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Preface 

“… I am talking about the areas of science and learning that have been at the heart 

of what we know and what we do, that which has supported and guided us and which is 

fundamental to our thinking.  It is electromagnetism (EM) in all its many forms that has 

been so basic, that haunts us and guides us…” – Nick Holonyak, Jr., John Bardeen 

Endowed Chair Professor of Electrical and Computer Engineering and of Physics, 

University of Illinois at Urbana-Champaign, and the inventor of the semiconductor 

visible LED, laser, and quantum-well laser, in a Foreword in the Indian Edition of 

“Elements of Engineering Electromagnetics, Sixth Edition,” by the author. 

“The electromagnetic theory, as we know it, is surely one of the supreme 

accomplishments of the human intellect, reason enough to study it. But its usefulness in 

science and engineering makes it an indispensable tool in virtually any area of technology 

or physical research.” – George W. Swenson, Jr., Professor Emeritus of Electrical and 

Computer Engineering, University of Illinois at Urbana-Champaign, and a pioneer in the 

field of radio astronomy, in the “Why Study Electromagnetics? Section in the Indian 

Edition of “Elements of Engineering Electromagnetics, Sixth Edition,” by the author. 

In this presentation, I present in a nutshell the fundamental aspects of engineering 

electromagnetics from the view of looking back in a reflective fashion what has already 

been learnt in undergraduate electromagnetics courses as a novice.  The first question that 

comes to mind in this context is: What constitutes the fundamentals of engineering 

electromagnetics?  If the question is posed to several individuals, it is certain that they 

will come up with sets of topics, not necessarily the same or in the same order, but all 



containing the topic, “Maxwell’s Equations,” at some point in the list, ranging from the 

beginning to the end of the list.  In most cases, the response is bound to depend on the 

manner in which the individual was first exposed to the subject.  Judging from the 

contents of the vast collection of undergraduate textbooks on electromagnetics, there is 

definitely a heavy tilt toward the traditional, or historical, approach of beginning with 

statics and culminating in Maxwell’s equations, with perhaps an introduction to waves.  

 Primarily to provide a more rewarding understanding and appreciation of the 

subject matter, and secondarily owing to my own fascination resulting from my own 

experience as a student, a teacher, and an author over a few decades, I have employed 

here the approach of beginning with Maxwell’s equations and treating the different 

categories of fields as solutions to Maxwell’s equations.  In doing so, instead of 

presenting the topics in an unconnected manner, I have used the thread of statics-

quasistatics-waves to cover the fundamentals and bring out the frequency behavior of 

physical structures at the same time. 

The material in this presentation is based on Chapter 1, entitled, “Fundamentals of 

Engineering Electromagnetics Revisited,” by the author, in Handbook of Engineering 

Electromagnetics, Marcel Dekker, 2004.  I wish to express my appreciation to the 

following staff members of the Department of Electrical and Computer Engineering at 

the University of Illinois at Urbana-Champaign: Teresa Peterson for preparing the 

PowerPoint slides, and Kelly Collier for typing the text material. 

         N. Narayana Rao  
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Slide Nos. 1-3 

Electromagnetics is the subject having to do with electromagnetic fields. An 

electromagnetic field is made up of interdependent electric and magnetic fields, which is 

the case when the fields are varying with time, that is, they are dynamic.  An electric field 

is a force field that acts upon material bodies by virtue of their property of charge, just as 

a gravitational field is a force field that acts upon them by virtue of their property of 

mass. A magnetic field is a force field that acts upon charges in motion.    

The subject of electromagnetics is traditionally taught using the historical 

approach of beginning with static fields and culminating in Maxwell’s equations, with 

perhaps an introduction to waves.  Here, we employ the approach of beginning with 

Maxwell’s equations and treating the different categories of fields as solutions to 

Maxwell’s equations. In doing so, the thread of statics-quasistatics-waves is used to cover 

the fundamentals and bring out the frequency behavior of physical structures at the same 

time.  
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The Approach Used Here
The subject of electromagnetics is traditionally
taught using the historical approach of beginning 
with static fields and culminating in Maxwell’s
equations, with perhaps an introduction to waves.
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Maxwell’s equations and treating the different
categories of fields as solutions to Maxwell’s 
equations. In doing so, the thread of statics-
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fundamentals and bring out the frequency behavior
of physical structures at the same time. 2
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 A region is said to be characterized by an electric field if a particle of charge q 

moving with a velocity v experiences a force Fe, independent of v.  The force, Fe, is given 

by   

 Fe = qE (1) 

where E is the electric field intensity.  We note that the units of E are newtons per 

coulomb (N/C).  Alternate and more commonly used units are volts per meter (V/m), 

where a volt is a newton-meter per coulomb.  The line integral of E between two points A 

and B in an electric field region, E • dl
A

B

∫ , has the meaning of voltage between A and B.  

It is the work per unit charge done by the field in the movement of the charge from A to 

B.  The line integral of E around a closed path C is also known as the electromotive force 

or emf around C.   
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If the charged particle experiences a force which depends on v, then the region is 

said to be characterized by a magnetic field.  The force, Fm, is given by   

 Fm = qv x B (2) 

where B is the magnetic flux density.  We note that the units of B are newtons/(coulomb-

meter per second), or, (newton-meter per coulomb) × (seconds per square meter), or, 

volt-seconds per square meter.  Alternate and more commonly used units are webers per 

square meter (Wb/m2) or tesla (T), where a weber is a volt-second.  The surface integral 

of B over a surface S, B • dS
S∫ , is the magnetic flux (Wb) crossing the surface. 

 Equation (2) tells us that the magnetic force is proportional to the magnitude of v 

and orthogonal to both v and B in the right-hand sense.  The magnitude of the force is 

qvB sin δ, where δ  is the angle between v and B.  Since the force is normal to v, there is 

no acceleration along the direction of motion.  Thus the magnetic field changes only the 

direction of motion of the charge, and does not alter the kinetic energy associated with it. 
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 Since current flow in a wire results from motion of charges in the wire, a wire of 

current placed in a magnetic field experiences a magnetic force.  For a differential length 

dl of a wire of current I placed in a magnetic field B, this force is given by   

 dFm = I dl x B (3) 
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 Combining (1) and (2), we obtain the expression for the total force F = Fe + Fm, 

experienced by a particle of charge q moving with a velocity v in a region of electric and 

magnetic fields, E and B, respectively, as   

 F = qE + qv x B 

 = q(E + v x B) (4) 

Equation (4) is known as the Lorentz force equation.  
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The vectors E and B are the fundamental field vectors which define the force 

acting on a charge moving in an electromagnetic field, as given by the Lorentz force 

equation (4).  Two associated field vectors D and H, known as the electric flux density 

(or the displacement flux density) and the magnetic field intensity, respectively, take into 

account the dielectric and magnetic properties, respectively, of material media.  Materials 

contain charged particles which, under the application of external fields, respond giving 

rise to three basic phenomena known as conduction, polarization, and magnetization.  

Although a material may exhibit all three properties, it is classified as a conductor, a 

dielectric, or a magnetic material, depending upon whether conduction, polarization, or 

magnetization is the predominant phenomenon.  While these phenomena occur on the 

atomic or “microscopic” scale, it is sufficient for our purpose to characterize the material 

based on “macroscopic” scale observations, that is, observations averaged over volumes 

large compared with atomic dimensions.  



 

 

 

 

 

Materials

Materials contain charged particles that under the 
application of external fields respond giving rise
to three basic phenomena known as conduction,
polarization, and magnetization. While these
phenomena occur on the atomic or “microscopic”
scale, it is sufficient for our purpose to
characterize the material based on “macroscopic”
scale observations, that is, observations averaged
over volumes large compared with atomic
dimensions.  

8

Materials

Materials contain charged particles that under the 
application of external fields respond giving rise
to three basic phenomena known as conduction,
polarization, and magnetization. While these
phenomena occur on the atomic or “microscopic”
scale, it is sufficient for our purpose to
characterize the material based on “macroscopic”
scale observations, that is, observations averaged
over volumes large compared with atomic
dimensions.  

8



Slide No. 9 

 In the case of conductors, the effect of conduction is to produce a current in the 

material known as the conduction current.  Conduction is the phenomenon whereby the 

free electrons inside the material move under the influence of the externally applied 

electric field with an average velocity proportional in magnitude to the applied electric 

field, instead of accelerating, due to the frictional mechanism provided by collisions with 

the atomic lattice.  For linear isotropic conductors, the conduction current density, having 

the units of amperes per square meter (A/m2) is related to the electric field intensity in the 

manner 

 Jc = σE (5) 

where σ is the conductivity of the material, having the units siemens per meter (S/m).  In 

semiconductors, the conductivity is governed by not only electrons but also holes. 
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 While the effect of conduction is taken into account explicitly in the 

electromagnetic field equations through (5), the effect of polarization is taken into 

account implicitly through the relationship between D and E, which is given by   

 D = εE (6) 

for linear isotropic dielectrics, where ε is the permittivity of the material having the units 

(coulombs)2 per (newton-meter2), commonly known as farads per meter (F/m), where a 

farad is a (coulomb)2 per newton-meter.   

 Polarization is the phenomenon of creation and net alignment of electric dipoles, 

formed by the displacements of the centroids of the electron clouds of the nuclei of the 

atoms within the material, along the direction of an applied electric field. 

The effect of polarization is to produce a secondary field which acts in 

superposition with the applied field to cause the polarization.  To implicitly take this into 

account, leading to (6), we begin with  

 D = ε0E + P (7) 

where ε0 is the permittivity of free space, having the numerical value 8.854 × 10–12, or 

approximately 10–9/36π, and P is the polarization vector, or the dipole moment per unit 

volume, having the units (coulomb-meters) per meter3 or coulombs per square meter.  

Note that this gives the units of coulombs per square meter for D.  The term ε0E accounts 

for the relationship between D and E if the medium were free space, and the quantity P 

represents the effect of polarization.  For linear isotropic dielectrics, P is proportional to 

E in the manner   

 P = ε0χeE (8)  
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 where χe, a dimensionless quantity, is the electric susceptibility, a parameter that 

signifies the ability of the material to get polarized.  Combining (7) and (8), we have   

 D = ε0(1 + χe)E 

 = ε0εrE 

 = εE   (9) 

where εr (= 1 + χe) is the relative permittivity of the material. 
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 In a similar manner, the effect of magnetization is taken into account implicitly 

through the relationship between H and B, which is given by   

 H = B
µ   (10) 

for linear isotropic magnetic materials, where µ is the permeability of the material, 

having the units newtons per (ampere)2, commonly known as henrys per meter (H/m), 

where a henry is a (newton-meter) per (ampere)2.   

 Magnetization is the phenomenon of net alignment of the axes of the magnetic 

dipoles, formed by the electron orbital and spin motion around the nuclei of the atoms in 

the material, along the direction of the applied magnetic field. 

 The effect of magnetization is to produce a secondary field which acts in 

superposition with the applied field to cause the magnetization.  To implicitly take this 

into account, we begin with  

 B = µ0H + µ0M  (11) 

where µ0 is the permeability of free space, having the numerical value 4π × 10–7, and M 

is the magnetization vector or the magnetic dipole moment per unit volume, having the 

units (ampere-square meters) per meter3 or amperes per meter.  Note that this gives the 

units of amperes per meter for H.  The term µ0H accounts for the relationship between H 

and B if the medium were free space, and the quantity µ0M represents the effect of 

magnetization.  For linear isotropic magnetic materials, M is proportional to H in the 

manner 

 M = χmH  (12) 
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Magnetic Dipole
Magnetic Dipole Moment:

Magnetization Vector:

12

m = I Aan

µ0 = Permeability of free space H m( )

M = 1
∆v m j

j =1

N ∆v

∑ = Nm A m( )

×
I

IBM =
χm

1 + χm

B
µ0

χm = Magnetic susceptibility

Iin Iout
I ×x an

I dl x B

I dl x B

Magnetic Materials (Magnetization)

Magnetic Dipole
Magnetic Dipole Moment:

Magnetization Vector:

12

m = I Aan

µ0 = Permeability of free space H m( )

M = 1
∆v m j

j =1

N ∆v

∑ = Nm A m( )

×
I

IBM =
χm

1 + χm

B
µ0

χm = Magnetic susceptibility

Iin Iout
I ×x an

I dl x B

I dl x B



 where χm, a dimensionless quantity, is the magnetic susceptibility, a parameter that 

signifies the ability of the material to get magnetized.  Combining (11) and 12), we have   

 

H = B
µ0(1 + χm )

= B
µ0µr

= B
µ

 (13) 

where µr (= 1 + χm) is the relative permeability of the material.  
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 Equations (5), (6), and (10) are familiarly known as the constitutive relations, 

where σ, ε, and µ are the material parameters.  The parameter σ takes into account 

explicitly the phenomenon of conduction, whereas the parameters ε and µ take into 

account implicitly the phenomena of polarization and magnetization, respectively. 
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 The constitutive relations (5), (6), and (10) tell us that Jc is parallel to E, D is 

parallel to E, and H is parallel to B, independent of the directions of the field vectors.  

For anisotropic materials, the behavior depends upon the directions of the field vectors.  

The constitutive relations have then to be written in matrix form.  For example, in an 

anisotropic dielectric, each component of P and hence of D is in general dependent upon 

each component of E.  Thus, in terms of components in the Cartesian coordinate system, 

the constitutive relation is given by   
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  (14) 

or, simply by 

 [D] = [ε] [E]  (15) 

where [D] and [E] are the column matrices consisting of the components of D and E, 

respectively, and [ε] is the permittivity matrix containing the elements εij, i = 1, 2, 3 and j 

= 1, 2, 3.  Similar relationships hold for anisotropic conductors and anisotropic magnetic 

materials.  
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 Since the permittivity matrix is symmetric, that is, εij = εji, from considerations of 

energy conservation, an appropriate choice of the coordinate system can be made such 

that some or all of the nondiagonal elements are zero.  For a particular choice, all of the 

nondiagonal elements can be made zero so that   
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 (16) 

Then 

 xx ED ′′ = 1ε  (17a) 

 yy ED ′′ = 2ε  (17b) 

 zz ED ′′ = 3ε  (17c) 

so that D and E are parallel when they are directed along the coordinate axes, although 

with different values of “effective permittivity,” that is, ratio of D to E, for each such 

direction.  The axes of the coordinate system are then said to be the “principal axes” of 

the medium.  Thus when the field is directed along a principal axis, the anisotropic 

medium can be treated as an isotropic medium of permittivity equal to the corresponding 

effective permittivity. 
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The electric and magnetic fields are governed by a set of four laws, known as the  

Maxwell’s equations, resulting from several experimental findings and a purely 

mathematical contribution.  Together with the constitutive relations, Maxwell’s equations 

form the basis for the entire electromagnetic field theory.  We shall consider the time 

variations of the fields to be arbitrary and introduce these equations and an auxiliary 

equation in the time domain form.  In view of their experimental origin, the fundamental 

form of Maxwell’s equations is the integral form.  We shall first present all four 

Maxwell’s equations in integral form and the auxiliary equation, the law of conservation 

of charge, and then discuss each equation and several points of interest pertinent to them.  

It is understood that all field quantities are real functions of position and time, that is, E = 

E(r, t) = E(x, y, z, t), etc. 
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Faraday’s Law 

 Faraday’s law is a consequence of the experimental finding by Michael Faraday 

in 1831 that a time varying magnetic field gives rise to an electric field.  Specifically, the 

electromotive force around a closed path C is equal to the negative of the time rate of 

increase of the magnetic flux enclosed by that path, that is,  

 E • dl
C∫ = − d

dt B • dS
S∫    (18) 

where S is any surface bounded by C. 
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There are certain procedures and observations of interest pertinent to (18): 

1.  The direction of the infinitesimal surface vector dS denotes that the magnetic 

flux is to be evaluated in accordance with the right hand screw rule (R.H.S. rule), that is, 

in the sense of advance of a right hand screw as it is turned around C in the sense of C.  

The R.H.S. rule is a convention that is applied consistently for all electromagnetic field 

laws involving integration over surfaces bounded by closed paths.   

 2. In evaluating the surface integrals in (18), any surface S bounded by C can be 

employed.  This implies that the time derivative of the magnetic flux through all possible 

surfaces bounded by C is the same in order for the emf around C to be unique.   

3.  The minus sign on the right side of (18) tells us that when the magnetic flux 

enclosed by C is increasing with time, the induced voltage is in the sense opposite to that 

of C.  If the path C is imagined to be occupied by a wire, then a current would flow in the 

wire which produces a magnetic field so as to oppose the increasing flux.  Similar 

considerations apply for the case of the magnetic flux enclosed by C decreasing with 

time.  These are in accordance with Lenz’ law which states that the sense of the induced 

emf is such that any current it produces tends to oppose the change in the magnetic flux 

producing it. 

 4. If loop C contains more than one turn, such as in an N-turn coil, then the 

surface S bounded by C takes the shape of a spiral ramp.  For a tightly wound coil, this is 

equivalent to the situation in which N separate, identical, single-turn loops are stacked so 

that the emf induced in the N-turn coil is N times the emf induced in one turn.  Thus, for 

an N-turn coil, 
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 emf = 
dt

dN ψ
−   (19) 

where ψ is the magnetic flux computed as though the coil is a one-turn coil. 
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Ampere’s Circuital Law 

 Ampere’s circuital law is a combination of an experimental finding of Oersted 

that electric currents generate magnetic fields and a mathematical contribution of 

Maxwell that time-varying electric fields give rise to magnetic fields.  Specifically, the 

magnetomotive force, or mmf, around a closed path C is equal to the sum of the current 

enclosed by that path due to actual flow of charges and the displacement current due to 

the time rate of increase of the electric flux (or displacement flux) enclosed by that path, 

that is,  

 H • dl
C∫ = J • dS + d

dtS∫ D • dS
S∫   (20) 

where S is any surface bounded by C. 

Since magnetic force acts perpendicular to the motion of a charge, the 

magnetomotive force, that is, H • dl
C∫ , does not have a physical meaning similar to that 

of the electromotive force.  The terminology arises purely from analogy with 

electromotive force for E • dl
C∫ . 

In evaluating the surface integrals in (20), any surface S bounded by C can be 

employed.  However, the same surface S must be employed for both surface integrals.  

This implies that the sum of the current due to flow of charges and the displacement 

current through all possible surfaces bounded C is the same in order for the mmf around 

C to be unique. 
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The current density J in (20) pertains to true currents due to motion of true 

charges.  It does not pertain to currents resulting from the polarization and magnetization 

phenomena, since these are implicitly taken into account by D and H.  

 Slide No. 22  

The displacement current, d
dt D • dS

S∫  is not a true current, that is, it is not a 

current due to actual flow of charges, such as in the case of the conduction current in 

wires or a convection current due to motion of a charged cloud in space.  Mathematically, 

it has the units of d
dt  [(C/m2) × m2] or amperes, the same as the units for a true current, as 

it should be.  Physically, it leads to the same phenomenon as a true current does, even in 

free space for which P is zero, and D is simply equal to ε0E.  Without it, the uniqueness 

of the mmf around a given closed path C is not ensured.  In fact, Ampere’s circuital law 

in its original form did not contain the displacement current term, thereby making it valid 

only for the static field case.  It was the mathematical contribution of Maxwell that led to 

the modification of the original Ampere’s circuital law by the inclusion of the 

displacement current term.  Together with Faraday’s law, this modification in turn led to 

the theoretical prediction by Maxwell of the phenomenon of electromagnetic wave 

propagation in 1864 even before it was confirmed experimentally 23 years later in 1887 

by Hertz.  
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Gauss’ Law for the Electric Field: 

 Gauss’ law for the electric field states that electric charges give rise to electric 

field.  Specifically, the electric flux emanating from a closed surface S is equal to the 

charge enclosed by that surface, that is,  

 D •dS
S∫ = ρ dv

V∫   (21) 

where V is the volume bounded by S.  In (21), the quantity ρ is the volume charge density 

having the units coulombs per cubic meter (C/m3). 

The charge density ρ in (21) pertains to true charges.  It does not pertain to 

charges resulting from the polarization phenomena, since these are implicitly taken into 

account by the definition of D. 

 The cut view in the figure indicates that electric field lines are discontinuous 

wherever there are charges, diverging from positive charges and converging on negative 

charges.   
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Gauss’ Law for the Magnetic Field: 

 Gauss’ law for the magnetic field states that the magnetic flux emanating from a 

closed surface S is equal to zero, that is, 

 B •dS = 0
S∫   (22) 

Thus, whatever magnetic flux enters (or leaves) a certain part of the closed surface must 

leave (or enter) through the remainder of the closed surface. 

The observation concerning the time derivative of the magnetic flux crossing all 

possible surfaces bounded by a given closed path C in connection with the discussion of 

Faraday’s law implies that the time derivative of the magnetic flux emanating from a 

closed surface S is zero, that is,  

 d
dt B • dS = 0

S∫   (23) 

One can argue then that the magnetic flux emanating from a closed surface is zero, since 

at an instant of time when no sources are present the magnetic field vanishes.  Thus, 

Gauss’ law for the magnetic field is not independent of Faraday’s law.  

The cut view in the figure indicates that magnetic field lines are continuous 

having no beginnings or endings. 
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Law of Conservation of Charge 

 An auxiliary equation known as the law of conservation of charge states that the 

current due to flow of charges emanating from a closed surface S is equal to the time rate 

of decrease of the charge inside the volume V bounded by that surface, that is,  

 J • dS
S∫ = − d

dt ρ dv
V∫  

or 

 J • dS
S∫ + d

dt ρ dv
V∫ = 0    (24) 

 

Combining the observation concerning the sum of the current due to flow of 

charges and the displacement current through all possible surfaces bounded by a given 

closed path C in connection with the discussion of Ampere’s circuital law with the law of 

conservation of charge, we obtain for any closed surface S,  

 d
dt D •dS

S∫ − ρ dν
V∫

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ = 0  (25) 

where V is the volume bounded by S.  One can then argue that the quantity inside the 

parentheses is zero, since at an instant of time when no sources are present, it vanishes.  

Thus, Gauss’ law for the electric field is not independent of Ampere’s circuital law in 

view of the law of conservation of charge.  
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From the integral forms of Maxwell’s equations, one can obtain the corresponding 

differential forms through the use of Stoke’s and divergence theorems in vector calculus, 

given, respectively, by 

 A • dl
C∫ = ∇ x A( )• dS

S∫   (26a) 

 A • dS
S∫ = ∇• A( )dν

V∫   (26b) 

where in (26a), S is any surface bounded by C, and in (26b), V is the volume bounded by 

S.   
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Thus, Maxwell’s equations in differential form are given by 

 
t∂

∂
−=∇

BEx   (27) 

 
t∂

∂
+=∇

DJHx   (28) 

 ∇ • D = ρ   (29) 

 ∇ •B = 0  (30) 

corresponding to the integral forms (18), (20), (21), and (22), respectively.  These 

differential equations state that at any point in a given medium, the curl of the electric 

field intensity is equal to the time rate of decrease of the magnetic flux density, and the 

curl of the magnetic field intensity is equal to the sum of the current density due to flow 

of charges and the displacement current density (time derivative of the displacement flux 

density), whereas the divergence of the displacement flux density is equal to the volume 

charge density, and the divergence of the magnetic flux density is equal to zero.   

 Auxiliary to the Maxwell’s equations in differential form is the differential 

equation following from the law of conservation of charge (24) through the use of (26b).  

Familiarly known as the continuity equation, this is given by  

 0=
∂
∂

+•∇
t
ρJ   (31) 

It states that at any point in a given medium, the divergence of the current density due to 

flow of charges plus the time rate of increase of the volume charge density is equal to 

zero. 
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From the interdependence of the integral laws discussed in Slides 24 and 25, it 

follows that (30) is not independent of (27), and (29) is not independent of (28) in view of 

(31). 
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 Maxwell’s equations in differential form lend themselves well for a qualitative 

discussion of the interdependence of time-varying electric and magnetic fields giving rise 

to the phenomenon of electromagnetic wave propagation.  Recognizing that the 

operations of curl and divergence involve partial derivatives with respect to space 

coordinates, we observe that time-varying electric and magnetic fields coexist in space, 

with the spatial variation of the electric field governed by the temporal variation of the 

magnetic field in accordance with (27), and the spatial variation of the magnetic field 

governed by the temporal variation of the electric field in addition to the current density 

in accordance with (28).  Thus, if in (28) we begin with a time-varying current source 

represented by J, or a time-varying electric field represented by ∂D/dt, or a combination 

of the two, then one can visualize that a magnetic field is generated in accordance with 

(28), which in turn generates an electric field in accordance with (27), which in turn 

contributes to the generation of the magnetic field in accordance with (28), and so on, as 

depicted on Slide 29.  Note that J and ρ are coupled, since they must satisfy (31).  Also, 

the magnetic field automatically satisfies (30), since (30) is not independent of (27).   

 The process depicted is exactly the phenomenon of electromagnetic waves 

propagating with a velocity (and other characteristics) determined by the parameters of 

the medium.  In free space, the waves propagate unattenuated with the velocity 

00/1 εµ , familiarly represented by the symbol c.  If either the term ∂B/∂t in (27) or the 
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term ∂D/∂t in (28) is not present, then wave propagation would not occur.  As already 

stated in Slide 22, it was through the addition of the term ∂D/∂t in (28) that Maxwell 

predicted electromagnetic wave propagation before it was confirmed experimentally. 
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 Of particular importance is the case of time variations of the fields in the sinusoidal 

steady state, that is, the frequency domain case.  In this connection, the frequency domain 

forms of Maxwell’s equations are of interest.  Using the phasor notation based on 

 [ ] [ ]tjtjj eAeAetA ωωφφω ReRe)(cos ==+   (32) 

where φjAeA =  is the phasor corresponding to the time function, we obtain these 

equations by replacing all field quantities in the time domain form of the equations by the 

corresponding phasor quantities and ∂/∂t by jω.  Thus with the understanding that all 

phasor field quantities are functions of space coordinates, that is, E = E (r), etc., we write 

the Maxwell’s equations in frequency domain as  

 Bωj−=∇ Ex   (33) 

 DJH ωj+=∇ x   (34) 

 ρ=•∇ D   (35) 

 0B∇ • =   (36) 

Also, the continuity equation (31) transforms to the frequency domain form 

 0=+•∇ ρωjJ    (37) 

Note that since 0=∇•∇ Ex , (36) follows from (33) and since 0=∇•∇ Hx , (35) 

follows from (34) with the aid of (37).   
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Now the constitutive relations in phasor form are  

 ED ε=   (38a) 

 
µ
BH =   (38b) 

 EJ σ=c   (38c) 



  

 

 

 

D = εE H = B 
µ J c = σ E 

Continuity Equation

Constitutive Relations

Sinusoidal Case
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∇⋅ J + jω ρ = 0

D = εE H = B 
µ J c = σ E 

Continuity Equation

Constitutive Relations

Sinusoidal Case

31

∇⋅ J + jω ρ = 0



Slide No. 32 

Substituting (38a)-(38c) into (33)-(36), we obtain for a material medium 

characterized by the parameters ε, µ, and σ,  

 HE µωj−=∇ x   (39) 

 EH )( ωεσ j+=∇ x   (40) 

 0=•∇ H   (41) 

 
ε
ρ

=•∇ E   (42) 

Note however that if the medium is homogeneous, that is, if the material parameters are 

independent of the space coordinates, (40) gives  

 01
=∇•∇

+
=•∇ HE x

ωεσ j
  (43) 

so that 0=ρ  in such a medium. 

 A point of importance in connection with the frequency domain form of 

Maxwell‘s equations is that in these equations, the parameters ε, µ, and σ can be allowed 

to be functions of ω.  In fact, for many dielectrics, the conductivity increases with 

frequency in such a manner that the quantity σ/ωε is more constant than is the 

conductivity.  This quantity is the ratio of the magnitudes of the two terms on the right 

side of (40), that is, the conduction current density term Eσ  and the displacement 

current density term Eωεj . 



  

 

 

  

Maxwell’s Equations for the Sinusoidal 
Case for a Material Medium

∇⋅H = 0

∇⋅E =
ρ 
ε

32

∇ x E = – jω µH 

∇ x H = (σ + jωε )E 

∇⋅E = 1
σ + jωε ∇⋅∇ x H = 0

Maxwell’s Equations for the Sinusoidal 
Case for a Material Medium

∇⋅H = 0

∇⋅E =
ρ 
ε

32

∇ x E = – jω µH 

∇ x H = (σ + jωε )E 

∇⋅E = 1
σ + jωε ∇⋅∇ x H = 0



Slide Nos. 33-35 

 Maxwell’s equations in differential form govern the interrelationships between 

the field vectors and the associated source densities at points in a given medium.  For a 

problem involving two or more different media, the differential equations pertaining to 

each medium provide solutions for the fields that satisfy the characteristics of that 

medium.  These solutions need to be matched at the boundaries between the media by 

employing “boundary conditions,” which relate the field components at points adjacent to 

and on one side of a boundary to the field components at points adjacent to and on the 

other side of that boundary.  The boundary conditions arise from the fact that the integral 

equations involve closed paths and surfaces and they must be satisfied for all possible 

closed paths and surfaces whether they lie entirely in one medium or encompass a portion 

of the boundary.   

 The boundary conditions are obtained by considering one integral equation at a 

time and applying it to a closed path or a closed surface encompassing the boundary, and 

in the limit that the area enclosed by the closed path, or the volume bounded by the 

closed surface goes to zero.  Let the quantities pertinent to medium 1 be denoted by 

subscript 1 and the quantities pertinent to medium 2 be denoted by subscript 2, an be the 

unit normal vector to the surface and directed into medium 1.  Let all normal components 

at the boundary in both media be directed along an and denoted by an additional subscript 

n, and all tangential components at the boundary in both media be denoted by an 

additional subscript t.  Let the surface charge density (C/m2) and the surface current 

density (A/m) on the boundary be ρS and JS, respectively.  Then, the boundary conditions 

corresponding to the Maxwell’s equations in integral form can be summarized as  



 

 

 

 

 

Boundary Conditions

σ1, ε1, µ1 
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ρs

σ2 , ε2 , µ2 

Medium 1, z > 0

Medium 2, z < 0

z = 0

x y

z
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Jn1

Jn2

Bn2 Dn2
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Et2

Bn1

Ht 1

Ht 2
JS

Boundary Conditions

σ1, ε1, µ1 
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ρs

σ2 , ε2 , µ2 

Medium 1, z > 0

Medium 2, z < 0

z = 0

x y

z

Dn1

an

Jn1

Jn2

Bn2 Dn2

Et1

Et2

Bn1

Ht 1

Ht 2
JS



   an x (E1 – E2) = 0  (44a) 

 an x (H1 – H2) = JS  (44b) 

 an • (D1 – D2) = ρS  (44c) 

 an • (B1 – B2) = 0  (44d) 

 or in scalar form, 
 
 Et1 – Et2 = 0  (45a) 

 Ht1 – Ht2 = JS (45b) 

 Dn1 – Dn2 = ρS  (45c) 

 Bn1 – Bn2 = 0  (45d) 

 

In words, the boundary conditions state that at a point on the boundary, the tangential 

components of E and the normal components of B are continuous, whereas the tangential 

components of H are discontinuous by the amount equal to JS at that point, and the 

normal components of D are discontinuous by the amount equal to ρS at that point, as 

illustrated on Slide 33.  It should be noted that the information concerning the direction of 

JS relative to that of (H1 – H2), which is contained in (44b), is not present in (45b).  

Hence, in general, (45b) is not sufficient and it is necessary to use (44b). 

 While (44a)-(44d) or (45a)-(45d) are the most commonly used boundary 

conditions, another useful boundary condition resulting from the law of conservation of 

charge is given by  

 
t
S

SSn ∂
∂

−•∇=−•
ρ

JJJa –)( 21   (46) 

In words, (46) states that, at any point on the boundary, the components of J1 and J2 

normal to the boundary are discontinuous by the amount equal to the negative of the sum 
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from Gauss’ Law for 
the Electric Field

from Gauss’ Law for 
the Magnetic Field

from the Law of 
Conservation of Chargean ⋅(J1 − J2) = –∇S ⋅JS −

∂ρS
∂ t

an ⋅ D1 – D2( )= ρS

an ⋅ B1 – B2( )= 0
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an x E1 – E2( )= 0

an x H1 – H2( )= JS
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the Electric Field

from Gauss’ Law for 
the Magnetic Field

from the Law of 
Conservation of Chargean ⋅(J1 − J2) = –∇S ⋅JS −

∂ρS
∂ t

an ⋅ D1 – D2( )= ρS

an ⋅ B1 – B2( )= 0
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an x E1 – E2( )= 0

an x H1 – H2( )= JS



of the two-dimensional divergence of the surface current density and the time derivative 

of the surface charge density at that point. 



  

 

 

 

Boundary Conditions in 
Scalar Form

Et1 – Et2 = 0

Ht1 – Ht2 = JS

Dn1 – Dn2 = ρS

Bn1 – Bn2 = 0
35

Normal component of B is continuous.

Tangential component of E is continuous. 

Tangential component of H is 
discontinuous by the amount equal to the 
surface current density. 

Normal component of D is discontinuous
by the amount equal to the surface charge 
density.

Boundary Conditions in 
Scalar Form

Et1 – Et2 = 0

Ht1 – Ht2 = JS

Dn1 – Dn2 = ρS

Bn1 – Bn2 = 0
35

Normal component of B is continuous.

Tangential component of E is continuous. 

Tangential component of H is 
discontinuous by the amount equal to the 
surface current density. 

Normal component of D is discontinuous
by the amount equal to the surface charge 
density.



Slide Nos. 36-40 

Maxwell’s equations in differential form, together with the constitutive relations 

and boundary conditions, allow for the unique determination of the fields E, B, D, and H, 

for a given set of source distributions with densities J and ρ.  An alternate approach 

involving the electric scalar potential, Φ, and the magnetic vector potential, A, known 

together as the electromagnetic potentials from which the fields can be derived, simplifies 

the solution in some cases.  This approach leads to solving two separate differential 

equations, one for Φ involving ρ alone, and the second for A, involving J alone.  

 To obtain these equations, we first note that in view of (30), B can be expressed as 

the curl of another vector.  Thus 

 B = ∇ x A (47) 

Note that the units of A are the units of B times meter, that is, Wb/m.  Now, substituting 

(47) into (27), interchanging the operations of ∂/∂t and curl, and rearranging, we obtain 

 ∇ x 0=⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
t
AE  

 Φ−∇=
∂
∂

+
t
AE  

 
t∂

∂
−Φ−∇=

AE  (48) 

where the negative sign associated with ∇Φ is chosen for a reason to be evident later in 

Slide 47.  Note that the units of Φ are the units of E times meter, that is, V.  Note also 

that the knowledge of Φ and A enables the determination of E and B, from which D and 

H can be found by using the constitutive relations.   

 Now, using (6) and (10) to obtain D and H in terms of Φ and A, and substituting 

into (29) and (28), we obtain 



  

 

 

 

Electromagnetic Potentials

E + ∂A
∂ t = −∇Φ E = −∇Φ − ∂A

∂ t

∇⋅B = 0

36

Φ = Electric scalar potential

A = Magnetic vector potential

∇ x E = – ∂B
∂t

B = ∇ x A

∇ x E + ∂A
∂t

⎡
⎣⎢ 

⎤
⎦⎥

= 0

Electromagnetic Potentials

E + ∂A
∂ t = −∇Φ E = −∇Φ − ∂A

∂ t

∇⋅B = 0

36

Φ = Electric scalar potential

A = Magnetic vector potential

∇ x E = – ∂B
∂t

B = ∇ x A

∇ x E + ∂A
∂t

⎡
⎣⎢ 

⎤
⎦⎥

= 0



           
ε
ρ

−=⎥⎦
⎤

⎢⎣
⎡

∂
∂

•∇+Φ∇
t
A2   (49a) 

 JA µµε =⎥⎦
⎤

⎢⎣
⎡

∂
∂

+Φ∇
∂
∂

+∇∇
tt
Axx  (49b) 

where we have assumed the medium to be homogeneous and isotropic, in addition to 

being linear.  Using the vector identity 

 ∇ x ∇ x A = ∇ ∇ •A( )− ∇2A   (50) 

and interchanging the operations of 
t∂

∂  and divergence or gradient depending on the 

term, and rearranging, we get 

 ( )
ε
ρ

−=•∇
∂
∂

+Φ∇ A
t

2    (51a) 

 JAA µµεµε −=
∂

∂
−⎥⎦

⎤
⎢⎣
⎡

∂
Φ∂

+•∇∇−∇ 2

2
2

tt
A   (51b) 

These equations are coupled.  To uncouple them, we make use of Helmholtz’s theorem, which 

states that a vector field is completely specified by its curl and divergence.  Therefore, since 

the curl of A is given by (47), we are at liberty to specify the divergence of A.  We do this by 

setting  

 
t∂
Φ∂

−=•∇ µεA    (52) 

which is known as the Lorenz condition, resulting in the uncoupled equations 

 
ε
ρµε −=

∂

Φ∂
−Φ∇ 2

2
2

t
  (53) 

 JAA µµε −=
∂

∂
−∇ 2

2
2

t
  (54) 

which are called the potential function equations.  While the Lorenz condition may 

appear to be arbitrary, it actually implies the continuity equation, which can be shown by 

taking the Laplacian on both sides of (52) and using (53) and (54).  



  

 

 

 

Gradient and Laplacian
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In Cartesian coordinates,

Laplacian of a scalar

In Cartesian coordinates, 

Gradient

∇⋅∇Φ = ∇2Φ

∇2Φ = ∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2

∇Φ = ∂Φ
∂n an

Identity

∇Φ = ∂Φ
∂x ax + ∂Φ

∂y ay + ∂Φ
∂z az

∇x∇Φ ≡ 0

Gradient and Laplacian
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In Cartesian coordinates,

Laplacian of a scalar

In Cartesian coordinates, 

Gradient

∇⋅∇ Φ = ∇2Φ

∇2Φ = ∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2

∇Φ = ∂Φ
∂n an

Identity

∇Φ = ∂Φ
∂x ax + ∂Φ

∂y ay + ∂Φ
∂z az

∇x∇Φ ≡ 0



It can be seen that (53) and (54) are not only uncoupled but they are also similar, 

particularly in Cartesian coordinates, since (54) decomposes into three equations 

involving the three Cartesian components of J, each of which is similar to (53).  By 

solving (53) and (54), one can obtain the solutions for Φ and A, respectively, from which 

E and B can be found by using (48) and (47), respectively.  In practice, however, since ρ 

is related to J through the continuity equation, it is sufficient to find B from A obtained 

from the solution of (54) and then find E by using the Maxwell’s equation for the curl of 

H, given by (28). 



  

 

 

 

Potential Function Equations

∇⋅D = ρ

∇2Φ + ∇⋅ ∂A
∂ t

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ = −
ρ
ε

38
Identity

∇ x ∇ x A + µε ∂
∂t ∇Φ + ∂A

∂t
⎛
⎝⎜

⎞
⎠⎟ = µJ

∇ x ∇ x A = ∇ ∇⋅A( ) − ∇2A

∇ x H = J + ∂D
∂t

Potential Function Equations

∇⋅D = ρ

∇2Φ + ∇⋅ ∂A
∂ t

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ = −
ρ
ε

38
Identity

∇ x ∇ x A + µε ∂
∂t ∇Φ + ∂A

∂t
⎛
⎝⎜

⎞
⎠⎟ = µJ

∇ x ∇ x A = ∇ ∇⋅A( ) − ∇2A

∇ x H = J + ∂D
∂t





  

 

 

 

Laplacian of a Vector

39

In Cartesian coordinates

= ∇2 Ax( )ax + ∇2 Ay( )ay + ∇2 Az( )az

∇2A = ∇ ∇⋅A( ) – ∇x ∇x A

A = ∇
∂Ax
∂x +

∂Ay
∂y +

∂Az
∂z

⎛
⎝⎜

⎞
⎠⎟

– ∇x

ax ay az
∂

∂x
∂
∂y

∂
∂z

Ax Ay Az

∇2

Laplacian of a Vector
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In Cartesian coordinates

= ∇2 Ax( )ax + ∇2 Ay( )ay + ∇2 Az( )az

∇2A = ∇ ∇⋅A( ) – ∇x ∇x A

A = ∇
∂Ax
∂x +

∂Ay
∂y +

∂Az
∂z

⎛
⎝⎜

⎞
⎠⎟

– ∇x

ax ay az
∂

∂x
∂
∂y

∂
∂z

Ax Ay Az

∇2
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∇2Φ + ∂
∂ t ∇⋅A( ) = −

ρ
ε
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∂ t
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ρ
ε
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Potential Function Equations

Lorenz Condition

for Electric Scalar Potential

for Magnetic Vector
Potential

∇2Φ + ∂
∂ t ∇⋅A( ) = −

ρ
ε

∇2A − ∇ ∇⋅A + µε ∂Φ
∂ t

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ − µε ∂ 2A
∂ t2 = −µJ

∇⋅A = −µε ∂ Φ
∂ t

∇2Φ − µε ∂2Φ
∂ t2 = −

ρ
ε

∇2A − µε ∂ 2A
∂ t 2 = −µJ
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Slide Nos. 41-43 

 A unique property of the electromagnetic field is its ability to transfer power 

between two points even in the absence of an intervening material medium.  Without 

such ability, the effect of the field generated at one point will not be felt at another point, 

and hence the power generated at the first point cannot be put to use at the second point.   

 To discuss power flow associated with an electromagnetic field, we begin with 

the vector identity 

 ∇ • (E x H) = H • (∇ x E) – E • (∇ x H) (55) 

and make use of Maxwell’s curl equations (27) and (28) to write 

 ∇ • (E x H) = –E • J – E • 
tt ∂

∂
•−

∂
∂ BHD   (56) 

Allowing for conductivity of a material medium by denoting J = J0 + Jc, where J0 is that 

part of J that can be attributed to a source, and using the constitutive relations (5), (6), 

and (10), we obtain for a medium characterized by σ, ε, and µ,  

 )(
2
1

2
1 222

0 HEJE x•∇+⎥⎦
⎤

⎢⎣
⎡

∂
∂

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

+=•− H
t

E
t

µεσε   (57) 

Defining a vector P given by  

 P = E x H  (58) 

and taking the volume integral of both sides of (58), we obtain 

 ( ) ∫∫∫∫∫ •+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+=•−
SVVVV

ddvH
t

dvE
t

dvEdv SJE P222
0 2

1
2
1 µεσ  (59) 

where we have also interchanged the differentiation operation with time and integration 

operation over volume in the second and third terms on the right side and used the 

divergence theorem for the last term.   



  

 

 

 

Power Flow and Energy Storage
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1
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J = J0 + Jc = J0 + σ E,

∇⋅ Ex H( ) = –E⋅J – E ⋅ ∂D
∂t – H⋅ ∂B

∂t

−E ⋅J0 = σE2 + ∂
∂t

1
2 ε E2⎛

⎝
⎞
⎠ + ∂

∂t
1
2 µH2⎛

⎝
⎞
⎠ + ∇⋅ (E x H)

P = E x H



In (59), the left side is the power supplied to the field by the current source J0 

inside V.  The quantities σE2, 1
2 εE2 , and 1

2 µH 2  are the power dissipation density 

(W/m3), the electric stored energy density (J/m3), and the magnetic stored energy density 

(J/m3), respectively, due to the conductive, dielectric, and magnetic properties, 

respectively, of the medium.  Hence, (59) says that the power delivered to the volume V 

by the current source J0 is accounted for by the power dissipated in the volume due to the 

conduction current in the medium, plus the time rates of increase of the energies stored in 

the electric and magnetic fields, plus another term, which we must interpret as the power 

carried by the electromagnetic field out of the volume V, for conservation of energy to be 

satisfied.  It then follows that the vector P has the meaning of power flow density vector 

associated with the electromagnetic field.  The statement represented by (59) is known as 

the Poynting’s theorem and the vector P is known as the Poynting vector.  We note that 

the units of E x H are volts per meter times amperes per meter, or watts per square meter 

(W/m2) and do indeed represent power density.  In particular, since E and H are 

instantaneous field vectors, E x H represents the instantaneous Poynting vector.  Note 

that the Poynting’s theorem tells us only that the power flow out of a volume V is given 

by the surface integral of the Poynting vector over the surface S bounding that volume.  

Hence we can add to P any vector for which the surface integral over S vanishes, without 

affecting the value of the surface integral.  However, generally, we are interested in the 

total power leaving a closed surface and the interpretation of P alone as representing the 

power flow density vector is sufficient. 
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Interpretation of Poynting’s 
Theorem

Poynting’s Theorem says that the power delivered to the volume V
by the current source J0 is accounted for by the power dissipated in 
the volume due to the conduction current in the medium, plus the time
rates of increase of the energies stored in the electric and magnetic 
fields, plus another term, which we must interpret as the power carried 
by the electromagnetic field out of the volume V, for conservation
of energy to be satisfied. It then follows that the Poynting vector P has
the meaning of power flow density vector associated with the electro-
magnetic field. We note that the units of E x H are volts per meter 
times amperes per meter, or watts per square meter (W/m2) and do 
indeed represent power density.  
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Slide No. 44  

 For sinusoidally time-varying fields, that is, for the frequency domain case, the 

quantity of importance is the time average Poynting vector instead of the instantaneous 

Poynting vector.  The time-average Poynting vector, denoted by < P >, is given by 

 [ ]PP Re=><   (60) 

where P  is the complex Poynting vector given by   

 *HE x
2
1

=P   (61) 

where the star denotes complex conjugate.  The Poynting theorem for the frequency 

domain case, known as the complex Poynting’s theorem, is given by   

 ( ) ∫∫∫∫ •+><−><+><=⎟
⎠
⎞

⎜
⎝
⎛ •−

SV
em

V
d

V

ddvwwjdvpdv SJE Pω2
2
1 *

0   (62) 

where 

 < pd > = 1
2σE • E *   (63a) 

 <we > = 1
4 εE • E *   (63b) 

 <wm > = 1
4 µH • H *   (63c) 

are the time-average power dissipation density, the time-average electric stored energy 

density, and the time-average magnetic stored energy density, respectively.  Equation 

(62) states that the time-average, or real, power delivered to the volume V by the current 

source is accounted for by the time-average power dissipated in the volume plus the time-

average power carried by the electromagnetic field out of the volume through the surface 

S bounding the volume, and that the reactive power delivered to the volume V by the 

current source is equal to the reactive power carried by the electromagnetic field out of 



 

 

 

 

 

Complex Poynting Vector and 
Complex Poynting’s Theorem

P = Re P [ ]
− 1

2 E ⋅J 0
*⎛ 

⎝ 
⎞ 
⎠ dv

V
∫ = < pd > dv + j2ω
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< pd > = 1
2σE ⋅E * <we > = 1

4 εE ⋅ E * <wm > = 1
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The time-average, or real, power delivered to the volume V by the current source 
is accounted for by the time-average power dissipated in the volume plus the 
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the volume V through the surface S plus a quantity which is 2ω times the difference 

between the time-average magnetic and electric stored energies in the volume.  

Slide No. 45 

While every macroscopic field obeys Maxwell’s equations in their entirety, 

depending on their most dominant properties it is sufficient to consider a subset of, or 

certain terms only, in the equations.  The primary classification of fields is based on their 

time dependence.  Fields which do not change with time are called static.  Field which 

change with time are called dynamic.  Static fields are the simplest kind of fields, because 

for them ∂/∂t = 0 and all terms involving differentiation with respect to time go to zero.  

Dynamic fields are the most complex, since for them Maxwell’s equations in their 

entirety must be satisfied, resulting in wave type solutions, as provided by the qualitative 

explanation earlier.  However, if certain features of the dynamic field can be analyzed as 

though the field were static, then the field is called quasistatic.  If the important features 

of the field are not amenable to static type field analysis, they are generally referred to as 

time-varying, although in fact, quasistatic fields are also time-varying.  Since in the most 

general case, time-varying fields give rise to wave phenomena, involving velocity of 

propagation and time delay that cannot be neglected, it can be said that quasistatic fields 

are those time-varying fields for which wave propagation effects can be neglected. 
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Static Fields   

 For static fields, ∂/∂t = 0.  Maxwell’s equations in integral form and the law of 

conservation of charge become 

 E • dl = 0
C
∫   (64a) 

 H • dl = J • dS
S
∫

C
∫   (64b) 

 D •dS = ρ dv
V
∫

S
∫   (64c) 

 B •dS = 0
S
∫   (64d) 

 J • dS = 0
S
∫   (64e) 

whereas Maxwell’s equations in differential form and the continuity equation reduce to 

 ∇ x E = 0   (65a) 

 ∇ x H = J   (65b) 

 ∇ • D = ρ   (65c) 

 ∇ • B = 0   (65d) 

 ∇ • J = 0   (65e) 

 Immediately, one can see that, unless J includes a component due to conduction 

current, the equations involving the electric field are completely independent of those 

involving the magnetic field.  Thus the fields can be subdivided into static electric fields, 

or electrostatic fields, governed by (64a) and (64c), or (65a) and (65c), and static 

magnetic fields, or magnetostatic fields, governed by (64b) and (64d), or (65b) and (65d).  
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∇ x E = 0

∇ x H = J



The source of a static electric field is ρ, whereas the source of a static magnetic field is J.  

One can also see from (64e) or (65e) that no relationship exists between J and ρ.  If J 

includes a component due to conduction current, then, since Jc = σE, a coupling between 

the electric and magnetic fields exists for that part of the total field associated with Jc.  

However, the coupling is only one way, since the right side of (64a) or (65a) is still zero.  

The field is then referred to as electromagnetostatic field.  It can also be seen then that for 

consistency, the right sides of (64c) and (65c) must be zero, since the right sides of (64e) 

and (65e) are zero.  We shall now consider each of the three types of static fields 

separately and discuss some fundamental aspects. 

Slide No. 47 

Electrostatic Fields 

 The equations of interest are (64a) and (64c), or (65a) and (65c).  The first of each 

pair of these equations simply tells us that the electrostatic field is a conservative field, 

and the second of each pair of these equations enables us, in principle, to determine the 

electrostatic field for a given charge distribution.  Alternatively, the potential function 

equation (53), which reduces to  

 ∇2Φ = −
ρ
ε   (66) 

can be used to find the electric scalar potential, Φ, from which the electrostatic field can 

be determined by using (48), which reduces to  

 E = –∇Φ  (67) 

Equation (66) is known as the Poisson’s equation, which automatically includes the 

condition that the field be conservative.  It is worth noting that the potential difference 
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C∫



between two points A and B in the static electric field, which is independent of the path 

followed from A to B because of the conservative nature of the field is  

 
E • dl

A

B

∫ = [−∇Φ]• dl
A

B

∫
= ΦA − ΦB

  (68) 

the difference between the value of Φ at A and the value of Φ at B.  The choice of minus 

sign associated with ∇Φ in (48) is now evident. 
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 The solution to Poisson’s equation (66) for a given charge density distribution 

ρ(r) is given by   

 ∫
′

′
′−

′
=Φ

V

vd
rr

rr )(
4

1)( ρ
πε

  (69) 

where the prime denotes source point and no prime denotes field point.  Although cast in 

terms of volume charge density, (69) can be formulated in terms of a surface charge 

distribution, a line charge distribution, or a collection of point charges.  In particular, for 

a point charge Q(r′), the solution is given by  

 
rr

rr
′−

′
=Φ

πε4
)()( Q   (70) 

It follows from (67) that the electric field intensity due to the point charge is given by  

 34

)()()(
rr

rrrrE
′−

′−′
=

πε

Q   (71) 

which is exactly the expression that results from Coulomb’s law for the electric force 

between two point charges.   
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4πε
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∫

Φ(r) = Q( ′ r )
4πε r − ′ r 

E(r) = Q( ′ r )(r − ′ r )
4πε r − ′ r 3

Solution for 
charge distribution

Solution for 
point charge

Electric field due
to point charge

Solution for Potential and Field

48

Φ(r) = 1
4πε

ρ( ′ r )
r − ′ r d ′ v 

′ V 
∫

Φ(r) = Q( ′ r )
4πε r − ′ r 

E(r) = Q( ′ r )(r − ′ r )
4πε r − ′ r 3



Equation (69) or its alternate forms can be used to solve two types of problems: 

(a) finding the electrostatic potential for a specified charge distribution by evaluating the 

integral on the right side, which is a straightforward process with the help of a computer 

but can be considerably difficult analytically except for a few examples, and (b) finding 

the surface charge distribution on the surfaces of an arrangement of conductors raised to 

specified potentials, by inversion of the equation, which is the basis for numerical 

solution by the well-known method of moments.  In the case of (a), the electric field can 

then be found by using (67). 
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 In a charge-free region, ρ = 0, and Poisson’s equation (66) reduces to 

 ∇2Φ = 0  (72) 

which is known as the Laplace’s equation.  The field is then due to charges outside the 

region, such as surface charge on conductors bounding the region.  The situation is then 

one of solving a boundary value problem.  In general, for arbitrarily-shaped boundaries, a 

numerical technique, such as the method of finite differences, is employed for solving the 

problem.  Here, we consider analytical solution involving one-dimensional variation of 

Φ. 
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Slide Nos. 50-51 

A simple example is that of the parallel-plate arrangement in which two parallel, 

perfectly conducting plates (σ = ∞, E = 0) of dimensions w along the y-direction and l 

along the z-direction lie in the x = 0 and x = d planes.  The region between the plates is a 

perfect dielectric (σ = 0) of material parameters ε and µ.  The thickness of the plates is 

shown exaggerated for convenience in illustration.  A potential difference of V0 is 

maintained between the plates by connecting a direct voltage source at the end z = –l.  If 

fringing of the field due to the finite dimensions of the structure normal to the x-direction 

is neglected, or, if it is assumed that the structure is part of one which is infinite in extent 

normal to the x-direction, then the problem can be treated as one-dimensional with x as 

the variable, and (72) reduces to 

 d2Φ
dx2 = 0   (73) 

The solution for the potential in the charge-free region between the plates is given by  

 )()( 0 xd
d
V

x −=Φ  (74) 

which satisfies (73), as well as the boundary conditions of Φ = 0 at x = d and Φ = V0 at x 

= 0.  The electric field intensity between the plates is then given by  

 xd
V

aE 0=Φ−∇=    (75) 

as depicted in the cross-sectional view in Fig. (b) on Slide 50, and resulting in 

displacement flux density 

 xd
aD 0Vε

=   (76) 
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Then, using the boundary condition for the normal component of D given by (44c) and 

noting that there is no field inside the conductor, we obtain the magnitude of the charge 

on either plate to be  

 0
0 )( V

d
wlwl

d
V

Q εε
=⎟

⎠

⎞
⎜
⎝

⎛=   (77) 

 We can now find the familiar circuit parameter, the capacitance, C, of the parallel-

plate arrangement, which is defined as the ratio of the magnitude of the charge on either 

plate to the potential difference V0.  Thus 

 
d
wl

V
QC ε

==
0

  (78) 

Note that the units of C are the units of ε times meter, that is, farads.  The phenomenon 

associated with the arrangement is that energy is stored in the capacitor in the form of 

electric field energy between the plates, as given by  

 

2
0

2
0

2

2
1
2
1

)(
2
1

CV

V
d
wl

wldEW xe

=

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛=

ε

ε

 (79) 

the familiar expression for energy stored in a capacitor. 
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Magnetostatic Fields 

 The equations of interest are (64b) and (64d), or (65b) and (65d).  The second of 

each pair of these equations simply tells us that the magnetostatic field is solenoidal, 

which as we know holds for any magnetic field, and the first of each pair of these 

equations enables us, in principle, to determine the magnetostatic field for a given current 

distribution.  Alternatively, the potential function equation (54), which reduces to  

 ∇2A = –µJ  (80) 

can be used to find the magnetic vector potential, A, from which the magnetostatic field 

can be determined by using (47).  Equation (80) is the Poisson’s equation for the 

magnetic vector potential, which automatically includes the condition that the field be 

solenoidal.  
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 The solution to (80) for a given current density distribution J(r) is, purely from 

analogy with the solution (69) to (66), given by  

 ∫
′

′
′−

′
=

V

vd
rr

rJrA )(
4

)(
π
µ   (81) 

Although cast in terms of volume current density, (81) can be formulated in terms of a 

surface current density, a line current, or a collection of infinitesimal current elements.  In 

particular, for an infinitesimal current element I dl(r′), the solution is given by  

 
rr

rlrA
′−

′
=

π
µ
4

)()( dI   (82) 

It follows from (47) that the magnetic flux density due to the infinitesimal current 

element is given by  

 34

()()(
rr

rrrlrB
′−

′−′
=

π

µ )xdI   (83) 

which is exactly the law of Biot-Savart that results from Ampere’s force law for the 

magnetic force between two current elements.  Similar to that in the case of (69), (81) or 

its alternate forms can be used to find the magnetic vector potential and then the magnetic 

field by using (47) for a specified current distribution.  

 In a current-free region, J = 0, and (80) reduces to 

 ∇2A = 0  (84) 

The field is then due to currents outside the region, such as surface currents on 

conductors bounding the region.  The situation is then one of solving a boundary value 

problem as in the case of (72).  However, since the boundary condition (44b) relates the 
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magnetic field directly to the surface current density, it is straightforward and more 

convenient to determine the magnetic field directly by using (65b) and (65d). 

Slide Nos. 54-56 

 A simple example is that of the parallel-plate arrangement of Fig. (a) on Slide 50 

with the plates connected by another conductor at the end z = 0 and driven by a source of 

direct current I0 at the end z = –l, as shown in Fig. (a) on Slide 54.  If fringing of the field 

due to the finite dimensions of the structure normal to the x-direction is neglected, or, if it 

is assumed that the structure is part of one which is infinite in extent normal to the x-

direction, then the problem can be treated as one-dimensional with x as the variable and 

we can write the current density on the plates to be  

 

⎪
⎩

⎪
⎨

⎧

=−
=
=

=
dx plate the on/wI

z plate the on/wI
x plate the on/wI

z

x

z

S

a
a
a

J
)(

0)(
0)(

0

0

0   (85) 

In the current-free region between the plates, (65b) reduces to 

 000 =
∂
∂

zyx

zyx

HHH
x

aaa

  (86) 

and (65d) reduces to 

 0=
∂

∂
x

Bx   (87) 

so that each component of the field, if it exists, has to be uniform.  This automatically 

forces Hx and Hz to be zero since nonzero value of these components do not satisfy the 

boundary conditions (44b) and (44d) on the plates, keeping in mind that the field is 
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entirely in the region between the conductors.  Thus, as depicted in the cross-sectional 

view in the figure,  

 H =
I0
w ay   (88) 

which satisfies the boundary condition (44b) on all three plates, and results in magnetic 

flux density 

 B =
µI0
w ay   (89) 

The magnetic flux, ψ, linking the current I0, is then given by  

 ψ =
µI0
w

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ (dl) = µdl

w
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ I0  (90) 

 We can now find the familiar circuit parameter, the inductance, L, of the parallel-

plate arrangement, which is defined as the ratio of the magnetic flux linking the current to 

the current.  Thus 

 L =
ψ
I0

= µdl
w  (91) 

Note that the units of L are the units of µ times meter, that is, henrys.  The phenomenon 

associated with the arrangement is that energy is stored in the inductor in the form of 

magnetic field energy between the plates, as given by  

 

2
0

2
0

2

2
1
2
1

)(
2
1

LI

I
w
dl

wldHWm

=

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛=

µ

µ

 (92) 

the familiar expression for energy stored in an inductor.  
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Electromagnetostatic Fields 

 The equations of interest are 

 E • dl = 0
C
∫  (93a) 

 H • dl = Jc • dS
S
∫ = σ E • dS

S
∫

C
∫  (93b) 

 D • dS = 0
S
∫  (93c) 

 B •dS = 0
S
∫  (93d) 

or, in differential form 

 ∇ x E = 0 (94a) 

 ∇ x H = Jc = σE (94b) 

 ∇ • D = 0 (94c) 

 ∇ • B = 0 (94d) 

From (94a) and (94c), we note that Laplace’s equation (72) for the electrostatic potential 

is satisfied, so that, for a given problem, the electric field can be found in the same 

manner as in the case of the example of the capacitor arrangement with perfect dielectric.  

The magnetic field is then found by using (94b), and making sure that (94d) is also 

satisfied. 
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 A simple example is that of the parallel-plate arrangement of Fig. (a) on Slide 50, 

but with an imperfect dielectric material of parameters σ, ε, and µ, between the plates, as 

shown in Fig (a) on Slide 58.  Then, the electric field between the plates is the same as 

that given by (75), that is, 

 E =
V0
d ax   (95) 

resulting in a conduction current of density 

 Jc =
σV0

d ax   (96) 

from the top plate to the bottom plate, as depicted in the cross-sectional view of Fig. (b) 

on Slide 58.  Since ∂ρ/∂t = 0 at the boundaries between the plates and the slab, continuity 

of current is satisfied by the flow of surface current on the plates.  At the input z = –l, this 

surface current, which is the current drawn from the source, must be equal to the total 

current flowing from the top to the bottom plate.  It is given by   

 0
0 )( V

d
wlwl

d
V

Ic
σσ

=⎟
⎠

⎞
⎜
⎝

⎛=   (97) 

 We can now find the familiar circuit parameter, the conductance, G, of the 

parallel-plate arrangement, which is defined as the ratio of the current drawn from the 

source to the source voltage V0.  Thus  

 
d
wl

V
I

G c σ
==

0
 (98) 

Note that the units of G are the units of σ times meter, that is, siemens(S).  The reciprocal 

quantity, R, the resistance of the parallel-plate arrangement, is given by  
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R =
V0
Ic

= d
σwl  (99) 

The unit of R is ohms.  The phenomenon associated with the arrangement is that power is 

dissipated in the material between the plates, as given by  

 

R
V

VG

V
d
wl

wldEPd

2
0

2
0

2
0

2 ))((

=

=

⎟
⎠
⎞

⎜
⎝
⎛=

=

σ
σ

 (100) 

the familiar expression for power dissipated in a resistor. 



  

 

 

 

E =
V0
d ax

Jc =
σV0

d ax

Ic =
σV0

d
⎛ 
⎝ 

⎞ 
⎠ (wl) = σwl

d V0

59

Electromagnetostatic Analysis of 
Parallel-Plate Arrangement

E =
V0
d ax

Jc =
σV0

d ax

Ic =
σV0
d

⎛ 
⎝ 

⎞ 
⎠ (wl) = σwl

d V0

59

Electromagnetostatic Analysis of 
Parallel-Plate Arrangement





  

 

 

 

G =
Ic
V0

= σwl
d

R =
V0
Ic

= d
σwl

Pd = (σE2 )(wld) = σwl
d

⎛  
⎝  

⎞  
⎠  V0

2

= GV0
2 =

V0
2

R

Conductance, S

Resistance, ohms 

Electromagnetostatic Analysis of 
Parallel-Plate Arrangement

60

G =
Ic
V0

= σwl
d

R =
V0
Ic

= d
σwl

Pd = (σE2 )(wld) = σwl
d

⎛ 
⎝ 

⎞ 
⎠ V0

2

= GV0
2 =

V0
2

R

Conductance, S

Resistance, ohms 

Electromagnetostatic Analysis of 
Parallel-Plate Arrangement

60



Slide No. 61   

Proceeding further, we find the magnetic field between the plates by using (94b), 

and noting that the geometry of the situation requires a y-component of H, dependent on 

z, to satisfy the equation.  Thus 

 H = Hy(z)ay   (101a) 

 
d
V

z
Hy 0σ

−=
∂

∂
  (101b) 

 yz
d
V

aH 0σ
−=   (101c) 

where the constant of integration is set to zero, since the boundary condition at z = 0 

requires Hy to be zero for z equal to zero.  Note that the magnetic field is directed in the 

positive y-direction (since z is negative) and increases linearly from z = 0 to z = –l, as 

depicted in Fig. (b) on Slide 58.  It also satisfies the boundary condition at z = –l by being 

consistent with the current drawn from the source to be 0/( )( )y cz l
w H V d wl Iσ

=−
⎡ ⎤ = =⎣ ⎦ . 

 Because of the existence of the magnetic field, the arrangement is characterized 

by an inductance, which can be found either by using the flux linkage concept, or by the 

energy method.  To use the flux linkage concept, we recognize that a differential amount 

of magnetic flux d ′ ψ = µHyd(d ′ z ) between z equal to (z′ – dz′) and z equal to z′, where –l 

< z′ < 0, links only that part of the current that flows from the top plate to the bottom 

plate between z = z′ and z = 0, thereby giving a value of (–z′/l) for the fraction, N, of the 

total current linked.  Thus, the inductance, familiarly known as the internal inductance, 

denoted Li, since it is due to magnetic field internal to the current distribution, as  



 

 

 

 

 

∂Hy
∂z = −

σV0
d

Internal Inductance
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Li = 1
Ic

N d ′ ψ 
′ z =−l

0
∫

H = −
σ V0

d z ay

= 1
3

µdl
w

H = Hy(z)ay

[µ Hy d(dz′)]= 1
Ic

– ′z 
l

⎛
⎝

⎞
⎠′z =–l

0

∫

∂Hy
∂z = −

σV0
d

Internal Inductance
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Li = 1
Ic

N d ′ ψ 
′ z =−l

0
∫

H = −
σ V0

d z ay

= 1
3

µdl
w

H = Hy(z)ay

[µ Hy d(dz′)]= 1
Ic

– ′z 
l

⎛
⎝

⎞
⎠′z =–l

0

∫



compared to that in (91) for which the magnetic field is external to the current 

distribution, is given by  

Li = 1
Ic

N d ′ ψ 
′ z =− l

0

∫

= 1
3

µdl
w

                               (102) 

or, 1/3 times the inductance of the structure if σ = 0 and the plates are joined at z = 0, as 

in the case of the arrangement of parallel-plates connected at the end. 
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 Alternatively, if the energy method is used by computing the energy stored in the 

magnetic field and setting it equal to 1
2 LiIc

2 , then we have  

 

Li = 1
Ic

2 (dw) µHy
2 dz

z =− l

0

∫

= 1
3

µdl
w

 (103) 

same as in (102). 

 Finally, recognizing that there is energy storage associated with the electric field 

between the plates, we note that the arrangement has also associated with it a capacitance 

C, equal to εwl/d.  Thus, all three properties of conductance, capacitance, and inductance 

are associated with the structure.  Since for σ = 0 the situation reduces to that of the 

single capacitor arrangement, we can represent the arrangement to be equivalent to the 

circuit shown.  Note that the capacitor is charged to the voltage V0 and the current 

through it is zero (open circuit condition).  The voltage across the inductor is zero (short 

circuit condition) and the current through it is V0/R.  Thus, the current drawn from the 

voltage source is V0/R and the voltage source views a single resistor R, as far as the 

current drawn from it is concerned. 
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Quasistatic Fields 

As already mentioned, quasistatic fields are a class of dynamic fields for which 

certain features can be analyzed as though the fields were static.  In terms of behavior in 

the frequency domain, they are low-frequency extensions of static fields present in a 

physical structure, when the frequency of the source driving the structure is zero, or low-

frequency approximations of time-varying fields in the structure that are complete 

solutions to Maxwell’s equations.  Here, we use the approach of low-frequency 

extensions of static fields.  Thus, for a given structure, we begin with a time-varying field 

having the same spatial characteristics as that of the static field solution for the structure, 

and obtain field solutions containing terms up to and including the first power (which is 

the lowest power) in ω for their amplitudes.  Depending on whether the predominant 

static field is electric or magnetic, quasistatic fields are called electroquasistatic fields or 

magnetoquasistatic fields.  We shall now consider these separately. 
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Electroquasistatic Fields 

For electroquasistatic fields, we begin with the electric field having the spatial 

dependence of the static field solution for the given arrangement.  An example is provided 

by the parallel-plate arrangement with perfect dielectric (Slide 50), excited by a 

sinusoidally time-varying voltage source Vg(t) = V0 cos ωt, instead of a direct voltage 

source.  Then,  

 xt
d

V
aE ωcos0=0   (104) 

where the subscript 0 denotes that the amplitude of the field is of the zeroth power in ω.  

This results in a magnetic field in accordance with Maxwell’s equation for the curl of H, 

given by (28).  Thus, noting that J = 0 in view of the perfect dielectric medium, we have 

for the geometry of the arrangement, 

 t
d
V

t
D

z
H xy ω

ωε
sin001 =

∂
∂

−=
∂

∂
  (105) 

 yt
d

zV
aH ω

ωε
sin0=1   (106) 

where we have also satisfied the boundary condition at z = 0 by choosing the constant of 

integration such that [ ]
01 =zyH  is zero, and the subscript 1 denotes that the amplitude of 

the field is of the first power in ω.  Note that the amplitude of Hy1 varies linearly with z, 

from zero at z = 0 to a maximum at z = –l.  
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 We stop the solution here, because continuing the process by substituting (106) 

into Maxwell’s curl equation for E, (27), to obtain the resulting electric field will yield a 

term having amplitude proportional to the second power in ω.  This simply means that 

the fields given as a pair by (104) and (106) do not satisfy (27), and hence are not 

complete solutions to Maxwell’s equations.  The complete solutions are obtained by 

solving Maxwell’s equations simultaneously and subject to the boundary conditions for 

the given problem. 

 Proceeding further, we obtain the current drawn from the voltage source to be  

 

[ ]

dt
tdV

C

tV
d
wl

HwtI

g

lzyg

)(

sin

)(

0

1

=

⎟
⎠
⎞

⎜
⎝
⎛−=

=
−=

ωεω   (107) 

or, 
 gg VCjI ω=   (108) 

where C = (εwl/d) is the capacitance of the arrangement obtained from static field 

considerations.  Thus, the input admittance of the structure is jωC so that its low 

frequency input behavior is essentially that of a single capacitor of value same as that 

found from static field analysis of the structure. 
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⎞
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d

Electroquasistatic Analysis of 
Parallel-Plate Arrangement

66
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d

Ig (t) = w Hy1[ ]z=−l

= −ω εwl
d

⎛
⎝

⎞
⎠ V0 sin ωt

= C
dVg (t)

dt
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Indeed, from considerations of power flow, using Poynting’s theorem, we obtain 

the power flowing into the structure to be  

 

[ ]

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛−=

=
=

2

2
0

010

2
1

cossin

g

zyx

CV
dt
d

ttV
d
wl

HEwdP

ωωωε
in

 (109) 

which is consistent with the electric energy stored in the structure for the static case, as 

given by (79). 
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Magnetoquasistatic Fields 

 For magnetoquasistatic fields, we begin with the magnetic field having the spatial 

dependence of the static field solution for the given arrangement.  An example is 

provided by the parallel-plate arrangement with perfect dielectric and connected at the 

end (Slide 54), excited by a sinusoidally time-varying current source Ig(t) = I0 cos ωt, 

instead of a direct current source.  Then,  

 H0 =
I0
w cos ωt ay   (110) 

where the subscript 0 again denotes that the amplitude of the field is of the zeroth power 

in ω.  This results in an electric field in accordance with Maxwell’s curl equation for E, 

given by (27).  Thus, we have for the geometry of the arrangement, 

 t
w
I

t
B

z
E yx ω

ωµ
sin001 =

∂

∂
−=

∂
∂

  (111) 

 xt
w

zI
aE ω

ωµ
sin0=1   (112) 

where we have also satisfied the boundary condition at z = 0 by choosing the constant of 

integration such that [ ] 001 ==zxE  is zero, and again the subscript 1 denotes that the 

amplitude of the field is of the first power in ω.  Note that the amplitude of Ex1  varies 

linearly with z, from zero at z = 0 to a maximum at z = –l.   

 As is the case of electroquasistatic fields, we stop the process here, because 

continuing it by substituting (112) into Maxwell’s curl equation for H, (28), to obtain the 

resulting magnetic field will yield a term having amplitude proportional to the second 

power in ω.  This simply means that the fields given as a pair by (110) and (112) do not 
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satisfy (28), and hence are not complete solutions to Maxwell’s equations.  The complete 

solutions are obtained by solving Maxwell’s equations simultaneously and subject to the 

boundary conditions for the given problem. 
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 Proceeding further, we obtain the voltage across the current source to be  

 

1
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( )

( )

g x z l
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V t d E

dl I tw
dI t

L dt

µω ω

=−= ⎡ ⎤⎣ ⎦
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

=

 (113) 

or gg ILjV ω=   (114) 

where L = (µdl/w) is the inductance of the arrangement obtained from static field 

considerations.  Thus, the input impedance of the structure is jωL, such that its low 

frequency input behavior is essentially that of a single inductor of value same as that 

found from static field analysis of the structure. 
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Indeed, from considerations of power flow, using Poynting’s theorem, we obtain 

the power flowing into the structure to be  
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  (115) 

which is consistent with the magnetic energy stored in the structure for the static case, as 

given by (92). 
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Quasistatic Fields in a Conductor 

 If the dielectric slab in the arrangement of Slide 64 is conductive, then both 

electric and magnetic fields exist in the static case, because of the conduction current, as 

discussed under electromagnetostatic fields.  Furthermore, the electric field of amplitude 

proportional to the first power in ω contributes to the creation of magnetic field of 

amplitude proportional to the first power in ω, in addition to that from electric field of 

amplitude proportional to the zeroth power in ω. 
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 Thus, using the results from the static field analysis from the arrangement of Slide 

58, we have for this arrangement, 

 xt
d

V
aE ωcos0=0   (116) 

 xt
d
V

aEJ ω
σ

σ cos0== 00c   (117) 

 yt
d

zV
aH ω

σ
cos0−=0   (118) 

as depicted in the figure.  Also, the variations with z of the amplitudes of Ex0 and Hy0  

are shown in Fig. (b) on Slide 72. 

 The magnetic field given by (118) gives rise to an electric field having amplitude 

proportional to the first power in ω, in accordance with Maxwell’s curl equation for E, (27).  

Thus 
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sin001 −=
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  (119) 
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2
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where we have also made sure that the boundary condition at z = –l is satisfied.  This 

boundary condition requires that Ex  be equal to Vg /d  at z = –l.  Since this is satisfied by 

Ex0  alone, it follows that Ex1  must be zero at z = –l. 
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 The electric field given by (116) and that given by (120) together give rise to a 

magnetic field having terms with amplitudes proportional to the first power in ω, in 

accordance with Maxwell’s curl equation for H, (28).  Thus 
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where we have also made sure that the boundary condition at z = 0 is satisfied.  This 

boundary condition requires that Hy be equal to zero at z = 0, which means that all of its 

terms must be zero at z = 0.  Note that the first term on the right side of (122) is the 

contribution from the conduction current in the material resulting from Ex1  and the 

second term is the contribution from the displacement current resulting from Ex0 .  

Denoting these to be Hyc1 and Hyd1, respectively, we show the variations with z of the 

amplitudes of all the field components having amplitudes proportional to the first power 

in ω, in Fig. (c) on Slide 72. 
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 Now, adding up the contributions to each field, we obtain the total electric and 

magnetic fields up to and including the terms with amplitudes proportional to the first 

power in ω to be  
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Finally, the current drawn from the voltage source is given by 
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The input admittance of the structure is given by   
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where we have used the approximation [1 + jω(µσl2/3)]–1 ≈ [1 – jω(µσl2/3)].   
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Proceeding further, 

we have  

 

Y in = jω εwl
d + 1

d
σwl + jω µdl

3w

= jωC + 1
R + jωLi

 (127) 

where C = εwl/d is the capacitance of the structure if the material is a perfect dielectric, R 

= d/σwl is the resistance of the structure, and Li = µdl/3w is the internal inductance of the 

structure, all computed from static field analysis of the structure. 

 The equivalent circuit corresponding to (127) consists of capacitance C in parallel 

with the series combination of resistance R and internal inductance Li, same as that on 

Slide 62.  Thus, the low-frequency input behavior of the structure is essentially the same 

as that of the equivalent circuit on Slide 62, with the understanding that its input 

admittance must also be approximated to first-order terms.  Note that for σ = 0, the input 

admittance of the structure is purely capacitive.  For nonzero σ, a critical value of σ equal 

to 23 l/µε  exists for which the input admittance is purely conductive.  For values of σ 

smaller than the critical value, the input admittance is complex and capacitive, and for 

values of σ larger than the critical value, the input admittance is complex and inductive.   
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We have seen that quasistatic field analysis of a physical structure provides 

information concerning the low-frequency input behavior of the structure.  As the 

frequency is increased beyond that for which the quasistatic approximation is valid, terms 

in the infinite series solutions for the fields beyond the first-order terms need to be 

included.  While one can obtain equivalent circuits for frequencies beyond the range of 

validity of the quasistatic approximation by evaluating the higher order terms, no further 

insight is gained through that process and it is more straightforward to obtain the exact 

solution by resorting to simultaneous solution of Maxwell’s equations, when a closed 

form solution is possible. 
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Wave Equation  

 Let us, for simplicity, consider the structures on  Slides 64 and 68, for which the 

material between the plates is a perfect dielectric (σ = 0).  Then, regardless of the 

termination at z = 0, the equations to be solved are  
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For the geometry of the arrangements, E = Ex(z, t)ax and H = Hy(z, t)ay, so that (128a) and 

(128b) simplify to  
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Combining the two equations by eliminating Hy, we obtain 
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which is the wave equation.   
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The wave equation has solutions of the form 

 ( ) ( )−+ ++++−= φµεωφµεω ztBztAtzEx coscos),(   (131) 

The terms on the right side correspond to traveling waves propagating in the +z and –z 

directions, which we shall call the (+) and (–) waves, respectively, with the velocity 

µε/1 , or rrc εµ/ , where 00/1 εµ=c  is the velocity of light in free space.  This 

can be seen by setting the derivative of the argument of the cosine function in each term 

equal to zero, or by plotting each term versus z for a few values of t, as on Slides 80 and 

81,  for the (+) and (–) waves, respectively.  The corresponding solution for Hy is given 

by  

 ( ) ( )[ ]−+ ++−+−= φµεωφµεω
εµ

ztBztA
/

tzHy coscos1),(   (132) 
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For sinusoidal waves, which is the case at present, the velocity of propagation is 

known as the phase velocity, denoted by vp, since it is the velocity with which a constant 

phase surface moves in the direction of propagation.  The quantity µεω  is the 

magnitude of the rate of change of phase at a fixed time t, for either wave.  It is known as 

the phase constant and is denoted by the symbol β.  The quantity εµ/ , which is the 

ratio of the electric field intensity to the magnetic field intensity for the (+) wave, and the 

negative of such ratio for the (–) wave, is known as the intrinsic impedance of the 

medium.  It is denoted by the symbol η.  Thus, the phasor electric and magnetic fields 

can be written as  

 zjzj
x eBeAE ββ += −   (133) 

 ( )zjzj
y eBeAH ββ

η
−= −1   (134) 
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We may now use the boundary conditions for a given problem and obtain the 

specific solution for that problem.  For the arrangement on Slide 64, the boundary 

conditions are H y  = 0 at z = 0 and E x = V g /d  at z = –l.  We thus obtain the particular 

solution for that arrangement to be  

 z
ld

V
E g

x β
β

cos
cos

=   (135) 

 z
ld

Vj
H g

y β
βη

sin
cos

−
=   (136) 

which correspond to complete standing waves, resulting from the superposition of (+) 

and (–) waves of equal amplitude.  Complete standing waves are characterized by pure 

half-sinusoidal variations for the amplitudes of the fields, as shown on Slide 84.  For 

values of z at which the electric field amplitude is a maximum, the magnetic field 

amplitude is zero, and for values of z at which the electric field amplitude is zero, the 

magnetic field amplitude is a maximum.  The fields are also out of phase in time, such 

that at any value of z, the magnetic field and the electric field differ in phase by t = π/2ω. 
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 Now, the current drawn from the voltage source is given by 
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so that the input impedance of the structure is 
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which can be expressed as a power series in βl.  In particular, for βl < π/2, 
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The first term on the right side can be identified as belonging to the quasistatic 

approximation.  Indeed for βl << 1, the higher order terms can be neglected, and  
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same as that following from (108). 
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 It can now be seen that the condition βl << 1 dictates the range of validity for the 

quasistatic approximation for the input behavior of the structure.  In terms of the 

frequency f of the source, this condition means that f << vp/2πl, or in terms of the period T 

= 1/f, it means that T >> 2π(l/vp).  Thus, as already mentioned, quasistatic fields are low-

frequency approximations of time-varying fields that are complete solutions to Maxwell’s 

equations, which represent wave propagation phenomena and can be approximated to the 

quasistatic character only when the times of interest are much greater than the 

propagation time, l/vp, corresponding to the length of the structure.  In terms of space 

variations of the fields at a fixed time, the wavelength λ(= 2π/β), which is the distance 

between two consecutive points along the direction of propagation between which the 

phase difference is 2π, must be such that l << λ/2π; thus, the physical length of the 

structure must be a small fraction of the wavelength.  In terms of amplitudes of the fields, 

what this means is that over the length of the structure, the field amplitudes are fractional 

portions of the first one-quarter sinusoidal variations at the z = 0 end in the figure on 

Slide 84, with the boundary conditions at the two ends of the structure always satisfied.  

Thus, because of the cos βz dependence of E x  on z, the electric field amplitude is 

essentially a constant, whereas because of the sin βz dependence of H y  on z, the 

magnetic field amplitude varies linearly with z.  These are exactly the nature of the 

variations of the zero-order electric field and the first-order magnetic field, as discussed 

under electroquasistatic fields. 
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equations, which represent wave propagation phenomena and can be
approximated to the quasistatic character only when the times of interest are 
much greater than the propagation time, l/vp, corresponding to the length of the 
structure. In terms of space  variations of the fields at a fixed time, the 
wavelength λ ( = 2π/ β ), which is the distance between two consecutive points 
along the direction of propagation between which the phase difference is 2π, 
must be such that l << λ /2π ; thus, the physical length of the structure must be a 
small fraction of the wavelength.  
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 For frequencies slightly beyond the range of validity of the quasistatic 

approximation, we can include the second term in the infinite series on the right side of 

(139) and deduce the equivalent circuit in the following manner. 
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or 
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Thus the input behavior is equivalent to that of a capacitor of value same as that for the 

quasistatic approximation in series with an inductor of value 1
3  times the inductance 

found under the quasistatic approximation for the same arrangement but shorted at z = 0, 

by joining the two parallel plates.  This series inductance is familiarly known as the 

“stray” inductance.  But, all that has occurred is that the fractional portion of the 

sinusoidal variations of the field amplitudes over the length of the structure has increased, 

because the wavelength has decreased.  As the frequency of the source is further 

increased, more and more terms in the infinite series need to be included and the 

equivalent circuit becomes more and more involved.  But throughout all this range of 

frequencies, the overall input behavior is still capacitive, until a frequency is reached 
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when βl crosses the value π/2, tan βl becomes negative and the input behavior changes to 

inductive!   
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In fact, a plot of tan βl versus f indicates that as the frequency is varied, the input 

behavior alternates between capacitive and inductive, an observation unpredictable 

without the complete solutions to Maxwell’s equations.  At the frequencies at which the 

input behavior changes from capacitive to inductive, the input admittance becomes 

infinity (short-circuit condition).  The field amplitude variations along the length of the 

structure are then exactly odd integer multiples of one-quarter sinusoids.  At the 

frequencies at which the input behavior changes from inductive to capacitive, the input 

admittance becomes zero (open-circuit condition).  The field amplitude variations along 

the length of the structure are then exactly even integer multiple of one-quarter sinusoids, 

or integer multiples of one-half sinusoids. 
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 Turning now to the arrangement on Slide 68, the boundary conditions are E x  = 0 

at z = 0 and H y = I g /w  at z = –l.  We thus obtain the particular solution for that 

arrangement to be  

 z
lw

Ij
E g

x β
β

η
sin

cos
−=   (143) 

 z
lw

I
H g

y β
β

cos
cos

=   (144) 

which, once again, correspond to complete standing waves, resulting from the 

superposition of (+) and (–) waves of equal amplitude, and characterized by pure half-

sinusoidal variations for the amplitudes of the fields, as shown on Slide 91, which are of 

the same nature as on Slide 84, except that the variations for the electric and magnetic 

fields are interchanged. 
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 Now, the voltage across the current source is given by 
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so that the input impedance of the structure is 

 Z in =
V g
I g

= j ηd
w tan βl  (146) 

which can be expressed as a power series in βl.  In particular, for βl < π/2, 
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Once again, the first term on the right side can be identified as belonging to the 

quasistatic approximation.  Indeed for βl << 1, 
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same as that following from (114), and all the discussion pertinent to the condition for the 

validity of the quasistatic approximation for the structure on Slide 64 applies also to the 

structure on Slide 68, with the roles of the electric and magnetic fields interchanged.  For 

l << λ/2π, the field amplitudes over the length of the structure are fractional portions of 

the first one-quarter sinusoidal variations at the z = 0 end in the figure on Slide 91, with 

the boundary conditions at the two ends always satisfied.  Thus, because of the cos βz 

dependence of H y  on z, the magnetic field amplitude is essentially a constant, whereas 

because of the sin βz dependence of E x  on z, the electric field amplitude varies linearly 

 with z.  These are exactly the nature of the variations of the zero-order magnetic field 

and the first-order electric field, as discussed under magnetoquasistatic fields.
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 For frequencies slightly beyond the range of validity of the quasistatic 

approximation, we can include the second term in the infinite series on the right side of 

(147) and deduce the equivalent circuit in the following manner.   
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or 
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Thus the input behavior is equivalent to that of an inductor of value same as that for the 

quasistatic approximation in parallel with a  capacitor of value 1
3  times the capacitance 

found under the quasistatic approximation for the same arrangement but open at z = 0, 

without the two plates joined.  This parallel capacitance is familiarly known as the 

“stray” capacitance.  But again, all that has occurred is that the fractional portion of the 

sinusoidal variations of the field amplitudes over the length of the structure has increased, 

because the wavelength has decreased.  As the frequency of the source is further 

increased, more and more terms in the infinite series need to be included and the 

equivalent circuit becomes more and more involved.  But throughout all this range of 
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frequencies, the overall input behavior is still inductive, until a frequency is reached 

when βl crosses the value π/2, tan βl becomes negative and the input behavior changes to 

capacitive.  
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In fact, the plot of tan βl versus f indicates that as the frequency is varied, the 

input behavior alternates between inductive and capacitive, an observation unpredictable 

without the complete solutions to Maxwell’s equations.  At the frequencies at which the 

input behavior changes from inductive to capacitive, the input impedance becomes 

infinity (open-circuit condition).  The field amplitude variations along the length of the 

structure are then exactly odd integer multiples of one-quarter sinusoids.  At the 

frequencies at which the input behavior changes from capacitive to inductive, the input 

impedance becomes zero (short-circuit condition).  The field amplitude variations along 

the length of the structure are then exactly even integer multiples of one-quarter 

sinusoids, or integer multiples of one-half sinusoids. 
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The Distributed Circuit Concept 

 We have seen that, from the circuit point of view, the structure on Slide 50 

behaves like a capacitor for the static case and the capacitive character is essentially 

retained for its input behavior for sinusoidally time-varying excitation at frequencies low 

enough to be within the range of validity of the quasistatic approximation.  Likewise, we 

have seen that, from a circuit point of view, the structure on Slide 54 behaves like an 

inductor for the static case and the inductive character is essentially retained for its input 

behavior for sinusoidally time-varying excitation at frequencies low enough to be within 

the range of validity of the quasistatic approximation.  For both structures, at an 

arbitrarily high enough frequency, the input behavior can be obtained only by obtaining 

complete (wave) solutions to Maxwell’s equations, subject to the appropriate boundary 

conditions.  The question to ask then is: Is there a circuit equivalent for the structure 

itself, independent of the termination, that is representative of the phenomenon taking 

place along the structure and valid at any arbitrary frequency, to the extent that the 

material parameters themselves are independent of frequency?  The answer is, yes, under 

certain conditions, giving rise to the concept of the distributed circuit.   

 To develop and discuss the concept of the distributed circuit using a more general 

case than that allowed by the arrangements on Slides 50 and 54, let us consider the case 

of the structure on Slide 58 driven by a sinusoidally time-varying source, as in figure (a) 

on Slide 72.  Then the equations to be solved are 
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For the geometry of the arrangement, E = Ex(z, t)ax and H = Hy(z, t)ay, so that 

(151a) and (151b) simplify to 
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Now, since Ez and Hz are zero, we can, in a given z = constant plane, uniquely define a 

voltage between the plates in terms of the electric field intensity in that plane, and a 

current crossing that plane in one direction on the top plate and in the opposite direction 

on the bottom plate in terms of the magnetic field intensity in that plane.  These are given 

by  

 V(z, t) = dEx(z, t)  (153a) 

 I(z, t) = wHy(z, t)  (153b) 
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Substituting (153a) and (153b) in (152a) and (152b), and rearranging, we obtain 
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Writing the derivates with respect to z on the left sides of the equations in terms of limits 

as ∆z → 0, and multiplying by ∆z on both sides of the equations provides the equivalent 

circuit for a section of length ∆z of the structure, in which the quantities L, C, and G, 

given by 

 L = 
w
dµ  (155a) 

 C = εw
d  (155b) 

 G = 
d
wσ  (155c) 

are the inductance per unit length, capacitance per unit length, and conductance per unit 

length, respectively, of the structure, all computed from static field analysis, except that 

now they are expressed in terms of “per unit length,” and not for the entire structure in a 

“lump.”   
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Transmission Line 

It then follows that the circuit representation of the entire structure consists of an 

infinite number of such sections in cascade.  Such a circuit is known as a distributed 

circuit.  The distributed circuit notion arises from the fact that the inductance, 

capacitance, and conductance are distributed uniformly and overlappingly along the 

structure.  A physical interpretation of the distributed-circuit concept follows from energy 

considerations, based on the properties that inductance, capacitance, and conductance are 

elements associated with energy storage in the magnetic field, energy storage in the 

electric field, and power dissipation due to conduction current flow, in the material.  

Since these phenomena occur continuously and overlappingly along the structure, the 

inductance, capacitance, and conductance must be distributed uniformly and 

overlappingly along the structure.  

 A physical structure for which the distributed circuit concept is applicable is 

familiarly known as a transmission line.  The parallel-plate arrangement on Slides 50, 54, 

and 58 is a special case of a transmission line, known as the parallel-plate line, in which 

the waves are called uniform plane waves, since the fields are uniform in the z = constant 

planes.  In general, a transmission line consists of two parallel conductors having 

arbitrary cross-sections and the waves are transverse electromagnetic, or TEM, waves, for 

which the fields are nonuniform in the z = constant planes but satisfying the property of 

both electric and magnetic fields having no components along the direction of 

propagation, that is, parallel to the conductors.  

 All transmission lines having perfect conductors are governed by the equation 
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which are known as the transmission-line equations.  The values of L, C, and G differ 

from one line to another, and depend on the cross-sectional geometry of the conductors.  

For the parallel-plate line, L, C, and G are given by (155a), (155b), and (155c), 

respectively.  Note that 

 LC = µε  (157a) 

 
ε
σ

=
C
G  (157b) 

a set of relations, which is applicable to any line governed by (156a) and (156b).  Thus 

for a given set of material parameters, only one of the three parameters, L, C, and G, is 

independent. 

 In practice, the conductors are imperfect, adding a resistance per unit length and 

additional inductance per unit length in the series branches of the distributed circuit.  

Although the waves are then no longer exactly TEM waves, the distributed circuit 

representation is commonly used for transmission lines with imperfect conductors.  

Another consideration that arises in practice is that the material parameters and hence the 

line parameters can be functions of frequency. 
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The Hertzian Dipole 

 We have seen the development of solutions to Maxwell’s equations, beginning 

with static fields and spanning the frequency domain from quasistatic approximations at 
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low frequencies to waves for beyond quasistatics.   Finally, we shall now develop the 

solution for the electromagnetic field due to a Hertzian dipole by making use of the 

thread of statics-quasistatics-waves, as compared to the commonly used approach based 

on the magnetic vector potential, for a culminating experience of revisiting the 

fundamentals of engineering electromagnetics. 

 The Hertzian dipole is an elemental antenna consisting of an infinitesimally long 

piece of wire carrying an alternating current I(t).  To maintain the current flow in the 

wire, we postulate two point charges Q1(t) and Q2(t) terminating the wire at its two ends, 

so that the law of conservation of charge is satisfied.  Thus, if 

 I(t) = I0 cos ωt  (158) 

then 

 Q1(t) = 
ω

0I
 sin ωt  (159a) 

 Q2(t) = 
ω

0I
−  sin ωt = –Q1(t)  (159b) 
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For d/dt = 0, the charges are static and the current is zero.  The field is simply the 

electrostatic field due to the electric dipole made up of Q1 = –Q2 = Q0.  Applying (70) to 

the geometry in the figure on Slide 99, we write the electrostatic potential at the point P 

due to the dipole located at the origin to be  

 Φ =
Q0
4πε

1
r1

− 1
r2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  (160) 

In the limit dl → 0, keeping the dipole moment Q0(dl) fixed, we get  
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In the limit dl →  0, keeping Q0 (dl) constant, 
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so that the electrostatic field at the point P due to the dipole is given by  

 E = −∇Φ =
Q0(dl)
4πεr 3 2 cosθ ar + sin θ aθ( ) (162) 
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With time variations in the manner Q1(t) = –Q2(t) = Q0 sin ωt, so that I0 = ωQ0, 

and at low frequencies, the situation changes to electroquasistatic with the electric field of 

amplitude proportional to the zeroth power in ω given by  

 ( )θθθ
πε

ω
aaE sincos2

4
sin)(

3
0 += r

r
tdlQ

0  (163) 

The corresponding magnetic field of amplitude proportional to the first power in ω is 

given by the solution of 
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For the geometry associated with the arrangement, this reduces to   
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so that 
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=1   (166) 
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For Q1(t) = – Q2(t) = Q0 sin ω t, I0 = ω Q0, and at low frequencies, 
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For Q1(t) = – Q2(t) = Q0 sin ω t, I0 = ω Q0, and at low frequencies, 

Derivation of Hertzian Dipole Fields
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To extend the solutions for the fields for frequencies beyond the range of validity 

of the quasistatic approximation, we recognize that the situation then corresponds to 

wave propagation.  With the dipole at the origin, the waves propagate radially away from 

it so that the time functions sin ωt and cos ωt in (163) and (166) need to be replaced by 

sin (ωt – βr) and cos (ωt – βr), respectively, where β = µεω  is the phase constant.  

Therefore, let us on this basis alone and without any other considerations, write the field 

expressions as 

 ( )θθθ
πεω

βω
aaE sincos2

4
)(sin)(

3
0 +

−
= r

r
rtdlI

 (167) 

 φθ
π

βω
aH sin

4
)(cos)(

2
0

r
rtdlI −

=  (168) 

where we have also replaced Q0 by I0/ω, and pose the question as to whether or not these 

expressions represent the solution for the electromagnetic field due to the Hertzian 

dipole.  The answer is “no,” since they do not satisfy Maxwell’s curl equations 
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which can be verified by substituting them into the equations. 
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 There is more than one way of resolving this discrepancy, but we shall here do it 

from physical considerations.  Even a cursory look at the solutions for the fields given by 

(167) and (168) points to the problem, since the Poynting vector E x H corresponding to 

them is proportional to 1/r5, and there is no real power flow associated with them because 

they are out of phase in ωt by π/2.  But, we should expect that the fields contain terms 

proportional to 1/r, which are in phase, from considerations of real power flow in the 

radial direction and from the behavior of the waves viewed locally over plane areas 

normal to the radial lines emanating from the Hertzian dipole, and electrically far from it 

(βr >> 1), to be approximately that of uniform plane waves with the planes as their 

constant phase surfaces.  To elaborate upon this, let us consider two spherical surfaces of 

radii ra and rb and centered at the dipole and insert a cone through these two surfaces 

such that its vertex is at the antenna, as shown in the figure.  Then the power crossing the 

portion of the spherical surface of radius rb inside the cone must be the same as the power 

crossing the spherical surface of radius ra inside the cone.  Since these surface areas are 

proportional to the square of the radius and since the surface integral of the Poynting 

vector gives the power, the Poynting vector must have an r-component proportional to 

1/r2, and it follows that the solutions for Eθ and Hφ must contain terms proportional to 1/r 

and in phase. 



 

 

 

 

 

Derivation of Hertzian Dipole 
Fields

103

Hertzian
Dipole

Constant Phase
Surfaces

ra rb

rb

ra

Derivation of Hertzian Dipole 
Fields

103

Hertzian
Dipole

Constant Phase
Surfaces

ra rb

rb

ra



Slide No. 104   

 Thus let us modify the expression for H given by (168) by adding a second term 

containing 1/r in the manner 

 φ
δβωβω
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where A and δ are constants to be determined.  Then, from Maxwell’s curl equation for 

H, given by (169b), we obtain 
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Modify H as follows:
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Then, from Maxwell’s curl equation for H, 
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Now, substituting this in Maxwell’s curl equation for E given by (169a), we get 
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But (172) must be the same as (170).  Therefore, we set 
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which gives us 
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δ = π
2 A = β

Substituting in Maxwell’s curl equation for E, we get

For the two expressions for H to be consistent,

Derivation of Hertzian Dipole Fields

H = I0 (dl) sin θ
4π

2 sin (ωt − β r)
β r3 + 2A cos (ω t − β r +δ )

β 2r3
⎡ 

⎣ 
⎢ 

  + cos (ωt − β r)
r2 + A cos (ω t − β r +δ )

r
⎤ 
⎦ ⎥ aφ

2 sin (ω t − β r)
βr 3 + 2A cos (ωt − β r + δ)

β2r3 = 0

105

δ = π
2 A = β

Substituting in Maxwell’s curl equation for E, we get
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Substituting (174) and (175) in (171) and (172), we then have the complete 

electromagnetic field due to the Hertzian dipole given by 
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Expressed in phasor form and with some rearrangement, the field components are 

given by  
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The following observations are pertinent to these field expressions: (a) They 

satisfy all Maxwell’s equations exactly.  (b) For any value of r, the time-average value of 

the θ-component of the Poynting vector is zero, and the time-average value of the r-

component of the Poynting vector is completely from the 1/r terms, thereby resulting in 

the time-average power crossing all possible spherical surfaces centered at the dipole to 

be the same.  (c) At low frequencies such that βr << 1, the 1/(βr)3 terms dominate the 

1/(βr)2 terms, which in turn dominate the 1/(βr) terms, and e–jβr ≈ (1 – jβr) but the 1/(βr)3 

terms dominate, thereby reducing the field expressions to the phasor forms of the 

quasistatic approximations given by (163) and (166).  Finally, they are the familiar 

expressions obtained by using the magnetic vector potential approach. 
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1. They satisfy all Maxwell’s equations exactly.
2. For any value of r, the time-average value of the θ component 

of the Poynting vector is zero, and the time-average value of 
the r component of the Poynting vector is completely from
the 1/r terms, thereby resulting in the time-average power 
crossing all possible spherical surfaces centered at the dipole 
to be the same.

3. At low frequencies such that βr << 1, the 1/(βr)3 terms 
dominate the 1/(βr)2 terms, which in turn dominate the 1/(βr)
terms, and                          , thereby reducing the field 
expressions to the phasor forms of the quasistatic 
approximations.

e– jβr ≈ 1 – jβr( )

Observations on the Field 
Solutions

108

1. They satisfy all Maxwell’s equations exactly.
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the 1/r terms, thereby resulting in the time-average power 
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to be the same.

3. At low frequencies such that βr << 1, the 1/(βr)3 terms 
dominate the 1/(βr)2 terms, which in turn dominate the 1/(βr)
terms, and                          , thereby reducing the field 
expressions to the phasor forms of the quasistatic 
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