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Fundamental equations of Thermodynamics

(1) The combined first and second law

dWdqdU +=From the first law:

From the second law:

T

dq
dS ≥

Where,                         for irreversible system

T

dq
dS >

and,                            for reversible system
dq

dS =and,                            for reversible system

T

dq
dS =

For a closed system in which only reversible pV work is involved

pdVdW −= and

T

dq
dS =

Fundamental equationpdVTdSdU −=∴

The internal energy is a function of S and V

Where U, T, S, P, and V are state functions 
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pdVTdSdU −=∴

The differential of U

dV
dV

dU
dS

dS

dU
dU

SV









+








=∴

Thus, we can calculate T and p as

dS

dU
T 








=∴

dV

dU
p 








−=and

VdS
T 





=∴
SdV

p 





−=and

S and V are natural variables of U represented as U(S,V)
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pVUH +=The enthalpy was defined by:

VdppdVdUdH ++=by differential: 

The natural variables of H are S and p represented as H(S,p) 

pdVTdSdU −=and

VdppdVpdVTdSdH ++−=∴

VdpTdSdH +=∴

The natural variables of H are S and p represented as H(S,p) 

The last equation is the fundamental equation for H and for a closed system in 

which only pV work, and since H is a state function:

pdS

dH
T 








=∴

S
dp

dH
V 








=and
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U and H provide criteria for whether a process can occur spontaneously in a system 

when the corresponding natural variables are held constant.

dVpdW,
T

dq
dS ext−=≥From: 

At infinitesimal change (rev.) with constant S and V 

“A change in a process can occur spontaneously if the internal energy decreases 

dWdqdU +=And substitute in :

dVpTdSdU ext−≤∴We obtain:

0)dU( V,S ≤∴

“A change in a process can occur spontaneously if the internal energy decreases 

when the change occurs at constant entropy and volume”

The meaning: dU = zero      equilibrium

dU < zero      spontaneous

dU > zero      non-spontaneous

At constant S and p

dH = zero      equilibrium

dH < zero      spontaneous

dH > zero      non-spontaneous

0)dH( p,S ≤∴
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Helmholtz Energy (A)

TSUA −=It is defined by: 

T and V are the natural variables of A

SdTTdSdUdA −−=By differentiating:

pdVTdSdU −=∴But

pdVSdTdA −−=∴

T and V are the natural variables of A

If an infinitesimal change takes place in a system of constant T and V, thus:

For irreversible process, A decrease.
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0)dA( V,t ≤

For reversible process, A is constant.

It is more practical to use the criterion 0)dA( V,t ≤



The Helmholtz energy can be used to show that the 

pressures of two phases must be equal at equilibrium

For two-phase system in a container of fixed volume surrounded by a heat reservoir

When the system at equilibrium

Suppose that the volume of phase α is increased by dV 

and the volume of phase ß is decreased by dV.

So, the total volume is constant

pdVSdTdA −−=∴

pß

p
α

When the system at equilibrium pdVSdTdA −−=∴

dA = 0 = dAα + dAß
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-pαdV +pß dV=0

pα= pß



The Gibbs Energy (G)

H
S

sys∆
∆ −=

It provides a more convenient thermodynamic property than the 

entropy for applications of the second law at constant T and p. 

but

Example: for an isolated system consisting of system and 

surrounding at constant T and p

must increase for  a spontaneous process
surrsysuniv SSS ∆∆∆ +=

at constant T
T

S
sys

surr∆ −=but

So that

Or ∆Gsys must decrease
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This means that it is not required for specification what is happening in the surrounding

at constant T

T

G

T

H
S

syssys

sys

∆∆
∆ −=− Must increase



Thus for a spontaneous process at constant T and p the Gibbs
energy must decrease. If the process is at equilibrium then dG = 0.



Thus for a spontaneous process at constant T and p the Gibbs
energy must decrease. If the process is at equilibrium then dG = 0.

This criteria is the most important developed so far because it leads to all future

analyses of spontaneous and equilibrium processes such as equilibrium

constants, electrode potentials and the Nernst equation, gas, liquid and solid

equilibria, solution processes, etc. etc.

While there are now two separate conditions for the two different paths we will

focus almost exclusively on the Gibbs Energy since the constant pressurefocus almost exclusively on the Gibbs Energy since the constant pressure
path is so much more convenient to establish experimentally. We only need to

do it in the open under constant atmospheric pressure. Thus we will have tables

of values for ∆G rather than ∆A. Recall that this is exactly the same reason why

we focus on H and not U and why there are tables of ∆H and not ∆U.

Thus to determine if a constant T, p process will be spontaneous we
only need to find whether the change in one state function dG is
negative i.e. that the state function G decreases.



How does G behave overall as the state of a system
changes?

Since the new criteria for spontaneous change is that G

must decrease, we can sketch how it must behave as a

system changes spontaneously. From the plot we can

see that the system naturally tends to roll down a Gibbs

energy hill until it reaches the lowest point. The system

is then at equilibrium. We can see that a system tends to

stay in a state G of equilibrium because it must climb a

Gibbs energy hill to get out. Thus the reason for change,Gibbs energy hill to get out. Thus the reason for change,

the lowering of the Gibbs free energy can be viewed as

a “driving force” or a tendency for change. The
steeper the hill the greater the tendency for the system

to change.

The Gibbs (free) energy driving force is relatively simple in that it is made
up of two recognizable factors, the enthalpy and entropy. It is useful in

analyzing how each of these factors separately behaves when a change

occurs i.e. the Gibbs energy changes.



In general, any process in which the enthalpy (or energy)

decreases is favorable to a decrease in G and any process

in which the entropy goes up is also favorable to a

decrease in G.

In other words, systems, like most people, seek a position of minimum

energy and maximum disorder.

Thus the Gibbs energy, enthalpy (energy) and entropy
are the three main properties to keep uppermost in
mind when thinking about a change of state.

energy and maximum disorder.

This leads to minimum Gibbs energy and a state from which a system

is reluctant to move.



Maximum Useful Work

We can show that for a constant temperature and pressure process, a finite

change in the Gibbs energy ∆G is of great physical significance because it is

identical to the maximum work that we can extract out of a system. This would be

very useful in calculating the efficiency of a process and would set an upper limit

as to the maximum useful work available. This has wide applications in assessing

the efficiency of processes and reactions.

H = U + pV and G = H – TS

For a constant   T and p   process    dT = 0   and   dp = 0     and thus
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For a constant   T and p   process    dT = 0   and   dp = 0     and thus

dH = dU + pdV dG = dH – TdS  =  dU  +  pdV  - TdS

Also dU  =  dqrev +  dwrev and TdS  =  dqrev. 

Substituting for  dU  and   TdS

dG = dqrev +  dwrev +  pdV  - TdS   =  dwrev +  pdV

Let   dwrev =  pdV +  dwe,max
Where    dwe,max represents all other 
types of possible work e.g. electrical

dwrev =   - pdV  +  dwe,max dG  =  dwe,max



When a process is carried out in the open under constant
atmospheric pressure, pV work is done by the system against
atmospheric pressure [e.g. in expanding the volume of the system]
and this work is wasted because it is not controlled.

Thus any useful work done by the system is above and beyond this
pV work and is given by the change in the Gibbs energy.

For example in some electrochemical cells gases are evolved which
expand against the atmosphere to do pV work which is not used.expand against the atmosphere to do pV work which is not used.

Thus the maximum useful net work that we can get from any
constant T and p process is
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∆∆∆∆G  =  we,max =  ∆∆∆∆H   - T ∆∆∆∆S

It is only the electrical energy generated, dwe,max equal to dG which is utilized.



ANALYSIS OF ∆∆∆∆G IN TERMS OF ∆∆∆∆H AND ∆∆∆∆S

For useful work to be done, w, ∆∆∆∆G and (almost always) ∆∆∆∆H must be negative.

If the entropy term T∆S is positive [ then - T∆S will be negative] it 

makes ∆G more negative than just ∆H and so increases the work 
done for us.

In this case T∆S = qrev > 0 i.e. heat is transferred from the surrounding to 
the system to help fuel the work.

In the reverse case where the system entropy decreases

T∆S < 0 [ -T∆S is positive and ∆G is not as negative as ∆H]

heat must flow from the system to the surroundings and so

all of the ∆H is not available to do work..

The heat flowing to the surroundings increases the entropy of the
surroundings sufficiently so that the process remains spontaneous.

Thus part of the energy of the system has to be sacrificed in order to 
maintain spontaneity. 15
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Example: Check if this process is spontaneous or not? 

NH4Cl(s) + H2O →→→→ aqueous solution at 25 oC

∆Hθ(solution) = + 34.7 kJ mol-1 (endothermic)

∆Sθ(solution) = + 167.1 J K-1 mol-1

∆∆∆∆Gθθθθ(solution) =∆∆∆∆Hθ θ θ θ (solution) - T∆∆∆∆Sθ θ θ θ (solution)

unfavorable to spontaneity

favorable to spontaneity

∆∆∆∆Gθθθθ(solution) =∆∆∆∆Hθ θ θ θ (solution) - T∆∆∆∆Sθ θ θ θ (solution)
= 34.7 kJ mol-1 – 298 K (.1671 kJ K-1 mol-1)
= -15.1 kJ mol-1

In this case a favorable entropy change overcomes an unfavorable
energy change.

In fact, this process is spontaneous at any temperature above:
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Example: One mole of an ideal gas at 300 K and 10 atm is

isothermally and reversibly expanded to 1 atm. Calculate q, w,

∆∆∆∆U, ∆∆∆∆H, ∆∆∆∆S and ∆∆∆∆G.

Analysis

19
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STANDARD MOLAR GIBBS ENERGY

In the same way that standard heats of formation were defined for compounds 

we define standard molar Gibbs free energy of formation. 

This will allow us to calculate free energies of reactions at 298 K and hence

whether a reaction will be spontaneous IF the reaction is carried out at constant

temperature and pressure.

∆∆∆∆fG
θθθθ ≡≡≡≡ Standard Gibbs (free energy) of formation of a compound

[formed from constituent elements in their standard state]. Values
in tables are given for T = 298 K

∆ Gθθθθ = 0 for elements in their standard state i.e. for O (g), I (s), C(s; graphite)∆fG
θθθθ = 0 for elements in their standard state i.e. for O2(g), I2(s), C(s; graphite)

The standard free energy of the reaction is obtained in the same manner as the 

heat of reaction and the entropy of reaction.

The standard Gibbs energy of formation of a compound and the standard

Gibbs energy of a reaction at constant temperature can also be calculated from

heats of reaction and entropies of reaction using:

∆Hθ is almost independent of the temperature
∆Sθ is moderately dependent on the temperature
∆Gθis strongly dependent on the temperature 21



Example: oxidation of αααα-D glucose 
C6H12O6(s) + 6 O2(g) → → → → 6 CO2(g) + 6 H2O(l)

If the ∆∆∆∆Gθθθθ for CO2(g) = -394.4 kJ mol-1, ∆∆∆∆Gθθθθ for H2O(g)= -237.2 kJ mol-1 , ∆∆∆∆Gθθθθ for 
C6H12O6(s) = -910.9 kJ mol-1 

Calculate ∆Gθ = ∆GθProduct - ∆GθReactants
∆Gθ =[ 6 ∆Gθ CO2(g) + 6 ∆Gθ H2O(l))]- [∆Gθ C6H12O6(s) + 6 ∆Gθ O2(g)]
∆Gθ = 6(-394.4) + 6(-237.2) - 1(-910.9) - 0 = -2879 kJ mol-1

If this reaction is carried out at constant temperature and pressure it 
would be spontaneous.

Is this reaction is spontaneous or not?

would be spontaneous.

Example: Iodine sublimes at 25 °C as I2(s) →→→→ I2(g) where the heat
and entropy of sublimation are ∆∆∆∆H = 39.37 kJ mol-1 and ∆∆∆∆S = 86.19 J
K-1 mol-1. What is equilibrium sublimation temperature if ∆∆∆∆H and ∆∆∆∆S
are assumed to be independent of temperature.

We use the fact that at equilibrium ∆G = ∆H – T ∆S = 0
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Maxwell Relations

(1) The combined first and second law

dWdqdU +=From the first law:

From the second law:

T

dq
dS ≥

Where,                         for irreversible system

T

dq
dS >

and,                            for reversible system
dq

dS =and,                            for reversible system

T

dq
dS =

For a closed system in which only reversible pV work is involved

pdVdW −= and

T

dq
dS =

Fundamental equationpdVTdSdU −=∴

The internal energy is a function of S and V

Where U, T, S, P, and V are state functions 
23



pdVTdSdU −=∴

The differential of U

dV
dV

dU
dS

dS

dU
dU

SV









+








=∴

Thus, we can calculate T and p as

dU
T 





=∴
dU

p 





=−and Equation I

VdS

dU
T 








=∴

SdV

dU
p 








=−and

S and V are natural variables of U represented as U(S,V)
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Also since U is a state function we can apply the state function condition

This is a Maxwell Relation

V SS V

U U

V S S V

   ∂ ∂ ∂ ∂   
=      

∂ ∂ ∂ ∂       S V

T p

V S

∂ ∂   
= −   

∂ ∂   

Equation I



Using the fundamental equation we can

obtain new equations for dH, dA and dG and

use the same procedures as above to obtain

three more equations like [I] as well as threethree more equations like [I] as well as three

other Maxwell Relations. These turn out to be

particularly useful in manipulating partials as

will be shown shortly.



G = U – TS + pV ∴∴∴∴dG = dU – TdS –SdT + pdV + Vdp

H = U + pV and G = H – TS

For a constant T and p process dT = 0 and dp = 0 and thus

Substitute  the fundamental equation   dU = TdS – pdV  into the 
equation for dG to get: dG = Vdp – SdT

This equation for dG suggests that we take  p  and  T as the variables 
for  the Gibbs energy. for  the Gibbs energy. 

pT

G G
dG dp dT

p T

 ∂ ∂ 
= +   

∂ ∂  
Comparing coefficients of  dp and  
dT  for the two equations gives

S
T

G
andV

p

G

pT

−−−−====








∂∂∂∂

∂∂∂∂
====









∂∂∂∂

∂∂∂∂ Applying the

state function

condition for G p T

V S

T p

 ∂ ∂ 
= −  

∂ ∂   
This is a Maxwell Relation



The four Maxwell relations are

∂ ∂   

p T

V S

T p

 ∂ ∂ 
= −   

∂ ∂   V T

p S

T V

∂ ∂   
=   

∂ ∂   

 ∂ ∂

S V

T p

V S

∂ ∂   
=−   

∂ ∂   PS

T V

p S

 ∂ ∂ 
=   

∂ ∂  

Maxwell relations allow us to develop different equations



T V

U p
T p

V T

∂ ∂   
= −   

∂ ∂   

Start with the fundamental equation   dU = TdS – pdV. 

Proof that

To get the LHS partial of the above equation we divide   dU  by  dV  
and hold  T  constant

T T T

dU U S
T p

dV V V

∂ ∂   
= = −   

∂ ∂   T T T   

Substitute the Maxwell relation                               to obtain the equation
V T

p S

T V

∂ ∂   
=   

∂ ∂   

T V

U p
T p

V T

∂ ∂   
= −   

∂ ∂   

The physical significance of the LHS. It is the change in the energy when the

volume of a system, say a gas, is changed. i.e, when the distance between gas

molecules is increased or decreased. Thus it is a measure of the change in the

potential energy of molecules.



Maxwell Relations

(1) The combined first and second law

dWdqdU +=From the first law:

From the second law:

T

dq
dS ≥

Where,                         for irreversible system

T

dq
dS >

and,                            for reversible system
dq

dS =and,                            for reversible system

T

dq
dS =

For a closed system in which only reversible pV work is involved

pdVdW −= and

T

dq
dS =

Fundamental equationpdVTdSdU −=∴

The internal energy is a function of S and V

Where U, T, S, P, and V are state functions 
29



pdVTdSdU −=∴

The differential of U

dV
dV

dU
dS

dS

dU
dU

SV









+








=∴

Thus, we can calculate T and p as

dU
T 





=∴
dU

p 





=−and Equation I

VdS

dU
T 








=∴

SdV

dU
p 








=−and

S and V are natural variables of U represented as U(S,V)
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Also since U is a state function we can apply the state function condition

This is a Maxwell Relation

V SS V

U U

V S S V

   ∂ ∂ ∂ ∂   
=      

∂ ∂ ∂ ∂       S V

T p

V S

∂ ∂   
= −   

∂ ∂   

Equation I



Using the fundamental equation we can

obtain new equations for dH, dA and dG and

use the same procedures as above to obtain

three more equations like [I] as well as threethree more equations like [I] as well as three

other Maxwell Relations. These turn out to be

particularly useful in manipulating partials as

will be shown shortly.
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G = U – TS + pV ∴∴∴∴dG = dU – TdS –SdT + pdV + Vdp

H = U + pV and G = H – TS

For a constant T and p process dT = 0 and dp = 0 and thus

Substitute  the fundamental equation   dU = TdS – pdV  into the 
equation for dG to get: dG = Vdp – SdT

This equation for dG suggests that we take  p  and  T as the variables 
for  the Gibbs energy. for  the Gibbs energy. 

pT

G G
dG dp dT

p T

 ∂ ∂ 
= +   

∂ ∂  
Comparing coefficients of  dp and  
dT  for the two equations gives

S
T

G
andV

p

G

pT

−−−−====








∂∂∂∂

∂∂∂∂
====









∂∂∂∂

∂∂∂∂ Applying the

state function

condition for G p T

V S

T p

 ∂ ∂ 
= −  

∂ ∂   
This is a Maxwell Relation
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The four Maxwell relations are

∂ ∂   

p T

V S

T p

 ∂ ∂ 
= −   

∂ ∂   V T

p S

T V

∂ ∂   
=   

∂ ∂   

 ∂ ∂

S V

T p

V S

∂ ∂   
=−   

∂ ∂   PS

T V

p S

 ∂ ∂ 
=   

∂ ∂  

Maxwell relations allow us to develop different equations
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T V

U p
T p

V T

∂ ∂   
= −   

∂ ∂   

Start with the fundamental equation   dU = TdS – pdV. 

Proof that

To get the LHS partial of the above equation we divide   dU  by  dV  
and hold  T  constant

T T T

dU U S
T p

dV V V

∂ ∂   
= = −   

∂ ∂   T T T   

Substitute the Maxwell relation                               to obtain the equation
V T

p S

T V

∂ ∂   
=   

∂ ∂   

T V

U p
T p

V T

∂ ∂   
= −   

∂ ∂   

The physical significance of the LHS. It is the change in the energy when the

volume of a system, say a gas, is changed. ie when the distance between gas

molecules is increased or decreased. Thus it is a measure of the change in the

potential energy of molecules.
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THE CHANGE of GIBBS ENERGY WITH  T  AND  p

It is easy to determine the spontaneity of a reaction at 1 atm and 298 K
since we can get the free energy of a reaction from the free energy of
formation of compounds given in tables.

But, there are many reactions that are carried out at very different 
temperature and pressure conditions.

It is important to know how the free energy changesIt is important to know how the free energy changes
with temperature and pressure if we want to
determine spontaneity at any temperature and
pressure.

This is especially true for temperature changes since  G  is strongly  
dependent on temperature for solids, liquids, gases and solutions. 

Pressure effects on G are substantial only for gases.
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Change of G with temperature

The change of G with T was given by  S
T

G

p

−−−−====








∂∂∂∂

∂∂∂∂

This is the slope of the plots of G vs  T

The fact that the slope is just The fact that the slope is just 
the negative of the entropy 
makes the interpretation of 
the plots very simple.

The entropy of a gas is much larger than that of a liquid
which in turn is larger than that of the solid. Thus, it is
easy to rationalize the relative steepness of the G vs T
lines for gas, liquid and solid.

37



For the change of  ∆G  with  T  we can write   S
T

G

p

∆∆∆∆−−−−====








∂∂∂∂

∆∆∆∆∂∂∂∂

“what will happen to the  equilibrium  which exits between   
water → steam  at  100 °C and  1 atm if we raise the 
temperature to  110 °C”?

It is known that: at  100 °C, 1 atm there is equilibrium and

∆Gθ = Gθ(steam) - Gθ(water)  =  0.  

We need to see whether the value of ∆∆∆∆Gθθθθ becomes positive orWe need to see whether the value of ∆∆∆∆Gθθθθ becomes positive or
negative when the temperature increases by +10 °C.

p

G
S

T

∂∆ 
= −∆ 

∂ 
From                            , write the equation for a small finite change  δ as 

p

G

T

∂∆ 
≈ 

∂ 

G
S G ( S ) T

T

θ
θ θ θδ∆

= −∆ ∴ δ∆ = −∆ δ
δ

Since ∆∆∆∆Sθθθθ [=[=[=[= Sθθθθ(steam)> Sθθθθ(water)] >>>> 0000 and that δΤδΤδΤδΤ >>>> 0000,,,, δ∆δ∆δ∆δ∆Gθθθθ < 0 at 110
°C, 1 atm and hence , the process water →→→→ steam will be spontaneous.
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a) The Gibbs Helmholtz Equation

The above temperature dependence of the Gibbs energy on entropy is OK but it would be

even better if it depended on enthalpy since we usually have more heat data than entropy

data. This can be shown as follows:

G
S G ( S ) T

T

θ
θ θ θδ∆

= −∆ ∴ δ∆ = −∆ δ
δ

p

H G G
G H TS S

T T

− ∂ 
= − ∴ = = − 

∂ 

Consider 
G / T 1/ T1 G 1 G G

G
∂ ∂∂ ∂      

= + = −      Consider 
2

p pp p

G
T T T T T T T

      
= + = −      

∂ ∂ ∂ ∂      

Substitute for 

p

G G H

T T

∂ − 
= 

∂ 
∴∴∴∴ 2

p

G / T H

T T

∂ − 
= 

∂ 

For any process: initial state →→→→ final state  with   ∆∆∆∆G = Gi – Gf and  ∆∆∆∆H = Hi - Hf

2

/

T

H

T

TG

p

∆∆∆∆−−−−
====









∂∂∂∂

∆∆∆∆∂∂∂∂ This is Gibbs Helmholtz Equation
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Change of G with pressure: 

It was proved before that V
p

G

T

====








∂∂∂∂

∂∂∂∂

The slope of the plot of G vs p is just the 
volume of the system. Since  V  is always 
positive, the free energy must always 
increase with pressure.

The slopes of the plot for the gas, liquid and solid should decrease in that order

since the molar volumes of these phases decreases as we go from gas to liquid tosince the molar volumes of these phases decreases as we go from gas to liquid to

solid.

For a finite change in ∆∆∆∆G when  p changes : V
p

G

T

∆∆∆∆====








∂∂∂∂

∆∆∆∆∂∂∂∂

This equation  can be applied to the   water ↔ ↔ ↔ ↔ steam equilibrium at 100 °C, 1 atm.  

What will happen to the equilibrium if the pressure is decreased  to  0.5 atm?

T

G G
V G ( V) p

p p

 ∂∆ δ∆
≈ = ∆ ∴δ∆ = ∆ δ 

∂ δ 
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BUT  ∆∆∆∆V = V(steam) – V(water)  >> 0   and  δδδδp  = 0.5 – 1.0  = - 0.5  < 0 
and as a result

δ∆δ∆δ∆δ∆G  <  0

Water turning into steam (water vapor) will occur spontaneously 

Deriving equation for the change of Gibbs energy  with pressures  at 
constant temperature:

From the above partial derivative,  at constant temperature:

T T

T T

G dG
V and dG | Vdp |

p dp

 ∂
= = = 

∂ 

From the above partial derivative,  at constant temperature:

Thus                           the understanding that for this integration, T is constant dG Vdp=∫ ∫

f

i

p

f i

p

G(p ) G(p ) V(p,T)dp− =− =− =− = ∫∫∫∫ Always true for any isothermal process
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)pp(VGG
1212

−+=∴

a) For solids and liquids  ( V is independent of p) 

f

i

p

f i

p

G(p ) G(p ) V(p,T)dp− =− =− =− = ∫∫∫∫

)pp(VGG oo −+=

Where, Go and po are the standard value

Since for most solids and liquid, the molar
volume is small the value of ∆G is also veryvolume is small the value of ∆G is also very
small unless the pressure change is huge.

Thus as a first approximation we can say that
G is independent of pressure for solids and
liquids. This is seen in the plot of G vs p
where the lines for liquid and solid are almost
flat.
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b) For gasses ( V is dependent of p), ideal gas 

f

i

p

f i

p

G(p ) G(p ) V(p,T)dp− =− =− =− = ∫∫∫∫

∫∫ =
2

1

2

1

p

p

G

G dp

p
nRTG

P

nRT
V =

1

2

12

p

p
lnnRTGG +=∴

o

o

p

p
lnnRTGG +=

W
V

V
lnnRT

V

V
lnnRTG

1

2

2

1 =−==∆∴

1
p

This equation shows that at constant temperature the free energy goes up with
the pressure. This means that for an isothermal expansion the Gibbs energy
decreases (due to a dispersal of energy)
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Example: Calculate the free energy change ∆∆∆∆G when one mol of
an ideal gas at a constant temperature of 300 K is compressed
from 1 atm to 100 atm.

The effect on G of a gas due to changing the pressure
is much greater the the effect on G of the
corresponding liquid or solid, because the molar
volume of the gas is much larger.

Analysis: 
∆G  should be positive since this is a compression which concentrates energy.

∆∆∆∆G = nRT ln(pf/pi) 
= 1 mol x 8.314 J K-1 mol-1 x 300 K ln(100/1)  = 11.5 kJ
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∆∆∆∆fG
O (Standard Gibbs energy of formation) for liquid CH3OH at 298K is

-166.27 kJmol-1, and that for gaseous CH3OH is -161.96 kJmol-1 . The
density of the liquid methanol at 298K is 0.7914 g.cm-3.
Calculate ∆∆∆∆fG (CH3OH, g) and ∆∆∆∆fG (CH3OH, liq ) at 10 bar at 298 K and

∆∆∆∆fG (CH3OH, g)
∆∆∆∆fG = ∆∆∆∆fG

o +nRT ln(p/po) 
= -161.96 kJmol-1+(1 mol x 8.314J K-1 mol-1x 298K ln(10/1) 
= -156.25 kJmol-1

∆∆∆∆fG (CH3OH, liq) 1 bar = 100 kPa 
∆∆∆∆fG = ∆∆∆∆fG

o + Vm(p-po)  and 

Vm= molar mass/ density = 32 g mol-1 / 0.7914 g.cm-3= 40.49 cm3 mol-1

Vm= 40.49 x 10-6 m3 mol-1 

Vm(p-po)   = 40.49 x 10-6 m3 mol-1 (10 x 105- 1 x 105)Pa x (1 x 10-3 kJJ-1) 
∆∆∆∆fG  = -166.27 kJmol-1+ 40.49 x 10-6 m3 mol-1 (10 x 105- 1 x 105)Pa x (1 x 
10-3 kJJ-1) = -166.23 kJmol-1
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An ideal gas at 27oC expands isothermally and reversibly from 10 to 1
bar against a pressure that is gradually reduced. Calculate q, W, ∆∆∆∆U,
∆∆∆∆H, ∆∆∆∆G, ∆∆∆∆A, and ∆∆∆∆S.

Analysis: Isothermally and reversibly, ∆∆∆∆U, ∆∆∆∆H, equal zero
Gas expand, W is negative, q = -W, ∆∆∆∆A  is negative, ∆∆∆∆S is positive and ∆∆∆∆G is 
negative

Calculations:

Wmax = ∆∆∆∆A =  -RTln(p1/p2) = -(8.314 JK-1 mol-1)(300 K) ln (10/1) =  -5746 J mol-1

46

q = - Wmax = 5746 J mol-1

∆∆∆∆U = ∆∆∆∆H = 0

∆∆∆∆S = (qrev/T )= (5746 J mol-1 )/(300 K) = 19.14 J K-1 mol-1

∆∆∆∆G = ∆∆∆∆H - T ∆∆∆∆S= 0 – (300 K) (19.14 J K-1 mol-1 ) = 5746 Jmol-1

OR ∆∆∆∆G = RTln(p2/p1)  = (8.314 JK-1 mol-1)(300 K) ln (1/10) = 5746 Jmol-1



INTRODUCTION OF THE CHEMICAL POTENTIAL

The change in number of moles of any substance must be considered.

Starting with pure substances and determine how the Gibbs function will

change if infinitesimal amount of the same substance is added at constant

temperature and pressure.

This partial derivative is defined as the Chemical Potential :        
pTn

G

,










∂∂∂∂

∂∂∂∂
≡≡≡≡µµµµ

For a pure substance ,  µµµµ is just the molar free energy  Gm.
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G = n Gm

pT

m
m

pT

m

n

G
nG

n

nG

,,










∂∂∂∂

∂∂∂∂
++++====









∂∂∂∂

∂∂∂∂
≡≡≡≡µµµµ

But for a pure substance   Gm is constant with respect to the n and thus  µµµµ = Gm.

This is true of any molar quantity. 

For example, the molar volume Vm of water is 0.018 L mol-1 and is
independent of whether we are talking about 1 mole or 23 moles. Molar
quantities are “intensive” like density - they don’t depend on the amount.



The chemical potential is the most fundamentally important
function for general systems because it indicates how a system
will change with a change in temperature, pressure AND
composition.

As applied to ideal gases we can obtain the chemical potential of an
ideal gas at any temperature and pressure p,T from the previous
equation for G:

pp
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atm

p
RTOR

p

p
RT

1
lnln ++++====++++==== θθθθ

θθθθ
θθθθ µµµµµµµµµµµµµµµµ

In the most general formulation    µµµµ is a function of  T, p and moles of 
each component in the system ie

µ µ µ µ = µ µ µ µ (T, p, n1, n2, n3,  ………)

Also rewrite the equilibrium criteria for a constant T and p process
∆∆∆∆G = 0  as ∆µ∆µ∆µ∆µ = 0



FUGACITY
It is simply a measure of molar Gibbs energy of a real gas .

Modify the simple equation for the chemical potential of an ideal gas by

introducing the concept of a fugacity f. The fugacity is an “ effective

pressure” which forces the equation below to be true for real gases:









++++µµµµ====µµµµ

θθθθ

θθθθ

p

f
lnRT)T()T,p( where   pθ = 1 atm
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The fugacity has the units of
pressure. As the pressure
approaches zero, the real gas
approach the ideal gas behavior
and f approaches the pressure.

A plot of the chemical potential for an ideal and 

real gas is shown as a function of the pressure 

at constant temperature.  



If fugacity is an “effective pressure” ie the pressure that gives the right value

for the chemical potential of a real gas. The only way we can get a value for

fugacity and hence for µµµµ is from the gas pressure. Thus we must find the

relation between the effective pressure f and the measured pressure p.

let  f = φ φ φ φ p
φ φ φ φ is defined as the  fugacity coefficient. φφφφ is the “fudge factor” that modifies 

the actual measured pressure to give the true chemical potential of the real gas. 







++++µµµµ====µµµµ
θθθθ

θθθθ f
lnRT)T()T,p(
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By introducing  φ we have just put off finding  f  directly. Thus, now we 

have to find  φ. Substituting for  φ in the above equation gives:

p
(p,T) (T) RT ln RT ln (ideal gas) RT ln

p

θ

θ

 
µ = µ + + φ = µ + φ 

 

φφφφ====µµµµ−−−−µµµµ lnRT)gasideal()T,p(

This equation shows that the difference in chemical potential between the

real and ideal gas lies in the term RT ln φφφφ. This is the term due to molecular

interaction effects.







++++µµµµ====µµµµ
θθθθp

lnRT)T()T,p(



The equation relating  f   or   φ φ φ φ to the measured pressure p:

Note that  as  p → → → → 0, the  real gas → ideal gas, so that   f→→→→p and  φ→φ→φ→φ→ 1

The chemical potential for an ideal gas and a real gas at two pressures  p and p′ is
p

ideal,m ideal ideal ideal

p

p
V dp d (p,T) (p ,T) RT ln

p′

 
′= µ = µ − µ =  ′ 

∫ ∫
p

m

p

f
V dp d (p,T) (p ,T) RT ln

f′

 
′= µ = µ − µ =  ′ 

∫ ∫
Subtracting the first equation from the second gives
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Subtracting the first equation from the second gives

( )
p

m ideal,m

p

f p
V V dp RT ln RT ln

f p′

  
− = −   ′ ′   

∫

or ( )
p

m ideal,m

p

f / p 1
ln V V dp

f / p RT ′

 
= − ′ ′ 

∫

Let  p′′′′ →→→→ 0, then in the initial state the real gas → → → → the ideal gas. Thus f′′′′ → → → → p′′′′

( )
p

m ideal,m

0

f 1
ln V V dp

p RT

 
= − 

 
∫



ideal,m

RT
V

p
=

m

RT
V Z

p

 
=  
 

Since for an ideal gas   and for a real gas   

where   Z  is the compressibility factor

p p

0 0

f 1 RT RT Z(p,T) 1
ln Z dp dp ln

p RT p p p

        −
= − = = φ        

        
∫ ∫

p
Z(p,T) 1

f p exp dp
p

  − 
=   

   
∫
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0
p

  
   
∫

The fugacity coefficient   φ φ φ φ = f/p is given by 
















 −−−−
====φφφφ ∫∫∫∫

p

0

dp
p

1)T,p(Z
exp

Thus the fugacity of a gas is readily calculated at same pressure p if Z is
known as a function of pressure up to that particular pressure.


