
Functional-Logic Programming
- Lecture Notes -

Harold Boley
NRC-IIT Fredericton
University of New Brunswick

CS 6715 FLP
11 April 2010

http://www.cs.unb.ca/~boley

11-Apr-10CS 6715 FLP1

Principles of
Functional and Logic Programming

11-Apr-10CS 6715 FLP2

About Knowledge Representation (KR),
Software Specification, and Programming

KRAI SpecificationSoftware

When
KRs / Specifications

are executable,
such as those studied here,
they can be considered as

(Declarative) Programs,
and their creation as Programming

≈

11-Apr-10CS 6715 FLP3

Programming: Functional (FP), Logic (LP),
and Functional-Logic (FLP) for Agent Core

Environment

(Procedural, Object-Oriented, Concurrent, …) Programming

Declarative Programming

Functional
Programming

Logic
Programming

F
L
P

Agent

11-Apr-10CS 6715 FLP4

Top-Level Terminology for Functions (FP),
Relations (LP), and Their Combinations (FLP)

FP: Function

LP: Relation (or Predicate)

FLP

Operation

11-Apr-10CS 6715 FLP5

Preview of Foundations of
Functional-Logic Programming (FLP)

FLP is founded on Horn logic with oriented equations in
rule conclusions, defining functions (applied to arguments),

thus specializing, e.g., W3C’s recent RIF-BLD,
founded on Horn logic with symmetric equations

head = foot ⇐ body

head :- body & foot.
is a specialization and Prolog-extending syntax of

http://www.w3.org/2005/rules/wiki/BLD

11-Apr-10CS 6715 FLP6

Declarative Programs: Joint Treatment
of Functional and Logic Programming

Declarative programs as executable specifications:
– Founded on mathematical-logical formalisms
– Easier analysis, verification, transformation, maintenance
– Efficiency through compilation and parallel execution
– Extensible to state-change/systems-level programming

Reasons for a joint functional and logic treatment:
– Overlap of / commonality between many FP and LP notions
– Added value through combined functional-logic programs
– Shared interfaces to / combination with other (procedural,

object-oriented, concurrent, …) programming paradigms
– Economy in learning/teaching declarative programming:

Will be practiced in the following, as implemented in Relfun
FP+LP ideas in other paradigms such as OOP and
Relational DBs (e.g., FP: Generic Java, LP: SQL-99)

http://www.dfki.uni-kl.de/~vega/relfun.html
http://www.cis.unisa.edu.au/~pizza/gj/
http://infolab.stanford.edu/~ullman/fcdb/jw-notes06/recursion.html

11-Apr-10CS 6715 FLP7

Basic Color-Coded Visualization of Operations

Operation

Argument1

Binding1

Argumentm

Bindingn

Value

...

...Intermediaries

Red: Input Arguments

Green: Output (Returned) Value
and (Result) Bindings

Orange: Thruput Intermediaries

FP LP
FLP

11-Apr-10CS 6715 FLP8

(Multi-)Directionality Principle

Pure Functional Programming: Functions are
operations with one direction of computation
from ‘input’ arguments to ‘output’ values (definable
with oriented equations)
Pure Logic Programming: Relations are
operations with multiple directions of computation
between ‘input’/‘output’ arguments (definable via
unification)

11-Apr-10CS 6715 FLP9

Declarative Programs as Data Flow Diagrams:
Example – “Addition Agent” (I-O Modes)

add

FP: LP:

In InIn In

add

Out

Out

Undirected
operation:
Relation
with two-
directional
(variable)
binding flow

Directed
operation:
Function
with one-
directional
(returned)
value flow

11-Apr-10CS 6715 FLP10

Declarative Programs as Data Flow Diagrams:
Example – “Addition Agent” (Input)

add

FP: LP:

3 4 A=3 4

add

11-Apr-10CS 6715 FLP11

Declarative Programs as Data Flow Diagrams:
Example – “Addition Agent” (Output)

add

FP: LP:

3 43 4

add

7

A=7

11-Apr-10CS 6715 FLP12

Declarative Programs as Data Flow Diagrams:
Example – “Addition Agent” (I-O Modes)

add

FP: LP:

In InIn In

add

In/Out

Undirected
operation:
Relation

Directed
operation:
Function

In/Out

11-Apr-10CS 6715 FLP13

add

FP: LP:

73 4

Declarative Programs Used for Testing:
Example – “Addition Agent” (Input)

3 4

add

7

11-Apr-10CS 6715 FLP14

add

FP: LP:

7

Declarative Programs Used for Testing:
Example – “Addition Agent” (Output)

3 4

success

3 4

add

7

11-Apr-10CS 6715 FLP15

Declarative Programs in Symbolic Notation:
Example – “Addition Agent”

FP: LP:
I-O Mode:
add: In × In → Out

I-O Modes:
add ⊆ In × In × In/Out

Input-Output Trace:

add(3, 4)
7

Input-Output Traces:

add(3, 4, A)
A=7

add(3, 4, 7)
success

11-Apr-10CS 6715 FLP16

Declarative Programs as Data Flow Diagrams:
Example – “Square-of-Add Agent” (Combination)

add

FP: LP:

add

square square Data ‘bus’
for logic
variable

In In In/Out

In/Out

In In

In

Out

Out In

11-Apr-10CS 6715 FLP17

Declarative Programs as Data Flow Diagrams:
Example – “Square-of-Add Agent” (Input)

add

FP: LP:

add

square square

3 4 3 4 A=

R=

11-Apr-10CS 6715 FLP18

Declarative Programs as Data Flow Diagrams:
Example – “Square-of-Add Agent” (Thruput)

add

FP: LP:

add

square square

3 4 3 4 A=7

R=7

11-Apr-10CS 6715 FLP19

Declarative Programs as Data Flow Diagrams:
Example – “Square-of-Add Agent” (Output)

add

FP: LP:

add

square square

3 4

49

3 4 A=7

R=497

11-Apr-10CS 6715 FLP20

Encapsulation Principle

Functional-Logic Programming: New operations
(functions and relations) become (user-)defined by
encapsulating a combination of existing (built-in
and/or user-defined) operations, and specifying the
interface of that combination
Functional-Logic Programs can be tested through
queries before plugging them – often abstracted –
into a ‘body’ conjunct (relational queries) or the
‘foot’ (functional queries) of a rule (a new program),
encapsulating variables in the rule scope
Goal: Referential Transparency → Compositionality
(e.g. emphasized in a presentation by Tony Morris)

http://projects.tmorris.net/public/what-does-fp-mean/artifacts/0.3/chunk-html/index.html

11-Apr-10CS 6715 FLP21

Declarative Programs as Data Flow Diagrams:
Example – “Square-of-Add Agent” (Named)

add

FP: LP:

add

square square

squadd squadd

Encapsulated
definitions:

Returned value
of add function and
variable-A binding

of add relation
not visible outside
the ‘black boxes’ A

RM NM N

11-Apr-10CS 6715 FLP22

Declarative Programs in Symbolic Notation:
Example – “Square-of-Add Agent”

FP: LP:
Rewrite Traces of Unnamed Compound Agent:

squadd(M, N, R) :-
add(M, N, A),
square(A , R).

Definitions of Named Compound Agent:
squadd(M, N) :&

square(
add(M, N)).

Rewrite Traces of Named Compound Agent:

add(3, 4, A), square(A, R)square(add(3, 4))
square(7) A=7: square(7, R)
49 A=7, R=49

squadd(3, 4, R)squadd(3, 4)
49 R=49

11-Apr-10CS 6715 FLP23

Syntax of Basic Declarative Definitions

squadd(M, N) :&
square(
add(M, N)).

squadd(M, N, R) :-
add(M, N, A),
square(A, R).

Oriented Equation:
head = foot
written here as
head :& foot.

Implication:
head ⇐ body
written as Prolog-like
head :- body.

FP: LP:

FLP:

head :- body & foot.

head = foot ⇐ body
written as Prolog-extending

squadd(M, N) :-
add(M, N, A) &
square(A).

Conditional Oriented Equation (FP-LP Amalgamation):

11-Apr-10CS 6715 FLP24

Semantics of Purely Declarative Definitions

Horn logic’s
semantic structures

(Pure,1st-order) FP: (Pure) LP:
Horn logic with equality’s
semantic structures
including I= mapping

Can be specialized to Herbrand semantic structures
See RIF-FLD:
http://www.w3.org/2005/rules/wiki/FLD#Appendix:_A_Subframework_for_Herbrand_Semantic_Structures

See RIF-BLD for FLP with undirected (symmetric) equality:
http://www.w3.org/2005/rules/wiki/BLD#Semantic_Structures

Is further specialized here to directed (oriented) equality
See Relfun:
http://www.cs.unb.ca/~boley/papers/semanticsb.pdf

http://www.w3.org/2005/rules/wiki/FLD#Appendix:_A_Subframework_for_Herbrand_Semantic_Structures
http://www.w3.org/2005/rules/wiki/BLD#Semantic_Structures
http://www.cs.unb.ca/~boley/papers/semanticsb.pdf

11-Apr-10CS 6715 FLP25

Generate-Test Separation/Integration
Principle

Functional Programming: Functions separate the
generation of values from testing their equality
Logic Programming: Relations integrate the
generation and testing of their arguments

11-Apr-10CS 6715 FLP26

add

FP: LP:

add

.=

In In InIn In

In

success/fail

Out
In success/fail

Declarative Programs Used for Testing:
Example – “Addition Agent” (I-O Modes)

‘Single-assignment’
primitive used here for
equality testing

11-Apr-10CS 6715 FLP27

add

FP: LP:

add

.=

5

5

Declarative Programs Used for Testing:
Example – “Addition Agent” (Input)

3 4 3 4

11-Apr-10CS 6715 FLP28

add

FP: LP:

add

.=

5

5

Declarative Programs Used for Testing:
Example – “Addition Agent” (Thru/Output)

3 4

7

3 4

fail

11-Apr-10CS 6715 FLP29

add

FP: LP:

add

.=

5

5

3 4

7

3 4

fail

Declarative Programs Used for Testing:
Example – “Addition Agent” (Output)

fail

11-Apr-10CS 6715 FLP30

add

FP: LP:

add

.=

7

7

Declarative Programs Used for Testing:
Example – “Addition Agent” (Input)

3 4 3 4

11-Apr-10CS 6715 FLP31

add

FP: LP:

add

.=

7

7

Declarative Programs Used for Testing:
Example – “Addition Agent” (Thru/Output)

3 4

7

3 4

success

11-Apr-10CS 6715 FLP32

add

FP: LP:

add

.=

7

7

3 4

7

3 4

success

Declarative Programs Used for Testing:
Example – “Addition Agent” (Output)

success

11-Apr-10CS 6715 FLP33

FP: LP:

Declarative Testing Programs in Symbolic
Notation: Example – “Addition Agent”

Rewrite Traces:

7 .= add(3, 4) add(3, 4, 7)

add(3, 4, 5)5 .= add(3, 4)

fail
5 .= 7 fail

success
7 .= 7 success

11-Apr-10CS 6715 FLP34

List-Universality Principle

Functional-Logic Programming: (Nested) Lists are
the universal ‘semi-structured’ complex datatype
of declarative programming – predating XML trees.
Functional-Logic Programming: Lists can be
reduced to binary structures (see a later chapter)

11-Apr-10CS 6715 FLP35

Declarative Programs Operating on Lists:
Example “Length-and-Shape Agents”

A list is a – comma-separated – finite sequence
e1 , e2 , …, en of elements collected into a unit as a
new – square-bracketed – element [e1 , e2 , …, en]
The (natural-number) length of a list [e1 , e2 , …, en]
is the number n of its elements
The (list-pattern) shape for a natural number n
is a list [x1 , x2 , …, xn] of n unspecified elements
We now give declarative “Length-Shape Agents”
as a functional program length and its (non-ground,
here pattern-valued) functional ‘inverse’ shape, and
then as a single logic program shalen
The following chapters study the FP/LP trade-offs

11-Apr-10CS 6715 FLP36

Invertibility Principle

Functional Programming: A function and its
inverses are usually specified via multiple
definitions
Pure Logic Programming: A relation and its
inverses are usually specified via a single
definition

11-Apr-10CS 6715 FLP37

Function length as Data Flow Diagram

.=

length

presuc

Z

N

M

length

[X|Z][]

0length

11-Apr-10CS 6715 FLP38

Function shape as Data Flow Diagram

.=

shape

presuc
M

shape

N0

[]shape

Z

[X|Z]

11-Apr-10CS 6715 FLP39

Relation shalen as Data Flow Diagram

shalen presuc
M

shalen

N0[]

shalen

Z

[X|Z]

N

11-Apr-10CS 6715 FLP40

Relation shalen as Data Flow Diagram

shalen presuc
M

shalen

N0[]

shalen

Z

[X|Z]

N

11-Apr-10CS 6715 FLP41

Functional Programs length and shape
Become One Logic Program shalen

shalen([],0).
shalen([X|Z],N) :- shalen(Z,M), presuc(M,N).

Logic program
(both directions)

length([]) :& 0.
length([X|Z]) :- M .= length(Z), presuc(M,N) & N.

Functional program
(normal)

‘First,Second,...|Rest’ list patternshape(0) :& [].
shape(N) :- presuc(M,N), Z .= shape(M) & [X|Z].

Functional program
(‘inverse’)

If body conjunction succeeds, return foot

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Logic program
(auxiliary)

11-Apr-10CS 6715 FLP42

Functional Programs length and shape
Become One Logic Program shalen

shalen([],0).
shalen([X|Z],N) :- shalen(Z,M), presuc(M,N).

Logic program
(both directions)

length([]) :& 0.
length([X|Z]) :- M .= length(Z), presuc(M,N) & N.

Functional program
(normal)

‘First,Second,...|Rest’ list patternshape(0) :& [].
shape(N) :- presuc(M,N), Z .= shape(M) & [X|Z].

Functional program
(‘inverse’)

If body conjunction succeeds, return foot

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Logic program
(auxiliary)

11-Apr-10CS 6715 FLP43

Computation with Functional Program
length as Term Rewriting: Stack Trace

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Functional program
(normal)

Logic program
(auxiliary)

length([a,b,c]) 3
length([b,c]) 2
length([c]) 1
length([]) 0

Functional trace

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

length([]) :& 0.
length([X|Z]) :- M .= length(Z), presuc(M,N) & N.

11-Apr-10CS 6715 FLP44

Computation with Functional Program
shape as Term Rewriting: Stack Trace

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Functional program
(‘inverse’)

Logic program
(auxiliary)

shape(3) [X',X'',X''']
shape(2) [X'',X''']
shape(1) [X''']
shape(0) []

Functional trace

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

shape(0) :& [].
shape(N) :- presuc(M,N), Z .= shape(M) & [X|Z].

11-Apr-10CS 6715 FLP45

Computations with Logic Program
shalen as Term Rewriting: Stack Traces

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Logic program
(auxiliary)

shalen([X',X'',X'''],3)
shalen([X'',X'''],2)
shalen([X'''],1)
shalen([],0)

Logic traces

shalen([],0).
shalen([X|Z],N) :- shalen(Z,M), presuc(M,N).

Logic program
(both)

shalen([a,b,c],3)
shalen([b,c],2)
shalen([c],1)
shalen([],0)

LI

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

11-Apr-10CS 6715 FLP46

Nesting/Conjunction Principle

Functional-Logic Programming: Properties of
functional nestings correspond to properties of
relational conjunctions (to be exemplified with
generalized inverse properties)

11-Apr-10CS 6715 FLP47

Generalized Inverse Property of the
Functional Programs length and shape (I)

length(shape(n)) = n

shape(length([e1 , e2 , …, en])) = [X' , X'' , …, X'...']

Most general pattern
for lists of length n

length(shape(3)) = 3

shape(length([a,b,c])) = [X', X'', X''']

n

General – Nestings:

Examples – Nestings:

11-Apr-10CS 6715 FLP48

Generalized Inverse Property of the
Functional Programs length and shape (II)

L.=shape(n) & length(L) = n

I .=length([e1 , e2 , …, en]) & shape(I) = [X' , X'' , …, X'...']
Most general pattern
for lists of length n

L.=shape(3) & length(L) = 3

I .=length([a,b,c]) & shape(I) = [X', X'', X''']

n

General – Nestings Flattened to Conjunctions:

Examples – Nestings Flattened to Conjunctions:

11-Apr-10CS 6715 FLP49

Generalized Self-Inverse Property of the
Logic Program shalen

shalen(L,n), shalen(L,I) binds I = n

shalen([e1 , e2 , …, en],I), shalen(L,I) binds
L= [X' , X'' , …, X'...']

Most general pattern
for lists of length n

shalen(L,3), shalen(L,I) binds I = 3

shalen([a,b,c],I), shalen(L,I) binds L = [X', X'', X''']

General – Conjunctions:

Examples – Conjunctions:

n

11-Apr-10CS 6715 FLP50

Unification Principle

Logic Programming: Uses unification to equate,
analyze, and refine complex data structures, in
particular lists; also – with programs used as data –
for invoking operations
Functional Programming: Can generalize
asymmetric pattern-instance matching to
symmetric pattern-pattern unification as
in Logic Programming

11-Apr-10CS 6715 FLP51

Duplication of Non-Ground List Values:
Generating Matrix Patterns with shalen (I)

shalen(L,n) & [L, ...,L] = [[X' , X'' , …, X'...']
. . .

[X' , X'' , …, X'...']]

(m,n)-Matrices of Equal Rows:

shalen(L,3) & [L,L] = [[X', X'', X'''],
[X', X'', X''']]

(2,3)-Matrices of Equal Rows:

n

n m
m

11-Apr-10CS 6715 FLP52

Refinement of Non-Ground List Values:
Generating Matrix Patterns with shalen (II)

shalen(L,n), [C,C|R] .= L & [L, ...,L] = [[X'' , X'' , …, X'...']
. . .

[X'' , X'' , …, X'...']]

(m,n)-Matrices of Equal Rows and 1st = 2nd Column:

shalen(L,3), [C,C|R] .= L & [L,L] = [[X'', X'', X'''],
[X'', X'', X''']]

(2,3)-Matrices of Equal Rows and 1st = 2nd Column:

n

n m
m

‘Single-assignment’
primitive used for

unification

11-Apr-10CS 6715 FLP53

Refinement of Non-Ground List Values:
Generating Matrix Patterns with shalen (III)

shalen(L,n), [D,A,D|S] .= L & [L, ...,L] = [[X''', X'', X''', …, X'...']
. . .

[X''', X'', X''', …, X'...']]

(m,n)-Matrices of Equal Rows and 1st = 3rd Column:

shalen(L,3), [D,A,D|S] .= L & [L,L] = [[X''', X'', X'''],
[X''', X'', X''']]

(2,3)-Matrices of Equal Rows and 1st = 3rd Column:

n

n m
m

‘Single-assignment’
primitive used for

unification

11-Apr-10CS 6715 FLP54

Double Refinement of Non-Ground List Values:
Generating Matrix Patterns with shalen (IV)

shalen(L,n), [C,C|R] .= L,
[D,A,D|S] .= L & [L, ...,L] = [[X''', X''', X''', …, X'...']

. . .
[X''', X''', X''', …, X'...']]

(2,3)-Matrices of Equal Rows and 1st=2nd=3rd Column:

shalen(L,3), [C,C|R] .= L,
[D,A,D|S] .= L & [L,L] = [[X''', X''', X'''],

[X''', X''', X''']]

(m,n)-Matrices of Equal Rows and 1st=2nd=3rd Column:
n

n m
m

‘Single-assignment’
primitive used for

unification

11-Apr-10CS 6715 FLP55

Amalgamation/Integration Principle

Functional-Logic Amalgamation: Function and
relation calls can be combined in the same
definition where appropriate
Functional-Logic Integration: Functions and
relations can inherit each others’ expressiveness;
e.g., in FLP certain functions – even when mapping
from ground (variablefree) lists to ground lists –
can be more easily defined using intermediate
non-ground lists (generally, partial data structures),
as pioneered by relation definitions in LP
– Partial data structures may be dynamically generated with

fresh variables that make operation calls succeed
(paradigm: zip or pairlists function)

11-Apr-10CS 6715 FLP56

Functional-Relational Call Amalgamation:
Quicksort Example

Directed, Conditional Equations:
qsort([]) :& [].
qsort([X|Y]) :-

partition(X,Y,Sm,Gr) &
cat(qsort(Sm),tup(X|qsort(Gr))).

Auxiliary Function (append or catenate):
cat([],L) :& L.
cat([H|R],L) :& tup(H|cat(R,L)).

Subrelation call with
two output variables

Subfunction call with two
embedded calls becomes

value of main function call

‘Duplicates’ eliminated

Rules and Fact:
partition(X,[Y|Z],[Y|Sm],Gr) :-

<(Y,X), partition(X,Z,Sm,Gr).
partition(X,[Y|Z],Sm,[Y|Gr]) :-

<(X,Y), partition(X,Z,Sm,Gr).
partition(X,[X|Z],Sm,Gr) :-

partition(X,Z,Sm,Gr).
partition(X,[],[],[]).

11-Apr-10CS 6715 FLP57

Higher-Order Operations Defined:
Quicksort Parameterizedby ComparisonRelation

qsort[Cr]([X|Y]) :-
partition[Cr](X,Y,Sm,Gr) &
cat(qsort[Cr](Sm),tup(X|qsort[Cr](Gr))).

partition[Cr](X,[Y|Z],[Y|Sm],Gr) :-
Cr(Y,X), partition[Cr](X,Z,Sm,Gr).

. . .

before([X1,Y1],[X2,Y2]) :- string<(X1,X2).

Functional and relational arguments plus values. User-defined
comparison relations Cr. Restriction to named functions and
relations (no λ-expressions), as they are dominant in practice
and more easily integrated (avoids λ/logic-variable distinction
and higher-order unification): apply-reducible to 1st order.

Comparison relation
becomes called there

Comparison relation
handed through here

11-Apr-10CS 6715 FLP58

Higher-Order Operations Called:
Quicksort Parameterizedby ComparisonRelation

Cr bound to <:
>>>>>> qsort[<]([3,1,4,2,3])
[1,2,3,4]

Cr bound to before:
>>>>>> qsort[before]([[d,Y1],[a,Y2],[l,Y3],[l,Y4],[a,Y5],[s,Y6]])
[[a,Y2],[d,Y1],[l,Y3],[s,Y6]]
Y4=Y3
Y5=Y2

11-Apr-10CS 6715 FLP59

pairlists([],[]) :& [].
pairlists([X|L],[Y|M]) :&

tup([X,Y]|pairlists(L,M)).

>>>>>> pairlists([d,a,l,l,a,s],R)
[[d,Y1],[a,Y2],[l,Y3],[l,Y4],[a,Y5],[s,Y6]]
R=[Y1,Y2,Y3,Y4,Y5,Y6]

Function calls can – like relation calls – use (free) logic
variables as actual arguments and, additionally, return them
as values. Likewise, non-ground terms, which contain logic
variables, are permitted. Processing is based on unification:
Call with R creates inner Y1,Y2, ..., used as 2nd pair elements

Non-ground pair list term
(‘partial data structure’)

containing six logic variables

Flat list of these logic variables

Logic Variables and Non-Ground Terms:
pairlists Example

11-Apr-10CS 6715 FLP60

numbered([],N).
numbered([[X,N]|R],N) :- numbered(R,+(N,1)).

>>>>>> numbered([[a,Y2],[d,Y1],[l,Y3],[s,Y6]],1)
true
Y2=1, Y1=2, Y3=3, Y6=4

Call-by-value nestings allow (built-in and user-defined)
functions to be nested into other such functions or relations.
Built-in function + nested here into user-defined relation
numbered

Instantiate logic variables in 2nd pair elements
with successive integers initialized by main call

Function Calls Nested in Operation Calls:
numbered Example

11-Apr-10CS 6715 FLP61

Integrated Functional-Logic Programming
Using Intermediate Non-Ground Terms:
serialise Example

Task (D.H.D. Warren, L.M. Pereira, F. Pereira 1977):
Transform a list of symbols into the list of their
lexicographic serial rank numbers
Example: [d,a,l,l,a,s] [2,1,3,3,1,4]

Specific Solution for Example:
>>>>>> numbered(qsort[before](pairlists([d,a,l,l,a,s],R)),1)

& R
[2,1,3,3,1,4], R=[2,1,3,3,1,4]

General Solution by Abstraction [d,a,l,l,a,s] = L:
serialise(L) :-
numbered(qsort[before](pairlists(L,R)),1)
& R.

http://portal.acm.org/citation.cfm?id=806939

11-Apr-10CS 6715 FLP62

Derivation of the serialise Solution

>>>>>> pairlists([d,a,l,l,a,s],R)
[[d,Y1],[a,Y2],[l,Y3],[l,Y4],[a,Y5],[s,Y6]]
R=[Y1,Y2,Y3,Y4,Y5,Y6]

Intermediate non-ground
pair list (unsorted)

Non-ground result list ‘waiting’ for bindings

Intermediate non-ground
pair list (sorted, w/o ‘duplicates’)

>>>>>> qsort[before]([[d,Y1],[a,Y2],[l,Y3],[l,Y4],[a,Y5],[s,Y6]])
[[a,Y2],[d,Y1],[l,Y3],[s,Y6]]
Y4=Y3
Y5=Y2

Bindings of inner variables produced

>>>>>> numbered([[a,Y2],[d,Y1],[l,Y3],[s,Y6]],1)
true
Y2=1, Y1=2, Y3=3, Y6=4

Bindings used for result list instantiation

serialise([d,a,l,l,a,s]) :-
numbered(qsort[before](pairlists([d,a,l,l,a,s],R)),1)
& R

[2,1,3,3,1,4]

11-Apr-10CS 6715 FLP63

Online Execution of serialise Specification:
serialise([d,a,l,l,a,s,t,e,x,a,s,u,s,a])

t1() :& serialise([d,a,l,l,a,s]).
t2() :& serialise([d,a,l,l,a,s,t,e,x,a,s,u,s,a]).

serialise(L) :-
numbered(qsort[before](pairlists(L,R)),1)
& R.

pairlists([],[]) :& [].
pairlists([X|L],[Y|M]) :&

tup([X,Y]|pairlists(L,M)).

numbered([],N).
numbered([[X,N]|R],N) :- numbered(R,+(N,1)).

qsort[Cr]([]) :& [].
qsort[Cr]([X|Y]) :-

partition[Cr](X,Y,Sm,Gr) &
cat(qsort[Cr](Sm),tup(X|qsort[Cr](Gr))).

partition[Cr](X,[Y|Z],[Y|Sm],Gr) :-
Cr(Y,X), partition[Cr](X,Z,Sm,Gr).

partition[Cr](X,[Y|Z],Sm,[Y|Gr]) :-
Cr(X,Y), partition[Cr](X,Z,Sm,Gr).

partition[Cr](X,[X|Z],Sm,Gr) :-
partition[Cr](X,Z,Sm,Gr).

partition[Cr](X,[],[],[]).

before([X1,Y1],[X2,Y2]) :- string<(X1,X2).

cat([],L) :& L.
cat([H|R],L) :& tup(H|cat(R,L)).

R E L F U N Interface Page
(http://www.dfki.uni-kl.de/~vega/relfun-cgi/cgi-bin/rfi.cgi)

Database: PROLOG Syntax Query (batch):
t1()

t2()

Result:

trace pairlists numbered qsort[Cr]

relfun
rfi-p> t1()
[2,1,3,3,1,4]
rfi-p>
rfi-p> t2()
[2,1,4,4,1,5,6,3,8,1,5,7,5,1]

Copy & paste
ready

Try again
with tracer Query (batch):

http://www.dfki.uni-kl.de/~vega/relfun-cgi/cgi-bin/rfi.cgi

11-Apr-10CS 6715 FLP64

Summary

(Multi-)Directionality of declarative computation
Encapsulation of declarative operation combinations
Generate-Test Separation/Integration in FP/LP
List-Universality as complex declarative datatype
Invertibility via multiple/single definitions in FP/LP
Nesting/Conjunction correspondence of properties
Unification to equate, analyze, refine data in LP (FP)

non-grounde.g. FLP operation: Ground Ground

Amalgamation and Integration of function & relations,

11-Apr-10CS 6715 FLP65

Introduction to
Functional and Logic Programming

Chapter 1

11-Apr-10CS 6715 FLP66

Declarative Programs: Running Example
“Bilingual Antonym Agent”

An antonym of a word in some natural language is a
word having the opposite meaning (e.g., hot – cold)
Suppose we want to program an Antonym Agent for
both English and French based on a single catalog
of antonyms (for English words) and on translators
(between French and English), as found in the Web:
As in some Semantic Web approaches, we’ll use a
single ‘canonical’ language for internal operations
The development of this “Bilingual Antonym Agent”
will be used as a running example for discussing
declarative programs
It will permit to introduce FP and LP, to show some
of their trade-offs, and to motivate FLP

11-Apr-10CS 6715 FLP67

Functional Programs:
Basic Notions

A function call applies a function to (actual)
arguments and returns a value – no side-effects
– Each argument may or may not be a reduced value

(completely evaluated)
– The application may start before all arguments are

reduced (e.g., in call-by-need / lazy strategy) or after all
arguments are reduced (in call-by-value / eager strategy)

– In 1st-order (higher-order) functional programming
arguments and returned values cannot (can) be functions

A functional clause associates a function name and
(formal) arguments with [a possible conjunction of
ground, deterministic relation calls and] a term (e.g.,
a constant or variable) or a function-call nesting
A functional program is a set of functional clauses

11-Apr-10CS 6715 FLP68

Functional Definition Example:
“French Antonym Agent”

We define a function fr-antonym, which – applied
to an argument Mot (French for ‘word’) – returns
the value of the function nesting
– en2fr applied to en-antonym applied to fr2en
– applied to Mot

The functions fr2en and en2fr perform translations
to and from the function en-antonym
This “English Antonym Agent” en-antonym acts as
a catalog mapping English words to their antonyms
(in both directions)
Variables start with a capital letter; constants and
function (and relation) names, with a small letter

11-Apr-10CS 6715 FLP69

Functional Programs: ReturnedValuesfrom
Nested Calls and Pointwise Definitions

fr-antonym(Mot) = en2fr(en-antonym(fr2en(Mot)))

en-antonym(black) = white
en-antonym(white) = black
en-antonym(big) = small
en-antonym(small) = big
. . .

fr2en(noir) = black
fr2en(blanc) = white
fr2en(grand) = big
fr2en(petit) = small
. . .

en2fr(black) = noir
en2fr(white) = blanc
en2fr(big) = grand
en2fr(small) = petit
. . .

Pointwise Definitions

Definition by
Function Nesting

Returned
Values

Returned Values

11-Apr-10CS 6715 FLP70

Functional Computation Example:
“French Antonym Agent”

The functional agent fr-antonym – applied to the
argument noir – delegates subtasks as follows:
– fr-antonym’s argument noir is passed to the agent

fr2en for French-to-English translation
– fr2en’s returned value black is passed to the agent

en-antonym for English antonym look-up
– en-antonym’s value white is passed to the agent

en2fr for English-to-French translation
Finally, en2fr’s value blanc is passed out as the
returned value of the agent fr-antonym
In each computation step the function application
to be selected next is underlined; results are put in
italics

11-Apr-10CS 6715 FLP71

Functional Programs:
Call-by-Value Computation of Nestings

fr-antonym(noir) = en2fr(en-antonym(fr2en(noir)))
= en2fr(en-antonym(black))
= en2fr(white)
= blanc

en-antonym(black) = white
en-antonym(white) = black
en-antonym(big) = small
en-antonym(small) = big

fr2en(noir) = black
fr2en(blanc) = white
fr2en(grand) = big
fr2en(petit) = small

en2fr(black) = noir
en2fr(white) = blanc
en2fr(big) = grand
en2fr(small) = petit

Call-by-value
Computation

11-Apr-10CS 6715 FLP72

Functional Computation Example:
Web Services

The function composition en2fr°en-antonym°fr2en
is pre-specified here by the agent fr-antonym;
a corresponding Web service should find and
compose its subfunctions ‘on-the-fly’ in the Web:
A library of functions could use UDDI “meta service”
(Universal Description, Discovery and Integration)
The three subfunction calls in a fr-antonym Web
service could use remote procedure calls of the
XML-based SOAP (Simple Object Access Protocol)
Because of its lack of side-effects, this pure kind of
Web-distributed functional programming provides
a simplified use case for Web Services

http://www.uddi.org/
http://www.w3.org/TR/SOAP/

11-Apr-10CS 6715 FLP73

11-Apr-10CS 6715 FLP74

Functional Definition Example:
“Bidirectional French-English Translator”

We define a function bitranslate, which – applied to
an argument X – returns the value of
– en2fr applied to X if X is an English word
– fr2en applied to X if X is a French word

The auxiliary relations english and french just
‘test-call’ the functions en2fr and fr2en, respectively
Since a given argument (such as pain) can be both
an English and a French word, bitranslate will be
treated as a non-deterministic function, which can
enumerate two values (such as douleur and bread)
Single-assignments in condition parts here use ‘=’;
anonymous variables are written as ‘_’

11-Apr-10CS 6715 FLP75

Functional Programs:
Case Analysis (and Pointwise Definitions)

Definition by
Case Analysis

bitranslate(X) =
fr2en(X) if french(X)

en2fr(X) if english(X)

fr2en(noir) = black
fr2en(blanc) = white
fr2en(grand) = big
fr2en(petit) = small
. . .

en2fr(black) = noir
en2fr(white) = blanc
en2fr(big) = grand
en2fr(small) = petit
. . .

Pointwise Definitions

english(X) if _ = en2fr(X)

french(X) if _ = fr2en(X)
Auxiliary
Definition

11-Apr-10CS 6715 FLP76

Functional Definition Example:
“Generic Antonym Agent”

We define a function antonym, which – applied to
an argument X – generically returns the value of
the function
– en-antonym applied to X if X is an English word
– fr-antonym applied to X if X is a French word

However, in order to exemplify nested calls within a
case analysis, fr-antonym will be unfolded into its
definition’s right-hand side
Since many words (such as bread) do not have an
antonym, all antonym functions are partial, and fail
for these arguments; for certain words (e.g., pain)
the internal non-determinism of antonym thus
disappears before it can spread (e.g., leaving us joy)
An alternative syntax for case analysis introduces a
then part that returns the function’s value

11-Apr-10CS 6715 FLP77

Functional Programs: Case Analysis
and Returned Values from Nested Calls

Definitions by
Case Analysis

antonym(X) =
en2fr(en-antonym(fr2en(X))) if french(X)

en-antonym(X) if english(X)

antonym(X) if french(X) then en2fr(en-antonym(fr2en(X)))

Function Nesting as
Returned Value

if english(X) then en-antonym(X)antonym(X)
Clause Syntax for Case Analysis and Returned Values:

Function Nesting as
Returned Value

11-Apr-10CS 6715 FLP78

Logic Programs:
Basic Notions

A relation call (‘query’) applies a relation to (actual)
arguments and yields fail or success plus bindings
of logic variables – no reassignment side-effects
– Each argument must from the outset be a reduced value

(completely evaluated)
– Roughly speaking, in 1st-order (higher-order) logic

programming arguments and binding values cannot (can)
again be relations; actually, only the Horn-logic subset of
1st-order logic is normally used in LP

A relational clause associates a relation name and
(formal) arguments with a [possibly empty] conjunc-
tion of (non-)ground, (non-)deterministic relation calls
A logic program is a set of relational clauses

11-Apr-10CS 6715 FLP79

Logic Definition Example:
“French Antonym Agent”

We now define fr-antonym as a relation, which is
applied to an input argument Mot and binds an
output argument Franto (French antonym) via the
following conjunction of relation calls:
– A relation fr4en uses Mot, as input, to bind Word,

as output, to the French-to-English translation result
– A relation en-antonym uses this Word, as input, to bind

Enanto, as output, to the antonym-catalog look-up result
– The relation fr4en now uses Enanto, as input, to bind

Franto, as output (also, of fr-antonym), to the English-to
-French translation result

The relational fr4en is ‘economically’ accessed
in two I/O modes, saving two functions; for the
relational en-antonym, its symmetry prevents this

11-Apr-10CS 6715 FLP80

Logic Programs: Variable Bindings from
Conjunctive Calls (and Base Relations)

fr-antonym(Mot,Franto) if fr4en(Mot,Word) and
en-antonym(Word,Enanto) and
fr4en(Franto,Enanto)

en-antonym(black,white)
en-antonym(white,black)
en-antonym(big,small)
en-antonym(small,big)
. . .

fr4en(noir,black)
fr4en(blanc,white)
fr4en(grand,big)
fr4en(petit,small)
. . .

Rule:
Definition by

Conjoined Calls

Facts: Base Relations

Variable
Bindings

11-Apr-10CS 6715 FLP81

Logic Computation Example:
“French Antonym Agent”

The logic agent fr-antonym with input argument
Mot = noir and output argument Franto = Result
(a request variable) delegates subtasks as follows:
– fr-antonym’s binding Mot = noir is passed to the agent

fr4en for French-English translation
– fr4en’s binding Word = black is passed to the agent

en-antonym for English antonym look-up
– en-antonym’s binding Enanto = white is passed again to

fr4en for the inverse task of English-French translation
Finally, fr4en’s binding Franto = Result = blanc is
passed out as the result binding of the agent
fr-antonym
In each computation step the next relation
application(s) is/are underlined; results are italicized

11-Apr-10CS 6715 FLP82

Logic Programs:
Left-to-Right Computation of Conjunctions

fr-antonym(noir,Result) if fr4en(noir,Word) and
en-antonym(Word,Enanto) and
fr4en(Result,Enanto)

if fr4en(noir,black) and
en-antonym(black,Enanto) and
fr4en(Result,Enanto)

if en-antonym(black,white) and
fr4en(Result,white)

if fr4en(blanc,white) if true

en-antonym(black,white)
en-antonym(white,black)
en-antonym(big,small)
en-antonym(small,big)

fr4en(noir,black)
fr4en(blanc,white)
fr4en(grand, big)
fr4en(petit,small)

Left-Right Computation

11-Apr-10CS 6715 FLP83

Logic Definition Example:
“Bidirectional French-English Translator”

We now define bitranslate as a relation, which is
applied to an input argument X and binds an output
argument Y as follows:
– fr4en uses input X as 2nd argument and

output Y as 1st argument if X is an English word
– fr4en uses input X as 1st argument and

output Y as 2nd argument if X is a French word
The auxiliary relations english and french just
‘test-call’ the relation fr4en, in two ways
Since a given argument (such as pain) can be both
an English and a French word, bitranslate is a
non-deterministic relation, which enumerates two
values (such as douleur and bread)

11-Apr-10CS 6715 FLP84

Logic Programs: Case Analysis (with
Conjunctive Calls and Base Relations)

fr4en(noir,black)
fr4en(blanc,white)
fr4en(grand,big)
fr4en(petit,small)
. . .

Rules:
Definition by Case Analysis

with Conjoined Calls

bitranslate(X,Y) if english(X) and fr4en(Y,X)
bitranslate(X,Y) if french(X) and fr4en(X,Y)

Facts: Base Relation

english(X) if fr4en(_,X)
french(X) if fr4en(X,_)

Auxiliary
Definition

11-Apr-10CS 6715 FLP85

Logic Definition Example:
“Generic Antonym Agent”

We now define antonym as a relation, which is
applied to an input argument X and binds an output
argument Y generically to the binding of the relation
– en-antonym of input X, output Y if X is an English word
– fr-antonym of input X, output Y if X is a French word

However, in order to exemplify conjunctive calls
within a case analysis, fr-antonym will be unfolded
into its definition’s right-hand side
Since many words (such as bread) do not have an
antonym, all antonym relations are partial, and fail
for these arguments; for certain words (e.g., pain)
the internal non-determinism of antonym thus
disappears before it can spread (e.g., leaving us joy)

11-Apr-10CS 6715 FLP86

Logic Programs:
Case Analysis and Conjunctive Calls

Definition by
Case Analysis

Conjoined Calls

antonym(X,Y) if english(X) and en-antonym(X,Y)

antonym(X,Y) if french(X) and
fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto)

english(X) if fr4en(_,X)
french(X) if fr4en(X,_)

Auxiliary
Definition

11-Apr-10CS 6715 FLP87

Logic Optimization Example:
“Generic Antonym Agent”

Analyzing this declarative antonym program, we
can see that the french relation call is redundant,
since its ‘test-call’ of fr4en is covered by another
fr4en call:
– The second antonym clause calls french(X),

which can be statically unfolded to fr4en(X,_)
– This can be optimized away, since the conjunction

already contains the call fr4en(X,Word)
In each optimization step the next abstract relation
application(s) is/are underlined; results are italicized

11-Apr-10CS 6715 FLP88

Logic Programs:
Static Optimization in Conjunctive Calls

antonym(X,Y) if french(X) and
fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto)

french(X) if fr4en(X,_)

antonym(X,Y) if fr4en(X,_) and
fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto)

antonym(X,Y) if fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto)

11-Apr-10CS 6715 FLP89

Functional-Logic Programs:
Elementary Notions

• A functional-logic program embodies the following
combination of FP and LP:
1) A relation call can have nested function calls as

arguments
2) The value of a function call can be assigned to a logic

variable via single-assignments
3) A relation definition can use relation calls as in 1) and

function calls as in 2)
4) A function definition can use a conjunction of non-ground,

non-deterministic relation calls in its condition (if) part and
utilize their local bindings in its value-returning (then) part
(as exemplified below)

• The notions of function and relation can be further
combined for tightly integrated FLP

11-Apr-10CS 6715 FLP90

Functional-Logic Definition Example:
“Generic Antonym Agent”

We again define antonym as a function, which
– applied to an argument X – generically returns as
its value the (local) output binding Y of the relation
– en-antonym of input X, output Y if X is an English word
– fr-antonym of input X, output Y if X is a French word

Again, in order to exemplify nested calls within a
case analysis, fr-antonym will be unfolded into its
definition’s right-hand side
Advantages of FLP form for the antonym operation:
– From FP: Captures directedness of antonym operation:

its symmetry prevents two useful I/O modes in LP form
– From LP: Internally exploits I/O invertibility of fr4en:

replaces separate functions fr2en and en2fr of FP form

11-Apr-10CS 6715 FLP91

Functional-Logic Programs: Case Analysis,
Conjunctive Calls, and Returned Values

Definition by
Case Analysis

Conjoined Calls

antonym(X) if english(X) and en-antonym(X,Y) then Y

antonym(X) if french(X) and
fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto) then Y

Returned
Values

Local
Variable
Bindings

Local
Variable
Bindings

11-Apr-10CS 6715 FLP92

Functional-Logic Programs:
Non-Deterministic Operations

For English and French, or other natural languages
with overlapping dictionaries, our earlier function
bitranslate becomes a non-deterministic function,
for some arguments enumerating a set of values:
bitranslate(pain) = {douleur, bread}
Such a function – mapping to a power set – could
also be regarded as a relation, except that its
computation is specified in a directed manner:
bitranslate(pain,R) = {R=douleur, R=bread}
Hence, non-deterministic functions are often seen
as belonging to FLP rather than FP

11-Apr-10CS 6715 FLP93

Functional-Logic Programs:
Non-Ground Calls

1) FP uses only variablefree or ground function calls:
fr2en(noir) = black, fr2en(blanc) = white, …

2) FLP also permits non-ground function calls as in:
fr2en(A) = {black/A=noir, white/A=blanc, …}

3) Moreover, 2) is a non-deterministic function call,
enumerating returned values and the bindings that
the request variable A assumes for them

4) LP relation calls equivalent to 1) are non-ground:
fr4en(noir,R) if R=black, fr4en(blanc,R) if R=white, …

5) The LP relation call equivalent to 2) again is
a non-ground and non-deterministic call:
fr4en(A,R) if {A=noir/R=black, A=blanc/R=white, …}

11-Apr-10CS 6715 FLP94

Summary

Notions of Functional and Logic Programming can
be treated in a joint manner
FP’s nested calls correspond to LP’s conjoint calls;
case analysis works similarly in both
Functional-Logic Programming permits a further
integration of both declarative paradigms
All introduced FP, LP, and FLP constructs run in
Relfun (and are marked up in Functional RuleML)
This introduction has focused 1st-order operations
and deliberately used several further restrictions
The next chapter will overcome the restriction of
only using simple data (FP: Datafun; LP: Datalog)

http://www.relfun.org/
http://www.ruleml.org/fun/

11-Apr-10CS 6715 FLP95

Simple vs. Complex Terms, Ground vs.
Non-Ground Terms, and Term Unification

Chapter 2

11-Apr-10CS 6715 FLP96

Terms as the Explicit Data Values of
FP and LP

Terms are used as – possibly complex – values
passed explicitly as arguments to functions and
relations, and returned as values from functions
Terms can also be stored permanently in relation
and function definitions, and temporarily, in (logic)
variables, which are renamed on each definition use
Variables in FP and LP are single-assignment, i.e.
– once assigned – variables cannot be re-assigned
(their values can be refined via single-assignments
to possible other variables within complex values)
A complex value may have a constructor indicative
of its arity and argument types; but FP+LP variables
are still often untyped (types can be added: RuleML)

http://www.dfki.uni-kl.de/~vega/relfun+/RFM-Guide/node16.html#pet
http://www.ruleml.org/indoo/

11-Apr-10CS 6715 FLP97

Taxonomy of Terms:
Two Trees with Overlapping Distinctions

•Term
•Simple Term

•Constant
•Symbol
•Number

•Variable
•Named

-Upper-cased
-Underscored

•Anonymous
•Complex Term

•Structure (application of constructor to terms)
•List (short form for nested binary cns structure)

•Term
•Ground (variablefree)
•Non-ground (variableful)

•FP permits only ground terms
as arguments and returned values
•LP also permits non-ground terms
as arguments
•FLP even permits non-ground terms
as arguments and as returned values

11-Apr-10CS 6715 FLP98

Simple Terms: Constants and Variables

Examples:
Symbols: u i john mary peter susan
Numbers: 9 42 -1 -89 -3.14 -276.0131

An (individual) constant is a name for a given entity.
It starts with a lower-case letter, a digit, or with “-”

A (logic) variable is a place-holder for some term,
where all occurrences of the same named variable
must stand for the same term.
A variable starts with an upper-case letter or with
an “_” (a single “_” acts as an anonymous variable)

Examples:
Upper-cased: X Y Word Mot Anon
Underscored: _9 _42 _rs2 _mot _

11-Apr-10CS 6715 FLP99

Complex Terms: Structures

Examples: c rs duo addr

A constructor is a name for a fixed structure former
much like an XML start tag (in LP often called a
functor or – different from FP – a function symbol)

A structure is a ‘[…]’-application of a constructor to
a sequence of zero or more ‘,’-separated argument
terms, possibly including other structured terms (then
called a nested structure; otherwise, a flat structure)

Examples: Flat structures: Nested structures:
Ground: c[] rs[1] duo[u,i] addr[john,loc[ny,ny]]
Non-ground: rs[_] duo[X,Y] addr[john,loc[X,X]]

11-Apr-10CS 6715 FLP100

Term Unification:
Algorithmic Principles

The unification algorithm compares two terms,
treated symmetrically, for structural compatibility:
– If both are ground terms, it succeeds if they are equal
– If at least one is a non-ground term, it succeeds if they

can be made equal by binding variables consistently
across both terms

– Otherwise it fails
Unification can start in a pre-existing environment
(or substitution) of variable bindings, to which it
must be consistent
Unification, if successful, can create new variable
bindings for extending the environment
Unification creates the least number of variable
bindings necessary to succeed (the set of these
bindings is called the most general unifier or mgu)

11-Apr-10CS 6715 FLP101

Term Unification:
Variable Dereferencing and Case Analysis

Unification, whenever one of its terms is a variable,
first dereferences that variable in the current binding
environment by taking its ultimate value at the end
of a possibly long chain of variable-variable bindings
(the ultimate value can still be a – free – variable)
Unification then performs a case analysis as shown
in the following slides (in Relfun, unification can be
explicitly performed via “.=”)

Example:
addr[john,loc[ny,ny]]
addr[john,loc[X,X]]
In an empty environment succeeds, creating the binding X=ny
In an environment with X=ny succeeds, creating no new binding
In an environment with X=Y succeeds, creating binding Y=ny
In an environment with X=Y, Y=Z, and Z=sf fails

addr[john,loc[ny,ny]] .= addr[john,loc[X,X]]

11-Apr-10CS 6715 FLP102

Term Unification: Two Constants

If both terms are constants, unification succeeds if
they are equal; otherwise it fails

Examples:

Term 1: u i john peter 9 -276.0131
Term 2: u u mary peter 42 -276.0131

Result: succ fail fail succ fail succ

In many systems, constants can also be "…" strings, where, e.g.,
the terms "peter miller" and "peter miller" give succ, while
the terms "peter miller" and "peter meyer" give fail (also,
"u" and u give fail; "X" and X will give succ with X = "X")

11-Apr-10CS 6715 FLP103

Term Unification: Constant and Structure

If one term is a constant and the other a structure,
unification fails

Examples:

Term 1: u c[] rs[1] duo[X,Y] duo
Term 2: c[] c mary peter duo[X,Y]

Result: fail fail fail fail fail

Here, even if a constant such as c has the same name as the
constructor of a nullary (argumentless) structure such as c[],
we define unification to fail (some systems actually forbid to
use the same name for constants and constructors; but others
would identify constants with nullary structures and succeed)

11-Apr-10CS 6715 FLP104

Term Unification: Variable and Constant

If one term is a variable and the other a constant,
unification succeeds, binding the variable to this
constant value (except for an anonymous variable)

Examples:

Term 1: X i john _ _rs2 -276.0131
Term 2: u Y _9 peter 42 _

Result: succ succ succ succ succ succ
Bindings: X=u Y=i _9=john _rs2=42

11-Apr-10CS 6715 FLP105

Term Unification: Variable and Structure

If one term is a variable and the other a structure
not containing the variable (so-called occurs check),
unification succeeds, binding the variable to this
structure (except for an anonymous variable)

Examples:

Term 1: X c[] rs[1] duo[X,Y] duo[X,Y]
Term 2: c[] _ Y _9 X

Result: succ succ succ succ fail
Bindings: X=c[] Y=rs[1] _9=duo[X,Y]

The occurs check is omitted from many Prolog implementations
for efficiency reasons, and is currently also absent from Relfun.
It is implemented in the theorem-prover-like LP engine jDREW

http://www.jdrew.org/

11-Apr-10CS 6715 FLP106

Term Unification: Variable and Variable

If the terms are two variables, unification succeeds,
binding the first variable to the second variable iff
these are different variables (a trivial occurs check)

Examples:

Term 1: X _rs2 _9 X _ X
Term 2: Y _9 Mot _ _ X

Result: succ succ succ succ succ succ
Bindings: X=Y _rs2=_9 _9=Mot X=_
Leaving a variable unbound after it was unified with itself has
been a useful part of defining unification in practice, hence is
implemented in Relfun.
Anonymous variables are really treated via name generation,
but their rough treatment is indicated by two examples above

11-Apr-10CS 6715 FLP107

Term Unification: Two Structures (I)

If both terms are structures, unification succeeds if
they have the same constructor, the same number
of arguments, and unification is successful for each
pair of corresponding arguments, where bindings
must be consistent across the entire structures;
otherwise it fails

Examples: Flat structures:

Term 1: c[] rs[1] rs[1] rs[1] trio[1,X,Y] trio[1,X,X]
Term 2: c[] rs[2] jk[1] rs[Z] trio[1,u,i] trio[1,u,i]

Result: succ fail fail succ succ fail
Bindings: Z=1 X=u, Y=i

11-Apr-10CS 6715 FLP108

Term Unification: Two Structures (II)

Examples: Nested structures:

Term 1: addr[john,loc[ny,ny]] addr[X,loc[ny,ny]]
Term 2: addr[john,loc[X,X]] addr[john,loc[X,X]]

Result: succ fail
Bindings: X=ny

11-Apr-10CS 6715 FLP109

Complex Terms: Lists as cns Structures

The constructor cns forms binary cns structures
(much like cons cells or ‘dotted pairs’ in Lisp)
The constant nil terminates second-argument
nestings of cns (much like in Lisp)
A list is nil (empty list) or is a ‘[…]’-application of cns
to a sequence of two ‘,’-separated element terms
(non-empty list), the second of which must be a list
or a variable while the first one may be any term
(if it is a list, the entire list is called a nested list)

Examples: Flat lists (cns right-recursive): Nested lists:
Ground: cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
Non-ground: cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,X],Y]

11-Apr-10CS 6715 FLP110

Complex Terms: Lists as cns Trees

Flat lists (cns right-recursive): Nested lists:
cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,X],Y]

cns

u nil

cns

X Y

cns

rs cns

1 u nil

cns

rs cns

_ u nil

cns

nilcns

u nil

cns

Ycns

u X

11-Apr-10CS 6715 FLP111

Complex Terms: N-ary List Notation

The empty list nil is rewritten as [], for n=0
A non-empty list cns[e1 , cns[e2 , …cns[en , t]…]],
for n≥1, is rewritten as [e1' , e2' , …, en'], if t is nil,
and is rewritten as [e1' , e2' , …, en' | t], if t is a variable,
where the primes indicate recursive rewritings

Examples: Flat cns (original) lists: Nested cns lists:
Ground: cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
Non-ground: cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,X],Y]

The n-ary short notation of lists, for n≥0, can be
obtained from lists as cns structures as follows:

Examples: Flat n-ary (rewritten) lists: Nested n-ary lists:
Ground: [u] [rs[1],u] [[u]]
Non-ground: [X|Y] [rs[_],u] [[u|X]|Y]

11-Apr-10CS 6715 FLP112

Complex Terms: N-ary Tree Notation (I)

cns[e1 , cns[e2 , …cns[en , nil]…]]

[e1' , e2' , …, en']

cns

e1 cns

e2 …
cns

en nil
…

…
e1' e2' en'…

11-Apr-10CS 6715 FLP113

Complex Terms: N-ary Tree Notation (II)

Flat n-ary (rewritten) lists: Nested n-ary lists:
[u] [rs[1],u] [[u]]

Flat lists (cns right-recursive): Nested lists:
cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]

cns

u nil

cns

rs cns

1 u nil

cns

nilcns

u nil

urs

1

u
u

11-Apr-10CS 6715 FLP114

List Unification

Examples: Flat cns (original) lists: Nested cns lists:
Term 1: cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
Term 2: cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,Y],Z]

Lists as cns structures do not change the earlier
unification algorithm: The n-ary list notation permits
a variable after a “|” to unify with a rest segment of
another list, but in the cns form such a segment is
just a cns structure nested into the second argument

Examples: Flat n-ary (rewritten) lists: Nested n-ary lists:
Term 1: [u] [rs[1],u] [[u]]
Term 2: [X|Y] [rs[_],u] [[u|Y]|Z]
Result: succ succ succ
Bindings: X=u, Y=nil Y=nil, Z=nil

11-Apr-10CS 6715 FLP115

Implementing Anonymous Variables as
Freshly Generated Named Variables

Example: Named variable in structure (in list):
Term 1: [suc[N], suc[0], suc[1]]
Term 2: [X, X, X]

Anonymous variables cannot be just implemented by
generating no bindings for their unification partners, but must
be treated via name generation. Otherwise the second example
below would erroneously succeed with the binding X=suc[_]:

Example: Anonymous variable in structure (in list):
Term 1: [suc[_], suc[0], suc[1]]
Term 2: [X, X, X]
Result: fail

In Relfun, all occurrences of “_” are thus implemented by
generating fresh versions of the variable name “Anon”

11-Apr-10CS 6715 FLP116

Summary

Terms are the explicit data values of FP and LP
A taxonomy of simple vs. complex terms, and
ground vs. non-ground terms, was introduced
Principles and a full (term-)case analysis of
unification were illustrated via examples
Implemented versions of unification algorithms,
e.g. in functional programming itself, are usually
quite compact; can also be used for call invocation
The n-ary list short notation was introduced as a
rewriting of lists as cns structures
List unification with one segment variable per
(sub)list was discussed as a notational variant

11-Apr-10CS 6715 FLP117

Functional and Logic Definition Clauses

Chapter 3

11-Apr-10CS 6715 FLP118

Clauses as the Smallest
Functional and Logic Definition Units

An operation (name) is a function or relation (name)
A clause associates a head of an operation name
and argument terms with an optional body of a
(non-)ground, (non-)deterministic call conjunction
and an optional foot consisting of a term or a nesting
– The head’s call pattern acts as a first, deterministic filter

on operation calls
– A body conjunction acts as the main, (non-)deterministic

condition on operation calls and can accumulate
consistent local variable bindings

– A foot denotes or computes an explicit returned value
A program is a set of clauses; a procedure is a
subset of clauses with the same operation name

11-Apr-10CS 6715 FLP119

Taxonomy and Syntax of Clauses

•Clause
•Logic Clause

•Fact: head.
•Ground Fact

•Rule: head :- body.
•Functional Clause

•Unconditional Equation: head :& foot.
•Molecule: foot is a term (‘solved’ equation)

•Point (Ground Molecule, pointwise definition)
•Conditional Equation: head :- body & foot.

•Functional-Logic Clause

:- . Syntax as in Prolog

& Syntax from Relfun
(for value returning)Empty body:

true body

Empty body:

true body

11-Apr-10CS 6715 FLP120

Resolution: The Computation Method
of Functional and Logic Programming

In any pre-existing variable binding environment,
the resolution of an operation call, from a body
conjunction or a foot, with a candidate clause
1) uses unification between the call and the head of the

clause in this environment to determine whether, and
with which new bindings, the clause can be invoked by
the call (unification treats call and head as structures)

2) on unification success, inserts the possible body and/or
foot of the clause in place of the call and yields the
extended binding environment

This process continues until either
– Success: the body conjunction is empty (true) and the

foot is a reduced value
– Failure: no (more) clauses can be invoked

11-Apr-10CS 6715 FLP121

Logic Clauses: A Fact in
English, Pseudo-Code, and Prolog/Relfun

spending(Peter Miller,min 5000 euro,previous year)

Pseudo-Code Relation Definition with a Ground Fact:

“Peter Miller's spending has been min 5000 euro in the previous year”

(Controlled) English Definition of a Logic Business Fact:

spending("Peter Miller","min 5000 euro","previous year").

Prolog/Relfun Relation Definition with a Ground Fact:

11-Apr-10CS 6715 FLP122

Logic Clauses: A Ground Call
Resolved via Unification

Form1: spending("Peter Miller","min 5000 euro","previous year")
Form2: spending("Peter Miller","min 5000 euro","previous year").
Internally, call and head are treated like structures:
Term1: spending["Peter Miller","min 5000 euro","previous year"]
Term2: spending["Peter Miller","min 5000 euro","previous year"]

Result: succ (Whether: yes)
Bindings: (How: Directly equal)

Unification Computes Whether (and How) the Call Can Use the Fact:

After finding the above fact, the call (in Prolog ended by a period)
spending("Peter Miller","min 5000 euro","previous year")
returns true

Relfun Relation Ground Call:

11-Apr-10CS 6715 FLP123

Logic Clauses: Non-Ground Calls
Resolved via Unification (I)

Form1: spending("Peter Miller",Amount,"previous year")
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: succ (Whether: yes)
Bindings: Amount="min 5000 euro" (How: Output Amount)

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding the above fact, the call
spending("Peter Miller",Amount,"previous year")
returns true with the binding Amount="min 5000 euro"

Relfun Relation Non-Ground Call:

11-Apr-10CS 6715 FLP124

Logic Clauses: Non-Ground Calls
Resolved via Unification (II)

Form1: spending("Peter Miller","min 5000 euro",Time)
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: succ (Whether: yes)
Bindings: Time="previous year" (How: Output Time)

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding the above fact, the call
spending("Peter Miller","min 5000 euro",Time)
returns true with the binding Time="previous year"

Relfun Relation Non-Ground Call:

11-Apr-10CS 6715 FLP125

Logic Clauses: Non-Ground Calls
Resolved via Unification (III)

Form1: spending("Peter Miller",Amount,Time)
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: succ (Whether: yes)
Bindings: Amount="min 5000 euro" (How: Output Amount)

Time="previous year" (How: Output Time)

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding the above fact, the call
spending("Peter Miller",Amount,Time)
returns true with the bindings Amount="min 5000 euro",

Time="previous year"

Relfun Relation Non-Ground Call:

11-Apr-10CS 6715 FLP126

Logic Clauses: Non-Ground Calls
Resolved via Unification (IV)

Form1: spending("Peter Miller",AT,AT)
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: fail (Whether: no)
Bindings:

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding (only) the above fact, the call
spending("Peter Miller",AT,AT)
yields unknown (Prolog’s closed-world assumption yields false)

Relfun Relation Non-Ground Call:

11-Apr-10CS 6715 FLP127

Logic Clauses: Non-Ground Calls
Resolved via Unification (V)

Form1: spending("Peter Miller",_,_)
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: succ (Whether: yes)
Bindings:

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding the above fact, the call
spending("Peter Miller",_,_)
returns true

Relfun Relation Non-Ground Call:

11-Apr-10CS 6715 FLP128

Functional Clauses: A Point in
English, Pseudo-Code, and Relfun

spending(Peter Miller,previous year) = min 5000 euro

Pseudo-Code Function Definition with an Unconditional Equation:

“Peter Miller's spending in the previous year has been
min 5000 euro”

English Definition of a Functional Business ‘Point’ (Pointwise Definition):

spending("Peter Miller","previous year") :& "min 5000 euro".

Relfun Function Definition with an Unconditional Equation
(left-hand-side head: spending("…","…"), right-hand-side foot: "…"):

11-Apr-10CS 6715 FLP129

Functional Clauses: A Ground Call
Resolved via Unification

Form1: spending("Peter Miller","previous year")
Form2: spending("Peter Miller","previous year").
Result: succ (Whether: yes)
Bindings: (How: Directly equal)

Unification Computes Whether (and How) the Call Can Use the Point:

After finding the above point, the call
spending("Peter Miller","previous year")
returns "min 5000 euro" (Amount is returned, rather than bound)

Relfun Function Ground Call –
Corresponds to Relation Non-Ground Call (I):

Further Resolution Computes the Returned Value:
Value: "min 5000 euro"
Bindings:

11-Apr-10CS 6715 FLP130

Functional-Logic Clauses: A Non-Ground
Call Resolved via Unification

Form1: spending("Peter Miller",Time)
Form2: spending("Peter Miller","previous year").
Result: succ (Whether: yes)
Bindings: Time="previous year" (How: Output Time)

Unification Computes Whether (and How) the Call Can Use the Point:

After again finding the above function point, the FLP call
spending("Peter Miller",Time)
returns "min 5000 euro" with the binding Time="previous year"

Relfun Function Non-Ground Call –
Corresponds to Relation Non-Ground Call (III):

Further Resolution Computes the Returned Value:
Value: "min 5000 euro"
Bindings: Time="previous year"

11-Apr-10CS 6715 FLP131

Logic Clauses: 1st Rule in
English, Pseudo-Code, and Prolog/Relfun

premium(Customer) if
spending(Customer,min 5000 euro,previous year)

Pseudo-Code Relation Definition with a Single-Condition Datalog Rule:

“A customer is premium if
their spending has been min 5000euro in the previous year”

English Definition of a Logic Business Rule:

premium(Customer) :-
spending(Customer,"min 5000 euro","previous year").

Prolog/Relfun Relation Definition with a Single-Condition Datalog Rule:

11-Apr-10CS 6715 FLP132

Logic Clauses: A Ground Call
Resolved via Unification and a Subcall

Form1: premium("Peter Miller")
Form2: premium(Customer) :-
Result: succ (Whether: yes)
Bindings: Customer="Peter Miller" (How: Input Customer)

Unification Computes Whether (and How) the Call Can Use the Rule:

After finding the above rule, the call
premium("Peter Miller")
returns true

Relfun Relation Ground Call:

Further Resolution Invokes Another Ground Call:
With the above Customer binding, the subcall
spending("Peter Miller","min 5000 euro","previous year")
returns true as shown earlier

11-Apr-10CS 6715 FLP133

Functional Clauses: Mimic 1st Logic Rule
in English, Pseudo-Code, and Relfun

premium(Customer) if
min 5000 euro = spending(Customer,previous year)

then true

Pseudo-Code Function Definition with true-Valued Conditional Equation:

“That a customer is premium,
given min 5000 euro equaled their spending in the previous year,

is true”

English Definition of a (Characteristic-)Functional Business Rule:

premium(Customer) :-
"min 5000 euro" .= spending(Customer,"previous year")

& true.

Relfun Function Definition with a true-Valued Conditional Equation:

11-Apr-10CS 6715 FLP134

Functional Clauses: A Ground Call
Resolved via Unification and a “.=” Subcall

Form1: premium("Peter Miller")
Form2: premium(Customer) :-
Result: succ (Whether: yes)
Bindings: Customer="Peter Miller" (How: Input Customer)

Unification Computes Whether (and How) the Call Can Use the Rule:

After finding the above rule, the call
premium("Peter Miller")
returns true

Relfun (Characteristic-)Function Ground Call:

Further Resolution Unifies String with Value of Another Ground Call:
With the above Customer binding, the right-hand-side subcall of
"min 5000 euro" .= spending("Peter Miller","previous year")
returns "min 5000 euro" as shown earlier, unifying with the lhs

11-Apr-10CS 6715 FLP135

Functional Clauses: Extend 1st Logic Rule
in English, Pseudo-Code, and Relfun

premium(Customer) if
min 5000 euro = spending(Customer,previous year)

then bonus

Pseudo-Code Function Definition with bonus-Valued Conditional Equation:

“When a customer is premium,
given min 5000 euro equaled their spending in the previous year,

they get a bonus”

English Definition of a (Constant-)Functional Business Rule:

premium(Customer) :-
"min 5000 euro" .= spending(Customer,"previous year")

& bonus.

Relfun Function Definition with a bonus-Valued Conditional Equation:

11-Apr-10CS 6715 FLP136

Logic Clauses: 2nd Rule in
English, Pseudo-Code, and Prolog/Relfun

discount(Customer,Product,5.0 percent) if
premium(Customer) and regular(Product)

Pseudo-Code Relation Definition with a Two-Condition Datalog Rule:

“The discount for a customer buying a product is 5.0 percent if
the customer is premium and the product is regular”

English Definition of a Logic Business Rule:

discount(Customer,Product,"5.0 percent") :-
premium(Customer) , regular(Product).

Prolog/Relfun Relation Definition with a Two-Condition Datalog Rule:

11-Apr-10CS 6715 FLP137

Logic Clauses: A Non-Ground Call
Resolved via Unification and Subcalls (I)

Form1: discount("Peter Miller","Honda",Rebate)
Form2: discount(Customer,Product,"5.0 percent") :-

Result: succ (Whether: yes)
Bindings: Customer="Peter Miller" (How: Input Customer)

Product ="Honda" (How: Input Product)
Rebate="5.0 percent" (How: Output Rebate)

Unification Computes Whether (and How) the Call Can Use the Rule:

After finding the above rule, and with another fact, the call
discount("Peter Miller","Honda",Rebate)
returns true with the binding Rebate="5.0 percent"

Relfun Relation Non-Ground Call:

11-Apr-10CS 6715 FLP138

Logic Clauses: A Non-Ground Call
Resolved via Unification and Subcalls (II)

Further Resolution Invokes a Conjunction of two Ground Calls:

With the above Customer and Product bindings, the subcalls
premium("Peter Miller") , regular("Honda")
both return true:

premium("Peter Miller") as shown earlier

regular("Honda") with another fact, regular("Honda").

11-Apr-10CS 6715 FLP139

Functional Clauses: 2nd Rule in
English, Pseudo-Code, and Relfun

discount(Customer,Product) if
premium(Customer) and regular(Product)

then "5.0 percent"

Pseudo-Code Function Definition with a Conditional Equation:

“The discount for a customer buying a product,
the customer being premium and the product being regular,

is 5.0 percent”

English Definition of a Functional Business Rule:

discount(Customer,Product) :-
premium(Customer) , regular(Product)

& "5.0 percent".

Relfun Function Definition with a Conditional Equation:

11-Apr-10CS 6715 FLP140

Functional Clauses: A Ground Call
Resolved via Unification and Subcalls (I)

Form1: discount("Peter Miller","Honda")
Form2: discount(Customer,Product) :-

Result: succ (Whether: yes)
Bindings: Customer="Peter Miller" (How: Input Customer)

Product ="Honda" (How: Input Product)

Unification Computes Whether (and How) the Call Can Use the Rule:

After finding the above rule, and with another point, the call
discount("Peter Miller","Honda")
returns "5.0 percent" (Rebate is returned, rather than bound)

Relfun Function Ground Call:

11-Apr-10CS 6715 FLP141

Functional Clauses: A Ground Call
Resolved via Unification and Subcalls (II)

Further Resolution Invokes a Conjunction of two Ground Calls:

With the above Customer and Product bindings, the subcalls
premium("Peter Miller") , regular("Honda")
both return true:

premium("Peter Miller") as shown earlier

regular("Honda") with another point,
regular("Honda") :& true.

Finally Resolution Computes the Returned Value:

Value: "5.0 percent"
Bindings:

11-Apr-10CS 6715 FLP142

Our Complete discount Program:
Logic Prolog/Relfun Version

discount(Customer,Product,"5.0 percent") :-
premium(Customer) , regular(Product).

premium(Customer) :-
spending(Customer,"min 5000 euro","previous year").

spending("Peter Miller","min 5000 euro","previous year").

regular("Honda").

discount("Peter Miller","Honda",Rebate) returns true
with binding Rebate="5.0 percent"

Relational
invertibility
also permits

Product queries

11-Apr-10CS 6715 FLP143

Our Complete discount Program:
Functional (Equational) Relfun Version

discount(Customer,Product) :-
premium(Customer) , regular(Product)

& "5.0 percent".

premium(Customer) :-
"min 5000 euro" .= spending(Customer,"previous year")

& true.

spending("Peter Miller","previous year") :& "min 5000 euro".

regular("Honda") :& true.

discount("Peter Miller","Honda") returns "5.0 percent"

Functional
directedness

prevents inverse
Product queries

11-Apr-10CS 6715 FLP144

Our Complete discount Program:
Functional-Logic Relfun Version

discount(Customer,Product) :-
premium(Customer) , regular(Product)

& "5.0 percent".

premium(Customer) :-
"min 5000 euro" .= spending(Customer,"previous year").

spending("Peter Miller","previous year") :& "min 5000 euro".

regular("Honda").

discount("Peter Miller","Honda") returns "5.0 percent"

FLP combines
directedness

with invertibility
to also permit

Product queries

11-Apr-10CS 6715 FLP145

Summary

Clauses are the smallest FP and LP definition units.
They consist of a head (in FP+LP), an optional body
(in FP+LP), and a possible foot (in FP)
The taxonomy and syntax of logic, functional, and
functional-logic clauses was introduced
Based on unification, resolution of an operation call
with a candidate clause was introduced as the main
FP and LP computation method
Versions of the RuleML discount program were
developed in different styles, with logic clauses,
functional clauses, and functional-logic clauses
Relfun users choose their individual clause styles
The next chapter will proceed from the simple
Datafun/Datalog clauses here to Horn clauses

http://www.ruleml.org/0.91/exa/Datalog/discount.ruleml

11-Apr-10CS 6715 FLP146

Recursion in the Definition of Clauses

Chapter 4

11-Apr-10CS 6715 FLP147

FP: A Tail-Recursive Natural-Number
Addition Function (I)

For M>0, this is a recursion (here: loop) invariant of add:

add(M,N) = add(M-1,N+1)

Notation:

add(M,N) :& add(1-(M),1+(N)).

11-Apr-10CS 6715 FLP148

FP: A Tail-Recursive Natural-Number
Addition Function (II)

Un/Conditional Equations with Recursive Call as a Foot (Tail-Recursion):

add(0,N) :& N.

add(M,N) :- >(M,0) & add(1-(M), 1+(N)).

Base Case: Termination

Based on Built-ins: > Greater 1- Predecessor 1+ Successor

add(3,4)
add(2,5)
add(1,6)
add(0,7)
7

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

General Case: Recursion

11-Apr-10CS 6715 FLP149

LP: A Tail-Recursive Natural-Number
Addition Relation (I)

For M>0, this is a recursion (here: loop) invariant of add:

M + N = R if M-1 + N+1 = R
add(M,N,R) if add(M-1,N+1,R)

Notation:

add(M,N,R) :- P .= 1-(M), S .= 1+(N),
add(P,S,R).

11-Apr-10CS 6715 FLP150

LP: A Tail-Recursive Natural-Number
Addition Relation (II)

Datalog Rule with Recursive Call as a Last Premise (Tail-Recursion):

add(0,N,N).

add(M,N,R) :- >(M,0), P .= 1-(M), S .= 1+(N), add(P,S,R).

Termination

Based on Built-ins: > Greater 1- Predecessor 1+ Successor

Recursion

Since built-ins must be called
with ground arguments (here:
fixed M and N), inverse calls
like add(3,W,7), add(V,4,7), or
add(V,W,7) are not permitted!

add(3,4,A)
add(2,5,R1)
add(1,6,R2)
add(0,7,7)
A=R1=R2=7

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

Recursion

Termination

11-Apr-10CS 6715 FLP151

FLP: A Tail-Recursive Natural-Number
Addition Relation

Datalog-like Rule with Recursive Call as a Last Premise (Tail-Recursion):

add(0,N,N).

add(M,N,R) :- >(M,0), add(1-(M),1+(N),R).

Termination: As Before

Based on Built-ins: > Greater 1- Predecessor 1+ Successor

Recursion: OverNestings

Again, this add cannot be
inverted for subtraction etc.!

add(3,4,A)
add(2,5,R1)
add(1,6,R2)
add(0,7,7)
A=R1=R2=7

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

Recursion

Termination

11-Apr-10CS 6715 FLP152

FP: A Tail-Recursive Successor-
Arithmetic Addition Function (I)

For M≥0, this is a recursion (here: loop) invariant of add:

add(M+1,N) = add(M,N+1)

Notation:

add(suc[M],N) :& add(M,suc[N]).

11-Apr-10CS 6715 FLP153

FP: A Tail-Recursive Successor-
Arithmetic Addition Function (II)

Unconditional Equations with Recursive Call as a Foot (Tail-Recursion):

add(0,N) :& N.

add(suc[M],N) :& add(M,suc[N]).

Base Case: Termination

No Built-ins Required; 1+ replaced by suc (successor) structures

add(suc[suc[suc[0]]],suc[suc[suc[suc[0]]]])
add(suc[suc[0]],suc[suc[suc[suc[suc[0]]]]])
add(suc[0],suc[suc[suc[suc[suc[suc[0]]]]]])
add(0,suc[suc[suc[suc[suc[suc[suc[0]]]]]]])
suc[suc[suc[suc[suc[suc[suc[0]]]]]]]

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

General Case: Recursion

11-Apr-10CS 6715 FLP154

LP: A Tail-Recursive Successor-
Arithmetic Addition Relation (I)

For M≥0, this is a recursion (here: loop) invariant of add:

M+1 + N = R if M + N+1 = R
add(M+1,N,R) if add(M,N+1,R)

Notation:

add(suc[M],N,R) :- add(M,suc[N],R).

11-Apr-10CS 6715 FLP155

LP: A Tail-Recursive Successor-
Arithmetic Addition Relation (II)
Horn Logic Rule with Recursive Call as a Single Premise (Tail-Recursion):

add(0,N,N).

add(suc[M],N,R) :- add(M,suc[N],R).

add(suc[suc[suc[0]]],suc[suc[suc[suc[0]]]],A)
add(suc[suc[0]],suc[suc[suc[suc[suc[0]]]]],R1)
add(suc[0],suc[suc[suc[suc[suc[suc[0]]]]]],R2)
add(0,suc[suc[suc[suc[suc[suc[suc[0]]]]]]],

suc[suc[suc[suc[suc[suc[suc[0]]]]]]])
A=R1=R2=suc[suc[suc[suc[suc[suc[suc[0]]]]]]]

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General: Recursion

Base: Termination

Base Case: Termination

General Case: Recursion

No Built-ins Required; 1+ replaced by suc (successor) structures

11-Apr-10CS 6715 FLP156

LP: A Tail-Recursive Successor-
Arithmetic Addition Relation (III)

3 + W = 7 or W = 7 - 3

add(suc[suc[suc[0]]],W,suc[suc[suc[suc[suc[suc[suc[0]]]]]]])
W=suc[suc[suc[suc[0]]]]

V + 4 = 7 or V = 7 - 4

add(V,suc[suc[suc[suc[0]]]],suc[suc[suc[suc[suc[suc[suc[0]]]]]]])
V=suc[suc[suc[0]]]

Additions like 3 + 4 = A can be inverted for subtraction:

11-Apr-10CS 6715 FLP157

LP: A Tail-Recursive Successor-
Arithmetic Addition Relation (IV)

V + W = 7

add(V,W,suc[suc[suc[suc[suc[suc[suc[0]]]]]]])

V=0, W=suc[suc[suc[suc[suc[suc[suc[0]]]]]]]
V=suc[0], W=suc[suc[suc[suc[suc[suc[0]]]]]]
. . .
V=suc[suc[suc[0]]], W=suc[suc[suc[suc[0]]]]
. . .
V=suc[suc[suc[suc[suc[suc[suc[0]]]]]]], W=0

Can also be inverted for non-deterministic partitioning:

11-Apr-10CS 6715 FLP158

LP: An Equivalent Successor-Arithmetic
Addition Relation (I)

For M≥0, this was the recursion (here: loop) invariant of add:

M+1 + N = R if M + N+1 = R
add(M+1,N,R) if add(M,N+1,R)

Notation:

add(suc[M],N,suc[R]) :- add(M,N,R).

For M≥0, this is the equivalent (R+1 = R) invariant of new add:

M+1 + N = R+1 if M + N = R
add(M+1,N,R+1) if add(M,N,R)

11-Apr-10CS 6715 FLP159

LP: An Equivalent Successor-Arithmetic
Addition Relation (II)

Horn Logic Rule with Recursive Call as a Single Premise (Tail-Recursion):

add(0,N,N).

add(suc[M],N,suc[R]) :- add(M,N,R).

add(suc[suc[suc[0]]],suc[suc[suc[suc[0]]]],A)
add(suc[suc[0]],suc[suc[suc[suc[0]]]],R1) bind: A=suc[R1]
add(suc[0],suc[suc[suc[suc[0]]]],R2) bind: R1=suc[R2]
add(0,suc[suc[suc[suc[0]]]],R3) bind: R2=suc[R3]
R3=suc[suc[suc[suc[0]]]]
A=suc[suc[suc[suc[suc[suc[suc[0]]]]]]]

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General:
Recursion

Base: Termination

Base Case: Termination

General Case: Recursion

No Built-ins Required; 1+ replaced by suc (successor) structures

11-Apr-10CS 6715 FLP160

FP: A Tail-Recursive Float-Number
Compound Interest Function

Un/Conditional Equations with Recursive Call as a Foot (Tail-Recursion):

compint(0,I,C) :& C. % T: Time, I: Interest, C: Capital

compint(T,I,C) :- >(T,0) & compint(1-(T),I,+(C,*(C,I))).

Built-ins: > Greater 1- Predecessor + (Float) Addition * Multiplication

compint(3,0.1,100)
compint(2,0.1,110.0)
compint(1,0.1,121.0)
compint(0,0.1,133.1)
133.1

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

Termination

Recursion

11-Apr-10CS 6715 FLP161

LP: A Tail-Recursive Float-Number
Compound Interest Relation

Datalog Rule with Recursive Call as a Last Premise (Tail-Recursion):

compint(0,I,C,C). % T: Time, I: Interest, C: Capital, R: Result

compint(T,I,C,R) :- >(T,0), S .= 1-(T), D .= +(C,*(C,I)),
compint(S,I,D,R).

compint(3,0.1,100,A)
compint(2,0.1,110.0,R1)
compint(1,0.1,121.0,R2)
compint(0,0.1,133.1,133.1)
A=R1=R2=133.1

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

Termination

Recursion

Built-ins: > Greater 1- Predecessor + (Float) Addition * Multiplication

11-Apr-10CS 6715 FLP162

FLP: A Tail-Recursive Float-Number
Compound Interest Relation

Datalog-like Rule with Recursive Call as a Last Premise (Tail-Recursion):

compint(0,I,C,C). % T: Time, I: Interest, C: Capital, R: Result

compint(T,I,C,R) :- >(T,0),
compint(1-(T),I,+(C,*(C,I)),R).

compint(3,0.1,100,A)
compint(2,0.1,110.0,R1)
compint(1,0.1,121.0,R2)
compint(0,0.1,133.1,133.1)
A=R1=R2=133.1

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

Termination

Built-ins: > Greater 1- Predecessor + (Float) Addition * Multiplication

Recursion: OverNestings

11-Apr-10CS 6715 FLP163

FLP and ‘while’ Program: A Tail-Recursive
and an Iterative Interest Relation

Declarative (Tail-Recursive FLP) Version Can Exchange Clause Order:

compint(T,I,C,R) :- >(T,0),
compint(1-(T),I,+(C,*(C,I)),R).

compint(0,I,C,C). % T: Time, I: Interest, C: Capital, R: Result Termination

Recursion: OverNestings

define compint(T,I,C,R) as
begin

while >(T,0) do
begin T := 1-(T); C := +(C,*(C,I)) end;

if =(T,0) then R := C
end

Imperative Version (‘while’ program) Uses Fixed Statement Order:

Iteration: OverNestings

Result Assignment after Termination

11-Apr-10CS 6715 FLP164

Instantiating cns Structures and the
N-ary List Notation
Structures with constructor cns were introduced in the ‘Terms’ chapter:
cns[a,nil] cns[a,cns[7,nil]] cns[First,Rest]

[a] [a,7] [First|Rest]
They have been shortened via the N-ary list notation:

Variables as elements of (cns) structures are instantiated:
X .= a Y .= add(3,4) First .= 1, Rest .= nil
& cns[X,nil] & cns[a,cns[Y,nil]] & cns[First,Rest]
cns[a,nil] cns[a,cns[7,nil]] cns[1,nil]
Variables as elements of the N-ary list notation are likewise instantiated:
X .= a Y .= add(3,4) First .= 1, Rest .= nil
& [X] & [a,Y] & [First|Rest]
[a] [a,7] [1]

11-Apr-10CS 6715 FLP165

The cns Function for Constructing Lists
as Structures or in N-ary List Notation

Function applications are forbidden as elements of structures and lists
(variable instantiations as above permit to construct the desired data):

cns[a,cns[add(3,4),nil]] [a,add(3,4)]

cns(First,Rest) :& cns[First,Rest]. cns(First,Rest) :& [First|Rest].

Actual cns arguments are evaluated to elements of cns structures or lists:

However, besides the constructor cns, also a function cns can be defined
in either of the following ways (acting like Lisp’s built-in function cons):

cns[a,cns[7,nil]] [a,7]
cns(a,cns(add(3,4),nil))

“No (active) round parentheses inside [passive] square brackets”

11-Apr-10CS 6715 FLP166

FP: A Recursive List-Concatenation
Function (I)

For first argument ≠ nil, this is a recursion invariant of cat
(‘concatenate’ or just ‘catenate’, often named ‘append’, here
alternatively written as a ⊕ infix):

[F|R] ⊕ L = cns(F, R ⊕ L)
cat([F|R],L) = cns(F,cat(R,L))

Notation:

cat([F|R],L) :& cns(F,cat(R,L)).

11-Apr-10CS 6715 FLP167

FP: A Recursive List-Concatenation
Function (II)

Unconditional Equations with Recursive Call inside cns (Full Recursion):

cat([],L) :& L.

cat([F|R],L) :& cns(F,cat(R,L)).

Base Case: Termination

No Built-ins Required; cns regarded as a user-defined auxiliary

cat([a,b],[c,d,e])
cns(a, cat([b],[c,d,e]))
cns(a, cns(b, cat([],[c,d,e])))
cns(a, cns(b, [c,d,e]))
cns(a, [b,c,d,e])
[a,b,c,d,e]

Full-Recursive Computation Grows and Shrinks an Activation Stack:

General Case: Recursion

Base Case: Termination

General Case: Recursion

11-Apr-10CS 6715 FLP168

LP: A Tail-Recursive List-Concatenation
Relation (I)

For first argument ≠ nil, this is a recursion invariant of cat:

[F|R] ⊕ L = [F|S] if R ⊕ L = S
cat([F|R],L,[F|S]) if cat(R,L,S)

Note analogy to the previous ‘new add’:
add(1+M,N,1+R) if add(M,N,R)
[lists ‘generalize’ natural numbers:
list concatenation ‘generalizes’ addition]

Notation:
cat([F|R],L,[F|S]) :- cat(R,L,S).

11-Apr-10CS 6715 FLP169

LP: A Tail-Recursive List-Concatenation
Relation (II)

Horn Logic Rule with Recursive Call as a Single Premise (Tail-Recursion):

cat([],L,L).

cat([F|R],L,[F|S]) :- cat(R,L,S).

cat([a,b],[c,d,e],A)

cat([b],[c,d,e],S1) bind: A=[a|S1]

cat([],[c,d,e],S2) bind: S1 =[b|S2]
A=[a|S1]=[a|[b|S2]]=[a|[b|[c,d,e]]]=[a,b,c,d,e]

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General: Recursion

Base: Termination

Base Case: Termination

General Case: Recursion

No Built-ins Required

11-Apr-10CS 6715 FLP170

LP: A Tail-Recursive List-Concatenation
Relation (III)

[a,b] ⊕ W = [a,b,c,d,e]

cat([a,b],W,[a,b,c,d,e])
W=[c,d,e]

V ⊕ [c,d,e] = [a,b,c,d,e]

cat(V,[c,d,e],[a,b,c,d,e])
V=[a,b]

Catenations can be inverted for list ‘subtraction’:

11-Apr-10CS 6715 FLP171

LP: A Tail-Recursive List-Concatenation
Relation (IV)

V ⊕ W = [a,b,c,d,e]

cat(V,W,[a,b,c,d,e])

V=[], W=[a,b,c,d,e]
V=[a], W=[b,c,d,e]
V=[a,b], W=[c,d,e]
V=[a,b,c], W=[d,e]
V=[a,b,c,d], W=[e]
V=[a,b,c,d,e], W=[]

Can also be inverted for non-deterministic partitioning:

11-Apr-10CS 6715 FLP172

FP: A Recursive List-Reversal
Function (I)

For first argument ≠ nil, this is a recursion invariant of rev:

rev([F|R]) = rev(R) ⊕ [F]
rev([F|R]) = cat(rev(R),[F])

Notation:

rev([F|R]) :& cat(rev(R),[F]).

11-Apr-10CS 6715 FLP173

FP: A Recursive List-Reversal
Function (II)

Unconditional Equations with Recursive Call inside cat (Full Recursion):

rev([]) :& [].

rev([F|R]) :& cat(rev(R),[F]).

Base Case: Termination

rev([a,b,c])

No Built-ins Required; cat is our user-defined auxiliary

cat(rev([b,c]), [a])
cat(cat(rev([c]), [b]), [a])
cat(cat(cat(rev([]), [c]), [b]), [a])
cat(cat(cat([], [c]), [b]), [a])
. . .
[c,b,a]

Full-Recursive Computation Grows and Shrinks an Activation Stack:

General Case: Recursion

Base Case: Termination

General Case: Recursion

11-Apr-10CS 6715 FLP174

LP: A Recursive List-Reversal
Relation (I)

For first argument ≠ nil, this is a recursion invariant of rev:

rev([F|R]) = L if rev(R,K) and K ⊕ [F] = L
rev([F|R],L) if rev(R,K) and cat(K,[F],L)

Notation:

rev([F|R],L) :- rev(R,K) , cat(K,[F],L).

11-Apr-10CS 6715 FLP175

LP: A Recursive List-Reversal
Relation (II)

Horn Logic Rule with Recursive Call as a First Premise (Full Recursion):

rev([],[]).

rev([F|R],L) :- rev(R,K) , cat(K,[F],L).

rev([a,b,c],A)
rev([b,c],K1), cat(K1,[a],L1) bind: A=L1
rev([c],K2), cat(K2,[b],L2), cat(K1,[a],L1) bind: K1=L2
rev([],K3), cat(K3,[c],L3), cat(K2,[b],K1), cat(K1,[a],L1) bind: K2=L3
cat([],[c],K2), cat(K2,[b],K1), cat(K1,[a],L1)
. . .
A=L1=[c,b,a]

Full-Recursive Computation Grows and Shrinks an Activation Stack:

General

Base

Base Case: Termination

General Case: Recursion

No Built-ins Required; cat is our user-defined auxiliary

11-Apr-10CS 6715 FLP176

Summary

Recursion is the basic ‘control structure’ of both
FP and LP
A taxonomy of recursion includes tail recursion
(corresponding to iteration) and full recursion
Recursion invariants were given for all operations
before their actual definitions
Recursive definitions of arithmetic and list
operations were compared for FP and LP
Relations not calling built-ins permit inverted calls
Certain programs are tail-recursive in LP but fully
recursive in FP

11-Apr-10CS 6715 FLP177

Higher-Order Operations
(Higher-Order Functions and Relations)

Chapter 5

11-Apr-10CS 6715 FLP178

Higher-Order Operations:
Operations as 1st-Class Citizens

In higher-order operations,
operations (functions and relations)
are 1st-class citizens
in that they can themselves be
• Passed to calls as (actual) parameters/arguments
• Delivered from operation calls:

• Returned as values of function calls
• Assigned to request variables of relation calls

• Used as elements of structures (and of lists)
• Assigned to local variables (single-assignment)

11-Apr-10CS 6715 FLP179

Taxonomy of 1st-Order and
Higher-Order Operations

•Operation
•Function (FP)

•1st-Order
(no functions as
arguments or values)

•Higher-Order
(functions as
arguments or values)

•Relation (LP)
•1st-Order
(no relations as
arguments or bindings;
no relation variables)

•Higher-Order
(relations as
arguments or bindings;
relation variables)

•2nd-Order
(used relations are
themselves 1st-order)

•Function (FLP)
•1st-Order
(no operations as
arguments, values or bindings;
no operation variables)

•Higher-Order
(operations as arguments, values or bindings;
operation variables)

11-Apr-10CS 6715 FLP180

FP: Function Composition as a Higher-
Order Function (I)

In the introductory chapter, we discussed the
function composition en2fr°en-antonym°fr2en
constituting the function fr-antonym
The ‘°’ can be regarded as the infix version of an
(associative) binary compose higher-order function,
which – when passed two functional arguments –
delivers (returns) their composition as a new function:
en-antonym°fr2en becomes
compose(en-antonym,fr2en)

en2fr°en-antonym°fr2en becomes
compose(en2fr,compose(en-antonym,fr2en)) or
compose(compose(en2fr,en-antonym),fr2en)

11-Apr-10CS 6715 FLP181

FP: Function Composition as a Higher-
Order Function (II)

However, we want to permit simple definitions of
higher-order functions (without so-called λ-variables
for defining new anonymous functions)
Hence ‘°’ is regarded here as the infix version of
an (associative) binary higher-order constructor
compose while the entire structure compose[f,g] is
regarded as a complex higher-order function name:
en-antonym°fr2en becomes
compose[en-antonym,fr2en]

en2fr°en-antonym°fr2en becomes
compose[en2fr,compose[en-antonym,fr2en]] or
compose[compose[en2fr,en-antonym],fr2en]

11-Apr-10CS 6715 FLP182

FP: Application of Compose as a
Higher-Order Function

Such a higher-order function structure can be
applied to arguments as follows:

en-antonym°fr2en(noir) becomes
compose[en-antonym,fr2en](noir)

returning white

en2fr°en-antonym°fr2en(noir) becomes
compose[en2fr,compose[en-antonym,fr2en]](noir) or
compose[compose[en2fr,en-antonym],fr2en](noir)

returning blanc

parameters argument

11-Apr-10CS 6715 FLP183

FP: Definition of Compose as a Higher-
Order Function

The higher-order operation compose can be defined
as follows, where F and G are function variables
(their values should be function names or terms),
while X is an object variable (its values should be
normal terms):

Math: compose(F,G)(X) = F(G(X))

Relfun: compose[F,G](X) :& F(G(X)).

11-Apr-10CS 6715 FLP184

FP: Computation with Simple Compose
as a Higher-Order Function

compose[en-antonym,fr2en](noir)
en-antonym(fr2en(noir))
en-antonym(black)
white

11-Apr-10CS 6715 FLP185

FP: Computation with Nested Compose
as a Higher-Order Function

compose[en2fr,compose[en-antonym,fr2en]](noir)
en2fr(compose[en-antonym,fr2en](noir))
en2fr(en-antonym(fr2en(noir))
en2fr(en-antonym(black))
en2fr(white)
blanc

compose[compose[en2fr,en-antonym],fr2en](noir)
compose[en2fr,en-antonym](fr2en (noir))
compose[en2fr,en-antonym](black)
en2fr(en-antonym(black))
en2fr(white)
blanc

11-Apr-10CS 6715 FLP186

LP: Relational Product as a Higher-
Order Relation (I)

The relation fr-antonym of the introductory chapter
can be viewed as constituting a relational product
fr4en•en-antonym•en4fr, where en4fr inverts fr4en:
en4fr(En,Fr) :- fr4en(Fr,En).
The ‘•’ can be regarded as the infix version of an
(associative) binary product higher-order operation:

fr4en•en-antonym becomes
product(fr4en,en-antonym)

fr4en•en-antonym•en4fr becomes
product(fr4en, product(en-antonym,en4fr)) or
product(product(fr4en,en-antonym),en4fr)

11-Apr-10CS 6715 FLP187

LP: Relational Product as a Higher-
Order Relation (II)

However, we want to use simple definitions of pure
higher-order relations (again avoiding λ-variables)
Hence ‘•’ is regarded here as the infix version of
an (associative) binary higher-order constructor
product while the entire structure product[r,s]
is regarded as a higher-order relation:

fr4en•en-antonym becomes
product[fr4en,en-antonym]

fr4en•en-antonym•en4fr becomes
product[fr4en,product[en-antonym,en4fr]] or
product[product[fr4en,en-antonym],en4fr]

11-Apr-10CS 6715 FLP188

LP: Application of Product as a Higher-
Order Relation

Such a higher-order relation structure can be applied
to arguments as follows:

fr4en•en-antonym(noir,Res) becomes
product[fr4en,en-antonym](noir,Res)

binding Res=white

fr4en•en-antonym•en4fr(noir,Res) becomes
product[fr4en,product[en-antonym,en4fr]](noir,Res) or
product[product[fr4en,en-antonym],en4fr](noir,Res)

binding Res=blanc

11-Apr-10CS 6715 FLP189

LP: Definition of Product as a Higher-
Order Relation

The higher-order operation product can be defined
as follows, where R and S are relation variables
(their values should be relation names or terms),
while X, Y, and Z are object variables (their values
should be normal terms):

Math: product(R,S)(X,Z) if R(X,Y) and S(Y,Z)

Relfun: product[R,S](X,Z) :- R(X,Y), S(Y,Z).

11-Apr-10CS 6715 FLP190

LP: Computation with Simple Product
as a Higher-Order Relation

product[fr4en,en-antonym](noir,Res)
fr4en(noir,Y1), en-antonym(Y1,Res)
en-antonym(black,Res)
Res = white

11-Apr-10CS 6715 FLP191

LP: Computation with Nested Product
as a Higher-Order Relation

product[fr4en,product[en-antonym,en4fr]](noir,Res)
fr4en(noir,Y1), product[en-antonym,en4fr](Y1,Res)
product[en-antonym,en4fr](black,Res)
en-antonym(black,Y2), en4fr(Y2,Res)
en4fr(white,Res)
Res = blanc

product[product[fr4en,en-antonym],en4fr](noir,Res)
product[fr4en,en-antonym](noir,Y1), en4fr(Y1,Res)
fr4en(noir,Y2), en-antonym(Y2,Y1), en4fr(Y1,Res)
en-antonym(black,Y1), en4fr(Y1,Res)
en4fr(white,Res)
Res = blanc

11-Apr-10CS 6715 FLP192

FP: A Function-Mapping Higher-Order
Function

1. Consider a higher-order function for mapping a
function over – applying it to – all elements of a list;
e.g., a2a[sqrt]([1,4,9]) maps built-in function sqrt
over the elements 1, 4, and 9, returning [1,2,3]

2. Versions of this have been used in many functional
languages; in Common Lisp it is a binary function;
e.g., (mapcar #'sqrt '(1 4 9)) returns (1 2 3)

3. The unary version 1. will, however, permit nestings:
a2a[a2a[sqrt]]([[1,4,9],[16,25]]) maps a2a[sqrt]
over [1,4,9] and [16,25], returning [[1,2,3],[4,5]]

4. Can also be combined with higher-order compose:
a2a[compose[sqrt,1+]]([0,3,8]) returns [1,2,3]

11-Apr-10CS 6715 FLP193

FP: Definition of, and Computation with,
the a2a Higher-Order Function

a2a[F]([]) :& [].
a2a[F]([First|Rest]) :& cns(F(First), a2a[F](Rest)).

a2a[sqrt]([1,4,9])
cns(sqrt(1), a2a[sqrt]([4,9]))
cns(1 , cns(sqrt(4), a2a[sqrt]([9])))
cns(1 , cns(2, cns(sqrt(9), a2a[sqrt]([]))))
cns(1 , cns(2, cns(3 , [])))
cns(1 , cns(2, [3]))
cns(1 , [2,3])
[1,2,3]

11-Apr-10CS 6715 FLP194

LP: A Relation-Mapping Higher-Order
Relation

Similarly, consider a higher-order relation for
mapping a relation over all elements of a list
Since there are few built-in relations, assume a
user-defined relation, e.g. dup(N,[N,N]).
Now, e.g. a2a[dup]([1,4,9],Res) maps the relation
dup over 1, 4, and 9, binding Res = [[1,1],[4,4],[9,9]]
The mapped list may be non-ground, as in
a2a[dup]([1,J,9],Res), giving Res = [[1,1],[J,J],[9,9]]
The mapped relation may be non-deterministic,
leading to several bindings for the result list
Versions of such higher-order syntax have been
used in many logic languages, e.g. in ISO Prolog

11-Apr-10CS 6715 FLP195

LP: Relation Variables as 2nd-Order
Syntactic Sugar (I)

Consider an RDF-like binary fact base describing
individuals or resources in the first argument, e.g.:
transmission("Honda","Automatic").
air-conditioning("Honda","Automatic").
color("Honda","Eternal Blue Pearl").

1st-order queries – relation given, object asked:
transmission("Honda",Kind)
binds object variable Kind = "Automatic"
2nd-order queries – objects given, relation asked:
Feature("Honda","Automatic")
binds relation variable Feature = transmission
and then binds Feature = air-conditioning

11-Apr-10CS 6715 FLP196

LP: Relation Variables as 2nd-Order
Syntactic Sugar (II)

LP 2nd-order queries are useful in practice, but
are ‘syntactic sugar’ that can be eliminated in the
semantics and in the implementation – a ternary
dummy relation apply shifts the original relation
into the first argument position, e.g.:
apply(transmission,"Honda","Automatic").
apply(air-conditioning,"Honda","Automatic").
apply(color,"Honda","Eternal Blue Pearl").
This leaves us with only 1st-order queries:
apply(Feature,"Honda","Automatic")
binds object variable Feature = transmission
and then binds Feature = air-conditioning

11-Apr-10CS 6715 FLP197

FLP: Function Variables as 2nd-Order
Syntactic Sugar (I)

Similarly, consider the unary point base describing
individuals or resources in the single argument, e.g.:
transmission("Honda") :& "Automatic".
air-conditioning("Honda") :& "Automatic".
color("Honda") :& "Eternal Blue Pearl".

1st-order queries – function given, object asked:
transmission("Honda")
returns object "Automatic"
2nd-order queries – objects given, function asked:
"Automatic" .= Feature("Honda")
binds function variableFeature = transmission
and then binds Feature = air-conditioning

11-Apr-10CS 6715 FLP198

FLP: Function Variables as 2nd-Order
Syntactic Sugar (II)

FLP 2nd-order queries are also useful in practice, but
again are syntactic sugar that can be eliminated in
the semantics and in the implementation – a binary
dummy function apply shifts the original function
into the first argument position, e.g.:
apply(transmission,"Honda") :& "Automatic".
apply(air-conditioning,"Honda") :& "Automatic".
apply(color,"Honda") :& "Eternal Blue Pearl".
This leaves us with only 1st-order queries:
"Automatic" .= apply(Feature,"Honda")

binds object variable Feature = transmission
and then binds Feature = air-conditioning

11-Apr-10CS 6715 FLP199

Summary

In higher-order operations, operations are
1st-class citizens that are allowed at most ‘places’
A taxonomy of 1st-order and higher-order operations
was introduced, the latter permitting operations as
arguments, values or bindings,
as well as operation variables
Function composition was discussed as a higher-
order operation in FP; relational product as a
corresponding higher-order operation in LP
Higher-order operations that map functions or
relations over lists were discussed for FP and LP
Relation variables were considered as 2nd-order
syntactic sugar for LP; function variables, for FLP
Structure-named operations were used instead of
λ-expressions (avoiding higher-order unification)

11-Apr-10CS 6715 FLP200

Non-Deterministic Definitions and Calls

Chapter 6

11-Apr-10CS 6715 FLP201

What is Non-Determinism?

We have seen non-deterministic calls in earlier chapters
Distinguished from indeterminism or random behavior,
non-determinism gives computations limited choice on
which control branches to follow
Two versions of non-determinism have been studied
(we will consider here only version 2.):
1. Don’t-care non-determinism: Once a choice has been made,

the other alternatives at this point are discarded
2. Don’t-know non-determinism: When a choice is made, the

other alternatives at this point are stored for later follow-up
(Don’t-know) Non-determinism is here – as in Prolog –
realized by depth-first search (backtracking), but also
breadth-first search or versions of best-first search have
been used

11-Apr-10CS 6715 FLP202

Taxonomy of Deterministic vs. Non-
Deterministic Definitions and Calls

•Definition
•Deterministic
(ground calls must
generate 0 or 1 results;
non-ground calls can
generate > 1 result)

•Non-Deterministic
(ground calls can
generate > 1 results)

•Call (ground or non-ground)
•Deterministic
(must have 0 or 1 results)

•LP: ≤ 1 binding set
•FP: ≤ 1 return value
•FLP: ≤ 1 binding-
return combination

•Non-Deterministic
(can have > 1 results)

•LP: > 1 binding set
•FP: > 1 return value
•FLP: > 1 binding-
return combination

11-Apr-10CS 6715 FLP203

LP: Deterministic Product-Offer Definition
and its Ground Deterministic Calls

Facts on offered furniture products in available quantities at merchants:

offer(desk,15,moebureau)
succeeds, returning true

Deterministic (ground) call:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,19,furniffice).
offer(chair,20,moebureau).

offer(chair,20,moebureau)
succeeds, returning true

Deterministic (ground) call:

Does moebureau offer 15 desks?

Does moebureau offer 20 chairs?

Deterministic Definition

11-Apr-10CS 6715 FLP204

FP: Deterministic Product-Offer Definition
and its Ground Deterministic ‘.=’ Calls

Points on offered furniture products in available quantities at merchants:

moebureau .= offer(desk,15)
succeeds, returning moebureau

Deterministic (ground) call:

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,19) :& furniffice.
offer(chair,20) :& moebureau.

moebureau .= offer(chair,20)
succeeds, returning moebureau

Deterministic (ground) call:

Does moebureau offer 15 desks?

Deterministic Definition

Does moebureau offer 20 chairs?

11-Apr-10CS 6715 FLP205

LP: Deterministic Product-Offer Definition
and its Non-Ground Deterministic Calls

Facts on offered furniture products in available quantities at merchants:

offer(desk,15,Merchant)
binds Merchant to moebureau

Deterministic (non-ground) call:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,19,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant)
binds Merchant to moebureau

Deterministic (non-ground) call:

Which merchants offer 15 desks?

Which merchants offer 20 chairs?

Deterministic Definition

11-Apr-10CS 6715 FLP206

FP: Deterministic Product-Offer Definition
and its Ground Deterministic Calls

Points on offered furniture products in available quantities at merchants:

offer(desk,15)
returns moebureau

Deterministic (ground) call:

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,19) :& furniffice.
offer(chair,20) :& moebureau.

offer(chair,20)
returns moebureau

Deterministic (ground) call:

Which merchants offer 15 desks?

Which merchants offer 20 chairs?

Deterministic Definition

11-Apr-10CS 6715 FLP207

LP: Deterministic Product-Offer Definition
and Deterministic/Non-Deterministic Calls

Facts on offered furniture products in available quantities at merchants:

offer(desk,15,Merchant)
binds Merchant to moebureau

Deterministic (non-ground) call:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant)
binds Merchant to furniffice and (then) to moebureau

Non-deterministic (non-ground) call:

Which merchants offer 15 desks?

Which merchants offer 20 chairs?

Deterministic Definition

11-Apr-10CS 6715 FLP208

FP: Non-Deterministic Product-Offer
Definition and its Non-/Deterministic Calls

Points on offered furniture products in available quantities at merchants:

offer(desk,15)
returns moebureau

Deterministic (ground) call:

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

offer(chair,20)
returns furniffice and (then) moebureau

Non-deterministic (ground) call:

Which merchants offer 15 desks?

Which merchants offer 20 chairs?

Non-Deterministic Definition

11-Apr-10CS 6715 FLP209

LP: Deterministic Product-Offer Definition
and its Non-Deterministic Calls

Facts on offered furniture products in available quantities at merchants:

offer(desk,Quantity,Merchant)
binds Quantity=10, Merchant=furniffice
and Quantity=15, Merchant=moebureau

Non-deterministic (non-ground) call:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,21,furniffice).
offer(chair,20,moebureau).

offer(chair,Quantity,Merchant)
binds Quantity=21, Merchant=furniffice
and Quantity=20, Merchant=moebureau

Non-deterministic (non-ground) call:

Which merchants offer how many desks?

Deterministic Definition

Which merchants offer how many chairs?

11-Apr-10CS 6715 FLP210

FLP: Deterministic Product-Offer
Definition and its Non-Deterministic Calls

Points on offered furniture products in available quantities at merchants:

offer(desk,Quantity)
returns furniffice, binding Quantity=10
returns moebureau, binding Quantity=15

Non-deterministic (non-ground) call:

offer(chair,Quantity)
returns furniffice, binding Quantity=21
returns moebureau, binding Quantity=20

Non-deterministic (non-ground) call:

Which merchants offer how many desks?

Deterministic Definition

Which merchants offer how many chairs?

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,21) :& furniffice.
offer(chair,20) :& moebureau.

11-Apr-10CS 6715 FLP211

LP:Deterministic Offer+ContactDefinitions
for Non-/Deterministic Conjunctions

Facts on offered furniture products and their merchants’ contact persons:

offer(desk,15,Merchant), contact(Merchant,Person)
binds Merchant to moebureau and Person to leblanc

Deterministic (non-ground) call conjunction – relational join:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant), contact(Merchant,Person)
binds Merchant to furniffice and Person to roberts, sniders, tellers
and Merchant to moebureau and Person to leblanc

Non-deterministic (non-ground) call conjunction – relational join:

contact(furniffice,roberts).
contact(furniffice,sniders).
contact(furniffice,tellers).
contact(moebureau,leblanc).

11-Apr-10CS 6715 FLP212

LP: Proof Tree for the Non-Deterministic
Call Conjunction

offer(chair,20,Merchant), contact(Merchant,Person)

Merchant=furniffice Merchant=moebureau

contact(furniffice,Person) contact(moebureau,Person)

Person=snidersPerson=roberts Person=tellers Person=leblanc

‘=’ Bindings

11-Apr-10CS 6715 FLP213

FP: Non-Deterministic Offer+Contact
Definitions for Non-/Deterministic Nestings

Points on offered furniture products and their merchants’ contact persons:

contact(offer(desk,15))
via contact(moebureau) returns leblanc

Deterministic (ground) call nesting:

contact(offer(chair,20))
via contact(furniffice) returns roberts, sniders, tellers
via contact(moebureau) returns leblanc

Non-deterministic (ground) call nesting:

contact(furniffice) :& roberts.
contact(furniffice) :& sniders.
contact(furniffice) :& tellers.
contact(moebureau) :& leblanc.

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

11-Apr-10CS 6715 FLP214

FP: Proof Tree for the Non-Deterministic
Call Nesting

contact(offer(chair,20))

offer→furniffice offer→moebureau

contact(furniffice) contact(moebureau)

contact→sniderscontact→roberts contact→tellers contact→leblanc

‘→’ Returns

11-Apr-10CS 6715 FLP215

LP:Deterministic Offer+SiteDefinitions for
Non-/Deterministic Conjunctions

Facts on offered furniture products and their merchants’ sites:

offer(desk,15,Merchant), site(Merchant,Town)
binds Merchant to moebureau and Town to moncton

Deterministic (non-ground) call conjunction – relational join:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant), site(Merchant,Town)
binds Merchant to furniffice and Town to fredericton, moncton
and Merchant to moebureau and Town again to moncton

Non-deterministic (non-ground) call conjunction – relational join:

site(furniffice,fredericton).
site(furniffice,moncton).
site(moebureau,moncton).

11-Apr-10CS 6715 FLP216

FP:Non-DeterministicOffer+Site
Definitions for Non-/Deterministic Nestings

Points on offered furniture products and their merchants’ sites:

site(offer(desk,15))
via site(moebureau) returns moncton

Deterministic (ground) call nesting:

site(offer(chair,20))
via site(furniffice) returns fredericton, moncton
via site(moebureau) again returns moncton

Non-deterministic (ground) call nesting:

site(furniffice) :& fredericton.
site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

11-Apr-10CS 6715 FLP217

LP:Deterministic Offer+SiteDefinitions for
Deterministic Conjunctions

Facts on offered furniture products and their merchants’ sites:

offer(desk,15,Merchant), site(Merchant,moncton)
binds Merchant to moebureau

Deterministic conjunction:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant), site(Merchant,fredericton)
binds Merchant to furniffice
(then, with Merchant=moebureau, site(Merchant,fredericton) fails)

Internally non-deterministic, externally deterministic conjunction:

site(furniffice,fredericton).
site(furniffice,moncton).
site(moebureau,moncton).

11-Apr-10CS 6715 FLP218

FP:Non-DeterministicOffer+Site
Definitions for Deterministic Nestings

Points on offered furniture products and their merchants’ sites:

moncton .= site(offer(desk,15))
via moncton .= site(moebureau) returns moncton

Deterministic nesting:

fredericton .= site(offer(chair,20))
via fredericton .= site(furniffice) returns fredericton
(then, via fredericton .= site(moebureau) fails)

Internally non-deterministic, externally deterministic nesting:

site(furniffice) :& fredericton.
site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

11-Apr-10CS 6715 FLP219

LP:Deterministic Offer+SiteDefinitions for
Non-/Deterministic Conjunctions

Facts on offered furniture products and their merchants’ sites:

offer(desk,Quantity,Merchant), site(Merchant,moncton)
binds Quantity=10, Merchant=furniffice
binds Quantity=15, Merchant=moebureau

Non-deterministic conjunction:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,Quantity,Merchant), site(Merchant,fredericton)
binds Quantity=20, Merchant=furniffice
(then, with Merchant=moebureau, site(Merchant,fredericton) fails)

Internally non-deterministic, externally deterministic conjunction:

site(furniffice,fredericton).
site(furniffice,moncton).
site(moebureau,moncton).

11-Apr-10CS 6715 FLP220

FLP:Non-DeterministicOffer+Site
Definitions for Non-/Deterministic Nestings

Points on offered furniture products and their merchants’ sites:

moncton .= site(offer(desk,Quantity))
via moncton .= site(furniffice) returns moncton, binds Quantity=10
via moncton .= site(moebureau) returns moncton,with Quantity=15

Non-deterministic nesting:

fredericton .= site(offer(chair,Quantity))
via fredericton .= site(furniffice) gives fredericton, Quantity =20
(then, via fredericton .= site(moebureau) fails)

Internally non-deterministic, externally deterministic nesting:

site(furniffice) :& fredericton.
site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

11-Apr-10CS 6715 FLP221

LP:Deterministic SiteDefinition for
Deterministic Conjunction

Facts on merchants’ sites:

site(Merch1,Town), site(Merch2,Town), string<(Merch1,Merch2)

binds Merch1= furniffice, Merch2=moebureau, Town= moncton
(Merch1=Merch2=furniffice etc. are rejected by string<)

(Externally) Deterministic conjunction:

site(furniffice,fredericton).
site(furniffice,moncton).
site(moebureau,moncton).

Based on Built-in:
string< String-Less

Which merchants
(only different ones, and

in alphabetical order)
are in the same town?

11-Apr-10CS 6715 FLP222

FLP:DeterministicSiteDefinition for
Deterministic Conjunction

Points on merchants’ sites:

(Externally) Deterministic conjunction:

site(furniffice) :& fredericton.
site(furniffice) :& moncton.
site(moebureau) :& moncton.

Town .= site(Merch1), Town .= site(Merch2),
string<(Merch1,Merch2)

binds Merch1= furniffice, Merch2=moebureau, Town= moncton
(Merch1=Merch2=furniffice etc. are rejected by string<)

Which merchants
(only different ones, and

in alphabetical order)
are in the same town?

Based on Built-in:
string< String-Less

11-Apr-10CS 6715 FLP223

FP: Cartesian Product
by a Repeated Non-Deterministic Call

Points on offers and a pair definition:

pair(offer(chair,20),offer(chair,20)) % {[X,Y] | X,Y∈ offer(chair,20)}

returns [furniffice,furniffice] % {[furniffice,furniffice],
returns [furniffice,moebureau] % [furniffice,moebureau],
returns [moebureau,furniffice] % [moebureau,furniffice],
returns [moebureau,moebureau] % [moebureau,moebureau]}

Repeated non-deterministic call enumerates entire Cartesian product:

offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

pair(First,Second) :& [First,Second]. % similar to active cns

11-Apr-10CS 6715 FLP224

FP: Subset of Cartesian Product
by a Named Non-Deterministic Call

Points on offers and a pair definition:

Oc .= offer(chair,20) & pair(Oc,Oc) % {[Oc,Oc] | Oc∈offer(chair,20)}

returns [furniffice,furniffice], binding Oc=furniffice
returns [moebureau,moebureau], binding Oc=moebureau

Named non-deterministic call enumerates Cartesian product subset:

offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

pair(First,Second) :& [First,Second]. % similar to active cns

11-Apr-10CS 6715 FLP225

FP: Cartesian Product Multiset
via a Repeated Non-Deterministic Call

Points on offers, their merchants’ contacts + sites, and a pair definition:

pair(site(offer(chair,20)),contact(offer(chair,20)))
returns [fredericton,tellers]
returns [fredericton,leblanc] while moebureau’s site is moncton
returns [moncton,tellers]
returns [moncton,leblanc]
again returns [moncton,tellers]
again returns [moncton,leblanc]

Repeated non-deterministic call enumerates entire Cartesian product:

site(furniffice) :& fredericton. site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

contact(furniffice) :& tellers.
contact(moebureau) :& leblanc.

pair(First,Second) :& [First,Second]. % similar to active cns

11-Apr-10CS 6715 FLP226

FP: Subset of Cartesian Product Multiset
via a Named Non-Deterministic Call

Points on offers, their merchants’ contacts + sites, and a pair definition:

Oc .= offer(chair,20) & pair(site(Oc),contact(Oc))
returns [fredericton,tellers], binding Oc=furniffice
returns [moncton,tellers], binding Oc=furniffice
returns [moncton,leblanc], binding Oc=moebureau

Named non-deterministic call enumerates Cartesian product subset:

site(furniffice) :& fredericton. site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

contact(furniffice) :& tellers.
contact(moebureau) :& leblanc.

pair(First,Second) :& [First,Second]. % similar to active cns

11-Apr-10CS 6715 FLP227

Preview of a Transitive Closure

pretzel beer wine pickle
triggertrigger trigger

inciteincite incite

incite

incite

incite

The base relation or function trigger
has the transitive closure relation or function incite

11-Apr-10CS 6715 FLP228

LP: A Recursive Non-Deterministic
Relational Closure Definition

Ground facts on the purchase of certain products triggering further ones:

incite(ProductA,ProductB) :- trigger(ProductA,ProductB).
incite(ProductA,ProductC) :- trigger(ProductA,ProductB),

incite(ProductB,ProductC).

Datalog Rules on recursive product incitement based on triggering:

trigger(pretzel,beer).
trigger(beer,wine).
trigger(wine,pickle).

These non-deterministic clauses are used to compute the
transitive closure relation, incite, over a base relation, trigger

11-Apr-10CS 6715 FLP229

LP: A Recursive Non-Deterministic
Relational Closure Computation

incite(pretzel,Result)
trigger(pretzel,ProductB1)
Result=ProductB1=beer

trigger(pretzel,ProductB1), incite(ProductB1,ProductC1)
trigger(pretzel,beer), incite(beer,ProductC1)
trigger(beer,ProductC1)
Result=ProductC1=wine

trigger(beer,ProductB2), incite(ProductB2,ProductC2)
trigger(beer,wine), incite(wine,ProductC2)
trigger(wine,ProductC2)
Result=ProductC2=pickle

In each computation step:
•The call to be selected next is underlined
•Call results are put in italics
•A call with non-deterministic alternatives
is bold-faced

11-Apr-10CS 6715 FLP230

FP: A Recursive Non-Deterministic
Functional Closure Definition

Ground points on the purchase of certain products triggering further ones:

incite(Product) :& trigger(Product).
incite(Product) :& incite(trigger(Product)).

Datafun Rules on recursive product incitement based on triggering:

trigger(pretzel) :& beer.
trigger(beer) :& wine.
trigger(wine) :& pickle.

These non-deterministic clauses are used to compute the
transitive closure function, incite, over a base function, trigger

11-Apr-10CS 6715 FLP231

FP: A Recursive Non-Deterministic
Functional Closure Computation

incite(pretzel)
trigger(pretzel)
beer

incite(trigger(pretzel))
incite(beer)
trigger(beer)
wine

incite(trigger(beer))
incite(wine)
trigger(wine)
pickle

In each computation step:
•The call to be selected next is underlined
•Call results are put in italics
•A call with non-deterministic alternatives
is bold-faced

11-Apr-10CS 6715 FLP232

Summary

(Don’t-know) Non-determinism permits choice
alternatives to be stored for later follow-up (e.g.
via backtracking)
Deterministic vs. non-deterministic definitions and
calls were discussed in a taxonomy for FP and LP
Non-ground calls can be non-deterministic even
for deterministic definitions
Non-deterministic FLP computations can be
regarded as always resulting in a (finite or infinite)
set of value-binding combinations:
1. Empty set: Failure
2. Singleton set: Special case of deterministic result
3. Set with ≥ two elements: Non-deterministic result that

can be ‘unioned’ with other such sets, incl. 1. and 2.

11-Apr-10CS 6715 FLP233

The Relational-Functional Markup
Language (RFML)

Chapter 7

11-Apr-10CS 6715 FLP234

A 10-Step Strategy to Publish and Reuse
Declarative Programs as XML Markups

Specify the declarative programming language
through an XML document type definition (DTD)
Convert any to-be-published declarative program
from its source syntax to an XML document
according to the DTD
Upload such an XML document to a Web server
for publication
Also offer the declarative programs for server-
side querying (e.g. CGI) and advertise their
XML-document version to search engines etc.,
ideally using metadata markup (e.g. RDF/XML)
Distribute these documents to requesting clients
via standard Web protocols (e.g. HTTP)
If necessary, transform such an XML document
to a declarative target language with a different
DTD, possibly using an (XSLT) stylesheet
Download any requested XML document at the
client site
Convert this XML document to the client's target
syntax, possibly using (XSLT + CSS) stylesheets
Query the target version via the client's program
interpreter and optionally download the server’s
source-program interpreter (once) for client-side
querying, ultimately as a browser plug-in
Reuse the target version, say in existing programs

Distribute
(transform)

Query Reuse

ProgramSource

XMLSource

Upload

Convert

Server:

ProgramTarget

XMLTarget

Download

Convert

Client:

Note: ProgramSource may be identical to ProgramTarget

11-Apr-10CS 6715 FLP235

Cross-Fertilizations of XML and
Declarative Programming Languages

Separate vs. joint assertion and query languages:
– XML: Still separate schema and query of elements
– DPL: Mostly joint storage and retrieval of clauses

Generating XML markup from more compact special-purpose notations
(and vice versa)

XML validators and DPL compilers

XML stylesheets and DPL transformers

Specification, correctness, and efficiency technology

Early case study done with the declarative language
RFML (Relational-Functional Markup Language)

Design of Functional RuleML draws on RFML for
interchange of declarative programs: http://www.ruleml.org/fun

http://www.ruleml.org/fun

11-Apr-10CS 6715 FLP236

Basics of the Relational-Functional
Markup Language RFML

Much of Web knowledge constitutes definitions of
relations and functions
Kernel of Relational-Functional language (Relfun)
suited for XML knowledge markup:

– Uniform, rather small language
– Sufficient expressive power for practical use

RFML is an XML application for integrated relational-
functional information
Relational (hn) and functional (ft) clauses together
define a unified notion of operators
RFML DTD small and open to various extensions

11-Apr-10CS 6715 FLP237

Relational Facts: From Tables to Prolog

Relational Table:

satisfied(Customer, Item, Price)
john wine 17.95
peter beer 06.40

Prolog (Ground) Facts:

satisfied(Customer, Item, Price)
satisfied(john, wine, 17.95).
satisfied(peter, beer, 06.40).

Collect data on consumer behavior in ...

11-Apr-10CS 6715 FLP238

Relational Facts: From Prolog to RFML

RFML (Ground) Markup:

Prolog (Ground) Facts:

satisfied(john,wine,17.95). satisfied(peter,beer,6.40).

<hn> <hn>
<pattop> <pattop>

<con>satisfied</con> <con>satisfied</con>
<con>john</con> <con>peter</con>
<con>wine</con> <con>beer</con>
<con>17.95</con> <con>6.40</con>

</pattop> </pattop>
</hn> </hn>

11-Apr-10CS 6715 FLP239

Relational Rules: From Prolog to RFML

RFML (Non-Ground) Markup:

Prolog (Non-Ground) Rule:
satisfied(C,I,P) :- buy(week1,C,I,P), buy(week2,C,I,P).

Infer data on consumer behavior via ...

<hn>
<pattop>
<con>satisfied</con><var>C</var><var>I</var><var>P</var>
</pattop>
<callop>
<con>buy</con><con>week1</con><var>C</var><var>I</var><var>P</var>
</callop>
<callop>
<con>buy</con><con>week2</con><var>C</var><var>I</var><var>P</var>
</callop>
</hn>

11-Apr-10CS 6715 FLP240

Functional Facts (Definition Points):
From Unconditional Equations to RFML

RFML (Ground) Markup:

Unconditional (Ground) Equations:
pay(john,fred,17.95) = cheque pay(peter,fred,6.40) = cash

Discriminate on payment method via ...

<ft>
<pattop>

<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</pattop>
<con>cheque</con>

</ft>

<ft>
<pattop>

<con>pay</con>
<con>peter</con>
<con>fred</con>
<con>6.40</con>

</pattop>
<con>cash</con>

</ft>

11-Apr-10CS 6715 FLP241

Functional Queries:
Joint Assertion and Query Language

The pay function can be queried (non-ground)
directly via a callop markup:

<callop>
<con>pay</con>
<con>john</con>
<var>merchant</var>
<var>price</var>

</callop>

binding the two variables to the corresponding constants
in the definition pattern and returning the constant 'cheque'

Same indirectly as the right side of a conditional equation ...

11-Apr-10CS 6715 FLP242

Functional Rules:
From Conditional Equations to Relfun

Conditional (Non-Ground) Equation:
acquire(Customer,Merchant,Item,Price) =

pay(Customer,Merchant,Price)
if satisfied(Customer,Item,Price)

Predict consumers’ acquisition behavior via ...

Relfun (Non-Ground) Footed Rule:

acquire(Customer,Merchant,Item,Price) :-
satisfied(Customer,Item,Price) &
pay(Customer,Merchant,Price).

11-Apr-10CS 6715 FLP243

Functional Rules:
From Relfun to RFML

RFML (Non-Ground) Markup:
<ft>
<pattop>
<con>acquire</con><var>c</var><var>m</var><var>i</var><var>p</var>

</pattop>
<callop>
<con>satisfied</con><var>c</var><var>i</var><var>p</var>

</callop>
<callop>
<con>pay</con><var>c</var><var>m</var><var>p</var>

</callop>
</ft>

Relfun (Non-Ground) Footed Rule:
acquire(C,M,I,P) :- satisfied(C,I,P) & pay(C,M,P).

11-Apr-10CS 6715 FLP244

Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

<callop>
<con>acquire</con>
<con>john</con>
<con>fred</con>
<var>item</var>
<con>17.95</con>

</callop>

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

<callop>
<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</callop>

<callop>
<con>satisfied</con>
<con>john</con>
<var>item</var>
<con>17.95</con>

</callop>

&

<callop>
<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</callop>

<con item="wine">
true

</con>
&<con item="wine">

cheque
</con>

11-Apr-10CS 6715 FLP245

Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

<callop>
<con>acquire</con>
<con>john</con>
<con>fred</con>
<var>item</var>
<con>17.95</con>

</callop>

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

11-Apr-10CS 6715 FLP246

Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

<callop>
<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</callop>

<callop>
<con>satisfied</con>
<con>john</con>
<var>item</var>
<con>17.95</con>

</callop>

&

11-Apr-10CS 6715 FLP247

Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

<callop>
<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</callop>

<con item="wine">
true

</con>
&

11-Apr-10CS 6715 FLP248

Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

<con item="wine">
cheque

</con>

11-Apr-10CS 6715 FLP249

The RFML DTD (1)

<!-- ENTITIES use non-terminals of Relfun grammar (Boley 1999) 'untagged', -->
<!-- e.g. term ::= con | var | anon | struc | tup, just specifying, say, -->
<!-- <var> X </var> term instead of nesting <term> <var> X </var> </term> -->

<!ENTITY % variable "(var | anon)" >
<!ENTITY % appellative "(con | %variable; | struc)" >
<!ENTITY % term "(%appellative; | tup)" >

<!-- ELEMENTS use non-terminals of Relfun grammar 'tagged', so var ::= ... -->
<!-- itself becomes <var> X </var> -->

<!-- rfml is the document root, the possibly empty knowledge-base top-level -->
<!-- of hn or ft clauses: -->

<!ELEMENT rfml (hn | ft)* >

<!-- hn clauses are a pattop before zero (facts) or more terms or callop's; -->
<!-- ft clauses are a pattop before at least one term or callop (the foot): -->

<!ELEMENT hn (pattop, (%term; | callop)*) >
<!ELEMENT ft (pattop, (%term; | callop)+) >

<!-- a pattop clause head is an operator appellative and a (rest) pattern: -->

<!ELEMENT pattop (%appellative;,
(%term;)*,
(rest, (%variable; | tup))?) >

11-Apr-10CS 6715 FLP250

The RFML DTD (2)

<!-- a callop clause body premise or foot is a (nested) operator call: -->

<!ELEMENT callop ((%appellative; | callop),
(%term; | callop)*,
(rest, (%variable; | tup | callop))?) >

<!-- a struc is a constructor appellative with argument terms (and a rest): -->

<!ELEMENT struc (%appellative;,
(%term;)*,
(rest, (%variable; | tup))?) >

<!-- a tup is a list of terms (zero or more), perhaps followed by a rest: -->

<!ELEMENT tup ((%term;)*,
(rest, (%variable; | tup))?) >

<!-- con and var are just parsed character data (character permutations): -->

<!ELEMENT con (#PCDATA)>
<!ELEMENT var (#PCDATA)>

<!-- anon (Relfun: "_") and rest (Relfun: "|") are always-empty elements: -->

<!ELEMENT anon EMPTY >
<!ELEMENT rest EMPTY >

11-Apr-10CS 6715 FLP251

Summary

RFML combines relational-functional knowledge-
representation and declarative-programming
languages on the Web
It has been implemented as a (Web-)output syntax
for declarative knowledge bases and computations
XSLT stylesheets have been developed for

– rendering RFML in Prolog-like Relfun syntax
– translating between RFML and RuleML

Further descriptions, examples, the DTD, and
download information are available at
http://www.relfun.org/rfml

http://www.ruleml.org/
http://www.relfun.org/rfml

11-Apr-10CS 6715 FLP252

Source-to-Source (Horizontal)
Transformation

Chapter 8

11-Apr-10CS 6715 FLP253

What is Source-to-Source (Horizontal)
Transformation?

A Functional-Logic Programming language such as
Relfun can be considered to consist of
– One or two inner kernel(s): Functional or logic kernel
– Several surrounding shells: List notation, higher-order, …

The shells can be automatically reduced towards
the kernel(s) using techniques of source-to-source
(horizontal) transformation
This preprocessing makes the FLP language
– Easier to understand for various groups of humans
– Well-prepared for source-to-instruction (vertical)

compilations into various machine languages
Some of the key transformation techniques will be
introduced here via examples

11-Apr-10CS 6715 FLP254

An Overview of Source-to-Source
(Horizontal) Transformation

We first show how functions can be transformed
into a logic kernel language (from FP to LP)
We then indicate how relations can be transformed
into a functional or into a functional-logic language
(from LP to FP or to FLP)
Another kind of transformation (prior to compilation)
will replace list notation by cns structures
These and several further transformations can be
executed interactively as commands in Relfun,
and most of them are combined by the horizon
command, also used by the Relfun compiler

11-Apr-10CS 6715 FLP255

Relationalizing Functions: Flattening
(Pseudo-Code Syntax)

fr-antonym(Mot) = en2fr(en-antonym(fr2en(Mot)))

Definition by
Function Nesting

Functional Program
(fully nested):

fr-antonym(Mot) if _1 = en-antonym(fr2en(Mot)) then en2fr(_1)
1st Flattening Step: Variable _1

Functional-Logic Program
(partially flattened):

fr-antonym(Mot) if _2 = fr2en(Mot) and _1 = en-antonym(_2)
then en2fr(_1)

2nd Flattening Step: Variable _2

Functional-Logic Program
(fully flattened):

11-Apr-10CS 6715 FLP256

Relationalizing Functions: Flattening
(Relfun Syntax)

fr-antonym(Mot) :& en2fr(en-antonym(fr2en(Mot))) .

Definition by
Function Nesting

Functional Program
(fully nested):

fr-antonym(Mot) :- _1 .= en-antonym(fr2en(Mot)) & en2fr(_1) .
1st Flattening Step: Variable _1

Functional-Logic Program
(partially flattened):

fr-antonym(Mot) :- _2 .= fr2en(Mot) , _1 .= en-antonym(_2)
& en2fr(_1) .

2nd Flattening Step: Variable _2

Functional-Logic Program
(fully flattened):

Command: flatten

11-Apr-10CS 6715 FLP257

Relationalizing Functions: Extra-Argument
Insertion (Pseudo-Code Syntax)

fr-antonym(Mot) if _2 = fr2en(Mot) and _1 = en-antonym(_2)
then en2fr(_1)

Flat Definition: Variables _1, _2

Functional-Logic Program
(results returned):

fr-antonym(_3,Mot) if fr2en(_2,Mot) and en-antonym(_1,_2)
and en2fr(_3,_1)

New 1st Argument: Variable _3
Logic Program
(results bound):

New 1st Argument:
Variable _2 from ‘=’

…
Call Pattern
(query variable):

fr-antonym(Franto,noir)

11-Apr-10CS 6715 FLP258

Relationalizing Functions: Extra-Argument
Insertion (Relfun Syntax)

fr-antonym(Mot) :- _2 .= fr2en(Mot) , _1 .= en-antonym(_2)
& en2fr(_1) .

Flat Definition: Variables _1, _2

Functional-Logic Program
(results returned):

fr-antonym(_3,Mot) :- fr2en(_2,Mot) , en-antonym(_1,_2)
, en2fr(_3,_1) .

New 1st Argument: Variable _3
Logic Program
(results bound):

New 1st Argument:
Variable _2 from ‘.=’

…Call Pattern
(query variable):

fr-antonym(Franto,noir)

Command: extrarg

Combined Command: relationalize

11-Apr-10CS 6715 FLP259

Functionalizing Relations: Footening of
Facts (Pseudo-Code Syntax)

spending(Peter Miller,min 5000 euro,previous year)

Fact Definition

Logic Program
(implicit true value):

spending(Peter Miller,min 5000 euro,previous year) = true

‘true’-Footening
Functional Program A
(explicit true value):

spending(Peter Miller,min 5000 euro,previous year) = 1

‘1’-Footening
Functional Program B
(explicit 1 value):

11-Apr-10CS 6715 FLP260

Functionalizing Relations: Footening of
Facts (Relfun Syntax)

spending(Peter Miller,min 5000 euro,previous year) .

Fact Definition

Logic Program
(implicit true value):

spending(Peter Miller,min 5000 euro,previous year) & true .

‘true’-Footening
Functional Program A
(explicit true value):

spending(Peter Miller,min 5000 euro,previous year) & 1 .

‘1’-Footening
Functional Program B
(explicit 1 value):

Command: footer true

Command: footer 1

11-Apr-10CS 6715 FLP261

Functionalizing Relations: Footening of
Rules (Pseudo-Code Syntax)

premium(Customer) if
spending(Customer,min 5000 euro,previous year)

Definition by
Single Premise Call

Logic Program
(implicit true value):

premium(Customer) if
spending(Customer,min 5000 euro,previous year) then true

‘true’-Footening

Functional-Logic Program A
(explicit true value):

premium(Customer) if
spending(Customer,min 5000 euro,previous year) then 1

‘1’-Footening

Functional-Logic Program B
(explicit 1 value):

11-Apr-10CS 6715 FLP262

Functionalizing Relations: Footening of
Rules (Relfun Syntax)

premium(Customer) :-
spending(Customer,min 5000 euro,previous year) .

Definition by
Single Premise Call

Logic Program
(implicit true value):

premium(Customer) :-
spending(Customer,min 5000 euro,previous year) & true .

‘true’-Footening

Functional-Logic Program A
(explicit true value):

premium(Customer) :-
spending(Customer,min 5000 euro,previous year) & 1 .

‘1’-Footening

Functional-Logic Program B
(explicit 1 value):

Command: footen true

Command: footen 1

11-Apr-10CS 6715 FLP263

Four Variants of Non-Deterministic
Even-Number Generation: Definitions

% Functional (Numeric):
evenfn() :& 0.
evenfn() :& 1+(1+(evenfn())).

% Relational (Numeric):
evenrn(0).
evenrn(R) :- evenrn(N), R .= 1+(1+(N)).

% Functional (Symbolic):
evenfs() :& 0.
evenfs() :- H .= evenfs() & suc[suc[H]].

% Relational (Symbolic):
evenrs(0).
evenrs(suc[suc[N]]) :- evenrs(N).

11-Apr-10CS 6715 FLP264

Four Variants of Non-Deterministic
Even-Number Generation: Calls

rfi-p> evenfn()
0
rfi-p> more
2
rfi-p> more
4
rfi-p> evenrn(Res)
true
Res=0
rfi-p> more
true
Res=2
rfi-p> more
true
Res=4

rfi-p> evenfs()
0
rfi-p> more
suc[suc[0]]
rfi-p> more
suc[suc[suc[suc[0]]]]
rfi-p> evenrs(Res)
true
Res=0
rfi-p> more
true
Res=suc[suc[0]]
rfi-p> more
true
Res=suc[suc[suc[suc[0]]]]

11-Apr-10CS 6715 FLP265

Four Variants of Non-Deterministic
Even-Number Generation: Flattened …

% Functional (Numeric):
evenfn() :& 0.
evenfn() :- _2 .= evenfn(), _1 .= 1+(_2) & 1+(_1).

% Relational (Numeric):
evenrn(0).
evenrn(R) :- evenrn(N), _1 .= 1+(N), R .= 1+(_1).

% Functional (Symbolic):
evenfs() :& 0.
evenfs() :- H .= evenfs() & suc[suc[H]].

% Relational (Symbolic):
evenrs(0).
evenrs(suc[suc[N]]) :- evenrs(N).

Unchanged

Unchanged

2-Step Flattening

1-Step Flattening

11-Apr-10CS 6715 FLP266

Four Variants of Non-Deterministic
Even-Number Generation: … + Extrarged

% Functional (Numeric):
evenfn(0).
evenfn(_3) :- evenfn(_2), _1 .= 1+(_2), _3 .= 1+(_1).

% Relational (Numeric):
evenrn(0).
evenrn(R) :- evenrn(N), _1 .= 1+(N), R .= 1+(_1).

% Functional (Symbolic):
evenfs(0).
evenfs(suc[suc[H]]) :- evenfs(H).

% Relational (Symbolic):
evenrs(0).
evenrs(suc[suc[N]]) :- evenrs(N).

(= Relationalized)

Identical
(up to
variable
renaming)

Identical
(up to
variable
renaming)

11-Apr-10CS 6715 FLP267

Four Variants of Non-Deterministic
Even-Number Generation: Horizoned

% Functional (Numeric):
evenfn() :& 0.
evenfn() :- _2 .= evenfn(), _1 .= 1+(_2) & 1+(_1).

% Relational (Numeric):
evenrn(0).
evenrn(R) :- evenrn(N), _1 .= 1+(N), R .= 1+(_1) & true.

% Functional (Symbolic):
evenfs() :& 0.
evenfs() :- H .= evenfs(), _1 .= suc[H] & suc[_1].

% Relational (Symbolic):
evenrs(0).
evenrs(_1) :- _2 .= suc[N], _1 .= suc[_2], evenrs(N) & true.

‘true’-Footening

‘true’-Footening
Structure Flattening

11-Apr-10CS 6715 FLP268

Eliminating the N-ary List Notation:
Untupping

Examples: Flat cns (internal) lists: Nested cns lists:
Ground: cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
Non-ground: cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,X],Y]

Examples: Flat n-ary (external) lists: Nested n-ary lists:
Ground: [u] [rs[1],u] [[u]]
Non-ground: [X|Y] [rs[_],u] [[u|X]|Y]

ground-test([u], [rs[1],u], [[u]]).

ground-test(cns[u,nil], cns[rs[1],cns[u,nil]], cns[cns[u,nil],nil]).

non-ground-test([X|Y],[rs[_],u],[[u|X]|Y]).

non-ground-test(cns[X,Y],cns[rs[_],cns[u,nil]],cns[cns[u,X],Y]).

Command: untup

Command: untup

11-Apr-10CS 6715 FLP269

Deterministic Even-Number Generation:
evenfn Source, Untupped, and Horizoned
% Functional (Numeric):
evenfn(1) :& [0].
evenfn(I) :- >(I,1),

[H|R] .= evenfn(1-(I)),
H2 .= 1+(1+(H)) & [H2,H|R].

% Functional (Numeric) – (_1=_4=cns[H,R] by normalizer):
evenfn(1) :& cns[0,nil].
evenfn(I) :- >(I,1),

_1 .= cns[H,R], _2 .= 1-(I), _1 .= evenfn(_2),
_3 .= 1+(H), H2 .= 1+(_3), _4 .= cns[H,R] & cns[H2,_4].

% Functional (Numeric) – :
evenfn(1) :& cns[0,nil].
evenfn(I) :- >(I,1),

cns[H,R] .= evenfn(1-(I)),
H2 .= 1+(1+(H)) & cns[H2,cns[H,R]].

untup

horizon

11-Apr-10CS 6715 FLP270

Summary

Horizontal transformation techniques were
introduced and illustrated via Relfun examples
Relfun’s horizon command transforms FP, LP,
and FLP source programs into a flattened (but not
extrarged) form, which also uses footen true
After untup for transforming lists to cns structures,
horizon also flattens all structures much like active
nestings, for preparing their efficient indexing
Other horizontal steps are the replacement of
anonymous variables and of active cns calls
All horizontal results can still be interpreted, but
subsequent WAM compilation increases efficiency

http://smi-web.stanford.edu/people/boley/lnai1712.html

	Functional-Logic Programming� - Lecture Notes -
	Principles of�Functional and Logic Programming
	About Knowledge Representation (KR),�Software Specification, and Programming
	Programming: Functional (FP), Logic (LP), and Functional-Logic (FLP) for Agent Core
	Top-Level Terminology for Functions (FP), Relations (LP), and Their Combinations (FLP)
	Preview of Foundations of�Functional-Logic Programming (FLP)
	Declarative Programs: Joint Treatment of Functional and Logic Programming
	Basic Color-Coded Visualization of Operations
	(Multi-)Directionality Principle
	Declarative Programs as Data Flow Diagrams: Example – “Addition Agent” (I-O Modes)
	Declarative Programs as Data Flow Diagrams: Example – “Addition Agent” (Input)
	Declarative Programs as Data Flow Diagrams: Example – “Addition Agent” (Output)
	Declarative Programs as Data Flow Diagrams: Example – “Addition Agent” (I-O Modes)
	Declarative Programs Used for Testing: Example – “Addition Agent” (Input)
	Declarative Programs Used for Testing: Example – “Addition Agent” (Output)
	Declarative Programs in Symbolic Notation: Example – “Addition Agent”
	Declarative Programs as Data Flow Diagrams: Example – “Square-of-Add Agent” (Combination)
	Declarative Programs as Data Flow Diagrams: Example – “Square-of-Add Agent” (Input)
	Declarative Programs as Data Flow Diagrams: Example – “Square-of-Add Agent” (Thruput)
	Declarative Programs as Data Flow Diagrams: Example – “Square-of-Add Agent” (Output)
	Encapsulation Principle
	Declarative Programs as Data Flow Diagrams: Example – “Square-of-Add Agent” (Named)
	Declarative Programs in Symbolic Notation: Example – “Square-of-Add Agent”
	Syntax of Basic Declarative Definitions
	Semantics of Purely Declarative Definitions
	Generate-Test Separation/Integration Principle
	Declarative Programs Used for Testing: Example – “Addition Agent” (I-O Modes)
	Declarative Programs Used for Testing: Example – “Addition Agent” (Input)
	Declarative Programs Used for Testing: Example – “Addition Agent” (Thru/Output)
	Declarative Programs Used for Testing: Example – “Addition Agent” (Output)
	Declarative Programs Used for Testing: Example – “Addition Agent” (Input)
	Declarative Programs Used for Testing: Example – “Addition Agent” (Thru/Output)
	Declarative Programs Used for Testing: Example – “Addition Agent” (Output)
	Declarative Testing Programs in Symbolic Notation: Example – “Addition Agent”
	List-Universality Principle
	Declarative Programs Operating on Lists:�Example “Length-and-Shape Agents”
	Invertibility Principle
	Function length as Data Flow Diagram
	Function shape as Data Flow Diagram
	Relation shalen as Data Flow Diagram
	Relation shalen as Data Flow Diagram
	Functional Programs length and shape Become One Logic Program shalen
	Functional Programs length and shape Become One Logic Program shalen
	Computation with Functional Program length as Term Rewriting: Stack Trace
	Computation with Functional Program shape as Term Rewriting: Stack Trace
	Computations with Logic Program�shalen as Term Rewriting: Stack Traces
	Nesting/Conjunction Principle
	Generalized Inverse Property of the�Functional Programs length and shape (I)
	Generalized Inverse Property of the�Functional Programs length and shape (II)
	Generalized Self-Inverse Property of the �Logic Program shalen
	 Unification Principle
	Duplication of Non-Ground List Values:�Generating Matrix Patterns with shalen (I)
	Refinement of Non-Ground List Values:�Generating Matrix Patterns with shalen (II)
	Refinement of Non-Ground List Values: Generating Matrix Patterns with shalen (III)
	Double Refinement of Non-Ground List Values: Generating Matrix Patterns with shalen (IV)
	Amalgamation/Integration Principle
	Functional-Relational Call Amalgamation:�Quicksort Example
	Higher-Order Operations Defined:�Quicksort Parameterized by Comparison Relation
	Higher-Order Operations Called:�Quicksort Parameterized by Comparison Relation
	Function Calls Nested in Operation Calls:�numbered Example
	Integrated Functional-Logic Programming�Using Intermediate Non-Ground Terms: serialise Example
	Derivation of the serialise Solution
	Online Execution of serialise Specification:�serialise([d,a,l,l,a,s,t,e,x,a,s,u,s,a])
	Summary
	Introduction to�Functional and Logic Programming
	Declarative Programs: Running Example�“Bilingual Antonym Agent”
	Functional Programs:�Basic Notions
	Functional Definition Example:�“French Antonym Agent”
	Functional Programs: Returned Values from Nested Calls and Pointwise Definitions
	Functional Computation Example:�“French Antonym Agent”
	Functional Programs:�Call-by-Value Computation of Nestings
	Functional Computation Example:�Web Services
	Functional Definition Example: “Bidirectional French-English Translator”
	Functional Programs:�Case Analysis (and Pointwise Definitions)
	Functional Definition Example:�“Generic Antonym Agent”
	Functional Programs: Case Analysis and Returned Values from Nested Calls
	Logic Programs:�Basic Notions
	Logic Definition Example:�“French Antonym Agent”
	Logic Programs: Variable Bindings from Conjunctive Calls (and Base Relations)
	Logic Computation Example:�“French Antonym Agent”
	Logic Programs:�Left-to-Right Computation of Conjunctions
	Logic Definition Example:�“Bidirectional French-English Translator”
	Logic Programs: Case Analysis (with Conjunctive Calls and Base Relations)
	Logic Definition Example:�“Generic Antonym Agent”
	Logic Programs:�Case Analysis and Conjunctive Calls
	Logic Optimization Example:�“Generic Antonym Agent”
	Logic Programs:�Static Optimization in Conjunctive Calls
	Functional-Logic Programs:�Elementary Notions
	Functional-Logic Definition Example:�“Generic Antonym Agent”
	Functional-Logic Programs: Case Analysis, Conjunctive Calls, and Returned Values
	Functional-Logic Programs:�Non-Deterministic Operations
	Functional-Logic Programs:�Non-Ground Calls
	Summary
	Simple vs. Complex Terms, Ground vs. Non-Ground Terms, and Term Unification
	Terms as the Explicit Data Values of�FP and LP
	Taxonomy of Terms:�Two Trees with Overlapping Distinctions
	Simple Terms: Constants and Variables
	Complex Terms: Structures
	Term Unification:�Algorithmic Principles
	Term Unification:�Variable Dereferencing and Case Analysis
	Term Unification: Two Constants
	Term Unification: Constant and Structure
	Term Unification: Variable and Constant
	Term Unification: Variable and Structure
	Term Unification: Variable and Variable
	Term Unification: Two Structures (I)
	Term Unification: Two Structures (II)
	Complex Terms: Lists as cns Structures
	Complex Terms: Lists as cns Trees
	Complex Terms: N-ary List Notation
	Complex Terms: N-ary Tree Notation (I)
	Complex Terms: N-ary Tree Notation (II)
	List Unification
	Implementing Anonymous Variables as Freshly Generated Named Variables
	Summary
	Functional and Logic Definition Clauses
	Clauses as the Smallest�Functional and Logic Definition Units
	Taxonomy and Syntax of Clauses
	Resolution: The Computation Method�of Functional and Logic Programming
	Logic Clauses: A Fact in�English, Pseudo-Code, and Prolog/Relfun
	Logic Clauses: A Ground Call�Resolved via Unification
	Logic Clauses: Non-Ground Calls Resolved via Unification (I)
	Logic Clauses: Non-Ground Calls Resolved via Unification (II)
	Logic Clauses: Non-Ground Calls Resolved via Unification (III)
	Logic Clauses: Non-Ground Calls Resolved via Unification (IV)
	Logic Clauses: Non-Ground Calls Resolved via Unification (V)
	Functional Clauses: A Point in�English, Pseudo-Code, and Relfun
	Functional Clauses: A Ground Call Resolved via Unification
	Functional-Logic Clauses: A Non-Ground Call Resolved via Unification
	Logic Clauses: 1st Rule in�English, Pseudo-Code, and Prolog/Relfun
	Logic Clauses: A Ground Call�Resolved via Unification and a Subcall
	Functional Clauses: Mimic 1st Logic Rule in English, Pseudo-Code, and Relfun
	Functional Clauses: A Ground Call�Resolved via Unification and a “.=” Subcall
	Functional Clauses: Extend 1st Logic Rule in English, Pseudo-Code, and Relfun
	Logic Clauses: 2nd Rule in�English, Pseudo-Code, and Prolog/Relfun
	Logic Clauses: A Non-Ground Call�Resolved via Unification and Subcalls (I)
	Logic Clauses: A Non-Ground Call�Resolved via Unification and Subcalls (II)
	Functional Clauses: 2nd Rule in�English, Pseudo-Code, and Relfun
	Functional Clauses: A Ground Call�Resolved via Unification and Subcalls (I)
	Functional Clauses: A Ground Call�Resolved via Unification and Subcalls (II)
	Our Complete discount Program:�Logic Prolog/Relfun Version
	Our Complete discount Program:�Functional (Equational) Relfun Version
	Our Complete discount Program:�Functional-Logic Relfun Version
	Summary
	Recursion in the Definition of Clauses
	FP: A Tail-Recursive Natural-Number Addition Function (I)
	FP: A Tail-Recursive Natural-Number Addition Function (II)
	LP: A Tail-Recursive Natural-Number Addition Relation (I)
	LP: A Tail-Recursive Natural-Number Addition Relation (II)
	FLP: A Tail-Recursive Natural-Number Addition Relation
	FP: A Tail-Recursive Successor-Arithmetic Addition Function (I)
	FP: A Tail-Recursive Successor-Arithmetic Addition Function (II)
	LP: A Tail-Recursive Successor-Arithmetic Addition Relation (I)
	LP: A Tail-Recursive Successor-Arithmetic Addition Relation (II)
	LP: A Tail-Recursive Successor-Arithmetic Addition Relation (III)
	LP: A Tail-Recursive Successor-Arithmetic Addition Relation (IV)
	LP: An Equivalent Successor-Arithmetic Addition Relation (I)
	LP: An Equivalent Successor-Arithmetic Addition Relation (II)
	FP: A Tail-Recursive Float-Number Compound Interest Function
	LP: A Tail-Recursive Float-Number Compound Interest Relation
	FLP: A Tail-Recursive Float-Number Compound Interest Relation
	FLP and ‘while’ Program: A Tail-Recursive and an Iterative Interest Relation
	Instantiating cns Structures and the�N-ary List Notation
	The cns Function for Constructing Lists as Structures or in N-ary List Notation
	FP: A Recursive List-Concatenation Function (I)
	FP: A Recursive List-Concatenation Function (II)
	LP: A Tail-Recursive List-Concatenation Relation (I)
	LP: A Tail-Recursive List-Concatenation Relation (II)
	LP: A Tail-Recursive List-Concatenation Relation (III)
	LP: A Tail-Recursive List-Concatenation Relation (IV)
	FP: A Recursive List-Reversal�Function (I)
	FP: A Recursive List-Reversal�Function (II)
	LP: A Recursive List-Reversal�Relation (I)
	LP: A Recursive List-Reversal�Relation (II)
	Summary
	Higher-Order Operations�(Higher-Order Functions and Relations)
	Higher-Order Operations:�Operations as 1st-Class Citizens
	Taxonomy of 1st-Order and�Higher-Order Operations
	FP: Function Composition as a Higher-Order Function (I)
	FP: Function Composition as a Higher-Order Function (II)
	FP: Application of Compose as a Higher-Order Function
	FP: Definition of Compose as a Higher-Order Function
	FP: Computation with Simple Compose as a Higher-Order Function
	FP: Computation with Nested Compose as a Higher-Order Function
	LP: Relational Product as a Higher-Order Relation (I)
	LP: Relational Product as a Higher-Order Relation (II)
	LP: Application of Product as a Higher-Order Relation
	LP: Definition of Product as a Higher-Order Relation
	LP: Computation with Simple Product as a Higher-Order Relation
	LP: Computation with Nested Product as a Higher-Order Relation
	FP: A Function-Mapping Higher-Order Function
	FP: Definition of, and Computation with, the a2a Higher-Order Function
	LP: A Relation-Mapping Higher-Order Relation
	LP: Relation Variables as 2nd-Order Syntactic Sugar (I)
	LP: Relation Variables as 2nd-Order Syntactic Sugar (II)
	FLP: Function Variables as 2nd-Order Syntactic Sugar (I)
	FLP: Function Variables as 2nd-Order Syntactic Sugar (II)
	Summary
	Non-Deterministic Definitions and Calls
	What is Non-Determinism?
	Taxonomy of Deterministic vs. Non-Deterministic Definitions and Calls
	LP: Deterministic Product-Offer Definition and its Ground Deterministic Calls
	FP: Deterministic Product-Offer Definition and its Ground Deterministic ‘.=’ Calls
	LP: Deterministic Product-Offer Definition and its Non-Ground Deterministic Calls
	FP: Deterministic Product-Offer Definition and its Ground Deterministic Calls
	LP: Deterministic Product-Offer Definition and Deterministic/Non-Deterministic Calls
	FP: Non-Deterministic Product-Offer Definition and its Non-/Deterministic Calls
	LP: Deterministic Product-Offer Definition and its Non-Deterministic Calls
	FLP: Deterministic Product-Offer Definition and its Non-Deterministic Calls
	LP: Deterministic Offer+Contact Definitions for Non-/Deterministic Conjunctions
	LP: Proof Tree for the Non-Deterministic Call Conjunction
	FP: Non-Deterministic Offer+Contact Definitions for Non-/Deterministic Nestings
	FP: Proof Tree for the Non-Deterministic Call Nesting
	LP: Deterministic Offer+Site Definitions for Non-/Deterministic Conjunctions
	FP: Non-Deterministic Offer+Site Definitions for Non-/Deterministic Nestings
	LP: Deterministic Offer+Site Definitions for Deterministic Conjunctions
	FP: Non-Deterministic Offer+Site Definitions for Deterministic Nestings
	LP: Deterministic Offer+Site Definitions for Non-/Deterministic Conjunctions
	FLP: Non-Deterministic Offer+Site�Definitions for Non-/Deterministic Nestings
	LP: Deterministic Site Definition for Deterministic Conjunction
	FLP: Deterministic Site Definition for Deterministic Conjunction
	FP: Cartesian Product�by a Repeated Non-Deterministic Call
	FP: Subset of Cartesian Product�by a Named Non-Deterministic Call
	FP: Cartesian Product Multiset�via a Repeated Non-Deterministic Call
	FP: Subset of Cartesian Product Multiset�via a Named Non-Deterministic Call
	Preview of a Transitive Closure
	LP: A Recursive Non-Deterministic Relational Closure Definition
	LP: A Recursive Non-Deterministic Relational Closure Computation
	FP: A Recursive Non-Deterministic Functional Closure Definition
	FP: A Recursive Non-Deterministic Functional Closure Computation
	Summary
	The Relational-Functional Markup Language (RFML)
	A 10-Step Strategy to Publish and Reuse Declarative Programs as XML Markups
	Cross-Fertilizations of XML and Declarative Programming Languages
	Basics of the Relational-Functional Markup Language RFML
	Relational Facts: From Tables to Prolog
	Relational Facts: From Prolog to RFML
	Relational Rules: From Prolog to RFML
	Functional Facts (Definition Points):�From Unconditional Equations to RFML
	Functional Queries:�Joint Assertion and Query Language
	Functional Rules:�From Conditional Equations to Relfun
	Functional Rules:�From Relfun to RFML
	Relational-Functional Computations:�“What Items John Buys, and How”
	Relational-Functional Computations:�“What Items John Buys, and How”
	Relational-Functional Computations:�“What Items John Buys, and How”
	Relational-Functional Computations:�“What Items John Buys, and How”
	Relational-Functional Computations:�“What Items John Buys, and How”
	The RFML DTD (1)
	The RFML DTD (2)
	Summary
	Source-to-Source (Horizontal) Transformation
	What is Source-to-Source (Horizontal) Transformation?
	An Overview of Source-to-Source (Horizontal) Transformation
	Relationalizing Functions: Flattening�(Pseudo-Code Syntax)
	Relationalizing Functions: Flattening�(Relfun Syntax)
	Relationalizing Functions: Extra-Argument Insertion (Pseudo-Code Syntax)
	Relationalizing Functions: Extra-Argument Insertion (Relfun Syntax)
	Functionalizing Relations: Footening of Facts (Pseudo-Code Syntax)
	Functionalizing Relations: Footening of Facts (Relfun Syntax)
	Functionalizing Relations: Footening of Rules (Pseudo-Code Syntax)
	Functionalizing Relations: Footening of Rules (Relfun Syntax)
	Four Variants of Non-Deterministic�Even-Number Generation: Definitions
	Four Variants of Non-Deterministic�Even-Number Generation: Calls
	Four Variants of Non-Deterministic�Even-Number Generation: Flattened …
	Four Variants of Non-Deterministic�Even-Number Generation: … + Extrarged
	Four Variants of Non-Deterministic�Even-Number Generation: Horizoned
	Eliminating the N-ary List Notation: Untupping
	Deterministic Even-Number Generation: evenfn Source, Untupped, and Horizoned
	Summary

