
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Functional Programming

Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

Brief Overview

‣First, some introductory remarks.
‣Then weʼll cover Haskell details in a tutorial style.
‣Take notes.
‣Ask questions.

2
Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

What’s a functional language?
Most functional languages provide:
➡ Functions as first-class values
➡ Higher-order functions
➡ Primitive list type (operators on lists)
➡ Recursion
➡ Structured function return (return tuples)
➡ Garbage collection
➡ Polymorphism and type inference
‣Covered next lecture.

Functional programming.
➡ Also possible in imperative languages.
➡ Applying functional style to imperative language can yield

very elegant code.

3
Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

So Why Functional?

‣Teaches truly recursive thinking.
‣Teaches good programming style.
‣Short, self-contained functions.

‣Implicit Polymorphism.
‣Natural expressiveness for symbolic and
algebraic computations.
‣Algorithms clearly map to the code that
implements them.

4
Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

Origins

‣Lambda-calculus as semantic model
(Church)
‣LISP (1958, MIT, McCarthy)

5

(defun fib (n)
 (if (or (= n 0) (= n 1))
 1
 (+ (fib (- n 1))
 (fib (- n 2)))))

Alanzo Church

John McCarthy

Source: Wikimedia Commons

Naive Fibonacci Implementation in LISP

Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

Can Programming be Liberated from
the von Neumann Style?

‣This is the title of the lecture given by John Backus when he
received the Turing Award in 1977.
‣ In this, he pointed out that a program should be an abstract
description of algorithms rather than a sequence of changes in
the state of the memory.
‣He called for raising the level of abstraction
‣A way to realize this goal is functional programming

‣Programs written in modern functional programming languages
are a set of mathematical relationships between objects.
‣No explicit memory management takes place.

6
Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

History
Lisp
➡ Dynamic Scoping

Common Lisp (CL), Scheme
➡ Static scoping

ML (late 1970ies)
➡ Typing, type inference, fewer parentheses

Haskell, Miranda (1980ies)
➡ purely functional
➡ Compiler disallows side effects

7

Scheme Logo

Haskell Logo

Common Lisp Logo
(unofficial)

Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

Referential Transparency

‣Bindings are immutable.
‣Any name may be substituted by the value bound to that
name and not alter the semantics of the expression.
‣“no side effects.”
‣This means no “printf() debugging!”

‣Functional programing languages encourage
referential transparency.
‣Pure functional programming languages enforce
referential transparency.

8
Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

Referential Transparency

9

sumOfSquares :: Int -> Int -> Int
sumOfSquares x y =
 let
 x2 = x * x
 y2 = y * y
 in
 x2 + y2

sumOfSquares' :: Int -> Int -> Int
sumOfSquares' x y = (x * x) + (y * y)

If two expressions are defined to have equal values, then
one can be substituted for the other in any expression

without affecting the result of the computation.

Semantically equivalent.

Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

Referentially Transparent Functions

‣A function is called referentially transparent if given the
same argument(s), it always returns the same result.
‣In mathematics, all functions are referentially transparent.
‣In programming this is not always the case, with use of
imperative features in languages.
‣The subroutine/function called could affect some global
variable that will cause a second invocation to return a
different value.
‣Input/Output

10

aka pure functions

Tuesday, March 30, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts12: Functional Programming

Evaluation (Scott)
Advantages
➡ Lack of side effects makes programs easier to understand.
➡ Lack of explicit evaluation order (in some languages) offers

possibility of parallel evaluation (e.g. Haskell).
➡ Programs are often surprisingly concise.
➡ Language can be extremely small and yet powerful.

Problems
➡ Difficult (but not impossible!) to implement efficiently on von

Neumann machines.
‣ Naive impl.: Lots of copying, inefficient cache use, memory use.

➡ Requires a different mode of thinking by the programmer.
‣ Not necessarily a bad thing!

➡ Difficult to integrate I/O into purely functional model.
‣ Haskell: Monads.

11
Tuesday, March 30, 2010

