Functions and Relations

RF3: Demonstrate an understanding of factoring polynomials of degree greater than 2 (limited to polynomials of degree \leq 5 with integral coefficients).

Functions and Relations

RF4: Graph and analyze polynomial functions (limited to polynomial functions of degree ≤ 5).

Note:

- n is a whole number
- x is a variable
- the coefficients a_n to a_0 are real numbers

Each exponent of a polynomial must be a whole number defined as $\{0, 1, 2, 3, ...\}$.

The Shape of a Polynomial

The graph of a polynomial function is continuous. This means that you can draw the complete graph without lifting your pencil from the paper.

A polynomial has no breaks or sharp corners.

End Behavior of Polynomials

The end behavior of a polynomial is a description of what happens as x becomes large in the positive or negative direction. To describe end behavior, we can use the following notation:

$x \to \infty$ mean	s <i>"x</i> becomes	large in the	positive direction"
---------------------	---------------------	--------------	---------------------

$x \to -\infty$ mea	ns <i>"x</i> becomes	large in the negative	ve direction"
---------------------	----------------------	-----------------------	---------------

End Behavior of Polynomials

Even-degree polynomials with a positive leading coefficient have a trendline that matches an upright parabola. End behaviour: The graph starts in the upper-left quadrant and ends in the upper-right quadrant.

Even-degree polynomials with a negative leading coefficient have a trendline that matches an upside-down parabola. End behaviour: The graph starts in the lower-left quadrant and ends in the lower-right quadrant.

Odd-degree polynomials with a **positive leading coefficient** have a trendline matching the line y = x. **End behaviour:** The graph starts in the lower-left quadrant and ends in the upper-right quadrant.

Odd-degree polynomials with a negative leading coefficient have a trendline matching the line y = -x. End behaviour: The graph starts in the upper-left quadrant and ends in the lower-right quadrant.

Peaks and Valleys (Turning Points/BUMPS/Extreme Points)

For degree n, a polynomial graph will have, at most, n-1 bumps.

Peaks and Valleys (Turning Points/BUMPS/Extreme Points)

For degree n, a polynomial graph will have, at most, n-1 peaks and valleys.

Sample Problem

What is the minimum possible degree of the polynomial graphed below?

Since there are four bumps on the graph, and since the end-behavior says that this is an odd-degree polynomial, then the degree of the polynomial is 5, 7, or 9...

Therefore, the minimum possible degree is 5.

Zeros, Roots and X-Intercepts

Zero of a Polynomial Function

Any value of x that satisfies the equation P(x) = 0 is called a zero of the polynomial. A polynomial can have several unique zeros, duplicate zeros, or no real zeros.

Sample Problem

a) Determine if each given value is a zero of $P(x) = x^2 - 4x - 5$.

i)
$$x = -1$$
 ii) $x = 3$

b) Find the zeros of $P(x) = x^2 - 4x - 5$ by solving for the roots of the related equation, P(x) = 0.

c) Use a graphing calculator to graph $P(x) = x^2 - 4x - 5$.

The zeros, roots, and x-intercepts of a polynomial all have the same numeric values. However, the term we use to describe them is context-sensitive.

Multiplicity of a Zero

When we solve an equation of the form P(x) = 0, some of the roots may be duplicated. The multiplicity of a root is how many times the root appears as a solution.

The multiplicity of a root gives an indication as to how the graph will behave near the x-intercept corresponding to the root.

We will be working with polynomial functions that have a multiplicity of 1, 2 or 3.

A root with a multiplicity of 1 will pass straight through the x-axis.

A root with a multiplicity of 2 will touch the x-axis, but not cross it.

A root with a multiplicity of 3 will have a cubic shape at the x-axis.

Check Your Understanding

For the following graphs determine the zeros and state each zero's multiplicity.

Sample Problems

For each polynomial function:

i) Find the zeros and their multiplicitiesii) Find the y-interceptiii) Describe the end behaviouriv) What other points are required to draw the graph accurately?

Use this information to sketch the graph.

a)
$$P(x) = \frac{1}{2}(x - 5)(x + 3)$$

b)
$$P(x) = -x^2(x + 1)$$

x-intercept: (-3, 0) Multiplicity 1 x-intercept: (5, 0) Multiplicity 1 y-intercept: (0, -7.5) End Behaviour: Graph starts in QII, ends in QI Parabola Vertex: (1, -8)

b) $P(x) = -x^2(x + 1)$

Graph Data

x-intercept: (-1, 0), Multiplicity 1 x-intercept: (0, 0), Multiplicity 2 y-intercept: (0, 0)

End Behaviour: The graph starts in QII and ends in QIV.

Other: (-2, 4), (-0.67, -0.15), and (1, -2)

PC 12 B

RF4 - Graph and analyze polynomial functions (limited to polynomial functions of degree \leq 5)

<u>Sample Problem</u>

Consider the polynomial function $f(x) = (x + 3)(x + 1)^2(x - 2)^3$.

Complete the chart and sketch the graph of f(x).

Degree		
Leading		
Coefficient		
End Behavior	$x \rightarrow -\infty$	
	$x \to \infty$	
Zeroes	Multiplicity	Description
x-intercepts		
-		
y-intercept		
Other Points		
Interval(s)		
where $f(x)$ is positive		
Interval(s) where		
f(x) is negative		

www.fooplot.com/

Check Your Understanding

For each polynomial function:

i) Find the zeros and their multiplicities.ii) Find the y-intercept.iii) Describe the end behaviour.iv) What other points are required to draw the graph accurately?

Use this information to sketch the graph.

a)
$$P(x) = (x - 1)^2 (x + 2)^2$$

b) $P(x) = x(x + 1)^3(x - 2)^2$

a) $P(x) = (x - 1)^2 (x + 2)^2$

Graph Data

x-intercept: (-2, 0) Multiplicity 2 x-intercept: (1, 0) Multiplicity 2 y-intercept: (0, 4) End Behaviour: Starts in QII, ends in QI Other: (-3, 16), (-0.5, 5.0625), (2, 16)

Graph Data

x-intercept: (-1, 0) Multiplicity 3 x-intercept: (0, 0) Multiplicity 1 x-intercept: (2, 0) Multiplicity 2 y-intercept: (0, 0) End behaviour: Starts in QI, ends in QII Other: (-2, 32), (-0.3, -0.5), (1.1, 8.3), (3, 192)

Writing an Equation from a Graph

Steps to find the equation of a polynomial from its graph:

1) Identify the zeros of the polynomial *(and their multiplicities)* by locating the x-intercepts of the graph.

2) Set up a template polynomial equation.

3) Use any point on the graph *(other than an x-intercept)* to solve for the leading coefficient *a*.

4) Write the final polynomial function.

Sample Problem

Determine the polynomial function corresponding to the graph. You may leave your answer in factored form.

 Identify the zeros of the polynomial and their multiplicities.

2) Set up a template polynomial equation.

 Use a point on the graph to solve for the leading coefficient a.

4) Write the final polynomial function.

$$P(x) = -\frac{1}{3}(x + 3)(x - 4)$$

.....

Sample Problem

Determine the polynomial function corresponding to the graph. You may leave your answer in factored form.

 Identify the zeros of the polynomial and their multiplicities.

2) Set up a template polynomial equation.

 Use a point on the graph to solve for the leading coefficient *a*.

4) Write the final polynomial function.

Sample Problem

Given the characteristics of a polynomial, draw the graph and derive the actual function.

Characteristics of P(x):

x-intercepts: (-1, 0) and (3, 0) sign of leading coefficient: (+) polynomial degree: 4 relative maximum at (1, 8)

Characteristics of P(x):

x-intercepts: (-1, 0) and (3, 0)		
sign of leading coefficient: (+)		
polynomial degree: 4		
relative maximum at (1, 8)		

The trendline of a fourth-degree polynomial with a positive leading coefficient matches an upright parabola.

Find the Polynomial

$$P(x) = a(x + 1)^{2}(x - 3)^{2}$$

$$8 = a(1 + 1)^{2}(1 - 3)^{2}$$

$$8 = a(2)^{2}(-2)^{2}$$

$$8 = 16a$$

$$a = \frac{8}{16}$$

$$a = \frac{1}{2}$$

$$P(x) = \frac{1}{2}(x + 1)^{2}(x - 3)^{2}$$

Sample Problem

Given the characteristics of a polynomial, draw the graph and derive the actual function.

Characteristics of P(x):

```
x-intercepts: (-3, 0), (1, 0), and (4, 0)
sign of leading coefficient: (-)
polynomial degree: 3
y-intercept at: \left(0, -\frac{3}{2}\right)
```

START

Characteristics of P(x):
x-intercepts: (-3, 0), (1, 0), and (4, 0) sign of leading coefficient: (-) polynomial degree: 3
y-intercept at: $\left(0, -\frac{3}{2}\right)$

The trendline of a third-degree polynomial with a negative leading coefficient matches the line y = -x.

END

Find the Polynomial

$$P(x) = a(x + 3)(x - 1)(x - 4)$$

$$-\frac{3}{2} = a(0 + 3)(0 - 1)(0 - 4)$$

$$-\frac{3}{2} = a(3)(-1)(-4)$$

$$P(x) = -\frac{1}{8}(x + 3)(x - 1)(x - 4)$$

$$-\frac{3}{2} = 12a$$

$$3 = -24a$$

$$a = -\frac{3}{24}$$

$$a = -\frac{1}{8}$$