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“The trouble with quantum mechanics”

Quantum mechanics 
is certainly imposing. 
But an inner voice 
tells me that it is not 
yet the real thing. 
Albert Einstein

I’m not as sure as I 
once was about 

the future of 
quantum 

mechanics.
Steven Weinberg

I believe that one must 
strongly consider the 
possibility that 
quantum mechanics is 
simply wrong when 
applied to macroscopic 
bodies
Roger Penrose

If you push quantum 
mechanics hard enough 

it will break down and 
something else will take 

over – something we 
can’t envisage at the 

moment.
Anthony J. Leggett



Quantum superpositions

Microscopic superpositions

Experimentally verified

Macroscopic 

superpositions

Never seen

Cats are made of atoms + linearity of the theory



Standard Quantum Mechanics
Classical world

The wave function gives the probabilities 
of outcomes of measurements

The Copenhagen interpretation assumes a mysterious division between the microscopic 
world governed by quantum mechanics and a macroscopic world of apparatus and observers 
that obeys classical physics […]

Quantum world

The cat

S. Weinberg, Phys. Rev. A 85, 062116 (2012) 
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A solution: Models of spontaneous wave 
function collapse 

The Schrödinger equation is modified. The new dynamics is nonlinear in such a way to 
describe the quantum micro-world, the classical macro-world, as well as the transition from 
one to the other.

Wave Particle

A unique, modified, 
quantum world

G.C. Ghirardi et el., Phys. Rev. D 34, 470 (1986)



Gravity and the Collapse of the Wave Function: a Probe into Diósi-Penrose model 2

toward the macro-scale. In this way, within a unique dynamical equation, both the

quantum and the classical world can be described consistently.

Collapse models are phenomenological models. Their justification from

fundamental physical principles is not yet known and it very much depends on one’s view

about the physical origin of the collapse field. A natural explanation can be provided

by gravity, because gravity is universal and its strength increases with the mass of the

system. In fact, these are two crucial properties of the collapse field.

The connection of the collapse field with gravity has been explored by many

authors [7, 8, 12, 16, 18–21], in particular by Károlyházy et. al [19], Diósi [7, 8, 16] and

Penrose [12], independently. Here, we will focus on the works of Diósi and Penrose,

which is usually called as DP model. Diósi proposed a stochastic nonlinear Schrödinger

equation as follows [8]:
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where Ĥ is the standard quantum Hamiltonian, hM̂(x)it = h t|M̂(x)| ti, M̂(x) is the

local mass density operator, which in the first-quantization formalism reads:

M̂(x) =
NX

j=1

mj �(x� r̂j), (2)

with r̂j the position operator of j-th particle; and Wt(x) is a real Wiener process

producing the white noise w(t,x) = dWt(x)/dt with the statistical properties:

E(w(t,x)) = 0, E(w(t1,x)w(t2,y)) = �(t1 � t2)G(x� y) (3)

where E(· · · ) is the stochastic average, and G(x� y) the two-point correlation function

of the collapse field:
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~
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|x| , (4)

where G is the gravitational constant. With Eq.(1) in hand, the statistical operator

evolves as
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~ [Ĥ, ⇢̂(t)] + L[⇢̂(t)] (5)

with:

L[⇢̂(t)] = G

~

ZZ
d3
x d3

y

|x� y|

✓
M̂(x) ⇢̂(t) M̂(y)� 1

2

n
M̂(x) M̂(y), ⇢̂(t)

o◆
. (6)

However, there are divergent terms in above equation (see Eqs.(7,8)). To regularize

the dynamics, Diósi proposed to introduce a cut-o↵. Although the introduction of the

cut-o↵ prevents the divergence in the evolution equation of the statistical operator, the

The dynamics of collapse models

Nonlinear

Stochastic

CSL model

DP model
L. Diosi, Phys. Rev. A 40, 1165 (1989)

A. Bassi and G.C. Ghirardi, Phys. Rept. 379, 257 (2003), A. Bassi, K. Lochan, S. Satin, T.P. Singh and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)

P. Pearle, Phys. Rev. A 39, 2277 (1989). 

G.C. Ghirardi et al., Phys. Rev. A 42, 78 (1990)

Quantum mechanics + collapse in space
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M(x) = ma†(x)a(x)
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hM(x)it = h t|M(x)| ti
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E[dWt(x)] = 0 E[dWt(x)dWt(y)] = G(x� y)dt

Collapse operator ∼ position

Noise driving the collapse
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Collapse dynamics in a nutshell
Microscopic superposition in space. Collapse very weak, 
modulo tiny deviations  

Macroscopic superposition in space. Collapse very 
strong. The larger the delocalization in space and the 
number of particles, the faster the collapse

Many-body single-particle superpositions in space. 
Collapse very weak, modulo tiny deviations

Superpositions in other d.o.f. very weak if they 
do not imply delocalization in space



Penrose and collapse
… for the superposed state we are 
considering here we have a serious 
problem. For we do not now have a 
specific spacetime, but a superposition of 
two slightly differing spacetimes. How are 
we to regard such a ‘superposition of 
spacetimes’? ... It will be shown that there 
is a fundamental difficulty with these 
concepts, and that the notion of time-
translation operator is essentially ill 
defined. 

R. Penrose, Gen. Rel. Grav. 28, 581 - 1996

Penrose’s idea: quantum superposition è spacetime superposition è energy uncertainty  è decay in time 

The DP master equation, previously shown, is the simplest way to implement these ideas into a dynamical 
model.

564 Found Phys (2014) 44:557–575

Fig. 6 Schrödinger’s lump gives space-time bifurcation

τ ≈ h̄/EG

where the quantity EG is taken as some fundamental uncertainty in the energy of the
superposed state see [12], and the above formula is taken to be an expression of the
Heisenberg time-energy uncertainty relation (in analogy with the formula relating the
lifetime of a radioactive nucleus to its mass/energy uncertainty).

The quantity EG is the gravitational self-energy of the difference between the mass
(expectation) distributions of the two stationary states in superposition. (If the two
states merely differ from one another by a rigid translation, then we can calculate EG
as the gravitational interaction energy, namely the energy it would cost to separate
two copies of the lump, initially considered to be coincident and then moved to their
separated locations in the superposition.) The calculation of EG is carried out entirely
within the framework of Newtonian mechanics, as we are considering the masses
involved as being rather small and moved very slowly, so that general-relativistic
corrections can be ignored.

Nevertheless, we are to consider that regarding EG as an energy uncertainty comes
from considerations of general-relativistic principles. In Fig. 6, I have schematically

123

Credits: R. Penrose



How to test collapse models

Interferometric experiments Non interferometric experiments

= center of mass

co
lla

ps
e

A collapse of the wave function changes the position of the 
center of mass ➔ Collapse-induced Brownian motion

Create a large superposition, in terms of mass, distance and 
duration, a perform a “double slit” experiment 

Prediction of 
quantum mechanics

(no environmental noise)

Prediction of 
collapse models

(no environmental noise)

+

Prediction of 
quantum mechanics

(no environmental noise)

Prediction of 
collapse models

(no environmental noise)



Advantages and disadvantages

Interferometric experiments Non interferometric experiments

co
lla

ps
e

They are a direct test of collapse models and an 
indirect test of the quantum superposition 
principle. 

They are easier because no quantum 
superposition is needed to test the collapse-
induced Brownian motion. 

These are a direct test of the quantum 
superposition principle and of collapse models.

They are difficult. The whole field of quantum 
optomechanics boomed also with the aim of 
creating macroscopic quantum states. 



How to test the collapse noise

Collapse models

A gas will expand (heat 
up) faster than what 
predicted by QM

Charged particles will 
emit radiation, whereas 
QM predicts no emission

A cantilever’s motion 
cannot be cooled down 

below a given limit

Quantum Mechanics



Test of the DP model
The model needs to be regularized (➔ particles with finite size), otherwise 
integrals diverge

How do we choose the size?

Penrose: Solution of the Schrödinger-Newton equation

Diòsi: Compton wavelength (original idea, later abandoned)

Point-like particle

R0

Extended particle

<latexit sha1_base64="P44eMj/IhvUxwpa2IETpePr1sBs="></latexit>
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The theory
S. Donadi, K. Piscicchia, C. Curceanu, L. Diósi, M. Laubenstein and A. Bassi, Nature Physics 17, 74 (2021)
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implemented in different ways by Diósi and Penrose. Diósi sug-
gests introducing a new phenomenological parameter, measuring 
the spatial resolution of the mass density19,20; Penrose instead sug-
gests that the mass density of a particle is given by μ(r) = m∣ψ(r, t)∣2  
(ref. 15), where ψ(r, t) is a stationary solution of the Schrödinger–
Newton equation21,22. For either choice, we will call the size of the 
particle’s mass density R0.

A direct test of equation (1) requires creating a large superposi-
tion of a massive system, to guarantee that τDP is short enough for the 
collapse to become effective before any kind of external noise dis-
rupts the measurement (see ref. 23 for an alternative approach). One 
of the first proposals in this direction was put forward by Penrose 
himself and collaborators24, who suggested a set-up for creating a 
spatial superposition of a mirror of mass ~10−12 kg that, accord-
ing to equation (2), has a decay time of order τDP ≃ 0.002–0.013 s  
(Supplementary Information), which is competitive with stan-
dard decoherence times. The major difficulty in implementing 
this and similar proposals consists in creating a superposition of 
a relatively large mass and keeping it stable for times comparable 
to τDP. To give some examples, the largest spatial superposition 
so far achieved25 is about 0.5 m, but the systems involved are Rb 
atoms (mass = 1.42 × 10−25 kg), which are too light. In matter-wave 
interferometry with macromolecules26, states are delocalized over 
distances of hundreds of nanometres, and masses beyond 25 kDa 
(~10−23 kg), but still not enough. By manipulating phononic states27, 
collective superpositions of an estimated 1016 carbon atoms (mass 
~ 10−10 kg) are created over distances of 10−11 m, but the lifetime of 
phonons is of the order of ~10−12 s, which is too short. These num-
bers show that keeping the superposition time, distance and mass 
large enough still poses huge technological challenges. Research 
towards creating larger and larger superpositions is very active28–34, 
but further development is needed to reach the required sensitivity.

Here we show how to test gravitational-related collapse in an 
indirect way, by exploiting an unavoidable side effect of the collapse: 
a Brownian-like diffusion of the system in space. The reason is the 
following. Although Penrose refrains from proposing any detailed 
dynamics for the collapse, as suggested in refs. 14,15 and used explicitly 
in ref. 16, the simplest assumption is that the collapse is Poissonian, 
as for particle decay. This minimal requirement, together with the 
collapse time given in equations (1) and (2), implies the following 

Lindblad dynamics for the statistical operator ρ(t) describing the 
state of the system (Supplementary Information):

dρðtÞ
dt ¼ $ i

_ H; ρðtÞ½ & $ 4πG
_

R
dx

R
dy 1

jx$yj

M̂ðyÞ; M̂ðxÞ; ρðtÞ
! "! " ð3Þ

which is equivalent to the master equation derived in refs. 17,18. The 
first term describes the standard quantum evolution while the sec-
ond term accounts for the gravity-related collapse. In equation (3) H 
is the system’s Hamiltonian and M̂ðxÞ ¼

P
nμnðx; x̂nÞ

I
 gives the total 

mass density, with μnðx; x̂nÞ
I

 the mass density of the nth particle, 
centred around x̂n

I
. Taking for example a free particle with momen-

tum operator p̂, the contribution of the second term to the aver-
age momentum hpi ! Tr½p̂ρ#

I
 is zero, while the contribution to the 

average square momentum 〈p2〉 increases in time. This is diffusion.
This diffusion causes a progressive heating of the system19, 

specifically a steady temperature increase. Assuming a mass 
distribution of the nuclei with an effective R0 ~ 10−15 m, the 
heating rate for a gas of non-interacting particles amounts to 
dTðtÞ=dt ¼ 4

ffiffiffi
π

p
m0G_=3kBR3

0 $ 10%4 K s%1

I
 (kB is Boltzmann’s 

constant and m0 the nucleon mass), which is in contradiction with 
experimental evidence35. The value R0 ~ 10−14 m is also excluded by 
gravitational wave detection experiments36. However, neither result 
includes the possibility of dissipative effects, which are always asso-
ciated with fluctuations, and may lead to equilibrium instead of a 
steady growth in temperature.

Whether at thermal equilibrium or not, particles will keep fluc-
tuating under the collapse dynamics. Since matter is made up of 
charged particles, this process makes them constantly radiate. 
Therefore, a detection of the collapse-induced radiation emission is 
a more robust test of the model (cf. ref. 37), even in the presence of 
dissipative effects.

Starting from equation (3), we computed the radiation emission 
rate, that is the number of photons emitted per unit time and unit 
frequency, integrated over all directions, in the range of wavelength 
λ ∈ (10−5–10−1) nm, corresponding to energies E ∈ (10–105) keV. The 
reason for choosing this range can be understood in terms of a semi-
classical picture: each time a collapse occurs, particles are slightly 
and randomly moved. This random motion makes them emit radia-
tion, if charged. When their separation is smaller than λ, they emit 
as a single object with charge equal to the total charge, which can 
be zero for opposite charges as for an atom. In contrast, when their 
separation is larger than λ, they emit independently. Therefore, in 
order to maximize the emission rate, electrons and nuclei should be 
independent (λ < atomic radius), while protons in the same nucleus 
should behave coherently (λ > nuclear radius). This is achieved by 
considering the emission of photons with wavelength in the range 
mentioned above. In this range, the coherent emission of protons 
contributes with a term proportional to (Ne)2 (N is the atomic num-
ber), while electrons contribute incoherently with a weaker term 
proportional to Ne2. For this reason, and also because in the range 
of energies considered in our experiment the electrons are relativis-
tic, while our derivation is not, to be conservative we will neglect the 
contribution of the electrons to the emission rate.

The photon emission rate dΓt/dωk per unit frequnecy ωk is dis-
cussed in Methods and derived in Supplementary Information. The 
calculation is lengthy. In a nutshell, starting from equation (3), we 
compute the expectation value of the photon number operator at time 
t, that is haykνakνit

I
, to the first perturbative order. By taking the time 

derivative, summing over the photon’s polarizations ν and integrating 
over all the directions of the emitted photon, we eventually obtain

dΓt

dωk
¼

2
3

Ge2N2Na

π3=2ε0c3R3
0ω

ð4Þ

+
a b

Fig. 1 | The Diósi–Penrose (DP) model of gravity-related wave function 
collapse. a, According to quantum gravity, a spatial quantum superposition 
of a system (red sphere) generates a superposition of different spacetime 
curvatures (grey sheets), corresponding to the possible different locations 
of the system. Penrose argues that a superposition of different spacetimes 
is unstable and decays in time, making the system’s wave function also 
collapse. He provides an estimate for the time of collapse as given in equation 
(1), which is faster for a larger system, similar to that suggested earlier by 
Diósi. b, The master equation of the DP model (equation (3)) predicts not 
only the collapse of the wave function, but also an omnipresent Brownian-like 
diffusion (represented by the grey arrow) for each constituent of the system. 
When the constituents are charged (protons and electrons), the diffusion 
is accompanied by the emission of radiation (wavy orange lines), with a 
spectrum that depends on the configuration of the system. This is given by 
equation (4) in the range ΔE!=!(10–105)!keV of photon energies. The predicted 
radiation emission is faint but potentially detectable by an experiment 
performed in a very low-noise environment. We performed such an 
experiment to rule out the original parameter-free version of the DP model.

NATURE PHYSICS | www.nature.com/naturephysics

The photon emission rate - number of emitted photons per unit time and unit frequency 𝜔k - to 
first perturbative order is:

where a sum over all polarizations and direction of propagation of the the emitted photons is 
taken. 

G = gravitation's constant, e = electric constant,  𝜀0 = dielectric constant, c = speed of light 

N = atomic number, Na = total number of atoms, R0 = DP’s free parameter, 𝜔k = photon’s frequency

k
valid for λ ∈ (10−5–10−1) nm, i.e. energies E ∈ (10–105) keV. 



The experiment
S. Donadi, K. Piscicchia, C. Curceanu, L. Diósi, M. Laubenstein and A. Bassi, Nature Physics 17, 74 (2021)

The experiment. Credits: Massimiliano De Deo, LNGS

Schematic representation of the experimental set-up. The experimental apparatus is based on a coaxial p-type high-purity 
germanium detector, with the dimensions of 8.0 cm diameter and 8.0 cm length; the active volume is 375 cm3. The detector 
is shielded by layers of electrolytic copper and pure lead. The inner part of the apparatus consists of the following main 
elements: 1, germanium crystal; 2, electric contact; 3, plastic insulator; 4, copper cup; 5, copper end-cup; 6, copper block 
and plate; 7, inner copper shield; 8, lead shield. In order to minimize the radon contamination an air-tight steel casing (not 
shown) encloses the shield and is continuously flushed with boil-off nitrogen from a liquid nitrogen storage tank. 
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where G, e, ε0 and c are constants of nature with the usual meaning 
and Na is the total number of atoms. We leave R0 as a free param-
eter to be bounded by experiments. Clearly, the number of emitted 
photons increases with Na, as there are more protons affected by the 
noise. The factor N2 accounts for the quadratic dependence on the 
atomic number, which substantially increases the predicted effect.

We performed a dedicated experiment to test this model of 
gravity-related collapse by measuring the spontaneous radiation 
emission rate from a germanium crystal and the surrounding 
materials in the experimental apparatus. The strong point of the 
experiment is that there was no need to create a spatial superposi-
tion, since according to equation (3) the collapse-induced diffusion 
and the associated photon emission occur for any state, including 
localized states of the system. The experiment was carried out in 
the low-background environment of the underground Gran Sasso 
National Laboratory of INFN. The Gran Sasso Laboratory is par-
ticularly suitable for high-sensitivity measurements of extremely 
low-rate physical processes, since it is characterized by a rock 
overburden corresponding to a minimum thickness of 3,100 m 
w.e. (metres water equivalent). The environmental emissions are 
generated by the rock radioactivity and the residual cosmic muon 
flux. Given that the cosmic radiation flux is reduced by almost six 
orders of magnitude, the main background source in the Gran 
Sasso Laboratory consists of γ-radiation produced by long-lived 
γ-emitting primordial isotopes and their decay products. They are 
part of the rocks of the Gran Sasso mountains and the concrete used 
to stabilize the cavity.

The set-up consisted of a coaxial p-type high-purity germa-
nium detector surrounded by a complex shielding structure, 
with the outer part made of pure lead and the inner part made of 
electrolytic copper. The germanium crystal is characterized by a 
diameter of 8.0 cm and a length of 8.0 cm, with an inactive layer 
of 0.075 mm of lithium-doped germanium all around the crystal. 
The active germanium volume of the detector is 375 cm3. The 
outer part of the passive shielding of the high-purity germanium 
detector consists of lead (30 cm from the bottom and 25 cm from 
the sides). The inner layer of the shielding (5 cm) is composed of 
electrolytic copper. The sample chamber has a volume of about 
15 l ((250 × 250 × 240) mm3). The shield together with the cryo-
stat are enclosed in an air-tight steel housing of 1 mm thickness, 
which is continuously flushed with boil-off nitrogen from a liquid 
nitrogen storage tank, in order to reduce the contact with external 
air (and thus radon) to a minimum. The experimental set-up is 
schematically shown in Fig. 2 (see also refs. 38,39). The data acquisi-
tion system is a Lynx digital signal analyser controlled via GENIE 
2000 personal computer software, both from Canberra-Mirion. 
In this measurement, the sample placed around the detector was 
62 kg of electropolished oxygen-free high-conductivity copper in 
Marinelli geometry.

The measured emission spectrum, corresponding to a 
data-taking period of about 62 days (August 2014 and August 2015), 
is shown in Fig. 3, where emission lines generated by residual radio-
nuclides present in the set-up materials are also visible. In particu-
lar, the region of the 60Co lines (corresponding to the shaded green 
area highlighted in the total plot) is enlarged in the inset.

Data analysis was carried out to extract the probability distri-
bution function (pdf) of the R0 parameter of the model. Different 
from previous investigations40,41, we perform not only the dedi-
cated experiment but also an accurate Monte Carlo (MC) charac-
terization, with a validated MC code based on the Geant4 software 
library, of the experimental set-up, which allowed us to compute 
the background originating from known sources, determining the 
contribution of each component of the set-up; the background 
simulation is described in greater detail in Methods. The residual 
spectrum was then compared with the theoretical prediction for the 
collapse-induced radiation, to extract a bound on R0.

The experimental and the MC simulated spectra agree to 88% in 
the energy range ΔE = (1,000–3,800) keV, whereas in the low-energy 
region there are larger deviations. This is mostly due to the impossibil-
ity of perfectly accounting for the residual cosmic rays and the brems-
strahlung caused by 210Pb and its daughters in the massive lead shield. 
The energy range falls within the interval previously discussed for the 
validity of the theoretical model. Therefore, we take ΔE as the energy 
region of interest (ROI) for the following statistical analysis; the ROI 
is represented by the grey area in Fig. 3. In Fig. 4 the measured spec-
trum is compared, in the ROI, with the simulated background dis-
tribution. The total number of simulated background counts within 
ΔE is zb = 506 events, to be compared with the measured number 
zc = 576 events. The reason for this low rate is the fact that the detector 
set-up is especially designed for ultralow-background measurements. 
The spectrum in Fig. 3 only contains ‘real’ events, as the digital data 
acquisition system has a filter rejecting noise events by their pulse 
shape, with efficiency better than 99%.

Then, we estimated the number of signal events that would be 
measured during the acquisition time, generated in the materials of 
the apparatus as collapse-induced photons. To this end the detec-
tion efficiencies, which are shown, for the set-up components that 
give an appreciable contribution, in Supplementary Fig. 1, were 
taken into account.

Given the rate in equation (4) the expected signal contribution zs, 
which is a function of the parameter R0, turns out to be

zsðR0Þ ¼
X

i

Z

ΔE

dΓt

dE

!!!!
i
TϵiðEÞ dE ¼ a

R3
0

ð5Þ

where T is the total acquisition time of the experiment, ϵi(E) is the 
energy-dependent efficiency function for the ith component of the 
set-up and a ~ 1.8 × 10−29 m3. By substituting the values zc, zb and zs 
in the pdf of the parameter R0 the following constraint is obtained:

R0>0:54 ´ 10!10 m ð6Þ

with probability 0.95. The data analysis is extensively described in 
Supplementary Information, where the pdf is explicitly derived.

3
5

1

2

4

6 7 8

Fig. 2 | Schematic representation of the experimental set-up. The 
experimental apparatus is based on a coaxial p-type high-purity germanium 
detector, with the dimensions of 8.0!cm diameter and 8.0!cm length; the 
active volume is 375!cm3. The detector is shielded by layers of electrolytic 
copper and pure lead. The inner part of the apparatus consists of the 
following main elements: 1, germanium crystal; 2, electric contact; 3,  
plastic insulator; 4, copper cup; 5, copper end-cup; 6, copper block  
and plate; 7, inner copper shield; 8, lead shield. In order to minimize the 
radon contamination an air-tight steel casing (not shown) encloses the 
shield and is continuously flushed with boil-off nitrogen from a liquid 
nitrogen storage tank.
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It is important to stress that the energy range in which spontane-
ous photon emission is expected extends from the upper threshold 
of the detector sensitive region (3.8 MeV) to 100 MeV (according to 
the emission rate given in equation (4)). A fraction of these primary 
photons could be degraded in energy due to Compton scattering, 
thus producing additional events in the ROI. Such a process would 
result in a stronger lower bound on R0. We made an estimate of the 
improvement (I) on the bound by considering the limiting case in 

which all the primary spontaneously emitted photons generated in 
the ith component of the set-up, in the energy range (3.8–100) MeV, 
are degraded, due to scattering, to the energy Emax; eff

i
I

 within the 
ROI, corresponding to the maximal detection efficiency for the ith 
material. We obtain I ~ 1.620, which is not sizable (even under the 
exaggerated assumptions we considered); this is mainly due to the 
fact that spontaneous emission decreases with energy as 1/E.

Our experiment sets a lower bound on R0 of the order of 1 Å, 
which is about three orders of magnitude stronger than previ-
ous bounds in the literature36,42; see Fig. 5. If R0 is the size of the 
nucleus’s wave function as suggested by Penrose, we have to con-
front our result with known properties of nuclei in matter. In a 
crystal, R0 ¼

ffiffiffiffiffiffiffiffiffi
hu2i

p

I
 where 〈u2〉 is the mean square displacement 

of a nucleus in the lattice, which can be computed by using the 
relation43,44〈u2〉 = B/8π2, where B = 0.20 Å2 is the Debye–Waller factor 
for the germanium crystal45, cooled to liquid nitrogen temperature. 
One obtains R0 = 0.05 × 10−10 m, which is more than an order of mag-
nitude smaller than the lower limit set by our experiment. Therefore, 
we conclude that Penrose’s proposal for a gravity-related collapse of 
the wave function, in the present formulation, is ruled out.

Of course, alternatives are always possible. Following Diósi, one 
option is to leave R0 completely free; however, this comes at the 
price of having a parameter whose value is unjustified, apparently 
disconnected from the mass density of the system as well as from 
gravitational effects. Another option is to change the way the col-
lapse is modelled (Poissonian decay), thereby adding extra terms 
and parameters to take into account a more complex dynamics, as 
done for other collapse models46–48. This kind of extension has not 
been envisaged in the literature so far. Our result indicates that the 
idea of gravity-related wave function collapse, which remains very 
appealing, will probably require a radically new approach.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary information,  
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Fig. 4 | Comparison between the measured and the simulated background 
spectra. The measured emission spectrum is shown in the ROI as a 
dark-grey histogram, with error bars representing 1!s.d. The simulated 
background distribution is shown in green for comparison. The simulation 
is based on a Geant4 validated MC characterization of the whole detector. 
The MC has as input the measured activities of the residual radionuclides 
for each material present in the experimental set-up. The simulation 
accounts for the emission probabilities and the decay schemes, the photon 
propagation and interactions in the materials of the apparatus and the 
detection efficiencies (Methods).
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It is important to stress that the energy range in which spontane-
ous photon emission is expected extends from the upper threshold 
of the detector sensitive region (3.8 MeV) to 100 MeV (according to 
the emission rate given in equation (4)). A fraction of these primary 
photons could be degraded in energy due to Compton scattering, 
thus producing additional events in the ROI. Such a process would 
result in a stronger lower bound on R0. We made an estimate of the 
improvement (I) on the bound by considering the limiting case in 

which all the primary spontaneously emitted photons generated in 
the ith component of the set-up, in the energy range (3.8–100) MeV, 
are degraded, due to scattering, to the energy Emax; eff
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 within the 
ROI, corresponding to the maximal detection efficiency for the ith 
material. We obtain I ~ 1.620, which is not sizable (even under the 
exaggerated assumptions we considered); this is mainly due to the 
fact that spontaneous emission decreases with energy as 1/E.

Our experiment sets a lower bound on R0 of the order of 1 Å, 
which is about three orders of magnitude stronger than previ-
ous bounds in the literature36,42; see Fig. 5. If R0 is the size of the 
nucleus’s wave function as suggested by Penrose, we have to con-
front our result with known properties of nuclei in matter. In a 
crystal, R0 ¼
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 where 〈u2〉 is the mean square displacement 

of a nucleus in the lattice, which can be computed by using the 
relation43,44〈u2〉 = B/8π2, where B = 0.20 Å2 is the Debye–Waller factor 
for the germanium crystal45, cooled to liquid nitrogen temperature. 
One obtains R0 = 0.05 × 10−10 m, which is more than an order of mag-
nitude smaller than the lower limit set by our experiment. Therefore, 
we conclude that Penrose’s proposal for a gravity-related collapse of 
the wave function, in the present formulation, is ruled out.

Of course, alternatives are always possible. Following Diósi, one 
option is to leave R0 completely free; however, this comes at the 
price of having a parameter whose value is unjustified, apparently 
disconnected from the mass density of the system as well as from 
gravitational effects. Another option is to change the way the col-
lapse is modelled (Poissonian decay), thereby adding extra terms 
and parameters to take into account a more complex dynamics, as 
done for other collapse models46–48. This kind of extension has not 
been envisaged in the literature so far. Our result indicates that the 
idea of gravity-related wave function collapse, which remains very 
appealing, will probably require a radically new approach.
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Fig. 4 | Comparison between the measured and the simulated background 
spectra. The measured emission spectrum is shown in the ROI as a 
dark-grey histogram, with error bars representing 1!s.d. The simulated 
background distribution is shown in green for comparison. The simulation 
is based on a Geant4 validated MC characterization of the whole detector. 
The MC has as input the measured activities of the residual radionuclides 
for each material present in the experimental set-up. The simulation 
accounts for the emission probabilities and the decay schemes, the photon 
propagation and interactions in the materials of the apparatus and the 
detection efficiencies (Methods).
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Comparison between the measured and the simulated 
background spectra. The measured emission spectrum is 
shown in the ROI as a dark-grey histogram. The simulated 
background distribution is shown in green for comparison. The 
simulation is based on a Geant4 validated MC characterization 
of the whole detector. The MC has as input the measured 
activities of the residual radionuclides for each material present 
in the experimental set-up. 

The simulation accounts for the emission probabilities and the 
decay schemes, the photon propagation and interactions in the 
materials of the apparatus and the detection efficiencies.

Data-taking period: 62 days
Total counts: 576

Simulated counts: 506
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Fig. 5 | Lower bounds on the spatial cutoff R0 of the DP model. According 
to Penrose, R0!=!0.05!×!10−10!m for the germanium crystal used in the 
experiment (red circle on the horizontal scale). Our experiment sets a 
lower bound on R0 at 0.54!×!10−10!m (green bar and arrow), which is one 
order of magnitude larger than predicted following Penrose’s argument. 
Therefore, this parameter-free version of the DP model is excluded. 
The figure shows also previous lower bounds in the literature, similarly 
based on the monitoring of the Brownian-like diffusion predicted by 
the DP model. They refer to data analysis from gravitational wave 
detectors36 (R0!≥!(40.1!±!0.5)!×!10−15!m, red bar and arrow) and neutron 
stars42 (R0!≳!10−13!m, blue bar and arrow). The figure shows the range of 
hypothetical values of R0, from the size of a nucleus (red-blue cluster) to 
beyond that of an atom (green halo surrounding the red–blue nucleus). 
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Lower bounds on the spatial cutoff R0 of the DP model. 
According to Penrose, R0 = 0.05 × 10−10 m for the germanium 
crystal used in the experiment (red circle on the horizontal scale). 

Our experiment sets a lower bound on R0 at 0.54 × 10−10 m (green 
bar and arrow). 

The figure shows also previous lower bounds in the literature: 
• data analysis from gravitational wave detectors*, R0 ≥ (40.1 ±

0.5) × 10−15 m, red bar and arrow
• Data from neutron stars**, R0 ≳ 10−13 m, blue bar and arrow. 

* B. Helou, B. Slagmolen, D. E. McClelland and Y. Chen, Phys. Rev. D 95, 084054 (2017).
** A. Tilloy and T. M. Stace, Phys. Rev. Lett. 123, 080402 (2019).  
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The DP model, which is the simplest way to model dynamically Penrose’s idea of gravity-induced 
wave function collapse, where the free parameter R0 is chosen according to Penrose’s prescription, 
is excluded. 

Possible ways out:

• Let the parameter R0 completely free. The price to pay is that it is not clear how to give a 
meaning to it

• Enrich the dynamics = add new parameters. This is possible, as done for other collapse models
• Devise a new theory, which goes beyond quantum theory - the solution invoked by Penrose. 

This is ambitious work in progress
• Others …



Tests of the CSL model
Two phenomenological parameters. 𝜆 measures the strength of the 
collapse, rC the space resolution of the collapse. m0 is a reference mass, 
equal to that of a nucleon
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M = 87 amu
d = 0.54 m
T = 1 s
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PERSPECTIVES

          I
n the movie Dances with Wolves, a lone 
wolf facilitates Lieutenant John Dunbar’s 
immersion into the complex culture of 

the Sioux Indians. This immersion required 
overcoming multiple cultural barriers. Ecol-
ogists and evolutionary biologists face an 
equally daunting challenge of understanding 
how environmental change affects ecological 
and evolutionary dynamics ( 1). Historically, 
researchers examined these impacts in isola-
tion. However, these dynamics can occur on 
similar time scales, resulting in a dynamic 
evolutionary-ecological feedback loop ( 2). 
Studying these feedbacks directly for long-
lived species is often thought to be imprac-
tical. On page 1275 of this issue, Coulson et 

al. ( 3) overcome this barrier using data from 
radio-collared gray wolves and state-of-the-
art mathematical models.

The 280 radio-collared wolves studied by 
Coulson et al. are direct descendants of 41 
gray wolves reintroduced into Yellowstone 
National Park between 1995 and 1997 ( 4). 
This reintroduction was part of a larger effort 
involving a simultaneous reintroduction in 
Idaho and a naturally colonized population 
in Montana. It was extremely successful; by 
2010, the Northern Rocky Mountain wolf 
population had expanded to 1651 individuals 
( 5). Individuals within this expanding popula-
tion vary substantially in body size, coat color, 
and other observable (phenotypic) traits. Coat 
color is particularly enigmatic; gray wolves 
in North America often have black coats, 
whereas in Eurasia black coats are rare, but 
the reason for this difference remains unclear 
( 6). These traits were recorded for over a 
decade (from 1998 to 2009) for each collared 
wolf and their offspring.

To explore the potential ecological and 
evolutionary responses of the gray wolves 

to environmental change, Coulson et al. fuse 
integral projection models (IPMs) with clas-
sical population genetics. Unlike their matrix 
model counterparts ( 7), IPMs describe the 
dynamics of populations with traits that vary 
continuously, such as body size ( 8), as well 
as discrete traits, such as coat color ( 9). Tra-
ditional IPMs track how the number of indi-
viduals with a particular body size changes 
due to births, deaths, and individual growth. 
The rules underlying these changes are deter-
mined by statistical relationships between the 
body size of individuals and their vital rates 
such as fecundity, survivorship, and growth.

In gray wolves, a change at a single loca-
tion on the genome—the K locus—deter-
mines coat color ( 10). To link evolution-
ary and ecological dynamics, Coulson et al. 
extend the IPM to account for this genetic 
difference between individuals. As a result, 
the statistical relationships between individ-
ual body size and vital rates become geno-

Mathematical Dances with Wolves

ECOLOGY

Sebastian J. Schreiber

Data and modeling of Yellowstone wolf 

populations illustrate the complex interrelated 

ecological and evolutionary responses to 

environmental change.

photon, it could have come 
from either of the diamond 
crystals in which one pho-
non was excited. The indis-
tinguishability of these two 
possibilities during detec-
tion means that the two dia-
mond samples coherently 
shared one phonon, which 
is the hallmark of a quan-
tum-entangled state.

The entanglement 
be tween the two diamond 
samples was confi rmed in 
experiments in which a second laser pulse 
de-excited the shared phonon and re-emitted 
a photon that was subsequently detected. By 
this method, Lee et al. demonstrate that the 
two diamonds share entanglement at a 98% 
confidence level. These results provide a 
striking example that entanglement is not par-
ticular to microscopic particles but can mani-
fest itself in the macroscopic world, where it 
could be used in future studies that make fun-
damental tests of quantum mechanics.

The demonstration of entanglement in 
macroscopic systems also has important 
implications for the ongoing efforts to realize 
quantum computation and communication. A 
full-size quantum computer eventually will 

need to be a macroscopic device in which 
entanglement is preserved and used over long 
times and distances. The lifetime of entangle-
ment in the experiment by Lee et al. is still too 
short for many quantum information applica-
tions, in part because of the room-temperature 
environment and the strong coupling of pho-
non modes in solids. However, the experiment 
emphasizes an important point, that ultrafast 
optical technology can alleviate the require-
ment on quantum coherence time. In future, 
with improvement of the ultrafast technology, 
or by using more isolated degrees of freedom 
in solids—such as as the nuclear spins ( 8) or 
the dopant rare-earth ions ( 9)—for quantum 
memory, many more quantum operations 

could be done within the coherence time of 
the solids, even at room temperature. 

References and Notes
 1. K. C. Lee et al., Science 334, 1253 (2011).   
 2. L.-M. Duan, Nature 414, 413 (2001).  
 3. C. W. Chou et al., Nature 438, 828 (2005).  
 4. T. Chanelière et al., Nature 438, 833 (2005).  
 5. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Rev. 

Mod. Phys. 83, 33 (2011).  
 6. D. L. Moehring et al., Nature 449, 68 (2007).  
 7. S. Olmschenk et al., Science 323, 486 (2009).  
 8. E. Togan et al., Nature 466, 730 (2010).  
 9. C. Clausen et al., Nature 469, 508 (2011).  
 10. Supported by the National Basic Research Program of 

China (973 Program) 2011CBA00300 (2011CBA00302), 
Army Research Offi ce, and Air Force Offi ce of Scientifi c 
Research MURI program.

C
R

E
D

IT
: 
P
. 
H

U
E

Y
/
S

C
IE

N
C

E

A B

Mirror

Pump pulse

Pump pulse Scattered photon

Phonon

Beam splitter Detector

Making quantum connections. The method 
used by Lee et al. to generate entanglement 
between two macroscopic diamonds is illus-
trated. (A) A pumping laser pulse generates a 
correlated pair of a phonon inside the diamond 
as well as a scattered photon. (B) The scattered photons from two diamonds are brought together for interference and detection. 
When one photon is detected, the two diamonds coherently share a phonon. Thus, the quantum state created has the hallmarks 
of quantum entanglement.

10.1126/science.1215444

Department of Evolution and Ecology, University of Califor-
nia, Davis, CA 95616, USA. E-mail: sschreiber@ucdavis.edu

Published by AAAS

 o
n 

M
ay

 6
, 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

Interferometric Experiments

To improve interferometric tests, it will likely be necessary to go to micro-gravity environment in outer space → MAQRO 

Molecular Interferometry
S. Eibenberger et al. PCCP 15, 14696 (2013)
M. Toros et al., ArXiv 1601.03672

M = 104 amu
d = 10-7 m
T = 10-3 s

Entangling Diamonds
K. C. Lee et al., Science. 334, 1253 (2011).
S. Belli et al., PRA 94, 012108 (2016) 

M = 1016 amu
d = 10-11 m → in reality much smaller
T = 10-12 s



Adler

GRW

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
-22

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

rC (m)

�
(s

-
1
)

Non - Interferometric Experiments

Cold atom gas

F. Laloë et al. Phys. Rev. A 90, 052119 (2014)
T. Kovachy et al., Phys. Rev. Lett. 114, 143004 (2015)
M. Bilardello et al., Physica A 462, 764 (2016)



Non - Interferometric Experiments

Adler

GRW

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
-22

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

rC (m)

�
(s

-
1
)

X rays

S.L. Adler et al., Jour. Phys. A 40, 13395 (2009)
S.L. Adler et al., Journ. Phys. A 46, 245304 (2013)
A. Bassi & S. Donadi, Annals of Phys. 340, 70 (2014)
S. Donadi & A. Bassi, Jounr. Phys. A 48, 035305 (2015)
C. Curceanu et al., J. Adv. Phys. 4, 263 (2015) 
+ several more



Adler

GRW

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
-22

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

rC (m)

�
(s

-
1
)

Non - Interferometric Experiments

Auriga

Ligo

Lisa Pathfinder

M. Carlesso et al. Phys. Rev. D 94, 124036 (2016) 

2

the bar oscillator. We will consider both cases.

a

a

y

z x

L

R

a

x

L

x

L

R

x
R

L

FIG. 1: (Color online) Graphical representation of the three
experiments here considered; the images are not in scale.
LIGO on the top, LISA Pathfinder on the middle and AU-
RIGA is on the bottom. In LIGO, four identical cylindrical
masses (radius R, length L) are arranged as in Figure; a is
the distance between the center-of-mass of two masses on each
arm of the interferometer. The arms are oriented along the x
and y directions. LISA Pathfinder features two cubic (length
L) masses, displaced along the x direction with relative dis-
tance between their center-of-mass equal to a. AURIGA fea-
tures a cylindrical single mass (radius R, length L), aligned
with respect to the direction x of measurement.

The (mass proportional) CSL dynamics for the density
matrix ⇢̂(t) is [2]:

d

dt
⇢̂(t) = � �

2r3C⇡
3/2m2

0
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dz

h
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M̂(z), ⇢̂(t)
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,

(1)
where m0 is a reference mass chosen equal to the mass of
a nucleon, and M̂(z) is defined as follows:

M̂(z) = m0

X

n

e
� (z�q̂n)

2

2r2C , (2)

where the sum runs over the N nucleons of the system;
q̂n is the position operator of the n-th nucleon.

We divide the system in a subset of mass distributions,
labeled by ↵: for LISA Pathfinder two mass distributions
(↵ = 1, 2), while for LIGO we have 4 mass distributions,
but we will consider the two arms separately (so again
↵ = 1, 2), for AURIGA we have a single cylindrical dis-
tribution (↵ = 1). Then, the position operator q̂n can be
written as follows [17, 18]:

q̂n = q(0)
n,↵ +�q̂n,↵ + q̂↵, (3)

where q(0)
n,↵ is the classical equilibrium position of the n-

th particle (belonging to the ↵-th distribution), �q̂n,↵
measures the quantum displacement of the n-th particle
with respect to its classical equilibrium position and q̂↵
measures the fluctuations of the ↵-th mass distribution.
Under the assumption of rigid body, the latter fluctua-
tions are the same for all the particles belonging to the
↵-th distribution and therefore also for the ↵-th center-
of-mass, and �q̂n,↵ can be neglected. When the spread
of the center-of-mass wave-function is much smaller than
rC , Eq. (2) can be Taylor expanded up to the first order
in q̂↵:

M̂(z) ⇡ M0(z) +
X

↵

Z
dx

r2C
µ↵(x)e

� (z�x)2

2r2C (z � x) · q̂↵,

(4)
where M0(z) is a c-function, and µ↵(x) =

m0
P

n �
(3)(x � q(0)

n,↵) is the ↵-th mass distribution.
Here the sum runs on the nucleons belonging to the ↵-th
mass distribution. Eq. (1) becomes

d
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⇢̂(t) = �1

2
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X

i,j=x,y,z

⌘↵,�ij [q̂↵,i, [q̂�,j , ⇢̂(t)]] , (5)

where q̂↵,i is the i-th component of q̂↵, and the di↵usion
CSL rate is given by

⌘↵,�ij =
�

r7C⇡
3/2m2

0

Z
dz

Z
dx

Z
dy µ↵(x)µ�(y)·

· e
� (z�x)2

2r2C e
� (z�y)2

2r2C (z � x)i(z � y)j .

(6)

The dynamics in Eq. (1) can be mimicked by a stan-
dard Schrödinger equation with an additional stochastic
potential of the form

V̂CSL(t) = � ~
p
�

⇡3/4r3/2C m0

Z
dz M̂(z)w(z, t), (7)

where w(z, t) is a white noise with hw(z, t)i = 0 and
hw(z, t)w(y, s)i = �(t� s)�(3)(z � y). Such a stochastic
potential acts on the ↵-th mass distribution as a stochas-
tic force, which in the same limit of validity of the ex-
pansion in Eq. (4), becomes

F↵(t) =
~
p
�

⇡3/4m0

Z
dzdx

r7/2C

µ↵(x)e
� (z�x)2

2r2C (z � x)w(z, t).

(8)
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where the sum runs over the N nucleons of the system;
q̂n is the position operator of the n-th nucleon.

We divide the system in a subset of mass distributions,
labeled by ↵: for LISA Pathfinder two mass distributions
(↵ = 1, 2), while for LIGO we have 4 mass distributions,
but we will consider the two arms separately (so again
↵ = 1, 2), for AURIGA we have a single cylindrical dis-
tribution (↵ = 1). Then, the position operator q̂n can be
written as follows [17, 18]:
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where q(0)
n,↵ is the classical equilibrium position of the n-

th particle (belonging to the ↵-th distribution), �q̂n,↵
measures the quantum displacement of the n-th particle
with respect to its classical equilibrium position and q̂↵
measures the fluctuations of the ↵-th mass distribution.
Under the assumption of rigid body, the latter fluctua-
tions are the same for all the particles belonging to the
↵-th distribution and therefore also for the ↵-th center-
of-mass, and �q̂n,↵ can be neglected. When the spread
of the center-of-mass wave-function is much smaller than
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where the sum runs over the N nucleons of the system;
q̂n is the position operator of the n-th nucleon.

We divide the system in a subset of mass distributions,
labeled by ↵: for LISA Pathfinder two mass distributions
(↵ = 1, 2), while for LIGO we have 4 mass distributions,
but we will consider the two arms separately (so again
↵ = 1, 2), for AURIGA we have a single cylindrical dis-
tribution (↵ = 1). Then, the position operator q̂n can be
written as follows [17, 18]:
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n,↵ +�q̂n,↵ + q̂↵, (3)
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n,↵ is the classical equilibrium position of the n-
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measures the quantum displacement of the n-th particle
with respect to its classical equilibrium position and q̂↵
measures the fluctuations of the ↵-th mass distribution.
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A superconducting quantum interference device based read-out of a
subattonewton force sensor operating at millikelvin temperatures

O. Usenko, A. Vinante, G. Wijts, and T. H. Oosterkampa!

Leiden Institute of Physics, Leiden University, The Netherlands

!Received 4 January 2011; accepted 15 February 2011; published online 30 March 2011"

We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic
temperature. The technique is based on the use of a superconducting quantum interference device
to detect the magnetic flux change induced by a magnetized particle attached on the end of the
resonator. Unlike conventional interferometric techniques, our detection scheme does not involve
direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow
temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to
a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of
0.5 aN /#Hz. © 2011 American Institute of Physics. $doi:10.1063/1.3570628%

Due to its excellent sensitivity, optical interferometry is
the most widely used technique to detect the motion of ul-
trasensitive mechanical resonators, for applications which
range from magnetic resonance force microscopy !MRFM",1
investigation of quantum effects in mechanical systems,2 and
fundamental physics experiments.3 Unfortunately, optical de-
tection becomes hard to implement when the size of the reso-
nator is pushed to the nanoscale, because of the diffraction
limit, and when low or ultralow temperatures are required to
reduce the thermal force noise, as for single spin MRFM. In
the latter case, resonator heating due to light absorption is
found to limit the effective cooling of the resonator.4 This
problem can be partially circumvented only by substantially
reducing the input light power, at the price of reducing the
displacement sensitivity. Other techniques have been re-
cently demonstrated to be more compatible with ultralow
temperatures. In particular, both single electron transistors5

and microwave cavities6–8 have demonstrated outstanding
displacement sensitivity for the detection of nanomechanical
resonators at temperatures below 100 mK. So far, however,
their implementation has been limited to systems where de-
tector and resonator are tightly integrated, which is not prac-
tical for scanning probe applications. Moreover, for micro-
wave techniques the direct photon absorption still remains an
issue at millikelvin temperatures, which again can only be
mitigated by reducing the input power. Displacement sensors
based on quantum point contacts have also been demon-
strated in an off-board setup9 but so far their use has been
limited to liquid helium temperature.

In this letter, we demonstrate a rather simple alternative
detection technique, based on the use of a dc superconduct-
ing quantum interference device !SQUID", which in prin-
ciple does not require any power to be directly dissipated in
the mechanical resonator. Our method involves attaching a
ferromagnetic particle to the end of the resonator $Fig. 1!a"%
which, whenever the resonator moves, causes a change in
magnetic flux in a superconducting detection coil, positioned
close to the resonator $Fig. 1!b"%. A cantilever displacement x
is thus converted into a coil flux !="x, where the constant "
is proportional to the magnetic moment # of the ferromag-

netic particle and depends in a complex way on the coil
geometry and the relative position and orientation of mag-
netic moment and coil. The flux change in the detection coil
is measured by the dc SQUID amplifier via a superconduct-
ing flux transformer of total inductance Lt, which includes a
calibration transformer and the SQUID input coil.

In our experiment, we use a silicon resonator consisting
of a 100 nm thick single crystal beam, 5 #m wide and

a"Electronic mail: usenko@physics.leidenuniv.nl.

FIG. 1. !a" An electron microscopy image of the silicon resonator with a
magnetic sphere attached to its end. The single crystal beam is 100 nm thick,
5 #m wide, and 100 nm long. The 4.5 #m diameter magnetic sphere is
made of a neodymium based alloy with remanence Br=0.75 T. The fre-
quency of the lowest flexural mode of the resonator is 3084 Hz, with a
quality factor of 3.8$104. !b" Circuit diagram illustrating the detection
scheme. The motion x of the resonator induces a flux !="x in the detection
coil and a current I=−! /Lt in the superconducting detection loop, which is
measured by the dc SQUID.

APPLIED PHYSICS LETTERS 98, 133105 !2011"

0003-6951/2011/98"13!/133105/3/$30.00 © 2011 American Institute of Physics98, 133105-1 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
140.105.16.64 On: Thu, 03 Dec 2015 09:34:06
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A superconducting quantum interference device based read-out of a
subattonewton force sensor operating at millikelvin temperatures

O. Usenko, A. Vinante, G. Wijts, and T. H. Oosterkampa!

Leiden Institute of Physics, Leiden University, The Netherlands

!Received 4 January 2011; accepted 15 February 2011; published online 30 March 2011"

We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic
temperature. The technique is based on the use of a superconducting quantum interference device
to detect the magnetic flux change induced by a magnetized particle attached on the end of the
resonator. Unlike conventional interferometric techniques, our detection scheme does not involve
direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow
temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to
a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of
0.5 aN /#Hz. © 2011 American Institute of Physics. $doi:10.1063/1.3570628%

Due to its excellent sensitivity, optical interferometry is
the most widely used technique to detect the motion of ul-
trasensitive mechanical resonators, for applications which
range from magnetic resonance force microscopy !MRFM",1
investigation of quantum effects in mechanical systems,2 and
fundamental physics experiments.3 Unfortunately, optical de-
tection becomes hard to implement when the size of the reso-
nator is pushed to the nanoscale, because of the diffraction
limit, and when low or ultralow temperatures are required to
reduce the thermal force noise, as for single spin MRFM. In
the latter case, resonator heating due to light absorption is
found to limit the effective cooling of the resonator.4 This
problem can be partially circumvented only by substantially
reducing the input light power, at the price of reducing the
displacement sensitivity. Other techniques have been re-
cently demonstrated to be more compatible with ultralow
temperatures. In particular, both single electron transistors5

and microwave cavities6–8 have demonstrated outstanding
displacement sensitivity for the detection of nanomechanical
resonators at temperatures below 100 mK. So far, however,
their implementation has been limited to systems where de-
tector and resonator are tightly integrated, which is not prac-
tical for scanning probe applications. Moreover, for micro-
wave techniques the direct photon absorption still remains an
issue at millikelvin temperatures, which again can only be
mitigated by reducing the input power. Displacement sensors
based on quantum point contacts have also been demon-
strated in an off-board setup9 but so far their use has been
limited to liquid helium temperature.

In this letter, we demonstrate a rather simple alternative
detection technique, based on the use of a dc superconduct-
ing quantum interference device !SQUID", which in prin-
ciple does not require any power to be directly dissipated in
the mechanical resonator. Our method involves attaching a
ferromagnetic particle to the end of the resonator $Fig. 1!a"%
which, whenever the resonator moves, causes a change in
magnetic flux in a superconducting detection coil, positioned
close to the resonator $Fig. 1!b"%. A cantilever displacement x
is thus converted into a coil flux !="x, where the constant "
is proportional to the magnetic moment # of the ferromag-

netic particle and depends in a complex way on the coil
geometry and the relative position and orientation of mag-
netic moment and coil. The flux change in the detection coil
is measured by the dc SQUID amplifier via a superconduct-
ing flux transformer of total inductance Lt, which includes a
calibration transformer and the SQUID input coil.

In our experiment, we use a silicon resonator consisting
of a 100 nm thick single crystal beam, 5 #m wide and

a"Electronic mail: usenko@physics.leidenuniv.nl.

FIG. 1. !a" An electron microscopy image of the silicon resonator with a
magnetic sphere attached to its end. The single crystal beam is 100 nm thick,
5 #m wide, and 100 nm long. The 4.5 #m diameter magnetic sphere is
made of a neodymium based alloy with remanence Br=0.75 T. The fre-
quency of the lowest flexural mode of the resonator is 3084 Hz, with a
quality factor of 3.8$104. !b" Circuit diagram illustrating the detection
scheme. The motion x of the resonator induces a flux !="x in the detection
coil and a current I=−! /Lt in the superconducting detection loop, which is
measured by the dc SQUID.

APPLIED PHYSICS LETTERS 98, 133105 !2011"
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The GRW model
Systems are described by the wave function. This evolves according to the 
Schrödinger equation, except that at random times (with frequency λ) they 
undergo spontaneous collapses: 

| i ! L̂i
x| i

kL̂i
x| ik

<latexit sha1_base64="UmVlvdtczNBO6x7ieCo/R+bWR34="></latexit>
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The probability (density) for a collapse to occur around x is given by kL̂i
x| ik2
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è Collapses are random in space and time

è Two parameters defining the model: λ and rC



The jump
Initial 

wavefunction Jump operator L̂i
x

Final 
wavefunction

Jump 
probability

x
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rC



Example: “large” superposition
Initial 

wavefunction

Jump operator L̂i
x

Final 
wavefunction

Jump 
probability = 

1/2

+
d >> rC| i
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Example: “small” superposition

Initial 
wavefunction

Jump operator L̂i
x

Final 
wavefunction

+
d << rC

+

| i
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Amplification mechanism
Initial “2-particle” wavefunction

Rigid object: system left + system right

Jump operator 
on “particle” 2

+
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Final 
wavefunction

Such jumps are twice as frequent, 
because each “particle contributes to 
them

Entangled state

largesmall



However
Initial “2-particle” wavefunction

Ideal gas: particles are independent

Jump operator 
on “particle” 2

+

Final 
wavefunction

The jump on one particle did not affect 
the state of the other particle!
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Factorized state
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