Functions and relations

- Relations
- Setrules \& symbols
- Sets of numbers
- Sets \& intervals
- Functions
- Relations
- Function notation
- Hybrid functions
- Hyperbola
- Truncus
- Square root
- Circle
- Inverse functions

Relations

- A relation is a rule that links two sets of numbers: the domain \& range.
- The domain of a relation is the set of the first elements of the ordered pairs (x values).
- The range of a relation is the set of the second elements of the ordered pairs (y values).
- (The range is a subset of the co-domain of the function.)
- Some relations exist for all possible values of x.
- Other relations have an implied domain, as the function is only valid for certain values of x.

Set rules \& symbols

$$
\begin{array}{cccc}
A=\{1,3,5,7,9\} & B=\{2,4,6,8,10\} & C=\{2,3,5,7\} & D=\{4,8\} \\
\text { (odd numbers) } & \text { (even numbers) } & \text { (prime numbers) } & \text { (multiples of } 4 \text {) }
\end{array}
$$

- \in : element of a set. $\quad 3 \in A$
- \notin : not an element of a set. $6 \notin A$
- \cap : intersection of two sets (in both B and C) $B \cap C=\{2\}$
- U : union of two sets (elements in set B or C) $B \cup C=\{2,3,4,5,6,7,8,10\}$
- C : subset of a set (all elements in D are part of set B) $D \subset B$
- \backslash : exclusion (elements in set B but not in set C) $\quad B \backslash C=\{2,6,10\}$
- \varnothing : emptyset $A \cap B=\varnothing$

Sets of numbers

- The domain \& range of a function are each a subset of a particular larger set of numbers.
- Natural numbers (N): \{1, 2, 3,4, $\}$
- Integers (Z): $\{-2,-1,0,1,2, \ldots$.
- Rational numbers (Q) : Any numbers that can be made from the division of two integers (but not dividing by 0) eg 1/3, - 2.45, 5.787878.....
- Real numbers (R): The set of all rational and irrational numbers (includes surds, π, e)

$$
\begin{aligned}
& \text { N is a subset of } Z \\
& N \subset Z \\
& N \subset Z \subset Q \subset R
\end{aligned}
$$

Sets \& intervals

- Intervals of the real numbers can be depicted using the appropriate brackets \& set notations.
- Square brackets include point, round brackets don't.

Functions

- A function is a type of relation where each value of x has a unique value of y.
- Functions can be one to one or many to one - where more than one \times value shares the same y value.
- Examples include linear functions and circular functions ($\sin x, \cos x$)
- Functions can be determined by the vertical line test - any vertical line will cut through a function only once.

Linear function: one to one

Circular function: many to one

Relations

- A relation can also be one to many or many to many - where \times values can have more than one y value.
- A circle is an example of this of a many to many function.
- A vertical line can cut through this graph more than once.

Function notation

- Function notation is used to describe the domain \& any restrictions that might be in place.

Domain (restricted) Co-domain

$f:[0, \infty) \rightarrow R, f(x)=x^{2}$

The name of the function

Hybrid functions

- A hybrid (piecewise) function is one where different rules apply over different parts of the domain.
- For example, the cost of car hire differs according to the distance traveled.
$\hat{j}_{200} \operatorname{Cost}(\$)$

Hyperbola

$$
\begin{gathered}
y=\frac{1}{x} \\
y=\frac{1}{(x-h)}+k \\
y=\frac{1}{(x-4)}-1
\end{gathered}
$$

Domain: $R \backslash\{4\}$
Range: $R \backslash\{-1\}$

Truncus

$$
\begin{gathered}
y=\frac{1}{x^{2}} \\
y=\frac{1}{(x-h)^{2}}+k \\
y=\frac{1}{(x+2)^{2}}+3
\end{gathered}
$$

Domain: $R \backslash\{-2\}$
Range: $(3, \infty)$

Square root

Domain: $[-3, \infty)$
Range: $[2, \infty)$

Circle

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
x^{2}+y^{2}=36 \\
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(x-2)^{2}+(y+4)^{2}=36 \\
\\
\text { Domain: }[-4,8] \\
\text { Range: }[-10,2] \\
\text { (Diameter }=12)
\end{gathered}
$$

Circle from functions

- Circles are described by a relation, not a function.
- They can be defined by combining two functions together.

$$
\begin{aligned}
& x^{2}+y^{2}=36 \\
& y^{2}=36-x^{2} \\
& y= \pm \sqrt{36-x^{2}}
\end{aligned}
$$

Inverse functions

- Every one to one function has an inverse function, $f^{1}(x)$.
- Inverses are used to work backwards \& solve equations.
- The graph of an inverse function can be found from mirroring the graph around the line $\mathrm{y}=\mathrm{x}$.
- The domain of the inverse $f^{-1}(x)$ is the range of $f(x)$.
- The range of the inverse $f^{-1}(x)$ is the domain of $f(x)$.
- The x intercept of $f^{-1}(x)$ is the y intercept of $f(x)$.
- The y intercept of $f^{1}(x)$ is the x intercept of $f(x)$.

Inverse functions - from graphs

Inverse functions - from equations

