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Abstract
The diagnosis of Autism Spectrum Disorder (ASD) relies on history and behavioral observation, lacking reliable biomarkers. We performed a retrospective analysis 
using machine learning algorithms of 928 persons with ASD (mean age: 17 ± 10.8 years; age range 4-67) obtained from a multisite psychiatric database with rest 
and on-task brain SPECT scans to investigate whether or not these scans distinguish ASD from healthy controls (HC, n=101; mean age: 43 ± 17.2 years; age range 
13-84).  Using 128 regions of interest extracts (ROIs), we applied multiple machine learning algorithms for binary classification. Due to an unbalanced sample size 
between ASD and controls, we then sub-sampled the data prior to feature selection and classification. Using a subsampled dataset, least absolute shrinkage and 
selection operator (LASSO) feature selection with Random Forest method baseline accuracy results of approximately 81% were achieved, based on optimal classifier 
settings with the top selected features. We applied machine learning algorithms to ASD adults only, the majority of our sample, and selected subjects in both AD 
and HC groups with age range of 13-67 years and found the results consistent with the combined data. These machine learning results identified potential diagnostic 
biomarkers differentiating ASD from HC in the regions of the cerebellum and vermis, anterior cingulate gyrus, amygdala, thalamus, frontal, and temporal lobes. 
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Introduction
Autism spectrum disorder (ASD) is a neurodevelopmental disorder 

with a prevalence rate of 1:68 [1] and is characterized by impairments 
across multiple domains including socio-communication ability, and 
restrictive and stereotyped behaviors [2]. The high heterogeneity and 
complexity of ASD has previously limited the capacity of neuroimaging 
to produce reliable and consistent biomarkers that can be applied in a 
standard clinical evaluation.  Currently, the diagnosis of ASD includes 
a clinical history, physical examination, and structured screening tools 
including the Autism Diagnostic Interview-Revised [3] or Autism 
Diagnostic Observation Schedule [4,5]. As autism often involves 
impairments across multiple domains that affect both social and 
intellectual function, the time from initial clinical visit to diagnosis lasts 
up to 13 months [6]. Given the increasing prevalence rate of autism, 
there is a need to develop rapid and reliable detection tools. 

The application of machine learning algorithms to neuroimaging 
data offers the potential to improve the precision of the diagnosis 
through the identification of brain based biomarkers in ASD [7]. 
These applications involve improving diagnostic capabilities, targeting 
interventions and monitoring patient outcomes [7,8]. Multivariate 
Analysis has shown promising clinical applicability with regards to 
diagnosing and characterizing neurodevelopmental disorders such 
as ASD [8]. Random Forest classification has been used to accurately 
assess differences in white matter connectivity in infants with ASD, 
offering the potential to assist in early diagnosis and intervention [9]. 
Machine learning classification has also been demonstrated to show 
predictive ability with regards to outcome measures for ASD, including 
longitudinal change in autistic traits as measured through functional 
network connectivity studies [10].

Machine learning classification has shown utility in identifying 
regional brain abnormalities in those with ASD from typical 
developing controls, providing the basis for candidate biomarkers. 
Pattern classification methods demonstrate a high predictive ability 
for the detection of ASD and have been performed across a variety of 
imaging modalities. These include structural MRI [11-13], intrinsic 
functional connectivity MRI (fcMRI) [14-16], diffusion tensor imaging 
(DTI) [17,18] and electroencephalography (EEG) [19,20]. Reported 
ASD abnormalities have been identified in the cerebellum [21] and 
cerebellar vermis [22], anterior cingulate gyrus [23], amygdala [24-26], 
hippocampus [24,27,28], and areas of the frontal [29-31], temporal 
[29,32] parietal lobes [30], caudate and putamen [29,33]. Additional 
imaging abnormalities in autism include impaired brain growth [24], 
cortical thickness [12,34], alterations in white matter architecture 
[18,35], and aberrant connectivity within the somatosensory, visual 
and default mode network [36].

Given the advances that have been made with machine learning 
techniques and ASD, there is a need to continue developing objective 
methods for detection of ASD within the research community, and to 
identify diagnostic markers of the disorder. Single photon emission 
computed technology (SPECT) is an imaging modality that has been 
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applied to better understand the neuropathology of ASD; an excellent 
systematic review of this work can be read in Zurcher et al. [37]. Since 
1992, there have been many studies using SPECT and PET imaging, 
totaling over 900 ASD patients. The findings have primarily shown 
lower perfusion in the prefrontal cortex, temporal lobes, parietal lobes 
and cerebellum, compared to controls [38-43]. However, most of the 
individual studies had small sample sizes and none closely examined 
the potential sensitivity and specificity of using SPECT or PET as a 
diagnostic tool to distinguish between healthy and non-ASD patient 
controls. In the present study, we implemented multiple machine 
learning algorithms to brain SPECT images acquired at rest and on-
task to a large cohort of ASD subjects in order to evaluate the ability 
to predict ASD from HC using region of interest extracts. We then use 
feature selection methods like least absolute shrinkage and selection 
operator (LASSO) and minimum redundancy maximum relevance 
(mRMR) to identify the key features which might serve as biomarkers 
in delineating between ASD and controls. 

Methods
Study subjects

A sample of persons with autism (n = 928; mean age: 17 ± 10.8 
years; age range: 4-67; 4:1 male to female ratio) were obtained from 
a large, multisite, clinical psychiatric database comprised of 27,756 
patients at the Amen Clinics. All subjects in the database were 
evaluated at one of nine outpatient branches of the Amen Clinics 
(Newport Beach, Costa Mesa, Fairfield, and Brisbane, CA; Tacoma 
and Bellevue, WA; Reston, VA; Atlanta, GA; and New York, NY) from 
1995-2015. Each participant had rest and concentration SPECT scans 
as part of their evaluation. An Autism diagnosis was established by a 
board certified or board eligible psychiatrist, using a detailed clinical 
history, mental status examination, and DSM-IV or DSM-V criteria. 
The Institutional Review Board function was conducted by an External 
Review Organization (IntegReview) that approved a retrospective 
review of anonymous data which was used by the researchers for this 
study (IRB #004).

A group (n = 101; mean age: 43 ± 17.2 years; age range: 13-84, 7:1 
male to female ratio) of age and gender matched controls with rest and 
on-task SPECT studies were included in this study. Exclusion criteria 
for the healthy subjects were: 1) current or past evidence of psychiatric 
illnesses as determined by a detailed clinical history, mental status 
examinations, and the Structured Clinical Interview for Diagnosis 
for DSM-IV (SCID-IV); 2) current reported medical illnesses or 
medication; 3) history of brain trauma; 4) current or past drug and 
alcohol abuse; and 5) family history of a first degree relative with a 
psychiatric illness. 

Brain SPECT Imaging

SPECT scans of the brain were obtained in conjunction with 
clinical assessments before any intervening treatment. Brain SPECT 
imaging is performed as described below and is standardized across 
all Amen Clinics [44,45]. For each SPECT scan procedure, the patient 
initially has an intravenous catheter placed in their arm. The subject 
then rests comfortably for approximately 15 minutes at which point an 
age- and weight-appropriate dose of technetium Tc99m exametazime 
is administered while the subject remains at rest in the uptake room. 
For the rest scans, after injection, patients sit in a dimly lit room with 
eyes open and low ambient noise. Approximately 30 minutes after the 
injection, subjects are scanned for 30 minutes. Subjects return on a 
separate day to undergo a second SPECT scan in which the subject is 

injected while performing the Conner’s Continuous Performance Test 
(C-CPT). For the on-task scans, patients are injected three minutes after 
starting the C-CPT and then perform the task for another 10 minutes. 
Patients are then scanned approximately 30 minutes after injection. The 
SPECT images are captured using a high-resolution Picker (Phillips) 
Prism XP 3000 triple-headed gamma camera with fan beam collimators 
with data collected in 128x128 matrices, yielding 120 images per scan 
with each image separated by three degrees spanning 360 degrees. First 
level processing of images from the raw data are performed using the 
software package Odyssey FX V8.90 developed by Picker Image System 
for Phillips/GE SPECT cameras. A low pass filter (Butterworth filter) 
is applied with a high cutoff (0.25 cycles per pixel). Chang attenuation 
correction is then performed [46]. Transaxial slices oriented horizontal 
to the AC-PC line are created along with coronal and sagittal images 
(6.6mm apart, unsmoothed). Three dimensional reformats are 
generated for review based on Odyssey image visualization software.

Data are exported as interfiles and converted to the NIMH 
Neuroimaging Informatics Technology Initiative (NIfTI) format 
using an ROI package developed at Amen Clinics that transforms 
the stereotaxic atlas into the individual scan space; further processing 
to region of interest values (ROI) is completed by the same package. 
Bilateral ROI counts are derived from the anatomical regions in the 
Automated Anatomical Labeling (AAL) atlas [47]. The AAL atlas 
consists of 128 brain regions defined across both hemispheres. ROI 
metrics included mean, standard deviation, minimum, maximum, 
5th percentile histograms, largest maximum valued connected cluster 
after thresholding, and largest minimal valued connected cluster 
after thresholding. To account for outliers, T-score derived ROI 
count measurements are derived using trimmed means [48] that are 
calculated using all scores within the 98% confidence interval (-2.58 < 
Z < 2.58) for a particular scanner in the year the patient was scanned, 
thus correcting for any calibration differences between scanners. The 
ROI mean for each subject and the trimmed mean for the sample are 
used to calculate T with the following formula: T = 10*(([subject ROI-
mean] – [trimmed Scanner-avg.])/ [trimmed scanner-st.dev.]) + 50. 
The values for both SPECT scans for each patient then become inputs 
for the machine learning algorithms. Figure 1 shows examples of how 
ROI data are outlined on SPECT images as demonstrated on a standard 
template brain. 

The ROI data from SPECT images on patients who have been 
diagnosed with ASD and healthy controls aids in providing ground 
truth for machine learning algorithms. In addition, we also utilized 
data on other independent variables including age, gender, and other 
questions completed by all subjects analyzed in this study. In all, this 
aggregation of data results in 384 variables that are based on ROIs of 
the SPECT scans and another 10 variables from clinical questionnaires.  
Given the focus on classification of ASD from healthy controls based on 
ROI region attributes and finding the decision rules, we used 256 ROI 
measurements (128 rest and 128 on-task), as well as derived measures 
of activation (rest – on task) as input features in all analyses. We also 
control for age in our analyses. 

Machine Learning Algorithms

Alterations in cerebral blood flow affects underlying brain 
functions. There are brain atlases that divide the brain into regions of 
interest (ROI), and the amount of blood flow in these ROIs are critical 
to brain function [49]. In the atlas used for ROI measurements on 
SPECT in this study, the Automated Anatomical Labeling (AAL) atlas, 
there are 128 regions defined in each brain hemisphere, and the blood 
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perfusion into these regions relates to functional activities of the brain. 
We therefore, expect changes in blood flow in ASD subjects, compared 
to non-Autism subjects in certain ROIs that control communication 
and interaction. If this can be reliably demonstrated with SPECT or PET 
brain images in a balanced group of ASD subjects and healthy controls, 
that would give a strong indication as to which ROIs contribute most 
to classify ASD subjects from healthy controls. As to how the blood 
flow changes occur in subjects with mental disorders, this is not well 
understood; a data driven approach can be used to study this problem. 
The hypothesis is that blood flow perfusion changes in specific regions 
will be same or similar in subjects, for example with Autism, compared 
to healthy subjects, which would allow applying machine learning 
algorithms to this classification problem.

Since machine learning model building is an iterative process, no 
particular algorithm is known to be the “best one” a priori. Therefore, 
in our experiments we ran several different algorithms, including 
Support Vector Machine, Logistic Regression and Random Forest. The 
goal was also the automatic identification of ROIs as features that are 
interpretable by physicians that will be useful in treating patients. Such 
results can aid medical professionals in more accurate and efficient 
diagnosis and development of treatment plans. 

Data preparation

For all the subjects in this study, we have SPECT data scaled either 
as R-values or T-values that are relative to the mean of all other subjects 
scanned in the same year. As with any real-world data we can expect 
some outliers, missing data, and inconsistencies in the values of these 
variables and we prepared the data to handle all of these situations. We 
checked the data with respect to all the attributes of interest to process 

for inconsistent values, outliers, and redundant data records. In this 
study, since we have a large dataset, we removed all cases with missing 
values and did not apply any imputation methods in order to achieve 
baseline accuracies. 

Since this dataset lacks the necessary number of subjects, compared 
to the number of attributes used (typically one requires samples at 
least 10 times the number of attributes) [50], we applied techniques 
to reduce the number of features/attributes used without losing too 
much information present in the ROI data. Specifically, we utilized 
LASSO to select the top few ROIs as features for our analyses. LASSO is 
a regression analysis approach that performs feature selection in order 
to improve prediction accuracy [51]. LASSO, known as embedded 
feature selection or regularization methods, are also called penalization 
methods that introduce additional constraints into the optimization of 
a predictive algorithm. 

We compared the performance of LASSO with mRMR feature 
selection method and also feature extraction methods like Principle 
Component Analysis (PCA) that transforms the data in the high-
dimensional space to a space of fewer dimensions. PCA performs a 
linear mapping of the data to a lower-dimensional space in such a way 
that the variance of the data in the low-dimensional representation is 
maximized.

Training and testing dataset

A key objective in applying machine learning algorithms in this 
study was to build a suitable training group from our dataset. Our 
dataset was comprised of 928 ASD subjects and 101 HC subjects which 
resulted in unbalanced data with the distribution shown in Figures 2 
and 3 for both male and female subjects, therefore care should be taken 
in selecting appropriate training sets. We divided our patient data into 
two sets: one for training and the other for validation and testing. The 
training set should be large enough for the machine learning models 
to learn all the interdependencies among the variables. We carefully 
selected the appropriate size for training data to include the proper 
ratios of patients with respect to age, gender, and other relevant 
information. Construction of the proper training set takes time and entails 
an iterative process with feedback from experts. A number of experiments 
were conducted with different sets of features with our selected machine 
learning algorithms to finalize the training set and features. 

To ensure that the model building is complete with each selected 
machine learning algorithm, we used 5-fold cross validation and 

Figure 1A.  Transverse slices showing the deficits of autistics subjects when compared 
to healthy controls using SPM (p < 0.001 FDR Correction):  1) Occipital Superior Left; 
2) Post Central Right; 3) Cingulum Anterior Right; 4) Precentral Left; 5) Cingulum Mid 
Right; 6) Temporal Mid Right; 7) Angular Superior Right; 8) Temporal Superior Left; 9) 
Frontal  Superior Left; 10) Frontal Inferior Triangularis Right; 11) Frontal Superior Orbital 
Left;  12) Temporal Mid Left;  13) Rolandic Operculum Right; 14) Frontal Inferior Right; 
15) Frontal Inferior Left; 16) Temporal  Mid Left; 17) Frontal Inferior Orbital Left; 18) 
Temporal Inferior Left.

Figure 1B.  Coronal slices showing the deficits of autistics subjects when compared to 
healthy controls using SPM (p < 0.001 FDR Correction):  1) Frontal Superior right; 2) 
Frontal Superior left; 3) Frontal Mid Left;  4) Cingulum Anterior Right; 5) Frontal Inferior 
Orbital Right and Left;  6) Temporal Inferior Left; 7) Rolandic Operculum Right; 8) 
Temporal  Superior Left; 9) Occipital Mid Right and Angularis Right; 10) Left Angularis 
and Occipital Mid Left;  11) Temporal Inferior Left. 

Figure 1C.  Sagittal slices showing the deficits of autistics subjects when compared to 
healthy controls using SPM (p < 0.001 FDR Correction). 1) Post and Precentral Right; 2) 
Right Triangularis; 3) Angular Gyrus Right; 4) Left inferior Orbital Cortex; 5) Cingulum 
Left; 6) Triangularis Left; 7) Frontal Cortex Mid and inferior Left); 8) Temporal Inferior 
Anterior Cortex left; 9) Precentral  Left; 10) Post Central Left;  11) Occipital Left.
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Figure 2. Age distribution of female subjects in unbalanced Input dataset 
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assessed the results with known labels (ground truth). In this cross 
validation phase, we divided the training set into 5 parts and iteratively 
used 4 out of 5 parts for training and then tested the models on the 5th 
part. The results of specificity and sensitivity for all 5 experiments were 
averaged to see how robust the current trained model is. This process 
is repeated by changing the training set and conducting experiments 
with different sets of features to achieve the best possible result. The 
details of our methodology are shown in Figure 3 and in the heuristic 
algorithm.  The age distribution of sub-sampled datasets for stage (3) in 
Figure 3 is shown in Figures 5-7. 

Results
Autism versus healthy controls

We conducted two sets of experiments – the first experiment is with 
subsampled data matching by age ranges and the second experiment 
is extremely matched by age and gender. In the first experiment we 
used the subsampling approach and obtained a subsample which has 
168 instances. This dataset was achieved by removing all samples with 
missing values, mainly in ROI features and also limiting the age range 
of samples to those between 13-67 years old. In experiment 2, we 
applied the same sub-sampling method to extremely matched subjects 
with respect to age and gender. This dataset has 108 samples with 48 
subjects of ASD and 48 subjects of HC group. The details of distribution 
of subjects based on age and gender are shown in Figures 3-7.

Experiment 1: Subsampling by age matching

In this experiment, we ran multiple classifiers on the dataset 
of 168 samples (84 healthy samples and 84 autism samples). We 
follow the steps of this framework to perform feature selection and 
model generation. For feature selection stage, we compared multiple 
approaches like LASSO, mRMR and PCA and achieved the most 
promising results by features selected with LASSO. 

mRMR provides the feature set by requiring that features are 
maximally dissimilar to one another, for example, their mutual 
Euclidean distances are maximized, or their pair-wise correlations are 
minimized. These minimum redundancy criteria are supplemented 
by the usual maximum relevance criteria such as maximal mutual 
information with the target phenotypes. The benefits of this approach 
can be realized in two ways. (1) With the same number of features, we 
expect the mRMR feature set to be more representative of the target 
phenotypes, therefore leading to a better generalization property. (2) 
Equivalently, we can use a smaller mRMR feature set to effectively 

cover the same space as a larger conventional feature set [52]. The 
mRMR method is designed to work with discrete data and since we 
have continuous values in our dataset, before applying this method we 
need to discretize the data into multiple bins. This step is implemented 
by using Matlab built-in functions and we also use the available 
implementation of mRMR by the inventors of this method. 

Lasso is a feature selection and also a regularization method 
that was originally introduced in the context of least squares. In this 
method, the sum of the absolute value of the regression coefficients are 
forced to be less than a fixed threshold value, which consequently leads 
to setting certain coefficients to zero. This approach is motivated by 
ridge regression, in which the coefficients sum of the squares is forced 
to be less than a fixed threshold value. Ridge regression shrinks the size 
of the large  regression coefficients to reduce overfitting, but doesn’t 
perform covariate selection which consequently will not be able to 
build more interpretable models. Compared to mRMR, LASSO gave us 
more informative features in this experiment. 

We also evaluated our designed model by the abstract features 

 

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90
Age distribution of male group

Age

tnuo
C

 

 
HC
ASD

Figure 3. Age distribution of male subjects in unbalanced Input dataset 
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Figure 5. Experiment 1 with subsampled data and the age distribution of subjects

 

Heuristic: 

1) Divide Input dataset to 5 equal folds such that each fold has almost the sample distribution of 

HC and ASD subjects as input dataset  

2) Iterate over folds:  

i) Use 4 folds as training 

(1)  Apply feature selection on training subset of size 𝑛𝑛 × 𝑚𝑚 and find top K 

features 

(2)  Apply model selection on the extracted training subset of size  𝑛𝑛 × 𝐾𝐾  

(a) Tune the hyper parameters of each model using cross validation on training 

subset of size  𝑛𝑛 × 𝐾𝐾

ii) Evaluate each model performance over test data of size  𝑛𝑛 ′ × 𝐾𝐾

Figure 4. Designed framework for experiment1and experiment 2 
(1) Shows the unbalanced Input dataset with 502 ASD samples and 84 HC subjects. 
(2), (3) Show subsampling and resulted balanced dataset: for experiment 1, we perform 
subsampling by age matching and obtain a dataset of 168 subjects between 13-67 years 
old. For experiment 2 we extremely match subjects by age and gender and obtain a dataset 
of 96 samples all within 13-61 years old. (4), (5): Show the training and testing procedure 
using 5-fold cross validation. Dataset is divided into 5 equal folds; in each iteration 4 folds 
are selected for training and 1 fold for testing. At each iteration of training, we perform 
feature selection using training set and obtain the top K features. The generated subset of 
data is then fed to different classifiers and the performance of each classifier is evaluated 
by testing dataset. 

https://en.wikipedia.org/wiki/Regression_coefficients
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generated by PCA that leads to lower classification performance, 
compared to LASSO. Since we are mostly interested in finding highly 
correlated features representing the blood flow of 128 ROI regions, we stick 
to feature selection methods that promote sparsity as discussed earlier. 

In this study we applied different approaches to find the best 
classification model that separates ASD patients from HC. We 
experimented with several well-known machine learning algorithms, 
including Random Forest (RF), Logistic Regression (LR) and Support 
Vector Machine (SVM). For all our experiments we used the scikit-
learn package that implements all these algorithms .( http://scikit-
learn.org/stable/index.html)   

Figures 8 and 9 show receiver operating characteristic (ROC) 
plots which is a graphical plot that illustrates the performance of a 
binary classifier system and provides a visual overview for comparing 
the performance of classifiers. Table I shows the average specificity, 
sensitivity and accuracy across classifiers and demonstrates that the 
best classifier for both experiments is Random Forest.

Experiment 2: Subsampling by extreme subject matching 
based on age and gender

In experiment 2 we followed the same steps as in experiment 1 and 
simply replaced the input dataset with the extreme subsamples dataset 

that has 28 female subjects in each of the HC and ASD samples and 
26 male subjects in each group that make a dataset of 108 subjects in 
total. This dataset classification performance is evaluated by the same 
classifiers in experiment 1. The classification performance results 
are shown in Tables 2A ,2B. Table 3 lists the top 12 ROI features in 
distinguishing ASD from controls:

Discussion
In the present study, ROI data from rest and on-task SPECT images 

were used to inform classification of ASD from HC using machine 
learning algorithms, attaining a maximum classification accuracy of 
74.4% with Random Forest using subsampling methods with the top 
12 features. This algorithm performed with a high level of accuracy on 
a robust dataset comprised of 168 with 84 ASD individuals and 84 HC, 
with a sensitivity and specificity respectively of 72% and 76% using only 
ROI features and 78% and 83% sensitivity and specificity by utilizing 
ROI features and age attributes. 

Implementing several machine learning tools with varied feature 
sizes, we discovered that several algorithms reached an accuracy level 
to provide reliable diagnostic utility. SVM and Logistic Regression 
was also tested on the subsampled dataset with ROI regions and age, 
and resulted in accuracies of >76%. This work has not previously been 
performed with brain SPECT imaging data, so these results contribute 
to the growing body of literature in the neuroimaging field that have 
utilized pattern recognition with machine learning classification to 
improve distinguishing autism from typical developing subjects. 
Other methods include functional connectivity MRI [10,36,53-58], 
voxel based morphology [59], EEG [19,20,60,61] and diffusion tensor 
imaging studies [18].
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Figure 6. Experiment 2 with both age and gender matched subjects showing distribution of 
female subjects in both ASD and HC samples 
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Figure 7. Experiment 2 with both age and gender matched subjects showing distribution of 
male subjects in both ASD and HC samples.

Table 1. Comparison of the classification performance between machine learning 
algorithms based on optimal classifier settings. Table 1A. Classification results of SVM, 
LR and RF based on based on ROI features. Table 1B. Classification results of SVM, LR 
and RF based on based on ROI+Age features

Specificity Sensitivity AUC Accuracy Error rate
SVM 0.693 0.552 0.754 0.636 0.363

Logistic 
Regression 0.686 0.769 0.792 0.732 0.268

Random 
Forest 0.724 0.760 0.817 0.744 0.256

Specificity Sensitivity AUC Accuracy Error rate
SVM 0.838 0.677 0.828 0.762 0.237

Logistic 
Regression 0.777 0.743 0.805 0.762 0.237

Random 
Forest 0.788 0.826 0.894 0.809 0.190

Table 1A. 

Table 1B.

Specificity Sensitivity AUC Accuracy Error rate
SVM 0.500 0.687 0.618 0.599 0.401

Logistic 
Regression 0.611 0.588 0.651 0.598 0.402

Random 
Forest 0.635 0.695 0.659 0.660 0.340

Table 2A. Classification results of SVM, LR and RF based on based on ROI features

Specificity Sensitivity AUC Accuracy Error rate
SVM 0.587 0.585 0.614 0.584 0.416

Logistic 
Regression 0.718 0.588 0.685 0.659 0.341

Random 
Forest 0.653 0.617 0.670 0.629 0.371

Table 2B. Classification results of SVM, LR and RF based on based on ROI+Age features 

http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
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Table 3. Top 12 Regions in Distinguishing ASD from Controls

Figure 8. The ROC of SVM, LR and RF based on ROI input features of experiment1 

Figure 9. The ROC of SVM, LR and RF based on ROI +Age input feature of experiment1.
Figures 8&9 represent the mean receiver operating characteristic (ROC) plots for comparing 
the performance of various binary classifiers across three experiments.  Each experiment 
demonstrates the performance of a classifier on a test dataset comprised of 20% of the data 
which is not used during the training.

Among the top most informative features identified using LASSO, 
we found involvement of regions implicated in ASD pathology, 
including regions of the cerebellum and vermis, anterior cingulate 
gyrus, amygdala, thalamus, frontal, and temporal lobes. The fact that 
both concentration and baseline SPECT scan ROIs were important in 
delineating between ASD and controls suggests that both scans may be 
useful in a clinical setting. 

These regions are correlated with the core symptom domains 
of ASD including socio-communication deficits, impairments in 
cognition, language and repetitive/stereotyped movement and are 
consistent with previously described neuroimaging abnormalities. 
One of the most notable neuropathological hallmarks of ASD includes 
dysfunction of the cerebellar vermis, cortices and cerebro-cerebellar 
circuits [22,62,21]. This finding is consistent with structural and 
functional studies in MRI and SPECT, demonstrating the prevalence 
of cerebellar dysfunction in ASD. Such studies also demonstrated 
behavioral impairments with regard to motor control, language, social 
control, affective expression and exploratory attention [63]. The left 
anterior inferior temporal lobe was also important in our study in 
distinguishing between the two groups. Prior literature has shown the 
right temporal parietal junction is an associative region and has been 
shown to respond atypically in those with autism spectrum conditions 
[64]. This region has been implicated in the understanding of the 
“theory of mind,” [65] language, spatial cognition and attention that 
is implicated in the social-communication deficits observed in ASD. 
Furthermore, the amygdala was identified as a distinguishing feature. 
Limbic areas such as the amygdala are involved in emotional perception 
and regulation, and have been found to be enlarged in autistics [66]. 
The amygdala has been implicated in the socio-emotional impairments 
observed in autism, due to its widespread connectivity to cortical 
and subcortical structures [67]. Additional features identified include 
the frontal lobes, thalamus and posterior cingulate cortex which 
have been previously reported to show perfusion abnormalities with 
SPECT [41,42,68] and to correlate with the attentional dysfunction, 
the inability to modulate social behaviors, language and emotional 
processing deficits and the inability to perceive emotional expressions 
in autism. The fact that the left transverse temporal gyrus of Heschl on 
concentration SPECT was a distinguishing feature is intriguing, given 
the impaired auditory processing a prior MEG study found in autistic 
children [69]. Additional left-sided regions identified in our analysis 
may also related not only to the language functions of that hemisphere, 
but may also reflect the fact that most subjects in our sample were right-
handed, thus denoting a left hemisphere dominance.

As ASD is increasingly prevalent and diagnosed in children, 
we wanted to ensure that age would not be a discriminating factor, 
therefore we applied our algorithms only to adults with ASD and the 
HC subjects and to an age matched range of 18-40 in both groups. In 
both of these experiments, our results were approximately equivalent 
when we used all the data in both groups. 

There were several methodological challenges to address with 
this dataset to ensure best practices were followed for computational 
analysis using machine learning algorithms. Our first objective in 
designing this study was to obtain a large dataset of good quality with 
enough participants from each group for the model to learn from the 
training data. We then recognized that the high number of ROIs from 
the imaging data produced a dimensionality problem. We reduced the 
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dimensionality by identifying the most important attributes that could 
reliably separate the two classes. We then had to address the imbalance 
in the number of subjects in the two classes by identifying which 
features to use and testing a number of experimental models with 
different algorithms to obtain the reported classification results. We 
evaluated each model carefully by setting aside some data for testing 
to avoid overfitting and to ensure generalizability of the model. And 
finally, further validation of the classifier was performed by testing our 
machine learning models on an independent test set containing both 
ASD and HC subjects. We performed these steps to assess the reliability of 
the data, because when predictive models show interpretable features that 
are reliable it offers the potential for diagnostic utility in a clinical setting. 

This study had several strengths but also included limitations 
which need to be addressed for future studies. The strengths included 
neuroimaging data that was acquired both at rest and on-task from a 
well-validated and widely available functional imaging modality. This 
work was performed on a large sample size of ASD subjects obtained 
across multiple sites, and was measured with quantitative analysis using 
machine learning algorithims in which the classifier was validated on an 
independent data set.  The first limitation was a retrospective analysis 
of existing data, so we did not have information on IQ or language 
ability to assess language delay. Therefore, this data must be interpreted 
across a broad range of intelligence and communication abilities. As 
the autism spectrum includes a wide range of intellectual ability, future 
work will include assessing IQ in order to perform more focused 
studies on differentiating low functioning, versus high functioning 
individuals from the HC group.  Second, while diagnosis of ASD was 
established by meeting the DSM-IV criteria for autism as assessed 
by an expert clinician, inclusion of the Autism Diagnostic Interview-
Revised or Autism Diagnostic Observation Schedule would address the 
level of functionality of the patients. And finally, future work will not 
only include the HC group, but will also include individuals with mood 
disorders including attention deficit hyperactivity disorder (ADHD), 
anxiety and obsessive compulsive disorder. Studies with a HC allow 
for understanding the neurobiological underpinnings of the ASD, but 
symptoms of autism and psychiatric disorders such as ADHD often co-
occur [70], and it will be important to explore how machine learning 
approaches can be used to understand the neurobiological differences 
between autism and co-morbid disorders, as this is what occurs in a 
real-world clinical setting.

The clinical relevance of this work is its identification of specific 
brain regions on perfusion SPECT neuroimaging that diagnostically 
distinguish autism from controls. Because these findings were obtained 
from a large database, there exists a foundation for development of 
computer algorithms for individualized prediction of diagnosis. For 
example, a single patient scan can be inputted into a machine learning 
program and then matched to a brain SPECT scan database of pre-
existing controls and patient scans such as with autism. The patient’s 
scan could then be matched to either a patient or control group based 
on quantified imaging characteristics in combinations of regions 
specific for various disorders from autism to Alzheimer’s to TBI.

To our knowledge this is the first brain SPECT imaging study 
demonstrating the use of machine learning methods to predict ASD 
from a HC. These results add to the growing body of literature validating 
the use of machine learning approaches with functional neuroimaging 
data to improve prediction and classification of individuals with 
psychiatric disorders like autism.  Given the heterogeneity of ASD, this 
approach has important implications in the clinical setting in both the 
diagnosis, intervention and monitoring of treatment outcomes. 
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