Fundamentals of Computer Systems Thinking Digitally

Stephen A. Edwards

Columbia University

Summer 2020

The Subject of this Class

0

The Subjects of this Class

0 1

But let your communication be, Yea, yea; Nay, nay: for whatsoever is more than these cometh of evil.

Matthew 5:37

Engineering Works Because of Abstraction

wave select lď a,(#CH1_W_NUM) ld a, (#CH1_W_SEL) nz,#00b4 a, (#CH1 E TABLEO)

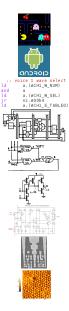
Application Software

Operating Systems

Architecture

Micro-Architecture

Logic


Digital Circuits

Analog Circuits

Devices

Physics

Engineering Works Because of Abstraction

Application Software COMS 3157, 4156, et al.

Operating Systems Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics

COMS W4118

Second Half of 3827

Second Half of 3827

First Half of 3827

First Half of 3827

ELEN 3331

ELEN 3106

ELEN 3106 et al.

Boring Stuff

http://www.cs.columbia.edu/~sedwards/classes/2020/3827-summer/

```
Prof. Stephen A. Edwards sedwards@cs.columbia.edu
```

Lectures 1:00 – 4:00 PM, Mondays and Wednesdays May 27–July 1

Weight	What	When
40%	Homeworks	See Webpage
60%	Final exam	July 1st

Submit homework online via Courseworks

Software You Need

The Inkscape SVG File Editor inkscape.org

Do homework by downloading an SVG file from the class website, edit it in Inkscape, and upload it to Courseworks

The Digital Circuit Simulator github.com/hneemann/Digital

Circuit design problems: download (class website) .zip file with .dig files, edit with Digital, upload to Courseworks

SPIM: A MIPS32 Simulator spimsimulator.sourceforge.net

MIPS assembly coding:, download .zip file with .s files, edit in favorite text editor, test and debug in SPIM, upload to Courseworks Each assignment turned in must be unique; work must ultimately be your own.

Don't cheat: Columbia Students Aren't Cheaters

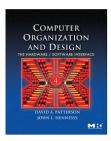
Test will be closed-book; you may use a single sheet of your own notes

Optional Texts: Alternative 1

No required text. One option:

David Harris and Sarah Harris. Digital Design and Computer Architecture. Either 1st or 2nd ed.

Almost precisely right for the scope of this class: digital logic and computer architecture.



Optional Texts: Alternative 2

 M. Morris Mano and Charles Kime. Logic and Computer Design Fundamentals. 4th ed.

 David A. Patterson and John L. Hennessy.
 Computer Organization and Design, The Hardware/Software Interface. 4th ed.

There are only 10 types of people in the world: Those who understand binary and those who don't.

thinkgeek.com

Which Numbering System Should We Use?

Roman: I II III IV V VI VII VIII IX X

one	•• two	five	six	nine
~			=	ė
ten	thirteen	fifteen	nineteen	twenty
twenty-one	twenty-three	twenty-five	e forty	one hundred

Mayan: base 20, Shell = 0

Babylonian: base 60

The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

$$730_{10} = 7 \times 10^2 + 3 \times 10^1 + 0 \times 10^0$$

$$990_{10} = 9 \times 10^2 + 9 \times 10^1 + 0 \times 10^0$$

Why base ten?

Hex	Dec	Oct	Bin
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
А	10	12	1010
В	11	13	1011
С	12	14	1100
D	13	15	1101
Е	14	16	1110
F	15	17	1111

Hexadecimal, Decimal, Octal, and Binary

Binary and Octal: Electronics Likes Powers of Two

 $PC = 010110111101_{2}$ = 0×2¹¹ + 1×2¹⁰ + 0×2⁹ + 1×2⁸ + 1×2⁷ + 0×2⁶ + 1×2⁵ + 1×2⁴ + 1×2³ + 1×2² + 0×2¹ + 1×2⁰ = 2675₈

- $= 2 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 5 \times 8^0$
- = 1469₁₀

Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F Instead of groups of 3 bits (octal), Hex uses groups of 4.

CAFEF00D₁₆ =
$$12 \times 16^7 + 10 \times 16^6 + 15 \times 16^5 + 14 \times 16^4 + 15 \times 16^3 + 0 \times 16^2 + 0 \times 16^1 + 13 \times 16^0$$

= 3,405,705,229₁₀

 C
 A
 F
 E
 F
 0
 0
 D
 Hex

 1100101010111111001110000000001101
 Binary

 3
 1
 2
 7
 7
 5
 7
 0
 0
 1
 5
 Octal

Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you

represent with 5 decimal digits?

Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")

434											
	+	0	1	2	3	4	5	6	7	8	9
+628	0	0	1	2	3	4	5	6	7	8	9
020	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8	9	10	11
	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
	7	7	8	9	10	11	12	13	14	15	16
4 + 8 = 12	8	8	9	10	11	12	13	14	15	16	17
$4 \pm 0 - 12$	9	9	10	11	12	13	14	15	16	17	18
	10	10	11	12	13	14	15	16	17	18	19

1											
434											
	+	0	1	2	3	4	5	6	7	8	9
+628	0	0	1	2	3	4	5	6	7	8	9
1020	1	1	2	3	4	5	6	7	8	9	10
<u> </u>	2	2	3	4	5	6	7	8	9	10	11
Ζ	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
	7	7	8	9	10	11	12	13	14	15	16
4 + 8 = 12	8	8	9	10	11	12	13	14	15	16	17
4+0 - 12	9	9	10	11	12	13	14	15	16	17	18
	10	10	11	12	13	14	15	16	17	18	19
1 + 3 + 2 = 6	·										

1											
434		•		-	-		-	~	_	•	•
600	+	0	1	2	3	4	5	6	/	8	9
+628	0	0	1	2	3	4	5	6	7	8	9
	1	1	2	3	4	5		7	8	9	10
62	2	2	3	4	5	6	7	8	9	10	11
62	3	3	4	-	6	7				11	12
	4	4	5	-	-	-			11		
	5	5	-	7	-	9				13	•••
	6	6	7	•	-	10					
	7	7	8		•••	11 12	. –		•••		
4 + 8 = 12	8 9	•	9 10	•••	•••	12		•••			••
•••••••	10	-				14					
1 + 3 + 2 = 6	10	10		12		14	15	10	.,	10	15
4 + 6 = 10											

1 1		
434		
+628	+	0 1
062	1 2 2	1 2 3
002	0 1 2 3 4 5 6 7 8 9	0 1 1 2 3 4 5 6 7 8 9 10
	6 7	6 7 7 8
4 + 8 = 12	8 9	9 10
1 + 3 + 2 = 6	10	10 11
4 + 6 = 10		

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

1 1		
434		
+628	+	0
1062	1 2 2	0 1 2 3 4 5 6 7 8
1002	3 4	4 5
	5	6
4 + 8 = 12	0 1 2 3 4 5 6 7 8 9	9 10
1 + 3 + 2 = 6	10	10 1 <i>°</i>
4 + 6 = 10		

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

10011 +11001

	+	0 1
1 + 1 = 10	0	00 01 01 <mark>10</mark> 10 11
	1	01 <mark>10</mark>
	10	10 11

1		
10011		
+11001		
0		
	+	0 1
1 + 1 = 10	0	00 01 01 10 <mark>10</mark> 11
1 + 1 + 0 = 10	1	01 10
	10	10 11

11		
10011		
+11001		
00		
	+	0 1
1 + 1 = 10	0	00 01
1 + 1 + 0 = 10	1	00 01 <mark>01</mark> 10 10 11
	10	10 11
1 + 0 + 0 = 01		

<mark>011</mark> 10011		
+11001		
100		
	+	0 1
1 + 1 = 10	0	00 <mark>01</mark>
1 + 1 + 0 = 10	1	00 <mark>01</mark> 01 10 10 11
	10	10 11
1 + 0 + 0 = 01		
0 + 0 + 1 = 01		

<mark>0011</mark> 10011				
+11001	_			
1100		-	+	
1+1 =	10		0	C
1 + 1 + 0 =	10		1 10	C 1
1 + 0 + 0 =	01			
0 + 0 + 1 =	01			

0+1+1 = 10

Binary Addition Algorithm 10011 10011 +11001101100 0 1 + 1+1 = 100 00 01 1 01 10 1+1+0 = 1010 10 11 1+0+0 = 010 + 0 + 1 = 01

0 + 1 + 1 = 10

Signed Numbers: Dealing with Negativity

How should we represent negative numbers?

Binary Signed Magnitude Numbers

The familiar notation: negative numbers have a leading -

Binary signed-magnitude encoding: leading 1 indicates negative; remaining bits treated as binary.

0000 ₂ = 0	annoying:
0010 ₂ = 2	If the signs match, add the magnitudes
$1010_2 = -2$	and use the same sign.
$1111_2 = -7$	If the signs differ, subtract the smaller number from the larger; return the sign
$1000_2 = -0?$	of the larger.

Can be made to work but addition is

One's Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative One's Complement number. However, number magnitude is *complement* of remaining bits interpreted as binary.

To negate a number, complement (flip) each bit.

$0000_2 = 0$	Addition is nicer: just add the one's
$0010_2 = 2$	complement numbers as if they were normal binary.
$1101_2 = -2$	Really annoying having a –0: two
$1000_2 = -7$	numbers are equal if their bits are the

 $1111_2 = -0?$

numbers are equal if their bits are the same or if one is 0 and the other is -0.

Two's Complement Numbers

Really neat trick: just make only the most significant bit represent a *negative* number instead of positive; treat the rest as binary.

$$1101_2 = -8 + 4 + 1 = -3$$

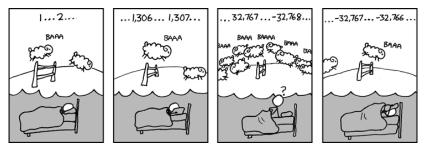
 $1111_2 = -8 + 4 + 2 + 1 = -1$

$$0111_2 = 4 + 2 + 1 = 7$$

 $1000_2 = -8$

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one's complement) then add 1.


Subtraction done with negation and addition.

Very good property: no -0

Two's complement numbers are equal if and only if all their bits are the same.

Number Representations Compared

Code	Binary	Signed Mag.	One's Comp.	Two's Comp.	
0000	0	0	0	0	
0001	1	1	1	1	
÷					
0111	7	7	7	7	
1000	8	-0	-7	-8	
1001	9	-1	-6	-7	
÷					
1110	14	-6	-1	-2	
1111	15	-7	-0	-1	
Smalles	t numbe	r	Largest number		

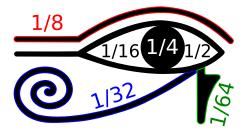
https://xkcd.com/571/

How many bits in his brain?

Fixed-point Numbers

How to represent fractional numbers? In decimal, we continue with negative powers of 10:

$$31.4159 = 3 \times 10^{1} + 1 \times 10^{0} + 4 \times 10^{-1} + 1 \times 10^{-2} + 5 \times 10^{-3} + 9 \times 10^{-4}$$


Also works in binary:

$$1011.0110_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4}$$
$$= 8 + 2 + 1 + 0.25 + 0.125$$
$$= 11.375$$

Addition and subtraction algorithms the same.

F a u c Interesting

The ancient Egyptians used binary fractions:

The Eye of Horus

Binary-Coded Decimal

thinkgeek.com

	Dec	BCD
	0	0000 0000
Humans prefer	1	0000 0001
reading decimal	2	0000 0010
numbers;	÷	÷
computers prefer	8	0000 1000
binary.	9	0000 1001
BCD is a	10	0001 0000
compromise: every	11	0001 0001
four bits	÷	÷
represents a	18	0001 1000
decimal digit.	19	0001 1001
	20	0010 0000

: :

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

000101011000 +001001000010

1010 First group

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

000101011000 +001001000010

1010 First group + 0110 Correction

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

1 000101011000 +001001000010	
	First group Correction
10100000	Second group

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

1 000101011000 +001001000010	
	First group Correction
10100000 + 0110	Second group Correction

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

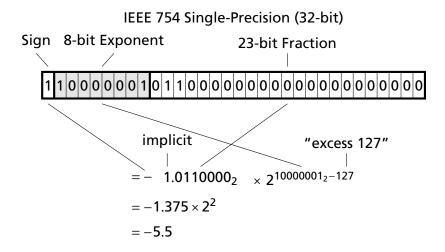
Example:

•	1 1	
	000101011000	
	+001001000010	
	1010	First group
	+ 0110	Correction
	10100000	Second group
	+ 0110	Correction
	01000000	Third group

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

> 11 158 +242


> > 400

Example:

ossible	1 1	
up nust	000101011000 +001001000010	
it.		First group Correction
	10100000 + 0110	Second group Correction
	01000000	Third group (No correction)
	010000000000	Result

Floating-Point Numbers: "Scientific Notation"

Greater dynamic range at the expense of precision Excellent for real-world measurements

ASCII For Representing Characters and Strings

	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	Ø	Р	"	р
1	SOH	DC1	!	1	А	Q	а	q
2	STX	DC2		2	В	R	b	r
3	ETX	DC3	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	e	u
6	ACK	SYN	&	6	F	V	f	v
7	BEL	ETB	,	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	х
9	ΗT	EM)	9	I	Y	i	У
Α	LF	SUB	*	:	J	Z	j	Z
В	VT	ESC	+	;	К	[k	{
С	FF	FS	,	<	L	\setminus	1	
D	CR	GS	_	=	М]	m	}
Ε	SO	RS		>	Ν	۸	n	~
F	SI	US	/	?	0	—	0	DEL