normal subgroup. Then G is amenable if and
only if both N and G=N are amenable.

3. Let G be a countable group and .Gn/ an increasing sequence of subgroups of G. If G DS
nGn and if all the Gn are amenable, then also G is amenable.

Proof. 1. Let K � G be a subgroup. Take a sequence of positive definite functions 'n W G ! C
like in Proposition 11.9. Then the sequence of restrictions n WD .'n/jK shows thatK is amenable.

2. First assume that G is amenable with invariant mean m. By 1 above, the subgroup N � G is
amenable. Denote by � W G ! G=N the quotient map and check that n.A/ D m.��1.A// defines
an invariant mean on G=N .

To prove the converse we use Theorem 11.10. So assume that N and G=N are amenable and
let .˛g/g2G be an action of G by affine homeomorphisms of a nonempty compact convex subset
K � X of a seminormed space X . By Theorem 11.10 and because N is amenable, the restriction
of this action to an action of N admits a fixed point. This means that the set

K 0 WD fx 2 K j ˛h.x/ D x for all h 2 N g

is nonempty. Check that K 0 is convex and compact. Use the fact that N is normal in G to prove
that ˛g.K 0/ D K 0 for every g 2 G. Also check that the formula

ˇgN .x/ WD ˛g.x/

provides a well defined action .ˇgN /gN2G=N of G=N on K 0 by affine homeomorphisms. By
Theorem 11.10 and because G=N is amenable, this action admits a fixed point x 2 K 0. By
construction x is a fixed point for the original action .˛g/g2G . So every action of G by affine
homeomorphisms of a nonempty compact convex subsetK � X of a seminormed spaceX , admits
a fixed point. Again by Theorem 11.10, it follows that G is amenable.
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3. Let F � G be a finite subset and " > 0. We have to find a function � 2 S.G/ such that
k� � g � �k1 < " for all g 2 F . Since F is finite, we find n such that F � Gn. Because Gn is
amenable, we can take a function �0 2 S.Gn/ such that k�0 �g� �0k1 < " for all g 2 F . It suffices
to define the function � 2 S.G/ as

�.g/ D

(
�0.g/ if g 2 Gn ;
0 if g 62 Gn :

Example 11.12. Theorem 11.11 implies that the following groups are amenable.

1. Define the group S1 as follows.

S1 D f� W N ! N j � is a bijection, 9N 2 N such that �.n/ D n for all n � N g :

The group S1 contains the usual permutation groups Sn D Permf0; 1; : : : ; n � 1g as an
increasing sequence of finite subgroups with S1 D

S
n Sn.

2. If G is a group, one defines the derived group ŒG;G� as the subgroup of G generated by all
the commutators fghg�1h�1 j g; h 2 Gg. Check that ŒG;G� is a normal subgroup of G
and that the quotient group G=ŒG;G� is commutative. Then, define by induction G.0/ D G

and G.nC1/ D ŒG.n/; G.n/�. The group G is said to be solvable if there exists an n such that
G.n/ D feg.

Prove that every solvable group is amenable. Prove that for all n 2 N, n � 2, the group

G D fA 2 GLn.Z/ j Aij D 0 if i > j g

is solvable.

3. Fix an invertible matrix A 2 GLn.Z/. Define the group G on the set Zn � Z with product

.x; k/ � .y; l/ D .x C Aky; k C l/ :

Here, we regard A as a group homomorphism from Zn to Zn. Check that G is a group and
that this group is amenable.

11.8 Nonamenable groups

We shall prove that for n � 2, the group

SLn.Z/ D fA 2 GLn.Z/ j detA D 1g

is nonamenable. It is not hard to see that for n � 3, the group SL2.Z/ can be realized as a subgroup
of SLn.Z/. By Theorem 11.11, it is therefore sufficient to prove that SL2.Z/ is nonamenable. And
even this will not be proven in a direct way: we rather show that SL2.Z/ contains the free group on
two generators F2 as a subgroup and that F2 is nonamenable. Of course, we first have to explain
what is F2.
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Definition 11.13. Let G be a group and a; b 2 G n feg. We say that a and b are free if the
following condition holds: every product where the factors are alternatingly a nonzero power of a
and a nonzero power of b, is different from e. So, whenever k � 1 and ni ; mi 2 Z n f0g, we have

an1bm1 � � � ankbmk ¤ e ;

an1bm1 � � � bmk�1ank ¤ e ;

bm1an1 � � � bmkank ¤ e ;

bm1an1 � � � ank�1bmk ¤ e :

(11.4)

All the products inG where the factors are alternatingly a nonzero power of a and a nonzero power
of b, are called alternating products of powers of a and powers of b.

Definition 11.14. Let G be a group. We call G the free group on two generators if G is generated
by two elements a; b 2 G n feg that are free in the sense of Definition 11.13. We denote G D F2.

Does the free group exist and is it uniquely determined up to isomorphism? The answer to both
questions is yes. First of all the usual construction of the free group freely generated by a and b
goes as follows. First consider the set of words W in the alphabet fa; a�1; b; b�1g, including the
empty word that we denote by e. Elements of W look like e, ababab�1, aaab�1bbba�1, etc. A
word is called reduced if there are “no obvious simplifications” : the letter a is never followed or
preceded by the letter a�1, the letter b is never followed or preceded by the letter b�1. Also there
is an “obvious” reduction procedure, reducing arbitrary words to reduced words by canceling all
occurrences of aa�1, a�1a, bb�1, b�1b. The set of reduced words can be turned into a group. The
group law consists of concatenating two words and then reducing the concatenated word:

� a�1a�1b � bbb D a�1a�1bbbb,

� a�1a�1b � b�1bb D a�1a�1bb,

� a�1a�1b � b�1aaab�1 D ab�1.

It is painful to prove that this group law is well defined and associative. We therefore proceed in
a different way. We first show that F2 is unique up to isomorphism, if it exists. We then exhibit a
concrete group that is freely generated by two elements.

Proposition 11.15. Let G be a group that is generated by two elements a; b 2 G that are free in
the sense of Definition 11.13. Then the following universal property holds: wheneverH is a group
and x; y 2 H , there exists a unique group homomorphism � W G ! H satisfying �.a/ D x and
�.b/ D y.

Proof. Define
�.an1bm1 � � � ankbmk/ D xn1ym1 � � � xnkymk

and define � analogously on the other alternating products of powers of a and b given in (11.4).
Because a and b are free, two alternating products of powers of a and b can only be equal in the
group G if they are factorwise equal. Therefore, � is a well defined map from G to H . We need
to prove that � is a group homomorphism. By definition �.e/ D e. It also follows almost directly
from the definition of � that �.g�1/ D �.g/�1 for all g 2 G.
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One then checks that the set fg 2 G j �.gh/ D �.g/�.h/ for all h 2 Gg is a subgroup of G. By
the definition of � this subgroup contains a and b. Hence it is the whole of G.

The uniqueness of � follows because a and b generate G.

Corollary 11.16. If it exists, the free group on two generators is uniquely defined up to a unique
isomorphism.

Proof. Assume that G and H are freely generated by a; b 2 G, respectively x; y 2 H . By
Proposition 11.15 we find group homomorphisms � W G ! H and � W H ! G satisfying
�.a/ D x, �.b/ D y, �.x/ D a and �.y/ D b. But then � ı � and � ı � are the identity
homomorphism, because they are the identity on the generators.

It remains to prove the existence of a group with two free generators a and b. In fact, it suffices to
provide an example of a groupG with elements a; b 2 G nfeg being free in the sense of Definition
11.13, because we can then take the subgroup generated by a and b. Given a concrete groupG and
elements a; b 2 G, it is most of the time not so easy to prove that a and b are free (if they are). An
example is provided by Proposition 11.18. Most of the examples in the literature are based on the
following extremely nice lemma.

The lemma uses the notion of a group action: an action of a group G on a set X is a map

G �X ! X W .g; x/ 7! g � x

satisfying e � x D x for all x 2 X and g � .h � x/ D .gh/ � x for all g; h 2 G, x 2 X . Check that
an action of G on X is nothing else than a group homomorphism G ! Perm.X/ from G to the
group of all permutations of X , mapping an element g 2 G to the permutation x 7! g � x.

Lemma 11.17 (Serre’s Lemma, also called ping-pong lemma). LetG be a group acting on a setX .
Suppose that S; T 2 G and that X is the disjoint union of nonempty subsets X1 and X2 satisfying

Sn �X1 � X2 and T n �X2 � X1 for all n 2 Z n f0g :

Then, S and T are free in the sense of Definition 11.13.

Proof. Two elements x and y in a group G are called conjugate if there exists a g 2 G such that
gyg�1 D x. Conjugating an arbitrary alternating product of powers of S and T with a sufficiently
large power of S , it is sufficient to prove that every alternating product of powers of S and T
starting and ending with a power of S , is different from the neutral element e :

Sn0T m1Sn1 � � �T mkSnk ¤ e

whenever k 2 N and ni ; mi 2 Z n f0g. Denote the left-hand side of the above expression by g.
The assumptions of the lemma imply that g �X1 � X2. Since X1; X2 are disjoint and nonempty, it
follows that g ¤ e.

Proposition 11.18. The elements

S D

�
1 2

0 1

�
and T D

�
1 0

2 1

�
of the group SL2.Z/ are free.
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Proof. Set X D R n Q, the set of irrational numbers. Define the action of SL2.Z/ on X by the
formula �

a b

c d

�
� x D

ax C b

cx C d
:

If we set X1 D X \ Œ�1; 1� and X2 D X n X1, you can easily check that S , T , X1 and X2 satisfy
the conditions of Serre’s Lemma. Therefore, S and T are free.

The above proposition ends the proof of the existence of the free group on two generators.

Proposition 11.19. Let G D F2 be the free group on two generators. Then, G is nonamenable.

Proof. Suppose that m is an invariant mean on G. Denote by Ga the set of all alternating powers
of a and b that start with a power of a. Add the neutral element e to Ga. Denote by Gb the set of
all alternating powers of a and b that start with a power of b. It is clear that G is the disjoint union
of Ga and Gb.

Because bGa and b2Ga are disjoint subsets of Gb, it follows that

2m.Ga/ D m.bGa/Cm.b
2Ga/ � m.Gb/ :

On the other hand, aGb � Ga, implying that m.Gb/ D m.aGb/ � m.Ga/. We conclude that
2m.Ga/ � m.Gb/ � m.Ga/. Therefore m.Ga/ D m.Gb/ D 0. But then m.G/ D m.Ga/ C

m.Gb/ D 0, a contradiction.

Corollary 11.20. The group SLn.Z/, n � 2, is nonamenable

Proof. The group SL.n;Z/ admits a copy of SL.2;Z/ and hence a copy of F2 as a subgroup. Since
F2 is nonamenable, Theorem 11.11 implies that also SL.n;Z/ is nonamenable.

11.9 Concluding remarks on amenability of groups

Theorem 11.11 and Proposition 11.19 imply that a group G is nonamenable if G contains a sub-
group isomorphic with F2. In 1929, John von Neumann posed the problem whether the converse
holds: does every nonamenable group have a subgroup isomorphic with F2? Ol’shanskii proved in
1980 that the answer is no.

But this does not mean that all mysteries about amenability of groups disappeared. Motivated by
Theorem 11.11, one defines the class EG of groups as the smallest class of groups satisfying the
following properties.

� The class EG contains all finite groups and all commutative groups.

� If G belongs to EG, then all subgroups and all quotients of G belong to EG.

� If G has a normal subgroup N such that both N and G=N belong to EG, then G belongs to
EG.

� If G has an increasing sequence of subgroups Gn that all belong to EG and satisfy G DS
nGn, then G belongs to EG.
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Theorem 11.11 implies that all groups in the class EG are amenable. In 1957, Day asked if EG
equals the class of amenable groups. But in 1984, Grigorchuk proved that also the answer to Day’s
question is no.

Finally consider again the free group F2 on two free generators a and b. Denote by N the smallest
normal subgroup of F2 containing the elements Œab�1; a�1ba� and Œab�1; a�2ba2�, where we use
the notation Œg; h� D ghg�1h�1 to denote the commutator of g and h. Define F D F2=N . We
call F Thompson’s group. It is still an open problem to decide whether Thompson’s group F is
amenable. It is known though that F does not contain a subgroup isomorphic with F2 and it is also
known that F does not belong to EG.

At first sight, the construction of F may seem a little strange. This method of constructing finitely
generated groups is called the method of generators and relations: F ‘is’ the group with generators
a and b subject to the relations

� the element ab�1 commutes with the element a�1ba,

� the element ab�1 commutes with the element a�2ba2.

If you then define x0 D a, x1 D b and xnC1 D x�n0 x1x
n
0 for all n � 1, Thompson’s group F can

also be defined as the group generated by x0; x1; : : : subject to the relations

x�1k xnxk D xnC1 whenever 0 � k < n :

11.10 Exercises

Exercise 1. Let G be a countable set. Whenever ' 2 `1.G/� satisfies k'k D 1, '.1/ D 1 and
'.F / � 0 whenever F.g/ � 0 for all g 2 G, we can define a mean m on G by the formula
m.A/ WD '.�A/. The aim of this exercise is to perform a converse construction: whenever m is a
mean on G, there is a unique ' 2 `1.G/� such that m.A/ D '.�A/ for all A � G.

1. Use Lemma 11.8 to prove the uniqueness of '.

2. Check the result in the special case where m 2 S.G/.

3. Use Proposition 11.6 to deduce the general case.

Intuitively a mean is a finitely additive probability measure, while ' 2 `1.G/� is a “finitely
additive” integral. So we have shown that there is a one-to-one correspondence between finitely
additive measures and integrals.
Exercise 2. Consider the group G D Z and denote An � G given by An D Œ�n; n�. The subsets
An � G are finite and more and more translation invariant in the following sense.

Definition 11.21. Let G be a countable group. A sequence of nonempty finite subsets An � G is
called a Følner sequence if

lim
n!1

jgAn 4 Anj

jAnj
D 0 for all g 2 G ;

where4 denotes the symmetric difference of two sets.
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The aim of this exercise is to prove the following theorem due to Namioka: a countable group G
is amenable if and only if G admits a Følner sequence.

First assume that An � G is a Følner sequence. Check that �n WD jAnj�1�An
satisfies the second

assumption in Theorem 11.7. So G is amenable.

Conversely assume that G is amenable.

1. Observe that it suffices to prove the following: for every finite subset F � G and every
" > 0, there exists a nonempty subset A � G such that jgA4 Aj=jAj < " for all g 2 F . So
fix a finite subset F � G and fix " > 0.

2. We use Namioka’s trick. For every r 2 Œ0; 1� we denote by Er the function that is equal to 1
on .r; 1� and equal to 0 elsewhere. Prove that for every a; b 2 Œ0; 1� we have

ja � bj D

Z 1

0

jEr.a/ �Er.b/j dr and a D

Z 1

0

Er.a/ dr :

3. Whenever � W G ! Œ0; 1� and r 2 Œ0; 1�, we denote �r WD Er ı � . Note that �r D �Ar

where Ar D fg 2 G j �.g/ 2 .r; 1�g. Prove that for all finitely supported functions
�; � W G ! Œ0; 1� we have

k� � �k1 D

Z 1

0

k�r � �rk1 dr and k�k1 D

Z 1

0

k�rk1 dr :

4. Since G is amenable Theorem 11.7 provides us with a finitely supported function � W G !
Œ0; 1� such that k�k1 D 1 and X

g2F
k� � g�1 � �k1 < " :

Deduce that Z 1

0

X
g2F
k�r � g�1 � �rk1 dr <

Z 1

0

" k�rk1 dr :

Conclude that we can fix an r 2 Œ0; 1� such thatX
g2F
k�r � g�1 � �rk1 < "k�

r
k1 :

5. Prove that �r ¤ 0 and that A WD fg 2 G j �.g/ 2 .r; 1�g is a nonempty finite subset of G
satisfying X

g2F

jgA4 Aj

jAj
< " :

This ends the proof of the theorem.



Dessert

The Ryll-Nardzewski fixed point theorem

We treat a very powerful and deep fixed point theorem due to Ryll-Nardzewski. In the formulation
and the proof of the theorem, one plays all the time back and forth between two topologies on the
same vector space. In order to avoid confusion, we introduce the following terminology.

Terminology 12.1 (Only relevant in 12.2 and 12.3). We work with a seminormed space X and
refer to the seminorm topology on X as the strong topology on X . At the same time, we consider
the weak topology on X defined by the seminorms p!.x/ D j!.x/j where ! W X ! C runs
through the strongly continuous linear functionals on X .

We distinguish between two typical cases.

� We start with a Banach space X . Then, the strong topology is the norm topology and the
weak topology is the weak topology of Banach spaces introduced in Example 8.2.

� We start with a dual Banach spaceX� equipped with the weak� topology. Because of Propo-
sition 9.8, both the strong and the weak topology are given by the weak� topology.

Let G be a family of maps from a setK to itself. We call G a semigroup if the identity map belongs
to G and if S ı T 2 G whenever S; T 2 G.

Theorem 12.2 (Ryll-Nardzewski fixed point theorem). Let X be a seminormed space and K a
nonempty, convex, weakly compact subset of X . Let G be a semigroup of weakly continuous affine
maps from K to K satisfying the following property.

If x; y 2 K, x ¤ y, then 0 does not belong to the strong closure of fT x � Ty j T 2 Gg.

Then there exists an element x 2 K such that T .x/ D x for all T 2 G.

Proof. Define for every T 2 G the weakly closed subset of K defined by

FixT D fx 2 K j T x D xg :

If we can prove that FixT1
\ � � � \ FixTn

¤ ; for all n 2 N0 and T1; : : : ; Tn 2 G, the weak
compactness of K implies the existence of x 2 K such that T x D x for all T 2 G. Considering
the semigroup generated by T1; : : : ; Tn we therefore may suppose that G is countable.

116
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By Zorn’s Lemma, we can take a minimal weakly closed, convex, nonempty, G-invariant subset of
K. So, we may assume from the beginning that this minimal element is K itself. In other words:
if L � K is weakly closed, convex, nonempty and G-invariant, then L D K.

Applying once more Zorn’s Lemma, we find a minimal weakly closed, nonempty, G-invariant
subset C � K. (Observe that convexity disappeared from our list of conditions.) We will prove
that C is a singleton and hence provides the required fixed point. Suppose that x; y 2 C and
x ¤ y. By Theorem 10.4, we can take an extreme point z 2 extK. Define

F D weak closure of
˚
T
�x C y

2

� ˇ̌
T 2 G

	
:

Since F is a nonempty, weakly closed and G-invariant subset of K, our minimality condition on
K implies that K equals the weak closure of conv.F /. By Theorem 10.5, we have z 2 F .

Take a net .Ti/i2I in G such that Ti
�
xCy

2

�
! z weakly. Since K is weakly compact, we may

assume that Ti.x/ ! u and Ti.y/ ! v weakly. It follows that z D uCv
2

and the extremality of z
implies that u D z D v. It follows that Ti.x/ � Ti.y/ ! 0 weakly and hence, 0 belongs to the
weak closure of fT x � Ty j T 2 Gg. This yields a contradiction with Lemma 12.3.

Lemma 12.3. Let X be a seminormed space and C a nonempty, weakly compact subset of X .
Let G be a countable semigroup of weakly continuous maps from C to C satisfying the following
minimality condition.

For all x 2 C , the set fT x j T 2 Gg is weakly dense in C .

If x; y 2 C are such that 0 does not belong to the strong closure of fT x � Ty j T 2 Gg, then 0
does not belong either to the weak closure of fT x � Ty j T 2 Gg.

Proof. Let a 2 C be arbitrary. Define D as the strong closure of convfTa j T 2 Gg. By construc-
tion and because G is countable, D is strongly separable, meaning that D has a countable subset
that is strongly dense. Since D is convex, D is also weakly closed. The minimality assumption on
C , says that the set fTa j T 2 Gg is weakly dense in C . Hence, C � D.

Take x; y 2 C and assume that 0 does not belong to the strong closure of fT x � Ty j T 2 Gg.
Take a strong neighborhood V of 0 in X such that V \ fT x � Ty j T 2 Gg D ;. Take a strong
neighborhood W of 0 in X such that W is strongly closed and convex, and satisfies W �W � V .
Since W is convex, W is also weakly closed.

In the first paragraph of the proof, we included C in a strongly separable set D. Therefore, we can
take a sequence .xk/k2N in X such that C �

S1
kD0.xk CW /. But then

C D
[
k2N

�
C \ .xk CW /

�
is a covering of the weakly compact set C by a sequence of weakly closed subsets. A variant of
Baire’s theorem (Exercise 3 in Lecture 6) implies the existence of k 2 N such that C \ .xk CW /
has a nonempty weak interior with respect to the weak subspace topology on C . So, we can take a
weakly open subset U � X such that

; ¤ U \ C � C \ .xk CW / :
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But then, C n
�S

T2G T
�1.U/

�
is a weakly closed, G-invariant subset of C that is different from C .

So, it must be the empty set, yielding C D
S
T2G T

�1.U/.
Assume now that 0 belongs to the weak closure of fT x�Ty j T 2 Gg. We derive a contradiction.
By weak compactness of C , we can take a net .Ti/i2I such that Tix ! z and Tiy ! z for some
z 2 C . Take S 2 G such that z 2 S�1.U/. Take i sufficiently large such that Tix and Tiy belong
both to S�1.U/. It follows that STix and STiy belong both to U \ C � xk CW . Hence,

STix � STiy 2 W �W � V :

This is a contradiction with the choice of the neighborhood V in the beginning of the proof.
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