Functions and relations

- Relations
- Set rules & symbols
- Sets of numbers
- Sets & intervals
- Functions
- Relations
- Function notation
- Hybrid functions
- Hyperbola
- Truncus
- Square root
- Circle
- Inverse functions

- A relation is a rule that links two sets of numbers: the domain & range.
- The domain of a relation is the set of the first elements of the ordered pairs (x values).
- The range of a relation is the set of the second elements of the ordered pairs (y values).
- (The range is a subset of the co-domain of the function.)
- Some relations exist for all possible values of x.
- Other relations have an implied domain, as the function is only valid for certain values of x.

Set rules & symbols

A = {1, 3, 5, 7, 9}	B = {2, 4, 6, 8, 10}	C = {2, 3, 5, 7}	D = {4,8}
(odd numbers)	(even numbers)	(prime numbers)	(multiples of 4)

- \in : element of a set. $3 \in A$
- \notin : not an element of a set. $6 \notin A$
- \cap : intersection of two sets (in both B and C) $B \cap C = \{2\}$
- U: union of two sets (elements in set B or C) $B \cup C = \{2, 3, 4, 5, 6, 7, 8, 10\}$
- \subset : subset of a set (all elements in D are part of set B) $D \subset B$
- $\ : exclusion (elements in set B but not in set C) \quad B \setminus C = \{2, 6, 10\}$
- \mathcal{O} : empty set $A \cap B = \emptyset$

Sets of numbers

- The domain & range of a function are each a subset of a particular larger set of numbers.
- Natural numbers (N): {1, 2, 3,4,}
- Integers (Z): {-2, -1, 0, 1, 2,}
- Rational numbers (Q): Any numbers that can be made from the division of two integers (but not dividing by 0) eg 1/3, 2.45, 5.787878.....
- Real numbers (R): The set of all rational and irrational numbers (includes surds, π, e)

Sets & intervals

- Intervals of the real numbers can be depicted using the appropriate brackets & set notations.
- Square brackets include point, round brackets don't.

- A function is a type of relation where each value of x has a unique value of y.
- Functions can be one to one or many to one where more than one x value shares the same y value.
- Examples include linear functions and circular functions (sin x, cos x)
- Functions can be determined by the vertical line test any vertical line will cut through a function only once.

Linear function: one to one

Circular function: many to one

- A relation can also be one to many or many to many where x values can have more than one y value.
- A circle is an example of this of a many to many function.
- A vertical line can cut through this graph more than once.

Function notation

• Function notation is used to describe the domain & any restrictions that might be in place.

Hybrid functions

- A hybrid (piecewise) function is one where different rules apply over different parts of the domain.
- For example, the cost of car hire differs according to the distance traveled.

Truncus

Square root

Domain: [-3, ∞)

Range: [2,∞)

Circle

$$x^2 + y^2 = r^2$$
$$x^2 + y^2 = 36$$

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-2)^2 + (y+4)^2 = 36$$

Domain: [-4,8]

Range: [-10,2]

(Diameter = 12)

Circle from functions

- Circles are described by a relation, not a function.
- They can be defined by combining two functions together.

- Every one to one function has an inverse function, $f^{-1}(x)$.
- Inverses are used to work backwards & solve equations.
- The graph of an inverse function can be found from mirroring the graph around the line y = x.
- The domain of the inverse $f^{-1}(x)$ is the range of f(x).
- The range of the inverse $f^{-1}(x)$ is the domain of f(x).
- The x intercept of $f^{-1}(x)$ is the y intercept of f(x).
- The y intercept of $f^{-1}(x)$ is the x intercept of f(x).

Inverse functions - from graphs

Inverse functions - from equations

