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ABSTRACT

Energy management controllers for hybrid electric vehicles
typically contain numerous parameters that must be tuned in
order to arrive at a desired compromise among competing at-
tributes, such as fuel economy and driving quality. This paper
estimates the Pareto tradeoff curve of fuel economy versus driv-
ing quality for a baseline industrial controller, and compares
it to the Pareto tradeoff curve of an energy management con-
troller based on Shortest Path Stochastic Dynamic Programming
(SPSDP). Previous work demonstrated important performance
advantages of the SPSDP controller in comparison to the base-
line industrial controller. Because the baseline industrial con-
troller relies on manual tuning, there was always the possibility
that better calibration of the algorithm could significantly im-
prove its performance. To investigate this, a numerical search
of possible controller calibrations is conducted to determine the
best possible performance of the baseline industrial controller
and estimate its Pareto tradeoff curve. The SPSDP and baseline
controllers are causal; they do not rely on future drive cycle in-
formation. The SPSDP controllers achieve better performance
(i.e., better fuel economy with equal or better driving quality)
over a wide range of driving cycles due to fundamental structural
limitations of the baseline controller that cannot be overcome by
tuning. The message here is that any decisions that specify or re-
strict controller structure may limit attainable performance, even
when many tunable parameters are made available to calibration
engineers. The structure of the baseline algorithm and possible
sources of its limitations are discussed.
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Figure 1. The Prototype Hybrid: A Modified Volvo S-80.

1 Introduction

Hybrid electric vehicle (HEV) energy management con-
trollers have received a lot of interest in both academic and in-
dustrial circles [1]. While many design methods have been pro-
posed, it is difficult to compare them. Most algorithms, even
those from academia based on formal optimization methods,
have at least some parameters that must be selected by the de-
signer. This is even more true of industrial controllers, which
tend to use extensive hand-tuning and in-vehicle calibration in
order to trade off what are often very subjective driving quality
attributes.

Any performance comparison of controller design methods



is only as good as the engineers that tune the various algorithms,
and thus the comparison always suffers from the refrain that “al-
gorithm X could have been tuned better.” Comparisons are even
more difficult when the designer is forced to compromise among
competing performance attributes, such as the tradeoff between
fuel economy and engine start-stop activity, which is investigated
here. The relative value of one characteristic compared to an-
other is highly subjective, meaning comparisons among different
operating points necessitate a qualitative value judgement.

The goal of this paper is to study the performance of the in-
dustrial controller introduced in [2] as the baseline energy man-
agement system for the prototype HEV depicted in Figure 1.
The controller was developed by Ford Motor Company for this
prototype vehicle. Its performance is compared to a causal aca-
demic controller based on stochastic optimization, namely Short-
est Path Stochastic Dynamic Programming (SPSDP). The base-
line industrial controller is first evaluated to determine its Pareto
tradeoff curve: the upper limit of possible performance in terms
of fuel economy versus engine activity. This is accomplished
by sweeping the parameters of the controller over a wide range
of values, thereby generating a point cloud of possible fuel econ-
omy and engine start-stop operating points of the prototype HEV
under this controller. The frontier of this point cloud is the Pareto
tradeoff curve of maximum attainable performance; the HEV
with this controller can be operated anywhere on that line, but
not above it. A comparison is then made to the Pareto tradeoff
curves of the SPSDP controllers studied in [2, 3].

The method of SPSDP generates causal controllers that are
directly implementable in a real-time setting [4]. In particular,
the resulting controllers do not use future drive cycle informa-
tion. This is in contrast to Deterministic Dynamic Program-
ming [5], which is cycle dependent (it relies on a priori knowl-
edge of the entire drive cycle). The causal nature of a SPSDP
controller allows a fair comparison to the baseline controller.

The Pareto frontier for the SPSDP controllers is shown to
lie above the Pareto frontier of the baseline controller, mean-
ing that the SPSDP controllers achieve superior fuel economy
performance for a given level of engine on-off activity, for any
possible tuning of the baseline controller. This limitation is fun-
damental to the structure of the baseline algorithm: no amount
of parameter tuning or calibration can generate performance that
equals that of the SPSDP algorithm. An advantage of the SPSDP
algorithm is that it directly generates controllers that lie on the
tradeoff curve, and does so without requiring hand calibration.
The role of expert judgement is then to decide where on the
Pareto tradeoff curve to operate the vehicle for a given market.

Traditional vehicle software is produced through a process
of continuous improvement. While each year’s model has bet-
ter vehicle control software than the last, in practice, control de-
sign engineers are hesitant to change the basic structure of the
energy management algorithms, both because of their inherent
complexity as well as their complex relationship to other vehi-
cle systems. Instead, if a better controller is developed, its ac-
tions are analyzed in detail, and the existing software is tuned to

mimic the actions of the new controller. This paper emphasizes
that such an approach will not always work. While it is possi-
ble that a given controller architecture may be tuned for a par-
ticular vehicle to achieve the maximum performance, there are
no guarantees. When manually tuning an algorithm, engineers
may be unaware they are finding the maximum attainable per-
formance for a particular controller architecture rather than the
optimal causal controller. A more general benchmark that avoids
specifying a controller architecture is required to correctly gauge
performance. SPSDP is one such method for generating causal
controllers.

The remainder of the paper is structured as follows. The ve-
hicle model and drivability metrics are summarized in Sections
2, 3 and Appendix A; these are similar to previous work in [2, 3]
and are included for the convenience of the reader. The archi-
tecture of the baseline industrial energy management controller
and the tuning methods used are discussed in Section 4. The
academic controller against which it is bench marked, SPSDP, is
briefly described in Section 5, with details relegated to Appendix
B. The main contribution of the paper, the careful comparison of
an industrial state of the art controller to SPSDP through Pareto
tradeoff curves, is presented in Sections 6 and 7.

2 \Vehicle
2.1 Vehicle Architecture

The vehicle studied in this paper is a prototype Volvo S-80
series-parallel electric hybrid and is shown schematically in Fig-
ure 2. A 2.4 L diesel engine is coupled to the front axle through
a clutched 6-speed automated manual transmission. An electric
machine, EM1, is directly coupled to the engine crankshaft and
can generate power regardless of clutch state. A second elec-
tric machine, EM2, is directly coupled to the rear axle through a
fixed gear ratio without a clutch, therefore the electric machine is
always rotating at a speed proportional to vehicle speed. Energy
is stored in a 1.5 kWh battery pack. The system parameters are
listed in Table 1.

Table 1. Vehicle Parameters

Engine Displacement 24L
120 kW

Max Engine Power

Electric Machine Power EM1 (Front) 15 kW
Electric Machine Power EM?2 (Rear) 35kW

Battery Capacity 1.5 kWh
Battery Power Limit 34 kW
Vehicle Mass 1895 kg
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Figure 2. Vehicle Configuration.

The vehicle hardware allows three operating conditions:

1. Parallel Mode-The engine is on and the clutch is engaged.

2. Series Mode-The engine is on and the clutch is disengaged.
The only torque to the wheels is through EM?2.

3. Electric Mode-The engine is off and the clutch is disen-
gaged; again the only torque to the wheels is through EM?2.

The electric machines can act as either motors or generators in
all modes.

2.2 Vehicle Simulation Model

As part of this project, Ford provided an in-house model
used to simulate fuel economy. It is a complex, MAT-
LAB/Simulink based model with a large number of parameters
and states, as described in [6]. Each subsystem in the vehicle is
represented by an appropriate block. This model is referred to
as the “vehicle simulation” model and is the primary simulation
tool in this paper.

The vehicle simulation model contains the baseline con-
troller algorithm. To generate simulation results using this con-
troller, the controller parameters are adjusted and a target drive
cycle is provided to the model.

Using the Simulink interface of the vehicle simulation
model, other control algorithms can be implemented by reading
and/or overwriting appropriate sensing and command signals:
Battery State of Charge, Vehicle Speed, Engine State, Gear Com-
mand, etc. The vehicle simulation model can then be “driven” by
another controller, such as SPSDP, along a given drive cycle.

3 Optimization Metrics
3.1 Drivability

Drivability is a commonly used term that covers many
aspects of vehicle performance including acceleration, engine

noise, braking, shifting activity, shift quality [7], and other be-
haviors. All of these contribute to consumer perception of the
vehicle, which is crucial in purchasing decisions. Current aca-
demic work in hybrid vehicle optimization primarily focuses on
fuel economy. These tools are somewhat less useful to industry
because of drivability restrictions in production vehicles, which
fuel-optimal controllers usually violate. If these fuel-optimal
controllers are used, drivability restrictions are typically imposed
as a separate step.

In [2], we investigated the hybrid vehicle drivability issues
of gear selection and when to start and stop the internal com-
bustion engine, and demonstrated the usefulness of optimizing
for fuel economy and drivability simultaneously. For the vehicle
studied here, it was shown that its fuel economy is much more
sensitive to engine on-off activity than transmission activity [2].
For this reason, the study here is limited to engine activity, al-
though the controller design and implementation also includes
gear selection as in [2,3].

3.2 Metrics

To effectively design controllers, qualitative drivability re-
quirements must be transformed into quantitative restrictions or
metrics. Drivability experts at Ford Motor Company were con-
sulted to assist in developing numerical drivability criteria. For
this paper, the primary drivability metric is Engine Events, the to-
tal number of engine start and stop events on a trip. By definition,
engine starts and stops are each counted as an event. Despite its
relative simplicity, simulations have shown that this metric cap-
tures a wide range of vehicle behavior and is well correlated with
more complicated metrics.

4 Baseline Industrial Controller
4.1 Architecture

Optimal
Battery Battery Power ‘
Power
Engine Actuator
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Wheel Power > State g, Commands
. State
Machine

Figure 3. High Level Baseline Controller Architecture.

The “baseline” prototype energy management controller
studied here is obviously quite complex. Its key features are con-
tained in three modules, as depicted in Figure 3. Driver power
demand is determined from pedal position. One module deter-
mines the optimal battery power flow and adds it to the driver
demand to determine the Total Power. A second module deter-
mines the optimal engine state based on the Total Power using
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Figure 4. Two possible design processes. The SPSDP process con-
ducts the optimization in one step, but may be more complex. The “Com-
mon” two stage optimization is often used in industry. lts simpler structure
may be easier to tune, but may sacrifice performance.

a state machine with hysteresis. A third rule-based module then
determines individual actuator commands (e.g., power from the
engine and the two electric machines) based on the Total Power
and the desired engine state. The transmission gear is selected
independently by the transmission.

This architecture is fundamentally different from the SPSDP
algorithm discussed in Section 5, as illustrated in Figure 4. The
SPSDP controller is a single step optimization, while the baseline
algorithm follows the common two step (or sequential) design
procedure. Structurally, the two-stage algorithm is similar to the
“local” optimization discussed in [3,4].

4.2 Performance Capability

The flexibility of rule-based controllers with many calibra-
tion parameters is tempered by the fact that there is no a priori
guarantee of optimality. The goal of this work is to determine the
Pareto tradeoff curve of the baseline architecture and compare it
to a controller based upon stochastic optimal control. Perfor-
mance is evaluated in terms of fuel economy and engine activity,
but other important tradeoffs could also be considered.

The Pareto tradeoff curve of the baseline controller is esti-
mated numerically by sweeping a set of tuning parameters over a
wide range and evaluating performance on the vehicle simulation
model. The primary tuning “parameters” are actually five scalar
functions, two in the “Optimal Battery Power” module and three
functions of vehicle speed in the “Engine State Machine” mod-
ule. These are the same functions that a calibrator would adjust
in the vehicle. This is obviously a very large space to search,
especially for an engineer tuning the algorithm by hand. One ad-
vantage of the baseline architecture is that engine behavior and
battery charge maintenance features are largely confined to their

respective blocks with minimal crosstalk, simplifying the tuning
process considerably.

4.3 Parameter Sweep Procedure

First, the three functions in the Engine State Machine were
varied, using both small perturbations from the nominal tun-
ing and a brute force sweep of a larger function space, while
the functions in the Optimal Battery Power module were held
fixed. This process generated approximately 100,000 possible
controllers, which were each simulated on the FTP cycle. The
fuel economy numbers were recorded and corrected! based on
final battery state of charge (SOC), and the number of Engine
Events was recorded as discussed in Section 3.

200 of the best tunings were selected for further study?. For
each fixed tuning of the Engine State Machine, the two functions
in the Optimal Battery Power module were then varied. This
yielded a primary set of 180,000 controllers, each of which was
evaluated on the FTP cycle.

To evaluate robustness to real-world driving, 210 of these
controllers were selected and simulated on a set of real-world
drive cycles obtained from the University of Michigan Trans-
portation Research Institute (UMTRI) [8]; see also [2]. Fuel
economy and number of Engine Events were recorded.

5 Academic Benchmark

In order to evaluate the degree of optimality of the baseline
industrial algorithm, an optimal feedback controller is used un-
der the same information conditions as the baseline controller
(in particular, no future drive cycle information is used). The
method chosen is Shortest Path Stochastic Dynamic Program-
ming (SPSDP), a well-established controller design method that
has previously been used for hybrid vehicle energy management
[4]. SPSDP is not the focus of this paper, merely a benchmark for
comparison. The simplified model used for controller design is
summarized in Appendix A and details of the SPSDP algorithm
are provided in Appendix B; see also [2,3].

SPSDP is an automated algorithm that generates a causal
controller from a vehicle model, a cost function, and statistics
about typical driving conditions. The optimal controller is a
static state feedback. It is computed off-line and can be directly
implemented in a real-time processor. The designer can specify
the cost function, in this case fuel and engine activity. The re-
sulting controllers are optimal and causal. To generate a Pareto
tradeoff curve, controllers are generated with a variety of penalty
values in the cost function, and the resulting closed-loop solu-
tions generate a continuous curve that varies the balance among
competing performance metrics. The designer then picks the de-
sired operating point.

With an optimization based approach such as SPSDP, the de-
signer specifies the cost to be minimized and the algorithm pro-

I'See Section 6.
2Controllers were selected from both the frontier and the interior of the point
cloud using the same method discussed in Section 7.1
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Figure 5. Best Case performance of the baseline controller running FTP
compared to SPSDP controllers. The gray dots are all possible base-
line controllers, the black triangles are the “best” available baseline con-
trollers, and the blue squares are selected randomly from the other rea-
sonable controllers. SPSDP controllers are shown for comparison as red
diamonds. Fuel economy is normalized to the default baseline controller
running the FTP cycle, shown as a large green circle. All markers repre-
sent the same controllers in Figures 5-7.

duces the required closed-loop dynamics. This is different from
manual design and tuning where the designer typically varies pa-
rameters with the goal of achieving a closed-loop behavior that
minimizes cost, with no optimality guarantees.

Remark: On one hand, the SPSDP algorithm is system-
atic, optimal, and yields implementable controllers. On the other
hand, it suffers from off-line computational complexity. In effect,
a control designer is trading off the need to decide on an a pri-
ori controller architecture and tuning values against the burden
of setting up the algorithm and doing the off-line computations.

6 Simulation Procedure

The baseline and SPSDP controllers are evaluated on the ve-
hicle simulation model discussed in Section 2.2. These simula-
tions are all causal, so the final battery SOC is not guaranteed to
exactly match the starting SOC. This could yield false fuel econ-
omy results, so all fuel economy results are corrected based on
the final SOC of the drive cycle. This is done by estimating the
additional fuel required to charge the battery to its initial SOC,
or the potential fuel savings shown by a final SOC that is higher
than the starting level. This correction is applied according to
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Figure 6. Final Battery SOC of the baseline and SPSDP controllers run-
ning FTP. All cycles start at SOC=0.5. All markers represent the same
controllers in Figures 5-7.

where AFuel is the adjustment to the fuel used, Cpyy; is the bat-
tery capacity, ASOC is the difference between the starting and
ending SOC, BSFC,,;, is the best Brake Specific Fuel Consump-
tion for the engine, and NS is the best charging efficiency of
the electric system.

Controllers are initially evaluated on the US government’s
FTP test cycle, in which case there is only one simulation per
controller. To study robustness to drive cycle variations, con-
trollers are also evaluated on a set of real-world driving data col-
lected by the University of Michigan Transportation Research
Institute (UMTRI) [8]. 100 cycles are randomly selected from
these data to generate an ensemble of cycles. Procedurally, this
is conducted as follows:

1. Each controller is simulated on each of the 100 cycles in the
ensemble using the vehicle simulation model.

2. The results for the ensemble of 100 cycles are compiled to
generate average or cumulative performance for that partic-
ular controller.

In the end result, each controller has average performance
metrics (fuel economy and drivability) representing cumulative
performance on the ensemble of cycles. Note that studying 100
controllers on 100 cycles each means 10,000 simulations.

7 Results
7.1 FTP Cycle

As discussed in Section 4.3, a primary set of 180,000 tun-
ings of the industrial energy management controller were first
simulated on the FTP cycle. The fuel economy numbers were
corrected based on final SOC per (1) and the number of Engine



Events was recorded as discussed in Section 3. These data pairs>
are presented in Figure 5 as small gray dots. The default tun-
ing of the baseline controller (provided by Ford) is shown as a
large green circle. The controllers designed using SPSDP are
shown in these figures as red diamonds. The fuel economies are
normalized to the nominal baseline controller running the FTP
cycle (i.e., green circle has fuel economy of 1.0).

Varying the engine state machine parameters does change
the battery SOC behavior, but the controllers are still reasonably
charge-sustaining, as shown in Figure 6. Final battery SOC is
used to correct the cycle fuel economy for all results shown. This
correction generally only changes the results 1-2% and does not
alter the relative comparison. The SPSDP controllers generally
achieve better performance than the baseline, both in uncorrected
fuel economy and in final SOC.

7.2 Real-World Drive Cycles

Fuel economy on government test cycles differs from that of
real-world driving. Real-world performance is studied by evalu-
ating controllers on an ensemble of 100 drive cycles as discussed
in Section 6. It is impractical to evaluate 180,000 controllers
on 100 cycles each, so the majority of the brute-force search
was conducted on the FTP cycle, and a subset of 210 controllers
were selected for further evaluation. 30 of those were selected
from the Pareto frontier of Figure 5 to represent the “best” avail-
able, and 180 were selected randomly from the cloud of reason-
able controllers*. These controllers are termed the “best” and
“random” controllers and are shown as black triangles and blue
squares respectively in Figures 5-7.

The cumulative performance of each controller on the 100
ensemble cycles is shown in Figure 7. The results are normalized
to the baseline controller running the FTP cycle®, so both the
SPSDP and baseline controller yield lower fuel economy in the
real-world (0.86 & 0.93) than on government test cycles (1.1 &
1.18). The SPSDP controllers in Figures 5-7 are the same for all
three figures, and are designed using statistics from the ensemble
of 100 real-world drive cycles; see [2].

7.3 Discussion

The fundamental tradeoff between vehicle fuel economy and
the amount of engine activity is clearly visible as a Pareto trade-
off curve in the results. The SPSDP controllers achieve equal
or better performance than the baseline under all conditions, as
would be expected with the method’s optimality guarantees. One
major benefit of SPSDP is clearly visible: controllers are always
on the frontier of attainable performance without iterative search-
ing. Varying the cost function merely moves the operating point

3Many of the parameter values yielded unreasonable controllers with poor
fuel economy and large numbers of engine events. The corresponding data pairs
are outside the bounds of the figure.

4Note that the baseline tuning provided by Ford is not on the Pareto frontier
of the FTP cycle in Figure 5.

5The green circle in Figure 5.
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Figure 7. Best Case performance of the baseline controller and SPSDP
running the ensemble of 100 cycles. Fuel economy is normalized to the
default baseline controller running the FTP cycle. All markers represent
the same controllers in Figures 5-7.

along the Pareto curve of maximum performance.

The fundamental limitations of the baseline controller likely
arise from three sources. As illustrated in Figure 3, the optimal
battery charging power and engine state are determined sequen-
tially and not simultaneously. Other major automakers use simi-
lar two-stage architectures that likely exhibit these limitations. A
second possible source is that the engine state machine is inher-
ently rule-based as a function of total power demand. While the
total power demand is strongly correlated with optimal trajecto-
ries, a rule-based strategy is likely suboptimal in comparison to
a more general function of the other state variables in addition to
total power demand. A third possible source of limitations is the
“actuator commands” block, which is rule-based and not a pure
optimization.

While it is not easy to pinpoint why the SPSDP controllers
perform better, in general, they are more aggressive and efficient
in their use of the diesel engine and the electric machines. The
engine operates largely in a “bang-bang” fashion, either at a high
efficiency operating point or completely off. The electric ma-
chines are generally used closer to their maximum efficiency, or
near maximum power to enable high engine power outputs when
little road load power is required.

These general operating principles may seem intuitive, but
they underline one of the major benefits of SPSDP: it automat-
ically generates the optimal controller without a designer spec-
ifying control actions. Even given these principles, a designer
would be hard-pressed to formulate control laws that generate
optimal performance. In addition, these principles do not nec-
essarily hold in general and may change with different vehicles.
Guessing the wrong “rules of thumb” in the design phase can
impose performance limits, as demonstrated in this paper.



8 Conclusions

The Pareto tradeoff curve of fuel economy versus engine
on-off activity was estimated for an industrial energy manage-
ment algorithm. This was accomplished by numerically sweep-
ing a large set of functions that a calibrator would use to tune
the industrial algorithm. The Pareto curve was then computed
for a causal controller designed using Shortest Path Stochas-
tic Dynamic Programming (SPSDP), and it was found to lie
strictly above the Pareto curve of the industrial controller. There
is no possible tuning or calibration of the industrial algorithm
that can match the performance of the SPSDP controller. This
implies fundamental structural limitations of the baseline algo-
rithm. These limitations likely arise for three reasons: the battery
power flows and engine start-stops are determined sequentially
and not simultaneously; the engine on-off control is constrained
to be a function of total power demand; and some actuator selec-
tion is rule-based.

The SPSDP-based controllers do not exhibit similar limi-
tations. In particular, a SPSDP-based controller uses full-state
feedback, and thus power flows, engine on-off events and gear
number can be general functions of vehicle speed, battery SOC,
gear number, engine state and total power demand. While it is
very possible that a simpler feedback structure may exist, that
is, one that depends on fewer variables and hence is more easily
calibrated in the field, the search for such a feedback is a sepa-
rate problem. As part of that search, the control designer has to
decide how much degradation in performance is acceptable for
ease of tunability, maintenance, or other considerations.

The work presented here underlines the point that making
an a priori choice of feedback structure or vehicle behavior can
induce significant structural barriers to obtaining optimal vehicle
performance, barriers that cannot be overcome at later stages in
the design process, no matter how well the nominal controller is
tuned. One way to avoid making these choices at an early stage
is to adopt a more sophisticated controller design procedure in
the prototyping phase, one that automatically searchers over all
possible state feedback controllers. One such method is SPSDP.
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APPENDIX

A Control-Oriented Model

When using Shortest-Path Stochastic Dynamic Program-
ming, the off-line computation cost is very sensitive to the num-
ber of system states. For this reason, the model used to de-
velop the controller must be as simple as possible. The vehicle
model used here for SPSDP contains the minimum functionality
required to model the vehicle behavior of interest on a second-
by-second basis. Dynamics much faster than the sample time
of 1s are ignored. Long-term transients that only weakly affect
performance are also ignored; coolant temperature is one exam-
ple. The main parameters of the control-oriented model are very
closely matched to the vehicle simulation model: efficiencies,
mass, drag, power limits, etc.

The dynamics of the internal combustion engine (ICE) are
ignored; it is assumed that the engine torque exactly matches
valid commands and the fuel consumption is a function only of
speed, W;ck, and torque, Tjcg. The fuel consumption F is derived



from a lookup table based on dynamometer testing,
Fuelflow = F(O)]CE, TICE)~

The automated manual transmission has discrete gears and
no torque converter. The transmission is modeled with a con-
stant mechanical efficiency of 0.95. Transmission gear shifts are
allowed every time step (1s) and transmission dynamics are as-
sumed negligible. When the clutch is engaged, the vehicle is
in Parallel Mode and the engine speed is assumed directly pro-
portional to wheel speed based on the current transmission gear
ratio R,. The electric machine EM1 is directly coupled to the
crankshaft, and thus rotates at the engine speed ®;cg.

In Parallel Mode, the engine torque Tjcg and EM1 torque
Tep transmitted to the wheel are assumed proportional to wheel
torque based on the current gear ratio R, and the transmission
efficiency M;rqns. The rear electric machine EM?2 torque Tgarn
transmitted to the wheel is proportional to the constant EM?2 gear
ratio Rgyy2 and rear differential efficiency My;fr. The total wheel
torque Tiypee; is thus the sum of the ICE and EM1 torques to the
wheel N7ransRe (Tice + Tem ) and the rear electric machine EM2
torque to the wheel Ny;rrREM2 TEM?,

NeransRg (Tice + Tem) +Naif fREM2TeM2 = Theel-

The clutch can be disengaged at any time, and power is de-
livered to the road through the rear electric machine EM2. This
condition is treated as the “neutral” gear 0, which combines with
the 6 standard gears for a total of 7 gear states. If the engine is on
with the clutch disengaged, the vehicle is in Series Mode. The
engine-EM 1 combination acts as a generator and can operate at
arbitrary torque and speed. The EM1 command is a speed rather
than a torque in Series Mode. If the engine is off while the clutch
is disengaged, the vehicle is in Electric Mode.

The battery system is similarly reduced to a table lookup
form. The electrical dynamics due to the motor, battery, and
power electronics are assumed sufficiently fast to be ignored.
The energy losses in these components can be grouped together
such that the change in battery State of Charge (SOC) is a func-
tion K of Electric Machine speeds 01 and 0gy, torque Tepy
and T2, and battery SOC at the present time step,

SOCi41 = K(SOCy, 0pm1, OWem2, Temt, Tem2)- 2)

Assuming a known vehicle speed, the only state variable required
for this vehicle model is battery SOC. Changes in battery perfor-
mance due to temperature, age, and wear are ignored. An addi-
tional constant power drain is used to represent accessory loads
like radios, headlights and other losses.

During operation, the desired wheel torque is defined by the
driver. If we assume the vehicle must meet the torque demand

Table 2. Vehicle Dynamic Model

State Control Inputs

Battery Chg. (SOC) Engine Torque

EM1 Tq. (Parallel) or Speed (Series)

Transmission Gear

perfectly, then the sum of the ICE and EM contributions to wheel
torque must equal the demanded torque Tyemang- This adds a con-
straint to the control optimization, reducing the 4 control inputs
to a 3 degree of freedom problem. In Parallel Mode the control
inputs are Engine Torque, EM1 Torque, and Transmission Gear.
In Series Mode, the electric machine command becomes EM 1
Speed.

Simulation is conducted assuming a “perfect” driver. At
each time step, the vehicle velocity is the desired cycle velocity.
The desired road power is calculated as the exact power required
to drive the cycle at that time, and is a function of the desired ve-
locity profile. Now, given vehicle speed, demanded road power,
and this choice of control inputs, the dynamics become an ex-
plicit function ¥ of the state Battery SOC and the three control
choices as shown in Table 2,

SOCyy1 = K(SOCy, Tice, Tem , Gear). (3)

The engine fuel consumption can be calculated from the control
inputs.

B Shortest Path Stochastic Dynamic Programming
B.1 Cost Function

In order to design a controller with acceptable drivability
characteristics, the optimization goal over a given trip of length
T would ideally be defined as

min):g Fuel flow
such that @)
Y0 GE < GEpax, Y.y EE < EEpq

where GE and EE are the number of Gear and Engine Events
respectively, and GE,,, and EE,,,, are the maximum allowable
number of events on a cycle. Engine Events are described in
Section 3. A Gear Event occurs when the transmission shifts
with the clutch engaged [2, 3].

This constrained optimization incorporates the two major ar-
eas of concern: fuel economy and drivability. Constraints of this
type cannot be incorporated in the Stochastic Dynamic Program-
ming algorithm used here because the stochastic nature of the
optimization cannot directly predict performance on a given cy-
cle. Instead, the drivability events are included as penalties, and



those penalty weights are adjusted until the outcome is accept-
able and meets the hard constraints.

Controllers based only on fuel economy and drivability com-
pletely drain the battery as they seek to minimize fuel. An addi-
tional cost is added to ensure that the vehicle is charge sustaining
over the cycle. This SOC-based cost only occurs during the tran-
sition to key-off, so it is represented as a function ¢spc(x) of the
state x, which includes SOC [2—4]. The performance index for a
given drive cycle is

T T T
J =Y Fuel flow+a) GE+BY EE+0dsoc(xr). (5)
0 0 0

The search for the weighting factors o and 3 involves some
trial and error, as the mapping from penalty to outcome is not
known a priori. Note that setting o and 3 to zero means solving
for optimal fuel economy only.

Now, to implement the optimization goal of minimizing (5),
a running cost function is prescribed as a function only of the
state x and control input u at the current time

Cfull (X, u) = F(x, I/t) +olgg ()C, I/t) + Blgg (x7 u) + ¢50c(x) (6)

where the function I(x,u) is the indicator function and shows
when a state and control combination produces a Gear Event or
Engine Event. Fuel use is calculated by F (x,u). The SOC-based
cost dsoc(x) still applies only at key-off, when the systems tran-
sitions to the key-off absorbing state. Many other vehicle behav-
iors can be optimally controlled by adding appropriate functions
of the form ¢(x,u); a typical example is limiting SOC deviations
during operation to reduce battery wear.

B.2 Problem Formulation

To determine the optimal control strategy for this vehicle,
the Shortest Path Stochastic Dynamic Programming (SPSDP) al-
gorithm is used [4,9]. This method directly generates a causal
controller; characteristics of the future driving behavior are spec-
ified via a Markov chain rather than exact future knowledge. The
system model is formulated as

X1 = f (X, g, W),

where uy is a particular control choice in the set of allowable
controls U, x; is the state, and wy is a random variable arising
from the unknown drive cycle. Given this formulation, the opti-
mal cost V*(x) over an infinite horizon is a function of the state
x and satisfies

Vix) = {{réilrleW[c(x,u) +V*(f(x,u,w))], @)

where c(x,u) is the instantaneous cost as a function of state and
control; (6) is a typical example. The optimal control u* is a
control that achieves the minimum cost V*(x). This equation
represents a compromise between minimizing the current cost
c(x,u) and the expected future cost V(f(x,u,w)). Note that the
cost V(x) is a function of the state only. This cost is finite for
all x if every point in the state space has a positive probability
of eventually transitioning to an absorbing state that incurs zero
cost from that time onward. Equation (7) is solved using mod-
ified policy iteration, which is one of several available solution
methods.

In order to use this method, the driver demand is modeled
as a Markov chain. This “driver” is assigned two states: current
velocity v and current acceleration a;, which are included in the
full system state x. A probability distribution is then assigned to
the set of accelerations at the next time step based on drive cy-
cles that represent typical driving behavior [2—4]. This choice of
typical drive cycles does affect the controller that is generated,
but the algorithm is robust to a wide range of probability distri-
butions as shown in [2].

In addition to fuel economy, it is desirable to study the driv-
ability characteristics of the vehicle. The metrics chosen are gear
shifts and engine events. To track these metrics, two additional
states are required: the Current Gear (0-6) and Engine State (on
or off).

Bringing this all together, the full system state vector x con-
tains five states: one state for the vehicle (Battery SOC), two
states for the stochastic driver (vg,ax), and two states to study
drivability (Current Gear and Engine State). This formulation
is termed the “SPSDP-Drivability” controller. A summary of
system states is shown in Table 3. The control u contains the
three inputs Engine Torque, EM1 Torque/Speed, and Transmis-
sion Gear, as described in Appendix A and Table 2.

Table 3. Vehicle Model States

State Units
Battery Charge (SOC) [0-1]
Vehicle Speed m/s
Current Vehicle Acceleration m/s*
Current Transmission Gear Integer 0-6
Current Engine State On or Off




