

Functional Neuroanatomy and Traumatic Brain Injury – The Frontal Lobes

Jessica Matthes, Ph.D., ABN Barrow TBI Symposium March 23, 2019 jessica.matthes@dignityhealth.org

Outline

• TBI

- Mechanisms of Injury
- Types of Injury
- Common Deficits
- Regions of the Frontal Lobe and Their Functions

Definition of TBI

A TBI is a traumatically induced structural injury and/or physiological disruption of brain function as a result of an external force that is indicated by new onset or worsening of at least one of the following clinical signs, immediately following the event: any period of a loss or decreased level of consciousness (LOC); any loss of memory for events immediately before or after the injury (post-traumatic amnesia [PTA]); any alteration in mental state at the time of the injury (confusion, disorientation, slowed thinking, etc.); neurological deficits (weakness, loss of balance, change in vision, praxis, paresis/plegia, sensory loss, aphasia, etc.) that may or may not be transient; or intracranial lesions.

• US Department of Veteran Affairs and the Department of Defenses Clinical Practice Guidelines For Management of Concussion/mTBI (2009)

Mechanisms of Injury

- <u>Closed head injury</u> trauma as a result of a <u>blow to</u> <u>the head</u>, or a <u>sudden</u>, <u>violent motion</u> that injures the brain by pushing the brain against the inside wall of the skull.
 - Closed head injuries tend to have more diffuse (widespread) effects on the brain.
- Open head injury trauma as a result of an <u>object</u> penetrating the skull and the dura of the meninges.
 - Open Head injuries tend to have more localized (involving only the areas of the brain that were directly injured) effects on the brain.

Types of Injuries

- <u>Primary Injuries</u> = damage to the brain that occurs at the time of the TBI
 - <u>Contusions</u> = brain bruises
 - caused by brain tissue hitting against the inside of the skull
 - <u>Hemorrhage/Hematoma</u> = collection of blood
 - Identified by where the bleeding takes place (i.e., epidural, subdural, subarachnoid, intraparenchymal)
 - <u>Axon Shearing</u> = stretching and tearing of the axons of neurons.
 - Diffuse Axonal Injury or Shear Injury

Common Deficits Associated with TBI

- Information Processing Speed*
 - Slow response time
- Attention*
 - Increased distractibility
 - Short attention span
 - Difficulty with divided attention
- Learning & Memory
 - For new information
- Executive functions

* Processing speed and attention are most commonly affected

Frontal Lobes

- Most vulnerable to injury
 - Size largest lobe
 - Location bony projections in skull

Primary Motor Cortex

- Located in the precentral gyrus, rostral to the central sulcus
- Cortical neurons that project to the brainstem and spinal cord
- Involved in the cortical control of voluntary movement
- Damage results in:
 - Contralateral motor deficits
 - Initially a flaccid hemiparesis/hemiplegia
 - Later a spastic hemiparesis/hemiplegia

Premotor Cortex

- Located immediately rostral to the primary motor cortex
- Assists in the integration of sensory and motor information for the performance of actions
- Damage results in
 - Apraxia inability to perform skilled actions that could previously be performed, but without paralysis
 - Deficits in contralateral fine motor control
 - Difficulty using sensory feedback for the control and performance of movements

Frontal Eye Fields

- Located rostral to the premotor cortex
- Controls voluntary eye movement in the contralateral visual field for the purpose of active visual search
- Damage results in:
 - Deficits in voluntary eye movements (active visual search), but preserved passive eye movement (the following of a moving object)

Dorsolateral Prefrontal Cortex

- Makes up the largest portion of the frontal lobe
- Located rostral to the frontal eye fields and superior to the orbitofrontal cortex
- Controls <u>executive functions</u>
- Damage results in:
 - Perseveration
 - Task impersistence
 - Reduced sustained and complex attention
 - Reduced organizational skills
 - Reduced problem-solving, judgement, reasoning, insight

Orbitofrontal Cortex

- Inferior to the dorsolateral prefrontal cortex; most rostral portion of the frontal lobe
- Controls the modulation of affective and social behavior, working memory, smell discrimination
- Damage results in
 - Behavioral disinhibition
 - Socially inappropriate behaviors
 - Emotional lability
 - Irritability
 - Explosive outbursts

- Anterior Cingulate Cortex (Supplementary Motor Area)
 - Located in the medial portion of the frontal lobe superior to the corpus callosum
 - Connections to deep limbic structures
 - Control drive and motivation
 - Damage results in:
 - Reduced initiation
 - Apathy
 - Akinetic mutism
 - Complex attention deficits

The Frontal Circuits

Thank You

