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These notes are based on lectures given in C. E. 417-1, Mechanics of Continua,
I at Northwestern University.
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Chapter 1

Introduction

Continuum mechanics is a mathematical framework for studying the transmis-
sion of force through and deformation of materials of all types. The goal is
to construct a framework that is free of special assumptions about the type of
material, the size of deformations, the geometry of the problem and so forth.
Of course, no real materials are actually continuous. We know from physics and
chemistry that all materials are formed of discrete atoms and molecules. Even
at much larger size scales, materials may be composed of distinct grains, e.g.,
a sand, or of grains of different constituents, e.g., steel, or deformable particles
such as blood. Nevertheless, treating material as continuous is a great advantage
since it allows us to use the mathematical tools of continuous functions, such as
differentiation. In addtion to being convenient, this approach works remarkably
well. This is true even at size scales for which the justfication of treating the
material as a continuum might be debatable. The ultimate justification is that
predictions made using continuum mechanics are in accord with observations
and measurements.
Until recently, it was possible to solve a relatively small number of prob-

lems without the assumptions of small deformations and linear elastic behavior.
Now, however, modern computational techniques have made it possible to solve
problems involving large deformation and complex material behavior. This pos-
sibility has made it important to formulate these problems correctly and to be
able to interpret the solutions. Continuum mechanics does this.
The vocabulary of continuummechanics involves mathematical objects called

tensors. These can be thought of as following naturally from vectors. Therefore,
we will begin by studying vectors. Although most students are acquainted with
vectors in some form or another, we will reintroduce them in a way that leads
naturally to tensors.
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Part I

Mathematical Preliminaries
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Chapter 2

Vectors

Some physical quantities are described by scalars, e.g., density, temperature,
kinetic energy. These are pure numbers, although they do have dimensions. It
would make no physical sense to add a density, with dimensions of mass divided
by length cubed, to kinetic energy, with dimensions of mass times length squared
divided by time squared.
Vectors are mathematical objects that are associated with both a magnitude,

described by a number, and a direction. An important property of vectors is
that they can be used to represent physical entities such as force, momentum
and displacement. Consequently, the meaning of the vector is (in a sense we will
make precise) independent of how it is represented. For example, if someone
punches you in the nose, this is a physical action that could be described by
a force vector. The physical action and its result (a sore nose) are, of course,
independent of the particular coordinate system we use to represent the force
vector. Hence, the meaning of the vector is not tied to any particular coordinate
system or description.
A vector u can be represented as a directed line segment, as shown in Figure

2.1. The length of the vector is denoted by u or by |u|. Multiplying a vector
by a positive scalar α changes the length or magnitude of the vector but not its
orientation. If α > 1, the vector αu is longer than u; if α < 1, αu is shorter
than u. If α is negative, the orientation of the vector is reversed. The addition
of two vectors u and v can be written

w = u+ v (2.1)

Although the same symbol is used as for ordinary addition, the meaning here is
different. Vectors add according to the parallelogram law shown in Figure 2.1.
It is clear from the construction that vector addition is commutative

w = u+ v = v+ u (2.2)

Note the importance of distinguishing vectors from scalars; without the boldface
denoting vectors, equation (2.1) would be incorrect: the magnitude of w is not

5
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Figure 2.1: Multiplication of a vector by a scalar (top) and addition of two
vectors (bottom).
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CHAPTER 2. VECTORS

the sum of the magnitudes of u and v. Alternatively the “tail” of one vector
may be placed at the “head” of the other. The sum is then the vector directed
from the free “tail” to the free “head”. Implicit in both these operations is the
idea that we are dealing with “free” vectors. In order to add two vectors, they
can be moved, keeping the length and orientation, so that both vectors emanate
from the same point or are connected head-to-tail.
The parallelogram rule for vector addition turns out to be a crucial property

for vectors. Note that it follows from the nature of the physical quantities, e.g.,
velocity and force, that we represent by vectors. The rule for vector addition
is also one way to distinguish vectors from other quantities that have both
length and direction. For example, finite rotations about orthogonal axes can be
characterized by length and magnitude but cannot be vectors because addition
is not commutative (see Malvern, pp. 15-16). Hoffman (About Vectors, p. 11)
relates the story of the tribe (now extinct) that thought spears were vectors
because they had length and magnitude. To kill a deer to the northeast, they
would throw two spears, one to the north and one to the east, depending on
the resultant to strike the deer. Not surprisingly, there is no trace of this tribe,
which only confirms the adage that “a little bit of knowledge can be a dangerous
thing.”
The procedure for vector subtraction follows from multiplication by a scalar

and addition. To subtract v from u, first multiply v by −1, then add −v to u:

w = u− v = u+ (−v) (2.3)

There are two ways to multiply vectors: the scalar or dot product and the
vector or cross product. The scalar product is given by

u · v = uv cos(θ) (2.4)

where θ is the angle between u and v. As indicated by the name, the result
of this operation is a scalar. As shown in Figure 2.2, the scalar product is the
magnitude of v multiplied by the projection u onto v, or vice versa. If θ = π/2,
the two vectors are orthogonal ; if θ = π, the two vectors are opposite in sense,
i.e., their arrows point in opposite directions. The result of the vector or cross
product is a vector

w = u× v (2.5)

The magnitude of the result is w = uv sin(θ), where θ is again the angle between
u and v. As shown in Figure 2.2, the magnitude of the cross product is equal
to the area of the parallelogram formed by u and v. The direction of w is
perpendicular to the plane formed by u and v and the sense is given by the
right hand rule: If the fingers of the right hand are in the direction of u and
then curled in the direction of v, then the thumb of the right hand is in the
direction of w. The three vectors u, v and w are said to form a right-handed
system.
The triple vector product (u × v) · w is equal to the volume of the paral-

lelopiped formed by u, v and w if they are right-handed and minus the volume
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Figure 2.2: Scalar and vector products.
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Figure 2.3: Triple vector product.
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CHAPTER 2. VECTORS

if they are not (Figure 2.3). The parenthesis in this expression can be omitted
because it makes no sense if the dot product is taken first (because the result is
a scalar and the cross product is an operation between two vectors).
Now consider the triple vector product u× (v×w). The vector v×w must

be perpendicular to the plane containing v and w. Hence, the vector product
of v×w with another vector u must result in a vector that is in the plane of v
and w. Consequently, the result of this operation can be can be represented as

u× (v×w) = αv+ βw (2.6)

2.1 Additonal Reading
Chadwick, Chapter 1, Section 1; Malvern, Section 2.1, 2.2, 2.3; Reddy, 2.2.1 -
3.
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Chapter 3

Tensors

A tensor is a linear, homogeneous vector-valued vector function. “Vector-valued
vector function” means that a tensor operates on a vector and produces a vector
as a result of the operation as depicted schematically in Figure 3.1. Hence, the
action of a tensor F on a vector u results in another vector v:

v = F(u) (3.1)

“Homogeneous” (of degree 1) means that the function F has the property

F(αu) = αF (u) = αv (3.2)

where α is a scalar. (Note: A function f(x, y) is said to be homogeneous of
degree n if f(αx, αy) = αnf(x, y). A function f(x, y) is linear if

f(x, y) = αx+ βy + c (3.3)

Hence, f(x, y) =
p
x2 + y2 is homogeneous of degree one but not linear. Simi-

larly, f(x, y) = a(x+ y) + c is linear but not homogeneous.) The function F is

F, a tensor

u

v

Figure 3.1: Schematic illustration of the effect of a tensor on a vector. The
tensor acts on the vector u and outputs the vector v.
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CHAPTER 3. TENSORS

“linear” if
F(u1 + u2) = F(u1) +F(u2) = v1 + v2 (3.4)

where v1 = F(u1) and v2 = F(u2)
The definition of a tensor embodied by the properties (3.1), (3.2), and (3.4)

suggests that a tensor can be represented in coordinate-free notation as

v = F · u (3.5)

The operation denoted by the dot is defined by the properties (3.2), and (3.4).
Therefore, if we want to determine if a "black box", a function F, is a tensor,
we input a vector u into the box. If the result of the operation represented by
F is also a vector, say v, then F must be a tensor. Since both sides of (3.5) are
vectors, we can form the scalar product with another vector, say w,

w · v = w · F · u (3.6)

and the result must be a scalar. Because scalar multiplication of two vectors is
commutative, the order of the vectors on the left side can be reversed. On the
right side, it would be necessary to write (F · u) ·w. The parentheses indicate
that the operation F · u must be done first; indeed, multiplying u · w first
produces a scalar and the dot product of a scalar with a vector (or a tensor) is
not an operation that is defined.
In contrast to the dot product of two vectors, the dot product of a tensor

and a vector is not commutative. Reversing the order defines the transpose of
the tensor F i.e.,

F · u = u · FT (3.7)

Thus, it follows that
v · F · u = u · FT · v (3.8)

where parentheses are not needed because the notation clearly indicates that
the two vectors are not to be multiplied. If F = FT , then the tensor F is said to
be symmetric; if F = −FT , then F is antisymmetric or skew-symmetric. Every
tensor can be separated into the sum of a symmetric and a skew-symmetric
tensor by adding and subtracting its transpose

F =
1

2

¡
F+FT

¢
+
1

2

¡
F−FT

¢
(3.9)

Generally, the output vector v will have a different magnitude and direction
from the input vector u. In the special case that v is the same as u, then for
obvious reasons, the tensor is called the identity tensor and denoted I. Hence,
the identity tensor is defined by

u = I · u (3.10)

for all vectors u. Is it possible to operate our tensor black box in reverse? In
terms of Figure 3.1, if we stick v in the right side, will we get u out the left?
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CHAPTER 3. TENSORS

The answer is “not always” although in many cases it will be possible for the
particular tensors we are concerned with. Later we will determine the conditions
for which the operation depicted in Figure 3.1 is reversible. If it is, then the
operation defines the inverse of F

u = F−1 · v (3.11)

Substituting for v from (3.5) reveals that

F−1 · F = I (3.12)

and that the dot product between two tensors produces another tensor.
If the output vector v has the same magnitude as the input vector u, but a

different direction, then the tensor operation results in a rotation

v = R · u (3.13)

and the tensor is called orthogonal (for reasons we will see later). Because u
and v have the same magnitudes

v2 = v · v = u · u = u2

Using (3.7) to rewrite the left scalar product and (3.10) to rewrite the right
gives

u ·RT ·R · u = u · I · u (3.14)

where no parentheses are necessary because the notation makes clear what is to
be done. Because (3.14) applies for any vector u, we can conclude that

RT ·R = I (3.15)

and comparing with (3.12) reveals that the transpose of an orthogonal tensor
is equal to its inverse. Physically, the rotation of a vector to another direction
can always be reversed so we can expect the inverse to exist.
Is it possible to find an input vector u such that the output vector v has

the same direction, but possibly a different magnitude? Intuitively, we expect
that this is only possible for certain input vectors, if any. If the vector v is in
the same direction as u, then v = λu, where λ is a scalar. Substituting in (3.5)
yields

F · u = λu (3.16)

or
(F− λI) · u = 0 (3.17)

If the inverse of F− λI exists then the only possible solution is u = 0. Conse-
quently there will be special values of λ and u that satisfy this equation only
when the inverse does not exist. A value of λ that does so is an eigenvalue
(principal value, proper number) of the tensor F and the corresponding direc-
tion given by u is the eigenvector (principal direction). It is clear from (3.17)
that if u is a solution, then so is αu where α is any scalar. Hence, only the
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CHAPTER 3. TENSORS

direction of the eigenvector is determined. It is customary to acknowledge this
by normalizing the eigenvector to unit magnitude, μ = u/u.
Later we will learn how to determine the principal values and directions and

their physical significance. But, because all of the tensors we will deal with are
real and many of them are symmetric, we can prove that the eigenvalues and
eigenvectors must have certain properties without having to determine them
explicitly.
First we will prove that a real, symmetric 2nd order tensor has real eigen-

values. Let T be a real symmetric 2nd order tensor with eigenvalues λK , K =I,
II, III and corresponding eigenvectors μK , K = I, II, III. Then

T · μK = λK μK , (no sum on K) (3.18)

Taking complex conjugate of both sides gives

T̄ ·
_
μK = λ̄K

_
μK , (no sum on K) (3.19)

Multipling (3.18) by
_
μK yields

_
μK ·T · μK = λK

_
μK · μK , (no sum on K) (3.20)

and (3.19) by μK yields

μK · T̄ ·
_
μK = λ̄K

_
μK · μK , (no sum on K) (3.21)

Because T = TT , the left hand sides are the same. Therefore, subtracting gives

0 = (λK − λ̄K)
_
μK · μK , (no sum on K) (3.22)

Since
_
μK · μK 6= 0, λk = λ̄k and hence, the eigenvalues are real.

Now prove that the eigenvectors corresponding to distinct eigenvalues are
orthogonal. For eigenvalue λI and corresponding eigenvector μI

T · μI = λI μI (3.23)

and similarly for λII and μII

T · μII = λII μII (3.24)

Dotting (3.23) with μII and (3.24) with μI yields

μII ·T · μI = λI μI · μII (3.25a)

μI ·T · μII = λII μII · μI (3.25b)

Because T = TT subtracting yields

(λI − λII)μI · μII = 0 (3.26)

Because the eigenvalues are assumed to be distinct λI 6= λII , and, consequently
μI ·μII = 0. If λI = λII 6= λIII , any vectors in the plane perpendicular to μIII

14 Do not distribute without permission



CHAPTER 3. TENSORS

can serve as eigenvectors. Therefore, it is always possible to find at least one
set of orthogonal eigenvectors.
Lastly, we note the tensors we have introduced here are second order tensors

because they input a vector and output a vector. We can, however, define nth
order tensors T(n) by the following recursive relation

T(n) · u = T(n−1) (3.27)

If T(0) is defined as a scalar then (3.27) shows that a vector can be considered
as a tensor of order one. Later we will have occasion to deal with 3rd and 4th
order tensors.
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Chapter 4

Coordinate Systems

We have discussed a number of vector and tensor properties without referring
at all to any particular coordinate system. Philosophically, this is attractive
because it emphasizes the independence of the physical entity from a particular
system. This process soon becomes cumbersome, however, and it is convenient
to discuss vectors and tensors in terms of their components in a coordinate
system. Moreover, when considering a particular problem or implementing the
formulation in a computer, it is necessary to adopt a coordinate system.
Given that a coordinate system is necessary, we might take the approach

that we should express our results on vectors in a form that is appropriate for
any coordinate system. That is, we will make no assumptions that the axes of
the system are orthogonal or scaled in the same way and so on. Indeed, this is
often useful and can lead to a deeper understanding of vectors. Nevertheless,
it requires the introduction of many details that, at least at this stage, will be
distracting to our study of mechanics.
For the reasons just-discussed, we will consider almost exclusively rectan-

gular cartesian coodinate systems. We will, however, continue to use and em-
phasize a coodinate free notation. Fortunately, results that can be expressed in
a coordinate free notation, if interpreted properly, can be translated into any
arbitrary coordinate system.

4.1 Base Vectors

A rectangular, cartesian coordinate system with origin O is shown in Figure
4.1. The axes are orthogonal and are labelled x, y, and z, or x1, x2 and x3. A
convenient way to specify the coordinate system is to introduce vectors that are
tangent to the coordinate directions. More generally, a set of vectors is a basis
for the space if every vector in the space can be expressed as a unique linear
combination of the basis vectors. For rectangular cartesian systems, these base
vectors can be chosen as unit vectors

17
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|e1| = e1 · e1 = 1, |e2| = |e3| = 1 (4.1)

that are orthogonal:

e1 · e2 = 0, e1 · e3 = 0, e2 · e3 = 0 (4.2)

The six equations, (4.1) and (4.2), and the additional three that result from
reversing the order of the dot product in (4.2) can be written more compactly
as

ei · ej = δij =

½
1, if i = j
0 if i 6= j

(4.3)

where the indicies (i, j) stand for (1, 2, 3) and δij is the Kronecker delta. There-
fore, (4.3) represents nine equations. Note that one i and one j appear on
each side of the equation and that each index can take on the value 1, 2, or 3.
Consequently, i and j in (4.3) are free indicies.
The projection of the vector u on a coordinate direction is given by

ui = ei · u (4.4)

where i = 1, 2, 3 and ui is the scalar component of u. We can now represent the
vector u in terms of its components and the unit base vectors:

u = u1e1 + u2e2 + u3e3 (4.5)

Each term, e.g., u1e1 is a vector component of u. The left side of the equation
is a coordinate free representation; that is, it makes no reference to a particular
coordinate system that we are using to represent the vector. The right side
is the component form; the presence of the base vectors e1, e2 and e3 denote
explicitly that u1, u2, and u3 are the components with respect to the coordinate
system with these particular base vectors. For a different coordinate system,
with different base vectors, the right side would be different but would still
represent the same vector, indicated by the coordinate free form on the left
side.

4.2 Index Notation
The equation (4.5) can be expressed more concisely by using the summation
sign:

u =
3X

k=1

ukek = ukek (4.6)

where “k” is called a summation index because it takes on the explicit values
1, 2, and 3. It is also called a dummy index because it is simply a placeholder:
changing “k” to “m” does not alter the meaning of the equation. Note that “k”
appears twice on RHS but not on LHS. (In contrast, the free index “i” on the
right side of (4.3) cannot be changed to “m” without making the same change
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x x, 1

y,x2

z,x3

e1

e2

e3 O

Figure 4.1: Rectangular, cartesian coordinate system specified by unit, orthog-
onal base vectors.
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on the other side of the equation.) Because the form (4.6) occurs so frequently,
we will adopt the summation convention: The summation symbol is dropped
and summation is implied whenever an index is repeated in an additive term (a
term separated by a plus or minus sign) on one side of the equation. This is a
very compact and powerful notation but it requires adherence to certain rules.
Regardless of the physical meaning of the equation, the following rules apply:

• A subscript should never appear more than twice (in an additive term) on
one side of an equation.

• If a subscript appears once on one side of an equation it must appear
exactly once (in each additive term) on the other side

For example, both of the following two equations are incorrect because the
index “j” appears once on the right side but not at all on the left:

wi = ui + vj (4.7a)

wi = ukvjskti (4.7b)

The following equation is incorrect because the index “k” appears three
times in an additive term:

wij = AikBjkuk (4.8)

In contrast, the equation

a = ukvk + rksk + pkqk (4.9)

is correct. Even though “k” appears six times on the right side, it only appears
twice in each additive term.
We can now use the scalar product, the base vectors and index notation

to verify some relations we have obtained by other means. To determine the
component of the vector u with respect to the ith coordinate direction we form
the scalar product ei · u and then express u in its component form:

ei · u = ei · (ujej) (4.10)

Note that it would be incorrect to write uiei on the right side since the index
i would then appear three times. The scalar product is an operation between
vectors and, thus, applies to the two basis vectors. Their scalar product is
given by (4.3). Recalling that the repeated j implies summation and using the
property of the Kronecker delta (4.3) yields

ei · u = uj (ei · ej) (4.11a)

= ujδij =
3X

j=1

δijuj = δi1u1 + δi2u2 + δi3u3 (4.11b)

= ui (4.11c)
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Thus the inner product of a vector with a basis vector gives the component of
the vector in that direction. This operation can be used to convert coordinate-
free expressions to their cartesian component form. For example, the sum of
two vectors is given by

w = u+ v (4.12)

in the coordinate free notation. Dotting both sides with the base vectors ei
yields the component form

wi = ui + vi (4.13)

As a final example, consider the expression for the scalar product in terms
of the components of the vectors:

u · v = (uiei) · (vjej) (4.14a)

= uivj (ei·ej) (4.14b)

= uivjδij =
3X
i=1

3X
j=1

uivjδij =
X

ujvj = ukvk (4.14c)

4.3 Tensor Components
The definition of a tensor embodied by the properties (3.1), (3.2), and (3.4)
suggests that a tensor can be represented in coordinate-free notation as

v = F · u (4.15)

The cartesian component representation follows from the procedure for identi-
fying the cartesian components of vectors, i.e.,

vk = ek · v = ek · {F · ulel} (4.16)

= (ek · F · el)ul
The second line can be represented in the component form

vk = Fklul (4.17)

or in the matrix form⎡⎣ v1
v2
v3

⎤⎦ =
⎡⎣ F11 F12 F13

F21 F22 F23
F31 F32 F33

⎤⎦⎡⎣ u1
u2
u3

⎤⎦ (4.18)

where the
Fkl = ek · F · el (4.19)

are the cartesian components of the tensor F (with respect to the base vectors
el).

4.4 Additional Reading
Chadwick, Chapter 1, Section 1; Malvern, Sections 2.1, 2.2, 2.3; Aris, 2. - 2.3.
Reddy, 2.2.4 - 5.
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Dyads

The definition of a tensor suggests that it can be represented in coordinate-free
notation as

v = F · u (5.1)

The relation (5.1) leads naturally to the representation of tensors as dyads:

F = Fklekel (5.2)

Then, the operation (5.1) is given by the rules that have already been established
for vectors

v = (Fklekel) · (umem) (5.3a)

= Fklek(el · em)um (5.3b)

= Fklekδlmum (5.3c)

= ekFklul = ekvk (5.3d)

and
Fij = ei · F · ej (5.4)

A dyad is two vectors placed next to each other, e.g. ab, e1e2, ij. Dyads
are sometimes denoted a ⊗ b. The meaning of a dyad is defined operationally
by its action on a vector:

(ab) · v = a(b · v) (5.5)

Note that (5.5) implies that multiplication by a dyad is not commutative, e.g.

v · (ab) = b(v · a) (5.6)

The conjugate of a dyad is defined by reversing the order of the vectors that
make up the dyad. Thus, the conjugate of a dyad φ = ab is φc = ba.
A dyadic is a polynomial of dyads, e.g.

φ = a1b1 + a2b2 + a3b3 (5.7a)

F = Fijeiej (5.7b)
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The conjugate of a dyadic reverses each pair of vectors.

φc = b1a1 + b2a2 + b3a3 (5.8)

Fc = Fijejei = Fqpepeq = F
T (5.9)

Note that (Fc)ij = Fji. Hence, the conjugate corresponds to the usual notion
of the transpose. Consequently, we will use “transpose” for the conjugate and
denote it by FT . Multiplication of a dyadic by a vector is given by

v · φ = (v · a1)b1+(v · a2)b2+(v · a3)b3 (5.10)

Multiplication is distributive

(a+ b)(c+ d) = ac+ bc+ ad+ bd (5.11a)

φ = ab = (akek)(blel) = akblekel (5.11b)

A dyadic is symmetric if

T = Tc = T
T ⇒ Tij = Tji (5.12)

A dyadic is anti-symmetric if

F = −Fc = −FT (5.13)

Hence, the components of an anti-symmetric dyadic satsify

F11 = F22 = F33 = 0, F12 = −F21, etc. (5.14)

or
Fij = −Fji (5.15)

Any 2nd order tensor can be written as the sum of a symmetric and anti-
symmetric part

F =
1

2
(F+FT ) +

1

2
(F−FT ) (5.16)

where the first term is symmetric and the second is anti-symmetric.

5.1 Tensor and Scalar Products

The tensor product of two tensors T and U is itself a tensor. The components
of the product tensor are defined naturally in terms of operations between the
base vectors.

T ·U = (Tijeiej) · (Uklekel) (5.17)

= TijUklei(ej · ek)el (5.18)

= TikUkleiel (5.19)
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The components of the product tensor can be computed in the usual way by
matrix multiplication of the components of T and U.

TikUkl =

⎡⎣ T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤⎦⎡⎣ U11 U12 U13
U21 U22 U23
U31 U32 U33

⎤⎦ (5.20)

Note that, as with matrix multiplication, the tensor product is not computative.
In fact, the rule that the transpose of a matrix product is the product of the
transposes of the individual matrices is easily verified by the rules for computing
with the components of the dyad.

T ·U =
©
UT ·TT

ªT
(5.21)

There are two scalar products depending on the order in which the dot
products between the base vectors are taken.

T · ·U = (Tijeiej) · ·(Uklekel) (5.22)

= TijUke(ei·el)(ej ·ek) (5.23)

= TlkUkl (5.24)

T : U = (Tijeiej) : (Uklekel) (5.25)

= TijUkl(ei·ek)(ej ·el) (5.26)

= TijUklδikδjl = TklUkl (5.27)

The horizontal arrangements of the dots indicates that the dot product is taken
between the two closest base vectors (the two inside) and then the two furthest
(the two outside). The vertical dots indicate that the first base vectors of
each dyad are dotted and the second base vectors are dotted. Actually, only
one of these scalar products is needed since the other can be defined using the
transpose.

5.2 Identity tensor
The identity tensor was defined as that tensor whose product with a vector or
tensor gives the identical vector or tensor.

I · v = v (5.28)

T · I = T (5.29)

This implies that I has the following dyadic representation in terms of ortho-
normal base vectors.

I = δmnemen = e1e1 + e2e2 + e3e3 (5.30)

25 Do not distribute without permission



CHAPTER 5. DYADS

The trace of a tensor T is obtained by forming the scalar product of T with
the identity tensor.

trT = T : I = T · ·I (5.31)

The cartesian component forms of T and I can be used to show that the trace
is equal to the sum of the three diagonal components.

trT = (Tijeiej):(δmnemen) (5.32)

= Tijδmn(ei · em)(ejen) = (5.33)

= Tijδmnδimδjn = Tijδinδjn = Tnn (5.34)

The trace is a scalar invariant, i.e. the numerical value is independent of the
coordinate system used to write down the components.

5.3 Additional Reading
Malvern, Chapter 2, Parts 2 and 3, pp. 30-40; Chadwick, Chapter 1, Sections
2 and 3, pp. 16-24. Aris 2.41 - 2.44, 2.81. Reddy, 2.5.1 - 2.

26 Do not distribute without permission



Chapter 6

Vector (Cross) Product

We have already discussed the coordinate free form of the vector or cross product
of two vectors. Here we will introduce the component form of this product.
For two vectors u and v, there are 9 (32) possible products of their compo-

nents. The scalar product is the sum of three. The remaining 6 can be combined
in pairs to form a vector.

u× v =(uiei)× (vjej) = uivj (ei × ej) (6.1)

To interpret (6.1), first, consider the cross-products of the base vectors. The
vector

e3 = e1 × e2 (6.2)

is perpendicular to the plane containing e1 and e2 with the sense is given by
the right hand rule. Consequently, reversing the order of the two vectors in the
product must change the sign.

e1 × e2 = −e2 × e1 (6.3)

Similarly,

e3 × e1 = −e1 × e3 = e2 (6.4a)

e2 × e3 = −e3 × e2 = e1 (6.4b)

and,

e1 × e1 = 0 (6.5a)

e2 × e2 = 0 (6.5b)

e3 × e3 = 0 (6.5c)

These equations can all be expressed as

ei × ej = �ijkek (6.6)
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where the permutation symbol is defined such that

�ijk =

⎧⎨⎩ 0 if any two indicies are equal
+1 if (ijk) is an even permutation of (123) i.e. 123, 312, 231
−1 if (ijk) is an odd permutation of (123) i.e. 213, 321, 132

(6.7)
Dotting both sides of (6.6) with em (and adjusting the indicies) yields

�ijk = ei · (ej × ek) (6.8)

The parenthesis on the right hand side can be dropped because taking the dot
product first would make no sense: The cross product is an operation between
two vectors and the result of the dot product is a scalar.
The following � δ identity is often useful

�ijk�imn = δjmδkn − δjnδkm (6.9)

Malvern , p. 25, Problem #18 outlines a proof. The proof begins by noting
that each of the four free indicies j, k, m, n can take on only three values: 1,
2, or 3. As a result it is possible to enumerate the various outcomes of (6.9).
Contracting two of the indicies gives

�pqi�pqj = 2δij (6.10)

and all three gives

�pqr�pqr = 6 (6.11)

Now return to the cross product of two vectors. The relation (6.6) can be
used to determine the component form of two vectors.

w= u× v (6.12a)

= (uiei)× (vjej) (6.12b)

= uivj (ei × ej) (6.12c)

= uivj�ijkek (6.12d)

and can be expressed as the following determinant.

w =

¯̄̄̄
¯̄ e1 e2 e3
u1 u2 u3
v1 v2 v3

¯̄̄̄
¯̄ (6.13)

The individual components of w are

wk = ek ·w = uivj�ijk (6.14)
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6.1 Properties of the Cross-Product
To gain some practice in manipulating index notation, we can use it to confirm
previously introduced properties of the cross-product.
First show that reversing the order of the vectors introduces a minus sign:

u× v = −v× u (6.15)

To begin, express the cross product in index notation:

u× v = �ijkuivjek (6.16)

= −�jikuivjek (6.17)

= −�lmkvlumek = −v× u (6.18)

The second line introduces a minus sign because the order of the indicies i and
j in �ijk are reversed. In the third line, the indicies are simply relabelled (This
can be done because they are all dummy or summation indicies) and this is
recognized as the component form of v× u.
Now show that the cross-product is orthogonal to each of the vectors in the

product:

u ·w= w · u = 0 (6.19)

where w = u× v (6.20)

Substituting the expression for w in (6.19) and expressing in component form
gives.

u · (u× v) = (uiei) · (�klmukvlem) (6.21)

= uiukvl (ei · em) �klm (6.22)

= uiukvl�kli (6.23)

= vl�likuiuk = −vl�lkiuiuk (6.24)

= −vl�likuiuk = 0 (6.25)

Because the scalar product pertains to vectors, the expression can be regrouped
as in second line and carrying out the scalar product results in the third line.
Interchanging two indicies on �lik introduces a minus sign and relabelling the
indicies shows that the expression is equal to its negative and, hence, must be
zero.
The last result is an example of a more one: Any expression of the form

AijBij is equal to zero if Aij is symmetric with respect to interchange of the
indicies, i.e., Aji = Aij , and Bij is anti-symmetric with respect to interchange
of the indicies, i.e., Bji = −Bij .

6.2 Uses of the Cross Product
Two uses of the cross product in mechanics are to represent the velocity due to
rigid body rotation and the moment of a force about a point.
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x

Figure 6.1: Velocity due to rigid body rotation.

6.2.1 Velocity Due to Rigid Body Rotation

In a rigid body the distance between any two points is fixed. Consider rotation
of a rigid body with angular velocity ω about an axis n, as shown in Figure 6.1.
The angular velocity vector is

ω = ωn (6.26)

A point P , in the rigid body, is located by the position vector x. The vector
n× x is in direction PP 0 and has magnitude |x| sin θ. But |x| sin θ = PQ is the
perpendicular distance from P to the axis of rotation. Therefore, in time dt,
the displacement is

du = ωn× x dt (6.27)

In the limit dt→ 0, the velocity is

v = ω × x (6.28)
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6.2.2 Moment of a Force P about O

The moment of a force P about point O is

Mo = xo ×P (6.29)

where xo is the vector from O to the point of application of P. For k particles
in equilibrium, the sum of the forces must vanishX

k

P(k) = 0 (6.30)

and the sum of the moments must vanishX
k

x(k)o ×P(k) = 0 (6.31)

A well know result from statics is that if the sum of the moments about one
point vanishes for a system of particles in equilibrium, then the sum of the
moments vanishes for any point. Consider another point R where xR is the
vector from the origin to R. Since (6.31) is satisfied

X
k

n³
x(k)o − xR

´
×P(k) + xR×P(k)

o
= 0 (6.32)

X
k

³
x(k)o − xR

´
×P(k) + xR×

X
k

P(k) = 0 (6.33)

But the last term vanishes because of (6.29) and hence the sum of the moments
about R must vanish.

6.3 Triple scalar product

We have already noted that the triple scalar product u×v ·w gives the volume
of the parallelopiped with u, v and w as (or the negative depending on the
ordering of the vectors). The component form is given by

u× v ·w = �ijkuivjwk (6.34)

and the result can be represented by the determinant

u× v ·w =

¯̄̄̄
¯̄ u1 u2 u3
v1 v2 v3
w1 w2 w3

¯̄̄̄
¯̄ (6.35)

Because the triple scalar product vanishes if the vectors u, v, and w are copla-
nar, the condition is also expressed by the vanishing of this determinant. Re-
placing u by ei = δipep and similarly for v, and w gives the triple scalar product
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of three orthonormal unit vectors

ei · (ej × ek) = �ijk =

¯̄̄̄
¯̄ δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

¯̄̄̄
¯̄ (6.36)

The determinant is skew-symmetric with respect to interchange of (i, j, k) be-
cause interchange of rows implies multiplication by (−1). When (i, j, k) = (123),
the determinant = 1.

6.4 Triple Vector Product
The triple vector product is given by

u× (v×w) (6.37)

Because the cross product v × w is normal to the plane of v and w and u ×
(v ×w) is normal to u and to (v×w), the triple vector product must be in the
plane of v and w

u× (v ×w) = αv+ βw (6.38)

Expressing (6.38) in component form yields

�ijkuj�klmvlwm = αvi + βwi (6.39)

Using (6.9) gives

�ijk�lmkujvlwm = (δilδjm − δimδjl)ujvlwm (6.40)

= viujwj − wiujvj (6.41)

Now, converting back to coordinate free form

u× (v×w) = v (u ·w)−w (u · v) (6.42)

Using this result and cycling the order of the vectors shows that

u× (v×w) + v × (w × u) +w × (u× v) = 0 (6.43)

6.5 Additional Reading
Chadwick, Chapter 1, Section 1; Malvern, Sec. 2.3; Aris 2.32-2.35.
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Determinants

Recall that the component form of the scalar triple product can be represented
with the permutation symbol �ijk or as a determinant

(u× v) ·w = w · (u× v) = u · (v ×w) (7.1a)

= �ijkuivjwk =

¯̄̄̄
¯̄ u1 u2 u3
v1 v2 v3
w1 w2 w3

¯̄̄̄
¯̄ (7.1b)

This correspondence suggests that �ijk can be useful in representing determi-
nants more generally. For example, if the components of the vectors u, v, and
w are replaced by a1i, a2i, and a3i, then (7.1b) becomes an expression for the
determinant of the matrix A with components aij .

det(A) = �ijka1ia2ja3k =

¯̄̄̄
¯̄ a11 a12 a13
a21 a22 a23
a31 a32 a33

¯̄̄̄
¯̄ (7.2)

Writing out the summation gives

det(A) = a11(�123a22a33 + �132a23a32) + (7.3a)

a12(�213a21a33 + �231a23a31) +

a13(�312a21a32 + �321a22a31)

= a11(a22a33 − a23a32) (7.3b)

−a12(a21a33 − a23a31)

+a13(a21a32 − a22a31)

= a11

¯̄̄̄
a22 a23
a32 a33

¯̄̄̄
− a12

¯̄̄̄
a21 a23
a31 a33

¯̄̄̄
+ (7.3c)

a13

¯̄̄̄
a21 a22
a31 a32

¯̄̄̄
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where the second equality follows from noting that �123 = �231 = �312 = 1 and
�132 = �213 = �321 = −1. The final equality results from arranging the coeffi-
cients of a11, a12, and a13 as 2×2 determinants. Thus, the summation represents
an expansion of the determinant by the first row. The signed coefficients of a11,
a12, and a13 are called the cofactors of these terms. Note that each term has
one and only one element from each row and column. Also, interchanging two
rows changes the sign of the determinant:

�ijka1ia2ja3k = �ijka2ja1ia3k (7.4a)

= −�jika2ja1ia3k (7.4b)

= −�mnpa2ma1na3p (7.4c)

Alternatively, we could expand about the first column:

|A| = �ijkai1aj2ak3 (7.5)

= a11(�123a22a33 + �132a32a23) (7.6)

+a21(�213a12a33 + �231a32a13)

+a31(�312a12a23 + �321a22a13)

= a11

¯̄̄̄
a22 a23
a32 a33

¯̄̄̄
− a21

¯̄̄̄
a12 a13
a32 a33

¯̄̄̄
+ a31

¯̄̄̄
a12 a13
a22 a23

¯̄̄̄
(7.7)

Consequently, the determinant of a matrix and its transpose are identical:

|A| =
¯̄
AT
¯̄

(7.8)

The determinant can also be written as

|A| = a1iA1i (7.9)

where
A1i = �ijka2ja3k (7.10)

is the cofactor of a1i. More generally, we could expand about any row or column

|A| = aiqAiq = apjApj , (no sum on i and j) (7.11)

(Because we have adopted the convention that a repeated index implies sum-
mation, we must explicitly indicate here that i and j are not to be summed).
By comparison

1

3
|A| = aiqAiq = apjApj (7.12)

In order to develope another expression for the determinant, consider the
quantity

hlmn = �ijkaliamjank (7.13)

First note that when (l,m, n) = (1, 2, 3)

�ijka1ia2ja3k = detA (7.14)
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Now, show that hlmn is skew-symmetric with respect to interchange of (l,m, n)

hlmn = �ijkaliamjank (7.15a)

= �ijkamjaliank (7.15b)

= −�jikamjaliank (7.15c)

= −�ijkamialjank = −hmln (7.15d)

From these two results, we can conclude that

�ijkaliamjank = �lmn det(A) (7.16)

We can also derive another expression for the co-factor

det(A) = �ijka1ia2ja3k (7.17a)

= a1i {�ijka2ja3k} (7.17b)

Thus, the cofactor of a1i is

A1i = �ijka2ja3k (7.18)

To rewrite this in a more general way for arbitrary indicies first multiply by
�123 = 1

A1i = �123�ijka2ja3k (7.19a)

=
1

2
�123�ijka2ja3k +

1

2
�123�ijka2ja3k (7.19b)

=
1

2
�123�ijka2ja3k +

1

2
(−�132) (−�ikj) a2ja3k (7.19c)

=
1

2
�123�ijka2ja3k +

1

2
�132�ijka3ja2k (7.19d)

=
1

2
�ijk�1mnamjank (7.19e)

Because this expression applies for any value of the first index we can write

Ali =
1

2
�lmn�ijkamjank (7.20)

The transpose of this matrix is the adjugate of A

(AdjA)il = Ali =
1

2
�lmn�ijkamjank (7.21)

7.1 Inverse
We can use the adjugate to obtain an expression for the inverse of a matrix.
Multiply the adjugate (7.21) by api

api(AdjA)il =
1

2
�lmn(�ijkapiamjank) (7.22)
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The term in parentheses on the right hand side can be rewritten using (7.16) to
give

api(AdjA)il =
1

2
�lmn�pmn det(A) = δpl det(A) (7.23)

Dividing both sides by det(A) gives

api
(AdjA)il
det(A)

= δpl (7.24)

If the right hand side is arranged as a matrix, it is the identity, i.e., the matrix
with 1’s on the diagonal and 0’s elsewhere. Consequently, the term multiplying
api must be an expression for the inverse of this matrix. Therefore, the inverse
is given by

(a−1)il =
(AdjA)il
det(A)

(7.25)

Note that if det(A) = 0, the inverse will not exist. Recall that when the deter-
minant is interpreted as the triple scalar product of three vectors, it vanishes if
the three vectors are coplanar. In other words, the third vector can be expressed
in terms of a linear combination of the other two or, equivalently, one row of
the matrix is a linear combination of the remaining two.

7.2 Product of Two Determinants

The result (7.16) can be used to prove the familiar result on the product of two
determinants.

det(A) det(B) = det(C) (7.26)

where ckl = akpbpl.

det(A) det(B) = det(A)�mnpbm1bn2bp3 (7.27a)

= �ijk(aimbm1)(ajnbn2)(akpbp3) (7.27b)

Thus the left-hand side is det(C). Because the triple scalar product of three
vectors can be represented as a determinant (7.1b), the result on the product
of two determinants implies

(a · b× c)(d · e× f) =

¯̄̄̄
¯̄ a · d a · e a · f
b · d b · e b · f
c · d c · e c · f

¯̄̄̄
¯̄ (7.28)

In (7.1a), let u = ei = e1δi1+e2δi2+e3δi3, v = ej = e1δj1+ . . ., etc. Thus,

�ijk = ei · (ej × ek) =

¯̄̄̄
¯̄ δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

¯̄̄̄
¯̄ (7.29)
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Using (7.29) and the result on the product of the determinants yields

�ijk�mnp =

¯̄̄̄
¯̄ δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

¯̄̄̄
¯̄
¯̄̄̄
¯̄ δm1 δm2 δm3
δn1 δn2 δn3
δp1 δp2 δp3

¯̄̄̄
¯̄ (7.30a)

=

¯̄̄̄
¯̄ δim δin δip
δjm δjn δjp
δkm δkn δkp

¯̄̄̄
¯̄ (7.30b)

Setting i = m gives the � δ identity (6.9):

�ijk�imn = δjmδkn − δjnδkm

7.3 Additional Reading
Malvern, pp. 40-44; Aris, Sec. A.8.
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Chapter 8

Change of Orthonormal
Basis

Consider the two coordinate systems shown in Figure 8.1: the 123 system with
base vectors e1, e2, e3 and the 102030 system with base vectors e01, e

0
2, e

0
3. In

Chapter 3 we noted that an orthogonal tensor is one that rotates a vector
without changing its magnitude. Thus we can use an orthogonal tensor to
relate the base vectors in the two systems.
The base vectors in the primed and unprimed systems are related by

e0j = A · ej (8.1)

where A is an orthogonal tensor. Forming the dot product in (8.1) gives

ei · e0j = cos(i, j0) = ei ·A · ej = Aij (8.2)

where cos(i, j0) is the cosine of the angle between the i axis and the j0 axis.
Thus, in the component Aij , the second subscript (j in this case) is associated
with the primed system. Either (8.1) or (8.2) leads to the dyadic representation

A = e0kek (8.3)

Because both the new system and the old system of base vectors is orthonormal

e0i · e0j = δij = (A · ei) · (A · ej)
=

¡
ei ·AT

¢
· (A · ej)

the product
AT ·A = I (8.4)

Thus, as also noted earlier, inverse of an orthogonal tensor is equal to its trans-
pose. In index notation, (8.4) is expressed as

AikAjk = AkiAkj = δij (8.5)
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e1

e2

e3

e1

e2


e3


Figure 8.1: Rotation of the base vectors ei to a new system e0i.
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(where the first expression results from noting that the product in (8.4) can be
taken in either order).
Consequently, the unprimed base vectors can be given in terms of the primed

by
em = A

T · e0m (8.6)

and
em · e0n = cos(m,n0) = e0n ·AT · e0m = AT

nm = Amn (8.7)

which agrees with (8.2). These properties reinforce the choice of the name
orthogonal for this type of tensor: it rotates one system of orthogonal unit
vectors into another system of orthogonal unit vectors.

8.1 Change of Vector Components
Now consider a vector v. We can express the vector in terms of components in
either system

v = viei = v0je
0
j (8.8)

since v represents the same physical entity. It is important to note that both
the vi and the v0j represent the same vector; they simply furnish different de-
scriptions. Given that the base vectors are related by (8.1) and (8.6), we wish
to determine how the vi and the v0j are related. The component in the primed
system is obtained by forming the scalar product of v with the base vector in
the primed system:

v0k = e0k · v = e0k · (viei) (8.9a)

= vie
0
k · ei (8.9b)

= viAik (8.9c)

The three equations (8.9) can also be represented as a matrix equation⎡⎣ v01
v02
v03

⎤⎦ = £ v1 v2 v3
¤⎡⎣ A11 A12 A13

A21 A22 A23
A31 A32 A33

⎤⎦ (8.10)

or, alternatively, as ⎡⎣ v01
v02
v03

⎤⎦ =
⎡⎣ A11 A21 A31

A12 A22 A32
A13 A23 A33

⎤⎦⎡⎣ v1
v2
v3

⎤⎦ (8.11)

Similarly, the components of v in the unprimed system can be expressed in
terms of the components in the primed system

vi = ei · v = ei · (v0ke0k) (8.12a)

= (ei · e0k) v0k (8.12b)

= Aikv
0
k (8.12c)
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or in matrix form
[v] = A [v0] (8.13)

Note that the tensor A rotates the unprimed base vectors into the primed
base vectors, according to (8.1), it is the components of AT that appear in the
matrix equation (8.11) as implied by the index form (8.9c). To interpret this
result in another way rewrite (8.9a) as

v0k = e0k · v
= (A · ek) · v
=

³
ek·AT

´
· v

= ek·
¡
AT · v

¢
Thus the v0k are the components of the vector A

T · v on the unprimed system.
This relation expresses the equivalence of rotating the coordinate system in one
direction relative to a fixed vector and rotating a vector in the opposite direction
relative to a fixed coordinate system.

8.2 Definition of a vector
Previously, we noted that vectors are directed line segments that add in a certain
way. This property of addition reflects that nature of addition for the physical
quanities that we represent as vectors, e.g. velocity and force. We now give
another definition of a vector. This definition reflects the observation that
the quantities represented by vectors are physical entities that cannot depend
on the coordinate systems used to represent them. A (cartesian) vector v
in three dimensions is a quantity with three components v1, v2, v3 in the one
rectangular cartesian system 0123, which, under rotation of the coordinates to
another cartesian system 102030 (Figure 8.1) become components v01, v

0
2, v

0
3 with

v0i = Ajivj (8.14)

where
Aji = cos(i

0, j) = e0i · ej (8.15)

This definition can then used to deduce other properties of vectors. For
example, we can show that the sum of two vectors is indeed a vector. If u and
v are vectors then t = u+ v is a vector because it transforms like one:

t0i = u0i + v0i = Ajiuj +Ajivj (8.16a)

= Aji(uj + vj) = Ajitj (8.16b)

8.3 Change of Tensor Components
Expressions for the components of F with respect to a different set of base
vectors, say e

0

k, also follow from the relations for vector components:

vk = Fklul (8.17)
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and

v0k = AmkFmnun (8.18a)

= AmkFmnAnlu
0
l (8.18b)

= F 0klu
0
l (8.18c)

Because this result applies for all vectors u and v

F 0kl = AmkFmnAnl (8.19)

where, as before,
Amk = em · e

0

k = cos(m, k
0
) (8.20)

This can be written in matrix form ash
F

0
i
=

⎡⎣ A11 A21 A31
A12 A22 A32
A13 A23 A33

⎤⎦⎡⎣ F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤⎦⎡⎣ A11 A12 A13
A21 A22 A23
A33 A32 A33

⎤⎦ (8.21)

or
[F 0] = [A]T [F ] [A] (8.22)

Similarly, the inversion is given by

Fij = AilAjkF
0
lk (8.23)

or
[F ] = [A] [F 0] [A]T (8.24)

The relations between components of a tensor in different orthogonal coordinate
systems can be used as a second definition of a tensor that is analagous to the
definition of a vector: In any rectangular coordinate system, a tensor is defined
by nine components that transform according to the rule (8.19) when the relation
between unit base vectors is (8.20).
As noted in Chapter 3, a symmetric tensor is one for which T = TT . Be-

cause this relation can be expressed in coordinate-free form, we expect that the
components are symmetric in any coordinate system. We can show this directly
for rectangular cartesian systems using the relation (8.19). If the components of
a tensor T are symmetric in one rectangular cartesian coordinate system, they
are symmetric in any rectangular cartesian system:

T = Tijeiej where Tij = Tji (8.25)

T 0kl = AikAjlTij = AikAjlTji (8.26)

= AjlAikTji = AilAjkTij = T 0lk (8.27)

8.4 Additional Reading
Malvern, Sec. 2.4, Part 1, pp. 25-30; Chadwick, pp. 13 - 16; Aris 2.1.1, A.6.
Reddy, 2.2.6.
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Chapter 9

Principal Values and
Principal Directions

As noted in Chapter 3 we discussed that a second order tensor operating on a
vector, say, u, produces another vector v, i.e.

T · u = v (9.1)

In general, the input vector u is not in the same direction as v. The output
vector v will be in the same direction as u if v = λu, where λ is a scalar.
Substituting in (9.1) yields

T · u = λu (9.2)

We also noted that if the inverse of T−λI exists then the only solution is u = 0.
. Only special values of λ and u will satisfy (9.1). These values have special
significance for the tensor. A value of λ that satisfies (9.2) is an eigenvalue
(principal value, proper number) of the tensor T and the corresponding vector
u is an eigenvector (principal direction). It is clear that if a vector u is a solution
of (9.2), then so is αu, where α is a scalar. Consequently, only the direction of
u is determined and, for this reason, it is convenient to make the eigenvectors
unit vectors μ = u/u.
In Chapter 3 we showed that for a symmetric second order tensor, the eigen-

values are real and the eigenvectors can be chosen to be orthogonal. If λK is
an eigenvalue and μK the corresponding eigenvector, then

T · μK = λK μK , (no sum on K) (9.3)

Forming the dot product with μK yields

μK ·T · μK = λK , (no sum on K) (9.4)

and forming the dot product with μL 6= μK yields

μL ·T · μK = λK(μL · μK) = 0, (no sum on K) (9.5)
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Therefore λK is the component of T in the coordinate direction μK . Because
the eigenvectors are orthonormal, they can be used as unit base vectors and T
has the dyadic representation

T = λI μIμI + λII μIIμII + λIII μIIIμIII (9.6)

Expressed differently, the matrix of components using a coordinate system
aligned with the principal directions is diagonal

T =

⎡⎣ λI 0 0
0 λII 0
0 0 λIII

⎤⎦ (9.7)

The dyadic representation of the tensor that rotates the original basis system
into one aligned with the principal directions is

A = μKek (9.8)

where the k’s are still summed even though one is upper case and one is lower.
Thus, the matrix form of A with respect to the ei base vectors has the compo-
nents of the principal directions as columns:

A = (μK)i eiek

where (μK)i is the ith component of the Kth eigenvector (relative to the ei
basis). Consequently, the principal values are given by

λK = μK ·T · μK , (no sum on K) (9.9)

Substituting (9.8) into (9.9) gives

λK = (μK)i ei ·T · (μK)j ej , (no sum on K)

= (μK)i Tij (μK)j , (no sum on K)

where, again, the summation convention applies even though one subscript is
upper case and one lower. In other words, using (9.8) as a coordinate transfor-
mation yields a diagonal form for the components of T.
Writing (9.2) in component form yields

Tijuj = λui (9.10)

and rearranging yields
(Tij − λδij)uj = 0 (9.11)

Because (9.11) represents three linear equations for the three components of u
and the right-hand side is zero, there is a nontrivial solution to (9.11) if and
only if

det |Tij − λδij | = 0 (9.12)
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We also showed in Chapter 7 that the inverse will not exist if this the deter-
minant vanishes (7.25). If this condition is met and there is a solution, then
there are infinitely many solutions for the ui corresponding to the indeterminate
magnitude of the vector u. This indeterminacy is eliminated by the convention
of making the eigenvector a unit vector. Expanding (9.12) yields

λ3 − I1λ
2 − I2λ− I3 = 0 (9.13)

where the coefficients are

I1 = trT =Tkk = T11 + T22 + T33 (9.14a)

I2 =
1

2
(TijTij − TiiTjj) =

1

2
(T : T− I21 ) (9.14b)

I3 = det(T) =
1

6
�ijk�pqrTipTjqTkr (9.14c)

Because the principal values are independent of coordinate system, so are the
coefficients in the characteristic equation used to determine them. These co-
efficients are scalar invariants of the tensor T (generally called the principal
invariants, since any combination of them is also invariant).
Using the principal axis representation of T (9.6) to form the inner product

of T with itself gives

T ·T = (λI)2 μIμI + (λII)
2
μIIμII + (λIII)

2
μIIIμIII (9.15)

and the triple product is

T ·T ·T = (λI)3 μIμI + (λII)
3 μIIμII + (λIII)

3 μIIIμIII (9.16)

Because each of the principal values satisfies (9.13) rearranging (9.16)for each
of the principal values, this can be written as

T ·T ·T = I1T ·T+ I2T+ I3I (9.17)

This is the Cayley-Hamilton theorem. A consequence is that TN , where N > 3
can be written as a sum of T ·T, T and I with coefficients that are functions
of the invariants. A useful expression for the determinant can be obtained by
taking the trace of (9.17) and rearranging

detT =
1

3
{tr(T ·T ·T)− I1tr(T ·T)− I2I1} (9.18)

Another useful expression results from multiplying (9.16) by T−1

T ·T = I1T+ I2I+ I3T
−1 (9.19)

9.1 Example

Tij =

⎡⎣ 7 0 −2
0 5 0
−2 0 4

⎤⎦ (9.20)
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det(T− λI) = (5− λ) [(7− λ)(4− λ)− 4] = 0 (9.21)

Therefore

λ2 − 11λ+ 24 = 0 (9.22a)

λ =
11±

√
121− 96
2

=
11± 5
2

= 8, 3 (9.22b)

λI = 8, λII = 5, λIII = 3 (9.22c)

Find eigenvectors
(Tij − λkδij)μ

(k)
j = 0 (9.23)

For λI = 8

−1μI1 + 0μI2 − 2μI3 = 0⇒ uI1 = −2μI3 (9.24a)

0 + (5− 8)μI2 − 0 = 0⇒ μI2 = 0 (9.24b)

−2μI1 + 0 + (4− 8)μI3 = 0⇒ μI1 = −2μI3 (9.24c)

Make μI a unit vector

(μI1)
2 + (μI2)

2 + (μI3)
2 = 1 (9.25a)

(4μI3)
2 + 0 + (μI3)

2 = 1⇒ μI3 = ±
1√
5

(9.25b)

μI = ∓ 2√
5
e1 + 0e2 ±

1√
5
e3 (9.25c)

λII = 5

(7− 5)μII1 + 0μII2 − 2μII3 = 0⇒ μII2 = ±1 (9.26a)

−2μII1 + 0 + (4− 5)μII3 = 0⇒ −2μII1 − μII3 (9.26b)

⇒ μII1 = 0, μII3 = 0 (9.26c)

μII = ±e2 (9.26d)

μIII = μI × μII for a right-handed system (9.27a)

= (∓ 2√
5
)(±1)(e1 × e2)±

1√
5
(±1)(e3 × e2) (9.27b)

=
−1√
5
e1 −

2√
5
e3 (9.27c)

T = λIμ
IμI + λIIμ

IIμII + λIIIμ
IIIμIII (9.27d)

The matrix with the components of the eigenvectors as columns is given by

[A] =

⎡⎣ 2/
√
5 0 1/

√
5

0 1 0

−1/
√
5 0 2/

√
5

⎤⎦
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Matrix multiplication can be used to verify that⎡⎣ 2/
√
5 0 −1/

√
5

0 1 0

−1/
√
5 0 −2/

√
5

⎤⎦⎡⎣ 7 0 −2
0 5 0
−2 0 4

⎤⎦⎡⎣ 2/
√
5 0 −1/

√
5

0 1 0

−1/
√
5 0 −2/

√
5

⎤⎦
=

⎡⎣ 8 0 0
0 5 0
0 0 3

⎤⎦
9.2 Additional Reading
Malvern, pp. 44- 46; Chadwick, Chap. 1, Sec. 4, pp. 24-25; Aris, 2.5; Reddy,
2.5.5.
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Chapter 10

Vector and Tensor Calculus

Typically, the vectors and tensors used in continuum mechanics will be functions
of position (as well as time). Consequently, it is necessary to develop expressions
for their changes with position. To introduce this subject, first consider a scalar
valued function

φ(x) =φ(x1, x2, x3) (10.1)

Figure 10.1 is analogous to a topographical map and shows three level surfaces;
that is, three surfaces on which the value of φ(x) is constant. Now consider
the change in φ as the position is changed from x to x + dx. To do so, write
dx = μds where μ is a unit vector in the direction of dx and ds is the magnitude
of dx. The change in φ is given by

dφ

ds
= lim

ds→0

φ (x+ μds)− φ (x)

ds
(10.2)

Writing
dφ

ds
= μ ·∇φ (10.3)

defines the gradient of φ as ∇φ. This representation (10.3) is coordinate free.
The left side can be expressed in cartesian coordinates as

dφ

ds
=

∂φ

∂xk

dxk
ds

(10.4a)

dφ

ds
=

µ
∂φ

∂xk
ek

¶
·
µ
dxl
ds
el

¶
(10.4b)

Noting that the second term in (10.4b) is the cartesian representation of μ
identifies the gradient of φ as

∇φ = el
∂φ

∂xl
= elφ,l (10.5)

where φ,l≡ ∂φ/∂xl. We can generalize and define a gradient operator as

∇ = ek
∂

∂xk
(10.6)
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n

dx

t

��

��

�


Figure 10.1: Schematic showing three level surfaces of the function φ. The
normal n and tangent t are also shown with the infinitesimal change of position
vector dx.
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If μ is any vector tangent to the level surface then there is no change in φ and

dφ

dt
= 0

where dt is an infinitesimal distance in the tangent direction. Hence ∇φ is
perpendicular to the level surface and in the direction n

∇φ = αn (10.7)

Noting that

μ=
dx

ds
= n (10.8)

yields
dφ

dn
= n· (∇φ) = n· (αn) = α (10.9)

Therefore,

∇φ=dφ

dn
n (10.10)

and ∇φ is in the direction n (normal to the surface) and has the magnitude
dφ/dn.
An expression for the result of applying the gradient operator to a vector v

follows naturally from the representation of tensors as dyadics. The result ∇v
is the tensor

∇v=(ek
∂

∂xk
)(vlel) =

∂vl
∂xk

ekel = ∂kvlekel (10.11)

The second equality follows because the base vectors have fixed magnitude (unit
vectors) and direction. The last equality introduces the notation ∂k (. . .) ≡
∂ (. . .) /∂xk. Using either this notation or (. . .) ,k is useful for keeping the sub-
scripts in the same order as the dyadic base vectors. The tensor (10.11) has
cartesian components in matrix form given by

[∇v] =

⎡⎣ ∂v1/∂x1 ∂v2/∂x1 ∂v3/∂x1
∂v1/∂x2 ∂v2/∂x2 ∂v3/∂x2
∂v1/∂x3 ∂v2/∂x3 ∂v3/∂x3

⎤⎦ (10.12)

To motivate this representation and demonstrate that the result is, in fact, a
tensor, consider the Taylor expansion of vector components

vi(xj) = vi(x
o
j) +

∂vi
∂xk

(xoj)(xk − xok) + ... (10.13)

or, in vector form,

v(x) = v(xo) + (x− xo) · 5v(xo) + ... (10.14)

(Note that the order of the subscripts in (10.13) dictates the position of (x− xo)
in (10.14).) Because ∇v associates a vector v(x)− v(xo) with a vector x− xo
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by means of a relation that is linear and homogeneous, it is a tensor. The
transpose of this tensor is

(∇v)T = ∂vi
∂xj

eiej = vi,jeiej (10.15)

The scalar product of ∇v and I yields the divergence of the vector v

∇v: I = ( ∂vi
∂xj

ejei) : (δklekel) =
∂vk
∂xk

(10.16)

This is a scalar that can also be obtained from the vector scalar product of ∇
and v

∇ · v = ∂vk
∂xk

(10.17)

If the vector v is the gradient of a scalar function φ, i.e., v = 5φ, then

∇ ·∇φ = (eh
∂

∂xh
) · (el

∂φ

∂xl
) = δkl

∂2φ

∂xk∂xl
=

∂2φ

∂xk∂xk
= ∇2φ

gives the Laplacian of φ. Forming the cross-product of ∇ and v yields the curl
of v

∇× v =

µ
ei

∂

∂xi

¶
× (vjej) =

∂vj
∂xi

(ei×ej) =
∂vj
∂xi

�ijkek (10.18a)

= ei∂jvk�ijk (10.18b)

Similar arguments can be used interpret the gradient of a tensor. A Taylor
expansion of the tensor T about xo yields

Tij(xk) = Tij(x
o
k) +

∂Tij
∂xl

(xok)(xl − xol ) + ... (10.19a)

∇ ·T = ek∂k · (Tlmelem) = δkl
∂Tlm
∂xk

em =
∂Tkm
∂xk

em (10.19b)

and identifies

∇T=(ei∂i)(Tjhejeh) =
∂Tjk
∂xi

eiejek

as a third order tensor. Forming the scalar and vector products of ∇ with T
yield

∇ ·T = ek∂k · (Tlmelem) = δkl
∂Tlm
∂xk

em =
∂Tkm
∂xk

em (10.20)

∇×T = ek∂k × (Tlmelem) =
∂Tlm
∂xk

�klnenem (10.21)

54 Do not distribute without permission



CHAPTER 10. VECTOR AND TENSOR CALCULUS

10.1 Example: Cylindrical Coordinates
Thus far, the orientations of base vectors have been fixed. The extension to more
general situations is guided by the notation. As a simple example, consider the
cylindrical coordinates with unit orthogonal base vectors er, eθ and ez as shown
in Figure 10.2. In cylindrical coordinates the gradient operator is given by

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
(10.22)

The first and third terms are the same form as in rectangular coordinates; the
middle term requires 1/r in order to make the dimensions of each term be the
reciprocal of length. Note that the unit vectors er and eθ are not fixed, but
change with θ:

er = cos θex + sin θey (10.23a)

eθ = − sin θex + cos θey (10.23b)
der
dθ

= − sin θex + cos θey = eθ (10.23c)

deθ
dθ

= − cos θex − sin θey = −er (10.23d)

Consequently, when applying the gradient operator to a vector in cylindrical
coordinates, it is necessary to include the derivatives of the base vectors:

∇ · v = (er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
) · (vrer + vθeθ + vzez) (10.24a)

=
∂vr
∂r

+ eθ
1

r

∂

∂θ
· (vrer + vθeθ) +

∂vz
∂z

(10.24b)

=
∂vr
∂r

+
vr
r
+
1

r

∂vθ
∂θ

+
∂vz
∂z

(10.24c)

Similar operations can be used to generate the cylindrical coordinate forms
for ∇× v, ∇2v, ∇v, and operations of the gradient on tensors.

10.2 Additional Reading
Malvern, Chapter 2, Section 2.5, pp. 48-62; Chadwick, Chapter 1, Section 10,
pp. 38-43; Aris 3.21-3.24; Reddy, 2.4.1 - 5.
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Figure 10.2: Base vectors in cylindrical coordinates depend on the angle θ.
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Chapter 11

Traction and Stress Tensor

11.1 Types of Forces

We have already said that continuum mechanics assumes an actual body can
be described by associating with it a mathematically continuous body. For
example, we define the density at a point P as

ρ(P ) = lim
∆V→0

∆m

∆V
(11.1)

where ∆V contains the point P and ∆m is the mass contained in ∆V . Contin-
uum mechanics assumes that it makes sense or, at least is useful, to perform this
limiting process even though we know that matter is discrete on an atomic scale.
More precisely, ρ is the average density in a representative volume around the
point P . What is meant by a representative volume depends on the material
being considered. For example, we can model a polycrystalline material with
a density that varies strongly from point-to-point in different grains. Alterna-
tively, we might use a uniform density that reflects the density averaged over
several grains.
Just as we have considered the mass to be distributed continuously, so also

do we consider the forces to be continuously distributed. These may be of two
types:

1. Body forces have a magnitude proportional to the mass, and act at a
distance, e.g. gravity, magnetic forces (Figure 11.1). Body forces are
computed per unit mass b or per unit volume ρb:

b(x) = lim
∆V→0

f

(∆V
(11.2)

The continuum hypothesis asserts that this limit exists, has a unique value,
and is independent of the manner in which ∆V → 0.
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�V

m = V��

f x( ,t)
x

Figure 11.1: Illustration of the force f(x, t) acting on the volume element ∆V .

2. Surface forces are computed per unit area and are contact forces. They
may be forces that are applied to the exterior surface of the body or they
may be forces transmitted from one part of a body to another.

Consider the forces acting on and within a body (Figure 11.2). Slice the
body by a surface R (not necessarily planar) that passes through the point Q
and divides the body into parts 1 and 2. Remove part 1 and replace it by the
forces that 1 exerts on 2. The forces that 2 exerts on 1 are equal and opposite.
Now consider the forces (exerted by 1 on 2) on a portion of the surface having
area ∆S and normal n (at Q). From statics, we know that we can replace
the distribution of forces on this surface by a statically equivalent force ∆f and
moment ∆m at Q. Define the average traction on ∆S as

∆t(avg) =
∆f

∆S
(11.3)

Now shrink C keeping point Q contained in C. Define traction at a point Q by

t(n) = lim
∆S→0

∆f

∆S
(11.4)

This is a vector (sometimes called “stress vector”) and equals the force per unit
area (intensity of force) exerted at Q by the material of 1 (side into which n
points) on 2. In addition, we will assume that

lim
∆S→0

∆m

∆S
= 0 (11.5)
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2

1

R

C
�S

n

�f�m

Q

Figure 11.2: The surface R passes through the point Q and divides the body
into two parts. The curve C contains Q and encloses an area ∆S. The unit
normal to the surface at Q is n. The net force exerted by 1 on 2 across ∆S is
∆f and the net moment is ∆m.
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This will necessarily be the case if the couple is due to distributed forces. The
theory of couple stresses does not make this assumption.
In taking the limit (11.4), we have assumed the following:

1. Body is continuous.
2. ∆f varies continuously.
3. No concentrated force at Q.
4. Limit is independent of the manner in which ∆S → 0 and the choice

of the surface ∆S as long as the normal at Q is unique.
Note that traction is a vector and will have different values for different

orientations of the normal n (through the same point) and different values at
different points of the surface.

11.2 Traction on Different Surfaces
The traction at a point depends on the orientation of the normal. More
specifically, the traction will be different for different orientations of the nor-
mal through the point. To investigate the dependence on the normal, we will
use Newton’s 2nd law X

F = m
dv

dt
(11.6)

where F is the force, m is the mass, and v is the velocity. Now apply this to a
slice of material of thickness h and area ∆S (Figure 11.3):

t(n)∆S + t(−n)∆S + ρb∆Sh = ρ∆Sh
dv

dt
(11.7)

where we have written the mass as ρ∆Sh. Dividing through by ∆S yields

t(n) + t(−n) + ρbh = ρh
dv

dt
(11.8)

Letting h→ 0 yields
t(n) = −t(−n) (11.9)

Thus, the traction vectors are equal in magnitude and opposite in sign on
two sides of a surface. In other words, reversing the direction of the normal to
the surface reverses the sign of the traction vector. We can express the traction
on planes normal to the coordinate directions t(ei) in terms of their components

t(e1) = T11e1 + T12e2 + T13e3 (11.10a)

t(e2) = T21e1 + T22e2 + T23e3 (11.10b)

t(e3) = T31e1 + T32e2 + T33e3 (11.10c)

These three equations can be written as

t(ei) = Tijej (11.11)
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Figure 11.3: Tractions acting on opposite sides of a thin slice of material.

where the first index i denotes the direction of the normal to the plane on which
the force acts and the 2nd index j denotes the direction of the force component.
We can also express the traction as the scalar prodct of ei with a tensor.

t(i) = ei · (Tmnemen) (11.12)

The term in parentheses is the stress tensor T and the Tij are its cartesian
components. T11, T22, T33 are normal stresses, and T12, T21, T32, T23, T31, T13 are
shear stresses. Typically, in engineering, normal stresses are positive if they
act in tension. In this case a stress component is positive if it acts in the
positive coordinate direction on a face with outward normal in the positive
coordinate direction or if it acts in the negative coordinate direction on a face
with outward normal in the negative coordinate direction (Note that for a bar in
equilibrium the forces acting on the ends of the bar are in opposite directions but
these correspond to stress components of the same sign.).Often, in geology or
geotechnical engineering, the sign convention is reversed because normal stresses
are typically compressive.
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x1

x2

x3

T11

T12

T13

T22

T21
T23

T32

T31T33

Figure 11.4: Illustrates the labelling of the components of the stress tensor.
Remember that the cube shown represents a point.

11.3 Traction on an Arbitrary Plane (Cauchy
tetrahedron)

Equation (11.10) gives the tractions on planes with normals in the coordinate
directions but we would like to determine the traction on a plane with a normal
in an arbitrary direction. Figure 11.5 shows a tetrahedron with three faces
perpendicular to the coordinate axes and the fourth (oblique) face with a normal
vector n. The oblique face has area ∆S and the area of the other faces can be
expressed as

∆Si = ni∆S (11.13)

The volume of the tetrahedron is given by

∆V =
1

3
h∆S (11.14)

where h is the distance perpendicular to the oblique face through the origin.
Appling Newton’s 2nd Law to this tetrahedron gives

t(n)∆S + (−t(i)∆Si) + ρb∆V = ρ∆V
dv

dt
(11.15)

In the second term, we have used (11.9) to express the sum of the forces acting
on the planes perpendicular to the negative of the coordinate directions. Divide
through by ∆S and let h→ 0. The result is

t(n) = t(i)ni = n1t
(1) + n2t

(2) + n3t
(3) (11.16)
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Figure 11.5: Tetrahedron with tractions acting on the faces.

Substituting (11.10) yields

t(n) = niTijej = n ·T (11.17)

This expression associates a vector t(n) with every direction in space n by means
of an expression that is linear and homogeneous and, hence, establishes T as a
tensor. Since the n appears on the right side we will drop it as a superscript on
t hereafter.
Because T is a tensor, its components in a rectangular cartesian system must

transform accordingly
T 0ij = ApiAqjTpq (11.18)

where
Api = e

0
i·ep (11.19)

11.4 Symmetry of the stress tensor
We can also show that T is a symmetric tensor (later, we will give a more gen-
eral proof) by enforcing that the sum of the moments is equal to the moment of
inertia multiplied by the angular acceleration for a small cuboidal element cen-
tered at (x1, x2, x3) with edges ∆x1, ∆x2 and ∆x3(not shown). For simplicity,
consider the element to be subjected only to shear stresses T12 and T21 in the
x1x2 plane. The moment of inertia about the center of this element is

I =
ρ

12
∆x1∆x2∆x3(∆x

2
1 +∆x

2
2) (11.20)
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Summing the moments yields∙
T12(x1 +

∆x1
2

, x2)∆x2 + T12(x1 −
∆x1
2

, x2)∆x2

¸
∆x2∆x3

1

2
∆x1(11.21)

−
∙
T21(x1, x2 +∆x2

1

2
) + T21(x1, x2 −

1

2
∆x2)

¸
∆x1∆x3

1

2
∆x2

= α
ρ

12
(∆x1∆x2∆x3)(∆x

2
1 +∆x

2
2)

where the∆x1/2 and∆x2/2 in the first two lines are the moment arms. Dividing
through by ∆x1∆x2∆x3 and letting ∆x1∆x2 → 0 yields

T21 = T12 (11.22)

and, similarly,
Tij = Tji (11.23)

Later we will give a more general derivation of this result and see that it does
not pertain when the stress is defined per unit reference (as distinguished from
current) area.

11.5 Additional Reading
Malvern, 3.1, 3.2; Chadwick, 3.3; Aris, 5.11 - 5.15; Reddy, 4.1-4.2.
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Principal Values of Stress

Because T is a symmetric tensor, we showed in Chapter 3 that it has three real
principal values with at least one set of orthogonal principal directions. Let
the principal values be σ1, σ2, σ3 and the corresponding principal directions be
n(1),n(2) and n(3). These satisfy (9.11), rewritten here in the current notation:

(Tij − σKδij)n
(K)
j = 0 (12.1)

Rearranging this equation shows that the directions n(K) are those for planes
having only normal tractions. We have already derived this equation, but we
will now rederive it by another approach. In doing so, we will show that two of
the principal values correspond to the largest and smallest values of the normal
stress on the plane with normal n. Thus, we want to find stationary values of
tn with respect to the direction n:

tn = n ·T · n = niTijnj (12.2)

Note that the ni are not independent but are subject to the constraint

n · n = nini = 1 (12.3)

We can incorporate this constraint by means of the Lagrange multiplier σ

∂

∂nk
{niTijnj − σ(nini − 1)} = 0 (12.4)

so that ∂ (. . .) ∂σ = 0 yields the constraint equation. Carrying out the differen-
tiation in (12.4) yields

∂ni
∂nk

Tijnj + niTij
∂nj
∂nk

− 2σni
∂ni
∂nk

= 0 (12.5)

Since ∂ni/∂nk = δik,
Tkjnj + niTik − 2σnk = 0 (12.6)
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or
(Tkj − σδkj)nj = 0 (12.7)

which is the same as (12.1). Therefore, the roots of

det |Tkj − σδkj | = 0 (12.8)

are the stationary values of tn. Denote these roots by

σ1 > σ2 > σ3 (12.9)

with corresponding principal directions n(1),n(2), and n(3).½
σ1
σ3

¾
is the

½
largest
smallest

¾
normal stress (12.10)

σ2 is a stationary value, i.e. the largest normal stress in the plane defined by
n(2) and n(3) and the smallest normal stress in the plane defined by n(1) and
n(2). If two of the principal values are equal, say, σ1 = σ3, then the direction
n(3) is unique, but any rotation about n(3) yields another set of principal axes.
From (9.13) we know that the principal values satisfy

σ3 − I1σ
2 − I2σ − I3 = 0 (12.11)

where the coefficients are given by (9.14) and other results from Chapter 9.2
also apply here.

12.1 Deviatoric Stress

It is often useful to separate the stress (or, indeed, any tensor) into a part with
zero trace, called the deviatoric part, and an isotropic tensor (An isotropic tensor
is one that has the same components in any rectangular cartesian coordinate
system. All isotropic tensors of order 2 are a scalar times the Kronecker delta).
The deviatoric stress is defined as

T 0ij = Tij −
1

3
δijTkk (12.12)

or

T0 = T− 1
3
(trT)I (12.13)

By construction, the trace of the deviator, the first invariant, vanishes

trT0 = 0 (12.14)

Unless the equation for the principal values (12.11) is easy to factor, it is
generally more convenient to solve numerically. It is, however, possible to obtain
a closed form solution in terms of the principal values of the deviatoric stress.
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Because the first invariant of the deviatoric stress vanishes (12.14), the equation
for the principal values becomes

s3 − J2s− J3 = 0 (12.15)

where s is the principal value and the invariants J2 and J3 are given by

J2 =
1

2
T 0ijT

0
ij (12.16a)

J3 = det(T 0ij) =
1

3
tr (T0 ·T0 ·T0) = 1

3
T 0ikT

0
klT

0
li (12.16b)

Making the substitution

s =

µ
4

3
J2

¶1/2
sinα (12.17)

in (12.15) and using some trigonometric identities yields

sin 3α =

√
27J3

2 (J2)
3/2

(12.18)

or

α =
1

3
arcsin

Ã √
27J3

2 (J2)
3/2

!
(12.19)

This yields one root of (12.15). Two roots are given by α± 2π/3.

12.2 Reading
Malvern, 3.3; Chadwick, 3.3; Aris, 5.11-5.14.
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Chapter 13

Stationary Values of Shear
Traction

We now want to make a calculation for the shear traction similar to that in the
preceding chapter for the normal traction. In particular, we want to determine
the largest value of the shear traction and the orientation of the plane on which
it occurs. The traction on a plane with a normal n can be resolved into a normal
component

tn = n · t (13.1)

where
t = n ·T (13.2)

and shear component ts
t(n) = (n · t)n+ tss (13.3)

where n · s = 0 (Figure 13.1). Rearranging as

tss = t
(n) − tnn (13.4)

and dotting each side with itself, yields the following expression for the magni-
tude of the shear traction

t2s = t
(n) · t(n) − t2n (13.5)

or, in component form in terms of the stress,

t2s = (npTpq)(nrTrq)− (npTpqnq)2 (13.6)

Just as we did for the normal stress, we want to let n vary over all directions
and find the largest and smallest values of the shear traction. Thus, we want to
find stationary values of the shear traction, subject to the condition

n · n = nknk = 1 (13.7)

71



CHAPTER 13. STATIONARY VALUES OF SHEAR TRACTION

Because the sign of the shear traction has no physical significance (unlike the
sign of the normal traction which indicates tension or compression), there is no
loss of generality in working with the square of the shear traction. To facilitate
the calculation, choose the principal directions as coordinate axes:

T =
X

σKeKeK = σIeIeI + σIIeIIeII + σIIIeIIIeIII (13.8a)

n =
X

nLeL (13.8b)

(Summation is indicated explicitly here since the subscript "K" apprears three
times in (13.8a).Then the traction on the plane with normal n is

t(n) = n ·T =
X

nLeL ·
X

σKeKeK

=
X

nKσKeK = nIσIeI + nIIσIIeII + nIIIσIIIeIII

The normal traction is

tn = n ·T · n =
X
k

n2KσK = n2IσI + n2IIσII + n2IIIσIII

and the shear traction is given by (13.5).Taking the derivative

∂

∂nL

©
t2s + λ (nKnK − 1)

ª
= 0 (13.9)

yields
nL
©
σ2L − 2σLtn + λ

ª
= 0 (no sum on L) (13.10)

Writing out the three equations for L = I, II, III gives

nI
©
σ2I − 2σItn + λ

ª
= 0 (13.11a)

nII
©
σ2II − 2σIItn + λ

ª
= 0 (13.11b)

nIII
©
σ2III − 2σIIItn + λ

ª
= 0 (13.11c)

There are three possible cases corresponding to the assumption that one, two,
or none of the nL are zero.
Case 1: Suppose, for example, that nII = nIII = 0, then nI = 1. Thus,

(13.11a) is the only non-trivial equation of (13.11) and reduces to

σ2I − 2σItn + λ = 0 (13.12)

But, for nII = nIII = 0, nI = 1

tn = σI (13.13)

and, consequently
λ = σ2I
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n

tnn

Figure 13.1: Traction on a plane with normal n resolved into shear and normal
components.

Substituting back into (13.6) yields

t2s = 0 (13.14)

Since the nK are in the principal directions, this result simply confirms that the
shear stress is zero on principal planes.
Case 2: Now suppose nI , nII 6= 0 and nIII = 0. Equation (13.11c) is

automatically satisfied and (13.11a, 13.11b) become

σ2I − 2σI(n2IσI + n2IIσII) + λ = 0 (13.15a)

σ2II − 2σII(n2IσI + n2IIσII) + λ = 0 (13.15b)

Eliminating λ yields

σ2I − 2σI(n2IσI + n2IIσII) = σ2II − 2σII(n2IσI + n2IIσII) (13.16)

and rearranging gives

(σI − σII) {σI + σII} = 2(σI − σII)n ·T · n (13.17)

Assuming σI 6= σII and substituting n2II = 1− n2I yields

n2I =
1

2
or nI = ±

1√
2

(13.18)
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and, consequently,

nII = ±
1√
2

(13.19)

Taking the plus signs and substituting into the expression for T 2ns gives

t2s =
X

n2kσ
2
k −

hX
(nkσknk)

i2
(13.20a)

=
1

2
(σ2I + σ2II)−

1

4
(σI + σII)

2 =
1

4
(σI − σII)

2 (13.20b)

or
(ts)max =

1

2
|σI − σII | (13.21)

Case 3: If all nk 6= 0, this implies that

σI = σII = σIII (13.22)

which contradicts the assumption that principal values are distinct and yields
t2s ≡ 0 on all planes.
Equation (13.21) gives the maximum traction on planes with normals in the

I and II plane. The same calculation yields corresponding results for normals
in the I and III and II and III planes.Therefore the absolute maximum value
of ts occurs on a plane whose normal makes a 45◦ angle with the principal
directions corresponding to the maximum and minimum principal stresses.

13.1 Additional Reading
Malvern, 3.3; Chadwick, 3.3; Aris, 5.11-5.14; Reddy, 4.3.3.
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Mohr’s Circle

Mohr’s circle provides a useful graphical illustration of how the traction varies
with the orientation of the plane on which it acts. In three dimensions, it is
most useful when the principal values of the stress are already known. If the
direction of one of the principal stresses is known, it not only provides a useful
graphical illustration but also an alternative means of calculating the other two
principal stresses and their directions. Here, the x3 direction is assumed to be
a principal direction (Figure 14.1) for the stress tensor and, consequently, it can
be written as

T = Tαβeαeβ + T33e3e3 (14.1)

where α, β = 1, 2. For the element shown in Figure 14.2, the normal and tangent
vectors are given by

n = cosαe1 + sinαe2 (14.2a)

s = − sinαe1 + cosαe2 (14.2b)

Note that when α = 0, tn = T11 and ts = T12 and when α = 90, tn = T22
and ts = −T12. This means that shear stress components tending to cause
a clockwise moment are plotted as negative in Mohr’s circle (even though the
shear stress components themselves may be positive). This difference in sign
results from the difference between the component of the traction, which is a
vector, and the component of the stress, which is a tensor. Alternatively, we
could have taken the positive s direction to be down the plane, in which case
the signs on the shear traction would be reversed. This choice governs whether
the rotation in the Mohr plane, which plots ts vs. tn, is in the same or the
opposite direction as the rotation in the physical plane. (Malvern describes
both conventions.)
The traction vector on the inclined plane is

t = n ·T (14.3a)

= cosα(T11e1 + T12e2) + sinα(T21e1 + T22e2) (14.3b)

75



CHAPTER 14. MOHR’S CIRCLE
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Figure 14.1: Element for analysis with Mohr’s circle. The x3 direction is a
principal direction.
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Figure 14.2: Tractions on an inclined plane.
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The normal and shear components of the traction are

tn = n ·T · n (14.4a)

= T11 cos
2 α+ T21 cosα sinα+ T12 sinα cosα+ T22 sin

2 α (14.4b)

= T11 cos
2 α+ T22 sin

2 α+ 2T21 cosα sinα (14.4c)

ts = n ·T · s (14.4d)

= − sinα cosαT11 − sin2 αT21 + cos2 αT12 + T22 cosα sinα (14.4e)

= (T22 − T11)(cosα sinα) + T12(cos
2 α− sin2 α) (14.4f)

By using the double angle formulas:

cos2 θ =
1

2
(1 + cos 2θ) (14.5a)

sin2 θ =
1

2
(1− cos 2θ) (14.5b)

sin 2θ = 2cos θ sin θ (14.5c)

the normal and shear components are rewritten as

tn =
1

2
(T11 + T22)−

1

2
(T22 − T11) cos 2α+ T12 sin 2α (14.6a)

ts =
1

2
(T22 − T11) sin 2α+ T12 cos 2α (14.6b)

Forming (∙
tn −

1

2
(T11 + T22)

¸2
+ t2s

)
= R2 (14.7a)

gives the equation of a circle in the plane ts vs. tn. The center of the circle is
at tn = 1

2(T11 + T22) and the radius is

R =

s∙
1

2
(T11 − T22)

¸2
+ (T12)2 (14.8)

The points on the circle give the values of ts and tn as the angle α varies.

14.1 Example Problem

Malvern, p.111 problem 3a:
σx = 55, σy = 15, τxy = 10.

center =
1

2
(σx + σy) = 35 (14.9a)

radius =

r
1

4
(55− 15)2 + 102 =

r
40× 40
4

+ 100 = 10
√
5 (14.9b)
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Figure 14.3: Mohr’s circle.
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σI = 35 +R = 5(7 + 2
√
5) (14.10a)

σII = 35−R = 5(7− 2
√
5) (14.10b)

tsmax = R = 10
√
5 (14.10c)

tan 2β =
10

20
=
1

2
⇒ 2β = 26.57⇒ β = 13.28 (14.10d)

14.2 Additional Reading
Malvern, Sec. 3.4-3.5, pp. 95-112.
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Chapter 15

Current and Reference
Configurations

Figure 15.1 shows two configurations of the body: The current configuration
at time t and the reference configuration at some time t0 ≤ t. The reference
configuration can be chosen for convenience in analysis. For example, for an
elastic body, it is often convenient to choose the reference configuration as the
configuration when the loads are reduced to zero. For an elastic-plastic body
or a fluid, it is often convenient to choose the reference configuration to coincide
with the current configuration.

Po(X) is the position of a material particle in the reference configuration.
The same material particle is located at P (x) in the current configuration. The
motion of the material particle is described by

x = f(X, t) (15.1)

or
x = f(X1,X2,X3, t) (15.2)

and is usually abbreviated
x = x(X, t) (15.3)

The notation (15.3), although ubiquitous, is a bit imprecise since x is used to
denote both the function f in (15.1) and its value for a particular X and t. In
words, these expressions say that “x is the position at time t of the particle
that occupied position X in the reference configuration at time t = to.” In this
description the xi are regarded as dependent variables; the Xi are independent
variables. Because each material particle occupies a unique position in the
reference configuration, the position X can be used as a label for the particle.
That is, different values of X correspond to different material particles. The
position x may, however, be occupied by different material particles at different
times.
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P( )x

V

t
(current configuration)

Vo

t = to

(reference configuration)

P ( )o X

x

X

Figure 15.1: Schematic of the reference and current configurations.

In principle, we can invert the motion to write the position in the reference
configuration X in terms of time and the current location x.

X = F(x, t) or X = X(x, t) (15.4)

Now we regard the xi as independent variables. Physically, it is plausible that
the motion can be inverted because each and every point in the reference con-
figuration corresponds to exactly one point in the current configuration. The
mathematical condition insuring that (15.1) can be inverted is

J =

¯̄̄̄
∂x

∂X

¯̄̄̄
=

¯̄̄̄
∂xi
∂Xj

¯̄̄̄
> 0 (15.5)

Later, we will show that this condition implies that small volume elements in
both the reference and current configurations are finite and positive.
When the Xi are used as independent variables, this is often called the

Lagrangian description. Because different values of X correspond to different
positions in the reference configuration and hence different material particles,
the Lagrangian description follows a material particle through the motion.
When the xi are used as the independent variables, the description is called

Eulerian. This point-of-view considers a fixed location in space and observes
how the material particles move past this location. Because a fixed value of
x refers to a fixed location, it does not correspond to a fixed material particle;
that is, different particles will move past this location as time evolves.
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If the motion, (15.1) or (15.3), is known, the velocity can be computed simply
as the rate of change of the location with time.

V(X, t) =
∂x

∂t
=

∂f

∂t
(X, t) (15.6)

Because ∂/∂t means to take the derivative with respect to time, while holding
the other arguments, i.e, X, fixed, (15.6) gives an expression for the velocity
of the particle that was located at X at time t0. (Note that this particle is not
now, at time t, located at X.) Thus, (15.6) is the Lagrangian description of the
velocity. To get the Eulerian description, substitute (15.4) into the argument
of v

v =
∂f

∂t
[F(x, t), t] =

∂f

∂t
(x, t)

¯̄̄̄
x=f(X,t)

= v(x, t) (15.7)

Now, consider any scalar poperty θ, e.g. temperature, density. The
Eulerian description is

θ = θ(x, t) (15.8)

and the Lagrangian description is

Θ = Θ(X, t) (15.9)

The derivative (15.8)
∂θ

∂t

¯̄̄̄
x fixed

(15.10)

gives the rate of change of θ at a fixed location in space. This is not the rate-
of-change of θ of any material particle because different particles occupy the
location x at time t. The derivative of (15.9)

∂Θ

∂t

¯̄̄̄
X fixed

(15.11)

does give the rate of change of Θ for a specific material particle.
Can we compute the rate-of-change of Θ for a material particle if we are

given only θ(x, t)? Mathematically, this can be expressed as follows:

∂Θ

∂t
(X, t) =

dθ

dt

¯̄̄̄
X= fixed

(15.12)

where these two expressions must be equal if they are evaluated for the same
particle at the same time. Because the right hand side is evaluated for fixed
X, the location of the particle, x, changes with time. Therefore, by the chain
rule of differentiation

∂θ

∂t
=

∂θ

∂t
(x, t)

¯̄̄̄
x fixed

+
∂θ

∂xi

∂xi
∂t

(15.13)
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Note that ∂xi/∂t is the component form of the velocity of a particle and ∂θ/∂xi
are the components of the gradient. Thus

dθ

dt
=

dθ

dt

¯̄̄̄
X fixed

=
∂θ

∂t

¯̄̄̄
x fixed

+ v(x, t) ·∇xθ (15.14)

gives the rate-of-change of θ following a material particle or the “material deriv-
ative.” Because holding x fixed in the first term on the right corresponds to the
usual meaning of the partial derivative, this notation is usually omitted.
Similarly, the rate of change can also be computed for a vector property

μ(x, t):
dμ

dt
(x, t) =

µ
∂μ

∂t

¶¯̄̄̄
x fixed

+ v · (∇μ) (15.15)

If μ = v, the velocity, then the material derivative gives the acceleration

a(x, t) =
dv

dt
(x, t) =

∂v

∂t
+ v ·∇v (15.16)

The Lagrangian description of the acceleration is

A(X, t) =
∂v(X, t)

∂t
(15.17)

The example of flow of an incompressible fluid down a converging channel illus-
trates the difference between the material derivative d/dt and ∂/∂t. In the first
example, Figure 15.2, the flow is steady. Consequently, ∂v/∂t = 0 because the
velocity does not change at any fixed location. But the acceleration dv/dt 6= 0
because material particles increase their velocity as they move down the chan-
nel. In the second example, Figure 15.3, the fluid is initially at rest. Then the
fan is turned on. Consequently, velocity of (different) particles passing a fixed
location changes with time, ∂v/∂t 6= 0.
When does ∂θ/∂t = dθ/dt for a property θ? This will be true if the second

term in (15.14) vanishes
v ·∇θ = 0 (15.18)

There are three possibilities. If v = 0 so that there is no motion. If ∇θ = 0 so
that θ is spatially uniform. The third is v is perpendicular to ∇θ.

15.1 Additional Reading
Malvern, Sec. 4.3, pp. 138-145; Chadwick, Sec. 2.1-2.1, pp. 50-57; Aris,
4.11-4.13; Reddy, Sec. 3.2.
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Figure 15.2: Example of steady flow down a converging channel. Because the
flow is steady, the velocity does not change at any fixed location, ∂v/∂t = 0.
But, because particles increase their velocity as they move down the channel
the acceleration is nonzero.

Figure 15.3: In this example, the material is initially at rest and then the fan
is turned on. Consequently, the velocity is changing at fixed spatial locations
and ∂v/∂t 6= 0.
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Chapter 16

Rate of Deformation

16.1 Velocity gradients

In some cases, the reference configuration is not of interest. We are not inter-
ested in the location of particles at some past time, but only the instantaneous
velocity field. For example, in the flow of a fluid, a configuration at a past time
is generally not useful (or even possible to identify). Consider a velocity field
v(x) as shown in Figure 16.1. Although the particles were at points P and Q in
the reference configuration, we are interested only in the instantaneous veloci-
ties of these points at their current locations p and q. The difference between
the velocities of a particle located at x and a particle located at x+ dx at the
current time is

dv = v(x+ dx)− v(x) (16.1)

or, in component form

dvk = vk(x+ dx)− vk(x) (16.2a)

=
∂vk
∂xl

dxl (16.2b)

The second line in (16.2b) can be rationalized by expanding vk(x + dx) in a
Taylor series and retaining only first terms (as we did earlier in defining the
gradient operator). We can write this result in coordinate-free form as

dv = L · dx = dx · LT (16.3)

where
L = v∇ = (∇v)T (16.4)

and is given in component form by

Lkl =
∂vk
∂xl

= vk,l (16.5)
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Q

dX

P
P

dx

q

v x( )

v x x v v( +d )= +d

Figure 16.1: Illustration of the velocity difference at points p and q in the current
configuration that are separated by an infinitesimal distance dx.

L is the (spatial) velocity gradient tensor. The expression after the first equality
sign in (16.4) is meant to keep the subscripts in the proper order for the cartesian
component form in (16.5) (important because L is, in general, not symmetric).
This notation is, however, awkward in that the gradient operator acts on the
velocity vector to the left. Malvern emphasizes this by putting an arrow to
the left above the gradient operator but this is a cumbersome notation. The
symmetric part of L

D =
1

2
(L+ LT ) (16.6)

is the rate-of-deformation tensor and the anti- or skew symmetric part of L

W =
1

2
(L− LT ) (16.7)

is the spin tensor or vorticity tensor

16.2 Meaning of D
The meaning of D can be established by considering the rate-of-change of the
length of an infinitesimal line segment dx. The length squared is given by

ds2 = dx · dx (16.8)

Differentiating with respect to time gives

2ds
d

dt
(ds) = dv · dx+ dx · dv (16.9)
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where we have used
d

dt
(dx) = dv (16.10)

Using (16.3) gives

= dx · LT · dx+ dx · L · dx (16.11a)

= 2dx ·D · dx (16.11b)

Dividing through by 2ds2 yields

1

ds

d

dt
(ds) =

d

dt
ln(ds) = n ·D · n (16.12)

Thus, n ·D · n is the fractional rate-of-extension in direction n =dx/ds. Nor-
mal components of D give the fractional rates-of-extension of line segments in
the coordinate directions. Since D is a symmetric tensor, it has three real prin-
cipal values with orthogonal principal directions. The same derivation used for
the stress tensor demonstrates that these principal values are stationary values
of n ·D · n over all orientations.
To investigate the meaning of the off-diagonal components of D consider

the rate-of-change of the scalar product between two infinitesimal line segments
dxA and dxB

dxA · dxB = dsAdsB cos θ (16.13)

where dsA and dsB are the lengths of dxA and dxB , respectively, and θ is the
angle between them. Taking the time-derivative of both sides

d

dt
(dxAdxB) =

d

dt
(dsAdsB cos θ) (16.14)

gives

dvA · dxB + dxA · dvB =
d

dt
(dsA)dsB cos θ + dsA

d

dt
(dsB) cos θ − dsAdsB sin θθ̇

(16.15)
Using (16.3) and regrouping yields

2
dxA
dsA

·D · dxB
dsB

=

½
1

dsA

d

dt
(dsA) +

1

dsB

d

dt
(dsB)

¾
cos θ − sin θθ̇ (16.16)

When θ = 90◦, the line segments are orthogonal and (16.16) reduces to

nA·D · nB = −
1

2
θ̇ (16.17)

Thus, the off-diagonal components give half the rate-of-decrease of the angle
between linear segments aligned with the coordinate directions.
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16.3 Meaning of W
SinceW is an anti-(or skew) symmetric tensor,W =−WT , it has only three
distinct components. These components can be associated with a vector w by
means of the following operation:

W · a = w× a (16.18)

where a is an arbitrary vector. The vector w is called the dual or polar vector
(of a skew symmetric tensor). To determine an expression for the components
of w write (16.18) in component form:

Winan = �imnwman (16.19)

Because this relation must apply for any vector a

Wij = �imjwm

Multiplying and summing both sides with �ipq and using the �−δ identity yields

�ijqWij = �ijq�imjwm (16.20a)

= −2wq (16.20b)

or
wq = −

1

2
�qipWip (16.21)

The polar vector can be related to the velocity field by substituting the
component form ofW into (16.21)

wi = −1
2
�ijk

1

2
(
∂vj
∂xk
− ∂vk

∂xj
) (16.22a)

= −1
4
�ijk∂kvj +

1

4
�ijk∂jvk (16.22b)

=
1

2
�ijk∂jvk (16.22c)

w =
1

2
(∇× v) (16.22d)

The right side of (16.22d) is called the vorticity. If w = 0, so does the vorticity
and the velocity field is said to be irrotational. Because

∇×∇φ = 0 (16.23)

for any scalar field φ, if the velocity field is irrotational, the velocity vector can
be represented as the gradient of a scalar field, i.e., v =∇φ.
Now, suppose D ≡ 0. Then

dv =W · dx (16.24)
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or, in component form,

dvp = Wpqdxq (16.25a)

= �iqpwidxq = �piqwidxq (16.25b)

dv = w × dx (16.25c)

Hence, local velocity increment is a rigid spin with angular velocity w.

16.4 Additional Reading
Malvern, Sec. 4.4, pp. 145-154;Chadwick, Sec. 2.3, pp. 58-67; Aris, 4.41-4.5;
Reddy, 3.6.1.
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Chapter 17

Geometric Measures of
Deformation

In the preceding chapter we were concerned only with the instantaneous rate-of-
deformation and spin in the current configuration. Now we want to compare the
geometry in the current configuration with that in the reference configuration.

17.1 Deformation Gradient
As indicated in Figure 17.1, an infinitesimal line segment in the reference con-
figuration dX is mapped into an infinitesimal line segment in the current con-
figuration dx by

dxk =
∂xk
∂Xm

dXm (17.1)

where ∂xk/∂Xm are components of the deformation gradient tensor :

Fkm =
∂xk
∂Xm

(X) (17.2)

In coordinate-free notation

dx = F·dX = dX · FT (17.3)

The tensor F contains all information about the geometry of deformation.

17.2 Change in Length of Lines
The square of the length of an infinitesimal line segment dx in the current
configuration is given by its scalar product with itself:

(ds)2 = dx · dx = (dX · FT ) · (F · dX) (17.4a)

= dX · (FT · F) · dX (17.4b)
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reference current

e1

e2

e3

X

x

P
p

dX dxQ
q

Figure 17.1: Infinitesimal line segments in the reference and current configura-
tions.

N = dX/dS is a unit vector in the direction of the infinitesimal line segment
dX in the reference configuration. Now (17.4b) can be written asµ

ds

dS

¶2
= N · (FT · F) ·N (17.5)

where
dS = (dX · dX) 12 (17.6)

is the length of the line segment in the reference configuration. The ratio

ds

dS
= Λ(N) (17.7)

defines the stretch ratio. The tensor

C = FT · F (17.8)

is called the Green deformation tensor (Malvern) or the right Cauchy-Green
tensor (Truesdell & Noll). Note that C is symmetric:

CT = (F
T ·F)T = FT ·FT

T

= FT ·F = C (17.9)
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Because each line segment in the current configuration must originate from
a line segment in the reference configuration, the tensor F possesses an inverse:

dX = F−1·dx = dx · F−1T (17.10)

Consequently, it is possible to calculate the reciprocal of the ratio (17.5) in terms
of F−1:

(dS)2 = dX · dX = dx · (F−1T · F−1) · dx (17.11)

or µ
dS

ds

¶2
= n · (F−1T · F−1) · n (17.12)

where n = dx/ds is a unit vector in the direction of the line segment in the
current configuration. The inverse of the tensor

B = F · FT (17.13)

is equal to the product in parentheses on the right side of (17.12). The tensor
B−1= (F−1T ·F−1) (often denoted c) is called the Cauchy deformation tensor
by Malvern. Its inverse B is called the left Cauchy-Green tensor by Truesdell
and Noll.
The stretch ratio (17.7) can be expressed as

Λ =
ds

dS
=
√
N ·C ·N (17.14)

Because C is symmetric and positive definite, it possesses three real positive
principal values, which are squares of the principal stretch ratios, ΛI , ΛII , ΛIII ,
with corresponding principal directions NI , NII , NIII . As shown earlier, the
principal stretches include the largest and smallest values of the stretch ratio.
Thus, C has the principal axes representation

C = Λ2ININI + Λ
2
IINIINII + Λ

2
IIINIIINIII (17.15)

17.3 Change in Angles

The angle θ between two line segments dxA and dxB in the current configuration
is given by

cos θ =
dxA · dxB
|dxA| |dxB|

(17.16a)

=
dXA · FT · F · dXBp
dXA · FT · F · dXA

1p
dXB · (FT · F) · dXB

(17.16b)

=
NA ·C ·NB

(NA ·C ·NA)
1
2 (NB ·C ·NB)

1
2

(17.16c)
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dXB

dXA

dxA

�
dxB �

current

reference

Figure 17.2: Angle Θ between two infinitesimal line segments in the reference
configuration changes to θ in the current configuration.

The terms in the denominator of (17.16c) are the stretch ratios in the directions
NA and NB. Define the shear as the change in angle between line segments in
the directions NA, NB in the reference configuration.

γ(NA,NB) = Θ− θ (17.17)

where
cosΘ = NA ·NB (17.18)

Using (17.16c), this gives

cos(Θ− γ) =
NA·C ·NB√

NA·C ·NA

√
NB·C ·NB

(17.19)

In the special case, Θ = 90◦, cos(90◦−γ) = sin γ. Note that if NA and NB are
principal directions, γ = 0 (because NA·C ·NB = Λ

2NB ·NA = 0). Therefore
principal directions in the reference configuration deform into principal direc-
tions in the current configuration.

17.4 Change in Area

An oriented element of area in the reference configuration is given by

NdA = dXA × dXB (17.20a)

= ei�ijk(dXA)j(dXB)k (17.20b)

and is deformed into
nda = dxA × dxB (17.21)
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in the current configuration. Substituting (17.3) into the component form of
(17.21)

nida = �ijk(dxA)j(dxB)k (17.22a)

yields
nida = �ijk [Fjr(dXA)r] [Fks(dXB)s]

Multiplying both sides by Fit then gives

niFitda = [�ijkFitFjrFks] (dXA)r(dXB)s (17.23)

The term in square brackets can be written in terms of the determinant of F
(7.16). The result is

nida = �rst det(F)Fit(dXA)r(dXB)s (17.24)

Reverting back to coordinate free notation gives

n · Fda = det(F)dXA × dXB (17.25a)

= det(F)NdA (17.25b)

and then multiplying (from the right) by F−1 gives Nanson’s formula

nda = det(F)(N · F−1)dA (17.26)

17.5 Change in Volume
An element of volume in the reference configuration is given by the scalar triple
product of three line segments dXA, dXB, and dXC

dV = dXA · (dXB × dXC) = �ijk(dXA)i(dXB)j(dXC)k (17.27)

Similarly, an element of volume in the current configuration is

dv = dxA · (dxB × dxC) = �rst(dxA)r(dxB)s(dxC)t (17.28)

Substituting (17.3) gives

dv = �rstFri(dXA)iFsj(dXB)jFtk(dXC)k

= �rstFriFsjFtk(dXA)i(dXB)j(dXC)k

Again using (7.16) gives

dv = det(F)�ijk(dXA)i(dXB)j(dXC)k

= det(F)dXA · (dXB × dXC)

Hence,
dv

dV
= det(F) (17.29)

or
ρo
ρ
= det(F) (17.30)
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17.6 Additional Reading
Malvern, 4.5, pp. 154-157, pp. 164-170; Chadwick, Chapter 2, Sec. 3; Reddy,
3.3, 3.4.1.
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Chapter 18

Polar Decomposition

In the discussion of shear and angle change, we noted that a triad in the direc-
tions of principal stretches remains orthogonal after deformation. That is, the
shear is zero for two lines in the principal directions in the reference configura-
tion. Consequently, we can imagine the deformation to occur in the two steps
shown schematically in Figure 18.1: First a pure deformation that stretches line
elements in the principal directions to their final length; then a rotation that
orients these line elements in the proper directions in the current configuration.
The deformation is given by

dx0 = U · dx (18.1)

Because U is the tensor that stretches line elements in the principal directions,
it has the same principal directions as C and has principal values that are equal
to the principal stretch ratios. Hence, the principal axis representation of U is

U = ΛININI + ΛIINIINII + ΛIIINIIINIII (18.2)

whereU = UT . Note that in generalU will cause changes in the angles between
lines that are not oriented in the principal directions.
Then the principal directions in the reference configuration are rotated into

their proper orientation in the current configuration:

dx = R · dx0 (18.3)

If R is an orthogonal tensor corresponding to a pure rotation, the lengths of
line segments will be preserved. Thus,

dx · dx = dx0 · dx0 (18.4a)

= dx0 ·RT ·R · dx0 (18.4b)

Therefore
RT ·R = I (18.5)
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NII

NI
NIII

Pure
deformation:

Pure rotation:

�II IIN

�I IN
�III IIIN

�II InI

�I In

�III IIIn

Reference Config

Current Config

Figure 18.1: Illustration of the polar decomposition of deformation into a pure
stretching and a pure rotation.
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and R is an orthogonal tensor, i.e.,

R−1= RT (18.6a)

Combining (18.1) and (18.3) yields

dx = F · dX = (R ·U) · dX (18.7)

Thus, the deformation tensor is decomposed into the product of a deformation
tensor and a rotation tensor:

F = R ·U (18.8)

Substituting (18.8) into the expression for the Green deformation tensor
(17.8) gives

C = FT · F = (R ·U)T · (R ·U) (18.9a)

= UT ·RT ·R ·U = UT ·U = U2 (18.9b)

Formally, we can write U =
√
C, but this operation can be carried out only

in principal axis form. In order to calculate the components of U from C it
is necessary to express C in principal axis form, take the square roots of the
principal values, then convert back to the coordinate system of interest.
Alternatively, we could have rotated first, then stretched. This leads to

dx = V ·R · dX (18.10)

where
V = λInInI + λIInIInII + λIIInIIInIII (18.11)

and
nK = R ·NK (18.12)

Thus, the rotation tensor is given by dyad

R = nKNK (18.13)

and U and V are related by

V = R ·U ·RT (18.14)

Thus, U and V have the same principal values but their principal directions are
related by the rotation tensor R.
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Chapter 19

Strain Tensors

19.1 Material Strain Tensors
A material strain tensor is defined by the following requirements

1. Has the same principal axes as U;

2. Vanishes when the principal stretch ratios are unity;

3. Agrees with the small strain tensor.

The first requirement constrains a material strain tensor to have the form

E = f(ΛI)NINI + f(ΛII)NIINII + f(ΛIII)NIIINIII (19.1)

where theNK are the principal directions of U, the ΛK are the principal stretch
ratios (the square root of the principal values of C) and f(Λ) is a smooth and
monotonic, but otherwise arbitrary, function. By construction, a material strain
tensor is symmetric, E = ET . The second requirement restricts the value of
f(1) = 0 so that E = 0 when U = I. The last requires f 0(1) = 1 so that E
agrees with the small strain tensor. To demonstrate this, expand f(Λ) about
Λ = 1:

f(Λ) = f(1) + f 0(1)(Λ− 1) + 1
2
f 00(1)(Λ− 1)2... (19.2)

Thus, the principal values of E reduce to change in length per unit (reference)
length for principal stretches near unity.
The most common choice for the scale function f(Λ) is

f(Λ) =
1

2
(Λ2 − 1) (19.3)

Subsituting (19.3) into (19.1) and combining terms defines the Green (La-
grangian) strain tensor

EG =
1

2
(U2−I) (19.4)
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This is a convenient choice because U2 can be calculated directly from the
deformation tensor F

EG =
1

2
(FT ·F− I) (19.5)

Determining U (or any odd power of U) requires first finding the principal
values and directions. For arbitrary stretch ratios, the normal components of
the Green-Lagrange strain do not give change in length per unit reference length
but, as indicated by (19.3) the current length squared minus the reference length
squared divided by the reference length squared.
The component form of (19.5) is

EG
ij =

1

2
(FT

ikFkj − δij) =
1

2
(FkiFkj − δij) (19.6)

or using

Fkl =
∂xk
∂Xl

(19.7)

gives

EG
ij =

1

2
(
∂xk
∂Xi

∂xk
∂Xj

− δij) (19.8)

EG
ij can be expressed in terms of the displacement components uk by noting
that xk = Xk + uk

EG
ij =

1

2
(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xj

∂uk
∂Xi

) (19.9)

Although the choice (19.3) is the most common choice for the scale function,
there are many other possibilities. Perhaps the most obvious extension of small
strain is to choose

f(Λ) = Λ− 1 = change in length
reference length

(19.10)

Using (19.1) to convert to tensor form yields

E(1)= U− I

This is a finite strain measure that was introduced and used by Biot, but has
the drawback that it cannot be expressed directly in terms of F.
Another possibility corresponds to defining normal strains as change in

length per unit current length:

f(Λ) = 1− Λ−1 = change in length
current length

(19.11a)

⇒ E(−1) = I−U−1 (19.11b)

Still another possibility is logarithmic strain, often thought to be the most
appropriate large strain measure for uniaxial bar tests. This one-dimensional
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measure can be extended to a tensor version in a manner similar to other finite
strains:

f(Λ) = lnΛ (19.12)

This leads to
E(ln) = lnU

Thus E(ln) has the same principal directions as U but principal values that are
the logarithms of the principal stretches. (Note that for axes that are not aligned
with the principal directions, the components of E(ln) are not the logarithms of
the components of U). Another expression for E(ln) is obtained by using the
series expansion for lnΛ

lnΛ = ln [1 + (Λ− 1)] = (Λ− 1)− 1
2
(Λ− 1)2 + 1

3
(Λ− 1)3 − ... (19.13)

Substituting into (19.1) to form the tensor gives

E(ln) = lnU

= ln(ΛI)NINI + ln(ΛII)NIINII + ln(ΛIII)NIIINIII

= U− I− 1
2
(U− I)2 + ...

Seth and Hill noted that all of these strain measures are included as special
cases of one based on

f(Λ) =
1

m
(Λm − 1) (19.14)

If m is even, the strain can be written directly in terms of the deformation
gradient. The limit m→ 0 yields the logarithmic strain measure.

19.1.1 Additional Reading

Malvern, pp. 158-161; Sec. 4.6, pp. 172-181; Chadwick, Chapter 1, Sec. 8, pp.
33-35; Chapter 2, Sec. 4, pp. 67-74; Reddy, 3.4.2 - 3.

19.2 Spatial Strain Measures
We can define a class of spatial strain measures in a manner analogous to the
material strain measures. These are not, however, material strain measures
in the sense that their rate does not vanish when the rate of deformation D
vanishes. Spatial strain measures have the following properties:

1. Same principal axes as V

e = g(λI)nInI + g(λII)nIInII + g(λIII)nIIInIII (19.15)

where here we use a lower case λ to indicate that we are working in the
current configuration.
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2. Vanish when all principal stretches are unity.

g(1) = 0 (19.16)

3. Agree with small strain
g0(1) = 1 (19.17)

Recall that
F = R ·U = V ·R (19.18)

and, hence, V is related to U by

V = R ·U ·RT (19.19)

The most commonly used spatial strain measure is the Almansi strain cor-
responding to the scale function

g(λ) =
1

2
(1− λ−2) (19.20)

Converting to tensor form yields

E∗ =
1

2

n
I−V(−1)T ·V−1

o
(19.21)

To express E∗ in terms of the deformation gradient, note that

F−1 = (V ·R)−1 = R−1·V−1 = RT ·V−1 (19.22)

and therefore
V−1 = R · F−1 (19.23)

Substituting into (19.21) yields

E∗ =
1

2

n
I−F(−1)T ·F−1

o
(19.24)

Expressing this in terms of cartesian components gives

E∗ij =
1

2

n
δij − F−1

T

ik F−1kj

o
(19.25)

=
1

2

n
δij − F−1ki F

−1
kj

o
(19.26)

The components of E∗ can be expressed in terms of the displacements compo-
nents by noting that

xm = Xm + um ⇒ Xm = xm − um (19.27)

where now the displacements are regarded as functions of spatial position x
(Eulerian description) rather than position in the reference configuration X.
Hence, the components of F−1 are

F−1mn =
∂Xm

∂xn
(19.28)
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or, in terms of the displacements,

F−1mn = δmn −
∂um
∂xn

(19.29)

Substituting into (19.26) yields

E∗ij =
1

2

½
∂ui
∂xj

+
∂uj
∂xi
− ∂uk

∂xi

∂uk
∂xj

¾
(19.30)

Comparing with the component expression for the Green-Lagrange strain (19.9),
note the change in sign of the last term and that derivatives are with respect
to position in the current configuration. Neglecting the last, nonlinear terms
reduces to the expression for small strain in which the distinction between the
current and reference positions is neglected. For comparison, the component
form of the material strain based on the scale function f(Λ) = 1

2(1− Λ−2) is

E
(−2)
ij =

1

2

½
∂ui
∂xj

+
∂uj
∂xi
− ∂ui

∂xk

∂uj
∂xk

¾
(19.31)

which differs from the Almansi strain (19.30) only in how the last term is
summed. Similarly, the component form of the spatial strain measure based
on g(λ) = 1

2(λ
−2 − 1) is

e
(2)
ij =

1

2
(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂ui
∂Xk

∂uj
∂Xk

) (19.32)

19.3 Relations between D and rates of EG and
U

19.3.1 Relation Between ĖG and D

Because D expresses the rate-of-deformation, we should expect that there is a
relation between D and the rate-of-strain, in particular, the rate of the Green-
Lagrange strain. To derive this relation, recall that the definition of the velocity
gradient tensor is

dv = L · dx (19.33)

Differentiating the relation
dx = F · dX (19.34)

yields another expression for dv:

dv = Ḟ · dX (19.35)

Substituting from (19.34) for dx into (19.33), and comparing the result with
(19.35) yields

Ḟ = L · F (19.36)
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Differentiating the expression for the Green-Lagrange strain

EG =
1

2

©
FT · F− I

ª
(19.37)

gives

ĖG =
1

2

n
ḞT · F+FT · Ḟ

o
(19.38)

Substituting (19.36) gives

ĖG =
1

2

n
(L · F)T · F+FT · (L · F)

o
(19.39)

= FT ·
½
1

2

¡
LT + L

¢¾
· F (19.40)

= FT ·D · F (19.41)

Thus, ĖG = 0 when D = 0. This is a property of any material strain tensor
(their rate vanishes when D = 0) and, hence, reinforces the interpretation of
them as material strain measures.
Rates of the spatial strain measures do not vanish when D vanishes. For

example, consider the rate of the Almansi strain (19.24)

Ė∗ = −1
2

½
d

dt

¡
F−1T

¢
·F−1 +F−1T · d

dt

¡
F−1

¢¾
(19.42)

In order to calculate the rate of F−1, begin with

F−1·F = I (19.43)

Differentiating yields
d

dt

¡
F−1

¢
·F+F−1·Ḟ = 0 (19.44)

and then solving for d
¡
F−1

¢
/dt gives

d

dt

¡
F−1

¢
= −F−1·Ḟ · F−1 (19.45)

or, using (19.36),
d

dt

¡
F−1

¢
= −F−1·L (19.46)

This illustrates the general procedure for determining the dervative of the inverse
of a tensor. Since

Ė∗ =
1

2

©
LT · F−1T · F−1 +F−1T · F−1 · L

ª
Substituting

F−1T · F−1 = I− 2E∗ (19.48)
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gives
Ė∗ = D− LT ·E∗ −E∗ · L (19.49a)

Note that when D = 0, Ė∗ does not vanish but equals

Ė∗ = 0−WT ·E∗ −E∗ ·W (19.50)

Consequently, Ė∗ depends on the spin and would not be suitable for use in a
constitutive relation. This motivates the definition of a special rate that does
vanish when D = 0

5
E

∗

= Ė∗ +WT ·E∗ +E∗ ·W (19.51a)

19.3.2 Relation Between D and U̇

We can also examine the relation between D and U̇. Using the first of (19.18)
in

L = Ḟ · F−1 (19.52)

gives

L = Ḟ · F−1 (19.53a)

= (Ṙ ·U+R · U̇) · (R ·U)−1 (19.53b)

= (Ṙ ·U+R · U̇) · (U−1 ·RT ) (19.53c)

= Ṙ ·RT +R · U̇ ·U−1 ·RT (19.53d)

The first term Ṙ ·RT is anti-symmetric. To demonstrate this differentiate

R ·RT = I (19.54)

to get

Ṙ ·RT +R · ṘT = 0 (19.55a)

Ṙ ·RT = −(Ṙ ·RT )T (19.55b)

Substituting (19.53d) into

D =
1

2
(L+ LT ) (19.56)

yields

D =
1

2
R ·

n
U̇ ·U−1 +U−1T · U̇T

o
·RT (19.57)

Similarly, subsituting into

W =
1

2
(L− LT ) (19.58)

yields

W = Ṙ ·RT +
1

2
R ·

n
U̇ ·U−1 −U−1T · U̇T

o
·RT (19.59)

19.3.3 Additional Reading

Malvern, Sec. 4.5; Reddy, 3.4.2, 3.6.2.

111 Do not distribute without permission



CHAPTER 19. STRAIN TENSORS

112Do not distribute without permission



Chapter 20

Linearized Displacement
Gradients

We now want to specialize the deformation and large strain measures to the
case of infinitesimal displacement gradients. As expected, these will reduce to
the usual expressions for “small” strain.
The displacement is the difference between the positions in current and ref-

erence configurations
u = x−X (20.1)

or, in component form,
uk = xk −Xk (20.2)

The deformation gradient tensor is then

Fij =
∂xi
∂Xj

= δij +
∂ui
∂Xj

(20.3)

or, in symbolic, coordinate-free form

F = I+ u5 (20.4)

where u5 = (5u)T is the displacement gradient tensor (Again, although the
gradient symbol is placed to right of the vector, the operator acts to the left).
We have shown that all the geometric measures of deformation, changes in the
length of lines, changes in angles and changes in volume can be expressed in
terms of the Green deformation tensor (17.8)

C = U2 = (FT · F) (20.5)

Expressing C in terms of the displacement gradient yields

C = I+ (5u)T + (5u) + (5u) · (5u)T (20.6)
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reference current

x
X

u

Figure 20.1:
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or, in component form,

Cij = FkiFkj =

µ
δki +

∂uk
∂Xj

¶µ
δkj +

∂uk
∂Xj

¶
(20.7a)

= δij +

µ
∂ui
∂Xj

+
∂uj
∂Xi

¶
+

∂uk
∂Xi

∂uk
∂Xj

(20.7b)

Assume that the magnitude of the displacement gradient is much less than unity¯̄̄̄
∂ui
∂Xj

¯̄̄̄
<< 1 (20.8)

and define infinitesimal (small) strain tensor as

�ij =
1

2

µ
∂ui
∂Xj

+
∂uj
∂Xi

¶
= �ji (20.9a)

² =
1

2

³
5u+(5u)T

´
(20.9b)

Because of the assumption (20.8), the last terms in (20.6) and (20.7b) can be
neglected. Thus,

C = I+ 2² (20.10)

or
Cij = δij + 2�ij (20.11)

Now use these to linearize the geometric measures of deformation and express
them in terms of the infinitesimal strain tensor.

20.1 Linearized Geometric Measures

20.1.1 Stretch in direction N

The stretch ratio in direction N is given by (GeoMeaDef14). Substituting
(20.10) and linearizing yields

Λ = {N · (I+ 2²) ·N}
1
2 =
√
1 + 2N · ² ·N ' 1 +N · ² ·N+ ... (20.12a)

Using the linear term in the binomial expansion

(1 + x)n ' 1 + nx+ ... (20.13)

gives
Λ ' 1 +N · ² ·N+ ... (20.14)

Therefore, the normal components of the infinitesimal strain tensor give the
change in length of a line in the N direction in the reference configuration:

N · ² ·N = Λ− 1 (20.15)

For example, if N = e1, then �11 is the change in length of a line segment
originally in X1 direction divided by original length.
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20.1.2 Angle Change

The current angle between lines that were in directions NA and NB in the
reference configuration is given by (17.16c)

cos θ =
NA ·C ·NB

ΛAΛB
(20.16a)

where
NA ·NB = cosΘ (20.17a)

Writing the current angle in terms of the original angle and the change

γ = Θ− θ (20.18)

gives

cos {Θ− γ} = NA ·C ·NB

ΛAΛB
(20.19)

When NA and NB are orthogonal, i.e., NA· NB = 0, (20.19) reduces to

sin γ =
NA ·C ·NB

ΛAΛB
(20.20)

Approximating sin γ by γ, substituting (20.10) and (20.12a), and linearizing
yields

γ =
NA · {I+ 2²+ ...} ·NB

{1 +NA · ² ·NA + ...} {1 +NB · ² ·NB}
' 2NA · ² ·NB (20.21)

For example, if NA = e1 and NB = e2, γ = 2ε12. Therefore, ε12 is one-half the
change in angle between lines originally in “1” and “2” directions.

20.1.3 Volume change

The ratio of volume elements in the current and reference configurations is given
by

dv

dV
= det(F) (20.22)

Substituting (20.3) and expanding the determinant yields

dv

dV
= �ijk

µ
δi1 +

∂ui
∂X1

¶µ
δj2 +

∂uj
∂X2

¶µ
δk3 +

∂uk
∂X3

¶
(20.23)

Carrying out the multiplication but keeping only the linear terms in the dis-
placement gradient components gives

dv

dV
= �123 +

∂ui
∂X1

�ijkδj2δk3 +
∂uj
∂X2

δi1δk3�ijk +
∂uk
∂X3

δi1δj2�ijk + ...

= 1 +
∂u1
∂X1

+
∂u2
∂X2

+
∂u3
∂X3

(20.24a)

= 1 + ε11 + ε22 + ε33 (20.24b)

Thus, the change in volume divided by reference volume is the trace of the small
strain tensor.
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20.2 Linearized Polar Decomposition
The polar decomposition is given by (18.8)

F = R ·U (20.25a)

where F is given by (20.3) or (20.4). To determine the linearized form of U =√
C, begin by expressing C in principal axis form

C = (1 + 2εI)NINI + (1 + 2εII)NIINII + (1 + 2εIII)NIIINIII (20.26)

and obtaining
U =

√
C =

√
1 + 2εININI + ... (20.27a)

Linearizing then yields

U '
∙
1 + (

1

2
)(2εI) + ...

¸
NINI + ... (20.28a)

' (1 + εI)NINI + ... (20.28b)

Thus, U is approximated by

U ' I+ ε (20.29a)

Uij ' δij + εij (20.29b)

The linearized form of U−1 can be also determined easily by first expressing
U in principal axis form

U = (1 + εI)NINI + ... (20.30a)

The inverse is given by

U−1 =
1

1 + εI
NINI + ... (20.31)

and using (20.13) gives

U−1 ' (1− εI)NINI + ... (20.32)

Collecting terms and expressing in coordinate free form gives

U−1 ' I− ε (20.33)

It remains to determine the linearized form of the rotation tensor

R = F ·U−1 (20.34)

Substituting (20.33) and (20.4) into (20.34) and neglecting second order terms
gives

R ' (I+ u5) · (I− ε) (20.35a)

' I+ u5− 1
2
(u5+5u) (20.35b)

' I+
1

2
((5u)T −5u) (20.35c)
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The final term is the infinitesimal rotation tensor Ω

Ω =
1

2

h
(5u)T −5u

i
(20.36)

or in component form

Ωij =
1

2
(
∂ui
∂Xj

− ∂uj
∂Xi

) (20.37)

Thus, the multiplicative decomposition (20.25a) reduces to the additive decom-
position of the displacement gradient tensor into the symmetric infinitesimal
strain tensor and the skew symmetric infinitesimal rotation tensor

(5u)T = ε+Ω (20.38)

20.3 Small Strain Compatibility
If the displacements uk(Xj , t) are known and differentiable, then it is always
possible to compute the six strain components

�ij =
1

2

µ
∂ui
∂Xj

+
∂uj
∂Xi

¶
(20.39)

or, writing out each term,

�11 =
∂u1
∂X1

(20.40a)

�22 =
∂u2
∂X2

(20.40b)

�33 =
∂u3
∂X3

(20.40c)

2�12 =
∂u1
∂X2

+
∂u2
∂X1

(20.40d)

2�13 =
∂u3
∂X1

+
∂u1
∂X3

(20.40e)

2�23 =
∂u3
∂X2

+
∂u2
∂X3

(20.40f)

Because there are 6 strain components calculated from three displacements,
some relations must exist between the strain components.
A mathematically analogous, but simpler situation occurs when force com-

ponents Fi are calculated from a scalar potential φ:

F = ∇φ (20.41)

In general, the force components are independent, but if they satisfy (20.41),
then they must also satisfy

∇×F =0 (20.42)
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This requires, for example, that

∂F1
∂X2

=
∂F2
∂X1

(20.43)

This condition is obtained from the X3 component of (20.42) or by substituting
the force components from (20.41).
The equations of compatibility can be obtained by differentiating the strain

components, writing them in terms of displacements, and interchanging the
order of differentiation. For brevity, denote derivatives as

∂u1
∂X1

= u1,1 (20.44)

For example

2�12,12 = u1,212 + u2,112 (20.45a)

= u1,122 + u2,211 (20.45b)

= �11,22 + �22,11 (20.45c)

and

2 [�12,13 + �31,21] = u1,213 + u2,113 + u3,121 + u1,321 (20.46a)

= 2u1,123 + (u2,3 + u3,2),11 (20.46b)

= 2 [�11,23 + �23,11] (20.46c)

and so on yields 6 conditions (but only 3 are independent) that are necessary
for the existence of a single-valued displacement. (see eq. 4.7.5a of Malvern,
p.186 or Mase & Mase, p.131; Reddy, pp. 101-102, eqn. 3.8.4-9). These can be
summarized concisely as

∇× ²×∇ = 0 (20.47)

Since ² = ²T the result is symmetric and there are only six distinct components.
Of these only three are independent (see Malvern, sec. 2.5 Exercises 12-14).
Thus, if the strains are written in terms of displacements, the conditions

(20.47) are necessary for the strains to be compatible. On the other hand,
if the strains are known, what conditions are sufficient to guarantee that the
strain components can be integrated to yield a single-valued displacement field?
To visualize the meaning of this physically, imagine cutting the body into small
(infinitesimal) blocks. Assign a strain to each block. Generally the body
will not fit back together. There will be gaps, overlaps, etc. That is, the
displacement field will not be single valued unless the strains assigned to the
blocks are compatible. It turns out that the conditions (20.47) are also sufficient
(at least in simply connected bodies).
Again the situation is mathematically analogous to a simpler one. Consider

the increment of work dW due to the action of the force F on the displacement
increment du

dW = F · du (20.48)
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In general, dW is not a perfect differential. That is, work is a path-dependent
quantity and the line integral

W =

Z
c

F · du (20.49)

will have different values if calculated on different paths between the same two
points. It follows that the integral around a closed path will not be zero. Work
will, however, be path-independent if it is equal to the change in energy or, if,
in other words, the system is conservative. A condition guaranteeing that this
is the case is the same as (20.42)

∇×F = 0 (20.50)

If this condition is met, the force can be represented as the gradient of a scalar
potential function (20.41). Hence, (20.50) is necessary and sufficient for the
force to be the gradient of a scalar function.
The situation is similar for compatibility but more complicated because the

strain is a tensor. Consider the conditions for which the displacement gradient
field can be integrated to give a single-valued displacement field

uP − uO =
Z
C

du =

Z
C

(u∇) · dX (20.51)

where uP is the displacement at point P and uO is the displacement at Po
and C is any path joining P and Po. Using (20.38) and expressing in index
notation, this is

uPi −uOi =
Z
C

(�ij +Ωij) dXj (20.52)

where

�ij =
1

2

µ
∂ui
∂Xj

+
∂uj
∂Xi

¶
(20.53a)

Ωij =
1

2

µ
∂ui
∂Xj

− ∂uj
∂Xi

¶
(20.53b)

Expressing the second term in terms of the infinitesimal rotation vector Ωij =
�jikwk yields

uPi −uOi =
Z
C

(�ij + �jikwk) dXj (20.54)

Analogous to (20.49) and (20.50), a sufficient condition guaranteeing that the
integral (20.54) is independent of path is

∇×P = 0 (20.55)

where
Pqs = εqs + �qstwt (20.56)
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Writing (20.55) in index notation and substituting (20.56) yields

�ipqεqs,p= wi,s−δiswp,p

but the second term on the right side vanishes because the divergence of the
rotation vector is zero. Operating on both sides with �jrs∂r yields

�jrs�ipqεqs,pr = 0

which is the same as (20.47).

20.3.1 Additional Reading

Malvern, Sec. 4.1-4.2, pp. 120-137; Sec. 4.7, pp. 183-190; Reddy, 3.8.
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Chapter 21

Transformation of Integrals

To derive equations expressing the conservation of mass and energy and balance
of angular and linear momentum, we will repeatedly use theorems that trans-
form an integral over a surface to one over the interior volume of the material.
The primary one, the diverence theorem or Green-Gauss theorem is related to
Green’s theorem in the plane. Green’s theorem in the plane can be expressed
as Z

A

Z µ
∂M

∂y
− ∂N

∂x

¶
dxdy = −

Z
C

(Mdx+Ndy) (21.1)

where the curve C encloses the area A and is traversed in a counterclockwise
direction. The functions M and N depend on x and y.
To prove this theorem note that the double integral of the first term on the

left can be carried out by first integrating in y for a vertical strip of width dx.
The limits of integration are given by the curves y1(x) and y2(x) that make up
the top and bottom of C. Then the integration in x carried out by sweeping this
strip from left to right. Because ∂M/∂y is a perfect differential, the integration
in y is simplyZ Z

∂M

∂y
dxdy =

Z b

a

dx

Z y2(x)

y1(x)

∂M

∂y
(x, y)dy (21.2a)

=

Z b

a

[M(x, y2(x)−M(x, y1(x))] dx (21.2b)

= −
Z a

b

M(x, y2(x))dx−
Z b

a

M(x, y1(x))dx (21.2c)

= −
Z
C

Mdx (21.2d)

The third line follows by inserting a minus sign and interchanging the limits of
integration in the first term. The last line follows by noting that the sum of
integrating over the curves y1(x) and y2(x) in the same direction is an integral
around the closed curve C. Integration of the second term follows in the same
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A B

D

E

d

e

a b

C : y = y (x)1 1

C : y = y (x)2 2

dx

x

y

Figure 21.1: Definitions for derivation of Green’s Theorem in the plane.

way but by first using a horizontal strip of height dy. The result isZ Z
∂N

∂x
dxdy =

Z
C

Ndy (21.3)

and subtracting yields (21.1).
We can rewrite (21.1) in vector form by noting that the normal to the curve

is

n = cosαex + sinαey =
dy

ds
ex −

dx

ds
ey (21.4)

where s is arclength (Figure 21.2). Defining the vector u as

u = −Nex +Mey (21.5)

gives

n · u = −N dy

ds
−M

dx

ds
(21.6)

and

∇ · u = −∂N
∂x

+
∂M

∂y
(21.7a)

Therefore the theorem (21.1) can be written as:Z Z
A

∇ · udA =
Z
C

n · uds (21.8)

The curve in Figure 21.1 is a special one because vertical and horizonal
lines intersect the curve in no more than two points. Nevertheless the theorem
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n

ds
ny

nx-dx
dy ��

x

y

Figure 21.2: Expressing Green’s theorem in the plane in terms of the normal
and tangent vectors to the curve.
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(a)

(b)

Figure 21.3: Curves for which vertical or horizontal lines intersect the boundaries
in more than two points.

applies for more complicated curves such as those shown in Figure 21.3 and the
method of proof used above is easily modified for these cases. For the curve
in Figure 21.3a, a vertical line can intersect the curve in four points. This
difficulty is easily overcome, however, by inserting the dashed line as shown and
applying the method to each part of the area separately. The dashed line is
traversed in opposite directions for each part and, thus, as long as the integrand
is continuous, the contributions cancel.
In Figure 21.3b, the area of integration A has a hole so that there is an

interior and exterior boundary. Again, demonstration of the theorem proceeds
in the same way after connecting the interior and exterior boundaries by the
dashed line. If the integrand is continuous, the portions of the integral over the
dashed line cancel since they are traversed in opposite directions. Note that the
resulting contour C is counterclockwise on the exterior boundary and clockwise
on the interior boundary. On both boundaries the normal n points out of the
area A. In other words a person walking on the contour in the direction shown
would have the area A to his left and the normal n to his right.
In three dimensions, the theorem relates the integral of the divergence over
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e1

e2

e3

(x ,x ,x )1 2 3 (x +dx ,x ,x )1 1 2 3

Figure 21.4:

a volume to an integral over the bounding surface with outward normal n:Z
V

∇ · udV =

Z
S

n · uds (21.9)

This expression can be motivated directly by considering Figure 21.4. The
contribution from the two faces n = e1 and n = −e1 is

[u1(x1 + dx1, ξ2, ξ3)− u1(x1, ξ2, ξ3)] dx2dx3

where the sign difference comes from the oppositely directed normals and x2 <
ξ2 < x2 + dx2, x3 < ξ3 < x3 + dx3. Expanding yields

∂u1
∂x1

(x1, x2, x3)dx1dx2dx3

Adding contributions from other faces and from other blocks yields (21.9). Con-
tributions from the faces of adjacent blocks cancel because of the oppositely
directed normals so that the end result is the integral over the exterior surface.
The following related theorems have the same form:Z

V

∇fdV =

Z
S

nfds (21.10)
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Z
V

∇ ·TdV =

Z
S

n ·TdS (21.11)

21.1 Additional Reading
Malvern, Sec. 5.1, pp. 197-203; Chadwick, Sec. 1.11, pp. 43-46; Aris, 3.13-3.15;
3.31-3.32.
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Chapter 22

Conservation of Mass

The total mass in a reference volume V is

m =

Z
V

ρo(X)dV (22.1)

In the current configuration, this same mass occupies the volume v:

m =

Z
V

ρo(X)dV =

Z
v

ρ(x, t)dv (22.2)

Because mass can neither be created nor destroyed the rate-of-change of mass
must vanish

dm

dt
= 0 (22.3)

Differentiating (22.2) yields

d

dt

Z
v

ρ(x, t)dv = 0 (22.4)

because the integral over the reference volume is independent of time. Because
the current volume v occupied by a fixed amount of mass changes with time,
the integration volume in (22.4) depends on time. Although it is possible to
include this change in computing the derivative, another approach is to convert
the integral to one over the reference volume. Since the current and reference
volume elements are related by dv = JdV where J = det(F), we can rewrite
(22.4) as an integral over the reference volume

d

dt

Z
V

ρ [x(X, t), t]JdV = 0 (22.5)

The integration variable is now position in the reference configuration X rather
than position in the current configuration x and J is the Jacobian of the change
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of variable. The integral is now over a volume that is independent of time and,
hence, we can take the derivative insideZ

V

½
J
d

dt
ρ+ ρJ̇

¾
dV = 0 (22.6)

To compute the derivative of the Jacobian recall that

J = detF = �ijkFi1Fj2Fk3 (22.7)

Differentiating yields

J̇ = �ijkḞi1Fj2Fj3 + �ijkFi1Ḟj2Fj3 + �ijkFi1Fj2Ḟj3 (22.8)

But Ḟ = L · F or Ḟrt = LrsFst,

J̇ = Fp1Fq2Fr3hpqr (22.9)

where
hpqr = �kqrLkp + �pkrLkq + �pqkLkr (22.10)

It is straightforward to verify that hpqr = 0 if any two indicies are the same, that
a change in the order of any pair reverses the sign and that h123 = trL = trD.
Consequently, hpqr = �pqr trD and

J̇ = J trD (22.11)

Substituting into (22.6) yieldsZ
V

½
d

dt
ρ+ ρ trD

¾
JdV = 0 (22.12)

and the integration can be changed back to the current volumeZ
v

½
dρ

dt
+ ρ trD

¾
dv = 0 (22.13)

Note that

trD = Dkk =
∂vk
∂xk

=∇ · v (22.14a)

dρ

dt
=

∂ρ

∂t
+ v ·∇ρ (22.14b)

Therefore we rewrite the integrand asZ
v

½
∂ρ

∂t
+∇ · (ρv)

¾
dv = 0 (22.15)

and use the divergence theorem on the second term to getZ
v

∂ρ

∂t
dv +

Z
a

n · vρda = 0 (22.16)
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da

v

n

da

n

v

vdt

n.vdt

Figure 22.1: Ilustration of the flux across a surface da.

The first term is the rate of change of mass instantaneously inside the spatial
volume v. Because ∂/∂t pertains to a fixed spatial position, this derivative can
be taken outside the integral; in other words the integration volume is fixed in
space.
The second term in (22.16) is the rate of change of mass in v due to flow

across the surface of v, i.e. a. Since n is the outward normal, the integral is
positive for flow outward. During a time increment dt the mass passing through
da sweeps out a cylindrical volume

d(vol) = v · ndtda (22.17)

where v is the material velocity. Therefore the mass outflow is

ρv · ndtda (22.18)

Since (22.15) applies for all v containing a fixed amount of mass, the inte-
grand vanishes and

∂ρ

∂t
+∇ · (ρv) = 0 (22.19)
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is the local form of mass conservation in the current configuration. This equation
can be written in several alternative forms

∂ρ

∂t
+ v ·∇ρ+ ρ∇ · v = 0 (22.20a)

dρ

dt
+ ρ∇ · v = 0 (22.20b)

1

ρ

dρ

dt
= −∇ · v (22.20c)

The left side of the last equation is the fractional rate of volume decrease.
Also since

J̇ =
d

dt
(detF) = J trD =J∇ · v (22.21)

dρ

dt
+

ρ

J
J̇ = 0 (22.22)

d

dt
(ρJ) = 0 (22.23)

or
ρJ = const = ρo (22.24)

This is a local expression of (22.2).
For an incompressible material

dρ

dt
= 0 (22.25)

not
∂ρ

∂t
= 0 (22.26)

Note that to say a material is incompressible does not mean that it is rigid
(non-deformable). The material can be deformable but in such a way that the
volume remains constant. Hence, for an incompressible material

∇ · v = 0 (22.27)

which implies that the velocity vector v can be expressed as the curl of a vector
Ψ

v =∇×Ψ (22.28)

A velocity of this form automatically satisfies (22.27).

22.1 Reynolds’ Transport Theorem
In examining the other balance laws, we will encounter the derivative of integrals
of the form

I =
d

dt

Z
v

ρ(x, t)A(x, t)dv (22.29)
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where the integral is over a volume in the current configuration containing a
fixed amount of mass and A(x, t) is any property that is proportional to the
mass, e.g., kinetic energy per unit mass, momentum per unit mass. As before,
the complications of differentiating an integral over a time-dependent volume
are circumvented by converting to integration over the reference volume

I =
d

dt

Z
v

ρ(x[X, t], t)A(x[X, t], t)Jdv (22.30)

Now, the derivative can be taken inside the integral

I =

Z
v

½
Jρ(x[X, t], t)

d

dt
A(x[X, t], t) +A(x[X, t], t) d

dt
Jρ(x[X, t], t)

¾
dv

(22.31)
The second term vanishes because of mass convservation (22.23) and the integral
can be converted back to the current volume

I =

Z
v

ρ(x, t)
d

dt
A(x, t)dv (22.32)

Equating ( 22.29) and (22.32) yields

d

dt

Z
v

ρ(x, t)A(x, t)dv =
Z
v

ρ(x, t)
d

dt
A(x, t)dv (22.33)

Hence, the material derivative can be taken inside the integral to operate only
on A(x, t). This is Reynolds’ Transport Theorem.

22.2 Derivative of an Integral Over a Time-Dependent
Region

An alternative approach is to dealing with the integral in (22.4) is to recognize
that it is changing with time because it encloses a fixed set of material particles
and to take this into account in computing the dervative. To compute the
derivative of an integral over a time-dependent region, let v(t) be the time-
dependent volume and vn equal n · v be the normal speed of points on the
boundary of v, s(t). Also let Q(x, t) be the spatial description of some quantity
defined everywhere in v(t).
We want to compute

d

dt

Z
v(t)

Q(x, t)dv = lim
∆t→0

1

∆t

(Z
v(t+∆t)

Q(x, t+∆t)dv−
Z
v(t)

Q(x, t)dv

)
(22.34)

We can write the volume at t+∆t as

v(t+∆t) = v(t) + [v(t+∆t)− v(t)] (22.35)
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Therefore,

d

dt

Z
v(t)

Q(x, t)dv = lim
∆t→0

(
1

∆t

Z
v(t)

{Q(x, t+∆t)−Q(x, t)} dv
)
(22.36a)

+ lim
∆t→0

(
1

∆t

Z
v(t+∆t)−v(t)

Q(x, t+∆t)dv

)
(22.36b)

Taking the limit inside the integral (which, now does not depend on ∆t) yields

d

dt

Z
v(t)

Q(x, t)dv =

Z
v(t)

lim
∆t→0

½
Q(x, t+∆t)−Q(x, t)

∆t

¾
dv

+ lim
∆t→0

Z
v(t+∆t)−v(t)

Q(x, t+∆t)dv

and then using the definition of the partial derivative gives

d

dt

Z
v(t)

Q(x, t)dv =

Z
v

∂Q

∂t
(x, t)dv +

+ lim
∆t→0

Z
v(t+∆t)−v(t)

Q(x, t+∆t)dv

To evaluate the second term, consider the motion of a portion of the boundary.
The volume swept out in time ∆t is

dv = vn∆tds (22.37)

Therefore

d

dt

Z
v(t)

Q(x, t)dv =

Z
v(t)

∂Q

∂t
(x, t)dv +

Z
s(t)

Q(x, t)n · vds (22.38)

The last term can be transformed using the divergence theorem applied to a
control volume instantaneously coinciding with the volume occupied by the
material. Thus, the final result is

d

dt

Z
v(t)

Q(x, t)dv =

Z
v(t)

½
∂Q

∂t
(x, t) +∇ · [Q(x, t)v]

¾
dv (22.39)

Special Cases

1.
Q(x, t) = ρ(x, t) (22.40)

is the density. Then left hand side vanishes because of mass conservation.
Hence, the right-hand side must also vanish and, since the equation must
apply for any volume v

∂ρ

∂t
+∇ · (ρv) = 0 (22.41)

Thus, the mass conservation equation is recovered.
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2.
Q(x, t) = 1 (22.42)

so
d

dt

Z
v

dv =

Z
v(t)

∇ · vdv =
Z
s(t)

n · vds (22.43)

For example, consider a spherical volume with time dependent radius R(t):

v(t) =
4

3
πR3(t) (22.44)

Then
v̇(t) = 4πR2Ṙ(t)

where Ṙ(t) is the normal velocity of the boundary and the right and left
hand sides correpond to the first and last terms in (22.43)

22.3 Additional Reading
Malvern, Sec. 5.2, pp. 205-212;Chadwick, Chapter 3, Sections 1 -2, pp. 87-90;
Aris, 4.22, 4.3.
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Chapter 23

Conservation of Momentum

23.1 Momentum Balance in the Current State

23.1.1 Linear Momentum

The conservation of linear momentum expresses the application of Newton’s
Second Law to a continuum: X

Fext =
d

dt
(mv) (23.1)

To apply to a continuum, it is necessary to follow a set of particles. Let t be the
external surface force, on the current area. Let b be the external body force
(per unit mass). Then application of (23.1) to a volume v enclosed by a surface
a gives Z

a

tda+

Z
v

ρbdv =
d

dt

Z
v

ρvdv (23.2)

Writing the traction can be written in terms of the stress as n ·T and using the
divergence theorem on the first term yieldsZ

a

n ·Tds =
Z
v

∇ ·Tdv (23.3)

Alternatively, conservation of linear momentum can be used to define the stress
tensor. The stress tensor is the tensor that it is necessary to introduce to
convert the surface integral in (23.2) into a volume integral. Reynold’s transport
theorem gives the following result for the right hand sideZ

v

ρ
dv

dt
dv (23.4)

Collecting terms gives Z
v

½
∇ ·T+ ρb− ρ

dv

dt

¾
dv = 0 (23.5)
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Since this integral must vanish for any material volume, the integrand must
vanish.

∇ ·T+ ρb = ρ
dv

dt
(23.6)

or, in component form
∂Tij
∂xi

+ ρbj = ρ
dvj
dt

(23.7)

This is the equation of motion. If the right hand side is negligible, then (23.7)
reduces to the equilibrium equation:

∂Tij
∂xi

+ ρbj = 0 (23.8)

expressing that the sum of the forces is zero.

23.1.2 Angular Momentum

Balance of angular momentum results from the statement that the sum of the
moments is equal to the time derivative of the angular momentumX

M =
d

dt
L (23.9)

Applying this to a collection of material particles occupying the current volume
v enclosed by the surface a yieldsZ

a

(x× t)da+
Z
v

(x× ρb)dv =
d

dt

Z
v

(x× ρv)dv (23.10)

or in component formZ
a

�ijkxjtkda+

Z
v

�ijkxjρbkdv =
d

dt

Z
v

ρ�ijkxjvkdv (23.11)

As before the traction can be expressed in terms of the stress as

tk = nlTlk (23.12)

and the divergence theorem can be used to rewrite the surface integral as a
volume integral Z

a

�ijkxjtkds =

Z
a

�ijk
∂

∂xl
{xjTlk} dv (23.13a)

=

Z
�ijk

∙
δjlTlk + xj

∂Tlk
∂xl

¸
dv (23.13b)

Reynolds’ Transport theorem can be used to write the right hand side as

d

dt

Z
v

ρ�ijkxjvkdv =

Z
v

ρ�ijk
d

dt
(xjvk) dv (23.14)
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where
d

dt
(xjvk) = vjvk + xj

dvk
∂t

(23.15)

Using these results in (23.11) yieldsZ
v

�ijkTjkdv +

Z
v

�ijkxj

½
∂Tlk
∂xl

+ ρbk −
dvk
dt

¾
dv = 0 (23.16)

but the term {. . .} vanishes because of (23.5). Because the remaining integral
must vanish for all volumes v, the integrand must be zero

�ijkTjk = 0 (23.17)

Multiplying by �ipq, summing and using the �− δ identity gives

Tpq = Tqp (23.18)

or
T = TT

23.2 Momentum Balance in the Reference State

23.2.1 Linear Momentum

Previously, we expressed the balance of linear momentum (23.1) in terms of
integrals over the body in the current configuration. Sometimes, however, it is
more convenient to use the reference configuration. Let t0 be the surface force
per unit reference area, b0 be the body force per unit reference volume and
ρ0 be the mass density in the reference state. Then application of (23.1) to a
volume V enclosed by a surface A givesZ

A

t0dA+

Z
V

ρ0b
0dV =

∂

∂t

Z
V

ρ0vdV (23.19)

Note that t0 and b0 express the current surface and body forces although they
are referred to the reference area and volume. Also, the partial derivative, rather
than the material derivative, is used on the right hand side because the reference
volume is not changing in time. All the quantities in this equation should be
considered functions of position in the reference configuration X. The nominal
traction can be written in terms of the a stress as

t0 =N ·T0 (23.20)

where N is the unit normal in the reference configuration and the stress T0

is the nominal stress (or First Piola-Kirchhoff stress) rather than the Cauchy
stress. The divergence theorem can be applied in the reference configuration
to write the first term as Z

A

N · t0ds =
Z
V

∇X ·T0dV (23.21)
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where the subscriptX emphasizes that the derivatives in the divergence are with
respect to position in the reference configuration. Using (23.3) and bringing the
derivative inside the integral givesZ

V

½
∇X ·T0 + ρ0b

0 − ρ0
∂v

∂t

¾
dV = 0 (23.22)

Since this integral must vanish for any material volume, the integrand must
vanish.

∇X ·T0 + ρ0b
0 = ρ0

∂v

∂t
(23.23)

or, in component form
∂T 0ij
∂Xi

+ ρ0b
0
j = ρ0

∂vj
∂t

(23.24)

The connection between the Cauchy stress T and the nominal stress T0 can
be established by noting that both must give the same increment of current
force dP

dP = n ·Tda = N ·T0dA (23.25)

Nanson’s formula
nda = det(F)(N · F−1)dA (23.26)

relates the current and reference area elements. Hence, the nominal stress
tensor is related to the Cauchy stress by

T0 = det(F)F−1 ·T (23.27)

23.2.2 Angular Momentum

The balance of angular momentum can also be expressed in terms of the refer-
ence area and volume:Z

A

x× t0dA+
Z
V

x× ρ0b
0dV =

∂

∂t

Z
V

x× ρ0vdV (23.28)

or in component formZ
A

�ijkxjt
0
kdA+

Z
V

�ijkxjρ0b
0
kdV =

∂

∂t

Z
V

ρ�ijkxjvkdV (23.29)

Note that x not X appears in these expressions because the current moment
and angular momentum are the cross product of the current location with the
current force and linear momentum even though these are expressed in terms
of integrals over the reference area and volume. As before the traction can be
expressed in terms of the stress as in (23.20) and the divergence theorem can
be used to rewrite the surface integral as a volume integralZ

A

�ijkxjt
0
kdA =

Z
V

�ijk
∂

∂Xl

©
xjT

0
lk

ª
dV (23.30a)

=

Z
V

�ijk

∙
∂xj
∂Xl

T 0lk + xj
∂T 0lk
∂Xl

¸
dV (23.30b)
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Note that in contrast to the derivation in terms of the current configuration,
the derivative in the first term becomes

∂xj
∂Xl

= Fjl (23.31)

rather than δjl. Because the integral on the right side is over the reference
volume, the derivative can be taken inside without recourse to Reynolds’ Trans-
port theorem. When the balance of linear momentum (23.23) is used, the only
term remaining is Z

V

�ijkFjlT
0
lkdV = 0 (23.32)

Because the integral must vanish for all volumes V , the integrand must be zero

�ijkFjlT
0
lk = 0 (23.33)

which requires that
F ·T0 =

¡
F ·T0

¢T
(23.34)

Because the deformation gradient F is not, in general, symmetric, the nominal
stress will not be symmetric. But since the nominal and Cauchy stress are
related by (24.22) the (23.34) is equivalent to the requirement that the Cauchy
stress be symmetric.

23.3 Additional Reading
Malvern, Sec. 5.3, pp. 213-217, pp. 220-224; pp. 226-231; Chadwick, Chapter
3, Sec. 4; Aris, 5.11-5.13.
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Chapter 24

Conservation of Energy

Conservation of energy results from application of the first law of thermody-
namics to a continuum. The first law states that the change in total energy of a
system is equal to the sum of the work done on the system and the heat added
to the system. Thus, in rate form the first law is

d

dt
(Total Energy) = Pin +Qin (24.1)

where Pin is the power input and Qin is the heat input. Although neither heat
nor work is an exact differential (does not integrate to a potential function),
their sum is. Consequently, the integral of the energy change around a cycle is
zero. I

dEtotal =

I
(Pinput +Qinput) dt = 0 (24.2)

The total energy is the sum of the kinetic energyZ
v

1

2
ρv · vdv (24.3)

where v is the velocity, and the internal energyZ
v

ρudv (24.4)

where u is the internal energy per unit mass. The heat input is

−
Z
a

q · nda +
Z
v

ρrdv (24.5)

where q is the heat flux, n is the outward normal, and r is the source term.
The power input is the work of the forces on the velocities

Pinput =

Z
a

t · vda +
Z
v

ρb · vdv (24.6)
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Expressing the traction in terms of the stress and using the divergence theorem
yields the following for the first termZ

a

t · vda =
Z
v

n ·T · vdv =
Z
v

∇ · (T · v) dv (24.7)

To work out ∇ · (T · v) it is more convenient to use index notation

∇· (T · v) = ek
∂

∂xk
· (Tijvjei) =

∂

∂xi
(Tijvj) (24.8a)

=
∂Tij
∂xi

vj + Tij
∂vj
∂xi

(24.8b)

= (∇ ·T) · v+T · ·L (24.8c)

where
T · ·L = T · ·D (24.9)

since
T = TT (24.10)

The first term in (24.8c) can be rewritten using the equation of motion (23.7)

∇ ·T = −ρb+ ρ
dv

dt
(24.11)

Substituting back into (24.6) yields

Pinput =

Z
v

ρ
1

2

d

dt
(v · v)dv +

Z
v

T · ·Ldv (24.12)

Using Reynold’s transport theorem

d

dt

Z
v

1

2
ρv · vdv =

Z
v

1

2
ρ
d

dt
(v · v) dv (24.13)

and substituting back into (24.1) yields

d

dt
(K.E.)+

d

dt

Z
ρudv =

d

dt
(K.E.)+

Z
v

T · ·Ldv−
Z
a

q · nda+
Z
v

ρrdv (24.14a)

Cancelling the common term on both sides and using Reynold’s transport the-
orem on the internal energy term givesZ

v

½
ρ
du

dt
−T · ·L+∇ · q− ρr

¾
dv = 0 (24.15)

Since this applies for all v

ρu̇ = T · ·L−∇ · q+ ρr (24.16)
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This equation says that the internal energy of a continuum can be changed by
the work of deformation, T · ·L, the flow of heat, −∇ · q, or internal heating,
ρr.
Similar to the derivations of the momentum balance equations, the energy

equation can be expressed in terms of quantities per unit area and volume of
the reference configuration. The result is

ρo
∂u

∂t
= T0 · ·Ḟ−∇x·Q+ρoR (24.17)

where Q is the heat flux per unit reference area

Q = JF−1 · q (24.18)

and ρoR is the rate of internal heating per unit reference volume.

24.1 Work Conjugate Stresses
The first term on the right side of (24.17) is the rate of stress working per unit
reference volume (or, equivalently, per unit mass)

Ẇ0 = T
0 · ·Ḟ (24.19)

Since the first term on the right side of (24.16) is the rate of stress working per
unit current volume, it is related to (24.19) by

Ẇ0 = JT · ·L = JT : D (24.20)

where the second equality makes use of the symmetry ofT. The relation between
the Cauchy stress and the nominal stress can be obtained by equating the two
expressions (24.19) and (24.20)

T0 · ·Ḟ = JT · ·L (24.21)

Substituting Ḟ = L · F in the left side gives

T0 · · (L · F) = JT · ·L (24.22)

The identity

A · ·B ·C = A ·B · ·C = C ·A · ·B = B ·C · ·A (24.23)

for any tensors A, B and C can be used to rearrange (24.22) as¡
F ·T0 − JT

¢
· ·L = 0 (24.24)

Since this must apply for any velocity gradient tensor L, the coefficient must
vanish and, therefore, the nominal stress is given by the same relation derived
from Nanson’s formula for the current and reference areas:

T0 = JF−1 ·T (24.25)
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In both (24.19) and (24.20) Ẇ0 is the product of a stress tensor and a
deformation rate measure. The stress measure is said to be work conjugate to
the rate of deformation measure. Note that the stress measure work conjugate
to L orD is not the Cauchy stress but the Kirchhoff stress, which is the product

τ = JT (24.26)

This distinction, although small if volume changes are small, can be important in
numerical formulations. Even though T andD are both symmetric, the stiffness
matrix is guaranteed to be symmetric only if the formulation is expressed in
terms of the work-conjugate stress measure τ .
More generally, the relation for the rate of stress working per unit reference

volume can be used to define symmetric stress tensors S that are work conjugate
to the rate of any material strain tensor Ė (Since the rate of a material strain
tensor is symmetric, there is no point in retaining any anti-symmetric part to
the conjuate stress tensor since it does not contribute to Ẇ0.) Thus, writing

Ẇ0 = S : Ė (24.27)

and equating to (24.19) or (24.20) defines S for a particular rate of material
strain Ė. For example, determine the stress measure that is work-conjugate to
the rate of Green-Lagrange strain ĖG

Ẇ0 = JT : D = SPK2 : Ė
G

(24.28)

Using the relation between the rate of Green-Lagrange strain and the rate of
deformation

ĖG = FT ·D · F (24.29)

and (24.23) yields ¡
JT−F · SPK2 · FT

¢
: D = 0 (24.30)

Since this must apply for any D, the work-conjugate stress is given by

SPK2 = F−1 · JT ·
¡
FT
¢−1

(24.31)

and it is clearly symmetric. This stress measure is called the 2nd Piola-Kirchhoff
stress.
The 2nd Piola-Kirchhoff stress has the advantages that it is symmetric and

that it is work-conjugate to the rate of the Green-Lagrange strain. It does,
however, have the disadvantage that its interpretation in terms of a force element
is less straightforward than either the Cauchy stress T or the nominal stress T0.
The force increment is related to the traction vector determined from SPK2 by

NdA · SPK2 = F−1 · dP

Thus, the traction derived from SPK2 is related to the force per reference area
but altered by F−1. The components of this traction do have a direct inter-
pretation in terms of force components expressed in terms of base vectors that
convect (are deformed with the material).
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24.2 Additional Reading
Malvern, Sec. 5.4, pp. 226-231; Chadwick, Chapter 3, Sec. 5; Aris, 6.3.
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Part V

Ideal Constitutive Relations

151





Thus far, we have analyzed stress, strain, rate-of-deformation and the laws
expressing conservation of mass, momentum and energy. We have not, however,
included a discussion of the behavior of different materials. Generally, this
behavior is complex, but we endeavor to include it in terms of idealized rela-
tionships between stress and strain or rate-of-deformation. Ultimately, such
relationships derive from experiments, but they generally apply only for a lim-
ited range of states, i.e. temperature, loading rate, time-scale, etc. Crudely,
materials can be divided into solids (which can sustain shear stress at rest)
and fluids (which cannot) but many materials combine aspects of both. In the
following subsections, we will consider only the simplest relations.
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Chapter 25

Fluids

25.1 Ideal Frictionless Fluid
Observations indicate that a fluid at rest or in uniform motion cannot support
shear stress. Consequently, the stress must have the form

Tij = −pδij (25.1)

where p is a pressure, but is not necessarily equal to the thermodynamic pres-
sure. Since p is an unknown, another equation is needed to determine it. Often
this is an equation of state or “kinetic equation of state,” of the form

F (p, ρ, θ) = 0 (25.2)

where ρ is the mass density and θ is the temperature. A simple example of such
an equation is the perfect gas law

p = ρRθ (25.3)

where R is the universal gas constant. Alternatively, the internal energy (per
unit mass or reference volume) can be prescribed as a function of the density
and the temperature:

u = u(θ, ρ) (25.4)

In this form, it is typically called the “caloric equation of state”.
If temperature does not play a role, the flow is said to be “barotropic” and

the pressure is related to the density by an equation of the form

f(p, ρ) = 0 (25.5)

An equation of state (25.2) reduces to this form for either isothermal (θ = const.)
or isentropic (reversible, adiabatic) conditions. For example, for isentropic flow
of a perfect gas

p

ργ
= const. (25.6)
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In this equation

γ =
cp
cv
= 1 +

R

cv
(25.7)

where cp and cv are the specific heat at constant pressure and constant volume,
respectively. For dry air, γ = 1.4.
Recall that conservation of energy is expressed by the equation (24.16)

ρu̇ = T · ·D−∇ · q+ ρr

where r is a heat source per unit mass and q is the flux of heat (out of the body)
(and D replaces L in (24.16) because T is symmetric). Substituting (25.1) and
using conservation of mass (22.20c) gives

ρu̇ = p
1

ρ

dρ

dt
−∇ · q+ ρr (25.8)

If the internal energy per unit mass (25.4)is regarded as a function of 1/ρ,
the specific volume (rather than the density), and the temperature θ, then the
material derivative of u on left side of (25.8) can be written as

u̇ =
∂u

∂(1/ρ)

d (1/ρ)

dt
+ cv

dθ

dt
(25.9)

where cv = ∂u/∂θ is the specific heat at constant volume. Substituting (25.9)
into (25.8) and rearranging gives

ρcv
dθ

dt
=
1

ρ

dρ

dt

µ
p+

∂u

∂(1/ρ)

¶
+ ρr −∇ · q (25.10)

At constant temperature, all but the first term on the right vanishes and (25.10)
requires that

p = − ∂u

∂(1/ρ)

This equation provides a constitutive relation for the pressure in terms of the
dependence of the energy on the specific volume. According to the terminology
used earlier the pressure and specific volume are work-conjugate variables.
If the material is incompressible so that dρ/dt = 0, then the mechanical

response uncouples from the thermal response governed by

ρcv
dθ

dt
= ρr −∇ · q (25.11)

The rate of heating per unit mass r is regarded as prescribed but a constitutive
equation is needed to relate the heat flux q to the temperature. (Considerations
based on the Second Law of Thermodynamics, not discussed here, indicate that
these are the proper variables to relate). Typically, this relation is taken to be
Fourier’s Law, which states that the heat flux is proportional to the negative
gradient of temperature

q = −κ ·∇θ or qi = −κij∂θ/∂xj (25.12)
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The thermal conductivity tensor κ depends on the material. Again, Second
Law considerations require that it be symmetric κ = κT . If κ does not depend
on position, then the material is said to be homogeneous (with respect to heat
conduction). If the material has no directional properties and heat conduction
is the same in all directions, then the material is isotropic. In this case, κ is an
isotropic tensor of the form

κ = kI (25.13)

Subsituting into (25.12) and then (25.11) gives

ρcv
dθ

dt
= ρr + k∇2θ (25.14)

If the material is rigid or if the velocity is small enough so that dθ/dt ≈ ∂θ/∂t,
then (25.14) reduces to the usual form of the heat equation

∂θ

∂t
= r/cv + α∇2θ (25.15)

where α = k/ρcv is the thermal diffusivity (with dimensions of length2 per
time).

25.2 Isotropic tensors
Isotropic tensors have same components in all rectangular cartesian coordinate
systems (see Aris, sec.2.7, pp. 30-34). All scalars (tensors of order zero) are
isotropic. No vectors (except the null vector) are isotropic. For second order
tensors, the components in different rectangular coordinate systems are related
by

T 0ij = AkiAljTkl (25.16)

where the T 0ij are components with respect to orthonormal base vectors e
0
i, the

Tkl are components with respect to orthonormal base vectors ek andAki = e
0
i·ek.

For an isotropic second order tensor T 0ij = Tij and, hence,

Tij = AkiAljTkl (25.17)

for all Aki. It is straightforward to verify that any tensor of the form

Tij = αδij (25.18)

satisfies this relation. Substituting (25.18) into (25.16) gives

T 0ij = αAkiAkj = αδij

This demonstrates that the identity tensor multiplied by a scalar is an
isotropic tensor but does not answer the question of whether all isotropic ten-
sors of second order must have this form. To do this, we again use (25.17). If
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this equation must be satisfied for all Aki then it must certainly be satisfied for
particular choices of the Aki. Judicious choice of the Aki demonstrates that all
isotropic second order tensors must have the form (25.18).
First, consider the transformation for which A13 = A21 = A32 = 1 are the

only nonzero Aki. This corresponds to a rotation of 120◦ about a line making
equal angles with the coordinate axis (Figure ??) or, alternatively, the two
successive rotations: first, 90 ◦ about the x2 axis, then 90 ◦.about the new x3
axis. Substituting into (25.17) gives

T11 = Ai1Aj1Tij = T22 (25.19a)

T22 = Ai2Aj2Tij = T33 (25.19b)

Thus, the three diagonal components of Tij must be identical T11 = T22 = T33 =
α. Similarly, for the off-diagonal components,

T12 = Ai1Aj2Tij = A31A32T31 = T31 (25.20)

Thus, the off-diagonal components must also be identical

T12 = T21 = T31 = T13 = T23 = T32 = β

Now consider the transformation corresponding to a rotation of 90 ◦ about
the x3 axis so that A12 = −1 = −A21 = −A33 are the only nonzero Aki.
Applying (25.17) to T12 gives

T12 = A21A12T12 = −T12

Therefore β = 0 and
Tij = αδij (25.22)

is the only isotropic tensor of order two. A similar analysis can be used to show
that the only isotropic tensor of 3rd order is α�ijk.
Tensor products of isotropic tensors are also isotropic. Therefore , 4th order

tensors with components proportional to δijδkl are also isotropic. In fact, all
isotropic tensors of even order are sums and products of δij . The number of
possible terms for a tensor of order N is given by the combinatorial formula

N !

2(N/2)(N/2)!
(25.23)

where N ! is the total number of order combinations, (N/2)! is the number of
ordered ways in which the pairs can be arranged, e.g., δijδkl = δklδij , and 2(N/2)

accounts for the switching of indicies of each pair, e.g., δij = δji. Applying this
formula for N = 4 yields 3 possible combinations. Thus, the only isotropic
tensor of 4th order has the form:

Vijkl = aδijδkl + bδikδjl + cδilδjk (25.24)
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(See Malvern p.47, #17(c)). Fourth order tensors appearing in constitutive
relations often have (or are assumed to have) the additional symmetry, Vijkl =
Vklij . Redefining b as b+ c and c as b− c in (25.24) gives

Vijkl = aδijδkl + b (δikδjl + δilδjk) + c (δikδjl − δilδjk) (25.25)

Therefore, for Vijkl = Vklij , c = 0, and only two parameters are needed to define
the tensor.

25.3 Linearly Viscous Fluid
In a simple idealization of a fluid, the stress is taken to be the sum of hydrostatic
term and a function of the rate-of-deformation.

T = −pI+ f(D) (25.26)

where the function f vanishes when D = 0. (Here the Cauchy stress is used
but it would be more appropriate to use the Kirchhoff stress since this is work-
conjugate to D. However, volume changes are often negligible for viscous fluids
and, consequently, the difference is small). Such a fluid is sometimes called
Stokesian (although Stokes actually considered only a linear relation). If the
stress depends linearly on the rate-of-deformation,

Tij = −pδij + VijklDkl (25.27)

the fluid is “Newtonian.” In this case the factors Vijkl may depend on temper-
ature but not on stress or deformation-rate. Because

Tij = Tji (25.28)

and
Dkl = Dlk (25.29)

we can assume without loss of generality that

Vijkl = Vjikl = Vijlk (25.30)

If Vijkl do not depend on position, then the material is said to be homogeneous.
Because there are 6 distinct components of Tij and Dij , there are a total of

36 = 6× 6 possible distinct components of Vijkl. However, as noted above, the
Vijkl are often assumed to have the additional symmetry Vijkl = Vklij , which
reduces the number of possible distinct components to 27.
If the material response is completely independent of the orientation of axes,

the material is said to be isotropic. In this case, V is an isotropic tensor and,
as discussed above, has form (25.25) with c = 0 in because the coefficient term
is anti-symmetric with respect to interchange of (ij) and (kl) .Substituting into
(25.27) yields

Tij = −pδij + λδijDkk + 2μDij (25.31)
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where λ and μ are the only two parameters reflecting material response. These
parameters appear separately in the mean and deviatoric parts of (25.31)

T 0ij = 2μD0
ij (25.32a)

Tkk = 3κDkk − 3p (25.32b)

where μ is the viscosity and κ = λ+2μ/3 is the bulk viscosity. If the material is
incompressible, κ →∞, or if the flow is isochoric (involves no volume change),
Dkk = 0, and (25.31) reduces to

Tij = 2μDij − pδij (25.33)

Substituting (25.31) into the equation of motion (23.7)

∂Tij
∂xi

+ ρbj = ρ
dvj
dt

(25.34)

gives

μ
∂

∂xi

½
∂vi
∂xj

+
∂vj
∂xi

¾
− ∂p

∂xj
+ ρbj = ρ

dvj
dt

(25.35a)

μ
∂

∂xj

µ
∂vi
∂xi

¶
+ μ∇2vj −

∂p

∂xj
+ ρbj = ρ

dvj
dt

(25.35b)

For incompressible flow ∂vi/∂xi = 0, and (25.35b) reduces to

μ∇2vj −
∂p

∂xj
+ ρbj = ρ

dvj
dt

(25.36)

The viscosity μ can be determined by a simple experiment. Consider a layer
of fluid of height h between two parallel plates with lateral dimensions much
greater than h (In actuality, this experiment is conducted in a rotary apparatus).
The upper plate (x2 = h) is moved to the right (positive x1 direction) with
velocity V . Consequently, the conditions on the fluid velocity at the boundaries
are

v1(x2 = h) = v (25.37a)

v1(x2 = 0) = 0 (25.37b)

After a transient that occurs immediately after the plate begins moving the
velocity in the fluid depends on position but not on time, i.e., the flow is steady
and is linear through the layer:

v1 =
x2
h
V (25.38)

The only nonzero component of Dij is

D12 =
1

2

µ
∂v1
∂x2

+
∂v2
∂x1

¶
=

V

2h
=
1

2
γ̇ (25.39a)
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and the shear stress τ12 is the force applied to the plate divided by its contact
area with the fluid. If a plot of τ12 against γ̇ is linear, then the fluid is Newtonian
and viscosity is μ. The viscosity is typically measured in the SI units of Poise
which is equal to 1 dyne-sec/cm2 In Poise, a representative viscosities for water,
air and SAE 30 oil are 10−2, 1.8× 10−4 and 0.67.

25.4 Additional Reading
Malvern, Sec. 6.1, pp. 273-278; Sec. 7.1, pp. 423-434; Chadwick, Chp. 4, Sec.
7, pp. 149-154.
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Chapter 26

Elasticity

26.1 Nonlinear Elasticity
The simple fluid constitutive relations we have considered depend only on the
rate-of-deformation (rather than the strain) and, hence, the issue of the ap-
propriate large strain measure does not arise. The response of solids does, in
general, depend on the strain. Fortunately, for many applications, the magni-
tude of the strain is small, and this makes it possible to consider a linearized
problem that introduces considerable simplification. Although this is often a
very good approximation, it should be noted that it is an approximation that
is strictly valid for infinitesimal displacement gradients and needs to be reeval-
uated whenever this is not the case.
A minimal definition of an elastic material is one for which the stress depends

only on the deformation gradient (rather than, say, the deformation history, or
various internal variables)

T = g(F) (26.1)

This formulation is typically referred to as Cauchy elasticity. Other features
often associated with elasticity are the existence of a strain energy function, a
one-to-one relation between stress and strain measures, that deformation does
not result in any energy loss, or that the body recovers its initial shape upon
unloading.
Since the relation (26.1) reflects material behavior we expect it to indepen-

dent of rigid body rotations. This is called the principle of frame indifference
or material objectivity. A consequence is that the relation (26.1) should depend
only on the deformation U and not the rotation R in the polar decomposition
F = R ·U. If we consider a pure deformation U, then (26.1) becomes

T = TKLNKNL = g(U) (26.2)

where TKL are components of the Cauchy stress with respect to the principal
axes of U in the reference state. For an isotropic material only the diagonal
components of TKL would be non-zero; in other words the principal axes of the
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stress and deformation would coincide. Application of a rotation R does not
cause any stretching or additional stress so that

T = TKLnKnL (26.3)

In other words, the axes in the material have rotated from the NK to the nK
but the stress components are the same. Since nK = R ·NK =NK ·RT , (26.3)
becomes

T = R · (TKLNKNL) ·RT (26.4a)

T = R · g(U) ·R (26.4b)

where the second line uses (26.1). The result can be rewritten

RT ·T ·R = g(U) (26.5)

The quantity on the left side is sometimes referred to as the rotationally invari-
ant Cauchy stress T̂. Independence of the constitutive relation to rigid body
rotations requires that T̂ be a function of the deformation U.
Because U and R are not easily computed, it is more convenient to rewrite

(26.5) in a different form by defining

g(U) = U · h(U2) ·U (26.6)

Substituting (26.6) into (26.5), multiplying from the right by R and from the
left by RT and noting that FT · F = U2 gives

T = F · h(FT · F) · FT (26.7)

Because the second Piola-Kirchhoff stress is related by to Cauchy stress by

S = JF−1 ·T · F (26.8)

substituting from (26.7) yields

S = Jh(FT · F) (26.9)

Writing in terms of the Green-Lagrange strain

E =
1

2

¡
FT · F− I

¢
(26.10)

gives
S = k(E) (26.11)

Hence, a material relation having the form (26.11) is guaranteed to be indepen-
dent of rigid body rotations. More generally, any relation of this form where E
is a material strain tensor and S is its work-conjugate stress tensor will possess
this property.
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26.2 Linearization of Elasticity Equations
The equation of motion in reference configuration is given by (23.24)

∂T o
ij

∂Xi
+ ρ◦boj = ρ◦

∂2uj
∂t2

(26.12)

where
T◦ = JF−1·T (26.13)

is the nominal stress (24.22), boj is the body force per unit reference mass and
all quantities are to be thought of as functions of functions of position in the
reference configuration X and time. On the boundary of the body, the nominal
stress is related to the nominal traction by

NiT
o
ij = toj (26.14)

The stress-strain relation has the form (26.11) where S is the 2nd Piola-Kirchhoff
stress (26.8) and E is the Green’s strain (26.10). Alternatively, if a strain energy
function W exists and is symmetrized in Eij and Eji, the stress-strain relation
can be expressed as

Sij =
∂W

∂Eij
(26.15)

Now, we expand the stress-strain relation in a Taylor series:

Sij = (Sij)E=0 + CijklEkl +BijklmnEklEmn + ... (26.16)

Since deformation is measured from the reference state

(Sij)E=0 = T̄ij (26.17)

where T̄ij is the Cauchy stress in the reference state. The Green-Lagrange strain
is given in terms of the displacement gradients as

Eij =
1

2

µ
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

¶
(26.18)

Substituting into (26.16) and retaining only terms that are linear in displacement
gradients gives

Sij = T̄ij + Cijkl�kl + 0

"¯̄̄̄
∂ui
∂Xj

¯̄̄̄2#
(26.19)

where

�kl =
1

2

µ
∂uk
∂Xl

+
∂ul
∂Xk

¶
(26.20)

is the infinitesimal strain tensor.
Because the nominal stress T◦ appears in the equations of motion, we wish

to convert (26.19). The nominal stress is related to the 2nd Piola-Kirchhoff
stress by

T◦= S · FT (26.21a)

165 Do not distribute without permission



CHAPTER 26. ELASTICITY

or in index form
T o
ij = SikF

T
kj = SikFjk = SikFjk (26.22)

Expressing the deformation gradient in terms of the displacement gradient

Fjk =
∂xj
∂Xk

= δjk +
∂uj
∂Xk

= δjk + uj,k (26.23)

and substituting into (26.22) gives

T o
ij = Sij + Sikuj,k (26.24a)

and using (26.19) gives the constitutive relation in the form

T o
ij = T̄ij + Cijkl�kl + T̄ijuj,k + ... (26.25)

to first order in the displacement gradients.
We assume that the reference state itself is an equilibrium state and, thus,

satifies:
∂T̄ij
∂Xi

+ ρ◦b̄oj = 0 (26.26)

where ρ◦b̄oj is the body force (in reference state) per unit unit mass and that
the surface traction in reference state t̄oj is

NiT̄ij = t̄oj (26.27)

Substituting (26.25) into (26.12) and (26.14) gives

∂

∂Xi

½
T̄ij + Cijkl�kl + T̄ik

∂uj
∂Xk

¾
+ ρ◦boj = ρ◦

∂2uj
∂t2

(26.28a)

Ni

½
T̄ij + Cijkl�kl + T̄ik

∂uj
∂Xk

¾
= toj (26.28b)

Subtracting (26.26) and (26.27) yields

∂

∂Xi

½
Cijkl�kl + T̄ik

∂uj
∂Xk

¾
+ ρo

¡
boj − b̄oj

¢
= ρ◦

∂2uj
∂t2

(26.29)

and

Ni {Cijkl�kl} = toj − t̄oj −NiT̄ik
∂uj
∂Xk

(26.30)

where

∂uj
∂Xk

=
1

2

µ
∂uj
∂Xk

+
∂uk
∂Xj

¶
+
1

2

µ
∂uj
∂Xk

− ∂uk
∂Xj

¶
(26.31a)

= �jk + wjk (26.31b)

�jkwjkis the infinitesimal strain and wjk infinitesimal rotation from the reference
state.
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When can the terms involving T̄ik be dropped so that the usual linear elas-
ticity equations result? To recover classical elasticity the terms involving the
displacement gradient in (26.29) and (26.30) must be negligible. One requirment
is that the initial stress T̄ be much less than any members of Cijkl or, expressed
more simply, that

T̄ << Etan (26.32a)

where T̄ is a magnitude of T̄ik, Etan is a typical tangent modulus. For materials
in the linear range Etan ' E, Young’s modulus, which is generally much larger
than any pre-stress. However, for large pre-stress the terms involving T̄ may
be important even if strains are infinitesimal. One example is the interior of
the Earth where hydrostatic stress is very large even though strains due to
propagation of waves are small. Alternatively, if the response is linearized about
a stress state where the tangent modulus is the same order as the stress, then
these terms may be important even though strains are small.
Because the displacement gradients are multiplied by the initial stress in

(26.29) and (26.30), it is not sufficient only that the strains be small but also
that the rotation be small in some sense. A condition expressing this is

T̄w << Etan� (26.33)

where � and w are magnitudes of the strain and rotation, respectively. An
example where this condition is not met is the buckling of a column. If κ is the
curvature, strains are of the order

� ∼ κh (26.34)

where h is the thickness of the column. The rotations are of the order

w ∼ κl (26.35a)

where l is the length of the column. Since buckling typically occurs when lÀ h,
rotations will be much larger than strains. A manifestation of this result is that
buckling is one of the very few examples in elementary strength of materials
where equilibrium is written for a deformed (slightly buckled) state of the body.
As a final comment, note that actually it is the derivatives of the displacement
gradients that enter the equilibrium equation and these may have magnitudes
that are larger than those of the strains and rotations.

26.3 Linearized Elasticity

Here we specialize immediately to small (infinitesimal) displacement gradients
and no pre-stress. This is the conventional formulation of linear elasticity. In
this case, the stress σij is related to the small (infinitesimal) strain tensor by

σij = Cijklεkl (26.36)
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where Cijkl is an array of constants. In general, Cijkl may have 34 = 81 com-
ponents but because the stress is symmetric

σij = σji (26.37)

and so is the strain
εkl = εlk (26.38)

the number is reduced to 6× 6 = 36 constants. If, in addition, a strain-energy
function exists, then Cijkl satisfies the additional symmetry

Cijkl = Cklij (26.39)

To motivate the existence of a strain-energy function, recall the energy equa-
tion (24.16)

ρ
du

dt
= TijDij +∇ · q+ ρr (26.40)

In the limits of either isothermal (constant temperature) or adiabatic (no heat
transfer) deformation, the last two terms are absent and (26.40) reduces to

dW = σijdεij (26.41)

where dW = ρdu is the change in strain energy and we have identified σij = Tij
and dεij = Dijdt. It follows from (26.41) that

σij =
∂W

∂εij
(26.42)

Comparing (26.36) and (26.42) gives

Cijkl =
∂2W

∂εij∂εkl
(26.43)

which implies (26.39) and

W =
1

2
εijCijklεkl (26.44)

Because of the symmetries, (26.37) and (26.38), (26.36) relates 6 distinct
components of stress to 6 distinct components of strain. Consequently, for
an anisotropic material, it is often more convenient to treat σij and εij as 6
component vectors that are related by a 6× 6 matrix

σi = Cijεj (26.45)

or ⎡⎢⎢⎢⎢⎢⎢⎣
σ11
σ22
σ33
σ23
σ31
σ12

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε11
ε22
ε33
2ε23
2ε31
2ε12

⎤⎥⎥⎥⎥⎥⎥⎦ (26.46)
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where C11 = C1111, C12 = C1122, C13 = C1133, C14 = (C1123 + C1132)/2,
C15 = (C1131 +C1113)/2, C16 = (C1112 +C1121)/2 and so on. If a strain energy
function exists, the symmetry (26.39) implies that Cij = Cji and this results in
the reduction from 36 to 21 constants for an anisotropic linear elastic material.

26.3.1 Material Symmetry

The number of distinct components of Cijkl can be reduced further if the ma-
terial possesses any symmetries. One approach procedes along the lines of the
discussion of isotropic tensors (25.2). Because Cijkl is a (4th order) tensor its
components in a coordinate system with unit orthogonal base vector ei must be
related to the components C0ijkl in a system of base vectors e0i by

C 0ijpq = AikAjlApmAqmCklmn (26.47)

where Aik = e
0
k · ei. If the material possesses a symmetry such that tests of the

material in two coordinate systems cannot distinguish between them, then, for
those two coordinate systems, C0ijkl = Cijkl and hence

Cijpq = AikAjlApmAqmCklmn (26.48)

Suppose, for example, the x1x2 plane is a plane of symmetry. Then a coordinate
change that reverses the x3 axis will not affect the behavior. For such a change
A11 = A22 = −A33 = 1 are the only nonzero Aij . Thus

C1223 = A11A22A22A33C1223 = −C1223

Hence C1223 = 0. Similar calculations show that any Cklmn having an odd
number of 3’s as indicies are zero.
Alternatively, consider the matrix formulation. For changes of coordinate

system that are indistinguishable to the material

σ0i = Cij�
0
i = Cij�j = σi (26.49a)

Again, consider the but x1x2 plane a plane of symmetry. Then σ
0

1 = σ1 and it
follows that

σ1 = C11�1 + C12�2 + C13�3 + C14�4 + C15�5 + C16�6 (26.50)

= C011�
0
1 + C012�

0
2 + C 013�

0
3 + C 014�

0
4 + C 015�

0
5 + C016�

0
6

= σ1

But the shear stresses 2�32 = �4 and 2�31 = �5 reverse sign under this transfor-
mation; that is

�04 = −�4 (26.51a)

�05 = −�5 (26.51b)
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Therefore,

C14 = −C 014 = −C14 = 0 (26.52a)

C15 = −C 015 = −C15 = 0 (26.52b)

The remaining nonzero Cij are

Cij =

⎡⎢⎢⎢⎢⎢⎢⎣
C11 C12 C13 0 0 C16
C21 C22 C23 0 0 C26
C31 C32 C33 0 0 C36
0 0 0 C44 C45 0
0 0 0 C54 C55 0
C61 C62 C63 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎦ (26.53)

A single plane of symmetry is called monoclinic.
Orthotropic is symmetry with respect to 3 orthogonal planes. The 9 nonzero

Cij are

Cij =

⎡⎢⎢⎢⎢⎢⎢⎣
C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎦ (26.54)

Note that the axial and shear stresses are completely uncoupled.
Hexagonal symmetry is symmetry with respect to 60◦ rotations. It turns

out that this symmetry implies symmetry with respect to any rotation in the
plane, which is the same as transverse isotropy. This leaves 5 nonzero Cij .

Cij =

⎡⎢⎢⎢⎢⎢⎢⎣
C11 C12 C13 0 0 0
C21 C11 C13 0 0 0
C31 C31 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

⎤⎥⎥⎥⎥⎥⎥⎦ (26.55)

Cubic symmetry has 3 elastic constants. The material has three orthogonal
planes of symmetry and is symmetric to rotations about the normals to these
plans.

Cij =

⎡⎢⎢⎢⎢⎢⎢⎣
C11 C12 C12 0 0 0
C21 C11 C12 0 0 0
C21 C21 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤⎥⎥⎥⎥⎥⎥⎦ (26.56)

For isotropy, the response of the material is completely independent of di-
rection. This imposes the following additional relation on (26.56)

C44 =
1

2
(C11 − C12) (26.57)
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Therefore, a linear elastic isotropic material is described by two elastic constants
λ and μ.

Cij =

⎡⎢⎢⎢⎢⎢⎢⎣
(λ+ 2μ) λ λ 0 0 0

λ (λ+ 2μ) λ 0 0 0
λ λ (λ+ 2μ) 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤⎥⎥⎥⎥⎥⎥⎦ (26.58)

and the stress strain relation is given by

σij = λ (ε11 + ε22 + ε33) δij + 2μεij (26.59)

26.3.2 Linear Isotropic Elastic Constitutive Relation

σij = λεkkδij + 2μεij (26.60)

where λ and μ are Lame constants. If λ and μ are not functions of position,
then the material is homogeneous. To invert (26.60) to obtain the strains in
terms of the stresses, first take the trace of (26.60)

σkk = εkk(3λ+ 2μ) = −3p (26.61a)

p = −Kε (26.61b)

where
K = λ+

2

3
μ (26.62)

is the bulk modulus. Recall that for small displacement gradients εkk is ap-
proximately equal to the volume strain, that is, the change in volume per unit
reference volume. Hence K relates the pressure to the volume strain. For an
incompressible material K → ∞; i.e., the volume strain is zero, regardless of
the pressure. Solving (26.61a) for εkk and substituting back into (26.60) yields

2μεij = σij − σkkδij
λ

(3λ+ 2μ)
(26.63a)

Now consider a uniaxial stress: only σ11 = σ is nonzero.

�11 = σ
(λ+ μ)

μ (3λ+ 2μ)
(26.64a)

where
(λ+ μ)

μ (3λ+ 2μ)
=
1

E
(26.65)

and E is Young’s modulus. The strain in the lateral direction

�22 = −
λ

2μ (3λ+ 2μ)
σ = −μ (3λ+ 2μ)

(λ+ μ)

λ

2μ (3λ+ 2μ)
�11 (26.66)
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Substituting (26.64a) yields
�22 = −υ�11

where

υ =
λ

2 (λ+ μ)
(26.67)

is Poisson’s ratio. Equation (26.63a) can be rewritten in terms E and ν as

�ij =
(1 + υ)

E
Tij −

υ

E
Tkkδij (26.68a)

(26.68b)

Some additional useful relations among the elastic constants are the following:

2μ =
E

1 + υ
(26.69a)

λ = 2μ
υ

1− 2υ (26.69b)

26.4 Restrictions on Elastic Constants
The existence of a strain energy function places certain restrictions on the values
of the elastic constants. These restrictions arise from the requirement that the
strain energy function be positive.

W (²) > 0 (26.70)

if
² 6= 0 (26.71)

and
W (0) = 0 (26.72)

An increment of the strain energy is equal to the work of the stresses σij on the
strain increment d�ij

dW = Tijd�ij (26.73a)

and consequently the stress components are given by

σij =
∂W

∂�ij
= Cijkl�kl

(assumingW is written symmetrically in terms of �ij) and . the modulus tensor
is given by

Cijkl =
∂W

∂�ij∂�kl
(26.74)

Because the second derivatives of W can be taken in either order, the modulus
tensor must satisfy the symmetry Cijkl = Cklij and the strain energy function
is given by

W =
1

2
Cijkl�ij�kl
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The condition (26.70) requires that Cijkl be positive definite.
For an isotropic material

W =
1

2

n
λ (�kk)

2 + 2μ�ij�ij

o
(26.75a)

Because �ij and �kk are not independent, we cannot conclude from (26.70) that
the coefficients λ and μ are positive. Consequently, we rewrite (26.75a) in terms
of deviatoric strain

�ij = �0ij +
1

3
δij�kk (26.76a)

to get

W =
1

2

½µ
λ+

2

3
μ

¶
�2kk + 2μ�

0
ij�

0
ij

¾
Because each of �kk and �0ij can be specified independently, (26.70) requires that
the bulk modulus

K =

µ
λ+

2

3
μ

¶
> 0 (26.77)

and that be shear modulus
μ > 0 (26.78)

These conditions translate to the following in terms of E and υ

E > 0 (26.79a)

−1 < υ <
1

2
(26.79b)

but the practical limits on υ are

0 < υ < 0.49 (26.80)

26.5 Additional Reading
Malvern, Sec. 6.2.
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