# Fundamentals of Chemometrics and Modeling

Dr. Tom Dearing
CPAC, University of Washington



## Outline

- Fundamentals of Chemometrics
  - Introduction to Chemometrics
  - Measurements
  - The Data Analysis Procedure
- Basic Modeling
  - Principal Component Analysis
  - Scores and Loadings
- Advanced Modeling
  - Partial Least Squares
  - Latent Variables
  - Scores and Loadings
  - Calibration and Validation
  - Prediction
- Case Study

## Section 1

Through the looking glass.....



#### Chemometrics

#### Chemometrics is:

The science of extracting information from measurements made on chemical systems with the use of mathematical and statistical procedures.

#### Keywords and phrases:

data analysis, data processing, univariate, multivariate, variance, modeling, scores, loadings, calibration and validations, predictions, real time decision making.

#### Measurements

- Measurements come in many different forms.
  - Spectroscopic
    - Near IR, Fluorescence, Raman.
  - Chromatographic
    - Gas Chromatography, HPLC.
  - Physical
    - Temperature, Pressure, Flow rate, Melting Points, Viscosity, Concentrations.
- All measurements yield data.
- NIR data set containing 255 spectra measured at 650 different wavenumbers has 165750 data points!!





## Two Types Of Data

- Univariate
  - One variable to measure
  - One variable to predict
  - Typically select one wavelength and monitor change of absorbance over time.
  - Wavelength must not have contributions or overlapping from other peaks.

- Multivariate
  - Multiple variables
  - Multiple predictions
  - Typically use entire spectra.
  - Allows investigation into the relationship between variables.
  - Allows revealing of latent variation within a set of spectra.

## Multivariate Analysis

 Analysis performed on multiple sets of measurements, wavelengths, samples and data sets.

 Analysis of variance and dependence between variables in crucial to multivariate analysis.

#### The Chemometrics Process

- All chemometrics begin with taking a measurement and collecting data.
- Mathematical and statistical methods are employed to extract relevant information from the data.
- The information is related to the chemical process to extract knowledge about a system.
- Finally, the knowledge provided allows comprehension and understanding of a system.
- Understanding facilitates decision making.

5. Understanding

4. Knowledge

3. Information

2. Data

1. Measurement

## Converting Data to Information

- Advances in measurement science means rate of data collection is extremely fast.
- Large amounts of data produced.
- Data rich, information poor.
- Chemometrics used to remove redundant data, reduce variation not relating to the analytical signal and build models.

## Data Analysis Flow Chart



## Input

- Most overlooked stage of data analysis.
- Most critical stage of all.

- Data must be converted or transferred into the analysis software.
- Proprietary collection software make this task difficult.
- However, some analysis software have excellent data importing functionality

## Outliers – Problems and Removal

- Removing outliers is a delicate procedure.
- Grubbs test used to detect outliers.
- Frequently requires knowledge about the process being examined.
- False outliers, samples at extremes of the system that appear infrequently within the data.
  - These are NOT REMOVED
- True outliers, samples or variable that is statistically different from the other samples.
  - These ARE REMOVED

## Preprocessing

- Preprocessing
  - Main goal of the preprocessing stage is to remove variation within the data that does not pertain to the analytical information.
- Typical preprocessing methods
  - Baseline Correction
  - Mean Centering
  - Normalization
  - Orthogonal Signal Correction
  - Multiplicative Scatter Correction
  - Savitsky-Golay Derivatisation







## Data Analysis

- Many different methods for performing multivariate data analysis.
- Principal Component Analysis
  - Section 2
- Partial Least Squares
  - Section 3
- MCR
- Neural Networks





## Output

- Qualitative
  - Classification models.
  - Does a sample belong to a group or not??
  - Calibration and Validations
  - Classifications
  - Classification error
  - Number of samples classified correctly

- Quantitative
  - Prediction models
  - What is the concentration of the sample??
  - Calibration and Validations
  - Predictions
  - Calibration and Prediction Errors
  - RMSEC and RMSEP

#### Error

- Many different methods of calculating errors.
- Method used is critical as model quality determined by the error.
- Procedure used can heavily influence model errors. (Discussed later in PCA section).
- The choice of error metric depends on many different factors
- Top Three
  - What are you showing?
  - What is the range of data?
  - How many samples do you have?

## Summary

- Chemometrics is a method of extracting relevant information from complex chemical data.
- Multivariate data allows analysis robust investigation of overlapping signals.
- Multivariate analysis allows investigation of the relationship between variables.
- The chemometrics process yields understanding and comprehension of the process under investigation.

## Summary

- Data analysis is a multistep procedure involving many algorithms and many different paths to go down.
- The end results of data analysis are commonly a model that could provide qualitative or quantitative information.
- MatLab and PLS\_Toolbox are software packages used to perform chemometrics analysis.

## Section 2

Principal Component Analysis P.C.A.



#### **PCA**

- Method of reducing a set of data into three new sets of variables
  - Principal Components (PC's)
  - Scores
  - Loadings
- Using these three new variables latent variation can be developed and examined.
- Incredibly important for investigating the relationships between samples and variables

#### **PCA**

- NIR spectra run through a PCA routine without any form of preprocessing.
- Scores produced show apparent variation in concentration.
- Loadings illustrate the mean spectra, suggesting that preprocessing should be used.



## **Principal Components**

- Each principal component calculated captures as much of the variation within the data as possible.
- This variation is removed and a new principal component is determined.
- The first PC describes the greatest source of variation within the data

#### Scores

- The scores are organized in a column fashion.
- The first column denotes the scores relating to the variation captured on PC1.
- Intra-sample relationships can be observed by plotting the scores from PC1 against PC2.
- This can be expanded to the scores of the first three PC's.

## Scores













Scores of PC1 vs. PC2

Scores of PC1 vs. PC3

Scores of PC1 vs. PC2 vs PC3

## Loadings

- Illustrate the weight or importance of each variable within the original data.
- From loadings it is possible to see the most significant variables.
- Loadings can be used to track the process of a reaction e.g. monitor reactant consumption.
- Deduce variables responsible for the clustering in the scores.

# Loadings



#### NO PREPROCESSING





**MEAN CENTRING** 

#### **Outlier Removal**

 PCA can be used in conjunction with confidence intervals to identify outliers within a set of data.





## Summary

- PCA used to decompose the data into scores and loadings
- Scores reveal information about between sample variation.
- Loadings tell us which variables from within the original data contribute most to the scores.
- PCA can also be used to analyze and investigate data to perform tasks such as outlier removal.
- PCA facilitates process understanding.

## Section 3

Partial Least Squares



#### **Inverse Calibration**

Calibration Equation:

$$y = Xb$$

y is concentration data, X is spectra and b is the produced model.

- Calibration requires only spectra and calibration property, such as a concentration.
- Demanding strategy as assumption made about errors.
- Requires good lab data.

#### PLS

- Partial Least Squares (PLS) is an extension of the PCA method.
- PCA extracts PC's describing the sources of variation within the data.
- PLS takes the PC's and correlates them with Y-Block information to calculate Latent Variables (LV's).
- Y-Block information is typically sample concentrations, physical properties.
- PLS is a quantitative procedure and can be used to model and predict y-block information for future samples

#### The X- and Y-Block

- PLS uses X-Block and Y-Block information.
- X-Block tends to refer to spectra.
- Y-Block relates to the information you want to predict, such as concentration or some physical property.
- Y-Block data is normally collected offline in a lab.
- Y-Block is often referred to as the reference method.

# PLS Data Analysis



#### Difference between PLS and PCA

- PCA
- Classification
- Exploratory analysis of data.
- PC's extracted describe sources of variation in order of significance.
- Used for the removal of outliers

- PLS
- Quantification
- Prediction
- Modeling of current and future samples.
- Latent variables important factor in determining model performance.

#### Calibration

- Building a calibration model, requires retaining as much relevant variation as possible.
- Whilst removing as much irrelevant variation as possible.
- Selecting calibration data VITAL to final predictions.
- Use Design of Experiments (DoE) to effectively map a data space or series of experiments.
- Quality of calibration determine by calculating the Root Mean Square Error in Calibration (RMSEC)

## Selecting Samples For Calibrations

#### Design of Experiments

- Use optimal methods to effectively map the data
- Methods such as D-Optimal, E-Optimal and Kennard-Stone.
- These methods only need to be run once.

#### Random Subsets

- Select a set of samples entirely at random.
- Perform analysis and calculate errors.
- Re-select a new random subset and repeat procedure for a number of iterations
- Calculate average errors at the end.

### Selecting Samples For Calibrations

Visual depiction of data



### Selecting Samples For Calibrations

D-Optimal



Samples selected according to D-Optimal criteria.

### Selecting Samples For Calibrations

Kennard-Stone



 Samples selected in an attempt to uniformly map the data.

#### Validation

- Validation data is used to check the predictive performance of the model.
- Validation can be performed using subsets of the calibration data (Cross Validation).
- Separate validation sets of data can be collected (True Validation).
- Cross validation leads to overly positive results.
- Quality of validation calculated using the Root Mean Square Error in Prediction (RMSEP).
- Quality of predictions determines quality of model.

### Modeling

- The quality of calibrations and validations can vary significantly with the number of LV's included in the model.
- Too few and the model will make poor predictions as there is insufficient information in the calibration
- Too many and the model has become overly focused and contains too much variation making it not robust to small amounts of variation.

# Modeling



#### Model Maintenance

We've built the model: So what next?

# MODEL MAINTENANCE

- Collect lab data weekly to re-validate the model.
  - Are model results within significant error?
  - If not what do we do?
- Re-evaluate calibration samples
  - Is the calibration model still relevant?
    - Perform DoE to re-select more data.
    - Check LV model to make sure appropriate LV's being used.
- Continual improvement.

#### Summary

- PLS implements inverse calibration to incorporate concentration information into a model.
- Makes quantitative predictions of unseen samples
- Requires calibration and validation
- Latent variables have significant effect on model.
- Quality of model determined by prediction and the RMSEP

#### Case Study

Model Building From Beginning to End



### Case Study 1

- Near IR spectra of tablets collected over a period of 4 years.
- GC analysis of tablets showed active pharmaceutical ingredient within specification for all samples.





#### The Problem

 The NIR calibration model produced has determined 32% samples are out of specification.



• The Plan: Use PCA to investigate and examine the spectra to improve the NIR calibration.

## Data Analysis Plan



### NIR Data – Visual Inspection



Pre-processing



- Data mean centered to reduce the magnitude of some variables.
- After mean centering large peak between 1350cm<sup>-1</sup> and 1700cm<sup>-1</sup>

#### Mean Centered Scores



- Strange distribution of scores.
- For samples that should all be the same theoretically should form one group.
- However 6 clusters formed.
- Further investigation found 6 different tablet presses had been used.

### Mean Centered Loadings



- Loadings on PC1
   show that the
   variables after 400
   contribute little
   information or noise
   to the scores.
  - Spectra truncated at variable 400, which is 1398cm<sup>-1</sup>

#### **Scatter Correction**

- Investigation into the manufacturing procedure reveal tablets made using different presses.
- This cause minor variations in the tablet depth.
- This altered the pathlength and scattering of the NIR radiation.
- Preprocessing must be applied to minimize the variation in the data due to the change in tablet depth.

# Data Analysis Plan 2



#### **Scatter Correction**



#### **New Scores**



 After performing the new stages of preprocessing the new scores (red triangles) have formed one tight cluster showing that variation not relating to the API concentration has been removed.

#### What Next?

Partial Least Squares



### **PLS Modeling Strategy**

Stage One: Build calibration model



#### **PLS Calibration Model**

- Large number of LV's used to produce the best calibration model.
- Too many LV's can cause 'overfitting'.
- RMSEC = 0.03539
- Error of 0.723% of the mean API concentration.



### **PLS Modeling Strategy**

Stage Two: Test Validate Calibration Model.



#### LV Model



 Varying number of LV's to use in the model, lead to the conclusion that 7 LV's will give the best predictions.

#### **PLS Validation Model**



- Using 7 LV's the validation data was applied to the calibration model to determine the RMSEP.
- Sacrifice calibration to ensure better predictions
- RMSEC = 0.050381
- RMSEP = 0.053719
- Prediction error 1.087% of the mean API concentration.

### PLS Future Modeling Strategy

Stage Three: Predict new samples.





### Case Study Summary

- PCA used to explore variation within the spectra
- Samples and variables selected for calibration.
- Scatter correction and mean centering used to preprocess data.
- PLS model built and validated using calibration and validation data.
- RMSEC and RMSEP calculated.
- Concentrations determined for new sample measurements.

### Acknowledgements





