Fundamentals of Crystallography

C. GIACOVAZZO, H. L. MONACO, D. VITERBO F. SCORDARI, G. GILLI, G. ZANOTTI, M. CATTI

Edited by

C. GIACOVAZZO

Dipartimento Geomineralogico, University of Bari, Italy and Istituto di Ricerca per lo Sviluppo delle Metodologie Cristallografiche, CNR, Bari, Italy

> INTERNATIONAL UNION OF CRYSTALLOGRAPHY OXFORD UNIVERSITY PRESS 1992

Contents

List of contributors	xii	i
Symmetry in crystals Carmelo Giacovazzo		1
The crystalline state and		
operations		1
Symmetry elements		3
Axes of rotational syn	5	3
Axes of rototranslatio		5
Axes of inversion		5 5
Axes of rotoreflection		5
Reflection planes with		6
component (glide plan Lattices		6
The rational properties		7
Crystallographic direc		′ 7
Crystallographic plane		, 8
Symmetry restrictions d		0
periodicity and vice vers		9
Point groups and symme		1
Point groups in one a		6
The Laue classes	1′	7
The seven crystal system	ns 1'	7
The Bravais lattices	18	8
Plane lattices	18	8
Space lattices	19	9
The space groups	22	2
The plane and line grou	ps 30	0
On the matrix represent	ation of symmetry	
operators	32	2
Appendices: 1.A The		_
	formations 3	5
	e combinations of	7
	ements 3'	
1.C Wign	her–Seitz cells 4	1

	1.D	The space-group	
		rotation matrices	43
	1.E	Symmetry groups	45
	1.F	Symmetry	
		generalization	55
References			60

2	Crystallographic computing Carmelo Giacovazzo	61
	Introduction	61
	The metric matrix	61
	The reciprocal lattice	63
	Basic transformations	65
	Transformation from triclinic to	
	orthonormal axes	68
	Rotations in Cartesian systems	69
	Some simple crystallographic calculations	73
	Torsion angles	73
	Best plane through a set of points	74
	Best line through a set of points	75
	Principal axes of a quadratic form	75
	Metric considerations on the lattices	77
	Niggli reduced cell	77
	Sublattices and superlattices	80
	Coincidence-site lattices	81
	Twins	83
	Calculation of the structure factor	87
	Calculation of the electron density	
	function	88
	The method of least squares	90
	Linear least squares	90
	Reliability of the parameter estimates	92
	Linear least squares with constraints	92
	Non-linear (unconstrained) least squares	93

viii | Contents

6 ...

Least-squa structures	res re	finement of crystal	94
	nside	erations on	24
Practical considerations on crystallographic least squares			98
	-	restraints in	20
		least squares	104
	-	the method of least	
squares			108
Rietveld refin	nemei	nt	109
The basis o	of the	technique	109
		spects of Rietveld	
refinement		I	112
Analysis of th	nerma	al motion	117
		nal motion on bond	
lengths and a			120
•	-	y of the calculated	
parameters		•	122
Appendices:	2.A	Some metric relations	
		between direct and	
		reciprocal lattices	124
	2.B	0	
		calculations concerning	
		directions and planes	125
	2.C	Some transformation	107
	2 D	matrices	127
	2.D	Reciprocity of F and I lattices	127
	2.E	Transformations of	
		crystallographic	
		quantities in rectilinear	
		spaces	128
	2.F	Derivation of the	
	• •	normal equations	130
	2. G	Derivation of the	
		variance–covariance matrix \mathbf{M}_x	131
	<u>а</u> п	Derivation of the	151
	2.11	unbiased estimate of	
		M _r	131
	2.I	The FFT algorithm and	
		its crystallographic	
		applications	131
	2.J	Examples of twin laws	133
References			137
The diffraction	on of	X-rays by crystals	141

3	The diffraction of X-rays by crystals	
	Carmelo Giacovazzo	

Introduction			141
Thomson scatte	rin	g	142
Compton scatte	rin	g	144
Interference of s	sca	ttered waves	144
Scattering by at	om	ic electrons	146
Scattering by at	om	S	147
The temperature	e f	actor	148
Scattering by a r	mo	lecule or by a unit cell	150
Diffraction by a	cr	ystal	151
Bragg's law			154
The reflection a	nd	the limiting spheres	154
Symmetry in rec	cip	rocal space	155
Friedel law			155
Effects of sym	nm	etry operators in the	
reciprocal spa			156
Determination	n c	of the Laue class	156
		of reflections with	
restricted pha			157
Systematic ab			159
1	det	ermination of the space	161
group		i	161
Diffraction inter			161
Anomalous disp			165
problem	tne	esis and the phase	169
Modulated cryst	tal	structures	109
Appendices: 3.			1/1
Appendices. 5.		background	173
3.	В	Scattering and related	
		topics	185
3.	С	Scattering of X-rays by	
		gases, liquids, and	5
		amorphous solids	201
3.	D	About electron density	21.6
2	-	mapping	216
3.	E	Modulated structures	221
References		and quasicrystals	221
References			220
Experimental	~~~	thada in V ray	
Experimental r crystallograph		thous in A-ray	229
Hugo L. Monac	-		
X-ray sources			229
Conventional	ØP	nerators	229
Synchrotron r	_		234
Synthioushi			-51

4

w

Monochromatization, collimation, and	241
focusing of X-rays	241
Data collection techniques for single crystals	245
The Weissenberg camera	245
The precession camera	254
The rotation (oscillation) method in	204
macromolecular crystallography	259
Densitometry	268
The single-crystal diffractometer	273
Area detectors	281
Data collection techniques for	
polycrystalline materials	287
X-ray diffraction of polycrystalline	
materials	287
Cameras used for polycrystalline	
materials	289
Diffractometers used for polycrystalline materials	293
Uses of powder diffraction	293 297
Data reduction	301
Lorentz correction	301 301
Polarization correction	303
	303 304
Absorption corrections Radiation damage corrections	304 308
Relative scaling	308 310
Appendices: 4.A Determination of the	510
number of molecules in	
the unit cell of a crystal	312
References	314
Solution and refinement of crystal	
structures	319
Davide Viterbo	
Introduction	319
Statistical analysis of structure factor	
amplitudes	321

The Patterson function and its use

Advanced Patterson methods

Structure invariants and semi-invariants

Fixing the origin and the enantiomorph

٠

The heavy atom method

Direct methods

Introduction

Probability methods

5

Phase determ	ination procedures	351
Completing and refining the structure		
Difference Fo	366	
Least-squares	367	
Absolute conf	iguration	374
Appendices: 5.	A Structure factor	
	probability	
	distributions	375
5.	B Patterson vector	
	methods	377
5.	C Two examples of	
	deriving phase	
	information from	
	positivity	384
5.	D Probability formulae	
	for triplet invariants	385
5.	E Pseudotranslational	
	symmetry	387
5.	F Magic integers	388
5.	G New multisolution	
	techniques	390
5.	H Procedures for	
	completing a partial	
	model	393
References		397
lonic crystals		403
Fernando Scorda	ari	400

The structure of the atom	403
Atoms with a single electron	403
Atoms with more than one electron	404
Interactions between ions	406
Notes on chemical bonds	406
Ionic crystals	409
Lattice energy: the contributions of	
attractive and repulsive terms	410
Lattice energy: CFSE contribution	414
Applications of lattice energy	
calculations	417
Ionic radius	418
Maximum filling principle	424
Coordination polyhedra	425
Radius ratio rule	425
Applications of the concept of ionic	
radius	427

6

324

328

335 335

335

337 340

x | Contents

	Closest packings	429
	Pauling's rules	433
	Pauling's first rule	433
	Pauling's second rule	433
	Pauling's third rule	435
	Pauling's fourth rule	436
	Pauling's fifth rule	436
	Ideal and defect structures	436
	MX structures	437
	MX_2 and M_2X structures	438
	MX_3 and M_2X_3 structures	440
	$A_m B_n X_p$ structures	441
	On the classification of silicates	445
	Liebau's crystallochemical classification	447
	Structural formulae	453
	Relationship between classification	
	parameters and properties of the cations	453
	Appendices: 6.A Application of the	
	concept of the packing coefficient (c_i)	456
	6.B Structural inferences	100
	from crystallochemical	
	parameters	459
	References	463
7	Molecules and molecular crystals Gastone Gilli	465
	Chemistry and X-ray crystallography	465
	Crystal and molecular structure	465
	The growth of structural information	467
	The nature of molecular crystals	468
	Generalities	468
	A more detailed analysis of	
	intermolecular forces	473
	Thermodynamics of molecular crystals	478
	Free and lattice energy of a crystal from	
	atom-atom potentials	480
	Polymorphism and the prediction of	400
	crystal structures	482
	Effect of crystal forces on molecular geometry	483
	Elements of classical stereochemistry	484
	Liements of elassical stereoeneniistry	-0-
	Structure: constitution, configuration,	

486

Isomerism

Ring conformations	490
Ring conformation and group theory	492
Computation of puckering coordinates	498
Molecular geometry and the chemical	
bond	499
An overview of bond theories	499
The VSEPR theory	501
Valence bond (VB) theory	502
Hybridization. The machinery	504
Molecular mechanics	506
Molecular hermeneutics: the	
interpretation of molecular structures	511
Correlative methods in structural	
analysis	511
Some three-centre–four-electron linear	
systems	512
Nucleophilic addition to organometallic	
compounds	514
Nucleophilic addition to the carbonyl	515
group	010
A case of conformational rearrangement	516
Resonance assisted hydrogen bonding	521
(RAHB)	
References	529

.

Protein crystallography Giuseppe Zanotti	535
Introduction	535
Protein crystals	536
Principles of protein crystallization	536
The solvent content of protein crystals	538
Preparation of isomorphous heavy-atom derivatives	538
How isomorphous are isomorphous derivatives?	540
The solution of the phase problem	540
The isomorphous replacement method	540
Anomalous scattering: a complementary (or alternative) approach to the solution of the phase problem	544
The use of anomalous scattering in the determination of the absolute	545
configuration of the macromolecule	545
The treatment of errors	546

Contents | xi

The refinen			
parameters	549		
Picking up the differen	551		
A third app			
the phase a	551		
Rotation ar			
the molecul	552		
		and the maximum-	
entropy pri crystallogra	560		
The interpret	300		
maps and the	562		
The interpr	502		
maps	562		
Interactive	com	puter graphics and	
model build	562		
The refinen	563		
Protein struct	572		
General asp	573		
		zation of proteins:	
secondary s	574		
Polypeptide	577		
•		organization: tertiary	
and quateri	578		
Groups other than amino acids			578 582
Thermal pa	362		
structures	583		
Solvent structure			583
The influence of crystal packing			584
Protein classification			585
Appendices:	8.A	Some formulae for	
11		isomorphous	
		replacement and	
		anomalous dispersion	587
	8.B		588
a	8.C	Macromolecular least-	
		squares refinement and	
		the conjugate-gradient algorithm	590
	8.D	Conventions and	270
		symbols for amino	
		acids and peptides	591

٠

References and further reading		
	500	
Physical properties of crystals <i>Michele Catti</i>	599	
Introduction		
Crystal anisotropy and tensors		
Tensorial quantities	600	
Symmetry of tensorial properties	603	
Overview of physical properties		
Electrical properties of crystals		
Pyroelectricity		
Dielectric impermeability and optical		
properties		
Elastic properties of crystals		
Crystal strain		
Inner deformation		
Stress tensor		
Elasticity tensor		
Examples and applications		
Piezoelectricity		
Symmetry properties of the piezoelectric		
tensor	620 622	
Crystal defects		
Experimental methods		
Planar defects		
Line defects: dislocations		
The Burgers circuit		
X-ray topography of dislocations		
Energy of a dislocation		
Motion and interaction of dislocations		
Partial dislocations		
Small-angle grain boundaries		
Point defects		
Thermal distribution of defects		
Diffusion		
Ionic conductivity		
Appendix: 9.A Properties of second-rank		
tensors	640 642	
Further reading		
Index	645	