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Principles of
Functional and Logic Programming
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About Knowledge Representation (KR),
Software Specification, and Programming

KRAI SpecificationSoftware

When
KRs / Specifications

are executable,
such as those studied here,
they can be considered as

(Declarative) Programs,
and their creation as Programming

≈
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Programming: Functional (FP), Logic (LP), 
and Functional-Logic (FLP) for Agent Core

Environment

(Procedural, Object-Oriented, Concurrent, …) Programming

Declarative Programming

Functional            
Programming       

Logic
Programming

F
L
P

Agent
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Top-Level Terminology for Functions (FP), 
Relations (LP), and Their Combinations (FLP)

FP:   Function

LP:   Relation (or Predicate)

FLP

Operation
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Preview of Foundations of
Functional-Logic Programming (FLP) 

FLP is founded on Horn logic with oriented equations in
rule conclusions, defining functions (applied to arguments),

thus specializing, e.g., W3C’s recent RIF-BLD,
founded on Horn logic with symmetric equations

head = foot  ⇐ body

head  :- body & foot.
is a specialization and Prolog-extending syntax of

http://www.w3.org/2005/rules/wiki/BLD
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Declarative Programs: Joint Treatment 
of Functional and Logic Programming

Declarative programs as executable specifications:
– Founded on mathematical-logical formalisms
– Easier analysis, verification, transformation, maintenance
– Efficiency through compilation and parallel execution
– Extensible to state-change/systems-level programming 

Reasons for a joint functional and logic treatment:
– Overlap of / commonality between many FP and LP notions
– Added value through combined functional-logic programs
– Shared interfaces to / combination with other (procedural, 

object-oriented, concurrent, …) programming paradigms
– Economy in learning/teaching declarative programming:

Will be practiced in the following, as implemented in Relfun
FP+LP ideas in other paradigms such as OOP and 
Relational DBs (e.g., FP: Generic Java, LP: SQL-99)

http://www.dfki.uni-kl.de/~vega/relfun.html
http://www.cis.unisa.edu.au/~pizza/gj/
http://infolab.stanford.edu/~ullman/fcdb/jw-notes06/recursion.html
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Basic Color-Coded Visualization of Operations

Operation

Argument1

Binding1

Argumentm

Bindingn

Value

...

...Intermediaries

Red: Input Arguments

Green: Output (Returned) Value
and (Result) Bindings

Orange: Thruput Intermediaries

FP LP
FLP
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(Multi-)Directionality Principle

Pure Functional Programming: Functions are 
operations with one direction of computation
from ‘input’ arguments to ‘output’ values (definable 
with oriented equations)
Pure Logic Programming: Relations are
operations with multiple directions of computation 
between ‘input’/‘output’ arguments (definable via 
unification)
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Declarative Programs as Data Flow Diagrams: 
Example – “Addition Agent” (I-O Modes)

add

FP: LP:

In InIn In

add

Out

Out

Undirected
operation:
Relation
with two-
directional 
(variable) 
binding flow

Directed
operation:
Function
with one-
directional 
(returned) 
value flow
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Declarative Programs as Data Flow Diagrams: 
Example – “Addition Agent” (Input)

add

FP: LP:

3 4 A=3 4

add
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Declarative Programs as Data Flow Diagrams: 
Example – “Addition Agent” (Output)

add

FP: LP:

3 43 4

add

7

A=7
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Declarative Programs as Data Flow Diagrams: 
Example – “Addition Agent” (I-O Modes)

add

FP: LP:

In InIn In

add

In/Out

Undirected
operation:
Relation

Directed
operation:
Function

In/Out



11-Apr-10CS 6715 FLP13

add

FP: LP:

73 4

Declarative Programs Used for Testing: 
Example – “Addition Agent” (Input)

3 4

add

7
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add

FP: LP:

7

Declarative Programs Used for Testing: 
Example – “Addition Agent” (Output)

3 4

success

3 4

add

7
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Declarative Programs in Symbolic Notation: 
Example – “Addition Agent”

FP: LP:
I-O Mode:
add: In × In → Out

I-O Modes:
add ⊆ In × In × In/Out

Input-Output Trace:

add(3, 4)
7

Input-Output Traces:

add(3, 4, A)
A=7

add(3, 4, 7)
success
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Declarative Programs as Data Flow Diagrams: 
Example – “Square-of-Add Agent” (Combination)

add

FP: LP:

add

square square Data ‘bus’
for logic 
variable

In In In/Out

In/Out

In In

In

Out

Out In
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Declarative Programs as Data Flow Diagrams: 
Example – “Square-of-Add Agent” (Input)

add

FP: LP:

add

square square

3 4 3 4 A=

R=



11-Apr-10CS 6715 FLP18

Declarative Programs as Data Flow Diagrams: 
Example – “Square-of-Add Agent” (Thruput)

add

FP: LP:

add

square square

3 4 3 4 A=7

R=7
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Declarative Programs as Data Flow Diagrams: 
Example – “Square-of-Add Agent” (Output)

add

FP: LP:

add

square square

3 4

49

3 4 A=7

R=497



11-Apr-10CS 6715 FLP20

Encapsulation Principle

Functional-Logic Programming: New operations
(functions and relations) become (user-)defined by 
encapsulating a combination of existing (built-in 
and/or user-defined) operations, and specifying the 
interface of that combination
Functional-Logic Programs can be tested through 
queries before plugging them – often abstracted –
into a ‘body’ conjunct (relational queries) or the 
‘foot’ (functional queries) of a rule (a new program),
encapsulating variables in the rule scope
Goal: Referential Transparency → Compositionality
(e.g. emphasized in a presentation by Tony Morris)

http://projects.tmorris.net/public/what-does-fp-mean/artifacts/0.3/chunk-html/index.html
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Declarative Programs as Data Flow Diagrams: 
Example – “Square-of-Add Agent” (Named)

add

FP: LP:

add

square square

squadd squadd

Encapsulated
definitions:

Returned value
of add function and
variable-A binding

of add relation
not visible outside
the ‘black boxes’ A

RM NM N
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Declarative Programs in Symbolic Notation: 
Example – “Square-of-Add Agent”

FP: LP:
Rewrite Traces of Unnamed Compound Agent:

squadd(M, N, R) :-
add(M, N, A),
square(A , R).

Definitions of Named Compound Agent:
squadd(M, N) :&

square(
add(M, N)).

Rewrite Traces of Named Compound Agent:

add(3, 4, A),  square(A, R)square(add(3, 4))
square(7) A=7:   square(7, R)
49 A=7,   R=49

squadd(3, 4, R)squadd(3, 4)
49 R=49



11-Apr-10CS 6715 FLP23

Syntax of Basic Declarative Definitions

squadd(M, N) :&
square(
add(M, N)).

squadd(M, N, R) :-
add(M, N, A),
square(A, R).

Oriented Equation:
head = foot
written here as
head :& foot.

Implication:
head ⇐ body
written as Prolog-like
head :- body.

FP: LP:

FLP:

head  :- body & foot.

head = foot  ⇐ body
written as Prolog-extending

squadd(M, N) :-
add(M, N, A) &
square(A).

Conditional Oriented Equation (FP-LP Amalgamation):
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Semantics of Purely Declarative Definitions

Horn logic’s
semantic structures

(Pure,1st-order) FP: (Pure) LP:
Horn logic with equality’s
semantic structures
including I= mapping

Can be specialized to Herbrand semantic structures
See RIF-FLD:
http://www.w3.org/2005/rules/wiki/FLD#Appendix:_A_Subframework_for_Herbrand_Semantic_Structures

See RIF-BLD for FLP with undirected (symmetric) equality:
http://www.w3.org/2005/rules/wiki/BLD#Semantic_Structures

Is further specialized here to directed (oriented) equality
See Relfun:
http://www.cs.unb.ca/~boley/papers/semanticsb.pdf

http://www.w3.org/2005/rules/wiki/FLD#Appendix:_A_Subframework_for_Herbrand_Semantic_Structures
http://www.w3.org/2005/rules/wiki/BLD#Semantic_Structures
http://www.cs.unb.ca/~boley/papers/semanticsb.pdf
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Generate-Test Separation/Integration 
Principle

Functional Programming: Functions separate the 
generation of values from testing their equality
Logic Programming: Relations integrate the 
generation and testing of their arguments
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add

FP: LP:

add

.=

In In InIn In

In

success/fail

Out
In success/fail

Declarative Programs Used for Testing: 
Example – “Addition Agent” (I-O Modes)

‘Single-assignment’
primitive used here for 
equality testing
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add

FP: LP:

add

.=

5

5

Declarative Programs Used for Testing: 
Example – “Addition Agent” (Input)

3 4 3 4
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add

FP: LP:

add

.=

5

5

Declarative Programs Used for Testing: 
Example – “Addition Agent” (Thru/Output)

3 4

7

3 4

fail
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add

FP: LP:

add

.=

5

5

3 4

7

3 4

fail

Declarative Programs Used for Testing: 
Example – “Addition Agent” (Output)

fail
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add

FP: LP:

add

.=

7

7

Declarative Programs Used for Testing: 
Example – “Addition Agent” (Input)

3 4 3 4
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add

FP: LP:

add

.=

7

7

Declarative Programs Used for Testing: 
Example – “Addition Agent” (Thru/Output)

3 4

7

3 4

success
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add

FP: LP:

add

.=

7

7

3 4

7

3 4

success

Declarative Programs Used for Testing: 
Example – “Addition Agent” (Output)

success
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FP: LP:

Declarative Testing Programs in Symbolic 
Notation: Example – “Addition Agent”

Rewrite Traces:

7 .= add(3, 4) add(3, 4, 7)

add(3, 4, 5)5 .= add(3, 4)

fail
5 .= 7 fail

success
7 .= 7 success
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List-Universality Principle

Functional-Logic Programming: (Nested) Lists are 
the universal ‘semi-structured’ complex datatype
of declarative programming – predating XML trees.
Functional-Logic Programming: Lists can be 
reduced to binary structures (see a later chapter)
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Declarative Programs Operating on Lists:
Example “Length-and-Shape Agents”

A list is a – comma-separated – finite sequence
e1 , e2 , …, en of elements collected into a unit as a 
new – square-bracketed – element [e1 , e2 , …, en]
The (natural-number) length of a list [e1 , e2 , …, en]
is the number n of its elements
The (list-pattern) shape for a natural number n
is a list [x1 , x2 , …, xn] of n unspecified elements
We now give declarative “Length-Shape Agents”
as a functional program length and its (non-ground, 
here pattern-valued) functional ‘inverse’ shape, and 
then as a single logic program shalen
The following chapters study the FP/LP trade-offs
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Invertibility Principle

Functional Programming: A function and its 
inverses are usually specified via multiple 
definitions
Pure Logic Programming: A relation and its 
inverses are usually specified via a single 
definition
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Function length as Data Flow Diagram

.=

length

presuc

Z

N

M

length

[X|Z][]

0length
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Function shape as Data Flow Diagram

.=

shape

presuc
M

shape

N0

[]shape

Z

[X|Z]
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Relation shalen as Data Flow Diagram

shalen presuc
M

shalen

N0[]

shalen

Z

[X|Z]

N
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Relation shalen as Data Flow Diagram

shalen presuc
M

shalen

N0[]

shalen

Z

[X|Z]

N
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Functional Programs length and shape
Become One Logic Program shalen

shalen([],0).
shalen([X|Z],N) :- shalen(Z,M), presuc(M,N).

Logic program
(both directions)

length([]) :& 0.
length([X|Z]) :- M .= length(Z), presuc(M,N) & N.

Functional program
(normal)

‘First,Second,...|Rest’ list patternshape(0) :& [].
shape(N) :- presuc(M,N), Z .= shape(M) & [X|Z].

Functional program
(‘inverse’)

If body conjunction succeeds, return foot

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Logic program
(auxiliary)
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Functional Programs length and shape
Become One Logic Program shalen

shalen([],0).
shalen([X|Z],N) :- shalen(Z,M), presuc(M,N).

Logic program
(both directions)

length([]) :& 0.
length([X|Z]) :- M .= length(Z), presuc(M,N) & N.

Functional program
(normal)

‘First,Second,...|Rest’ list patternshape(0) :& [].
shape(N) :- presuc(M,N), Z .= shape(M) & [X|Z].

Functional program
(‘inverse’)

If body conjunction succeeds, return foot

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Logic program
(auxiliary)
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Computation with Functional Program 
length as Term Rewriting: Stack Trace

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Functional program
(normal)

Logic program
(auxiliary)

length([a,b,c]) 3
length([b,c]) 2
length([c]) 1
length([]) 0

Functional trace

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

length([]) :& 0.
length([X|Z]) :- M .= length(Z), presuc(M,N) & N.
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Computation with Functional Program 
shape as Term Rewriting: Stack Trace

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Functional program
(‘inverse’)

Logic program
(auxiliary)

shape(3)  [X',X'',X''']
shape(2)  [X'',X''']
shape(1)  [X''']
shape(0)  []

Functional trace

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).

shape(0) :& [].
shape(N) :- presuc(M,N), Z .= shape(M) & [X|Z].
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Computations with Logic Program
shalen as Term Rewriting: Stack Traces

presuc(0,1).
presuc(1,2).
presuc(2,3).
. . .

Logic program
(auxiliary)

shalen([X',X'',X'''],3)
shalen([X'',X'''],2)
shalen([X'''],1)
shalen([],0)

Logic traces

shalen([],0).
shalen([X|Z],N) :- shalen(Z,M), presuc(M,N).

Logic program
(both)

shalen([a,b,c],3)
shalen([b,c],2)
shalen([c],1)
shalen([],0)

LI

Alternatively (always giving one solution):
presuc(M,N) :- nonvar(M) ! N .= 1+(M).
presuc(M,N) :- nonvar(N) ! M .= 1-(N).
presuc(0,1).



11-Apr-10CS 6715 FLP46

Nesting/Conjunction Principle

Functional-Logic Programming: Properties of 
functional nestings correspond to properties of 
relational conjunctions (to be exemplified with 
generalized inverse properties)
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Generalized Inverse Property of the
Functional Programs length and shape (I)

length(shape(n))   =   n

shape(length([e1 , e2 , …, en]))   =   [X' , X'' , …, X'...']

Most general pattern
for lists of length n

length(shape(3))   =   3

shape(length([a,b,c]))   =   [X', X'', X''']

n

General – Nestings:

Examples – Nestings:



11-Apr-10CS 6715 FLP48

Generalized Inverse Property of the
Functional Programs length and shape (II)

L.=shape(n) & length(L)   =   n

I .=length([e1 , e2 , …, en]) & shape(I)   =   [X' , X'' , …, X'...']
Most general pattern
for lists of length n

L.=shape(3) & length(L)   =   3

I .=length([a,b,c]) & shape(I)   =   [X', X'', X''']

n

General – Nestings Flattened to Conjunctions:

Examples – Nestings Flattened to Conjunctions:
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Generalized Self-Inverse Property of the 
Logic Program shalen

shalen(L,n), shalen(L,I)                         binds  I = n

shalen([e1 , e2 , …, en],I), shalen(L,I)    binds
L= [X' , X'' , …, X'...']

Most general pattern
for lists of length n

shalen(L,3), shalen(L,I)             binds  I = 3

shalen([a,b,c],I), shalen(L,I)      binds  L = [X', X'', X''']

General – Conjunctions:

Examples – Conjunctions:

n
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Unification Principle

Logic Programming: Uses unification to equate, 
analyze, and refine complex data structures, in 
particular lists; also – with programs used as data –
for invoking operations
Functional Programming: Can generalize 
asymmetric pattern-instance matching to 
symmetric pattern-pattern unification as
in Logic Programming
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Duplication of Non-Ground List Values:
Generating Matrix Patterns with shalen (I)

shalen(L,n) & [L, ...,L]   =   [[X' , X'' , …, X'...']
.  . .

[X' , X'' , …, X'...']]

(m,n)-Matrices of Equal Rows:

shalen(L,3) & [L,L]      =   [[X', X'', X'''],
[X', X'', X''']]

(2,3)-Matrices of Equal Rows:

n

n m
m
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Refinement of Non-Ground List Values:
Generating Matrix Patterns with shalen (II)

shalen(L,n), [C,C|R] .= L & [L, ...,L]   =   [[X'' , X'' , …, X'...']
.  .  .

[X'' , X'' , …, X'...']]

(m,n)-Matrices of Equal Rows and 1st = 2nd Column:

shalen(L,3), [C,C|R] .= L & [L,L]      =   [[X'', X'', X'''],
[X'', X'', X''']]

(2,3)-Matrices of Equal Rows and 1st = 2nd Column:

n

n m
m

‘Single-assignment’
primitive used for 

unification
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Refinement of Non-Ground List Values:
Generating Matrix Patterns with shalen (III)

shalen(L,n), [D,A,D|S] .= L & [L, ...,L]  = [[X''', X'', X''', …, X'...']
.  .  .

[X''', X'', X''', …, X'...']]

(m,n)-Matrices of Equal Rows and 1st = 3rd Column:

shalen(L,3), [D,A,D|S] .= L & [L,L]      =   [[X''', X'', X'''],
[X''', X'', X''']]

(2,3)-Matrices of Equal Rows and 1st = 3rd Column:

n

n m
m

‘Single-assignment’
primitive used for 

unification
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Double Refinement of Non-Ground List Values:
Generating Matrix Patterns with shalen (IV)

shalen(L,n), [C,C|R] .= L,
[D,A,D|S] .= L & [L, ...,L]  =  [[X''', X''', X''', …, X'...']

.  .  .
[X''', X''', X''', …, X'...']]

(2,3)-Matrices of Equal Rows and 1st=2nd=3rd Column:

shalen(L,3), [C,C|R] .= L,
[D,A,D|S] .= L & [L,L]      =   [[X''', X''', X'''],

[X''', X''', X''']]

(m,n)-Matrices of Equal Rows and 1st=2nd=3rd Column:
n

n m
m

‘Single-assignment’
primitive used for 

unification
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Amalgamation/Integration Principle

Functional-Logic Amalgamation: Function and 
relation calls can be combined in the same
definition where appropriate
Functional-Logic Integration: Functions and 
relations can inherit each others’ expressiveness; 
e.g., in FLP certain functions – even when mapping 
from ground (variablefree) lists to ground lists –
can be more easily defined using intermediate
non-ground lists (generally, partial data structures), 
as pioneered by relation definitions in LP
– Partial data structures may be dynamically generated with 

fresh variables that make operation calls succeed 
(paradigm: zip or pairlists function)
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Functional-Relational Call Amalgamation:
Quicksort Example

Directed, Conditional Equations:
qsort([]) :& [].
qsort([X|Y]) :-

partition(X,Y,Sm,Gr) &
cat(qsort(Sm),tup(X|qsort(Gr))).

Auxiliary Function (append or catenate):
cat([],L) :& L.
cat([H|R],L) :& tup(H|cat(R,L)).

Subrelation call with
two output variables

Subfunction call with two
embedded calls becomes 

value of main function call 

‘Duplicates’ eliminated 

Rules and Fact:
partition(X,[Y|Z],[Y|Sm],Gr) :-

<(Y,X),  partition(X,Z,Sm,Gr).
partition(X,[Y|Z],Sm,[Y|Gr]) :-

<(X,Y),  partition(X,Z,Sm,Gr).
partition(X,[X|Z],Sm,Gr) :-

partition(X,Z,Sm,Gr).
partition(X,[],[],[]).
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Higher-Order Operations Defined:
Quicksort Parameterizedby ComparisonRelation 

qsort[Cr]([X|Y]) :-
partition[Cr](X,Y,Sm,Gr) &
cat(qsort[Cr](Sm),tup(X|qsort[Cr](Gr))).

partition[Cr](X,[Y|Z],[Y|Sm],Gr) :-
Cr(Y,X),  partition[Cr](X,Z,Sm,Gr).

. . .

before([X1,Y1],[X2,Y2]) :- string<(X1,X2).

Functional and relational arguments plus values. User-defined 
comparison relations Cr. Restriction to named functions and 
relations (no λ-expressions), as they are dominant in practice 
and more easily integrated (avoids λ/logic-variable distinction 
and higher-order unification): apply-reducible to 1st order. 

Comparison relation
becomes called there

Comparison relation
handed through here
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Higher-Order Operations Called:
Quicksort Parameterizedby ComparisonRelation 

Cr bound to <:
>>>>>> qsort[<]([3,1,4,2,3])
[1,2,3,4]

Cr bound to before:
>>>>>> qsort[before]([[d,Y1],[a,Y2],[l,Y3],[l,Y4],[a,Y5],[s,Y6]])
[[a,Y2],[d,Y1],[l,Y3],[s,Y6]]
Y4=Y3
Y5=Y2
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pairlists([],[]) :& [].
pairlists([X|L],[Y|M]) :&

tup([X,Y]|pairlists(L,M)).

>>>>>> pairlists([d,a,l,l,a,s],R)
[[d,Y1],[a,Y2],[l,Y3],[l,Y4],[a,Y5],[s,Y6]]
R=[Y1,Y2,Y3,Y4,Y5,Y6]

Function calls can – like relation calls – use (free) logic 
variables as actual arguments and, additionally, return them 
as values. Likewise, non-ground terms, which contain logic 
variables, are permitted. Processing is based on unification:
Call with R creates inner Y1,Y2, ..., used as 2nd pair elements

Non-ground pair list term 
(‘partial data structure’) 

containing six logic variables

Flat list of these logic variables

Logic Variables and Non-Ground Terms:
pairlists Example
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numbered([],N).
numbered([[X,N]|R],N) :- numbered(R,+(N,1)).

>>>>>> numbered([[a,Y2],[d,Y1],[l,Y3],[s,Y6]],1)
true
Y2=1,   Y1=2,   Y3=3,   Y6=4

Call-by-value nestings allow (built-in and user-defined) 
functions to be nested into other such functions or relations.
Built-in function + nested here into user-defined relation 
numbered

Instantiate logic variables in 2nd pair elements
with successive integers initialized by main call

Function Calls Nested in Operation Calls:
numbered Example 
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Integrated Functional-Logic Programming
Using Intermediate Non-Ground Terms: 
serialise Example

Task (D.H.D. Warren, L.M. Pereira, F. Pereira 1977):
Transform a list of symbols into the list of their 
lexicographic serial rank numbers
Example: [d,a,l,l,a,s] [2,1,3,3,1,4]

Specific Solution for Example:
>>>>>> numbered(qsort[before](pairlists([d,a,l,l,a,s],R)),1)

& R
[2,1,3,3,1,4],   R=[2,1,3,3,1,4]

General Solution by Abstraction [d,a,l,l,a,s] = L:
serialise(L) :-
numbered(qsort[before](pairlists(L,R)),1)
& R.

http://portal.acm.org/citation.cfm?id=806939
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Derivation of the serialise Solution

>>>>>> pairlists([d,a,l,l,a,s],R)
[[d,Y1],[a,Y2],[l,Y3],[l,Y4],[a,Y5],[s,Y6]]
R=[Y1,Y2,Y3,Y4,Y5,Y6]

Intermediate non-ground 
pair list (unsorted)

Non-ground result list ‘waiting’ for bindings

Intermediate non-ground
pair list (sorted, w/o ‘duplicates’)

>>>>>> qsort[before]([[d,Y1],[a,Y2],[l,Y3],[l,Y4],[a,Y5],[s,Y6]])
[[a,Y2],[d,Y1],[l,Y3],[s,Y6]]
Y4=Y3
Y5=Y2

Bindings of inner variables produced

>>>>>> numbered([[a,Y2],[d,Y1],[l,Y3],[s,Y6]],1)
true
Y2=1,   Y1=2,   Y3=3,   Y6=4

Bindings used for result list instantiation

serialise([d,a,l,l,a,s]) :-
numbered(qsort[before](pairlists([d,a,l,l,a,s],R)),1)
&  R

[2,1,3,3,1,4]
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Online Execution of serialise Specification:
serialise([d,a,l,l,a,s,t,e,x,a,s,u,s,a])

t1() :& serialise([d,a,l,l,a,s]).
t2() :& serialise([d,a,l,l,a,s,t,e,x,a,s,u,s,a]).

serialise(L) :-
numbered(qsort[before](pairlists(L,R)),1)
& R.

pairlists([],[]) :& [].
pairlists([X|L],[Y|M]) :&

tup([X,Y]|pairlists(L,M)).

numbered([],N).
numbered([[X,N]|R],N) :- numbered(R,+(N,1)).

qsort[Cr]([]) :& [].
qsort[Cr]([X|Y]) :-

partition[Cr](X,Y,Sm,Gr) &
cat(qsort[Cr](Sm),tup(X|qsort[Cr](Gr))).

partition[Cr](X,[Y|Z],[Y|Sm],Gr) :-
Cr(Y,X),  partition[Cr](X,Z,Sm,Gr).

partition[Cr](X,[Y|Z],Sm,[Y|Gr]) :-
Cr(X,Y),  partition[Cr](X,Z,Sm,Gr).

partition[Cr](X,[X|Z],Sm,Gr) :-
partition[Cr](X,Z,Sm,Gr).

partition[Cr](X,[],[],[]).

before([X1,Y1],[X2,Y2]) :- string<(X1,X2).

cat([],L) :& L.
cat([H|R],L) :& tup(H|cat(R,L)).

R E L F U N Interface Page
(http://www.dfki.uni-kl.de/~vega/relfun-cgi/cgi-bin/rfi.cgi)

Database: PROLOG Syntax Query (batch):
t1()

t2()

Result:

trace pairlists numbered qsort[Cr]

relfun
rfi-p>  t1()
[2,1,3,3,1,4]
rfi-p>
rfi-p>  t2()
[2,1,4,4,1,5,6,3,8,1,5,7,5,1]

Copy & paste
ready

Try again
with tracer Query (batch):

http://www.dfki.uni-kl.de/~vega/relfun-cgi/cgi-bin/rfi.cgi
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Summary

(Multi-)Directionality of declarative computation
Encapsulation of declarative operation combinations
Generate-Test Separation/Integration in FP/LP
List-Universality as complex declarative datatype
Invertibility via multiple/single definitions in FP/LP
Nesting/Conjunction correspondence of properties 
Unification to equate, analyze, refine data in LP (FP)

non-grounde.g.   FLP operation: Ground Ground

Amalgamation and Integration of function & relations,
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Introduction to
Functional and Logic Programming

Chapter 1
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Declarative Programs: Running Example
“Bilingual Antonym Agent”

An antonym of a word in some natural language is a 
word having the opposite meaning (e.g., hot – cold)
Suppose we want to program an Antonym Agent for 
both English and French based on a single catalog 
of antonyms (for English words) and on translators 
(between French and English), as found in the Web:
As in some Semantic Web approaches, we’ll use a 
single ‘canonical’ language for internal operations
The development of this “Bilingual Antonym Agent”
will be used as a running example for discussing 
declarative programs
It will permit to introduce FP and LP, to show some 
of their trade-offs, and to motivate FLP
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Functional Programs:
Basic Notions

A function call applies a function to (actual) 
arguments and returns a value – no side-effects
– Each argument may or may not be a reduced value

(completely evaluated)
– The application may start before all arguments are 

reduced (e.g., in call-by-need / lazy strategy) or after all 
arguments are reduced (in call-by-value / eager strategy)

– In 1st-order (higher-order) functional programming
arguments and returned values cannot (can) be functions

A functional clause associates a function name and 
(formal) arguments with [a possible conjunction of 
ground, deterministic relation calls and] a term (e.g., 
a constant or variable) or a function-call nesting
A functional program is a set of functional clauses
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Functional Definition Example:
“French Antonym Agent”

We define a function fr-antonym, which – applied 
to an argument Mot (French for ‘word’) – returns 
the value of the function nesting
– en2fr applied to en-antonym applied to fr2en
– applied to Mot

The functions fr2en and en2fr perform translations 
to and from the function en-antonym
This “English Antonym Agent” en-antonym acts as 
a catalog mapping English words to their antonyms 
(in both directions)
Variables start with a capital letter; constants and 
function (and relation) names, with a small letter
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Functional Programs: ReturnedValuesfrom 
Nested Calls and Pointwise Definitions

fr-antonym(Mot)    = en2fr(en-antonym(fr2en(Mot)))

en-antonym(black) = white
en-antonym(white) = black
en-antonym(big) = small
en-antonym(small) = big
. . .

fr2en(noir) = black
fr2en(blanc) = white
fr2en(grand) = big
fr2en(petit) = small
. . .

en2fr(black) = noir
en2fr(white) = blanc
en2fr(big) = grand
en2fr(small) = petit
. . .

Pointwise Definitions

Definition by
Function Nesting

Returned
Values

Returned Values
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Functional Computation Example:
“French Antonym Agent”

The functional agent fr-antonym – applied to the 
argument noir – delegates subtasks as follows:
– fr-antonym’s argument noir is passed to the agent

fr2en for French-to-English translation
– fr2en’s returned value black is passed to the agent

en-antonym for English antonym look-up
– en-antonym’s value white is passed to the agent

en2fr for English-to-French translation
Finally, en2fr’s value blanc is passed out as the 
returned value of the agent fr-antonym
In each computation step the function application 
to be selected next is underlined; results are put in 
italics
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Functional Programs:
Call-by-Value Computation of Nestings

fr-antonym(noir) = en2fr(en-antonym( fr2en(noir) ))
= en2fr( en-antonym( black ) )
= en2fr( white )
= blanc

en-antonym(black) = white
en-antonym(white) = black
en-antonym(big) = small
en-antonym(small) = big

fr2en(noir) = black
fr2en(blanc) = white
fr2en(grand) = big
fr2en(petit) = small

en2fr(black) = noir
en2fr(white) = blanc
en2fr(big) = grand
en2fr(small) = petit

Call-by-value
Computation
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Functional Computation Example:
Web Services

The function composition en2fr°en-antonym°fr2en 
is pre-specified here by the agent fr-antonym;
a corresponding Web service should find and 
compose its subfunctions ‘on-the-fly’ in the Web:
A library of functions could use UDDI “meta service”
(Universal Description, Discovery and Integration)
The three subfunction calls in a fr-antonym Web 
service could use remote procedure calls of the 
XML-based SOAP (Simple Object Access Protocol)
Because of its lack of side-effects, this pure kind of
Web-distributed functional programming provides
a simplified use case for Web Services

http://www.uddi.org/
http://www.w3.org/TR/SOAP/
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Functional Definition Example: 
“Bidirectional French-English Translator”

We define a function bitranslate, which – applied to 
an argument X – returns the value of
– en2fr applied to X if X is an English word
– fr2en applied to X if X is a French word

The auxiliary relations english and french just
‘test-call’ the functions en2fr and fr2en, respectively
Since a given argument (such as pain) can be both
an English and a French word, bitranslate will be 
treated as a non-deterministic function, which can
enumerate two values (such as douleur and bread)
Single-assignments in condition parts here use ‘=’;
anonymous variables are written as ‘_’
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Functional Programs:
Case Analysis (and Pointwise Definitions)

Definition by
Case Analysis

bitranslate(X)    =
fr2en(X) if french(X)

en2fr(X) if english(X)

fr2en(noir) = black
fr2en(blanc) = white
fr2en(grand) = big
fr2en(petit) = small
. . .

en2fr(black) = noir
en2fr(white) = blanc
en2fr(big) = grand
en2fr(small) = petit
. . .

Pointwise Definitions

english(X) if   _ = en2fr(X)

french(X) if   _ = fr2en(X)
Auxiliary
Definition



11-Apr-10CS 6715 FLP76

Functional Definition Example:
“Generic Antonym Agent”

We define a function antonym, which – applied to 
an argument X – generically returns the value of 
the function
– en-antonym applied to X if X is an English word
– fr-antonym applied to X if X is a French word

However, in order to exemplify nested calls within a 
case analysis, fr-antonym will be unfolded into its 
definition’s right-hand side
Since many words (such as bread) do not have an 
antonym, all antonym functions are partial, and fail
for these arguments; for certain words (e.g., pain)
the internal non-determinism of antonym thus 
disappears before it can spread (e.g., leaving us joy)
An alternative syntax for case analysis introduces a 
then part that returns the function’s value
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Functional Programs: Case Analysis 
and Returned Values from Nested Calls 

Definitions by
Case Analysis

antonym(X)  =
en2fr(en-antonym(fr2en(X))) if french(X)

en-antonym(X) if english(X)

antonym(X) if french(X) then en2fr(en-antonym(fr2en(X)))

Function Nesting as
Returned Value

if english(X) then en-antonym(X)antonym(X)
Clause Syntax for Case Analysis and Returned Values:

Function Nesting as
Returned Value



11-Apr-10CS 6715 FLP78

Logic Programs:
Basic Notions

A relation call (‘query’) applies a relation to (actual) 
arguments and yields fail or success plus bindings 
of logic variables – no reassignment side-effects
– Each argument must from the outset be a reduced value

(completely evaluated)
– Roughly speaking, in 1st-order (higher-order) logic 

programming arguments and binding values cannot (can) 
again be relations; actually, only the Horn-logic subset of 
1st-order logic is normally used in LP

A relational clause associates a relation name and 
(formal) arguments with a [possibly empty] conjunc-
tion of (non-)ground, (non-)deterministic relation calls
A logic program is a set of relational clauses 



11-Apr-10CS 6715 FLP79

Logic Definition Example:
“French Antonym Agent”

We now define fr-antonym as a relation, which is
applied to an input argument Mot and binds an 
output argument Franto (French antonym) via the 
following conjunction of relation calls:
– A relation fr4en uses Mot, as input, to bind Word,

as output, to the French-to-English translation result
– A relation en-antonym uses this Word, as input, to bind

Enanto, as output, to the antonym-catalog look-up result
– The relation fr4en now uses Enanto, as input, to bind 

Franto, as output (also, of fr-antonym), to the English-to 
-French translation result

The relational fr4en is ‘economically’ accessed
in two I/O modes, saving two functions; for the 
relational en-antonym, its symmetry prevents this
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Logic Programs: Variable Bindings from 
Conjunctive Calls (and Base Relations)

fr-antonym(Mot,Franto)   if fr4en(Mot,Word) and
en-antonym(Word,Enanto) and
fr4en(Franto,Enanto)

en-antonym(black,white)
en-antonym(white,black)
en-antonym(big,small)
en-antonym(small,big)
. . .

fr4en(noir,black)
fr4en(blanc,white)
fr4en(grand,big)
fr4en(petit,small)
. . .

Rule:
Definition by

Conjoined Calls

Facts: Base Relations

Variable
Bindings
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Logic Computation Example:
“French Antonym Agent”

The logic agent fr-antonym with input argument 
Mot = noir and output argument Franto = Result
(a request variable) delegates subtasks as follows:
– fr-antonym’s binding Mot = noir is passed to the agent

fr4en for French-English translation
– fr4en’s binding Word = black is passed to the agent

en-antonym for English antonym look-up
– en-antonym’s binding Enanto = white is passed again to 

fr4en for the inverse task of English-French translation
Finally, fr4en’s binding Franto = Result = blanc is 
passed out as the result binding of the agent
fr-antonym
In each computation step the next relation 
application(s) is/are underlined; results are italicized
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Logic Programs:
Left-to-Right Computation of Conjunctions

fr-antonym(noir,Result) if fr4en(noir,Word) and
en-antonym(Word,Enanto) and
fr4en(Result,Enanto)

if fr4en(noir,black) and
en-antonym(black,Enanto) and
fr4en(Result,Enanto)

if en-antonym(black,white) and
fr4en(Result,white)

if fr4en(blanc,white) if true

en-antonym(black,white)
en-antonym(white,black)
en-antonym(big,small)
en-antonym(small,big)

fr4en(noir,black)
fr4en(blanc,white)
fr4en(grand, big)
fr4en(petit,small)

Left-Right Computation
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Logic Definition Example:
“Bidirectional French-English Translator”

We now define bitranslate as a relation, which is
applied to an input argument X and binds an output 
argument Y as follows:
– fr4en uses input X as 2nd argument and

output Y as 1st argument if X is an English word
– fr4en uses input X as 1st argument and

output Y as 2nd argument if X is a French word
The auxiliary relations english and french just
‘test-call’ the relation fr4en, in two ways
Since a given argument (such as pain) can be both
an English and a French word, bitranslate is a
non-deterministic relation, which enumerates two 
values (such as douleur and bread)
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Logic Programs: Case Analysis (with 
Conjunctive Calls and Base Relations)

fr4en(noir,black)
fr4en(blanc,white)
fr4en(grand,big)
fr4en(petit,small)
. . .

Rules:
Definition by Case Analysis

with Conjoined Calls

bitranslate(X,Y) if english(X) and fr4en(Y,X)
bitranslate(X,Y) if french(X) and fr4en(X,Y)

Facts: Base Relation

english(X) if fr4en(_,X)
french(X) if  fr4en(X,_)

Auxiliary
Definition
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Logic Definition Example:
“Generic Antonym Agent”

We now define antonym as a relation, which is
applied to an input argument X and binds an output 
argument Y generically to the binding of the relation
– en-antonym of input X, output Y if X is an English word
– fr-antonym of input X, output Y if X is a French word

However, in order to exemplify conjunctive calls 
within a case analysis, fr-antonym will be unfolded 
into its definition’s right-hand side
Since many words (such as bread) do not have an 
antonym, all antonym relations are partial, and fail
for these arguments; for certain words (e.g., pain)
the internal non-determinism of antonym thus 
disappears before it can spread (e.g., leaving us joy)
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Logic Programs:
Case Analysis and Conjunctive Calls 

Definition by
Case Analysis

Conjoined Calls

antonym(X,Y) if english(X) and en-antonym(X,Y)

antonym(X,Y) if french(X) and
fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto)

english(X) if fr4en(_,X)
french(X) if  fr4en(X,_)

Auxiliary
Definition
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Logic Optimization Example:
“Generic Antonym Agent”

Analyzing this declarative antonym program, we 
can see that the french relation call is redundant, 
since its ‘test-call’ of fr4en is covered by another 
fr4en call:
– The second antonym clause calls french(X),

which can be statically unfolded to fr4en(X,_)
– This can be optimized away, since the conjunction 

already contains the call fr4en(X,Word)
In each optimization step the next abstract relation 
application(s) is/are underlined; results are italicized
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Logic Programs:
Static Optimization in Conjunctive Calls 

antonym(X,Y) if french(X) and
fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto)

french(X) if  fr4en(X,_)

antonym(X,Y) if fr4en(X,_) and
fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto)

antonym(X,Y) if fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto)
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Functional-Logic Programs:
Elementary Notions

• A functional-logic program embodies the following 
combination of FP and LP:
1) A relation call can have nested function calls as 

arguments
2) The value of a function call can be assigned to a logic 

variable via single-assignments 
3) A relation definition can use relation calls as in 1) and 

function calls as in 2)
4) A function definition can use a conjunction of non-ground,

non-deterministic relation calls in its condition (if) part and 
utilize their local bindings in its value-returning (then) part 
(as exemplified below)

• The notions of function and relation can be further 
combined for tightly integrated FLP
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Functional-Logic Definition Example:
“Generic Antonym Agent”

We again define antonym as a function, which
– applied to an argument X – generically returns as 
its value the (local) output binding Y of the relation
– en-antonym of input X, output Y if X is an English word
– fr-antonym of input X, output Y if X is a French word

Again, in order to exemplify nested calls within a 
case analysis, fr-antonym will be unfolded into its 
definition’s right-hand side
Advantages of FLP form for the antonym operation:
– From FP: Captures directedness of antonym operation:

its symmetry prevents two useful I/O modes in LP form 
– From LP: Internally exploits I/O invertibility of fr4en:

replaces separate functions fr2en and en2fr of FP form 
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Functional-Logic Programs: Case Analysis,
Conjunctive Calls, and Returned Values 

Definition by
Case Analysis

Conjoined Calls

antonym(X) if   english(X) and en-antonym(X,Y) then Y

antonym(X) if french(X) and
fr4en(X,Word) and
en-antonym(Word,Enanto) and
fr4en(Y,Enanto) then Y

Returned
Values

Local
Variable
Bindings

Local
Variable
Bindings
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Functional-Logic Programs:
Non-Deterministic Operations

For English and French, or other natural languages 
with overlapping dictionaries, our earlier function
bitranslate becomes a non-deterministic function, 
for some arguments enumerating a set of values: 
bitranslate(pain) = {douleur, bread}
Such a function – mapping to a power set – could 
also be regarded as a relation, except that its 
computation is specified in a directed manner:
bitranslate(pain,R) = {R=douleur, R=bread}
Hence, non-deterministic functions are often seen 
as belonging to FLP rather than FP
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Functional-Logic Programs:
Non-Ground Calls

1) FP uses only variablefree or ground function calls: 
fr2en(noir) = black, fr2en(blanc) = white, …

2) FLP also permits non-ground function calls as in:
fr2en(A) = {black/A=noir, white/A=blanc, …}

3) Moreover, 2) is a non-deterministic function call,
enumerating returned values and the bindings that 
the request variable A assumes for them

4) LP relation calls equivalent to 1) are non-ground:
fr4en(noir,R) if R=black, fr4en(blanc,R) if R=white, …

5) The LP relation call equivalent to 2) again is
a non-ground and non-deterministic call:
fr4en(A,R) if {A=noir/R=black, A=blanc/R=white, …}
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Summary

Notions of Functional and Logic Programming can 
be treated in a joint manner
FP’s nested calls correspond to LP’s conjoint calls; 
case analysis works similarly in both
Functional-Logic Programming permits a further 
integration of both declarative paradigms
All introduced FP, LP, and FLP constructs run in 
Relfun (and are marked up in Functional RuleML)
This introduction has focused 1st-order operations 
and deliberately used several further restrictions
The next chapter will overcome the restriction of 
only using simple data (FP: Datafun; LP: Datalog)

http://www.relfun.org/
http://www.ruleml.org/fun/
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Simple vs. Complex Terms, Ground vs. 
Non-Ground Terms, and Term Unification

Chapter 2
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Terms as the Explicit Data Values of
FP and LP

Terms are used as – possibly complex – values 
passed explicitly as arguments to functions and 
relations, and returned as values from functions
Terms can also be stored permanently in relation 
and function definitions, and temporarily, in (logic) 
variables, which are renamed on each definition use
Variables in FP and LP are single-assignment, i.e.
– once assigned – variables cannot be re-assigned
(their values can be refined via single-assignments 
to possible other variables within complex values)
A complex value may have a constructor indicative 
of its arity and argument types; but FP+LP variables
are still often untyped (types can be added: RuleML)

http://www.dfki.uni-kl.de/~vega/relfun+/RFM-Guide/node16.html#pet
http://www.ruleml.org/indoo/
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Taxonomy of Terms:
Two Trees with Overlapping Distinctions 

•Term
•Simple Term

•Constant
•Symbol
•Number

•Variable
•Named

-Upper-cased
-Underscored

•Anonymous
•Complex Term

•Structure (application of constructor to terms) 
•List (short form for nested binary cns structure)

•Term
•Ground (variablefree)
•Non-ground (variableful)

•FP permits only ground terms
as arguments and returned values
•LP also permits non-ground terms
as arguments
•FLP even permits non-ground terms 
as arguments and as returned values
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Simple Terms: Constants and Variables

Examples:
Symbols: u i john mary peter susan
Numbers: 9 42 -1 -89 -3.14 -276.0131

An (individual) constant is a name for a given entity.
It starts with a lower-case letter, a digit, or with “-”

A (logic) variable is a place-holder for some term, 
where all occurrences of the same named variable 
must stand for the same term.
A variable starts with an upper-case letter or with 
an “_” (a single “_” acts as an anonymous variable)

Examples:
Upper-cased: X Y Word Mot Anon
Underscored: _9 _42 _rs2 _mot _
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Complex Terms: Structures

Examples: c rs duo addr

A constructor is a name for a fixed structure former 
much like an XML start tag (in LP often called a 
functor or – different from FP – a function symbol)

A structure is a ‘[…]’-application of a constructor to
a sequence of zero or more ‘,’-separated argument 
terms, possibly including other structured terms (then
called a nested structure; otherwise, a flat structure)

Examples: Flat structures: Nested structures:
Ground: c[] rs[1] duo[u,i] addr[john,loc[ny,ny]]
Non-ground: rs[_] duo[X,Y] addr[john,loc[X,X]]
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Term Unification:
Algorithmic Principles

The unification algorithm compares two terms, 
treated symmetrically, for structural compatibility:
– If both are ground terms, it succeeds if they are equal
– If at least one is a non-ground term, it succeeds if they 

can be made equal by binding variables consistently 
across both terms

– Otherwise it fails
Unification can start in a pre-existing environment
(or substitution) of variable bindings, to which it 
must be consistent
Unification, if successful, can create new variable 
bindings for extending the environment
Unification creates the least number of variable 
bindings necessary to succeed (the set of these 
bindings is called the most general unifier or mgu) 
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Term Unification:
Variable Dereferencing and Case Analysis

Unification, whenever one of its terms is a variable, 
first dereferences that variable in the current binding 
environment by taking its ultimate value at the end 
of a possibly long chain of variable-variable bindings 
(the ultimate value can still be a – free – variable)
Unification then performs a case analysis as shown 
in the following slides (in Relfun, unification can be 
explicitly performed via “.=”)

Example:
addr[john,loc[ny,ny]]
addr[john,loc[X,X]]
In an empty environment succeeds, creating the binding X=ny
In an environment with X=ny succeeds, creating no new binding
In an environment with X=Y succeeds, creating binding Y=ny
In an environment with X=Y, Y=Z, and Z=sf fails

addr[john,loc[ny,ny]] .= addr[john,loc[X,X]]
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Term Unification: Two Constants 

If both terms are constants, unification succeeds if 
they are equal; otherwise it fails

Examples:

Term 1: u i john peter 9 -276.0131
Term 2: u u mary peter 42 -276.0131

Result: succ fail fail succ fail succ

In many systems, constants can also be "…" strings, where, e.g.,
the terms "peter miller" and "peter miller" give succ, while
the terms "peter miller" and "peter meyer" give fail (also,
"u" and u give fail; "X" and X will give succ with X = "X")
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Term Unification: Constant and Structure

If one term is a constant and the other a structure, 
unification fails

Examples:

Term 1: u c[] rs[1] duo[X,Y] duo
Term 2: c[] c mary peter duo[X,Y]

Result: fail fail fail fail fail

Here, even if a constant such as c has the same name as the
constructor of a nullary (argumentless) structure such as c[],
we define unification to fail (some systems actually forbid to
use the same name for constants and constructors; but others
would identify constants with nullary structures and succeed) 
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Term Unification: Variable and Constant

If one term is a variable and the other a constant, 
unification succeeds, binding the variable to this 
constant value (except for an anonymous variable)

Examples:

Term 1: X i john _ _rs2 -276.0131
Term 2: u Y _9 peter 42 _

Result: succ succ succ succ succ succ
Bindings: X=u Y=i _9=john _rs2=42
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Term Unification: Variable and Structure

If one term is a variable and the other a structure
not containing the variable (so-called occurs check), 
unification succeeds, binding the variable to this 
structure (except for an anonymous variable)

Examples:

Term 1: X c[] rs[1] duo[X,Y] duo[X,Y]
Term 2: c[] _ Y _9 X

Result: succ succ succ succ fail
Bindings: X=c[] Y=rs[1]   _9=duo[X,Y]

The occurs check is omitted from many Prolog implementations
for efficiency reasons, and is currently also absent from Relfun.
It is implemented in the theorem-prover-like LP engine jDREW

http://www.jdrew.org/
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Term Unification: Variable and Variable

If the terms are two variables, unification succeeds, 
binding the first variable to the second variable iff
these are different variables (a trivial occurs check)

Examples:

Term 1: X _rs2 _9 X _ X
Term 2: Y _9 Mot _ _ X

Result: succ succ succ succ succ succ
Bindings: X=Y _rs2=_9  _9=Mot  X=_
Leaving a variable unbound after it was unified with itself has
been a useful part of defining unification in practice, hence is
implemented in Relfun.
Anonymous variables are really treated via name generation,
but their rough treatment is indicated by two examples above
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Term Unification: Two Structures (I)

If both terms are structures, unification succeeds if 
they have the same constructor, the same number 
of arguments, and unification is successful for each 
pair of corresponding arguments, where bindings 
must be consistent across the entire structures; 
otherwise it fails

Examples: Flat structures:

Term 1:     c[] rs[1]  rs[1] rs[1] trio[1,X,Y] trio[1,X,X]
Term 2:     c[] rs[2] jk[1] rs[Z] trio[1,u,i] trio[1,u,i]

Result: succ fail fail succ succ fail
Bindings: Z=1 X=u, Y=i
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Term Unification: Two Structures (II)

Examples:  Nested structures:

Term 1:      addr[john,loc[ny,ny]] addr[X,loc[ny,ny]]
Term 2:      addr[john,loc[X,X]] addr[john,loc[X,X]]

Result: succ fail
Bindings:    X=ny



11-Apr-10CS 6715 FLP109

Complex Terms: Lists as cns Structures 

The constructor cns forms binary cns structures 
(much like cons cells or ‘dotted pairs’ in Lisp)
The constant nil terminates second-argument 
nestings of cns (much like in Lisp)
A list is nil (empty list) or is a ‘[…]’-application of cns
to a sequence of two ‘,’-separated element terms 
(non-empty list), the second of which must be a list 
or a variable while the first one may be any term
(if it is a list, the entire list is called a nested list)

Examples: Flat lists (cns right-recursive):   Nested lists:
Ground: cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
Non-ground: cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,X],Y]
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Complex Terms: Lists as cns Trees 

Flat lists (cns right-recursive): Nested lists:
cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,X],Y]

cns

u nil

cns

X Y

cns

rs cns

1 u nil

cns

rs cns

_ u nil

cns

nilcns

u nil

cns

Ycns

u X
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Complex Terms: N-ary List Notation

The empty list nil is rewritten as [ ], for n=0
A non-empty list cns[e1 , cns[e2 , …cns[en , t]…]],
for n≥1, is rewritten as [e1' , e2' , …, en'], if t is nil,
and is rewritten as [e1' , e2' , …, en' | t], if t is a variable, 
where the primes indicate recursive rewritings

Examples: Flat cns (original) lists: Nested cns lists:
Ground: cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
Non-ground: cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,X],Y]

The n-ary short notation of lists, for n≥0, can be
obtained from lists as cns structures as follows:

Examples: Flat n-ary (rewritten) lists: Nested n-ary lists:
Ground: [u] [rs[1],u] [[u]]
Non-ground: [X|Y] [rs[_],u] [[u|X]|Y]
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Complex Terms: N-ary Tree Notation (I)

cns[e1 , cns[e2 , …cns[en , nil]…]]

[e1' , e2' , …, en']

cns

e1 cns

e2 …
cns

en nil
…

…
e1' e2' en'…
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Complex Terms: N-ary Tree Notation (II)

Flat n-ary (rewritten) lists: Nested n-ary lists:
[u] [rs[1],u] [[u]]

Flat lists (cns right-recursive): Nested lists:
cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]

cns

u nil

cns

rs cns

1 u nil

cns

nilcns

u nil

urs

1

u
u
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List Unification

Examples: Flat cns (original) lists: Nested cns lists:
Term 1: cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
Term 2: cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,Y],Z]

Lists as cns structures do not change the earlier
unification algorithm: The n-ary list notation permits
a variable after a “|” to unify with a rest segment of 
another list, but in the cns form such a segment is 
just a cns structure nested into the second argument

Examples: Flat n-ary (rewritten) lists: Nested n-ary lists:
Term 1: [u] [rs[1],u] [[u]]
Term 2: [X|Y] [rs[_],u] [[u|Y]|Z]
Result: succ succ succ
Bindings: X=u, Y=nil Y=nil, Z=nil
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Implementing Anonymous Variables as 
Freshly Generated Named Variables

Example: Named variable in structure (in list):
Term 1: [ suc[N], suc[0], suc[1] ]
Term 2: [ X, X, X ]

Anonymous variables cannot be just implemented by 
generating no bindings for their unification partners, but must 
be treated via name generation. Otherwise the second example 
below would erroneously succeed with the binding X=suc[_]:

Example: Anonymous variable in structure (in list):
Term 1: [ suc[_], suc[0], suc[1] ]
Term 2: [ X, X, X ]
Result: fail

In Relfun, all occurrences of  “_” are thus implemented by  
generating fresh versions of the variable name “Anon”
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Summary

Terms are the explicit data values of FP and LP
A taxonomy of simple vs. complex terms, and 
ground vs. non-ground terms, was introduced
Principles and a full (term-)case analysis of 
unification were illustrated via examples
Implemented versions of unification algorithms,
e.g. in functional programming itself, are usually 
quite compact; can also be used for call invocation
The n-ary list short notation was introduced as a 
rewriting of lists as cns structures
List unification with one segment variable per 
(sub)list was discussed as a notational variant
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Functional and Logic Definition Clauses

Chapter 3
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Clauses as the Smallest
Functional and Logic Definition Units

An operation (name) is a function or relation (name)
A clause associates a head of an operation name 
and argument terms with an optional body of a
(non-)ground, (non-)deterministic call conjunction 
and an optional foot consisting of a term or a nesting
– The head’s call pattern acts as a first, deterministic filter

on operation calls
– A body conjunction acts as the main, (non-)deterministic 

condition on operation calls and can accumulate 
consistent local variable bindings

– A foot denotes or computes an explicit returned value
A program is a set of clauses; a procedure is a
subset of clauses with the same operation name



11-Apr-10CS 6715 FLP119

Taxonomy and Syntax of Clauses

•Clause
•Logic Clause

•Fact: head.
•Ground Fact

•Rule: head :- body.
•Functional Clause

•Unconditional Equation: head :& foot.
•Molecule: foot is a term (‘solved’ equation)

•Point (Ground Molecule, pointwise definition)
•Conditional Equation: head :- body & foot.

•Functional-Logic Clause

:- . Syntax as in Prolog

& Syntax from Relfun
(for value returning)Empty body:

true body

Empty body:

true body
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Resolution: The Computation Method
of Functional and Logic Programming

In any pre-existing variable binding environment,
the resolution of an operation call, from a body 
conjunction or a foot, with a candidate clause
1) uses unification between the call and the head of the 

clause in this environment to determine whether, and 
with which new bindings, the clause can be invoked by 
the call (unification treats call and head as structures)

2) on unification success, inserts the possible body and/or 
foot of the clause in place of the call and yields the 
extended binding environment

This process continues until either
– Success: the body conjunction is empty (true) and the 

foot is a reduced value
– Failure: no (more) clauses can be invoked
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Logic Clauses: A Fact in
English, Pseudo-Code, and Prolog/Relfun

spending(Peter Miller,min 5000 euro,previous year)

Pseudo-Code Relation Definition with a Ground Fact:

“Peter Miller's spending has been min 5000 euro in the previous year”

(Controlled) English Definition of a Logic Business Fact:

spending("Peter Miller","min 5000 euro","previous year").

Prolog/Relfun Relation Definition with a Ground Fact:
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Logic Clauses: A Ground Call
Resolved via Unification

Form1: spending("Peter Miller","min 5000 euro","previous year")
Form2: spending("Peter Miller","min 5000 euro","previous year").
Internally, call and head are treated like structures:
Term1: spending["Peter Miller","min 5000 euro","previous year"]
Term2: spending["Peter Miller","min 5000 euro","previous year"]

Result: succ (Whether: yes)
Bindings: (How: Directly equal)

Unification Computes Whether (and How) the Call Can Use the Fact:

After finding the above fact, the call (in Prolog ended by a period)
spending("Peter Miller","min 5000 euro","previous year")
returns true

Relfun Relation Ground Call:
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Logic Clauses: Non-Ground Calls 
Resolved via Unification (I)

Form1: spending("Peter Miller",Amount,"previous year")
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: succ (Whether: yes)
Bindings: Amount="min 5000 euro" (How: Output Amount)

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding the above fact, the call
spending("Peter Miller",Amount,"previous year")
returns true with the binding Amount="min 5000 euro"

Relfun Relation Non-Ground Call:
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Logic Clauses: Non-Ground Calls 
Resolved via Unification (II)

Form1: spending("Peter Miller","min 5000 euro",Time)
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: succ (Whether: yes)
Bindings: Time="previous year"        (How: Output Time)

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding the above fact, the call
spending("Peter Miller","min 5000 euro",Time)
returns true with the binding Time="previous year"

Relfun Relation Non-Ground Call:
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Logic Clauses: Non-Ground Calls 
Resolved via Unification (III)

Form1: spending("Peter Miller",Amount,Time)
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: succ (Whether: yes)
Bindings: Amount="min 5000 euro" (How: Output Amount)

Time="previous year"       (How: Output Time)

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding the above fact, the call
spending("Peter Miller",Amount,Time)
returns true with the bindings Amount="min 5000 euro",

Time="previous year"

Relfun Relation Non-Ground Call:
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Logic Clauses: Non-Ground Calls 
Resolved via Unification (IV)

Form1: spending("Peter Miller",AT,AT)
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: fail (Whether: no)
Bindings:

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding (only) the above fact, the call
spending("Peter Miller",AT,AT)
yields unknown (Prolog’s closed-world assumption yields false)

Relfun Relation Non-Ground Call:
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Logic Clauses: Non-Ground Calls 
Resolved via Unification (V)

Form1: spending("Peter Miller",_,_)
Form2: spending("Peter Miller","min 5000 euro","previous year").

Result: succ (Whether: yes)
Bindings:

Unification Computes Whether (and How) the Call Can Use the Fact:

After again finding the above fact, the call
spending("Peter Miller",_,_)
returns true

Relfun Relation Non-Ground Call:
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Functional Clauses: A Point in
English, Pseudo-Code, and Relfun

spending(Peter Miller,previous year) = min 5000 euro

Pseudo-Code Function Definition with an Unconditional Equation:

“Peter Miller's spending in the previous year has been
min 5000 euro”

English Definition of a Functional Business ‘Point’ (Pointwise Definition):

spending("Peter Miller","previous year") :& "min 5000 euro".

Relfun Function Definition with an Unconditional Equation
(left-hand-side head: spending("…","…"), right-hand-side foot: "…"):
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Functional Clauses: A Ground Call 
Resolved via Unification

Form1: spending("Peter Miller","previous year")
Form2: spending("Peter Miller","previous year").
Result: succ (Whether: yes)
Bindings: (How: Directly equal)

Unification Computes Whether (and How) the Call Can Use the Point:

After finding the above point, the call
spending("Peter Miller","previous year")
returns "min 5000 euro" (Amount is returned, rather than bound)

Relfun Function Ground Call –
Corresponds to Relation Non-Ground Call (I):

Further Resolution Computes the Returned Value:
Value: "min 5000 euro"
Bindings:
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Functional-Logic Clauses: A Non-Ground 
Call Resolved via Unification

Form1: spending("Peter Miller",Time)
Form2: spending("Peter Miller","previous year").
Result: succ (Whether: yes)
Bindings: Time="previous year" (How: Output Time)

Unification Computes Whether (and How) the Call Can Use the Point:

After again finding the above function point, the FLP call
spending("Peter Miller",Time)
returns "min 5000 euro" with the binding Time="previous year"

Relfun Function Non-Ground Call –
Corresponds to Relation Non-Ground Call (III):

Further Resolution Computes the Returned Value:
Value: "min 5000 euro"
Bindings: Time="previous year" 
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Logic Clauses: 1st Rule in
English, Pseudo-Code, and Prolog/Relfun

premium(Customer) if
spending(Customer,min 5000 euro,previous year)

Pseudo-Code Relation Definition with a Single-Condition Datalog Rule:

“A customer is premium if
their spending has been min 5000euro in the previous year”

English Definition of a Logic Business Rule:

premium(Customer) :-
spending(Customer,"min 5000 euro","previous year").

Prolog/Relfun Relation Definition with a Single-Condition Datalog Rule:
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Logic Clauses: A Ground Call
Resolved via Unification and a Subcall

Form1: premium("Peter Miller")
Form2: premium(Customer) :-
Result: succ (Whether: yes)
Bindings: Customer="Peter Miller" (How: Input Customer)

Unification Computes Whether (and How) the Call Can Use the Rule:

After finding the above rule, the call
premium("Peter Miller")
returns true

Relfun Relation Ground Call:

Further Resolution Invokes Another Ground Call:
With the above Customer binding, the subcall
spending("Peter Miller","min 5000 euro","previous year")
returns true as shown earlier
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Functional Clauses: Mimic 1st Logic Rule 
in English, Pseudo-Code, and Relfun

premium(Customer) if
min 5000 euro = spending(Customer,previous year)

then true

Pseudo-Code Function Definition with true-Valued Conditional Equation:

“That a customer is premium,
given min 5000 euro equaled their spending in the previous year,

is true”

English Definition of a (Characteristic-)Functional Business Rule:

premium(Customer) :-
"min 5000 euro" .= spending(Customer,"previous year")

& true.

Relfun Function Definition with a true-Valued Conditional Equation:
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Functional Clauses: A Ground Call
Resolved via Unification and a “.=” Subcall

Form1: premium("Peter Miller")
Form2: premium(Customer) :-
Result: succ (Whether: yes)
Bindings: Customer="Peter Miller" (How: Input Customer)

Unification Computes Whether (and How) the Call Can Use the Rule:

After finding the above rule, the call
premium("Peter Miller")
returns true

Relfun (Characteristic-)Function Ground Call:

Further Resolution Unifies String with Value of Another Ground Call:
With the above Customer binding, the right-hand-side subcall of
"min 5000 euro" .= spending("Peter Miller","previous year")
returns "min 5000 euro" as shown earlier, unifying with the lhs
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Functional Clauses: Extend 1st Logic Rule 
in English, Pseudo-Code, and Relfun

premium(Customer) if
min 5000 euro = spending(Customer,previous year)

then bonus

Pseudo-Code Function Definition with bonus-Valued Conditional Equation:

“When a customer is premium,
given min 5000 euro equaled their spending in the previous year,

they get a bonus”

English Definition of a (Constant-)Functional Business Rule:

premium(Customer) :-
"min 5000 euro" .= spending(Customer,"previous year")

& bonus.

Relfun Function Definition with a bonus-Valued Conditional Equation:
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Logic Clauses: 2nd Rule in
English, Pseudo-Code, and Prolog/Relfun

discount(Customer,Product,5.0 percent) if
premium(Customer) and regular(Product)

Pseudo-Code Relation Definition with a Two-Condition Datalog Rule:

“The discount for a customer buying a product is 5.0 percent if
the customer is premium and the product is regular”

English Definition of a Logic Business Rule:

discount(Customer,Product,"5.0 percent") :-
premium(Customer) , regular(Product).

Prolog/Relfun Relation Definition with a Two-Condition Datalog Rule:



11-Apr-10CS 6715 FLP137

Logic Clauses: A Non-Ground Call
Resolved via Unification and Subcalls (I)

Form1: discount("Peter Miller","Honda",Rebate)
Form2: discount(Customer,Product,"5.0 percent") :-

Result: succ (Whether: yes)
Bindings: Customer="Peter Miller" (How: Input Customer)

Product ="Honda" (How: Input Product)
Rebate="5.0 percent" (How: Output Rebate)

Unification Computes Whether (and How) the Call Can Use the Rule:

After finding the above rule, and with another fact, the call
discount("Peter Miller","Honda",Rebate)
returns true with the binding Rebate="5.0 percent"

Relfun Relation Non-Ground Call:
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Logic Clauses: A Non-Ground Call
Resolved via Unification and Subcalls (II)

Further Resolution Invokes a Conjunction of two Ground Calls:

With the above Customer and Product bindings, the subcalls
premium("Peter Miller") , regular("Honda")
both return true:

premium("Peter Miller") as shown earlier

regular("Honda") with another fact, regular("Honda"). 
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Functional Clauses: 2nd Rule in
English, Pseudo-Code, and Relfun

discount(Customer,Product) if
premium(Customer) and regular(Product)

then "5.0 percent"

Pseudo-Code Function Definition with a Conditional Equation:

“The discount for a customer buying a product,
the customer being premium and the product being regular,

is 5.0 percent”

English Definition of a Functional Business Rule:

discount(Customer,Product) :-
premium(Customer) , regular(Product)

& "5.0 percent".

Relfun Function Definition with a Conditional Equation:



11-Apr-10CS 6715 FLP140

Functional Clauses: A Ground Call
Resolved via Unification and Subcalls (I)

Form1: discount("Peter Miller","Honda")
Form2: discount(Customer,Product) :-

Result: succ (Whether: yes)
Bindings: Customer="Peter Miller" (How: Input Customer)

Product ="Honda" (How: Input Product)

Unification Computes Whether (and How) the Call Can Use the Rule:

After finding the above rule, and with another point, the call
discount("Peter Miller","Honda")
returns "5.0 percent" (Rebate is returned, rather than bound)

Relfun Function Ground Call:
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Functional Clauses: A Ground Call
Resolved via Unification and Subcalls (II)

Further Resolution Invokes a Conjunction of two Ground Calls:

With the above Customer and Product bindings, the subcalls
premium("Peter Miller") , regular("Honda")
both return true:

premium("Peter Miller") as shown earlier

regular("Honda") with another point,
regular("Honda") :& true. 

Finally Resolution Computes the Returned Value:

Value: "5.0 percent"
Bindings:
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Our Complete discount Program:
Logic Prolog/Relfun Version

discount(Customer,Product,"5.0 percent") :-
premium(Customer) , regular(Product).

premium(Customer) :-
spending(Customer,"min 5000 euro","previous year").

spending("Peter Miller","min 5000 euro","previous year").

regular("Honda").

discount("Peter Miller","Honda",Rebate) returns true
with binding Rebate="5.0 percent"

Relational
invertibility
also permits

Product queries
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Our Complete discount Program:
Functional (Equational) Relfun Version

discount(Customer,Product) :-
premium(Customer) , regular(Product)

& "5.0 percent".

premium(Customer) :-
"min 5000 euro" .= spending(Customer,"previous year")

& true.

spending("Peter Miller","previous year") :& "min 5000 euro".

regular("Honda") :& true.

discount("Peter Miller","Honda") returns "5.0 percent"

Functional
directedness

prevents inverse
Product queries
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Our Complete discount Program:
Functional-Logic Relfun Version

discount(Customer,Product) :-
premium(Customer) , regular(Product)

& "5.0 percent".

premium(Customer) :-
"min 5000 euro" .= spending(Customer,"previous year").

spending("Peter Miller","previous year") :& "min 5000 euro".

regular("Honda").

discount("Peter Miller","Honda") returns "5.0 percent"

FLP combines
directedness

with invertibility
to also permit

Product queries
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Summary

Clauses are the smallest FP and LP definition units. 
They consist of a head (in FP+LP), an optional body 
(in FP+LP), and a possible foot (in FP)
The taxonomy and syntax of logic, functional, and 
functional-logic clauses was introduced
Based on unification, resolution of an operation call 
with a candidate clause was introduced as the main 
FP and LP computation method
Versions of the RuleML discount program were 
developed in different styles, with logic clauses, 
functional clauses, and functional-logic clauses
Relfun users choose their individual clause styles
The next chapter will proceed from the simple 
Datafun/Datalog clauses here to Horn clauses 

http://www.ruleml.org/0.91/exa/Datalog/discount.ruleml
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Recursion in the Definition of Clauses

Chapter 4
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FP: A Tail-Recursive Natural-Number 
Addition Function (I)

For M>0, this is a recursion (here: loop) invariant of add:

add(M,N)   = add(M-1,N+1) 

Notation:

add(M,N)  :&  add(1-(M),1+(N)). 
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FP: A Tail-Recursive Natural-Number 
Addition Function (II)

Un/Conditional Equations with Recursive Call as a Foot (Tail-Recursion):

add(0,N)  :&  N.

add(M,N) :- >(M,0) & add(1-(M), 1+(N)). 

Base Case: Termination

Based on Built-ins:  > Greater  1- Predecessor  1+ Successor

add(3,4)
add(2,5)
add(1,6)
add(0,7)
7

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

General Case: Recursion
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LP: A Tail-Recursive Natural-Number 
Addition Relation (I)

For M>0, this is a recursion (here: loop) invariant of add:

M + N = R     if   M-1 + N+1 = R 
add(M,N,R)   if add(M-1,N+1,R) 

Notation:

add(M,N,R)  :- P .= 1-(M),   S .= 1+(N),
add(P,S,R).
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LP: A Tail-Recursive Natural-Number 
Addition Relation (II)

Datalog Rule with Recursive Call as a Last Premise (Tail-Recursion):

add(0,N,N).

add(M,N,R) :- >(M,0), P .= 1-(M), S .= 1+(N), add(P,S,R). 

Termination

Based on Built-ins:  > Greater  1- Predecessor  1+ Successor

Recursion

Since built-ins must be called
with ground arguments (here:
fixed M and N), inverse calls
like add(3,W,7), add(V,4,7), or
add(V,W,7) are not permitted!

add(3,4,A)
add(2,5,R1)
add(1,6,R2)
add(0,7,7)
A=R1=R2=7

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

Recursion

Termination
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FLP: A Tail-Recursive Natural-Number 
Addition Relation

Datalog-like Rule with Recursive Call as a Last Premise (Tail-Recursion):

add(0,N,N).

add(M,N,R) :- >(M,0), add(1-(M),1+(N),R).

Termination: As Before     

Based on Built-ins:  > Greater  1- Predecessor  1+ Successor

Recursion: OverNestings

Again, this add cannot be
inverted for subtraction etc.!

add(3,4,A)
add(2,5,R1)
add(1,6,R2)
add(0,7,7)
A=R1=R2=7

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

Recursion

Termination
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FP: A Tail-Recursive Successor-
Arithmetic Addition Function (I)

For M≥0, this is a recursion (here: loop) invariant of add:

add(M+1,N)   = add(M,N+1) 

Notation:

add(suc[M],N)  :&  add(M,suc[N]).
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FP: A Tail-Recursive Successor-
Arithmetic Addition Function (II)

Unconditional Equations with Recursive Call as a Foot (Tail-Recursion):

add(0,N)  :&  N.

add(suc[M],N)  :&  add(M,suc[N]). 

Base Case: Termination

No Built-ins Required; 1+ replaced by suc (successor) structures

add(suc[suc[suc[0]]],suc[suc[suc[suc[0]]]])
add(suc[suc[0]],suc[suc[suc[suc[suc[0]]]]])
add(suc[0],suc[suc[suc[suc[suc[suc[0]]]]]])
add(0,suc[suc[suc[suc[suc[suc[suc[0]]]]]]]) 
suc[suc[suc[suc[suc[suc[suc[0]]]]]]]

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

General Case: Recursion
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LP: A Tail-Recursive Successor-
Arithmetic Addition Relation (I)

For M≥0, this is a recursion (here: loop) invariant of add:

M+1 + N = R     if   M + N+1 = R 
add(M+1,N,R)   if add(M,N+1,R) 

Notation:

add(suc[M],N,R)  :- add(M,suc[N],R).
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LP: A Tail-Recursive Successor-
Arithmetic Addition Relation (II)
Horn Logic Rule with Recursive Call as a Single Premise (Tail-Recursion):

add(0,N,N).

add(suc[M],N,R) :- add(M,suc[N],R).

add(suc[suc[suc[0]]],suc[suc[suc[suc[0]]]],A)
add(suc[suc[0]],suc[suc[suc[suc[suc[0]]]]],R1)
add(suc[0],suc[suc[suc[suc[suc[suc[0]]]]]],R2)
add(0,suc[suc[suc[suc[suc[suc[suc[0]]]]]]],

suc[suc[suc[suc[suc[suc[suc[0]]]]]]])
A=R1=R2=suc[suc[suc[suc[suc[suc[suc[0]]]]]]]

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General: Recursion

Base: Termination

Base Case: Termination

General Case: Recursion

No Built-ins Required; 1+ replaced by suc (successor) structures
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LP: A Tail-Recursive Successor-
Arithmetic Addition Relation (III)

3 + W = 7   or   W = 7 - 3

add(suc[suc[suc[0]]],W,suc[suc[suc[suc[suc[suc[suc[0]]]]]]])
W=suc[suc[suc[suc[0]]]]

V + 4 = 7   or   V = 7 - 4

add(V,suc[suc[suc[suc[0]]]],suc[suc[suc[suc[suc[suc[suc[0]]]]]]])
V=suc[suc[suc[0]]]

Additions like 3 + 4 = A can be inverted for subtraction:
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LP: A Tail-Recursive Successor-
Arithmetic Addition Relation (IV)

V + W = 7

add(V,W,suc[suc[suc[suc[suc[suc[suc[0]]]]]]])

V=0,  W=suc[suc[suc[suc[suc[suc[suc[0]]]]]]]
V=suc[0],  W=suc[suc[suc[suc[suc[suc[0]]]]]]
. . .
V=suc[suc[suc[0]]],  W=suc[suc[suc[suc[0]]]]
. . .
V=suc[suc[suc[suc[suc[suc[suc[0]]]]]]],  W=0

Can also be inverted for non-deterministic partitioning:
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LP: An Equivalent Successor-Arithmetic 
Addition Relation (I)

For M≥0, this was the recursion (here: loop) invariant of add:

M+1 + N = R         if   M + N+1 = R 
add(M+1,N,R)       if add(M,N+1,R) 

Notation:

add(suc[M],N,suc[R]) :- add(M,N,R).

For M≥0, this is the equivalent (R+1 = R) invariant of new add:

M+1 + N = R+1     if   M + N = R
add(M+1,N,R+1)   if add(M,N,R) 
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LP: An Equivalent Successor-Arithmetic 
Addition Relation (II)

Horn Logic Rule with Recursive Call as a Single Premise (Tail-Recursion):

add(0,N,N).

add(suc[M],N,suc[R]) :- add(M,N,R). 

add(suc[suc[suc[0]]],suc[suc[suc[suc[0]]]],A)
add(suc[suc[0]],suc[suc[suc[suc[0]]]],R1) bind: A=suc[R1]
add(suc[0],suc[suc[suc[suc[0]]]],R2) bind: R1=suc[R2]
add(0,suc[suc[suc[suc[0]]]],R3) bind: R2=suc[R3] 
R3=suc[suc[suc[suc[0]]]]
A=suc[ suc[ suc[ suc[suc[suc[suc[0]]]] ] ] ]

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General:
Recursion

Base: Termination

Base Case: Termination

General Case: Recursion

No Built-ins Required; 1+ replaced by suc (successor) structures
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FP: A Tail-Recursive Float-Number 
Compound Interest Function

Un/Conditional Equations with Recursive Call as a Foot (Tail-Recursion):

compint(0,I,C)  :&  C.  %   T: Time, I: Interest, C: Capital

compint(T,I,C) :- >(T,0) & compint(1-(T),I,+(C,*(C,I))).

Built-ins:  > Greater 1- Predecessor + (Float) Addition  * Multiplication

compint(3,0.1,100)
compint(2,0.1,110.0)
compint(1,0.1,121.0)
compint(0,0.1,133.1) 
133.1

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

Termination

Recursion
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LP: A Tail-Recursive Float-Number 
Compound Interest Relation

Datalog Rule with Recursive Call as a Last Premise (Tail-Recursion):

compint(0,I,C,C).   %   T: Time, I: Interest, C: Capital, R: Result

compint(T,I,C,R) :- >(T,0), S .= 1-(T), D .= +(C,*(C,I)),
compint(S,I,D,R).

compint(3,0.1,100,A)
compint(2,0.1,110.0,R1)
compint(1,0.1,121.0,R2)
compint(0,0.1,133.1,133.1)
A=R1=R2=133.1

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

Termination

Recursion

Built-ins:  > Greater 1- Predecessor + (Float) Addition  * Multiplication
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FLP: A Tail-Recursive Float-Number 
Compound Interest Relation

Datalog-like Rule with Recursive Call as a Last Premise (Tail-Recursion):

compint(0,I,C,C).   % T: Time, I: Interest, C: Capital, R: Result

compint(T,I,C,R) :- >(T,0),
compint(1-(T),I,+(C,*(C,I)),R).

compint(3,0.1,100,A)
compint(2,0.1,110.0,R1)
compint(1,0.1,121.0,R2)
compint(0,0.1,133.1,133.1)
A=R1=R2=133.1

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General Case: Recursion

Base Case: Termination

Termination

Built-ins:  > Greater 1- Predecessor + (Float) Addition  * Multiplication

Recursion: OverNestings
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FLP and ‘while’ Program: A Tail-Recursive 
and an Iterative Interest Relation

Declarative (Tail-Recursive FLP) Version Can Exchange Clause Order:

compint(T,I,C,R) :- >(T,0),
compint(1-(T),I,+(C,*(C,I)),R).

compint(0,I,C,C).   % T: Time, I: Interest, C: Capital, R: Result Termination

Recursion: OverNestings

define compint(T,I,C,R) as
begin

while >(T,0) do
begin T := 1-(T); C := +(C,*(C,I)) end;

if =(T,0) then R := C
end

Imperative Version (‘while’ program) Uses Fixed Statement Order:

Iteration: OverNestings

Result Assignment after Termination



11-Apr-10CS 6715 FLP164

Instantiating cns Structures and the
N-ary List Notation
Structures with constructor cns were introduced in the ‘Terms’ chapter:
cns[a,nil] cns[a,cns[7,nil]] cns[First,Rest]

[a] [a,7] [First|Rest]
They have been shortened via the N-ary list notation:

Variables as elements of (cns) structures are instantiated:
X .= a Y .= add(3,4) First .= 1, Rest .= nil 
& cns[X,nil] & cns[a,cns[Y,nil]] & cns[First,Rest]
cns[a,nil] cns[a,cns[7,nil]] cns[1,nil]
Variables as elements of the N-ary list notation are likewise instantiated:
X .= a Y .= add(3,4) First .= 1, Rest .= nil 
& [X] & [a,Y] & [First|Rest]
[a] [a,7] [1]
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The cns Function for Constructing Lists 
as Structures or in N-ary List Notation

Function applications are forbidden as elements of structures and lists
(variable instantiations as above permit to construct the desired data):

cns[a,cns[add(3,4),nil]] [a,add(3,4)]

cns(First,Rest) :& cns[First,Rest].   cns(First,Rest) :& [First|Rest].

Actual cns arguments are evaluated to elements of cns structures or lists:

However, besides the constructor cns, also a function cns can be defined
in either of the following ways (acting like Lisp’s built-in function cons):

cns[a,cns[7,nil]] [a,7]
cns(a,cns(add(3,4),nil))

“No (active) round parentheses inside [passive] square brackets”
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FP: A Recursive List-Concatenation 
Function (I)

For first argument ≠ nil, this is a recursion invariant of cat
(‘concatenate’ or just ‘catenate’, often named ‘append’, here 
alternatively written as a ⊕ infix):

[F|R] ⊕ L      = cns(F, R ⊕ L)
cat([F|R],L)   = cns(F,cat(R,L))

Notation:

cat([F|R],L)  :&  cns(F,cat(R,L)).
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FP: A Recursive List-Concatenation 
Function (II)

Unconditional Equations with Recursive Call inside cns (Full Recursion):

cat([],L) :& L.

cat([F|R],L)  :&  cns(F,cat(R,L)).

Base Case: Termination

No Built-ins Required; cns regarded as a user-defined auxiliary

cat([a,b],[c,d,e])
cns(a, cat([b],[c,d,e]) )
cns(a, cns(b, cat([],[c,d,e]) ) )
cns(a, cns(b, [c,d,e] ) )
cns(a, [b,c,d,e] )
[a,b,c,d,e]

Full-Recursive Computation Grows and Shrinks an Activation Stack:

General Case: Recursion

Base Case: Termination

General Case: Recursion
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LP: A Tail-Recursive List-Concatenation 
Relation (I)

For first argument ≠ nil, this is a recursion invariant of cat:

[F|R] ⊕ L = [F|S] if R ⊕ L = S
cat([F|R],L,[F|S]) if cat(R,L,S)

Note analogy to the previous ‘new add’:
add(1+M,N,1+R) if add(M,N,R)
[lists ‘generalize’ natural numbers:
list concatenation ‘generalizes’ addition]

Notation:
cat([F|R],L,[F|S]) :- cat(R,L,S).



11-Apr-10CS 6715 FLP169

LP: A Tail-Recursive List-Concatenation 
Relation (II)

Horn Logic Rule with Recursive Call as a Single Premise (Tail-Recursion):

cat([],L,L).

cat([F|R],L,[F|S])  :- cat(R,L,S).

cat([a,b],[c,d,e],A)

cat([b],[c,d,e],S1) bind: A=[a|S1]

cat([],[c,d,e],S2) bind: S1 =[b|S2]
A=[a|S1]=[a|[b|S2]]=[a|[b|[c,d,e]]]=[a,b,c,d,e] 

Tail-Recursive Computation Loops over a Fixed-Size Activation Record:

General: Recursion

Base: Termination

Base Case: Termination

General Case: Recursion

No Built-ins Required
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LP: A Tail-Recursive List-Concatenation 
Relation (III)

[a,b] ⊕ W = [a,b,c,d,e]

cat([a,b],W,[a,b,c,d,e])
W=[c,d,e]

V ⊕ [c,d,e] = [a,b,c,d,e]

cat(V,[c,d,e],[a,b,c,d,e])
V=[a,b]

Catenations can be inverted for list ‘subtraction’:
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LP: A Tail-Recursive List-Concatenation 
Relation (IV)

V ⊕ W = [a,b,c,d,e]

cat(V,W,[a,b,c,d,e])

V=[],  W=[a,b,c,d,e]
V=[a],  W=[b,c,d,e]
V=[a,b],  W=[c,d,e]
V=[a,b,c],  W=[d,e]
V=[a,b,c,d],  W=[e]
V=[a,b,c,d,e],  W=[] 

Can also be inverted for non-deterministic partitioning:
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FP: A Recursive List-Reversal
Function (I)

For first argument ≠ nil, this is a recursion invariant of rev:

rev([F|R]) = rev(R) ⊕ [F]
rev([F|R]) = cat(rev(R),[F])

Notation:

rev([F|R]) :& cat(rev(R),[F]).
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FP: A Recursive List-Reversal
Function (II)

Unconditional Equations with Recursive Call inside cat (Full Recursion):

rev([]) :& [].

rev([F|R]) :& cat(rev(R),[F]).

Base Case: Termination

rev([a,b,c])

No Built-ins Required; cat is our user-defined auxiliary

cat( rev([b,c]), [a])
cat( cat( rev([c]), [b]), [a])
cat( cat( cat( rev([]), [c]), [b]), [a])
cat( cat( cat( [], [c]), [b]), [a])
. . .
[c,b,a]

Full-Recursive Computation Grows and Shrinks an Activation Stack:

General Case: Recursion

Base Case: Termination

General Case: Recursion
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LP: A Recursive List-Reversal
Relation (I)

For first argument ≠ nil, this is a recursion invariant of rev:

rev([F|R]) = L if rev(R,K) and K ⊕ [F] = L
rev([F|R],L) if rev(R,K) and cat(K,[F],L)

Notation:

rev([F|R],L) :- rev(R,K) , cat(K,[F],L).



11-Apr-10CS 6715 FLP175

LP: A Recursive List-Reversal
Relation (II)

Horn Logic Rule with Recursive Call as a First Premise (Full Recursion):

rev([],[]).

rev([F|R],L) :- rev(R,K) , cat(K,[F],L).

rev([a,b,c],A)
rev([b,c],K1), cat(K1,[a],L1) bind: A=L1
rev([c],K2), cat(K2,[b],L2), cat(K1,[a],L1) bind: K1=L2
rev([],K3), cat(K3,[c],L3), cat(K2,[b],K1), cat(K1,[a],L1) bind: K2=L3
cat([],[c],K2), cat(K2,[b],K1), cat(K1,[a],L1)
. . .
A=L1=[c,b,a]

Full-Recursive Computation Grows and Shrinks an Activation Stack:

General

Base

Base Case: Termination

General Case: Recursion

No Built-ins Required; cat is our user-defined auxiliary
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Summary

Recursion is the basic ‘control structure’ of both
FP and LP
A taxonomy of recursion includes tail recursion 
(corresponding to iteration) and full recursion
Recursion invariants were given for all operations 
before their actual definitions
Recursive definitions of arithmetic and list 
operations were compared for FP and LP
Relations not calling built-ins permit inverted calls
Certain programs are tail-recursive in LP but fully 
recursive in FP



11-Apr-10CS 6715 FLP177

Higher-Order Operations
(Higher-Order Functions and Relations)

Chapter 5
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Higher-Order Operations:
Operations as 1st-Class Citizens

In higher-order operations,
operations (functions and relations)
are 1st-class citizens
in that they can themselves be
• Passed to calls as (actual) parameters/arguments
• Delivered from operation calls:

• Returned as values of function calls
• Assigned to request variables of relation calls

• Used as elements of structures (and of lists)
• Assigned to local variables (single-assignment)
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Taxonomy of 1st-Order and
Higher-Order Operations

•Operation
•Function (FP)

•1st-Order
(no functions as
arguments or values)

•Higher-Order
(functions as
arguments or values)

•Relation (LP)
•1st-Order
(no relations as
arguments or bindings;
no relation variables)

•Higher-Order
(relations as
arguments or bindings;
relation variables)

•2nd-Order
(used relations are
themselves 1st-order)

•Function (FLP)
•1st-Order
(no operations as
arguments, values or bindings;
no operation variables)

•Higher-Order
(operations as arguments, values or bindings;
operation variables)
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FP: Function Composition as a Higher-
Order Function (I)

In the introductory chapter, we discussed the 
function composition en2fr°en-antonym°fr2en
constituting the function fr-antonym
The ‘°’ can be regarded as the infix version of an 
(associative) binary compose higher-order function, 
which – when passed two functional arguments –
delivers (returns) their composition as a new function:
en-antonym°fr2en becomes
compose(en-antonym,fr2en)

en2fr°en-antonym°fr2en becomes
compose(en2fr,compose(en-antonym,fr2en))  or
compose(compose(en2fr,en-antonym),fr2en)
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FP: Function Composition as a Higher-
Order Function (II)

However, we want to permit simple definitions of 
higher-order functions (without so-called λ-variables
for defining new anonymous functions)
Hence ‘°’ is regarded here as the infix version of
an (associative) binary higher-order constructor
compose while the entire structure compose[f,g] is 
regarded as a complex higher-order function name:
en-antonym°fr2en becomes
compose[en-antonym,fr2en]

en2fr°en-antonym°fr2en becomes
compose[en2fr,compose[en-antonym,fr2en]]  or
compose[compose[en2fr,en-antonym],fr2en]
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FP: Application of Compose as a 
Higher-Order Function

Such a higher-order function structure can be 
applied to arguments as follows:

en-antonym°fr2en(noir) becomes
compose[en-antonym,fr2en](noir)

returning  white

en2fr°en-antonym°fr2en(noir) becomes
compose[en2fr,compose[en-antonym,fr2en]](noir) or
compose[compose[en2fr,en-antonym],fr2en](noir)

returning blanc

parameters argument
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FP: Definition of Compose as a Higher-
Order Function

The higher-order operation compose can be defined 
as follows, where F and G are function variables
(their values should be function names or terms), 
while X is an object variable (its values should be 
normal terms):

Math: compose(F,G)(X) =  F(G(X))

Relfun: compose[F,G](X) :&  F(G(X)).
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FP: Computation with Simple Compose 
as a Higher-Order Function

compose[en-antonym,fr2en]( noir )
en-antonym( fr2en( noir ) )
en-antonym( black )
white
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FP: Computation with Nested Compose 
as a Higher-Order Function

compose[en2fr,compose[en-antonym,fr2en]]( noir )
en2fr( compose[en-antonym,fr2en]( noir ) )
en2fr( en-antonym( fr2en( noir ) )
en2fr( en-antonym( black ) )
en2fr( white )
blanc

compose[compose[en2fr,en-antonym],fr2en ]( noir )
compose[en2fr,en-antonym]( fr2en ( noir ) )
compose[en2fr,en-antonym]( black ) 
en2fr( en-antonym( black ) )
en2fr( white )
blanc
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LP: Relational Product as a Higher-
Order Relation (I)

The relation fr-antonym of the introductory chapter 
can be viewed as constituting a relational product
fr4en•en-antonym•en4fr, where en4fr inverts fr4en:
en4fr(En,Fr) :- fr4en(Fr,En).
The ‘•’ can be regarded as the infix version of an 
(associative) binary product higher-order operation:

fr4en•en-antonym becomes
product(fr4en,en-antonym)

fr4en•en-antonym•en4fr becomes
product(fr4en, product(en-antonym,en4fr))  or
product(product(fr4en,en-antonym),en4fr)
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LP: Relational Product as a Higher-
Order Relation (II)

However, we want to use simple definitions of pure 
higher-order relations (again avoiding λ-variables)
Hence ‘•’ is regarded here as the infix version of
an (associative) binary higher-order constructor
product while the entire structure product[r,s]
is regarded as a higher-order relation:

fr4en•en-antonym becomes
product[fr4en,en-antonym]

fr4en•en-antonym•en4fr becomes
product[fr4en,product[en-antonym,en4fr]]  or
product[product[fr4en,en-antonym],en4fr]
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LP: Application of Product as a Higher-
Order Relation 

Such a higher-order relation structure can be applied 
to arguments as follows:

fr4en•en-antonym(noir,Res) becomes
product[fr4en,en-antonym](noir,Res)

binding Res=white

fr4en•en-antonym•en4fr(noir,Res) becomes
product[fr4en,product[en-antonym,en4fr]](noir,Res)  or
product[product[fr4en,en-antonym],en4fr](noir,Res)

binding Res=blanc
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LP: Definition of Product as a Higher-
Order Relation

The higher-order operation product can be defined 
as follows, where R and S are relation variables
(their values should be relation names or terms), 
while X, Y, and Z are object variables (their values 
should be normal terms):

Math: product(R,S)(X,Z) if  R(X,Y) and S(Y,Z)

Relfun: product[R,S](X,Z)  :- R(X,Y), S(Y,Z).
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LP: Computation with Simple Product 
as a Higher-Order Relation

product[fr4en,en-antonym](noir,Res)
fr4en(noir,Y1), en-antonym(Y1,Res) 
en-antonym(black,Res)
Res = white
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LP: Computation with Nested Product 
as a Higher-Order Relation

product[fr4en,product[en-antonym,en4fr]](noir,Res) 
fr4en(noir,Y1), product[en-antonym,en4fr](Y1,Res)
product[en-antonym,en4fr](black,Res)
en-antonym(black,Y2), en4fr(Y2,Res)
en4fr(white,Res)
Res = blanc

product[product[fr4en,en-antonym],en4fr](noir,Res)
product[fr4en,en-antonym](noir,Y1), en4fr(Y1,Res)
fr4en(noir,Y2), en-antonym(Y2,Y1), en4fr(Y1,Res)
en-antonym(black,Y1), en4fr(Y1,Res) 
en4fr(white,Res)
Res = blanc
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FP: A Function-Mapping Higher-Order 
Function

1. Consider a higher-order function for mapping a 
function over – applying it to – all elements of a list;
e.g., a2a[sqrt]([1,4,9]) maps built-in function sqrt
over the elements 1, 4, and 9, returning [1,2,3]

2. Versions of this have been used in many functional 
languages; in Common Lisp it is a binary function;
e.g., (mapcar #'sqrt '(1 4 9)) returns (1 2 3)

3. The unary version 1. will, however, permit nestings:
a2a[a2a[sqrt]]([[1,4,9],[16,25]]) maps a2a[sqrt] 
over [1,4,9] and [16,25], returning [[1,2,3],[4,5]]

4. Can also be combined with higher-order compose:
a2a[compose[sqrt,1+]]([0,3,8]) returns [1,2,3]
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FP: Definition of, and Computation with, 
the a2a Higher-Order Function

a2a[F]([]) :& [].
a2a[F]([First|Rest]) :& cns( F(First), a2a[F](Rest) ).

a2a[sqrt]( [1,4,9] )
cns( sqrt(1), a2a[sqrt]([4,9]) )
cns( 1 , cns( sqrt(4), a2a[sqrt]([9]) ) )
cns( 1 , cns( 2, cns( sqrt(9), a2a[sqrt]([]) ) ) )
cns( 1 , cns( 2, cns( 3 , [] ) ) )
cns( 1 , cns( 2, [3] ) )
cns( 1 , [2,3] )
[1,2,3]
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LP: A Relation-Mapping Higher-Order 
Relation

Similarly, consider a higher-order relation for 
mapping a relation over all elements of a list
Since there are few built-in relations, assume a 
user-defined relation, e.g. dup(N,[N,N]).
Now, e.g. a2a[dup]([1,4,9],Res) maps the relation 
dup over 1, 4, and 9, binding Res = [[1,1],[4,4],[9,9]]
The mapped list may be non-ground, as in
a2a[dup]([1,J,9],Res), giving Res = [[1,1],[J,J],[9,9]]
The mapped relation may be non-deterministic, 
leading to several bindings for the result list
Versions of such higher-order syntax have been 
used in many logic languages, e.g. in ISO Prolog
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LP: Relation Variables as 2nd-Order 
Syntactic Sugar (I)

Consider an RDF-like binary fact base describing 
individuals or resources in the first argument, e.g.:
transmission("Honda","Automatic").
air-conditioning("Honda","Automatic"). 
color("Honda","Eternal Blue Pearl").

1st-order queries – relation given, object asked:
transmission("Honda",Kind)
binds object variable Kind = "Automatic"
2nd-order queries – objects given, relation asked:
Feature("Honda","Automatic")
binds relation variable Feature = transmission 
and then binds Feature = air-conditioning
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LP: Relation Variables as 2nd-Order 
Syntactic Sugar (II)

LP 2nd-order queries are useful in practice, but
are ‘syntactic sugar’ that can be eliminated in the 
semantics and in the implementation – a ternary 
dummy relation apply shifts the original relation
into the first argument position, e.g.:
apply(transmission,"Honda","Automatic").
apply(air-conditioning,"Honda","Automatic"). 
apply(color,"Honda","Eternal Blue Pearl").
This leaves us with only 1st-order queries:
apply(Feature,"Honda","Automatic")
binds object variable Feature = transmission 
and then binds Feature = air-conditioning
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FLP: Function Variables as 2nd-Order 
Syntactic Sugar (I)

Similarly, consider the unary point base describing 
individuals or resources in the single argument, e.g.:
transmission("Honda") :& "Automatic".
air-conditioning("Honda") :& "Automatic". 
color("Honda") :& "Eternal Blue Pearl".

1st-order queries – function given, object asked:
transmission("Honda")
returns object "Automatic"
2nd-order queries – objects given, function asked:
"Automatic" .= Feature("Honda")
binds function variableFeature = transmission 
and then binds Feature = air-conditioning
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FLP: Function Variables as 2nd-Order 
Syntactic Sugar (II)

FLP 2nd-order queries are also useful in practice, but
again are syntactic sugar that can be eliminated in 
the semantics and in the implementation – a binary 
dummy function apply shifts the original function
into the first argument position, e.g.:
apply(transmission,"Honda") :& "Automatic".
apply(air-conditioning,"Honda") :& "Automatic". 
apply(color,"Honda") :& "Eternal Blue Pearl".
This leaves us with only 1st-order queries:
"Automatic" .= apply(Feature,"Honda")

binds object variable Feature = transmission 
and then binds Feature = air-conditioning
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Summary

In higher-order operations, operations are
1st-class citizens that are allowed at most ‘places’
A taxonomy of 1st-order and higher-order operations 
was introduced, the latter permitting operations as 
arguments, values or bindings,
as well as operation variables
Function composition was discussed as a higher-
order operation in FP; relational product as a 
corresponding higher-order operation in LP
Higher-order operations that map functions or 
relations over lists were discussed for FP and LP
Relation variables were considered as 2nd-order 
syntactic sugar for LP; function variables, for FLP
Structure-named operations were used instead of
λ-expressions (avoiding higher-order unification)
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Non-Deterministic Definitions and Calls

Chapter 6
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What is Non-Determinism?

We have seen non-deterministic calls in earlier chapters
Distinguished from indeterminism or random behavior, 
non-determinism gives computations limited choice on 
which control branches to follow
Two versions of non-determinism have been studied
(we will consider here only version 2.):
1. Don’t-care non-determinism: Once a choice has been made, 

the other alternatives at this point are discarded
2. Don’t-know non-determinism: When a choice is made, the 

other alternatives at this point are stored for later follow-up
(Don’t-know) Non-determinism is here – as in Prolog –
realized by depth-first search (backtracking), but also 
breadth-first search or versions of best-first search have
been used
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Taxonomy of Deterministic vs. Non-
Deterministic Definitions and Calls

•Definition
•Deterministic
(ground calls must
generate 0 or 1 results;
non-ground calls can
generate > 1 result)

•Non-Deterministic
(ground calls can
generate > 1 results)

•Call (ground or non-ground)
•Deterministic
(must have 0 or 1 results)

•LP: ≤ 1 binding set
•FP: ≤ 1 return value
•FLP: ≤ 1 binding-
return combination

•Non-Deterministic
(can have > 1 results)

•LP: > 1 binding set
•FP: > 1 return value
•FLP: > 1 binding-
return combination
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LP: Deterministic Product-Offer Definition 
and its Ground Deterministic Calls

Facts on offered furniture products in available quantities at merchants:

offer(desk,15,moebureau)
succeeds, returning   true

Deterministic (ground) call:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,19,furniffice).
offer(chair,20,moebureau).

offer(chair,20,moebureau)
succeeds, returning   true

Deterministic (ground) call:

Does moebureau offer 15 desks?

Does moebureau offer 20 chairs?

Deterministic Definition
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FP: Deterministic Product-Offer Definition 
and its Ground Deterministic ‘.=’ Calls

Points on offered furniture products in available quantities at merchants:

moebureau .= offer(desk,15)
succeeds, returning   moebureau

Deterministic (ground) call:

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,19) :& furniffice.
offer(chair,20) :& moebureau.

moebureau .= offer(chair,20)
succeeds, returning   moebureau

Deterministic (ground) call:

Does moebureau offer 15 desks?

Deterministic Definition

Does moebureau offer 20 chairs?
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LP: Deterministic Product-Offer Definition 
and its Non-Ground Deterministic Calls

Facts on offered furniture products in available quantities at merchants:

offer(desk,15,Merchant)
binds   Merchant to moebureau

Deterministic (non-ground) call:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,19,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant)
binds   Merchant to moebureau

Deterministic (non-ground) call:

Which merchants offer 15 desks?

Which merchants offer 20 chairs?

Deterministic Definition
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FP: Deterministic Product-Offer Definition 
and its Ground Deterministic Calls

Points on offered furniture products in available quantities at merchants:

offer(desk,15)
returns   moebureau

Deterministic (ground) call:

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,19) :& furniffice.
offer(chair,20) :& moebureau.

offer(chair,20)
returns   moebureau

Deterministic (ground) call:

Which merchants offer 15 desks?

Which merchants offer 20 chairs?

Deterministic Definition
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LP: Deterministic Product-Offer Definition 
and Deterministic/Non-Deterministic Calls

Facts on offered furniture products in available quantities at merchants:

offer(desk,15,Merchant)
binds   Merchant to moebureau

Deterministic (non-ground) call:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant)
binds   Merchant to furniffice and (then)   to moebureau

Non-deterministic (non-ground) call:

Which merchants offer 15 desks?

Which merchants offer 20 chairs?

Deterministic Definition
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FP: Non-Deterministic Product-Offer 
Definition and its Non-/Deterministic Calls

Points on offered furniture products in available quantities at merchants:

offer(desk,15)
returns   moebureau

Deterministic (ground) call:

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

offer(chair,20)
returns   furniffice and (then)   moebureau

Non-deterministic (ground) call:

Which merchants offer 15 desks?

Which merchants offer 20 chairs?

Non-Deterministic Definition



11-Apr-10CS 6715 FLP209

LP: Deterministic Product-Offer Definition 
and its Non-Deterministic Calls

Facts on offered furniture products in available quantities at merchants:

offer(desk,Quantity,Merchant)
binds Quantity=10, Merchant=furniffice
and    Quantity=15, Merchant=moebureau

Non-deterministic (non-ground) call:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,21,furniffice).
offer(chair,20,moebureau).

offer(chair,Quantity,Merchant)
binds Quantity=21, Merchant=furniffice
and    Quantity=20, Merchant=moebureau

Non-deterministic (non-ground) call:

Which merchants offer how many desks?

Deterministic Definition

Which merchants offer how many chairs?
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FLP: Deterministic Product-Offer 
Definition and its Non-Deterministic Calls

Points on offered furniture products in available quantities at merchants:

offer(desk,Quantity)
returns furniffice, binding Quantity=10
returns moebureau, binding Quantity=15

Non-deterministic (non-ground) call:

offer(chair,Quantity)
returns furniffice, binding Quantity=21
returns moebureau, binding Quantity=20

Non-deterministic (non-ground) call:

Which merchants offer how many desks?

Deterministic Definition

Which merchants offer how many chairs?

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,21) :& furniffice.
offer(chair,20) :& moebureau.
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LP:Deterministic Offer+ContactDefinitions 
for Non-/Deterministic Conjunctions

Facts on offered furniture products and their merchants’ contact persons:

offer(desk,15,Merchant), contact(Merchant,Person)
binds   Merchant to moebureau and Person to leblanc

Deterministic (non-ground) call conjunction – relational join:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant), contact(Merchant,Person)
binds Merchant to furniffice and Person to roberts, sniders, tellers
and    Merchant to moebureau and Person to leblanc

Non-deterministic (non-ground) call conjunction – relational join:

contact(furniffice,roberts).
contact(furniffice,sniders).
contact(furniffice,tellers).
contact(moebureau,leblanc).
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LP: Proof Tree for the Non-Deterministic 
Call Conjunction

offer(chair,20,Merchant), contact(Merchant,Person)

Merchant=furniffice Merchant=moebureau

contact(furniffice,Person) contact(moebureau,Person)

Person=snidersPerson=roberts Person=tellers Person=leblanc

‘=’ Bindings
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FP: Non-Deterministic Offer+Contact 
Definitions for Non-/Deterministic Nestings

Points on offered furniture products and their merchants’ contact persons:

contact(offer(desk,15))
via   contact(moebureau)   returns   leblanc

Deterministic (ground) call nesting:

contact(offer(chair,20))
via   contact(furniffice)   returns   roberts, sniders, tellers
via   contact(moebureau)   returns   leblanc

Non-deterministic (ground) call nesting:

contact(furniffice) :& roberts.
contact(furniffice) :& sniders.
contact(furniffice) :& tellers.
contact(moebureau) :& leblanc.

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.
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FP: Proof Tree for the Non-Deterministic 
Call Nesting

contact( offer(chair,20) )  

offer→furniffice offer→moebureau

contact( furniffice )     contact( moebureau )   

contact→sniderscontact→roberts contact→tellers contact→leblanc

‘→’ Returns
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LP:Deterministic Offer+SiteDefinitions for 
Non-/Deterministic Conjunctions

Facts on offered furniture products and their merchants’ sites:

offer(desk,15,Merchant), site(Merchant,Town)
binds   Merchant to moebureau and Town to moncton

Deterministic (non-ground) call conjunction – relational join:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant), site(Merchant,Town)
binds Merchant to furniffice and Town to fredericton, moncton
and    Merchant to moebureau and Town again to moncton

Non-deterministic (non-ground) call conjunction – relational join:

site(furniffice,fredericton).
site(furniffice,moncton).
site(moebureau,moncton).
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FP:Non-DeterministicOffer+Site
Definitions for Non-/Deterministic Nestings

Points on offered furniture products and their merchants’ sites:

site(offer(desk,15))
via   site(moebureau)   returns   moncton

Deterministic (ground) call nesting:

site(offer(chair,20))
via   site(furniffice)   returns   fredericton, moncton
via   site(moebureau)   again returns   moncton

Non-deterministic (ground) call nesting:

site(furniffice) :& fredericton.
site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.
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LP:Deterministic Offer+SiteDefinitions for 
Deterministic Conjunctions

Facts on offered furniture products and their merchants’ sites:

offer(desk,15,Merchant), site(Merchant,moncton)
binds   Merchant to moebureau

Deterministic conjunction:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,20,Merchant), site(Merchant,fredericton)
binds Merchant to furniffice
(then, with Merchant=moebureau, site(Merchant,fredericton) fails)

Internally non-deterministic, externally deterministic conjunction:

site(furniffice,fredericton).
site(furniffice,moncton).
site(moebureau,moncton).
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FP:Non-DeterministicOffer+Site
Definitions for Deterministic Nestings

Points on offered furniture products and their merchants’ sites:

moncton .= site(offer(desk,15))
via   moncton .= site(moebureau)   returns   moncton

Deterministic nesting:

fredericton .= site(offer(chair,20))
via   fredericton .= site(furniffice)   returns   fredericton
(then, via fredericton .= site(moebureau) fails)

Internally non-deterministic, externally deterministic nesting:

site(furniffice) :& fredericton.
site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.
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LP:Deterministic Offer+SiteDefinitions for 
Non-/Deterministic Conjunctions

Facts on offered furniture products and their merchants’ sites:

offer(desk,Quantity,Merchant), site(Merchant,moncton)
binds Quantity=10, Merchant=furniffice
binds Quantity=15, Merchant=moebureau

Non-deterministic conjunction:

offer(desk,10,furniffice).
offer(desk,15,moebureau).
offer(chair,20,furniffice).
offer(chair,20,moebureau).

offer(chair,Quantity,Merchant), site(Merchant,fredericton)
binds Quantity=20, Merchant=furniffice
(then, with Merchant=moebureau, site(Merchant,fredericton) fails)

Internally non-deterministic, externally deterministic conjunction:

site(furniffice,fredericton).
site(furniffice,moncton).
site(moebureau,moncton).
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FLP:Non-DeterministicOffer+Site
Definitions for Non-/Deterministic Nestings

Points on offered furniture products and their merchants’ sites:

moncton .= site(offer(desk,Quantity))
via moncton .= site(furniffice) returns moncton, binds Quantity=10
via moncton .= site(moebureau) returns moncton,with Quantity=15

Non-deterministic nesting:

fredericton .= site(offer(chair,Quantity))
via fredericton .= site(furniffice) gives   fredericton,  Quantity =20
(then, via fredericton .= site(moebureau) fails)

Internally non-deterministic, externally deterministic nesting:

site(furniffice) :& fredericton.
site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(desk,10) :& furniffice.
offer(desk,15) :& moebureau.
offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.
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LP:Deterministic SiteDefinition for 
Deterministic Conjunction

Facts on merchants’ sites:

site(Merch1,Town), site(Merch2,Town), string<(Merch1,Merch2)

binds Merch1= furniffice, Merch2=moebureau, Town= moncton
(Merch1=Merch2=furniffice etc. are rejected by string<)

(Externally) Deterministic conjunction:

site(furniffice,fredericton).
site(furniffice,moncton).
site(moebureau,moncton).

Based on Built-in:
string<  String-Less

Which merchants
(only different ones, and

in alphabetical order)
are in the same town?
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FLP:DeterministicSiteDefinition for 
Deterministic Conjunction

Points on merchants’ sites:

(Externally) Deterministic conjunction:

site(furniffice) :& fredericton.
site(furniffice) :& moncton.
site(moebureau) :& moncton.

Town .= site(Merch1), Town .= site(Merch2),
string<(Merch1,Merch2)

binds Merch1= furniffice, Merch2=moebureau, Town= moncton
(Merch1=Merch2=furniffice etc. are rejected by string<)

Which merchants
(only different ones, and

in alphabetical order)
are in the same town?

Based on Built-in:
string<  String-Less
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FP: Cartesian Product
by a Repeated Non-Deterministic Call

Points on offers and a pair definition:

pair(offer(chair,20),offer(chair,20))  % {[X,Y] | X,Y∈ offer(chair,20)}

returns [furniffice,furniffice] % {[furniffice,furniffice],
returns [furniffice,moebureau]    %  [furniffice,moebureau],
returns [moebureau,furniffice]   %  [moebureau,furniffice],
returns [moebureau,moebureau] % [moebureau,moebureau]}

Repeated non-deterministic call enumerates entire Cartesian product:

offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

pair(First,Second) :& [First,Second].      % similar to active cns
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FP: Subset of Cartesian Product
by a Named Non-Deterministic Call

Points on offers and a pair definition:

Oc .= offer(chair,20) & pair(Oc,Oc)  % {[Oc,Oc] | Oc∈offer(chair,20)}

returns [furniffice,furniffice],       binding Oc=furniffice
returns [moebureau,moebureau],  binding Oc=moebureau

Named non-deterministic call enumerates Cartesian product subset:

offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

pair(First,Second) :& [First,Second].      %  similar to active cns
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FP: Cartesian Product Multiset
via a Repeated Non-Deterministic Call

Points on offers, their merchants’ contacts + sites, and a pair definition:

pair(site(offer(chair,20)),contact(offer(chair,20)))
returns [fredericton,tellers]
returns [fredericton,leblanc] while moebureau’s site is moncton
returns [moncton,tellers]
returns [moncton,leblanc]
again returns [moncton,tellers]
again returns [moncton,leblanc]

Repeated non-deterministic call enumerates entire Cartesian product:

site(furniffice) :& fredericton.     site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

contact(furniffice) :& tellers.
contact(moebureau) :& leblanc.

pair(First,Second) :& [First,Second].      % similar to active cns



11-Apr-10CS 6715 FLP226

FP: Subset of Cartesian Product Multiset
via a Named Non-Deterministic Call

Points on offers, their merchants’ contacts + sites, and a pair definition:

Oc .= offer(chair,20)  &  pair(site(Oc),contact(Oc))
returns [fredericton,tellers], binding Oc=furniffice
returns [moncton,tellers], binding Oc=furniffice
returns [moncton,leblanc], binding Oc=moebureau

Named non-deterministic call enumerates Cartesian product subset:

site(furniffice) :& fredericton.     site(furniffice) :& moncton.
site(moebureau) :& moncton.

offer(chair,20) :& furniffice.
offer(chair,20) :& moebureau.

contact(furniffice) :& tellers.
contact(moebureau) :& leblanc.

pair(First,Second) :& [First,Second].      % similar to active cns
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Preview of a Transitive Closure

pretzel beer wine pickle
triggertrigger trigger

inciteincite incite

incite

incite

incite

The base relation or function trigger
has the transitive closure relation or function incite
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LP: A Recursive Non-Deterministic 
Relational Closure Definition

Ground facts on the purchase of certain products triggering further ones:

incite(ProductA,ProductB) :- trigger(ProductA,ProductB).
incite(ProductA,ProductC) :- trigger(ProductA,ProductB),

incite(ProductB,ProductC).

Datalog Rules on recursive product incitement based on triggering:

trigger(pretzel,beer).
trigger(beer,wine).
trigger(wine,pickle).

These non-deterministic clauses are used to compute the 
transitive closure relation, incite, over a base relation, trigger
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LP: A Recursive Non-Deterministic 
Relational Closure Computation

incite(pretzel,Result)
trigger(pretzel,ProductB1)
Result=ProductB1=beer

trigger(pretzel,ProductB1), incite(ProductB1,ProductC1)
trigger(pretzel,beer), incite(beer,ProductC1)
trigger(beer,ProductC1)
Result=ProductC1=wine

trigger(beer,ProductB2), incite(ProductB2,ProductC2)
trigger(beer,wine), incite(wine,ProductC2)
trigger(wine,ProductC2)
Result=ProductC2=pickle

In each computation step:
•The call to be selected next is underlined
•Call results are put in italics
•A call with non-deterministic alternatives
is bold-faced
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FP: A Recursive Non-Deterministic 
Functional Closure Definition

Ground points on the purchase of certain products triggering further ones:

incite(Product) :& trigger(Product).
incite(Product)  :& incite(trigger(Product)).

Datafun Rules on recursive product incitement based on triggering:

trigger(pretzel) :& beer.
trigger(beer) :& wine.
trigger(wine) :& pickle.

These non-deterministic clauses are used to compute the 
transitive closure function, incite, over a base function, trigger
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FP: A Recursive Non-Deterministic 
Functional Closure Computation

incite(pretzel)
trigger(pretzel)
beer

incite( trigger(pretzel) )
incite(beer)
trigger(beer)
wine

incite( trigger(beer) )
incite(wine)
trigger(wine)
pickle

In each computation step:
•The call to be selected next is underlined
•Call results are put in italics
•A call with non-deterministic alternatives
is bold-faced
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Summary

(Don’t-know) Non-determinism permits choice 
alternatives to be stored for later follow-up (e.g. 
via backtracking)
Deterministic vs. non-deterministic definitions and 
calls were discussed in a taxonomy for FP and LP
Non-ground calls can be non-deterministic even 
for deterministic definitions
Non-deterministic FLP computations can be 
regarded as always resulting in a (finite or infinite) 
set of value-binding combinations:
1. Empty set: Failure
2. Singleton set: Special case of deterministic result
3. Set with ≥ two elements: Non-deterministic result that

can be ‘unioned’ with other such sets, incl. 1. and 2.
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The Relational-Functional Markup 
Language (RFML)

Chapter 7
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A 10-Step Strategy to Publish and Reuse 
Declarative Programs as XML Markups

Specify the declarative programming language
through an XML document type definition (DTD)
Convert any to-be-published declarative program 
from its source syntax to an XML document
according to the DTD
Upload such an XML document to a Web server 
for publication
Also offer the declarative programs for server-
side querying (e.g. CGI) and advertise their 
XML-document version to search engines etc., 
ideally using metadata markup (e.g. RDF/XML)
Distribute these documents to requesting clients 
via standard Web protocols (e.g. HTTP)
If necessary, transform such an XML document 
to a declarative target language with a different 
DTD, possibly using an (XSLT) stylesheet
Download any requested XML document at the 
client site
Convert this XML document to the client's target
syntax, possibly using (XSLT + CSS) stylesheets
Query the target version via the client's program 
interpreter and optionally download the server’s 
source-program interpreter (once) for client-side 
querying, ultimately as a browser plug-in
Reuse the target version, say in existing programs

Distribute
(transform)

Query Reuse

ProgramSource

XMLSource

Upload

Convert

Server:

ProgramTarget

XMLTarget

Download

Convert

Client:

Note: ProgramSource may be identical to ProgramTarget
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Cross-Fertilizations of XML and 
Declarative Programming Languages

Separate vs. joint assertion and query languages:
– XML: Still separate schema and query of elements
– DPL: Mostly joint storage and retrieval of clauses

Generating XML markup from more compact special-purpose notations 
(and vice versa)

XML validators and DPL compilers

XML stylesheets and DPL transformers

Specification, correctness, and efficiency technology

Early case study done with the declarative language
RFML (Relational-Functional Markup Language)

Design of Functional RuleML draws on RFML for
interchange of declarative programs: http://www.ruleml.org/fun

http://www.ruleml.org/fun
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Basics of the Relational-Functional 
Markup Language RFML

Much of Web knowledge constitutes definitions of 
relations and functions
Kernel of Relational-Functional language (Relfun)
suited for XML knowledge markup:

– Uniform, rather small language
– Sufficient expressive power for practical use

RFML is an XML application for integrated relational-
functional information
Relational (hn) and functional (ft) clauses together 
define a unified notion of operators
RFML DTD small and open to various extensions
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Relational Facts: From Tables to Prolog

Relational Table:

satisfied( Customer, Item, Price )
john wine 17.95
peter beer 06.40

Prolog (Ground) Facts:

satisfied( Customer, Item, Price )
satisfied( john, wine, 17.95 ).
satisfied( peter, beer, 06.40 ).

Collect data on consumer behavior in ...
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Relational Facts: From Prolog to RFML

RFML (Ground) Markup:

Prolog (Ground) Facts:

satisfied(john,wine,17.95). satisfied(peter,beer,6.40).

<hn> <hn>
<pattop> <pattop>

<con>satisfied</con> <con>satisfied</con>
<con>john</con> <con>peter</con>
<con>wine</con> <con>beer</con>
<con>17.95</con> <con>6.40</con>

</pattop> </pattop>
</hn> </hn>
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Relational Rules: From Prolog to RFML

RFML (Non-Ground) Markup:

Prolog (Non-Ground) Rule:
satisfied(C,I,P) :- buy(week1,C,I,P), buy(week2,C,I,P).

Infer data on consumer behavior via ...

<hn>
<pattop>
<con>satisfied</con><var>C</var><var>I</var><var>P</var>
</pattop>
<callop>
<con>buy</con><con>week1</con><var>C</var><var>I</var><var>P</var>
</callop>
<callop>
<con>buy</con><con>week2</con><var>C</var><var>I</var><var>P</var>
</callop>
</hn>
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Functional Facts (Definition Points):
From Unconditional Equations to RFML

RFML (Ground) Markup:

Unconditional (Ground) Equations:
pay(john,fred,17.95) = cheque pay(peter,fred,6.40) = cash 

Discriminate on payment method via ...

<ft>
<pattop>

<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</pattop>
<con>cheque</con>

</ft>

<ft>
<pattop>

<con>pay</con>
<con>peter</con>
<con>fred</con>
<con>6.40</con>

</pattop>
<con>cash</con>

</ft>
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Functional Queries:
Joint Assertion and Query Language

The pay function can be queried (non-ground)
directly via a callop markup:

<callop>
<con>pay</con>
<con>john</con>
<var>merchant</var>
<var>price</var>

</callop>

binding the two variables to the corresponding constants
in the definition pattern and returning the constant 'cheque'

Same indirectly as the right side of a conditional equation ...



11-Apr-10CS 6715 FLP242

Functional Rules:
From Conditional Equations to Relfun

Conditional (Non-Ground) Equation:
acquire(Customer,Merchant,Item,Price) =

pay(Customer,Merchant,Price)
if    satisfied(Customer,Item,Price)

Predict consumers’ acquisition behavior via ...

Relfun (Non-Ground) Footed Rule:

acquire(Customer,Merchant,Item,Price) :-
satisfied(Customer,Item,Price) &
pay(Customer,Merchant,Price).
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Functional Rules:
From Relfun to RFML

RFML (Non-Ground) Markup:
<ft>
<pattop>
<con>acquire</con><var>c</var><var>m</var><var>i</var><var>p</var>

</pattop>
<callop>
<con>satisfied</con><var>c</var><var>i</var><var>p</var>

</callop>
<callop>
<con>pay</con><var>c</var><var>m</var><var>p</var>

</callop>
</ft>

Relfun (Non-Ground) Footed Rule:
acquire(C,M,I,P) :- satisfied(C,I,P) & pay(C,M,P).
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Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

<callop>
<con>acquire</con>
<con>john</con>
<con>fred</con>
<var>item</var>
<con>17.95</con>

</callop>

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

<callop>
<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</callop>

<callop>
<con>satisfied</con>
<con>john</con>
<var>item</var>
<con>17.95</con>

</callop>

&

<callop>
<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</callop>

<con item="wine">
true

</con>
&<con item="wine">

cheque
</con>
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Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

<callop>
<con>acquire</con>
<con>john</con>
<con>fred</con>
<var>item</var>
<con>17.95</con>

</callop>

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'



11-Apr-10CS 6715 FLP246

Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

<callop>
<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</callop>

<callop>
<con>satisfied</con>
<con>john</con>
<var>item</var>
<con>17.95</con>

</callop>

&
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Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

<callop>
<con>pay</con>
<con>john</con>
<con>fred</con>
<con>17.95</con>

</callop>

<con item="wine">
true

</con>
&
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Relational-Functional Computations:
“What Items John Buys, and How”

A query of the acquire function now leads to the following
RFML computation (4-step animation):

It binds the variable 'item' to the constant 'wine'
(RFML bindings represented as XML attributes)
and returns the constant 'cheque'

<con item="wine">
cheque

</con>
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The RFML DTD (1)

<!-- ENTITIES use non-terminals of Relfun grammar (Boley 1999) 'untagged',  -->
<!-- e.g. term ::= con | var | anon | struc | tup, just specifying, say,    -->
<!-- <var> X </var> term instead of nesting <term> <var> X </var> </term>   -->

<!ENTITY % variable      "(var | anon)" >
<!ENTITY % appellative   "(con | %variable; | struc)" >
<!ENTITY % term          "(%appellative; | tup)" >

<!-- ELEMENTS use non-terminals of Relfun grammar 'tagged', so var ::= ...  -->
<!-- itself becomes <var> X </var>                                          -->

<!-- rfml is the document root, the possibly empty knowledge-base top-level -->
<!-- of hn or ft clauses:                                                 -->

<!ELEMENT rfml (hn | ft)* >

<!-- hn clauses are a pattop before zero (facts) or more terms or callop's; -->
<!-- ft clauses are a pattop before at least one term or callop (the foot): -->

<!ELEMENT hn (pattop, (%term; | callop)*) >
<!ELEMENT ft            (pattop, (%term; | callop)+) >

<!-- a pattop clause head is an operator appellative and a (rest) pattern:  -->

<!ELEMENT pattop (%appellative;,
(%term;)*,
(rest, (%variable; | tup))?) >
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The RFML DTD (2)

<!-- a callop clause body premise or foot is a (nested) operator call:      -->

<!ELEMENT callop ((%appellative; | callop),
(%term; | callop)*,
(rest, (%variable; | tup | callop))?) >

<!-- a struc is a constructor appellative with argument terms (and a rest): -->

<!ELEMENT struc (%appellative;,
(%term;)*,
(rest, (%variable; | tup))?) >

<!-- a tup is a list of terms (zero or more), perhaps followed by a rest: -->

<!ELEMENT tup ((%term;)*,
(rest, (%variable; | tup))?) >

<!-- con and var are just parsed character data (character permutations):   -->

<!ELEMENT con           (#PCDATA)>
<!ELEMENT var (#PCDATA)>

<!-- anon (Relfun: "_") and rest (Relfun: "|") are always-empty elements:   -->

<!ELEMENT anon          EMPTY >
<!ELEMENT rest          EMPTY >
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Summary

RFML combines relational-functional knowledge-
representation and declarative-programming 
languages on the Web
It has been implemented as a (Web-)output syntax 
for declarative knowledge bases and computations
XSLT stylesheets have been developed for

– rendering RFML in Prolog-like Relfun syntax
– translating between RFML and RuleML

Further descriptions, examples, the DTD, and 
download information are available at 
http://www.relfun.org/rfml

http://www.ruleml.org/
http://www.relfun.org/rfml
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Source-to-Source (Horizontal) 
Transformation

Chapter 8
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What is Source-to-Source (Horizontal) 
Transformation?

A Functional-Logic Programming language such as 
Relfun can be considered to consist of
– One or two inner kernel(s): Functional or logic kernel
– Several surrounding shells: List notation, higher-order, …

The shells can be automatically reduced towards 
the kernel(s) using techniques of source-to-source
(horizontal) transformation
This preprocessing makes the FLP language
– Easier to understand for various groups of humans
– Well-prepared for source-to-instruction (vertical) 

compilations into various machine languages
Some of the key transformation techniques will be 
introduced here via examples
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An Overview of Source-to-Source 
(Horizontal) Transformation

We first show how functions can be transformed
into a logic kernel language (from FP to LP)
We then indicate how relations can be transformed
into a functional or into a functional-logic language
(from LP to FP or to FLP)
Another kind of transformation (prior to compilation) 
will replace list notation by cns structures
These and several further transformations can be 
executed interactively as commands in Relfun,
and most of them are combined by the horizon
command, also used by the Relfun compiler
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Relationalizing Functions: Flattening
(Pseudo-Code Syntax)

fr-antonym(Mot)    = en2fr(en-antonym(fr2en(Mot)))

Definition by
Function Nesting

Functional Program
(fully nested):

fr-antonym(Mot)  if _1 = en-antonym(fr2en(Mot)) then en2fr(_1)
1st Flattening Step: Variable _1

Functional-Logic Program
(partially flattened):

fr-antonym(Mot)  if _2 = fr2en(Mot) and _1 = en-antonym(_2)
then en2fr(_1)

2nd Flattening Step: Variable _2

Functional-Logic Program
(fully flattened):
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Relationalizing Functions: Flattening
(Relfun Syntax)

fr-antonym(Mot)    :& en2fr(en-antonym(fr2en(Mot))) .

Definition by
Function Nesting

Functional Program
(fully nested):

fr-antonym(Mot)  :- _1 .= en-antonym(fr2en(Mot)) & en2fr(_1) .
1st Flattening Step: Variable _1

Functional-Logic Program
(partially flattened):

fr-antonym(Mot) :- _2 .= fr2en(Mot) , _1 .= en-antonym(_2)
& en2fr(_1) .

2nd Flattening Step: Variable _2

Functional-Logic Program
(fully flattened):

Command: flatten
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Relationalizing Functions: Extra-Argument 
Insertion (Pseudo-Code Syntax)

fr-antonym(Mot)  if _2 = fr2en(Mot) and _1 = en-antonym(_2)
then en2fr(_1)

Flat Definition: Variables _1, _2

Functional-Logic Program
(results returned):

fr-antonym(_3,Mot)  if fr2en(_2,Mot) and en-antonym(_1,_2)
and en2fr(_3,_1)

New 1st Argument: Variable _3
Logic Program
(results bound):

New 1st Argument:
Variable _2 from ‘=’

…
Call Pattern
(query variable):

fr-antonym(Franto,noir)
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Relationalizing Functions: Extra-Argument 
Insertion (Relfun Syntax)

fr-antonym(Mot) :- _2 .= fr2en(Mot) , _1 .= en-antonym(_2)
& en2fr(_1) .

Flat Definition: Variables _1, _2

Functional-Logic Program
(results returned):

fr-antonym(_3,Mot) :- fr2en(_2,Mot) , en-antonym(_1,_2)
, en2fr(_3,_1) .

New 1st Argument: Variable _3
Logic Program
(results bound):

New 1st Argument:
Variable _2 from ‘.=’

…Call Pattern
(query variable):

fr-antonym(Franto,noir)

Command: extrarg

Combined Command: relationalize
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Functionalizing Relations: Footening of 
Facts (Pseudo-Code Syntax)

spending(Peter Miller,min 5000 euro,previous year)

Fact Definition

Logic Program
(implicit true value):

spending(Peter Miller,min 5000 euro,previous year) = true

‘true’-Footening
Functional Program A
(explicit true value):

spending(Peter Miller,min 5000 euro,previous year) = 1

‘1’-Footening
Functional Program B
(explicit 1 value):
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Functionalizing Relations: Footening of 
Facts (Relfun Syntax)

spending(Peter Miller,min 5000 euro,previous year) .

Fact Definition

Logic Program
(implicit true value):

spending(Peter Miller,min 5000 euro,previous year) & true .

‘true’-Footening
Functional Program A
(explicit true value):

spending(Peter Miller,min 5000 euro,previous year) & 1 .

‘1’-Footening
Functional Program B
(explicit 1 value):

Command: footer true

Command: footer 1
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Functionalizing Relations: Footening of 
Rules (Pseudo-Code Syntax)

premium(Customer) if
spending(Customer,min 5000 euro,previous year)

Definition by
Single Premise Call

Logic Program
(implicit true value):

premium(Customer) if
spending(Customer,min 5000 euro,previous year) then true

‘true’-Footening

Functional-Logic Program A
(explicit true value):

premium(Customer) if
spending(Customer,min 5000 euro,previous year) then 1

‘1’-Footening

Functional-Logic Program B
(explicit 1 value):
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Functionalizing Relations: Footening of 
Rules (Relfun Syntax)

premium(Customer) :-
spending(Customer,min 5000 euro,previous year) .

Definition by
Single Premise Call

Logic Program
(implicit true value):

premium(Customer) :-
spending(Customer,min 5000 euro,previous year) & true .

‘true’-Footening

Functional-Logic Program A
(explicit true value):

premium(Customer) :-
spending(Customer,min 5000 euro,previous year) & 1 .

‘1’-Footening

Functional-Logic Program B
(explicit 1 value):

Command: footen true

Command: footen 1
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Four Variants of Non-Deterministic
Even-Number Generation: Definitions

% Functional (Numeric):
evenfn() :& 0.
evenfn() :& 1+(1+(evenfn())).

% Relational (Numeric):
evenrn(0).
evenrn(R) :- evenrn(N), R .= 1+(1+(N)).

% Functional (Symbolic):
evenfs() :& 0.
evenfs() :- H .= evenfs() & suc[suc[H]].

% Relational (Symbolic):
evenrs(0).
evenrs(suc[suc[N]]) :- evenrs(N).
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Four Variants of Non-Deterministic
Even-Number Generation: Calls

rfi-p> evenfn() 
0
rfi-p> more
2
rfi-p> more
4
rfi-p> evenrn(Res)
true
Res=0
rfi-p> more
true
Res=2
rfi-p> more
true
Res=4

rfi-p> evenfs()
0
rfi-p> more
suc[suc[0]]
rfi-p> more
suc[suc[suc[suc[0]]]]
rfi-p> evenrs(Res)
true
Res=0
rfi-p> more
true
Res=suc[suc[0]]
rfi-p> more
true
Res=suc[suc[suc[suc[0]]]]
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Four Variants of Non-Deterministic
Even-Number Generation:  Flattened …

% Functional (Numeric):
evenfn() :& 0.
evenfn() :- _2 .= evenfn(), _1 .= 1+(_2) & 1+(_1). 

% Relational (Numeric):
evenrn(0).
evenrn(R) :- evenrn(N), _1 .= 1+(N), R .= 1+(_1). 

% Functional (Symbolic):
evenfs() :& 0.
evenfs() :- H .= evenfs() & suc[suc[H]]. 

% Relational (Symbolic):
evenrs(0).
evenrs(suc[suc[N]]) :- evenrs(N). 

Unchanged

Unchanged

2-Step Flattening

1-Step Flattening
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Four Variants of Non-Deterministic
Even-Number Generation: … + Extrarged

% Functional (Numeric):
evenfn(0).
evenfn(_3) :- evenfn(_2), _1 .= 1+(_2), _3 .= 1+(_1).

% Relational (Numeric):
evenrn(0).
evenrn(R) :- evenrn(N), _1 .= 1+(N), R .= 1+(_1).

% Functional (Symbolic):
evenfs(0).
evenfs(suc[suc[H]]) :- evenfs(H).

% Relational (Symbolic):
evenrs(0).
evenrs(suc[suc[N]]) :- evenrs(N). 

(= Relationalized)

Identical
(up to
variable
renaming)

Identical
(up to
variable
renaming)
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Four Variants of Non-Deterministic
Even-Number Generation: Horizoned

% Functional (Numeric):
evenfn() :& 0.
evenfn() :- _2 .= evenfn(), _1 .= 1+(_2) & 1+(_1).

% Relational (Numeric):
evenrn(0).
evenrn(R) :- evenrn(N), _1 .= 1+(N), R .= 1+(_1) & true.

% Functional (Symbolic):
evenfs() :& 0.
evenfs() :- H .= evenfs(), _1 .= suc[H] & suc[_1]. 

% Relational (Symbolic):
evenrs(0).
evenrs(_1) :- _2 .= suc[N], _1 .= suc[_2], evenrs(N) & true.

‘true’-Footening

‘true’-Footening
Structure Flattening
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Eliminating the N-ary List Notation: 
Untupping

Examples: Flat cns (internal) lists: Nested cns lists:
Ground: cns[u,nil] cns[rs[1],cns[u,nil]] cns[cns[u,nil],nil]
Non-ground: cns[X,Y] cns[rs[_],cns[u,nil]] cns[cns[u,X],Y]

Examples: Flat n-ary (external) lists: Nested n-ary lists:
Ground: [u] [rs[1],u] [[u]]
Non-ground: [X|Y] [rs[_],u] [[u|X]|Y]

ground-test([u], [rs[1],u], [[u]]).

ground-test(cns[u,nil], cns[rs[1],cns[u,nil]], cns[cns[u,nil],nil]).

non-ground-test([X|Y],[rs[_],u],[[u|X]|Y]).

non-ground-test(cns[X,Y],cns[rs[_],cns[u,nil]],cns[cns[u,X],Y]).

Command: untup

Command: untup
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Deterministic Even-Number Generation: 
evenfn Source, Untupped, and Horizoned
% Functional (Numeric):
evenfn(1) :&  [0].
evenfn(I) :- >(I,1),

[H|R] .= evenfn(1-(I)),
H2 .= 1+(1+(H))  &  [H2,H|R].

% Functional (Numeric) – (_1=_4=cns[H,R] by normalizer):
evenfn(1) :&  cns[0,nil].
evenfn(I) :- >(I,1),

_1 .= cns[H,R], _2 .= 1-(I), _1 .= evenfn(_2),
_3 .= 1+(H), H2 .= 1+(_3), _4 .= cns[H,R] & cns[H2,_4]. 

% Functional (Numeric) – :
evenfn(1) :& cns[0,nil].
evenfn(I) :- >(I,1),

cns[H,R] .= evenfn(1-(I)),
H2 .= 1+(1+(H))  &  cns[H2,cns[H,R]]. 

untup

horizon
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Summary

Horizontal transformation techniques were 
introduced and illustrated via Relfun examples
Relfun’s horizon command transforms FP, LP,
and FLP source programs into a flattened (but not 
extrarged) form, which also uses footen true
After untup for transforming lists to cns structures, 
horizon also flattens all structures much like active 
nestings, for preparing their efficient indexing
Other horizontal steps are the replacement of 
anonymous variables and of active cns calls
All horizontal results can still be interpreted, but 
subsequent WAM compilation increases efficiency

http://smi-web.stanford.edu/people/boley/lnai1712.html
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