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EPI 546: FUNDAMENTALS OF EPIDEMIOLOGY AND BIOSTATISTICS 
Course Policies for 2016 

 
Instructors: 
 
East Lansing (EL)   Course Director:  

Mathew J Reeves, BVSc, PhD (MR) 
Professor 
Department of Epidemiology and Biostatistics, CHM 
East Lansing, MI  48824 
reevesm@msu.edu 
 

East Lansing Curriculum Assistant:  
Dorota Mikucki 
CHM-Office of Preclinical Curriculum 
A- 112 X Clinical Center 
East Lansing, MI  48824 
Phone:  (517) 884-1859 
Dorota.Mikucki@hc.msu.edu 

 
Grand Rapids (GR)  Assistant Course Director 

Jeff Jones, MD (JJ) 
CHM West Michigan 
Jeffrey.jones@spectrum-health.org 

 
Grand Rapids Curriculum Assistant: 
Candace Obetts 
CHM-Office of Preclinical Curriculum 
15 Michigan Street, NE; #367 
Grand Rapids, MI  49503 
Office:  (616) 234-2631 
candace.obetts@hc.msu.edu 

      
Information:  For general course administrative questions contact Dorota Mikucki (if EL campus) or 
Candace Obetts (if GR campus). Students are encouraged to post content specific questions on the 
D2L Discussion Board. Either Dr. Reeves or Dr. Jones will post answers on a regular basis. Students 
are expected to check these postings on a regular basis.  To arrange a face-to-face meeting with either 
Dr. Reeves or Dr. Jones, please contact by e-mail.  
 
Required: 

1) Course pack, referred to as CP 
2) Textbook:  

Clinical Epidemiology: The Essentials, Fifth Edition, by Fletcher RH, and Fletcher SW.  
Lippincott, Williams & Wilkins 2014, Baltimore. ISBN 978-1451144475 (a.k.a. FF text in the 
notes).  
This book is available online at MSU library: 
http://libguides.lib.msu.edu/c.php?g=95640&p=624454 
Look under Year 1 EPI546. 
This book is also required for EPI 547 (Fall 2nd year).  

 
3) Optional Text: Users' Guides to the Medical Literature: Manual of Evidence Based 

Clinical Practice (JAMA & Archives Journals), 2nd edition, by Gordon Guyatt, Drummond 
Rennie, Maureen Meade, Deborah Cook. McGraw-Hill Professional; May 21, 2008.  

mailto:reevesm@msu.edu
mailto:Dorota.Mikucki@hc.msu.edu
mailto:Jeffrey.jones@spectrum-health.org
mailto:candace.obetts@hc.msu.edu
http://libguides.lib.msu.edu/c.php?g=95640&p=624454


Last Updated 11/12/15 

ii 
 

This book is available online at MSU library: 
http://libguides.lib.msu.edu/c.php?g=95640&p=624454 
Look under Year 2 EPI547. (This text is used in Year 2 for the EPI-547 course) 

 
 
Lecture Location: All East Lansing Lectures and Help Sessions are in A133 Life Sciences; Exam 
Reviews are in B105 Life Sciences.  
All Grand Rapids Lectures are in 120 Secchia Center (NOTE: GR will be in 130 Secchia on January 
21 and February 25). 
 
Note that attendance at Lecture 1 is mandatory. 
 
Lectures, FLIPPED Lectures, Application Sessions, and Assigned Readings: 
 
Subject FF Readings  Date Time 
 1. Introduction to Epidemiology (MR) Chapter 1 Tu 1/12 10:00-10:50 am 
 2. Descriptive Statistics Chapter 2 Thur 1/14 online only 
 3. Frequency Measures (MR) Chapters 4 and 5* Tu 1/19 10:00-10:50 am 
 4. Effect Measures (MR) Chapters 4 and 5* Th 1/21 10:00-10:50 am 
 5. Statistics I (JJ)  Chapter 10 Tu 1/26 10:00-10:50 am 
 6. Statistics II (JJ) Chapter 10 Th 1/28 11:00-11:50 am 
   Application Session I (JJ/MR) See D2L Mo 2/1 10:15 am-12:05 pm 
Mid-Term Exam All Above Th 2/4 8:00-9:30 am 
 7. Clinical Testing (JJ) Chapter 3 Tu 2/9 10:00-10:50 am 
 8. Prevention (MJR) Chapter 9 Th 2/11 10:00-10:50 am  
 9. The Randomized Trial (JJ) Chapter 8 Tu 2/16 9:00-9:50 am 
 10. XS, Cohort Studies (JJ) Chapters 5 & 7** Th 2/18 9:00-9:50 am 
 11. Case Control Studies (MR) Chapter 6 Wed 2/24 8:00-8:50 am 
   Application Session II (MR/JJ)  See D2L Th 2/25 8:00-9:50 am 
 12. Review/Help Session (MR/JJ)  All Above Th 3/3 8:00-8:50 am 
Final Exam  All Above Fr 3/4 8:00-10:30 am 
 
*   Chapter 5 readings p 85-88 
** Chapter 7 readings p 105-109 and 116-123 
 
N.B – Some lectures will be given using a flipped format indicating that in-class time will be used 
for problems/discussion. Students should review required readings and the lecture slides 
beforehand and listen to the online lecture if they plan to participate in these sessions. These 
sessions will not be recorded on Mediasite.  
 
Exam Schedule: 
Mid-course exam worth 1/3 of the final marks will be on Thursday, February 4 from 8:00 am - 9:30 
am in A133 Life Sciences (EL) and in 120 Secchia Center (GR).  Final Examination will be on Friday, 
March 4 from 8:00 am - 10:30 am in A133 Life Sciences (EL) and in 120 Secchia Center (GR).  
  
Overall Course Objective:  
This course introduces the key concepts, definitions, vocabulary and applications associated with 
Clinical Epidemiology and Evidence-based Medicine that are fundamental to clinical practice and the 
critical appraisal of the medical literature. 
 
Specific Objectives: 
• Understand what clinical epidemiology is, and its relevance to the clinical practice of medicine 

through Evidence-based Medicine. 

http://libguides.lib.msu.edu/c.php?g=95640&p=624454
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• Understand how clinical information is used to define “abnormal” vs. “normal.”  Distinguish between 
validity and reliability. Understand the sources of variability (intra- vs. inter-observer/rater, biologic 
vs. measurement) and how they are quantified (standard deviation, correlation, kappa). Understand 
the rationale for sampling. Random vs. systematic error. Understand the different data 
classifications, data distributions, measures of central tendency and dispersion. 

• Understand how to quantify uncertainty (probability and odds); ratios, proportions and rates; 
understand the definition, calculation, identification, interpretation, and application of measures of 
disease occurrence (prevalence, cumulative incidence, incidence-density, mortality, case-fatality); 
make probabilistic estimates about risk (absolute vs. relative); understand the relationships between 
incidence, duration and prevalence. 

• Understand the definition, calculation, identification, interpretation, and application of measures of 
effect (RR, RRR, AR, ARR, ARI, NNT, NNH, PAR, PARF, OR); distinguish between relative and 
absolute differences; understand the relationship between baseline risk and ARR; describe the risks 
and benefits of an intervention through NNT and NNH measures; understand the distinction 
between the OR and RR, and recognize which study designs each measure can be applied. 

• Understand the basic principles of medical statistics (hypothesis testing vs. estimation, confidence 
intervals (CI) and p-values, clinical significance and statistical significance); define and interpret p-
values, point estimates, CIs, Type I and II errors; understand the determinants of power and sample 
size; on a conceptual level understand what multivariable analysis does (statistical control of 
confounding and interaction). 

• Understand how to master the science and art of diagnosis and clinical testing; understand the 
definition, calculation, identification, interpretation, and application of measures of diagnostic test 
efficacy (sensitivity, specificity, predictive values); understand the importance of the gold standard, 
prevalence, and Bayes’ Theorem; understand the calculation and interpretation of ROC curves. 

• Understand the different approaches undertaken to prevent disease (primary, secondary, tertiary), 
especially early detection through screening. Understand key concepts of population-level vs. 
individual-level prevention, mass screening vs. case-finding, Pre-clinical phase, and lead time. 
Understand difference between experimental vs. observation studies of screening efficacy and the 
importance of Lead-time bias, Length-time bias, and Compliance bias; criteria to assess feasibility 
of screening; understand the relative benefits and harms of screening. 

• Understand the architecture of experimental (RCT) and observational study designs (Cross-
sectional, cohort, case-control) along with their respective strengths and weaknesses; internal vs. 
external validity; understand the concepts of “bias” (selection, confounding, and measurement).  

• Understand the design and key methodological steps of the RCT; understand the rationale for 
concealment, randomization and blinding and the biases each control; distinguish between loss-to-
follow-up, non-compliance, and cross-overs; understand the different approaches used to analyze 
RCTs (ITT, PP, AT); distinguish between composite vs. individual measures, patient orientated vs. 
surrogate outcomes,  pre-defined vs. post-hoc outcomes; best-cases vs. worst-case analyses. 

• Understand the design and organization of a cohort study; distinguish between prospective vs. 
retrospective designs; recognize the common biases afflicting cohort studies - selection bias, loss-
to-follow-up, generalizability; understand the difference between a “risk factor” and a “cause” of 
disease (association versus causation) and the uses of risk factor information.  

• Understand the design and organization of a case-control study (CCS); distinguish between a case 
series, CCS, and a retrospective cohort; understand the principles used to select cases and 
controls; recognize the common biases afflicting CCS - selection bias, measurement bias (recall), 
confounding; list available mechanisms to control confounding; understand the role of matching; 
calculate and interpret the OR. 

 
Course Material and Format: 
All materials necessary for this course (i.e., glossary, lecture slides, course notes, and background 
readings (papers)) are in the course pack. All information in the course pack may be used to set 
examination questions. These materials along with practice questions and old examinations are also to 
be found on D2L. The course notes, glossary, and text book represent the primary sources of materials 
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for the course. The lecture handouts (i.e., PowerPoint slides) are a summary of most, but not all, of the 
key concepts.  
 
The course material will be demonstrated through a series of eleven 50-minute lectures (Lecture 2 will 
be presented only as an on-line lecture) and two 2-hour application sessions. The live lectures are 
intended to supplement the information in the course notes and the assigned readings in the textbook, 
but do not attempt to cover all of the material. Live lectures also serve as a venue for clarification and 
problem solving – students are encouraged to ask questions and to actively participate in in-class 
exercises. With the exception of the first lecture, attendance at the other lectures and applications 
sessions is voluntary. All live lectures are recorded and placed on Mediasite. In addition, for some of 
the subject areas, there are stand-alone pre-recorded lectures on D2L that cover all of the slides 
included in the lecture handouts.  
 
For each of the 11 subject areas, several practice questions, generally in the same format as those on 
the mid-course and final exams (i.e., multiple choice, calculation based exercises, fill in the blank, and 
short answer format) are provided on D2L. These practice questions cover a broad range of difficulty – 
from easy to hard, and are not designed to be representative of the question difficulty that will be found 
on the two examinations (see further notes on practice examinations below). With respect to exam 
question wording and format, please note that we do not write the USMLE exam questions and so you 
should expect variability in terminology, vocabulary, and question format. This variability will occur on 
the board exams and elsewhere, thus it is an essential skill to be able to understand what a particular 
question is actually asking – even though the question may be worded differently than you would have 
liked it (or expected it) to be phrased. Having a firm grasp of the underlying concepts is therefore the 
best defense and it is this trait that the exam questions in this course are designed to test. 
 
Application Sessions: 
Two 2-hour “Application Sessions,” each run by Dr. Jones and Dr. Reeves will provide a venue to apply 
the principles we have learned in the lectures to real world problems. These sessions will be interactive 
and students will be expected to work in small groups on short problems and present their answers to 
the class. Attendance is not required. The sessions will not be recorded. Reading materials necessary 
for these sessions will be found on D2L. 
 
Expectations and Attendance Policy:   
Apart from the first lecture, attendance is not required. However, attendance at the mid-course and final 
examinations is strongly advised. 
 
Student Evaluation: 
The course grading is based on 45 total marks (points) – to pass the course, students need to get 75% 
(i.e., >= 34 marks). Fifteen marks (33.3% of the total) will be based on a mid-course exam that will 
address material covered in all prior lectures. The final exam will be based on 30 questions. Of the 30 
marks, at least 20 will be multiple choice with the remainder being calculation based, fill in the blank, 
and/or short answer format. The mid-course exam may also contain questions that are calculation 
based, fill in the blank, and/or short answer format. Two example mid-term exams and two example 
final exams are posted on D2L for self-assessment purposes. These are the ONLY officially endorsed 
practice examinations and the only exam questions on D2L that are designed to be representative of 
the question difficulty of the 2 examinations that will be used in this course. It is the policy of the EPI 
546 course to keep the final exam secure. Students wishing to discuss the answers to specific 
questions should make an appointment with the course directors after receiving their final mark. 
 
Those students not achieving the 75% benchmark will be given a CP grade and will be required to take 
the remediation exam.  
 
Remediation Exam: 
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The remediation exam will be offered on Tuesday, May 10, 2016 from 8:00 am - 10:30 am, rooms to 
be announced, contact Dorota Mikucki (EL) or Candace Obetts (GR) for further details. The format of 
this exam will be similar to the final exam and the grading will be based on just the 30 questions 
included in the remediation exam (i.e., the scores from the mid-course exam will not be used).  
 
Students who pass the remediation exam (i.e., >= 75%) will be given a CP/P grade. Those that 
fail the remediation exam will have their grade changed to CP/N and will have the opportunity 
to take the N remediation examination at the end of Block I. Students who fail the N 
remediation examination will be required to enter the Shared Discovery Curriculum. 
 
Excused Absences and Make-Up Exams:  
 
Students need to follow the Absence Policies of the College if they miss a required experience 
for any reason. 
 
If illness, emergency, or other compelling circumstance makes it impossible for you to attend an 
examination session students should immediately fill a form entitled “Request for Approval of 
Absence from an Examination or Required Experience,” (found in D2L), and submitted by email to 
the appropriate address listed below: 

 
East Lansing students submit to    absencEL@msu.edu 
 
Grand Rapids students submit to   absencGR@msu.edu 

 
If you are granted an excused absence from a course exam, your next step is to contact one of the 
administrative staff-persons below who will let you know the date, time, and place of the makeup exam. 
 

Dorota Mikucki (East Lansing)  Dorota.Mikucki@hc.msu.edu  517-884-1859 
 

Candace Obetts (Grand Rapids) candace.obetts@hc.msu.edu  616-234-2631 
 
Lecture 1 is mandatory; students who miss this lecture will be required to complete a make-up 
assignment that will be assigned by the two course assistants.  
 
Directed Study Groups (DSG): 
Supplemental instruction for this course is available free of charge. Students are encouraged to use 
these services which are led by epidemiology PhD graduate students.  The sessions generally meet 
once a week for 2 hours or so.  Please contact Veronica Miller (veronica.miller@hc.msu.edu), A139 LS 
(EL) or Renoulte Allen (Renoulte.allen@hc.msu.edu), Room 371 (GR) for more details. 
 
Student feedback on course and instruction: 
Forms on which to evaluate the course will be available at its conclusion and should be completed by 
11:59 pm March 6th. Please take the time to provide feedback and your ideas on how to improve it.  

mailto:absencEL@msu.edu
mailto:absencGR@msu.edu
mailto:Dorota.Mikucki@hc.msu.edu
mailto:candace.obetts@hc.msu.edu
mailto:Renoulte.allen@hc.msu.edu




1  

 

Glossary of Practical Epidemiology Concepts - 2016 
 

Adapted from the McMaster EBCP Workshop 
2003, McMaster University, Hamilton, Ont. 

 
 

Absolute Risk Reduction (ARR) 
(or Risk Difference [RD] or Attributable 
Risk) 

Note that open access to the much of the materials used in the Epi-546 
course can be found at  http://learn.chm.msu.edu/epi/ 
 
 
The difference in risks of an outcome between 2 experimental groups. 
Usually calculated as the difference between the unexposed or control 
event rate (CER) and the treated or experimental event rate (EER). 
Sometimes the risk difference is between 2 experimental groups. 
 

ARR = CER – EER 
Or 

ARR = EER1 – EER2 
 

The difference in risks between an exposed and unexposed group is also 
referred to as the attributable risk – that is, the additional risk of disease 
following exposure over and above that experienced by people not 
exposed (calculated as EER – CER). 

Accuracy Truthfulness of results or measurements. Requires comparison to 
known “truth”. Also referred to as validity. 

 
Bias Systematic error in study design which may skew the results leading to a 

deviation from the truth.  A non-inclusive list of specific types can include: 
Interviewer bias – error introduced by an interviewer’s conscious or 
subconscious gathering of selective data. 

Lead-time bias – mistakenly attributing increased survival of patients 
to a screening intervention when longer survival is only a reflection of 
earlier detection in the preclinical phase of disease. 
Recall bias – error due to differences in accuracy or completeness of 
recall to memory of past events or experiences. Particularly relevant 
to case control studies (CCS). 
Referral bias – the proportion of more severe or unusual cases tends 
to be artificially higher at tertiary care centers. 
Selection bias – an error in patient assignment between groups that 
permits a confounding variable to arise from the study design rather 
than by chance alone. 
Spectrum bias – occurs because of a difference in the spectrum and 
severity of disease between the population where the diagnostic test 
was developed and the clinical population that the test is applied to.. 
The disease subjects in the development population tend to be the 
“sickest of the sick” with few false negatives (and so Se is over- 
estimated) while the non-disease population tends to be the “wellest 
of the well” with few FP results (and so Sp is overestimated) 
Verification bias – when the decision to conduct the confirmatory or 
gold (reference) standard test is influenced by the result of the 
diagnostic test under study. Results in overly optimistic estimate of 
Se and an underestimate of Sp (a.k.a. work-up bias or test-referral 
bias). 
Volunteer bias – people who choose to enroll in clinical research or 
participate in a survey may be systematically different (e.g. healthier, 
or more motivated) from your patients (a.k.a. response bias). 

 
Blinded or Masked Blinded studies purposely deny access to information in order to keep 

that information from influencing some measurement, observation, or 
process (therefore blinding reduces information bias). “Double-
blinded” refers to the fact that neither the study subject nor the study 
staff are aware of which group or intervention the subject 

http://learn.chm.msu.edu/epi/
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has been assigned. Ideally everyone who is blinded or not should be 
explicitly identified (i.e, patients, doctors, data collectors, outcome 
adjudicators, statisticians). 

 
Cochrane Collaboration This international group, named for Archie Cochrane, is a unique 

initiative in the evaluation of healthcare interventions. The Collaboration 
works to prepare, disseminate, and continuously update systematic 
reviews of controlled trials for specific patient problems. 

 
Co-intervention                                        Interventions other than the treatment under study. Particularly relevant 

to therapy RCTs’ - readers should assess whether co-interventions were 
differentially applied to the treatment and control groups. 

 
Concealment A fine point associated with randomization that is very important. Ideally, 

you want to be reassured that the randomization schedule of patients 
was concealed from the clinicians who entered patients into the trial. 
Thus the clinician will be unaware of which treatment the next patient will 
receive and therefore cannot consciously – or subconsciously – distort 
the balance between the groups.  If randomization wasn’t concealed, 
patients with better prognoses may tend to be preferentially enrolled in 
the active treatment arm resulting in exaggeration of the apparent benefit 
of therapy (or even falsely concluding that treatment is efficacious). Note 
that concealment therefore reduces the possibility of selection bias 
(compare and contrast with blinding) 

 
Confidence Interval (CI) Clinical research provides a ‘point estimate’ of effect from a sample of 

patients; CIs express the degree of uncertainty or imprecision regarding 
this point estimate. CI represents a range of values consistent with the 
experimental data. In other words, CIs provide us with the ‘neighborhood’ 
within which the true (underlying and unknown) value is likely to reside. 
CIs and its associated point estimate help us make inferences about the 
underlying population. 

 
The commonly used 95% CI can be defined as the range of values within 
which we can be 95% sure that the true underlying value lies. This 
implies that if you were to repeat a study 100 times, 95 of the 100 CIs 
generated from these “trials” would be expected to include the true 
underlying value. The 95% CI estimates the sampling variation by adding 
and subtracting 2 (or 1.96 to be exact) standard errors from the point 
estimate. The width of the CI is affected by inherent variability of the 
characteristic being measured, and the study sample size - thus the 
larger the sample size the narrower (i.e., more precise) is the CI. Finally, 
a useful rule to remember is that values outside of a 95% CI are 
statistically significantly different (at P < 0.05) from the point estimate. 
Acceptable formal definitions of the 95% CI in Epi-546 and 547 include: 

i) The 95% CI includes a set of values which have a 95% 
probability or chance of including the underlying true value. 

ii) The 95% CI is a measure of the precision surrounding the 
point estimate 

 
 

Confounder or Confounding Variable A factor that distorts the true relationship of the study variable of interest 
by virtue of being related to both the study variable and the outcome of 
interest. Confounders are often unequally distributed among the groups 
being compared. Randomized studies are less likely to have their results 
distorted by confounders because randomization should result in the 
equal balance of these factors at baseline. 

 
Cost-Benefit Analysis (CBA) Provides information on both the costs of the intervention and the 

benefits, expressed in monetary terms. Results are generally expressed 
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as net benefits – benefits minus costs over a specific time period- or as 
the ratio of benefits to costs over a specific time period. Some of the 
CBA studies provide information only on the net savings, without 
providing details on the levels of costs and benefits. Other CBA-type 
studies provide information only on the monetary benefits or savings 
from an intervention without calculating the cost. A subset of these 
studies uses willingness-to-pay methods to calculate how much 
individuals and societies value the potential gains from an 
action/intervention. 

 
Cost-Effectiveness Analysis (CEA) Provides information on the cost of the intervention and its effectiveness, 

where effectiveness is not expressed in monetary terms but rather by a 
defined metric – generally the cost per life saved or case averted. CEA 
studies are in principle directly comparable if they use the same metric 
and the same methodologies in calculating costs. 

 
Cost Only Studies documenting costs of road traffic injuries without providing 

effectiveness or benefit information for actual or potential interventions. 
 
Cost-Utility Analysis (CUA) Similar to CEA, but the metric in the denominator is adjusted for quality 

of life or utility. CUA studies typically use Quality Adjusted Life Years 
(QALYs) or Disability Adjusted Life Years (DALYs) as their metric. 
QALYs and DALYs, both combine information on mortality and morbidity 
into a single indicator. Although many sourced make the distinction 
between CUA and CEA, in EPI-547 we generally refer to both types of 
analyses as CEA. 

 
Cox regression model A regression technique for survival analysis that allows adjustment for 

known differences in baseline characteristics between intervention and 
control groups when applied to survival data. 

 
Diagnosis The determination of the nature of a disease; a process of more or less 

accurate guessing. 
 
 
Differential Diagnosis A probabilistic listing of potential causes of a patient’s clinical problem 

which can be ordered in a probabilistic, prognostic, or pragmatic fashion. 
Used to aid diagnostic decision-making. 

 
Disability Adjusted Life Years (DALYs)   A negative measure of combined premature mortality and disability – i.e. 

the health gap between actual and potential health years of life. Death is 
defined as 1, and perfect health as 0.  DALYs do not use interaction of 
types of morbidity, but rather add up disability weights from different 
conditions. DALYs are calculated using a population perspective; age 
weighting places a higher importance on individuals in prime productive 
age. 

 
Discount rate All types of economic evaluation of health conditions use some type of 

discounting to discount future benefits and costs, based on the principle 
that humans value benefits in the present more than they do benefits in 
the future. In theory, the discount rate should be equal to the real 
interest rate – i.e. the actual interest rate minus the rate of inflation. In 
practice, economic evaluation guidelines suggest using a rate of 3% 
annually. 

 
Effectiveness A measurement of benefit resulting from an intervention for a given 

health problem under conditions of usual practice. This form of 
evaluation considers both the efficacy of an intervention and its 
acceptance by those to whom it is offered. It helps answer “does the 
practice do more good than harm to people to whom it is offered?” 
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Efficacy A measure of benefit resulting from an intervention for a given health 
problem under conditions of ideal practice. It helps answer “does the 
practice do more good than harm to people who fully comply with the 
recommendations?” (N.B. It is the job of RCTs’ to measure efficacy) 

 
Event Rate (risk or CIR) The risk or CIR of an event. Calculated as the proportion of a fixed 

population who develop the event of interest over a period of time. In a 
RCT design the terms controlled event rate (CER) and experimental 
event rate (EER) refer to the risks in the two comparison groups. 

 
Evidence-Based Medicine The conscientious, explicit, and judicious use of current best evidence in 

making decisions about the care of individual patients. The practice of 
evidence-based medicine requires integration of individual clinical 
expertise and patient preferences with the best available external clinical 
evidence from systematic research. 

 
Generalizability (or external validity) The extent to which the conclusions derived from a trial (or study) can be 

used beyond the setting of the trial and the particular people studied in 
the trial. Are the results applicable to the full population of all patients 
with this condition? Also referred to as External Validity. {See ‘internal 
validity’ and also ‘inference’ which deals with individualizing evidence to 
specific patients }. 

 
Gold Standard 
Reference Standard 

An established method, or a widely accepted method, for determining a 
diagnosis. It provides a standard to which a new screening or diagnostic 
test can be compared. Most importantly in articles about diagnostic 
tests, the gold standard must be explicitly acknowledged and applied 
independently in a blinded fashion. 

 
Hazard Ratio (HR) The relative risk of an outcome (eg, death) over the entire study period; 

often reported in the context of survival analysis (Cox regression model). 
Has a similar interpretation to the relative risk. 

Health A state of optimal physical, mental, and social well being; not merely the 
absence of disease and infirmity (World Health Organization). 

 
Health Outcome All possible changes in health status that may occur in an individual or in 

a defined population or that may be associated with exposure to an 
intervention. 

 
Heterogeneity Differences between patients (clinical heterogeneity) or differences in the 

results of different studies (statistical heterogeneity). 
 

Human Capital Approach Defines costs and benefits in terms gains or losses in economic 
productivity.  For an individual, injuries or deaths that are costed using 
the human capital approach include the theoretical future lost wages of 
the individual who died or was injured. 

 
Inception Cohort A designated group of persons assembled at a common time early in the 

development of a specific clinical disorder and who are followed 
thereafter. In assessing articles about prognosis it is critical that the 
inception cohort is well described in order to permit assessment of the 
homogeneity of the cohort. 

 
Incidence rate Number of new cases of disease occurring during a specified period of 

time; expressed either as a percentage (or proportion) of the number of 
people at risk (i.e., cumulative incidence rate [CIR]) or the number of new 
cases occurring per person time (i.e., incidence density rate - IDR). 

 
Inference To arrive at a conclusion. The act of taking information from published 
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experience and individualizing to specific patients. The hierarchy and 
quality of available evidence significantly influence the strength of 
inference. 

 
Intention-to-Treat Analysis Analyzing patient outcomes based on which group they were randomized 

into regardless of whether they actually received the planned 
intervention. This analysis preserves the power of randomization, thus 
maintaining that important unknown factors that influence outcome are 
likely equally distributed in each comparison group. It is the most 
conservative but valid analytical approach for a RCT (compared to ‘as 
treated’ or ‘per protocol’ analyses). The term a modified intention-to-treat 
analysis is generally used to describe an analysis where the investigators 
excluded a small number of subjects from the pure ITT population (for 
example, patients who should not have been enrolled in the study or 
those who died shortly after enrollment of unrelated causes). 

 
Internal validity 

 
 
 
 
 
 
 
 
 
Kappa (K) 

The degree to which inferences drawn from a specific study are accurate. 
Internal validity requires a careful assessment of the study’s methodology 
to determine whether the observed findings are accurate. Internal validity 
implies that apart from random error the study’s findings cannot be 
ascribed to a systematic error or bias; in other words the study does not 
suffer from confounding, selection or information bias to an important 
degree (judgment is required here). Thus RCT’s have high internal 
validity. Contrast with external validity or generalizability. 
 
A measure of reliability or agreement between two raters for categorical 
or qualitative data (e.g., two physicians independently reading x-ray 
films). Kappa adjusts for the agreement that would be expected to occur 
due to chance alone, and is thus referred to a chance-corrected 
agreement. Kappa is preferred over other agreement measures such as 
the overall % agreement which is highly influenced by the prevalence of 
the condition being evaluated. Kappa ranges from -1 to +1. Values above 
0.80 indicate excellent agreement, values 0.6-0.8 indicates substantial 
agreement, values 0.4-0.6 indicate moderate agreement, and values < 
0.4 indicate fair or poor agreement. 

 
Likelihood Ratio A ratio of likelihoods (or probabilities) for a given test result. The first is 

the probability that a given test result occurs among people with disease. 
The second is the probability that the same test result occurs among 
people without disease. The ratio of these 2 probabilities (or likelihoods) 
is the LR. It measures the power of a test to change the pre-test into the 
post-test probability of a disease being present. 

 
This ratio expresses the likelihood that a given test result would be 
expected to occur in patients with the target disorder compared to the 
likelihood of that same result in patients without that disorder. The LR for 
a given test result compares the likelihood of the result occurring in 
patients with disease to the likelihood of the result occurring in patients 
without disease. LRs contrast the proportions of patients with and 
without disease who have a given test result. 

 
Matching A deliberate process to make the study group and comparison group 

comparable with respect to factors (or confounders) that are extraneous 
to the purpose of the investigation but which might interfere with the 
interpretation of the studies’ findings. For example in case control 
studies, individual cases may be matched with specific controls on the 
basis of comparable age, gender, and/or other clinical features. 

 
Median Survival Length of time that one-half of the study population survives. 
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Meta-Analysis (MA) A systematic review (SR) which uses quantitative tools to summarize the 
results. 

 
Multivariable regression analysis A type of regression model that attempts to explain or predict the 

dependent variable (or outcome variable or target variable) by 
simultaneously considering 2 or more independent variables (or predictor 
variables). Used to account for confounding and interaction effects. 
Examples include multivariable logistic regression (for binary outcomes) 
and multivariable linear regression (for continuous outcomes). 

 
Non-inferiority trials                                 Trials undertaken with the specific purpose of proving that one treatment 

is no worse than another treatment (which is usually the current standard 
of care). Also includes equivalence trials. 

 
Number Needed to Harm (NNH) The number of patients who would need to be treated over a specific 

period of time before one adverse side-effect of the treatment will occur. 
It is the inverse of the absolute risk increase [ARI] (in the context of a 
RCT, the ARI is calculated as the EER – CER, where the event rates are 
adverse events, and by implication, adverse events are more common in 
the intervention, compared to control group). 

 
NNH = 1/ARI or 1/[CER*(RR-1)] 

– these equation are based on RCT or cohort study designs. 
 

When faced with a CCS design that generates an OR the equation is: 
NNH = [CER(OR-1) +1] / [CER(OR-1)(1-CER)] [See page 227 UG] 

 
 
 
Number Needed to Treat (NNT) The number of patients who need to be treated over a specific period of 

time to prevent one bad outcome. When discussing NNTs it is important 
to specify the treatment, its duration, and the bad outcome being 
prevented. It is the inverse of the absolute risk reduction (ARR). 

 
NNT = 1/ARR or 1/[CER*(1-RR)] 

– these equation are based on RCT or cohort study designs. 
 

When faced with a CCS design that generates an OR the equation is: 
NNT = [1 - CER(1-OR)] / [CER(1-CER)(1-OR)] [See page 226 UG] 

 
 
Odds A ratio of probability of occurrence to non-occurrence of an event 

 
Odds = probability/1-probability 

 
 
Odds Ratio (OR) The odds ratio is most often used in case-control study (CCS) designs to 

describe the magnitude or strength of an association between an 
exposure and the outcome of interest (i.e. the odds of exposure in cases 
compared to the odds of exposure in the controls – it is therefore 
calculated as a ratio of odds). Because the actual underlying disease 
risks (or CIRs) in the exposed and unexposed groups cannot be 
calculated in a CCS design, the OR is used to approximate the RR. The 
OR more closely approximates the RR when the outcome of interest is 
infrequent or rare (i.e., <10%). As a measure of the strength of 
association between an exposure and outcome the OR has the same 
interpretation as the RR. The OR is calculated as the cross-product ratio 
(a.d/b.c) where a, b, c, and d represent the respective cell sizes. 

 
Outcomes All possible changes in health status that may occur in following subjects 
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or that may stem from exposure to a causal factor or to a therapeutic 
intervention. 

 
P-value The probability of obtaining the value of the test statistic at least as large 

as the one observed, under the assumption that the H0 is true (i.e. 
P(data|H0 true)). The smaller the p-value, the lower your degree of belief 
is in the null hypothesis being true. From a hypothesis testing standpoint 
the p-value is used to make a decision based on the available data. 
{note that increasingly the reporting of confidence intervals (CI) are 
preferred over p-values because they provide much more useful 
information – including the precision of the data and their possible clinical 
significance }. 

 
 
Population attributable risk (PAR) The incidence of disease in a population that is associated with a risk 

factor. Calculated from the Attributable risk (or RD) and the prevalence 
(P) of the risk factor in the population i.e., 

 
PAR = Attributable risk x P 

OR, it can be calculated as: 

PAR = Total Incidence minus Incidence in unexposed 
 

Example: Thromboembolic disease (TED) and oral contraceptives (OC): 
Incidence of TED in overall population = 7 per 10,000 person years 
Incidence of TED in OC users = 16 per 10,000 person years 
Incidence of TED in non-OC users = 4 per 10,000 person years 
25% of women of reproductive age take OC 
So, PAR = [16 – 4] x 0.25 = 3 per 10,000 person years. This represents 
the excess incidence of TED in the population due to OC use. 

 
Population attributable risk fraction 
(PARF) (a.k.a etiologic fraction) 

The fraction of disease in a population that is attributed to exposure to a 
risk factor. Under the assumption that the risk factor is a cause of the 
disease, it represents the maximum potential impact on disease 
incidence if the risk factor was removed. It can be calculated from the 
PAR as: 
 

PARF = PAR/Total Disease Incidence 
 
OR, it can be calculated directly from the RR and P as follows: 

PARF = P(RR-1)/ [1 + P(RR-1)] 

Example: Thromboembolic disease (TED) and oral contraceptives (OC): 
 

PARF = PAR/Total Disease Incidence 
PARF = 3 per 10,000/7 per 10,0000 = 43% 

 
PARF = P(RR-1)/ [1 + P(RR-1)] 
PARF = 0.25(4-1)/ [1 + 0.25(4-1)] = 43%. This represents the fraction of 
all TED in the population that is due to OC use. 

 
Power Ability to detect a difference between two experimental groups if one in 

fact exists (1 – beta). 
 
Precision A measure of variability in the point estimate as quantified by the 

confidence interval. Influenced by random error. 
 

Predictive Value Positive Predictive Value (PVP) – proportion of people with a positive test 
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who have disease. 
 

Negative Predictive Value (PVN) – proportion of people with a negative 
test who are free of disease. 

 
Prevalence (P, Prev) Proportion of persons affected with a particular disease at a specified 

time. Prevalence rates obtained from high quality studies can inform 
clinician’s efforts to set anchoring pretest probabilities for their patients. 
In diagnostic studies, also referred to as prior probability. 

 
Prognosis The possible outcomes of a disease and the frequency with which they 

can be expected to occur. 
 

Quality Adjusted Life Years (QALYs) Combine morbidity and mortality into a positive measure of life lived, with 
death defined as 0 and perfect health as 1. QALYs are defined from the 
individual’s perspective, and include interaction of different types of 
morbidity. QALYs using discounting of future years, generally at a 3% 
discount rate. 

 
Randomization Allocation of individuals to groups by a formal chance process such that 

each patient has an independent, equal chance of selection for the 
intervention group. 

 
 

Relative Risk (Risk Ratio) The relative probability or risk of an event or outcome in one group 
compared to another. In a RCT, it is calculated as the ratio of risk in the 
treatment or experimental group (EER) to the risk in the control group 
(CER), and is a measure of the efficacy (or magnitude) of the treatment 
effect. In a cohort study, where it is similarly used to express the 
magnitude or strength of an association, it is calculated as the ratio of 
risk of disease or death among an exposed population to the risk among 
the unexposed population. 

RR = EER / CER 
 

Relative Risk Reduction (RRR) 
Relative Risk Increase (RRI) 

The percent reduction in an outcome event in the experimental group as 
compared to the control group. It is the complement of RR or the 
proportion of risk that’s removed by the intervention. Unlike the ARR the 
RRR is assumed to be a constant entity – that is, it is assumed not to 
change from one population (study) to another. It therefore represents a 
fixed measure of the efficacy of an intervention (contrast with the ARR 
which is responsive to changes in the baseline event rates). 
 

RRR = 1 – Relative Risk 
RRR = CER – EER / CER x 100 
{Or obviously … RRR = ARR / CER} 

 
The relative risk increase (RRI) is the percent increase in an outcome in 
the experimental group as compared to the control group, calculated as 
 

RRI = RR – 1. 
 
The distinction between RRR and RRI can get confusion hence many 
people prefer to use the Risk Difference which is simply the absolute 
difference between the EER and CER. 

 
Reliability Refers to consistency or reproducibility of data; a.k.a. repeatability. 

Referred to as agreement when examining categorical data (see also 
Kappa). Intra-rater reliability refers to the consistency within the same 
observer or instrument. Inter-rater reliability refers to the consistency 
between two observers or instruments. It is important to distinguish 
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reliability from validity. 
 
ROC Curves Receiver operator characteristic (ROC) curves plot test sensitivity (on the 

y axis) against 1- specificity (on the x axis) for various cut-points of a 
continuously distributed diagnostic variable. The curves describe the 
tradeoff between Se and Sp as the cut point is changed. Test that 
discriminate well crowd towards the upper north-west corner of the 
graph. ROC curves can be used to compare the discriminating ability of 
two or more tests by comparing the area under the curve (AUROC). 

 
Sensitivity (Se) The proportion of people with disease who have a positive test or 

P(T+|D+) 
 
SnNout When a test with a high sensitivity is negative, it effectively rules out the 

diagnosis of disease. 
 
Sensitivity Analysis A test of the stability of conclusions by evaluating the outcome over a 

range of plausible estimates, value judgments, or assumptions. 
 
Specificity (Sp) The proportion of people without disease who have a negative test or 

P(T-|D-). 

SpPin When a test is highly specific, a positive result can rule in the diagnosis. 

Standards Authoritative statements of minimal levels of acceptable performance or 
results, excellent levels of performance or results, or the range of 
acceptable performance or results. 

 
Study Designs 1. Case Series – A collection or a report of the series of patients with 

an outcome of interest. No control group is involved. 
 
 
 

2. Case Control Study (CCS) – Identifies patients who have a condition or 
outcome of interest (cases) and patients who do not have the 
condition or outcome (controls).  The frequency that subjects are 
exposed to a risk factor of interest is then compared between the 
cases and controls. Because of the design of the CCS, disease rates 
cannot be directly measured (contrast this with the cohort study 
design). Thus the comparison between cases and controls is actually 
done by calculating the odds of exposure in cases and controls. The 
ratio of these 2 odds results in the odds ratio (OR) which is usually a 
good approximation of the relative risk (RR) 

 
Advantages: it is relatively quick and inexpensive requiring fewer 
subjects than other study designs.  It is often times the only feasible 
method for investigating very rare disorders or when a long lag time 
exists between an exposure of interest and development of the 
outcome/disease of interest. It is also particularly helpful in studies of 
outbreak investigations where a quick answer followed by a quick 
response is required. Disadvantages: recall bias, unknown 
confounding variables, and difficulty selecting appropriate control 
groups. 

 
3. Crossover Design – A method of comparing 2 or more treatments or 

interventions in which all subjects are switched to the alternate 
treatment after completion of the first treatment. Typically allocation 
to the first treatment is by a random process. Since all subjects serve 
as their own controls, error variance is reduced. 
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4. Cross-Sectional Survey – The observation of a defined population at 
a single point in time or during a specific time interval. Exposure and 
outcome are determined simultaneously. Also referred to as a 
prevalence survey because this is the only epidemiological 
frequency measure that can be measured (in other words incidence 
rates cannot be generated from this design) 

 
5. Cohort Study – Involves identification of two groups (cohorts) of 

patients who are defined according to whether they were exposure 
to a factor of interest e.g., smokers and non-smokers . The cohorts 
are then followed over time and the incidence rates for the outcome 
of interest in each group are measured. The ratio of these incidence 
rates results in the relative risk (RR) which quantifies the magnitude 
of association between the factor and outcome (disease). Note that 
when the follow-up occurs in a forward direction the study is referred 
to as a prospective cohort. When follow-up is done based on 
historical information it is referred to as a retrospective cohort). 

 
Advantages: can establish clear temporal relationships between 
exposure and disease onset. Are able to generate incidence rates . 
Disadvantages: control/unexposed groups may be difficult to identify, 
exposure to a variable may be linked to a hidden confounding 
variable, blinding is often not possible, randomization is not present. 
For relatively rare diseases of interest, cohort studies require huge 
sample sizes and long f/u (hence they are slow and expensive). 

 
6. N-of-1 Trial – When an individual patient undergoes pairs of 

treatment periods organized so that one period involves use of the 
experimental treatment and the other involves use of a placebo or 
alternate therapy. Ideally the patient and physician are both blinded, 
and outcomes are measured. Treatment periods are replicated until 
patient and clinician are convinced that the treatments are definitely 
different or definitely not different. 

 
7. Randomized Controlled Trial – A group of patients is randomized 

into an experimental group and into a controlled group. These 
groups are then followed up and various outcomes of interest are 
documented. RCT’s are the ultimate standard by which new 
therapeutic maneuvers are judged. Randomization should result in 
the equal distribution of both known and unknown confounding 
variables into each group. An unbiased RCT also requires 
concealment and where feasible blinding. 

 
Disadvantages: often impractical, limited generalizability, volunteer 
bias, significant expense, and sometimes ethical difficulties. 

 
8. Systematic Review – A formal review of a focused clinical question 

based on a comprehensive search strategy and structured critical 
appraisal designed to reduce the likelihood of bias. No quantitative 
summary is generated however. 

 
9. Meta-Analysis – A systematic review which uses quantitative 

methods to combine the results of several studies into a pooled 
summary estimate. 

 
Survival analysis A statistical procedure used to compare the proportion of patients in each 

group who experience an outcome or endpoint at various time intervals 
over the duration of the study (eg, death). (See also Cox regression 
analysis) 



11  

Survival curve A curve that starts at 100% of the study population and shows the 
percentage of the population still surviving (or free of disease or some 
other outcome) at successive times for as long as information is 
available. (also referred to as Kaplan Meier survival curves) 

 
Substitute or Surrogate Endpoints Refer to study outcomes that are not immediately significant in clinical 

patient care. Substitute endpoints may include rates of biochemical 
changes (e.g., cholesterol, HbA1C) while clinically significant endpoints 
are more clearly tied to events that patients and their doctors care about 
most (e.g., stroke, renal failure, death). 

 

 
Validity 

 
 
 
 
 
 
 
 

Willingness To Pay (WTP) 
 
 
 
 
 

Need online access to these course 
materials? 

Truthfulness or believability of study conclusions or the extent to which a 
test actually measures what it is supposed to measure or accomplishes 
what it is supposed to accomplish.  Simply put, “Does the data really 
mean what we think it does?” or “Can we believe the results?” A.k.a. 
accuracy. Validity implies the presence of a gold standard to which data 
can be compared to. See also internal validity and external validity 
 
 
Costs benefit analysis, measures benefits as the aggregate sum of 
money that potential beneficiaries of an intervention would be willing to 
pay for the improvements that they would expect from that intervention. 
The WTP approach provides a methodology to place a financial value on 
potential gains from an action or intervention. 
 
 
 
 
 
Go to: http://learn.chm.msu.edu/epi/ 

http://learn.chm.msu.edu/epi/
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Abbreviations 
 
 
 
AR Attributable risk 
ARI  Absolute risk increase 
ARR  Absolute risk reduction 
CBA Cost-benefit analysis 
CEA Cost-effectiveness analysis 
CER Control event rate 
CI Confidence interval 
CCS Case-control study 
CIR Cumulative incidence rate 
CUA Cost-utility analysis 
EER  Experimental event rate 
IDR  Incidence density rate 
MA Meta-analysis 
NNH             Number needed to harm 
NNT              Number needed to treat 
OR                Odds ratio 
P (or Prev) Prevalence 
PAR Population attributable risk 
PARF Population attributable risk fraction 
PVP Predictive value positive 
PVN Predictive value negative 
RCT Randomized controlled trial 
RD Risk difference 
ROC Receiver operator characteristic curve 
RR Risk ratio or relative risk 
RRR  Relative risk reduction 
Se  Sensitivity 
Sp Specificity 
SR Systematic review 
TER Treatment event rate 
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EPI-546 Block I 

Lecture 1: Introduction to Epidemiology 
and Biostatistics 

 
 

What is epidemiology and evidence‐based medicine and why 

do I need to know about it? 
 
 
 

Mathew J. Reeves BVSc, PhD, FAHA Associate 
Professor, Epidemiology, CHM – EL 

 
Jeffrey Jones, MD Emergency 

Medicine, CHM – GR 
 

1 
 
 
 
 
 
 
 
 
 

Medicine and the information age 
 

•  Medicine has become an information intense discipline 
 

•   The volume of new medical information is staggering 
–   Example: MEDLINE (NLM, NIH) 
–   Contains ~5,600 biomedical journals, 39 languages 
–   Contains 19 million articles 
–   700,000 new articles added each year (2‐4,000 a day!) 

 
• Access to medical information has increased dramatically 

–   Everyone is exposed to the media 
–   Almost everyone has access to the internet 

 
•   Interest in medical information has increased 

exponentially 
–   The media focus on “today’s medical research breakthrough” 
–   Increasing awareness and demands of patients and payers' 
–   Increasing demand for physician accountability 

 
2 
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CHM’s Information Management Curriculum 
 

•  Developed to address two major educational needs: 
 
 

•  Medical Informatics and Critical appraisal 
–  The 21st century physician needs to be able to find, process, 

appraise, and integrate new information into clinical practice on 
an ongoing basis 

–  This is the EBM Revolution…… 
 

•  Changes to medical education (residency training) 
–  All residencies now require residents to demonstrate core 

competencies in clinical research and critical appraisal 
•  (Practice‐based learning) 

–  Includes evidence‐based medicine, quality improvement, and 
informatics 

 
3 

 
 
 
 
 
 
 
 
 

Need another reason?....Delfini Pearls 
 

• Most medical research is not very good and 
most doctors are not very good at judging it! 

• Training in medical schools and other schools for allied health professionals in the United 
States is shockingly poor when it comes to training in science. This affects the quality of 
medical research and the quality of medical care. 

 
• Less than 10 percent of all medical research—regardless of source—is reliable or clinical 

useful. [John Ionnides, MD ‐Stanford Professor of Medicine] 

 
• Most physicians rely on abstracts which are frequently inaccurate. One study found that 

18‐68 percent of abstracts in 6 top‐tier medical journals contained information not 
verifiable in the body of the article. Physicians who understand critical appraisal know it 
cannot be determined whether a study is valid by reading the abstract. 

 
• Leading experts estimate that 20 to 50 percent of all healthcare in the United States is 

inappropriate. 
• http://www.delfini.org/delfiniFactsCriticalAppraisal.htm. 

 
4 

http://www.delfini.org/delfiniFactsCriticalAppraisal.htm


15  

 
 

 
 

 
 
 

Need another reason?.... 
IBM’s Watson, MD – the end of traditional 

medicine? and traditional medical 
education? 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

… Knowing medical facts will no longer be sufficient! 
 

5 
 
 
 
 
 
 
 
 

Need another reason?.... The U.S. Health 
System is “challenged” on many fronts….. 

 

• Compared to other industrialized countries 
the U.S. health care system ….. 
– Is expensive: $2.6 trillion in 2010, 18% GDP 
– Medical inflation (~5%/yr) is higher than growth of 

overall economy 
– Does not produce the best outcomes 
– Is not rated highly by its citizens or doctors 
– Does not cover all of its citizens…. ~15% uninsured 

(~50 Million) 
• Source www.kaiseredu.org 

6 

http://www.kaiseredu.org/


16  

 
 

C
ou

nt
ry

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: http://www.oecd-ilibrary.org/social-issues-migration-health/total-expenditure- 
on-health-per-capita_20758480-table2  7 

 
 
 
 
 
 
 

Infant Mortality Rate, 2010. 
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http://www.abs.gov.au 8 
/www.cia.gov 

http://www.oecd-ilibrary.org/social-issues-migration-health/total-expenditure-
http://www.cdc.gov/nchs/deaths.htm
http://www.cdc.gov/nchs/deaths.htm
http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/database
http://epp.eurostat.ec.europa.eu/portal/page/portal/population/data/database
http://www.e-stat.go/
http://www.abs.gov.au/
http://www.cia.gov/
http://www.cia.gov/
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Age (years) 
 

Source: https://www.cia.gov/library/publications/the-world-factbook/geos/mn.html 9 
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http://www.cia.gov/library/publications/the-world-factbook/geos/mn.html
http://www.cia.gov/library/publications/the-world-factbook/geos/mn.html
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U.S. Health Care: A high cost but low quality 
industry. 

 
• Congressional Budget Office, 2007: 

– “The long‐term fiscal condition of the US has 
largely been misdiagnosed. Despite the attention 
paid to the demographic challenges, such as the 
coming retirement of the baby‐boom generation, 
our countries financial health will in fact be 
determined primarily by the growth in per capita 
health care costs” 
• Orszag and Ellis, NEJM, 357:1793, 2007 

 
 
 

11 
 
 
 
 
 
 
 
 

Projected Federal Spending for Medicare and Medicaid under 
Various Assumptions about the Growth Differential between 

Health Care Costs and per Capita GDP 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Orszag and Ellis, NEJM, 357:1793, 2007 12 
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Where does all the money go? 
Distribution of US medical expenditures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13 
 
 
 
 
 
 
 
 
 

Increased medical costs are… 
 

•  Driven primarily by the use of new medical therapies and 
technologies 
–  many of which are not proven to be better or more cost‐effective 

than existing treatments. 
 

•  Use of medical services is encouraged by the 
–   fee‐for‐service model (rewards providers for delivering more care 

e.g., procedures and tests), and 
–   lack of incentives for consumers to lessen their demand for 

services. 
 
 

•  Evidence that higher spending promotes better health 
outcomes and/or higher quality care is slim to none. 

 
 

14 
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Regional Variation in Medicare Spending Per Capita, 2003 
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Orszag and Ellis, NEJM, 357:1793, 2007 

 

 
 
 
 
 
 
 
 
 

Poor Quality Care 
 

Institute of Medicine (IOM) Committee 
on the Quality of Health Care in America 

 
 
 

•  Report: Crossing the Quality Chasm, 2001. 
–  “The current health care system frequently fails to translate 

knowledge into practice and to apply new technology safely and 
appropriately” 

 
 

•  Established 6 major aims for improving health care. Health 
care should be: 
–  Safe, effective, patient‐centered, timely, efficient, and equitable. 
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Goals of the Epidemiology and Biostatistics 
Courses 

 
•  Epi‐546 (SS 1st Year) 

–  To provide a grounding in the principles of clinical epidemiology, and 
biostatics (vocabulary, concepts, definitions, applications) that are 
fundamental to EBM. 

–  11 lectures, 2 Application sessions 
 
 

•  Epi‐547 (FS 2nd Year) 
–  Small group sessions designed to further develop the concepts, 

definitions and applications of EBM, and to apply them in the 
evaluation of clinical studies (critical appraisal). 
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EBM vocabulary for 21st Century Medicine…… 
 
 
 

Efficacy OR 
Cost-benefit 

 
95% CI 

 
P-value 

 
Intention-to-treat DB-PC-RCT 

 

Sensitivity HR 
ARR 

 
Likelihood ratio 

Meta-analysis 
 
 

Population attributable risk 18 
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I. What is Epidemiology? 
 
 

•  Epi means “over all” 
•  Demos means “people” 
•  Epi + Demos = “All of the people” 

 
 

•  Defn: The study of the distribution and determinants of 
disease 

 
 

•  Defn: The science behind disease control, prevention and 
public health 

 
 

•  Epidemiologists plan, conduct, analyze and interpret 
medical research. 
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II. What is Evidence‐Based Medicine? 
 
 

• Evidence‐based medicine (EBM) is the 
conscientious, explicit and judicious use of the 
current best evidence in making decisions 
about the care of individual patients (Sackett 
1996). 

 
 

• EBM is just one component of epidemiology 
and public health but it is the one that is the 
most relevant to you as a “doctor in 
training”…. 
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Relationship between Clinical Medicine, Public 
Health, EBM and Epidemiology……. 

 
 
 
 
 
 
 

Medicine Pub Health 
 
 

EBM EPI 
 
 
 
 

MDs trained in EBM Health professionals with PhD, 
MS, or MPH 

21 
 
 
 
 
 
 
 
 
 

EBM ‐ Important Concepts 
 

•  Synthesis of individual clinical expertise and external 
evidence from systematic research. 

 

 
•  Stresses expertise in information gathering, synthesis and 

incorporation. 
 

•  De‐emphasizes memorization. 
 

•  Rebellious disregard for authoritarian “expert opinion”. 
 

 
•  Relies heavily on medical informatics and on‐line 

resources (e.g., PubMed, ACP Journal Club, Cochrane 
Database of Systematic Reviews) 
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EBM is concerned with every day clinical issues 
and questions 

 
 

Issue Question 
• Normal/abnormal Is the patient sick? 

What abnormalities are associated 
with disease? 

• Diagnosis How do we make a diagnosis? How 
accurate are diagnostic tests? 

• Risk factors What factors are associated with 
disease risk? 

• Prognosis What is the likely outcome? What factors are 
associated with poor outcome? 

• Treatment How does treatment change the course? 
• Prevention How does early detection improve 

outcome? Can we prevent disease? 
• Cause What factors result in the disease? 

What is the underlying pathogenesis? 
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Important points about Epi‐546/7… 
 

 
•  Epidemiology and biostatistics are not easy subjects – the 

concepts take time and require multiple explanations, 
exercises and discussions before they are mastered…. I 
know this from personal experience!. 

 
•  Epidemiology requires “critical thinking” 

–  This is not easy if you are not quantitatively orientated or have 
‘forgotten’ how to think critically. 

 
 

•  This subject therefore has a longer learning curve than 
most pre‐clinical subjects 
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Epidemiology has a prolonged learning curve 
 
 
 

Typical pre-clinical subject 
 
 

Block III 
 
 
 
 

Epi-547 
 
 
 

Epi-546 
 

 
 

Time 
 
 
 
 
 
 
 
 

Things about Epi‐546 that you will come to 
appreciate … 

 
•  This seems like a lot of work for a 1 credit course 

•  We agree. Think of it as a 2 credit course if that helps. 
 
 

•  This seems like more information than is needed 
for Boards? 
•  We agree. We are not that interested in boards. We are 

focused on the 30+ years that come afterwards. 
 

•  I have an MPH. Why do I have to take this course? 
•  This is clinical not public health epidemiology – its 

different. 
 

•  8 am lectures in January? 
•  Tell us about it…. 
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My point about medical 
boards…. 

 
 
 

Boards are like potty training, they represent 
an important and necessary step, but once 

achieved it is important to move on and 
accomplish other things in life. 

 
 
 
 
 
 

27 
 
 
 
 
 
 
 
 

There is lots of help…. 
 
 
 
 
 
 
 
 
 
 
 

–  On‐line practice questions on D2L 
–  Two ‘Application Sessions’ designed to reinforce concepts 
–  Four practice exams (2 mid‐term, 2 final) on D2L 
–  Directed Study Groups (DSG) ‐ supplemental help from 

PhD epidemiology graduate students (if needed) 
–  Discussion board on D2L for posting questions 
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The Epi‐546 Course 
 

•   There is a course pack –get it and read it! 
•  Read the course polices carefully! 

 
•    ALL THE CONTENTS OF THE COURSE PA CK ARE FA IR GAME FOR THE 

EXAMS 
 

•   All materials are also under the “Lessons” folder on D2L. 
 

•   Within each folder you will generally find: 
–  .pdf of the core PowerPoint lectures slides 
–  .pdf course notes 
–  Practice questions 
–  Pre‐recorded lecture (Lecture 2) 

 
•   All “live lectures” will be recorded and put on the Mediasite. 
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Text Books 
Required Optional 
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The Epi‐546 Course 
• Hierarchy of course materials: 

–   Course pack (glossary, course notes, PowerPoint slides, publications, ) 
–   D2L site (practice questions and old example exams) 
–   Required text (Fletcher and Fletcher) is designed to solidify the concepts discussed in 

the lectures and covered in the course pack ‐ read it. 
 

• Mid‐course exam 
–   Covers lectures 1 – 6  
–   About 15 questions (~ 1/3rd of total) 

 
• Final exam 

–   Covers all lectures 1 – 11 
–   About 30 questions 

 
• About 2/3rds of the test questions are multiple choice with the remainder being 

calculation based, fill in the blank, and/or short answer format. 
 

• Pass >=75% 
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The Exams 
• Are not easy, but they do represent an 

Achievable Benchmark 
 
 

• Exam questions can be based on any page of 
material included in the course pack. 

 
 

• Don’t expect every exam question to look 
exactly like the other practice test questions 
you have seen – they may be different (…… 
just like patients!) 
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An exercise in critical thinking…. 
 
 

• Question: 
 
 

What is the evidence that attending lectures is 
beneficial? 
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What is the evidence that attending lectures is 
beneficial? 

•   Null hypothesis: 
–  These is no association between lecture attendance (the 

exposure) and passing Epi‐546 (the outcome) 
 

•   Exposure 
–  Self‐reported answer to the question “How many lectures did you 

go to?” 
–  Dichotomized answers into: 

•  None (e.g., “None”, “some”) 
•  All (e.g., “all of them”, “most of them”) 

 

•   Outcome: 
–  Final % score (objective, verifiable, ‘hard’) 
–  Dichotomized into: 

•  Fail  (< 75%) 
•  Pass (>= 75%) 

 
 

34 



30  

FP 

 
 
 
 

What is the evidence that attending lectures 
is beneficial? 

 

•  Data Collection: 
– 20 subjects fail the final, 10 (50%) of whom 

attend a review session where they are asked: 
•  “How many lectures did you go to?” 

•  Results: 
– 6/10 (60%) classified into the None group 

 
 

• So, what should we do now?..... 
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All questions can be framed in terms of a 2 x 2 table 
(Describes relationship between Exposure and Outcome) 

 

Outcome 
 

Pass (75%+) Fail (< 75%) 
 
 

ALL 
 

Exposure (Lectures)  a b 
c  d 

 

None 
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Case‐Control Study approach 
‐ interview 10 students who passed exam (cases) and 10 

who failed (controls) 
 

Outcome 
Pass (75%+) Fail (< 75%) 

 

ALL 8 4 
Lectures? 

None 2 6 
 

10 10 
 

Calculate odds ratio (OR)= 8/2 = 6.0 (95% CI 0.81-44.3) 
4/6 
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CCS Results 
 
 

•  For students who passed the exam the odds that they 
attended lectures was 6 times higher than those who 
failed. 

 
 

•  But potential problems of bias… 
–  Selection bias amongst controls (only half the students who failed 

attended the review session) 
–  Selection bias amongst cases (we don’t know if the 10 students 

who passed are representative of all the students who passed) 
–  Recall bias (accuracy of reporting attendance) 
–  Random error (small study) 

•  95% Confidence Interval (CI) for OR  = 0.81 – 44.3 
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65 5 
 
 

15 15 

 
 
 
 
 

Alternative approach – a cohort study 
 

• Collect data prospectively on attendance 
before the final exam 

 
 

• But how to collect such data?... Ideas?..... 
 
 

• Imagine that 70% of the class were found 
to meet the definition of “ALL”. 

 

 

• Now correlate this with the exam results…. 
 
 
 
 

39 
 
 
 
 
 
 
 
 

Cohort Study approach 
‐ follow all 100 students, 70% attend lectures 

 
 

Outcome 
Pass (75%+) Fail (< 75%) 

 
 

ALL 
 

Lectures? 
 

None 

65 5 
 
 
15 15 

65/70 = 0.92 
 
 
15/30 = 0.50 

 
 
 
 
 

Calculate relative risk (RR) = 0.92/0.5 = 1.86 
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55 15 
 
 

25 5 

 
 
 
 

Cohort Study Results 
 
 

•  Students who attended lecture were 1.86 times more 
likely to pass the exam than those that did not. 

 
 

•  Now, no potential problems of bias… 
–  Selection bias is avoided because we studied everyone 
–  Recall bias is avoided because we collected data prospectively 
–  Study is larger and more precise (95% CI = 1.29 ‐ 2.67) 

 
 

•  But imagine if we had gotten these results…. 
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Alternative Cohort Results 
‐ follow all 100 students, 70% attendance 

 
 
 

 
 
 
 
 
 

Lecture? 

 
 
 
 
 
ALL 
 
 
 
None 

Outcome 
Pass (75%+) Fail (< 75%) 
 

55 15 
 
 
 

25 5 

 
 
 
 
55/70 = 0.78 
 
 
25/30= 0.83 

 
 
 

Relative risk (RR) = 0.78/0.83 = 0.94 
(95% CI = 0.77 - 1.15) 
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Alternative Cohort Study Results 
 
 

• Students who attended lecture were 0.94 
times less likely to pass the exam than 
those that did not. 

 
 
 

• Why could this be a plausible finding?....… 
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Because of confounding…….. 
 

• Students who chose not to attend had 
greater baseline proficiency in 
epidemiology (prior education? or maybe 
higher IQ) 

- 
Attendance Exam success 

 

- + 
Baseline epi proficiency 

 
 

What is the fix for this problem?? 
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EPI-546 Block I 
 
 
 
 
 
 

Lecture 2 – Descriptive Statistics 
 
 
 

Michael Brown MD, MSc 
Professor Epidemiology and Emergency 

Medicine 
Credit to Michael P. Collins, MD, MS 

 
 
 

Dr. Michael Brown 1 
© Epidemiology Dept., Michigan State Univ. 

 
 
 
 
 
 
 
 

Objectives - Concepts 
 

  Classification of data 
  Distributions of variables 
  Measures of central tendency and dispersion 
  Criteria for abnormality 
  Sampling 
  Regression to the mean 

 
 
 
 
 
 
 
 

Dr. Michael Brown 2 
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Objectives - Skills 
 

  Distinguish and apply the forms of data 
types. 

  Define mean, median, and mode and locate 
on a skewed distribution chart. 

  Apply the concept of the standard deviation 
to specific circumstances. 

  Explain why a strategy for sampling is 
needed. 

  Recognize the phenomenon of regression to 
the mean when it occurs or is described. 

 
 
 

Dr. Michael Brown 3 
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Clinical Measurement – 
2 kinds of data 

 
 

  Categorical 
 
 
 
 

  Interval 
 

 
 
 
 
 
 
 
 
 
 

Dr. Michael Brown 4 
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Distinction - 
 
 
 

Interval = “the interval between 
successive values is equal, throughout 

the scale” 
 
 
 
 
 
 
 
 
 

Dr. Michael Brown 5 
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Clinical Measurement – 
subtypes of data 

 
  Categorical 

  Nominal 
  Ordinal 

  Interval 
  Discrete 
  Continuous 
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Nominal data: no order 
 
 

  Alive vs. dead 
  Male vs. female 
  Rabies vs. no rabies 

 
 

  Blood group O, A, B, AB 
  Resident of Michigan, Ohio, Indiana… 

 
 
 
 
 
 
 

Dr. Michael Brown 7 
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Ordinal scale: natural order, 
but not interval 

 
  1st vs. 2nd vs. 3rd degree burns 
  Pain scale for migraine headache: 

  None, mild, moderate, severe 

  Glasgow Coma Score (3-15) 
  Stage of cancer spread – 0 through 4 

 
 
 
 
 
 
 
 
 

Dr. Michael Brown 8 
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Clinical Measurement – 
2 kinds of data 

 
  Categorical 

  Nominal 
  Ordinal 

  Interval 
  Discrete 
  Continuous 

 
 
 
 
 
 
 
 

Dr. Michael Brown 9 
© Epidemiology Dept., Michigan State Univ. 

 
 
 
 
 
 
 

Discrete Interval variables: 
on a “number line” 

 
  Number of live births 
  Number of sexual partners 
  Diarrheal stools per day 
  Vision – 20/? 

 
 
 
 

1   2   3 
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Continuous variables: 
 
 

  Blood pressure 
  Weight, or Body Mass Index 
  Random blood sugar 
  IQ 

 
 
 
 
 
 
 
 
 
 
 

Dr. Michael Brown 11 
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Interval: Continuous vs. Discrete 
 
 

  No variable is perfectly continuous – e.g. you 
never see a BP of 152.47 mmHg 

  It’s a matter of degree – lots of possible values 
within the range clinically possible = continuous 
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Recording data - 
 
 

  Sometimes the variable is intrinsically one type 
or another – but, frequently it is the observer 
who decides how a variable will be measured 
and reported 

  Consider cigarette smoking: 
 
 
 
 
 
 
 
 
 
 

Dr. Michael Brown 13 
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Continuous variable 
 
 

  Underlying (nearly) continuous variable – 
cigarettes/day 
  32, 63, 2,… 

  However, this level of detail may not be 
necessary or desirable. 
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Discrete interval variable 
 
 

  Packs per day (probably rounded off to the 
nearest whole number) 
  2, 1, 0 

  Cruder - but maybe good enough and more 
reliably reported 
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Ordinal categorical variable 
 
 

  Non-smoker vs. light smoker vs. heavy smoker. 
  May further collapse the pack/day variable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dr. Michael Brown 16 
© Epidemiology Dept., Michigan State Univ. 



45 
 

 
 
 
 
 

Nominal categorical variable 
 
 

  Non-smoker vs. former smoker vs. current 
smoker. 
  No obvious order here, just named categories 

  Ever-smoker vs. never-smoker. 
  Dichotomous outcome 

 
 
 
 
 
 
 
 
 
 

Dr. Michael Brown 17 
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So, the form of the variable is often decided by 
the investigator, not by nature 

 
 
 
 

In fact, the normal vs. abnormal 
distinction is generally a matter of 
taking a much richer measure and 

making it dichotomous. 
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Quick Quiz Slide 
 
 

  What kind of a variable is religion? – Protestant, 
Catholic, Islamic, Judaism. . . 

  What kind is Body Mass Index (weight divided 
by height2)? 

  What is alcohol intake if classed as none, 
< 2 drinks/day, and > 2 drinks/day? 
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First question when meeting with statistician: 
 
 

1.  Define the type of data (continuous, ordinal, 
categorical, etc.) 
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A Few Examples of Statistical Tests 
 
 

Test Comparison Principal Assumptions 
 

Student's 
t test 

 
 

Wilcoxon 
rank sum 

 
Means of 
two groups 
 
 
Medians of 
two groups 

 
Continuous variable, 
normally distributed, 
equal variance 
 

Continuous variable 

 
Chi-square Proportions Categorical variable, 

more than 5 patients in 
any particular "cell" 

 
Fisher's 
exact 

 

Proportions Categorical variable 
 

Dr. Michael Brown 21 
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Objectives - Concepts 
 

  Classification of data 
   Distributions of variables 
  Measures of central tendency and dispersion 
  Criteria for abnormality 
  Sampling 
  Regression to the mean 
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Distributions of continuous variables 
 
 

  A way to display the individual – to – individual 
variation in some clinical measure. 

  Consider the example in Fletcher using PSA 
levels: 
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Clinical Epidemiology: The Essentials, 3rd Ed, by Fletcher RH, Fletcher SW, 2005. 
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x Variable 
www.msu.edu/user/sw/statrev/images/normal01.gif 

Dr. Michael Brown 25 
© Epidemiology Dept., Michigan State Univ. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clinical Epidemiology: The Essentials, 3rd Ed, by Fletcher RH, Fletcher SW, 2005. 
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The “nicest” distribution 
 
 
 

Is the normal, or Gaussian, distribution 
– the “bell-shaped curve”. 
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If we want to summarize a frequency 
distribution, there are two major aspects to 

include: 
 
 
 
 
 

  Central tendency 
 
 
 
 

  Dispersion 
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Principles of Epidemiology, 2nd edition. CDC. 
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Principles of Epidemiology, 2nd edition. CDC. 
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Measures of Central Tendency: 
 
 

  Mean 
  Median 
  Mode 
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Consider this data: Parity (how many 
babies have you had?) among 19 

women: 
 
 
 
 

0,2,0,0,1,3,1,4,1,8,2,2,0,1,3,5,1,7,2 
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Mean (Arithmetic) 
 
 

  Add up all the values and divide by N 
  43 / 19 = 2.26 
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Median 
 
 

  The middle value 
 
 

  Must first sort the data and put in order: 
 
 

  0,0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,5,7,8 
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equal 

 
 

 
 
 
 
 

Mode 
 
 

  The most common value 
 
 

  0,0,0,0,1,1,1,1,1,2,2,2,2,3,3,4,5,7,8 
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In a normal distribution, all three are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parametric statistical methods assume 
a distribution with known shape 

(i.e. normal or Gaussian distribution) 
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x Variable 
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Quick Quiz Slide 
 
 

  If the mode is “100” and the mean is “80” – 
what can you tell me about the median? 
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mean  
 
mode 

 
 
 
 

F 
r 
e 
q 
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n 
c 
y 

 
 
 

x Variable 
80 

 
100 
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Dispersion 
 
 

  Standard Deviation - most common measure 
used for normal or near normal distributions. 

  Defined by a statistical formula, but remember 
that: 
  The mean +/- one SD contains about 2/3 of the 

observations. 
  the mean +/- 2 SD’s includes about 95% of the 

observations. 
 
 
 
 
 
 
 

Dr. Michael Brown 41 
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M J Campbell, Statistics at Square One, 9th Ed, 1997. 
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So, how about this definition of “abnormal” for total 
serum cholesterol:  A value higher than the mean + 1 

S.D.? 
 

 
  How many people would fall beyond that cut- 

off? 
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Rose, G: The Strategy of Preventive Medicine; Oxford Press, 1998. 
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So what’s the “best” definition of 
abnormality? 

 
  Fletcher lists three: 

  Being unusual 
 Greater than 2 SD from mean 

  Sick 
 Observation regularly associated with disease 

  Treatable 
 Consider abnormal only if treatment of the condition 

represented by the measurement leads to improved 
outcome 
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Miura et al, Archives Int Med 2001; 161:1504. 
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If you were to design a study to define an 
abnormal DBP for adult females in the US, 

how would you do it? 
 
 

  Measure DBP in every adult female in the US? 
  Then define abnormal as above 2 SD from mean? 
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Sampling 
 
 

  Impossible to measure the BP of everyone, so 
must take measurements of a representative 
sample of subjects. 

  Random sample 
  May miss important subgroup (ethnicity for example) 
  May need to obtain a larger sample from these 

important subgroups and select subjects at random 
within subgroup 
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Hanna C, Greenes D. How Much Tachycardia in Infants 
Can Be Attributed to Fever? Ann Emerg Med June 2004 
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EPI-546: Fundamentals of Epidemiology and Biostatistics 
 

Course Notes - Descriptive Statistics 
 
 

Normality, Abnormality, and Medical Measurement 

Mat Reeves, PhD 

Objectives 
I. Understand the use of different criteria to define normality and abnormality 
II. Understand the rationale for sampling 

a.   Random vs. systematic error 
b.   Statistical inference – estimation and hypothesis testing 

III. Understand the origins of variation in clinical data 
a.   Biological and measurement variation 
b.   Distinguish between inter- and intra- person/observer variability 

IV. Understand the difference between validity and reliability 
a.   Definition of validity and reliability 
b.   Measures of validity (sensitivity, specificity) 
c.   Measures of reliability (kappa, intra-class correlation) 
d.   Describe combinations of validity and precision (target diagrams) 

V. Statistical aspects of variability 
a.   Measures of variation (Standard deviation (SD), variance) 
b.   Measures of agreement (Correlation, Kappa) – understand the logic behind 

these 2 measures and how to interpret them. 
VI. Statistical aspects of clinical data 

a.   Classification of data (categorical [nominal, ordinal], interval [discrete, 
continuous] 

b.   Distributions (normal, left and right skew) 
c.   Measures of central tendency (mean, median, mode) 
d.   Measures of dispersion (SD, range, inter-quartile range IQR) 
e.   Regression to the mean 

 
 
 
I. Normality vs. Abnormality 

 
Chapter 2 in FF is informative and easy to follow. The online lecture summarizes 
some of the key concepts. 

 
II. Sampling 

 
It is very difficult if not impossible to obtain data from every member of a population 
– case in point is the U.S. census which attempts to contact every household in the 
country. In year 2000, its response rate was only 65%. So a more practical approach 
is to take a representative sample of the underlying population and then draw 

Mathew Reeves, PhD 
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inferences about the population from this sample. Taking a sample always involves 
an element of random variation or error – sampling statistics are essentially about 
characterizing the nature and magnitude of this random error. 

 
Random error can be defined as the variation that is due to “chance” and is an 
inherent feature of “sampling” and statistical inference. However, in clinical medicine 
we also recognize that random error can occur due to the process of measurement 
and/or the biological phenomenon itself. For example, a given blood pressure 
measurement may vary because of random error in the measurement tool 
(sphygmomanometer) and due to the “natural” biological variation in the underlying 
blood pressure. 

 
While the field of statistics is essentially concerned with the characterization of 
random error, the degree to which any data is affected by systematic error or bias is 
probably more important.  Systematic error can be defined as any process that acts to 
distort data or findings from their true value.  In epidemiology, we classify bias as 
either selection bias, measurement bias or confounding bias (and we will refer to 
these sources of bias frequently during this course and in EPI-547).  It is important to 
note that traditional “statistics” for the most part addresses only random error and 
NOT systematic bias. Thus, a significant P value or a precise confidence interval 
cannot tell you whether the underlying data is accurate i.e., unbiased. 

 
Statistical Inference is the process whereby one draws conclusions regarding a 
population from the results observed in a sample taken from that population. There are 
two different but complementary categories of statistical inference: estimation and 
hypothesis testing. Estimation is concerned with estimating the specific value of an 
unknown population parameter, while hypothesis testing is concerned with making a 
decision about a hypothesized value of an unknown population parameter. These 
concepts will be further explored in Lecture 4 and in Chapter 10 of FF. 

 
III.  Variation in Clinical Data 

 
Biological and Measurement Variation 

 
Clinical information is no different from any other source of data - it has inherent variability 
which can create substantial difficulties.  All types of clinical data whether concerning the 
patient’s history, physical exam, laboratory results, or response to treatment may change even 
over the shortest of time intervals.  In the broadest sense, variation may be grouped into two 
categories: variation in the actual entity being measured (biological variation) and variation due 
to the measurement process (measurement variation). 

 
1.  Biologic Variation: 
The causes and origins of biologic variation are endless; variation derives from the dynamic 
nature of physiology, homeostasis and pathophysiology, as well as genetic differences and 
differences in the way individuals react to changing environments such as those induced by 
disease and treatment.  Biologic variation can be further sub-divided into within (intra-person) 

Mathew Reeves, PhD 
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and between (inter-person) variability.  For example, your blood pressure shows a high degree of 
intra-person variability- it is changing by the hour or even minute in response to many stimuli, 
such as time of day, posture, physical exertion, emotions, and that last shot of expresso.  Biologic 
variation also occurs because of differences between subjects (inter-person variability). 
Fortunately there is enough variation between individuals, compared to the degree of within- 
person variability, that after several repeat blood pressure measurements it is possible to 
determine the typical (average) blood pressure value of an individual patient and classify them as 
to their hypertension status i.e., normal, pre-hypertension, or hypertension (Stage I, II or III). 
Different variables have different amounts of within and between subject variation which can 
have important clinical consequences. 

 
Regardless of the source of biological variation, its net effect is to add to the level of random 
error in any measurement process. A common method of reducing the impact of biological 
variation is to take repeated measurements of a variable or phenomenon - as in the above 
example of blood pressure.  Finally, note that the presence of biological variation is sine qua non 
for epidemiologists to define factors that are associated with disease or outcomes i.e., risk 
factors. If everyone in the population has the same value or outcome then it is impossible to 
study the disease process. 

 
2. Measurement Variation: 
Measurement variation is derived from the measurement process itself.  It may be caused by 
inaccuracy of the instrument (instrument error) or the person operating the test (operator error). 
Measurement variation can introduce both random error into the data as well as systematic error 
or bias, especially when the test requires some human judgment. Systematic differences between 
laboratories is one reason that it is vital for each lab to establish its own “reference” ranges. 
Variation due to different observers reading the same test (e.g., radiologists reading the same x- 
ray) is referred to as inter-observer variability, whereas variability resulting from the same 
observer reading the same test (e.g., one radiologist reading the same x-ray at different times) is 
referred to as intra-observer variability.  Approaches to reduce the impact of measurement bias 
include the use of specific operational standards e.g., assay standards for laboratory instruments, 
or the use of explicit operational procedures as in the example of blood pressure measurement 
(i.e., seated position, appropriate cuff size, identification of specific Korotkoff sounds, repeated 
measurements etc).  Random variation due to measurement variation can again be lessened by 
taking repeated measurements of a variable or phenomenon. 

 
Note that all variation is additive, so that the net observed variation is a result of the culmination 
of various individual sources. This is shown nicely by the following figure adapted from the 
Fletcher text: 
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Figure 2.1. Sources of variation in measuring diastolic blood pressure 
 
 

Cumulative Sources of Variation – 
Measurement of DBP (from Fletcher) 

 
 

   One patient, one observer, 
repeated measurements at same time 
(= intra-observer measurement error) 

One patient, several observers at same time 
(= inter-observer measurement error) 

 
 

One patient, one observer, 
measurements at different times 
(= intra-subject biologic variability) 

Many patients 
(= inter-subject biologic variability) 

 
 
 
 
 
 
 
 
 
 
IV.  Validity and Reliability 

 
Validity refers to the degree to which a measurement process tends to measure what is intended 
i.e., how accurate is the measurement.  A valid instrument will, on average, be close to the 
underlying true value, and is therefore free of any systematic error or bias.  Graphically, validity 
can be depicted as a series of related measurements that cluster around the true value (see Fig 
2.2).  For some clinical data, such as laboratory variables, validity can easily be determined by 
comparing the observed measurement to an accepted “gold standard”.  However, for other 
clinical data, such as pain, nausea or anxiety there are no obvious gold standard measures 
available.  In this case, it is common to develop instruments that are thought to measure some 
specific phenomena or construct.  These constructs are then used to develop a clinical scale that 
can be used to measure the phenomenon in practice. The validity of the instrument or scale can 
then be evaluated in terms of content validity (i.e., the extent to which the instrument includes all 
of the dimensions of the construct being measured – this is also called face validity), construct 
validity (i.e., the degree to which the scale correlates with other known measures of the 
phenomenon) and criterion validity (i.e., the degree to which the scale predicts a directly 
observable phenomenon). 
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For dichotomous data, validity is usually expressed in terms of sensitivity and specificity (see 
lecture 5).  There are several different statistical methods for expressing the validity of 
continuous data, including presenting the mean and standard deviation of the difference 
between the surrogate measure and the gold standard, as well as correlation and regression 
analysis. 

 
Fig 2.2  Schematic representation of validity and reliability (for you to enjoy completing…) 

 
 
 
 
 
 
 
 
 
 
 

Valid and precise  Valid and imprecise 
 
 
 
 
 
 
 
 

Invalid but precise Invalid and imprecise 
 

 
 
Reliability (or reproducibility) refers to the extent that repeated measurements of a 
phenomenon tend to yield the same results - regardless of whether they are correct or not. 
There is therefore no comparison to a reference or gold standard measure.  Reliability refers 
to the lack of random error - the degree of reliability or is inversely related to the amount of 
random error - the more error the less precise the instrument. Graphically, reliability can be 
depicted as the degree to which a series of related measurements cluster together (Fig 2.2). 

 
Random variation can be classified according to whether there is one or multiple observers or 
instruments i.e., intra-observer variability vs. inter-observer variability, respectively. Using 
the target analogy of Fig 2.2, inter-observer reliability refers to the scatter from different 
observers shooting at the same target, while intra-observer reliability refers to the scatter of 
shots from one shooter. 

 
For measurements that do not involve a direct observation e.g., self-administered 
questionnaires, reliability can be assessed using the test-retest method, where respondents 
answer the same question at two different times. This approach measures a form of intra- 
observer reliability, where the respondent is acting as the same observer on two separate 
occasions.  The exact statistical approach used to quantify reliability depends on the type of 
data measured – Kappa for categorical data and intra-class correlation for interval data. 
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V.  Statistical aspects of variability 
 
A.  Measures of variation 
Data variability can be quantified by various standard statistical measures of dispersion such 
as variance, standard deviation (SD), and range. 

 
1.  Variance and Standard Deviation 

 
The variability or precision of a measurement is expressed by the standard deviation (SD). 
The SD represents the absolute value of the average difference of individual values from the 
mean, and is calculated by taking the square root of the variance. 

 
 

SD = ∑ ( x - x )2
 

n - 1 
 
Assuming a normal distribution, one standard deviation either side of the mean includes 68% 
of the total number of observations, while 2 SD’s include 95%. 

 
Example: 

 
The SD of serum cholesterol is 15 mg/dl.  Americans now have an average 
cholesterol value of 205 mg/dl, thus the values for the middle 68% of the population 
would be expected to vary from 190 to 220 mg/dl (mean ± 1 SD) 

 
 
 
B.  Measures of agreement 

 
1.   Correlation (r) 

 
The reliability of a continuous measurement (i.e., interval data) can be expressed by the 
correlation coefficient (r) between two sets of measurements.  The correlation coefficient (r) 
measures the strength of the linear relationship between two continuous variables: r ranges 
from -1 to +1, with zero representing no relationship. 

 
If information can be obtained on the actual true values, then the correlation can be regarded 
as a test of validity between the “truth” and an imperfect measurement. However, true values 
are rarely available, so in most cases, the correlation between two measures assesses 
reliability i.e., the extent to which the results can be replicated by two measurements. 

 
If measures are obtained from two observers, then the extent of agreement between the two 
would reflect the between-observer variability (or reliability).  However, it should be noted 
that it is possible to have high values of r, yet have little direct agreement between two 
observers or instruments.  For example, in measuring blood cholesterol, a perfect r (1.0) can 
occur if laboratory A results are always exactly 10 mg/dl points higher than laboratory B. 
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The correlation co-efficient is also commonly used as a measure of reliability in test-retest 
studies - where the same instrument is applied to the same population at a later time (a 
measure of intra-rater or within-person variability). 

 
2. Categorical data - Kappa 

 
For categorical or qualitative data, reliability can be characterized using the kappa statistic 
(k). Kappa has the useful property of correcting for the degree of chance in the overall level 
of agreement, and is therefore preferred over other measures like the commonly used overall 
percent agreement. The ability of kappa to adjust for chance agreement is especially 
important in clinical data, because the prevalence of the particular condition being evaluated 
affects the likelihood that observers will agree purely due to chance.  This chance agreement 
must be adjusted for, otherwise false reassurances can occur. As an example of this 
phenomenon, if 2 people each repeatedly toss a coin, there are only 4 possible results i.e., HH 
(i.e., head, head), TT (i.e., tail, tail), HT, and TH. The probability (p) of each result is ¼, so 
the overall agreement between the two coins (due to chance alone) is 0.5 (i.e., sum of p(HH) 
and p(TT)). The influence of the underlying prevalence of the attribute or condition being 
measured on the overall percent agreement is shown in the following table: 

 
Overall percent agreement due to chance for a binary attribute 

 
Prevalence of the attribute Overall percent agreement* 
0.1 82% 
0.3 58% 
0.5 50% 
0.7 58% 
0.9 82% 

* P(e) calculated by multiplying the marginal totals of a 2x2 table 
 
The kappa (k) statistic is calculated as: 
 

k = Po   - Pe 

1 - Pe 

 
where, Po = the total proportion of observations on which there is agreement. 

Pe = the proportion of agreement expected by chance alone. 
 
Thus k is the ratio of the actual agreement attributable to the reproducibility of the 
observations (i.e., Po  - Pe), compared to the maximum possible value (1 - Pe). Or, 
 

k = Actual agreement beyond chance 
Potential agreement beyond chance 

 
The following diagram explains the logic of the kappa statistic. In this example chance 
corrected agreement (Kappa) = (0.75-0.50)/(1-0.50) = 0.25/0.50 = 50%. 
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Potential Agreement   Chance Agreement  Observed agreement 
 
 
The simplest clinical application of Kappa is in the measurement of inter-rater agreement 
whereby two observers evaluate the same series of patients and classify them according to 
some particular dichotomous condition (e.g., disease present or absent).  As an example, the 
following data is generated from 2 radiologists who independently reviewed 150 
mammograms and classified each patient as to whether they had an abnormality: 
 
 

 

OBSERVER 
B 

 

OBSERVER 
A 

 

 

Yes 
 

No 
 

TOTALS 
 

Yes 
 

69 
 

15 
 

84 
 

No 
 

18 
 

48 
 

66 
 

TOTALS 
 

87 
 

63 
 

150 
 

 
 
Observer A thought 87 patients (or 58%) had an abnormality, while Observer B thought 84 
patients did (i.e., 56%), but they agreed only 78% of the time (the observed proportion of 
agreement (Po) is calculated as (69 + 48)/150 = 0.78 or 78%). However, the proportion of 
agreement expected due to chance (Pe) was 0.51 or 51%, which is estimated by calculating 
the “expected” numbers in cells a and d from the product of the marginal totals (i.e., 87 x 
84/150  = 48.72 [for cell a], and 63 x 66/150  = 27.72 [for cell d], and then calculating the 
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proportion of agreement by dividing the sum of these two cells by the total number of 
subjects i.e., 48.72 + 27.72 / 150, which equals 0.5096 or 51%). Thus k can be estimated as: 
 

k = Po   - Pe = 0.78 - 0.51  =  0.27 =  0.55 or 55% 
 1 - Pe 1 - 0.51 0.49 

 

Like the correlation coefficient, kappa varies in value from -1 to +1, however the 
interpretation is different. A value of zero denotes agreement that is no better than chance, 
while a negative value denotes agreement that is worse than chance (i.e., fulminant 
disagreement!).  The following guide to interpreting the strength of agreement shown by 
kappa has been developed. In our example - 55% represents a moderate degree of agreement 
between the two radiologists. 
 

Value of k Strength of agreement 
 

<0 Poor 
0 - 0.20 Slight 
0.21 - 0.40 Fair 
0.41 - 0.60 Moderate 
0.61 - 0.80 Substantial 
0.81 - 1.0 Almost perfect 

 
 
 
 
VI. Statistical aspects of clinical data 
 

See Chapter 2 in FF and online lecture. 
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EPI-546 Block I 
 
 
 

Lecture: Frequency Measures 
 
 

How do we measure disease and make use of this 
information? 

 

Mathew J. Reeves BVSc, PhD 
Associate Professor, Epidemiology 
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Objectives - Concepts 
 

•  1. Uncertainty, probability and odds 
 

 
•  2. Measures of disease frequency 

•  Prevalence 
•  Incidence 

– Cumulative incidence 
– Incidence density 

•  Mortality and case-fatality 
 
 

•  3. Population or person time 
 
 

•  4. Relationship between incidence, duration & 
prevalence (prevalence pool) 
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Objectives - Skills 
 

•  1. Convert probability to odds and vice versa 
 
 

•  2. Identify ratios, proportions, and rates 
 
 

•  3. Define, calculate, identify, interpret and apply 
prevalence, cumulative incidence, incidence 
density, mortality, and case-fatality 

 
 

•  4. Identify when measures use “person time” 
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Measuring Disease and Defining Risks 
 
 

•  Clinicians are required to know or make estimates of 
many things: 
•  The occurrence of disease in a population 
•  The “risk” of developing a disease or an outcome (prognosis) 
•  The risks and benefits of a proposed treatment 

 
 

•  This skill requires an understanding of: 
•  Proportions and odds 
•  Prevalence and incidence rates 
•  Risk (relative and absolute) 
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Uncertainty 
 

•  Medicine isn’t an exact science, uncertainty is ever 
present 

 
 

•  Uncertainty can be expressed either: 
 
 

•  Qualitatively using terms like ‘probable’, ‘possible’, ‘unlikely’ 
– Study: Docs asked to assign prob. to commonly used words: 

•  ‘Consistent with’ ranged from 0.18-0.98 
•  ‘Unlikely’ ranged from 0.01 to 0.93 

 
•  Quantitatively using probabilities (P) 

– Advantage: explicit interpretation, exactness 
– Disadvantage: may force one to be more exact that is justified! 
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 Probability vs. Odds 
 

Probability (P) or “risk” of having an event 
Odds = ratio of the probability of having an event to the probability of 
not having the event or P / (1 – P) 

 

Example: 1 out of 5 patients suffer a stroke……. 
 
 

•  P = 1/5 = 0.2 or 20% 
 
 

•  Odds = (P) / (1-P) 
•  Odds = 0.2 / 0.8 or 1:4 or 

“one to four” 
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Probability Odds 
0.80 4 
0.67 2 
0.60 1.5 
0.50 1.0 
0.40 0.67 
0.33 0.5 
0.25 0.33 
0.20 0.25 
0.10 0.11 
0.05 0.053 
0.01 0.0101 

 

 
 
 
 

  Relationship between Prob. and odds 
 

Probability and odds are more alike the lower the absolute P (risk) 
 

•  Prob = Odds/1 + Odds 
•  Odds = Prob/1 – Prob 

 
 

•  Example: 
Prob = 2/[1 + 2] Prob 
= 2/3 = 0.67 

 
Odds= 0.67/[1-0.67] 
Odds= 0.67/0.33 = 2 (= 
‘2 to 1 odds’) 
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Measuring Disease Occurrence 
 
 

•  The first step in understanding disease is to 
measure  how much there is of it i.e., what is its 
frequency?: 
•  Is it common or rare? 
•  Is it getting worse or better? 
•  Is disease A more frequent that disease B? 
•  By how much does treatment reduce disease? 
•  Are the control methods working? 
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Importance of using rates to measure 
disease frequency 

 

•  Think about the community (village, town, city) 
where you grew up….. 

 
 

•  Imagine that I tell you that your community has 5 
cases of TB. 

 
 

•  Is that “a lot”? Is that a problem? 
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Importance of using rates to measure 
disease frequency? 

 

•  Obviously whether 5 cases of TB is “a lot” 
depends on several important facts: 

 
 

•  1. How big is your village, town, city ? 
•  What is the size of the underlying population? 

– 10, 100, 10,000, 1,000,000? 
 
 

•  2. Over what time period did you count the cases? 
•  1 day, 1 month, 1 year, lifetime? 
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Importance of using rates to measure 
disease frequency? 

 

•  3. Are these new cases or existing cases? 
•  New cases =  incident disease 
•  Old cases = prevalent disease 

 
 

•  4. How were the cases of TB defined? 
•  What case definition did I use? 
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 Measures of disease frequency 
- Prevalence 

 

Defn: the proportion of a defined group or population that has a 
clinical condition or outcome at a given point in time 

 
•  Prev = Number of cases observed at time t 

Total number of individuals at time t 
 

– ranges from 0 to 1 (it’s a proportion), but usually referred to as a 
rate and is often shown as a % 

– a measure of disease burden 
 

•  Example: 
– Of 100 patients hospitalized with stroke, 18 had ICH 
– Prevalence of ICH among hospitalized stroke patients = 18% 

 
•  The prevalence rate answers the question: 

•  “what fraction of the group is affected at this moment in 
time?” 
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A study of 83 children in a village in Nyassa 
Province, Mozambique finds that 43 have 

evidence of schistosomiasis infection. What is 
the prevalence rate of schistosomiasis 

amongst children in the village? 
 
 
 

Prevalence rate = 43/83 = 0.52 = 52% 
 

= 52 per 100 children 
 

= 520 per 1000 children 
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Measures of disease frequency 
– Incidence Rates 

 
•  A special type of proportion that includes a specific 

time period and population-at-risk 
 
 

•  Numerator = the number of newly affected individuals 
occurring over a specified time period 

 
 

•  Denominator = the population-at-risk over the same 
time period 

 
 

•  There are two types of incidence rates…….. 
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Cumulative Incidence Rate (CIR) 
 

Defn: the proportion of a defined at-risk group or population that 
develops a new clinical condition or outcome over a given time 
period. 

 
•  CIR= Num. of newly disease indv. for a specific time period 

Total number of population-at-risk for same time period 
 

•  Measures the proportion of at-risk individuals who develop a 
condition or outcome over a specified time period 

 
•  Ranges from 0 to 1 (so it’s a proportion!) but called a rate 

because it includes time period and population-at-risk 
 

•  Must be accompanied by a specified time period to be 
interpretable - because the CIR must increase with time 

– 7-day CIR of stroke following TIA = 5% 
– 90-day CIR of stroke following TIA = 10% 
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Cumulative Incidence of GI side effects for Rofecoxib (VIOXX) 
vs. Naproxen - The VIGOR Trial (Bombardier NEJM 2000) 
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Cumulative Incidence Rate (CIR) 
 

•  A measure of “average risk” 
•  CIR answers the question: “what is the probability or chance that 

an individual develops the outcome over time” 
 

 
•  Also referred to as the “risk” or “event rate” 

 
•  Common risks or CIR’s 

•  5-year breast cancer survival rate 
– 94% (for local stage), 18% (for distant stage) 

•  Case-fatality rate 
– 23% of neonates with bloody D and fever die (e.g., Africa) 

•  In-hospital case-fatality (mortality) rate 
– 5% of hospitalized patients die at hospital X. 

•  Attack rate 
– 25% of passengers on a cruise ship got V&D 
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 Incidence Density Rate (IDR) 
 

 
Defn: the speed at which a defined at-risk group or population 

develops a new clinical condition or outcome over a given time 
period. 

 
•  IDR =      Number of newly disease individuals 

Sum of time periods for all disease-free indv.-at-risk 
 

•  denominator is "person-time" or "population time“ 
 

•  a measure of the instantaneous force or speed of disease 
 

•  IDR ranges from 0 to infinity (it is not a proportion!) 
 

•  dimension = per unit time or the reciprocal of time (time-1) 
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  The Concept of “person-time” 
 

• the sum of the disease-free time experience for individuals at risk in the 
population 

 

 
• Concept: 100 people followed for 6 months have same person-time 

experience as 50 people followed for a year. 
–  100 x 0.5 = 50 person-years 
–  50 x 1.0 = 50 person-years 

 
• How do you calculate? 

–  Simply add up the disease-free time experiance 
–  100 subjects followed for 12 months = 100 person-years 
–  If one new case developed after 6 months then person time = 99.5 person- years 

 
• Person time can be measured with whatever scale that makes the most sense 

i.e., person-days, person-weeks, person-months, person-years (PY) 
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Enrollment of 6 subjects in a 12-month 
study (X = event) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question: What is the incidence rate? 
20 
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What is the incidence rate? 
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Incidence Density Rate (IDR) 
•  A measure of the “speed” that disease is occurring 

•  IDR answers the question: “At what rate are new cases of 
disease occurring in the population” 

 
•  Common IDR’s 

•  Mortality rate (Vital Statistics) 
– Lung CA mortality rate = 50 per 100,000 PY 
– Breast CA mortality rate = 15 per 100,000 PY 

 
•  Disease Incidence Rates 

– IDR of neonatal diarrhea = 280 per 1,000 child weeks 
 

•  Disease specific IDR rates 
– Calculated for specific sub-sets defined by age, gender or race 

•  Black Men: Lung CA incidence rate = 122 per 100,000 PY 
•  Wh. Female: Lung CA incidence rate = 43 per 100,000 PY 
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Approximating “person-time” 
 

•  Unless the population is small or the number of 
events rare, in most cases it is usually sufficient to 
approximate the person time 

 
• Lung Cancer Incidence and Mortality. Michigan Cancer Registry 2005: 

 
Incidence/ Mortality/ 

Population Cases Deaths 100,000 PY's 100,000 PY's 
Total 
Male 
Female 

10,125,000 7,681 5,789 75.8 57.1 
4,975,000 4,218 3,179 84.8 63.9 
5,150,000 3,463 2,610 67.2 50.7 

 
Population size estimated on July 1st 
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Choice Between CIR and IDR? 
 
 

 CIR IDR 
Population Closed Open 
Starting Point Fixed Open 
Type of outcome Single (death) Multiple (URT 

infection) 
Fluctuation in rates Stable (cancer stats) Highly variable 

(outbreaks) 
Example Fixed cohort (medical 

school class) 
Open cohort (RCT) 
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   Concept of the Prevalence “Pool” 
 
 
 

      New cases 
      (Incidence) 

 
 

     Recovery  
     rate 

 
Death 
rate 
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  Relationship between Prevalence and Incidence 
 

•  Prevalence is a function of: 
•  the incidence of the condition, and 
•  the average duration of the condition 

– duration is influenced in turn by the recovery rate and mortality rate 
 

•  Prev ~ Incidence x Duration 
 
 

•  This relationship explains why…. 
•  Arthritis is common (“prevalent”) in the elderly 
•  Rabies is rare. 
•  Influenza is only common during epidemics. 
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Trends in AIDS Incidence, Prevalence, 
and Deaths, 1981 – 2002* 

 
 
 

Incidence 
 

Deaths 
 

Prevalence 

definition 
implementation 

1993 

 

 
 
 
 
 
 
 
 
 
 
 

81 83 85 87 89 91 93 95 97 99 01 

 
*Data for 2002 are preliminary. 

 
Year of diagnosis 27 

SOURCE: HIV/AIDS Reporting System, CDC/NCHSTP. 
 
 
 
 
 
 
 
 
 
 

Mortality (=death) rates 
 
 

•  The frequency of death in a defined population 
during a specified time period 

 

 
 

•  Mortality rate (all causes)= 
 

•  CIR= Number of deaths during a specific time period 
Total number of population-at-risk for same time period 

 
•   IDR =  Number of deaths during a specific time period 

Sum of time periods for all individuals-at-risk 
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   Mortality Rate vs. Case Fatality Rate 
 
 

•  Mortality rate 
•  The incidence of death among the population at 

risk of disease 
•  The death rate (per population time) among the 

whole population 
 
 

•  Case-fatality rate 
•  The CIR of death among those with the disease 
•  The % of affected subjects who die over a specific 

time period 
•  A measure of lethality or severity 

Mathew J. Reeves, Dept. of 29 
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Mortality Rate vs. Case Fatality Rate 
- Example 

 
 
 

•  McGovern, NEJM, 1996. Recent Trends in 
Acute Coronary Heart Disease 

 
 

 28-day CFR Mortality rate per 
100,000 PY’s 

Men 10% 110 

Women 12% 35 
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EPI-546: Fundamentals of Epidemiology and Biostatistics 
 

Course Notes - Frequency Measures 
 

Mat Reeves BVSc, PhD 
 
Objectives: 
 

I. Understand the concept of uncertainty and quantify using probability and odds. 
II. Understand the difference between ratios, proportions and rate measures. 
III. Understand in detail the definition, calculation, identification, interpretation, and application 

of the different measures of disease frequency (prevalence, cumulative incidence rate, 
incidence density rate, mortality rate). 

IV. Understand the concept of person-time and when it is used (IDR vs. CIR). 
V. Distinguish between case-fatality rates and mortality rates. 
VI. Understand the fundamental relationships between incidence, duration and prevalence. 

 
 
 
I. Quantifying Uncertainty - Probability and Odds 

Medical data is inherently uncertain. To characterize uncertainty we can use words like 
"unlikely", "possible", "suspected", “consistent with”, or "probable" to describe gradations of 
belief. However, the exact meaning of these qualitative descriptions has been shown to vary 
tremendously between different clinicians. Fortunately, uncertainty can be expressed more 
explicitly by using probability (P). Probability expresses uncertainty on a numerical scale 
between 0 and 1, and is simply calculated as a proportion (i.e., P = a / b where a represents the 
number of “events” and b the total number at risk). Using probability avoids the ambiguity 
surrounding the use of qualitative descriptions – especially those like "not uncommon", or 
"cannot be ruled out" that too often contaminate the medical literature. 

 
Odds are an alternative method of expressing uncertainty, and represent a concept that many 
people have trouble grasping. Odds represent the ratio of the probability of the event occurring 
over the probability of the event not occurring or P / (1 – P). For example, if the odds of an event 
X occurring are 1 : 9 (read as “one to nine”), this implies that the event X will occur once for 
every 9 times that event X will not occur. Or in 10 events X will occur once or 10% of the time. 

 
Probability (P) and odds both quantify uncertainty and can be converted back and forth using the 
following formulas: 

 
Odds =   P      and, P =  Odds 

1 – P 1 + Odds 

Example: The probability of diabetes in a patient is 5%, the odds of diabetes are: 

Odds =   .05    =  .05  = 1 : 19 
1 - .05 .95 
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Example: The odds of diabetes are 1 : 19,  the probability of diabetes is: 
 

P =    1/19  = 0.05263 = 0.05 or 5% 
 1 + 1/19 1. 05263 

 
 

The following table shows the relationship between probability and odds. Notice that there is 
little difference between probability and odds when the value of probability is small i.e., 
<= 10%, whereas the difference is quite marked for large probability values. 

 
Table 1. Relationship between probability and odds 

 
Probability Odds 

0.80 4 

0.67 2 

0.60 1.5 

0.50 1.0 

0.40 0.67 

0.33 0.5 

0.25 0.33 

0.20 0.25 

0.10 0.11 

0.05 0.053 

0.01 0.0101 
 

Using the equations provided above, practice converting probabilities to odds (and vice versa). 
The importance of being able to master this conversion will become more apparent when we 
discuss diagnostic (clinical) testing and Bayes’ Theorem in later lectures.1 

 
Note that in clinical epidemiology, probability and odds are often used to express a physician's 
opinion about the likelihood that an event will occur, rather than necessarily the absolute 
probability or odds that an event will occur. This emphasis on quantifying a physician's opinion 
will again become more evident when we come to discuss Bayes’ Theorem. 

 
 
 
1 For those of you with more than a passing interest in betting, note that betting odds are typically odds against an event 
occurring, rather than the odds for an event occurring. For example, if at the track the odds for a horse to win a race are 
4-1 (“four to one”), this means that 4 times out of five the horse would not be expected to win the race i.e., the probability 
of winning is only 20%. In the unusual race where there is a clear favourite, the odds are switched to become odds in 
favour of an event. This is indicated by the statement “odds on favourite”. For example, the statement “Rapid Lad is the 5-
4 odds on favourite for the 2.30 pm Steeplechase”, means that 5 out of 9 times the horse would be expected to win (the 
probability is therefore 55% - which is still only about an even shot). Got it? 
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II. Measures of Disease Frequency 
A fundamental aspect of epidemiology is to quantify or measure the occurrence of illness in a 
population. Obtaining a measure of the disease occurrence or impact is one of the first steps 
in understanding the disease under study. 

 
Ratios, Proportions and Rates 
There are three types of descriptive mathematical statistics or calculations which are used to 
describe or quantify disease occurrence: ratios, proportions and rates. 

 
i. Ratios 

A ratio is expressed as: a  ("a" is not part of "b") 
b 

 
where a and b are two mutually exclusive frequencies, that is to say the numerator (= a, the 
number on top of the expression) is not included in the denominator (= b, the number on the 
bottom of the expression). 

 
Examples: 
i) The ratio of blacks to whites in a particular school was 15/300 or 1:20. Note that the two 
quantities are mutually exclusive - blacks are not included as whites (and vice versa). The 
observed frequencies in a ratio are often re-expressed by dividing the smaller quantity into the 
larger one. Thus dividing 15 into 300 re-expresses the ratio in terms of 1 in 20. 

 
ii) The ratio of spontaneous abortions to live births in a village was 12/156 or 1:13. Again note 
the exclusiveness of the two frequencies - abortions cannot be included as live births. 

 
ii.  Proportion 

A proportion expresses a fraction in which the numerator (the frequency of disease or 
condition) is included in the denominator (population). Fractions may be multiplied by 
100 to give a percentage. 

 
Proportion = a  ("a" is included in "b") 

b 
 

Percentage =   a x  100 = % 
b 

Examples: 
i) The proportion of blacks in the school was 15/315 = 0.048 or 4.8%. 

 
ii) Of 168 women that were confirmed pregnant by ultrasound examination, 12 had 
spontaneous abortion, thus the proportion of abortions was 12/168 = 0.071 or 7.1%. 

 
iii. Rates 

Rates are special types of proportions which express the relationship between an event 
(e.g., disease) and a defined population-at-risk evaluated over a specified time period. The 
numerator is the number of affected individuals in a given time period, while the 
denominator is the population at risk over the same time period. 
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Rate = a  ("a" is included in "b") 
b ("b" represents population-at-risk) 

 
The essential elements of any rate are the definition of both a population-at-risk and a 
specific time period of interest. As discussed below there are two types of rates commonly 
used as epidemiologic measures: the cumulative incidence rate and the incidence density 
rate. 

 
III. Prevalence, Cumulative Incidence Rate and Incidence Density Rate 

There are three basic measures of disease frequency used in epidemiology: prevalence, 
cumulative incidence and incidence density. These measures are commonly confused, so 
understanding the differences between these measures is critical. 

 
i. Prevalence 

The prevalence of disease is the proportion of the number of cases observed compared to the 
population at risk at a given point of time. 

 
Prevalence = Number of cases observed at time  t 

Total number of individuals at time t 
 

Prevalence refers to all cases of disease observed at a given moment within the group or 
population of interest, whereas incidence (with which it is often confused), refers to new 
cases that have occurred during a specific time period in the population. 

 
Sometimes you will see a distinction made between a point prevalence and a period 
prevalence. The former refers to the prevalence at an exact point in time (e.g., a given 
day), whereas the latter refers to the prevalence during a particular time interval (e.g., 
during a week, month or year). For example, in a health survey we might ask the 
following 2 questions about the prevalence of asthma symptoms: 

 
1. Have you had asthma symptoms today? 
2. Have you had asthma symptoms any time in the last month? 

 
Question 1 is measuring the point prevalence of asthma symptoms, while question 2 is 
measuring the period prevalence. 

 
Example: Calculation of the prevalence of diarrhea on a cruise ship 
You are asked to investigate an outbreak of diarrhea on a cruise ship. On the day you visit the 
ship, you find 86 persons on the ship. Of these you find that 8 are exhibiting signs of diarrhea. 
The prevalence of diarrhea at this particular time is therefore 8/86 = 0.092 or 
9.2%. 

 
Other examples: 
i) The prevalence of glaucoma in a nursing home on March 24th was 4/168 = 0.024. 

 
ii) The prevalence of smoking in Michigan adults as measured by the Behavioural Risk 
Factor Survey in 2002 was 26.5%. 
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Prevalence is a function of both the incidence rate (see below for definition of incidence) 
and the mean duration of the disease in the population. 

 
Prevalence = Incidence X Duration 

 
So, for a given incidence rate, the prevalence will be higher if the duration of the disease is 
longer - as an example, the prevalence of arthritis in an elderly population is high since there 
is no cure for the condition so once diagnosed the person has it for the rest of their lives. The 
prevalence will also be affected by the mortality rate of the disease, a lower prevalence would 
result if the disease was usually fatal – as an example, the prevalence 
of rabies will always be extremely low because it is almost universally fatal. Incidence rather 
than prevalence is usually preferred in epidemiologic studies when the objective is to convey 
the true magnitude of disease risk in the study population. Conversely, prevalence is often 
preferred to incidence when the objective is to convey the true magnitude of disease burden 
in the study population – particularly for chronic disease like arthritis, diabetes, mental health 
etc. 

 
There are two different measures of disease incidence: 

 
ii.  Cumulative Incidence Rate (Risk) 

The most commonly used measure of incidence – particularly in clinical studies is the 
cumulative incidence rate (CIR), which is also referred to as “risk”. The CIR is defined as the 
proportion of a fixed population that becomes diseased during a stated period of time. 
Cumulative incidence incorporates the notions of a population-at-risk and a specific time 
period, hence it is regarded as a rate. 

 
CIR= Number of newly disease individuals for a specific time period 

Total number of population-at-risk for same time period 
 

The CIR has a range from 0 to 1 and must be accompanied by a specified time period to have 
any meaningful interpretation (this is because the proportion of the population affected 
generally increases over time, thus it is important to know over what time period the CIR is 
calculated). The CIR is a measure of the average risk, that is, the probability that an 
individual develops disease in a specified time period. For example, if a doctor tells you that 
the 5-year CIR of disease X is 10%, then this implies that you have a 10% risk of developing 
the disease over the next 5 years (note that the term “risk” may also be described as the 
“chance” or “likelihood” of developing the disease). Finally, note that in evidence-based 
medicine parlance the CIR is often referred to as the “event rate”, and in the context of 
randomized trials, the CIR in the control group is called either the control event rate (CER) or 
the baseline risk, whilst the CIR in the treatment group is called 
either the experimental event rate (EER) or treatment event rate (TER). (Note that the FF 
text also refers to CIR as the Absolute risk in Table 5.3) 

 
Other important CIRs: 
A specific type of CIR is the Case-Fatality Rate (CFR) which is the proportion of affected 
individuals who die from the disease. In our cruise ship example, if 3 of the 8 affected people 
had died as a result of the diarrhea then the case-fatality rate would have been 3/8 = 0.37 or 
37%.  The case-fatality rate is usually associated with the seriousness 
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and/or the virulence of the disease under study (the higher the case fatality rate the more 
virulent the disease). Note the important distinction between the CFR and the mortality rate 
– the key difference is that the denominator of the CFR is affected (diseased) subjects, 
whereas the denominator of the mortality rate is the whole population-at-risk (see later in the 
notes for a fuller discussion). 

 
Another specific type of CIR is the Attack Rate which is commonly used as a measure of 
morbidity (illness) in outbreak investigations. It is calculated simply as the number of people 
affected divided by the number at risk. For our cruise ship example, after 5 days of the 
outbreak 12 people developed diarrhoeal disease. The attack rate at that time was therefore 
12/86 = 0.14 or 14%. 

 
iii. Incidence Density Rate 

A second type of incidence rate which is more commonly used in larger epidemiologic 
studies is the incidence density rate (IDR). The IDR is a measure of the instantaneous force 
or speed of disease occurrence. 

 
IDR =   Number of newly disease individuals 

Sum of time periods for all disease-free individuals-at-risk 
 

The numerator of the IDR is the same as the CIR – that is, the number of newly diseased 
individuals that occur over time. However, it is the denominator of the IDR that is different - it 
now represents the sum of the disease-free time experience for all the individuals in the 
population. The denominator of the IDR is termed "person-time" or "population time" and 
represents the total disease-free time experience for the population- at-risk (the concept of 
person-time is explained further below). The IDR ranges from 0 to 
infinity, while its dimensionality is the reciprocal of time i.e., time-1. 

 
Whereas, the CIR simply represents the proportion of the population-at-risk who are affected 
over a specified time period, the IDR represents the speed or instantaneous rate at a given 
point in time that disease is occurring in a population. This is analogous to the speed with 
which a motor car is traveling - that is, miles per hour is an instantaneous rate which 
expresses the distance traveled for a given unit of time. An incidence rate of 25 cases per 
100,000 population-years expresses the instantaneous speed which the disease is affecting the 
population. The IDR is a dynamic measure meaning it can change freely just as the speed of a 
car can. An IDR of 0 implies that the disease is not occurring in a population, whereas, an 
IDR of infinity is its theoretical maximum value and implies an instantaneous, universal 
effect on the population (if you want an example of this - think of a catastrophic event that 
kills everyone instantaneously – like a nuclear explosion! – this translates to a mortality rate 
of infinity). 

 
The concept of person-time: 
The calculation of "person-time" requires that the disease-free time contributed by each 
individual is summed across everyone in the population. As an example: 

 
Scenario A: 100 people are followed for 1 year and all remain healthy, so they 
contribute 100 years of disease-free person-time (i.e., 100 x 1 year). 
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Scenario B: 200 people are followed for 6-months and all remain healthy, so they 
contribute 100 years of disease-free person-time (i.e., 200 x 0.5 year). 

 
Scenario C: 100 people are followed for 1-year, 80 remain healthy but 20 develop disease 
at an average of 6-months. The total disease-free person-time is now 90 years (i.e., 80 x 1 
year + 20 x 0.5-year). 

 
The particular unit of "population time" (i.e., days, weeks, months, years) that is used depends 
entirely on the context of the study and the disease. In chronic disease studies, a standard 
measure is 100,000 person years, whereas in infections disease (especially outbreak 
investigations we might chose to express population time in terms of person- days or person 
weeks - whatever makes the most sense). Since it is obviously impractical to count the exact 
person-time for large populations, person time is usually approximated by estimating the 
population size midway through the time period. For example, to calculate the mortality rate 
for people 60 - 65 year of age in 2000, the population time can be approximated by estimating 
the size of this population on July 1st, 2000 and 
expressing this value in person years. An example of this is shown in the following table 
which shows the Lung cancer incidence and mortality rates from the 2005 Michigan cancer 
registry in 2005. The incidence and mortality rates are estimated using the total population 
that was estimated to be living in Michigan on July 1st, 2005. Obviously, in this example the 
exact person-time experience was not calculated for all 10 million people living in the state – 
such precision is unnecessary when dealing with such large populations and relatively rare 
events. Hint: Be sure to confirm the calculation of these rates in the table below. 

 
Lung Cancer Incidence and Mortality. Michigan Cancer Registry 2005: 
 

 Michigan 2005 
Population 
Estimated on 
July 1st 2005 

Number of new 
lung cancer cases 
diagnosed in 
2005 

Number of 
deaths due to 
Lung cancer in 
2005 

Incidence rate of 
Lung Cancer per 
100,000 person 
years 

Mortality rate from 
Lung Cancer per 
100,000 person years 

Total 10,125,000 7,681 5,789 75.8 57.1 

Male 4,975,000 4,218 3,179 84.8 63.9 

Female 5,150,000 3,463 2,610 67.2 50.7 
 

 
 
The choice between CIR or IDR? 
 

A natural question to ask is when should the CIR be the incidence measure of choice, and when 
should the IDR be preferred? What follows are some general guidelines, although there are no 
hard and fast rules. 

 
The CIR tends to be used when there is a fixed or closed population that is starting at a common 
point in time. The enrollment of a medical school class is a good example of this - a fixed group 
of students start on the same day and the class is closed to further admissions 
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(and hopefully deletions). Also, the CIR only counts the first event in a given individual, which 
may be just fine if the health event or outcome can only occur once (e.g., death), but may not 
satisfactorily capture the true picture for outcomes that can have multiple events – such as 
infections, or hospitalizations or births. 

 
In contrast, the IDR is used when there is an open population - subjects can move in and out of 
the population, or when the starting point is not fixed. A good example of this is a randomized 
trial where it may take many months to enroll enough patients – thus the amount of follow-up 
time of each patient will vary depending on when subjects were enrolled. The IDR is also the 
preferred measure when the outcome can occur more than once within an individual e.g., upper 
respiratory tract (URT) infection. 

 
The CIR is more suitable for measuring disease event rates that are relatively stable over time 
(such as cancer statistics), whereas the IDR is more useful when the disease event rates are highly 
variable such as occurs in outbreaks of infectious diseases. The following table summarizes the 
use of the two measures (again there are no hard and fast rules in this so you will see examples 
that don’t follow the table below): 

 
CIR   IDR        

Population Closed  Open    
Starting Point Fixed Variable 
Type of outcome Single (death) Single or Multiple (URT 

infection) 
Fluctuation in underlying   

  event rates 
Stable (cancer stats) Highly variable (outbreaks) 

      Example Fixed cohort (medical school 
class) 

Open cohort (RCT) 

 
 
 
The Mortality Rate: 
 

The mortality rate describes the frequency of death in a defined population during a specified 
time period. We can measure the mortality rate using either a cumulative incidence rate (CIR) 
or an incidence density rate (IDR) – the only thing that distinguishes a mortality rate from an 
incidence rate is that we are measuring the number of deaths in the population rather than the 
number of disease events. 

 
Mortality rate (CIR)= Number of deaths over a specific time period t 

Total number of population-at-risk for same time period t 
 

Mortality rate (IDR) = Number of deaths over a specific time period t 
Sum of time periods for all individuals-at-risk 

 
The denominator for the mortality rate is the size of the population who are at risk of dying 
from the condition – which is either specified as the total number (in the CIR) or as the total 
population time (in the IDR). 
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When calculated for all deaths combined (regardless of cause) the mortality rate is 
referred to as all-cause mortality. Alternatively, if the rate of death is calculated for a 
specific cause (e.g., lung cancer or prostate cancer) the rate is referred to as disease- 
specific mortality. 

 
Note that without disease incidence we cannot have disease mortality – the biggest 
contributor to mortality is incidence. The mortality rate is therefore some fraction of the 
underlying incidence rate depending on the lethality of the condition. For example, for lethal 
conditions such as lung cancer the mortality rate is very close to the underlying incidence rate, 
whereas for more benign conditions such as prostate cancer, the mortality rate is a much 
smaller fraction of the underlying incidence. The lethality of the condition is best captured by 
the case fatality rate (or survival rate), as illustrated in the following table that shows U.S. 
cancer statistics from 2003-2007 (based on the SEER Registry) 
(http://seer.cancer.gov/csr/1975_2007/results_merged/topic_survival.pdf): 

 
Population (Cancer site) Age adjusted 

Incidence per 
100,000 

Age adjusted 
Mortality per 

100,000 

5-year relative 
survival (%) 
1999-2006 

Total (Lung Cancer) 62.5 52.5 15.8 
Men (Lung Cancer) 76.2 68.8 13.5 
Women (Lung Cancer) 52.4 40.6 18.3 
Men (Prostate Cancer) 150.4 22.8 99.6 
Women (Breast Cancer) 126.5 23.4 90.2 

 

 
 
Clearly the mortality rate should be distinguished from the case-fatality rate (or survival 
rate). The denominator for the case-fatality rate is the number of affected individuals, not the 
population at risk. The use of these 2 terms are often confused, yet they are very different as 
illustrated in the above table and in the following example: 

 
A study by McGovern (NEJM, 1996;334:884-90) looked at trends in mortality and survival from 
acute myocardial infarction (MI) in the general population of Minneapolis, MN. They found the 
28-day acute MI CFR for men and women to be 10% and 12%, respectively, while the mortality 
rates for acute MI in men and women were 110 per 100,000 person years, and 
35 per 100,000 person years, respectively. So while the CFRs were very similar, the mortality 
rates were very different. Only the mortality rate confirms what your intuition tells you - that the 
mortality from MI is higher in men than women – in this case the death rate from acute MI is 
about 3 times higher. Note that this difference is “driven” by a higher incidence rate of MI in 
men compared to women (and not case fatality). 

http://seer.cancer.gov/csr/1975_2007/results_merged/topic_survival.pdf)
http://seer.cancer.gov/csr/1975_2007/results_merged/topic_survival.pdf)
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Optional Section. 

 
Finally, for the mathematicians among you, the following section explains how the CIR and 
IDR are related to each other 

 
 

Optional section: 
 

What is the relationship between the CIR and the IDR? 
Assuming a constant incidence rate (IDR) and no other causes of disease (i.e., competing 
risks). The relationship between the CIR and IDR is described by the following exponential 
function: 

 
• CIRt = 1 – e – IDR Δ t where t = time 

 
When the IDR is small (< 0.1), then 

• CIRt ~ = IDR Δ t 
 

So to estimate small risks, simply multiple the IDR by the time period. For example, if the 
IDR = 10 / 1,000 PY (equivalent to 1%), the 5-year CIR or risk is 5 x (10/1,000) or 5%. 
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Lecture: Effect Measures 
 
 

How do we measure effects and then make use of 
this information? 

 
Mathew J. Reeves, BVSc, PhD 

 
 
 
 
 
 

Mathew J. Reeves, Dept. of 1 
Epidemiology, Mich State Univ. 

 
 
 
 
 
 
 
 
 

Objectives - Concepts 
 

•  1. Understand how the different measures of effect describe 
the impact of clinical treatments and risk factors at both the 
patient and the population level. 

 
 

•  2. Understand how the baseline risk effects the absolute 
risk reduction 

 
 

•  3. Distinguish between relative and absolute differences 
 

 
•  4. Understand how and why the prevalence and the 

magnitude of effect (RR) influence the PAR and PARF 
 
 
 

Mathew J. Reeves, Dept. of 2 
Epidemiology, Mich State Univ. 
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Objectives - Skills 
 
 

•  1. Define, calculate, identify, interpret and 
apply measures of effect (RR, RRR, AR, 
ARR, ARI, NNT, NNH, PAR, PARF) 

 
 

•  2. Understand how to calculate the OR and 
know when it is a good approximation to the 
RR 

 
 
 
 

Mathew J. Reeves, Dept. of 3 
Epidemiology, Mich State Univ. 

 
 
 
 
 
 
 
 

   Measures of Effect 
- Presentation and Interpretation of Information on Risk 

 
•   Information on the effect of a treatment or risk factor can be 

presented in several different ways 
 

•   Relative Risk (RR) 
•   Relative Risk Reduction (RRR) 
•   Absolute Risk Reduction (ARR) 
•   Absolute Risk Increase (ARI) 
•   NNT (Number needed to treat) 
•   NNH (Number needed to harm) 
•   Population attributable risk (PAR) 
•   Population attributable risk fraction (PARF) 
•   The Odds Ratio (OR) 

 
• The way risk information is presented can have a profound effect on 

clinical decisions (both on part of patients and doctors) 
 
 

Mathew J. Reeves, Dept. of 4 
Epidemiology, Mich State Univ. 



101 
 

 
 

 
 
 
 

    The 2 x 2 Table – Clinical Intervention Study (RCT) 
 

Outcome 
 

Yes No 
 
 

    Intervention (t) a b 
 

   Treatment 
  Group 

  Control c d 
  (placebo) (c) 

Riskt = a / a + b 
 
 
 
Riskc = c / c + d 

 
 
 

(Risk = CIR) 
Mathew J. Reeves, Dept. of 5 

Epidemiology, Mich State Univ. 
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    Example – RCT of Male Circumcision – the ANRS Trial 
    Auvert B et al., Plos Med November 2005, Vol 2: e298 

 
Outcome 

 
HIV + HIV - 

 
 

  Circum. (t) 
 

    Treatment 
Group 

 

   No circum. (c) 

20 1526 
 
 
 
 
49 1533 

Riskt   = 20 / 1546 
= 0.013 

 
 
Riskc   = 49 / 1582 

= 0.031 
 
 

Riskt and Riskc are the risks of HIV infection in the treatment and control 
groups, respectively. 
Average duration of follow up was 18 months 

7 
 
 
 
 
 
 
 
 
 
 
 

Relative Risk (RR)  – RCT’s 
 

•  Defn: The relative probability (or risk) of the 
event in the treatment group compared to the 
control group 

 
•  RR = Riskt /Riskc 

 
•  RR = 0.013 / 0.031 = 0.42 

 
•  Clinical interpretation (RCT): 

• “the incidence rate of HIV after circumcision 
is 0.42 times lower than the incidence rate 
in those not offered circumcision” 

8 
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Relative Risk (RR)  – RCT’s 
 

•  A measure of the efficacy of a treatment 
 
 

•  Null value = 1.0. 
 
 

•  RR < 1.0 = decreased risk (beneficial 
treatment) 

 
 

•  RR > 1.0 = increased risk (harmful treatment) 
 
 

•  Not a very useful measure of the clinical 
impact of treatment (need ARR) 

 
9 

 
 
 
 
 
 
 
 
 
 
 

Relative Risk Reduction (RRR) 
 

• Defn: The proportion of the baseline risk 
that is removed by therapy 

 
 

• RRR = 1 – RR 
• RRR = 1 - 0.42 = 0.58 or 58% 

 
 

• Clinical interpretation (RCT): 
• “the HIV infection rate is 58% lower 

after circumcision compared to no 
circumcision” 

10 
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Relative Risk Reduction (RRR) 
 

•  Indicates by how much in relative terms the event 
rate is decreased. 

 
 

•  Used to quantify the effect of clinical treatments - “How 
much does this treatment reduce the disease or 
outcome?” 

 
 

•  Can also calculated as the ARR divided by the 
baseline risk 
•  ARR/ Riskc  = [0.031-0.013]/0.031 = 58% 

 
•  Null value = 0. 
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 RR/RRR – RCT – Interpretation? 
 
 

•  RR = < 0.5 or > 2.0 
• BIG 
•  RRR= 50% or RRI= 100% (doubling) 

 
 

•  RR = 0.5 - 0.8 or 1.25 – 2.0 
•  MODERATE to BIG 

•  RRR= 20-50% or RRI= 25-100% 
 
 

•  RR = ~ 0.90 or ~ 1.10 
•   SMALL 

•  10% reduction or 10% increase 
12 
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Relative Risk (RR)  – Cohort studies 
 

•  In cohort studies, RR is also used to measure the 
magnitude of association between an exposure (risk 
factor) and an outcome (See study design lectures). 

 

 
•  Defn: The relative probability (or risk) of disease in the 

exposed group compared to the  non-exposed group 
 

•  Example:  Smoking and Lung CA 
•  Lung CA mortality heavy smokers = 4.17 per 1,000 person yrs 
•  Lung CA mortality non-smokers = 0.17 per 1,000 person yrs 
•  RR = Riskexp /Riskunexp = 4.17/0.17 = 24.5 
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Relative Risk (RR)  – Cohort studies 
 
 

• Clinical interpretation (cohort): 
• “the risk of dying of lung CA is about 

25 times higher in lifetime heavy 
smokers compared to lifetime non- 
smokers” 

 
 

• To measure the impact of the risk factor in 
the population as a whole we also need to 
know the prevalence of the exposure (see 
PAR, PARF). 

 
14 
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 RR –Cohort studies - Interpretation 
 
 

•  RR = 1.0 
•  indicates the rate (risk) of disease among exposed 

and non-exposed (= referent category) are 
identical (= null value) 

•  RR = 2.0 
•  rate (risk) is twice as high in exposed versus non- 

exposed 
•  RR = 0.5 

•  rate (risk) in exposed is half that in non-exposed 
 
 
 

15 
 
 
 
 
 
 
 
 
 
 

 RR – Cohort Studies - Interpretation 
 
 

•  RR = > 5.0 or < 0.2 
• BIG 

 
 

•  RR = 2.0 – 5.0 or 0.5 – 0.2 
•  MODERATE 

 
 

•  RR = <2.0 or >0.5 
•   SMALL 

 
 
 
 
 

16 
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Absolute Risk Reduction (ARR) 
 

•  Defn: The difference in absolute risk (or 
probability of events) between the control and 
treatment groups 

 
•  ARR = Riskc - Riskt 

•  ARR = 0.031 - 0.013 = 0.018 or 1.8% 
 

•  Clinical interpretation (RCT): 
• “over 18 months of follow-up the absolute 

risk of HIV infection was 1.8% lower with 
circumcision compared to no treatment” 

 
 

17 
 
 
 
 
 
 
 
 
 
 
 

Absolute Risk Reduction (ARR) 
 
 

•  A simple and direct measure of the impact of 
treatment 

 
 

•  May also be called the risk difference (RD) or 
attributable risk 

 
•  Null value = 0. 

 
 

•  The ARR depends on the background 
baseline risk which can vary markedly from 
one population to another. 

 
18 
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ARR= 10% ARR= 3.3%  ARR = 0.33% 
19 

 
 
 
 
 
 
 
 
 
 

The Number Needed To Treat (NNT) 
 

•  Defn: The number of patients who would 
need to be treated to prevent an adverse 
event over a specific period of time 

 
•  NNT = 1 / ARR 

NNT = 1 / 0.018 = 55.5 (or 56) 
 
 

•  Clinical interpretation (RCT): 
• “over the 18 months of the study, for every 

56 patients who received circumcision, one 
HIV infection was prevented” 

 
 

• High NNT = bad, Low NNT = good 
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 The Number Needed To Treat (NNT) 
 

•  A very useful clinical measure because it is 
more interpretable that the ARR. It better 
conveys the impact of a clinical intervention 

 
•  Example: Isoniazid reduces TB disease by 

80% (RRR) 
– 1 year NNT in high risk populations = 25 
– 1 year NNT in low risk populations = 125 

 
 

•  NNT depends on the efficacy of the 
intervention (= RRR) and the baseline risk 

 
 

•  Must be accompanied by a specific time 
period to be interpretable as NNT will get 21 

smaller with longer follow-up 
 
 
 
 
 
 
 
 
 

Effect of Base-line Risk and Relative Risk 
Reduction on NNT 

 
Base-line Risk 

(%) 
Relative Risk Reduction (RRR) 

 0.5 0.25 0.20 0.10 

60 3 7 8 11 

30 7 13 17 33 

10 20 40 50 100 

5 40 80 100 200 

1 200 400 500 1000 

0.1 2000 4000 5000 10000 
22 
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The Number Needed To Harm (NNH) 
 

•  Defn: The number of patients who would need 
to be treated before an adverse event occurs 
over a specific period of time 

 
 

•  Commonly used in RCTs to explain the 
impact of harmful side effects 

 
•  NNH = 1 / ARI 

•  where ARI = absolute risk increase 
 

•  ARI = Riskt - Riskc 
 
 
 

23 
 
 
 
 
 
 
 
 
 
 

 The Number Needed To Harm (NNH) 
 

•  Example: ANRS Trial of Circumcision 
•  Several adverse events were monitored in the 

circumcision group including excessive bleeding 
•  Bleeding after circumcision  occurred in 9/1546 = 

0.006 or 0.6% 
•  No bleeding occurred in the control group. 
•  ARI = Riskt - Riskc  = 0.006 - 0.0 = 0.006 
•  NNH = 1 / 0.006 = 174 

 

 
•  Clinical interpretation: 

•  “For every 174 patients treated with circumcision, 
one extra bleeding complication occurred” 

 
 
 

24 
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 The Number Needed To Harm (NNH) 
 

• Example: CHARISMA trial 
•  Randomized RCT of [Clopidogrel] vs. [Placebo] 
•  Mean follow-up 2.3 years 
•  Safety end point: severe or fatal hemorrhage 
•  Bleeding occurred in 1.7% of [Clopidgrel] group and 1.3% of 

[Placebo] group. 
•  ARI = Riskt - Riskc  = 0.017 - 0.013 = 0.004 
•  NNH = 1 / 0.004 = 250 

 
• Clinical interpretation: 

•  “For every 250 patients treated with Clopidogrel over 2.3 years, 
one extra severe or fatal bleed will occur compared to placebo 
alone ” 

•  “How many patients do I need to treat to cause one bad 
event?” 

 
•  High NNH = good, Low NNH = bad 
•  Again need to know the time period. 25 

 

 
 
 
 
 
 
 
 
 

How information is conveyed (RRR, 
ARR or NNT) makes a difference! 

 
•  Drug effects are perceived to be much more favourable 

when they are presented as RRRs rather than ARRs 
 
 

•  See article by Skolbekken in the course pack. 
 
 

•  Pay attention to how data are ‘framed’ in drug 
advertisements. 
• Statins reduce risk of heart attack by 40%!!!! 

 

•  But absolute risk reduction is only 0.5% (NNT = 200) 
 

Mathew J. Reeves, Dept. of 26 
Epidemiology, Mich State Univ. 
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Population attributable risk (PAR) Population 
attributable risk fraction (PARF) 

 
•  Both PAR and PARF are important measures to 

understand the impact of a factor on the overall 
population 

 
 

•  A risk factor with a big effect (large RR) causes 
more disease 

 
 

•  A risk factor that is more common (higher 
prevalence) causes more disease 

 
 
 
 

Mathew J. Reeves, Dept. of 27 
Epidemiology, Mich State Univ. 

 
 
 
 
 
 
 
 

Population attributable risk (PAR) 
 
 

•  PAR represents the excess disease in a population 
that is associated with a risk factor. 

 
 

•  Calculated from the absolute difference in risks between  
exposed and non-exposed groups (the risk difference 
[RD]) and the prevalence (Prev) of the risk factor in the 
population. 

 
 

•  PAR = RD x Prev. 
 
 

•  The PAR represents the excess disease (or incidence) 
in the population that is caused by the risk factor. 

 
Mathew J. Reeves, Dept. of 28 

Epidemiology, Mich State Univ. 
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Population attributable risk fraction (PARF) 
 

• PARF represents the fraction of total disease in the population that 
is attributable to a risk factor. 

 
•   Calculated by the PAR divided by the total incidence. 

 
• PARF = PAR/Total Incidence. 

 

 
• The PAR represents the proportion of the total incidence in the 

population that is attributable to the risk factor. 
 

 
• Implicit assumption is the risk factor is a cause of disease – thus its 

removal will reduce the disease incidence. 
 

• PARF = Prev.(RR-1) 
• 1 + Prev.(RR-1) 

Mathew J. Reeves, Dept. of 29 
Epidemiology, Mich State Univ. 

 

 
 
 
 
 
 
 
 

Example: Smoking and Lung CA in British 
Doctors (Doll BMJ, 1964) 

 

• Total mortality rate from lung cancer= 0.56/1,000 person years 
• Mortality rate from lung cancer in ever smokers = 0.96/1,000 

person years 
• Mortality rate from lung cancer in never-smokers = 0.07/1,000 

persons years 
• RR of ever smoking and lung cancer death = 0.96/0.07 = 13.7 
• Prevalence of smoking (among British doctors) = 56% 

 
 

• PAR = RD x Prev = [0.96 – 0.07] x 0.56 = 0.50/1,000 person 
years (or 0.05% per year). 

 
•   PARF = PAR/Total mortality = 0.50/0.56 = 89%. 

 

 
 
 

Mathew J. Reeves, Dept. of 30 
Epidemiology, Mich State Univ. 
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The Odds Ratio (OR) 
 

•  Only measure of effect that can be used in a 
CCS 

•  When event rates are rate (< 10%) the OR is a 
good approximation to the RR 

•  OR can also be used in other designs (RCT’s, 
cross-sectional surveys) but care needs to be 
taken in terms of how it is interpreted. 

•  See course notes, plus OR will be covered in the 
lecture on case-control studies 

 
 
 

Mathew J. Reeves, Dept. of 31 
Epidemiology, Mich State Univ. 
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EPI-546: Fundamentals of Epidemiology and Biostatistics 
 

Course Notes – Effect Measures 
 
 

 
Objectives: 

Mat Reeves BVSc, PhD 

 
I. Understand how the different measures of effect are used to describe the impact of clinical 

treatments (in trials) and risk factors (in observational studies) at both the patient and 
population level. 

II. Understand the definition, calculation, identification, interpretation, and application of 
measures of effect at the patient level (RR, RRR, AR, ARR, ARI, NNT, NNH). 

III. Understand how the baseline risk affects the absolute risk reduction. 
IV. Distinguish between relative and absolute differences, and understand how the use of these 2 

measures can appear to imply different effects when applied to the same data. 
V. Understand the definition, calculation, identification, interpretation, and application of 

measures of effect at the population level (PAR, PARF). 
VI. The Odds Ratio (OR) – its calculation, and when is it a good approximation of the RR. 
 
I. Risks and Measures of Effect 

In clinical studies it is common to calculate the risk or CIR of an event in different populations 
or groups. For example, in a randomized clinical trial (RCT) the risk or CIR of an event in the 
treated and control groups are calculated and compared (note that these risks may also be 
referred to as event rates). By taking either the ratio of these two measures or the difference in 
these two measures we can calculate two fundamental measures of effect - the relative risk and 
the absolute risk – that, in the case of an RCT, quantify the impact of the treatment. 

 
To illustrate the calculation and interpretation of these measures, we will use the following 
data from an RCT designed to measure the mortality rate associated with two treatments 
(ligation and sclerotherapy) used for the treatment of bleeding oesophageal varices (Ref: 
Stiegmann et al, NEJM 1992;326:1527-32). The 65 patients treated with sclerotherapy are 
regarded as the control group (since that was the standard of care at the time), and the 64 
treated with ligation were regarded as the “new” treatment group. The risk (or CIR) of 
mortality was calculated for each group: 

 
Example – RCT of Endoscopic Ligation vs. Endoscopic Sclerotherapy 

 
Outcome 

Death Survival 
 

Ligation (t) Riskt =18 / 64 
= 0.28 

 
Sclerotherapy Riskc = 29 / 65 

= 0.45 
 

Where: Riskt and Riskc represent the risk of death in the treatment and control 
groups, respectively. Riskc is often referred to as the baseline risk. 
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i. Relative Risk (RR) 
 

In this RCT example, the Relative Risk (RR) is the ratio of the risk in the treated group 
(Riskt or TER), relative to the risk in the control group (Riskc or CER). 

 
RR =   Risk in treatment group   or Riskt 

Risk in control group Riskc 

 
The RR is a measure of the strength or magnitude of the effect of the new treatment on 
mortality, relative to the effect of the standard (control) treatment. In this example, the RR is 
0.28/0.45 = 0.62, indicating that the risk of death after ligation is 0.62 times lower than the 
risk of death in the sclerotherapy treated group.  In other words, the risk of death 
with ligation is 62% (or about 2/3rds ) that of sclerotherapy (so if you needed treatment for 
oesphageal varices you’d probably pick treatment with ligation over sclerotherapy). Like all 
ratio measures the null value of the RR is 1.0 (i.e., the point estimate that indicates no 
increase or decrease in risk). 

 
Although the RR is a very important measure of effect, it is somewhat limited in its clinical 
usefulness, since it fails to convey information on the likely effectiveness of clinical 
intervention - a better measure of the absolute benefit of intervention is given by the 
difference in risks between the two groups (i.e., absolute risk reduction (ARR)). 

 
In the context of an epidemiologic study, specifically cohort studies, the RR measures the 
strength or magnitude of association between an exposure (or risk factor) and a disease or 
other outcome. It is calculated as the ratio of the risk in a group exposed to the risk factor, 
relative to the risk in an unexposed group. For example if the lung cancer mortality rate 
in lifetime heavy smokers (> 25 cigarettes/day) is 4.17 per 1,000 person years (which is 
equivalent to a CIR of 0.417% per year) and in lifetime non-smokers it is 0.17 per 1,000 
person years (equivalent to a CIR of 0.017% per year), then the RR =  0.417/0.017 = 
24.5, indicating that heavy smokers are almost 25 times more likely to die of lung cancer 
than non-smokers. One of the reasons that RR are favoured by epidemiologists is that they 
are in general, fairly constant across different populations, and so can be “transported” from 
one study to another (so, for example, the RR of 25 for lung cancer mortality due to heavy 
smoking was calculated from the famous British Doctors Study (Doll R et al, BMJ June 26th, 
2004), it is likely that the effect of heavy smoking i.e., the RR is similar in the US or 
elsewhere). 

 
A limitation of the RR calculated in cohort studies is that it is not a very useful measure 
of the impact of a risk factor on a population, since it does not include any information on the 
frequency or prevalence of the risk factor (e.g., smoking) in the population (see Population 
Attributable Risk Fraction). 



Mathew Reeves, PhD 
© Department of Epidemiology, Michigan State Univ. 

117 
 

Note that the Odds Ratio (OR) (see below) has a similar interpretation as the RR in that it 
also measures the strength or magnitude of the association between exposure and outcome. 

 
An important point about the RR is that it is only calculated in study designs where the 
actual incidence or risk of an event is measured i.e., RCTs and cohort studies. The 
interpretation of the magnitude a particular RR depends on the type of study it was 
generated from.  For cohort studies, a general rule for a factor that increases risk of an 
outcome is that RR values of 2.0 or less are regarded as small, values of >2 to 5 are 
moderate, and those >5 are large effects.  For a factor that decreases risk the equivalent RR 
estimates for small, medium and large effects are >0.5, 0.5-0.2, and <0.2, respectively. 
These same rules also apply to the OR. The magnitude of the RR is important to 
epidemiologists because the larger the value the less likely it is that the particular 
relationship is due to chance or bias (such as confounding or selection). For example, one 
of the reasons that smoking is regarded as cause of lung cancer is that the RR for heavy 
smoking is ~25. It is extremely unlikely that such a large RR could be explained by some 
other confounding factor. 

 
For randomized trials the interpretation of the RR is different – this is partly due to the fact 
that bias is substantially reduced by the RCT design itself, but also because, 
clinically, large treatment effects are just not very common. So for RCT studies, a general 
rule for an intervention that increases risk of an outcome is that RR values of ~1.10 are 
regarded as small, values of 1.2-2.0 are moderate, and those >2.0 are large treatment effects.  
For an intervention that decreases risk the equivalent RR estimates for small, medium and 
large effects are ~0.9, 0.5-0.8, and < 0.5, respectively. Again these same 
rules also apply to the OR. 

 
ii.  The Relative Risk Reduction (RRR) 

 
The Relative Risk Reduction (RRR) is a measure of effect that is commonly used in the 
context of the RCT. The RRR is nothing more than a re-expression or re-scaling of the 
information provided by the RR. However, in clinical environments the RRR has more direct 
meaning than the RR since it indicates by how much in relative terms the event rate is 
decreased by treatment. 

 
The RRR is calculated by as the 1 – RR or by dividing the absolute risk reduction [ARR] 
(see below) by the baseline risk (Riskc): 

 

RRR = 1 - RR or ARR = Riskc - Riskt 
   Riskc Riskc 

 

In our RCT example, the RRR is therefore 1 – 0.62 = 38% (or 0.45 - 0.28 / 0.45 = 38%). 
That is, the death rate is 38% lower after ligation treatment, compared to sclerotherapy 
treatment. Thus the RRR represents the proportion of the original baseline (or control) risk 
that is removed by treatment. 
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The RRR is applied in the context of a treatment that reduces the risk of some adverse 
outcome. The RRR indicates the magnitude of the treatment effect in relative terms. As a 
general rule, treatments with a RRR of 10% or less are regarded as having a small effect, 
those with a RRR of 10-30% are moderate, and those >30% are regarded as large treatment 
effects. (Note that in absolute terms, the effect of treatment would depend on both the RRR 
and the baseline risk - as quantified by the absolute risk reduction) 

 
iii. The Absolute Risk Reduction (ARR) 

A more clinically useful measure of the effect of a treatment is the absolute risk reduction 
[ARR] (also confusingly referred to as the attributable risk in the Fletcher text and may be 
called the risk difference (RD) elsewhere).  The ARR is simply the absolute difference in 
risks between the control and treatment groups. 

 
ARR = Riskc - Riskt 

 
For the RCT example, the ARR is therefore 0.45 – 0.28 = 0.17 or 17%.  The ARR 
represents the absolute difference in the risk of death between the two treatment groups. So 
the risk of death is 17% lower with ligation treatment, compared to sclerotherapy treatment. 
Like all difference measures the null value of the ARR is 0 (i.e., the point estimate that 
indicates no increase or decrease in risk). 

 
The ARR is a simple and direct measure of the impact of treatment – in this example it tells 
you that 17% more patients treated with ligation will survive compared to using 
sclerotherapy. Contrast this information with that provided by the RR which tells you that 
ligation results in a death rate about 2/3rds that of sclerotherapy – the RR does not tell you 
about the absolute benefit or effect of the treatment (only its relative benefit).  It is for 
this reason that the ARR is the preferred measure when discussing the benefits of clinical 
interventions at the individual patient level. 

 
A critically important point about the ARR is that it will vary depending on what the baseline 
risk is in the control group (Riskc), as illustrated in Figure 1 below. This figure shows the ARR 
for the same treatment effect (RRR = 0.33) for three populations that have baseline (control) 
risks or event rates of 30%, 10%, and 1%, respectively. Note that the ARR, which indicates the 
absolute impact of the treatment, varies from 10% in population 1 to a meager 0.33% on 
population 3. Thus the absolute benefit of treatment depends upon how much risk there is in the 
population before the treatment is applied (i.e., the baseline risk). When the baseline risk is high 
(as in population 1) the treatment can have a large 
impact (it will reduce the number of subjects who have the outcome by 10%), whereas when the 
baseline risk is low (population 3) the effect of treatment is minimal (it reduces the number of 
subjects who have the outcome by only 0.33%). 
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Figure 1. Effect of different baseline risks on the 
ARR given a common RRR of 0.33 
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Since the magnitude of the baseline (control) event rate can vary widely from one population to 
another or from one age/sex/gender group to another, the ARR for a given treatment can vary 
markedly from one clinic or hospital to another. The bottom line is that an ARR calculated in one 
study or for one population cannot be directly applied (or transported) to another population. 

 
It is important to note that in contrast to the ARR we make an explicit assumption that the 
relative impact of an intervention (as measured by the RRR) is regarded as a constant entity – 
i.e., we assume that it does not change from one population to another. Thus, in the case of 
the treatment of esophageal varices we assume that ligation treatment 
reduces the relative risk of death by 38% in all populations, whereas the absolute effect (as 
measures by the ARR) will be dependent on the baseline risk in the population. The 
assumption of constant RRR across all populations can of course be challenged as it is 
likely that the effect of treatment would differ across widely different populations. 

 
One last point about the ARR is that it is used when the treatment group results in a lower 
event rate than the control group (i.e., when the RR is < 1.0), which is typical of therapeutic 
trials where the treatment is designed to reduce the occurrence of a bad outcome. However, 
treatments can also have harmful side effects. In this case we would see a RR of > 1, and 
would calculate an ARI or Absolute Risk Increase which would indicate in absolute terms 
how much more harmful events are seen in the treatment 
group. In turn, the ARI is used to calculate a NNH (Number Needed to Harm), similar to the 
concept of the number need to treat explained below. The potential confusion caused by 
referring to ARR or ARI is one of the reasons that the term risk difference (RD) – the 
absolute difference between two risks – is preferred by some epidemiologists. 
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iv. The Number Needed To Treat (NNT) 
The number need to treat (NNT) illustrates the number of patients who would need to be 
treated in order to prevent one adverse event. It is calculated simply as the inverse of the 
ARR: 

 
NNT = 1 / ARR 

 
Using our RCT example, the NNT is 1/ 0.17 = 5.9 (or 6). This means that for every 6 patients 
who received ligation treatment rather than sclerotherapy treatment, one death is prevented.  
The NNT can be seen as a simple re-expression of the information provided by the ARR, 
however, people have a hard time interpreting absolute probabilities (like an ARR of 17%).  
So converting these probabilities into “real numbers” (as the NNT does) provides more 
readily interpretable information. Note that since the ARR increases with increasing time it 
will have a concomitant effect on the NNT (which will get smaller), also just like the ARR, 
the NNT will be influenced by differences in baseline event rates. Thus to be interpretable the 
NNT should always be accompanied by a specific time 
period e.g., 1-year NNT = 25, 5-year NNT = 5 etc. (note that in our sclerotherapy RCT 
the mortality rates were estimated for the average duration of follow-up in the study 
which was 10 months. So the NNT of 6 should really be described as a 10-month NNT of 
6 for survival). 

 
The NNT is useful because it conveys the amount of work required to take advantage of the 
potential clinical benefit of an intervention. A high number indicates that a lot of effort will 
be expended to gain any benefit.  For example, the 1-year NNT for primary stroke 
prevention in adults < 45 years of age using statin drugs is a staggering 13,000 – 
meaning that 13,000 patients would have to be treated with statins for one year to prevent one 
stroke event. However, the NNT for secondary stroke prevention (that is, among patients who 
have already suffered a stroke) using statins is only 57.  Why would the NNT for the same 
drug be so different between these two applications? 

 
The value of the NNT depends on the relative efficacy of the intervention (as indicated 
by the RRR) and the underlying baseline risk. This is demonstrated in the following table, 
notice the wide range of NNT values (Laupacis et al, NEJM 1988;318:1728-33): 
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Table. Effect of base-line risk and relative risk reduction on NNT 
 

Base-line Risk (%) Relative Risk Reduction (RRR) 
 
 

60 
 

30 
 

10 
 

5 
 

1 
 

0.1 

0.5 0.25 0.20 0.10 

3 
 

7 
 

20 
 

40 
 

200 
 

2000 

7 
 

13 
 

40 
 

80 
 

400 
 

4000 

8 
 

17 
 

50 
 

100 
 

500 
 

5000 

17 
 

33 
 

100 
 

200 
 

1000 
 

10000 
 

 
 

A good clinical example of the calculation and use of NNT and NNH measures to understand the 
risk and benefits of a treatment is provided by the CHARISMA trial (Bhatt DL et al. N Engl J 
Med. 2006;354:1706-1717). In this randomized, placebo controlled, multi-center clinical trial, 
15,603 with cardiovascular disease or multiple risk factors were randomized to 
2 different anti-platelet regimens: 1) Clopidogrel (75 mg/d) and low dose aspirin (ASA) (72- 
162 mg/d) or 2) low dose ASA and placebo. The composite outcome was any stroke, MI or 
CV death. The median follow-up period was 28 months. In the group that got ASA only, 
7.3% of 7,801 subjects had an event during follow-up, while 6.8% of the 7,802 subjects 
randomized to the Clopidogrel and ASA group had an event (RR =  0.93, 95% CI 0.83-1.05, p = 
0.22). The ARR was therefore 0.5% and so the NNT was 200. In other words 200 patients 
would need to be treated for 2.3 years with Clopidogrel and ASA to prevent one additional 
major outcome (compared to ASA alone). However, the Clopidogrel group had a higher rate of 
bleeding complications – 1.7% had severe or fatal bleeding compared to 1.3% of the ASA only 
group (RR =  1.25, 95% CI 0.97-1.61, p = 0.09). This results in an ARI of 
0.4% and a NNH of 250.  So for every 250 patients treated with Clopidogrel and ASA for 2.3 
years, one extra severe or fatal bleed will occur (compared to ASA alone). The NNT of 200 and 
NNH of 250 can therefore help to describe in absolute terms the trade off in benefits and risks of 
adding Clopidogrel to low dose ASA for the prevention of CVD. Would you advise a family 
member to go onto Clopidogrel if this was recommended to them? Why or why not? 

 
II. Population-based Measures of Effect (PAR, PARF) 
 

Population Attributable Risk (PAR) and Population Attributable Risk Fraction (PARF) 
 

In terms of understanding the impact of a risk factor on the incidence of disease in the population 
at large it is necessary to know both the relative effect of the risk factor on disease risk (i.e., the 
RR), as well as the prevalence of the risk factor in the population. Clearly, a risk factor would be 
expected to result in more disease in a population if it is both strongly associated with disease risk 
(i.e., has a large RR) and is more common within the population. Two measures, the Population 
Attributable Risk (PAR) and the Population Attributable Risk Fraction (PARF), are used to 
quantify the impact of a risk factor on disease at the population level under the implicit 
assumption is that the risk factor is a cause of the disease. 
The Population Attributable Risk (PAR) represents the excess disease in a population that is 
associated with a risk factor. It is calculated from the absolute difference in disease risks 
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between the exposed and non-exposed groups (i.e., the risk difference [RD]) and the prevalence 
(Prev) of the risk factor in the population i.e., PAR = RD x Prev. The PAR represents the excess 
disease (or incidence) in the population that is caused by the risk factor. 

 
The Population Attributable Risk Fraction (PARF) represents the fraction of total disease in the 
population that is attributable to a risk factor. It is calculated as the PAR divided by the total 
incidence in the population.  Thus it represents the proportion of the total incidence in the 
population that is attributable to the risk factor i.e., PARF = PAR/Total incidence. The PARF 
represents the maximum potential impact of prevention efforts on the incidence of disease in the 
population if the risk factor were eliminated. Again, the implicit assumption is that the risk 
factor is a cause of the disease, and that removing it would reduce the incidence of disease. 

 
Example: Lung cancer mortality and smoking in British doctors (Data from earliest 
report on the cohort published by Doll and Hill, BMJ 1964 – See Table 5.4 in FF). 
Total mortality rate from lung cancer= 0.56/1,000 person years 
Mortality rate from lung cancer in ever smokers = 0.96/1,000 person years 
Mortality rate from lung cancer in never-smokers = 0.07/1,000 persons years RR 
of ever smoking and lung cancer death = 0.96/0.07 = 13.7 
Prevalence of smoking (among British doctors in the 1950’s) = 56% 

 
PAR = RD x Prev = [0.96 – 0.07] x 0.56 = 0.50/1,000 person years (or 0.05% per year). This 
represents the absolute excess of lung cancer mortality among the doctors due to smoking. 

 
PARF = PAR/Total mortality = 0.50/0.56 = 89%. This represents the proportion of all lung 
cancer deaths in this population that is due to smoking (it indicates that the vast majority of 
lung cancer death is caused by smoking alone). 

 
The PARF can also be calculated directly if the RR and prevalence are known using the 
following equation: 

 
PARF = Prev.(RR-1) 

1 + Prev.(RR-1) 
 
So, if the RR= 13.7 and Prev = 56%, then the PARF =  [0.56(13.7-1)]/[1 + 0.56(13.7-1)] = 
88% (slight difference is due to rounding). Note that the potential impact of prevention efforts 
can be gauged by calculating the PARF using lower estimates of prevalence. For example if the 
prevalence of smoking was reduced to, say, only 10%, the PARF of smoking for lung cancer 
mortality would be reduced to 56% i.e., PARF =  [0.10(13.7-1)]/[1 + 
0.10(13.7-1)] = 55.9%. 

 
The PAR and PARF indicate the potential public health significance of a risk factor. For 
example, a large risk that is very rare is unlikely to cause much disease in the population (and 
therefore has less public health significance), as opposed to a small risk that is very common 
which would lead to a high PARF with more public health significance.  For example, a risk 
factor that has a big effect (i.e., RR= 10) but is rare (P = 0.1% or 0.001) has a PARF of 1%, 
whereas a risk factor that has a small effect (i.e., RR = 2) but is common (P = 40% or 0.4) 
has a PARF of 44%. (See the lecture on Cohort Studies for further discussion of the PARF). 
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95 (a) 
 

56 (b) 
 

5 (c) 
 

44 (d) 

 

III. The Odds Ratio (OR) 
 

The Odds Ratio (OR) is the measure of effect of choice for case control studies (CCS), because 
the CCS design is not able to quantify the actual incidence or risk of disease in exposed and non-
exposed groups. (see CCS lecture for further discussion) The OR is usually a good 
approximation of the RR – and it represents a clever fix to get around the problem 
that the case control design cannot generate the RR. As the name implies the OR is a ratio of 
odds, specifically, the odds of exposure in cases compared to the odds of exposure in controls. 
Like the RR the OR describes the magnitude or strength of an association between an exposure 
and the outcome of interest and like the RR its null value is 1.0. An OR > 1.0 indicates a positive 
association between the exposure and disease, while an OR < 1.0 indicates a negative 
association. 

 
As an example of the calculation of an OR, imagine we had done a case control study rather 
than a cohort study to assess the relationship between ever smoking and death from lung cancer 
in the British doctors. We assess the smoking status in 100 lung cancer deaths (the cases) and 
100 doctors who were alive or had died of something other than lung cancer (the controls). We 
get the following data: 

 
Example – CCS to measure the association between smoking and lung 
cancer death in British doctors 

 
Outcome 

 

 
 
 

Smoker 

Lung CA 
Death 

No Lung CA 
Death 

 
Non-smoker  

 
Odds of 
exposure 95/5 

 
 
Odds of 
exposure 
56/44 

The OR is calculated as the ratio of the odds of exposure in the cases (i.e., 95/5) 
divided by the odds of exposure among the controls (i.e., 56/44) which equals 15.6. In this 
example the OR is a very good approximation of the RR that was generated from the cohort 
study design (i.e., 13.7). One would interpret the OR as saying that the odds of death due to 
lung cancer was 15.6 times higher in smokers compared to non-smokers. As a general rule the 
OR more closely approximates the RR when the outcome of interest is rare in the underlying 
population (i.e., <10%).  In this case, the rate of lung cancer mortality in the overall population 
is very rare i.e., 0.56 per 1,000 persons/year (equivalent to 0.056% per year).  The fact that the 
OR is a good estimate of the RR when the event or disease is rare also makes sense given the 
data shown in Table 1 in the Frequency Lecture notes, which shows that the odds and 
probability are more alike when the risk is small (<10% ). 

 
Note that the OR was calculated using the numbers in the 4 cells labeled a, b , c, d – 
specifically, a/c divided by b/d. The equation simplified to (a x d)/(b x c) which is known as the 
cross-product ratio. One advantage of the OR is that it is symmetrical, meaning that rather than 
calculating the odds of exposure in the cases relative to the controls, if you 
compare the odds of disease among the exposed (a/b) relative to the odds of disease amongst 
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the non-exposed (c/d) you end up with the same OR (since both approaches reduce to the ad/bc 
cross product ratio). One should note that the RR does not have this same characteristic of 
symmetry and that flipping the definition of outcome (from, for example, ‘bad’ to ‘good”) can 
often result in completely different results being obtained from the RR. For example, a significant 
RR for a ‘bad’ outcome such as death (e.g., RR=  0.60, 95% CI 0.45-0.75) can be converted to a 
non-significant result for the complementary ‘good’ outcome of survival (e.g., RR=  1.32, 95% 
CI 0.88-2.10) – even though the data itself has not changed! 

 
While the OR is the effect measure of choice in CCS designs (See lecture on CCS design for 
more details), another potential advantage of the OR is that it can be used for any other type of 
study design i.e., cross-sectional studies, cohort studies, RCTs, and meta-analyses. Although the 
OR is widely used across all sorts of designs the savvy reader should not forget that the OR has 
several disadvantages over the RR. These include: 

 
1) For cohort studies and trials the OR deviates from the true RR as the baseline risk in the 
untreated group (CER) increases – the effect is noticeable once the risk is > 10% which is often 
the case in RCTs, and the deviation can be substantial when baseline risk gets to be > 
50%. This deviation is driven in part by the mathematical fact that the upper limit RR is limited 
by the baseline or control event rate (i.e., max RR = 1/CER). So, for example, if the CER is 
50% the maximum possible value for the RR is 2.0. 

 
2) The OR deviates from the true RR as the treatment effect gets larger – the effect is 
particularly noticeable once the RR reaches < 0.75 or greater (or equivalently >1.33). 

 
3) The OR is always further away from the null value (1.0) than the RR – thus the treatment 
effect is always over-estimated by the OR compared to the RR. 

 
4) The odds ratio can only be interpreted like a RR when it is a good approximation of the RR. 
So when the baseline risk is < 10% it is acceptable to talk about an OR as if it were a RR. So for 
example if the OR was 1.5 it would be permissible to describe this in terms of “the likelihood or 
risk of disease was 50% higher in the exposed group”. However, when the OR is not a good 
approximation to the RR (e.g., the baseline risk is > 10%) then the OR should be described as an 
OR (which it is!) and not as if it were a RR! So in this example we would describe the OR of 1.5 
as, “the odds of disease was 50% higher in the exposed group” (note we do not say the risk or 
likelihood). 

 
5) As might be gleaned from the above discussion there is nothing clinically intuitive about the 
OR! 

 
These disadvantages imply that when the data can be specified in terms of the RR i.e., the 
RCT or cohort design, then the RR should be the effect measure of choice. 
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Objectives – Concepts- Statistics I and II 
 

•  1. Concept of sampling 
•  2. Systematic vs. random error 
•  3. Two approaches to statistical inference 

•   Hypothesis testing vs. estimation 

•  4. Hypothesis (significance) testing 
•   Null vs. alternative hypothesis 
•   P-values and statistical significance 
•   Type I (alpha) and Type II (beta) error rates 
•   Power and sample size estimation 

•  5. Estimation 
•   Limitations of the p-value 
•   Point estimates and Confidence Intervals 

•  6. Clinical vs. statistical significance 
•  7. Multiple comparisons 
•  8. Multivariable analysis and interaction 
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Objectives – Skills - Statistics I and II 
 
 

• 1. Distinguish between hypothesis testing and estimation 
 

• 2. Understand the logic and steps associated with hypothesis testing 
 

• 3. Define and interpret the p-value, point estimate, and confidence 
interval 

 
• 4. Define and interpret the Type I and Type II error rates 

 
• 5. Understand what determines Power and why we care about it 

 
• 6. Distinguish between statistical and clinical significance 

 
• 7. On a conceptual level understand what multivariable analysis does 

 
• 8. On a conceptual level recognize and understand interaction 

 

 
Dr. Mathew Reeves, 3 

©  Epidemiology Dept., Michigan 
State Univ 

 
 
 
 
 
 
 
 
 

Statistics – A reality check! 
 

•  We are not going to make any of you into 
Biostatisticians in 100 minutes! 

 
•  Statistics is a hard subject because: 

•  Statistics is a hard subject 
•  Some of it is simply illogical and doesn’t make sense 
•  It is frequently taught badly 

 
•  Our goal is for you to understand the essential 

statistical principles needed to interpret research 
findings. 
•  “a savvy consumer of statistics” 
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Objectives – Concepts- Statistics I 
 

•  1. Concept of sampling 
 
 

•  2. Systematic vs. random error 
 
 

•  3. Two approaches to statistical inference 
•   Hypothesis testing vs. estimation 

 
•  4. Hypothesis (significance) testing 

•   Null vs. alternative hypothesis 
•   P-values and statistical significance 
•   Type I (alpha) and Type II (beta) error rates 
•   Power and sample size estimation 
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1. The concept of sampling 
 

•  Its extremely hard to obtain data on everyone in a 
population 

 
 

•  So a more practical approach is to take a 
representative sample, analyze it, and then draw 
inferences about the underlying population 

 
 

•  Sampling always involves an element of random 
variation (and, if it’s a bad sample, also systematic 
variation or bias!) 
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Sampling 
 
 
 
 
 
 
 
 

POPULATION 
 

(unknown 
information) 

sample 
 
 
 
Summarize sample 
 

Make inferences 
about Population 
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2. Systematic vs. random error 
 
 

•  Systematic error = Bias 
•  Defn: Any process that acts to distort data or findings from 

their true value. 
 

•  a.k.a. validity or accuracy 
– both terms imply a lack of systematic error 

 
•  Hard to quantify in absolute terms (hence not the major 

focus of statistics) but if often far more important than 
random error. 

 
 

•  Categorized into selection bias, measurement bias or 
confounding bias 

– See later lectures and EPI-547 
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2. Systematic vs. random error 
 
 

•  Random error = variation that is due to “chance” 
•  An intrinsic feature of “sampling” and statistical inference. 

 
 

•  Can also result from the process of measurement or the 
biological phenomenon itself (e.g., BP) 

 
 

•  Much of statistics is devoted to quantifying the “role of 
chance” in observed data 

– “What is the likelihood that these findings are due to random 
error or chance?” 

– this can be quantified. 
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3. Statistical Inference 
 
 

•  The process of drawing conclusions from 
data 

 
 

•  Involves two different by complementary 
approaches : 

 
 

•  Hypothesis (significance) testing 
 
 

•  Estimation 
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 Hypothesis testing vs. Estimation 
 

•  Hypothesis (significance) testing 
•  Concerned with making a decision about a hypothesized 

value of an unknown parameter 
•  Involves the use of the p-value. 
•  Views experimentation as decision making 
•  “Should I prescribe drug A or drug B?” 

 
 

•  Estimation 
•  Concerned with estimating the specific value of a unknown 

parameter 
•  Involves the use of the confidence interval (CI) 
•  Views experimentation as a measurement exercise 
•  “What did you find and how precisely did you measure it?” 
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Sir Ronald Aylmer Fisher (1890- 1962) 
 

 
• Sir Ron was an English statistician, 

evolutional biologist, eugenicist, and 
geneticist. 

 
• Graduated from Cambridge in 1912 

 
• Worked at Rothamsted Agricultural 

Experimental Station. Invented ANOVA. 
 

• In 1935 published The Design of 
Experiments. 

•    "a genius who almost single- handedly 
created the foundations for modern 
statistical science" 

 
• Did not believe early data on 

smoking and lung cancer! 
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Basic Steps in Hypothesis Testing 
 

 
• 1. Define the null hypothesis 
• 2. Define the alternative hypothesis 
• 3. Calculate the p value 
• 4. Accept or reject the null hypothesis based on 

the p value 
• If the null hypothesis is rejected, then accept the 

alternative hypothesis 
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1. Defining the null hypothesis 
 
 

•   The Null Hypotheses (Ho) is always stated in terms of there 
being no difference between the two groups to be compared 

 
•   Null hypothesis (Ho): Mean (group x) = Mean ( group y) 

 
•   Based on a testable hypothesis: 

•   The mean body weight of children who drink pop is higher 
compared to those that do not drink pop. 

•   Falcizap reduces the risk of malaria compared to placebo. 
•   Lung CA mortality is higher in smokers compared to non-smokers. 

 
• The Ho is set up to be wrong! - the investigator seeks to test and 

reject the Ho. 
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2. Defining the alternative hypothesis 
 

•  The alternative hypotheses (Ha) is stated in terms of 
there being a difference between the two groups being 
compared 

 
•  Alternative hypothesis (Ha): Mean (group x) ≠ 

Mean (group y) 
 
 

•  The only way that the Ha can be accepted is if we 
reject the Ho. 

 
•  We can never prove the Ha is true - we can only say 

that the Ho is false! 
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Example: Null and Alternative Hypotheses 
 

•  Testable Hypothesis 
•  Lung CA mortality is higher in smokers compared 

to non-smokers 
 
 

•  Null hypothesis (Ho) = there is no difference in lung 
CA mortality between smokers and non-smokers 

 
 

•  If we reject the null hypothesis then we believe the 
alternative hypothesis 

 
 

•  Alternative hypothesis  (Ha)  = there is a difference in lung 
CA mortality between smokers and non-smokers 

16 
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Isn’t it a bit odd that we have to test 
the Ho to prove the Ha? 

 
•   Sort of….. 
•   But the only scientific process 

we know to make valid 
conclusions is to test an 
already existing hypothesis (or 
decision) 

• Example: NFL 
•   The Steelers are challenging 

the ruling on the field that the 
ball was caught 

•   Question: Is there enough video 
evidence to reject the ruling on 
the field (the Ho)? 
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3. Calculate the p-value 
4. Accept or reject the null hypothesis 

 
•  p value= probability of obtaining the results observed, 

if the null hypothesis were true. 
 
 

•  If p = 0.01, then the chance of obtaining the results if 
there was no difference between the groups is 1% 
•  Thus the results are very unlikely to be due to chance 

•  So we reject the null hypothesis and accept the alternative and 
conclude that the groups are different 

 
•  If p = 0.7, then the chance of obtaining the results if 

there was no difference between the groups is 70% 
•  So the results are very consistent with the null hypothesis 

being true, and so we accept the Ho and conclude the groups 
are not different. 

18 
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An example hypothesis test – the 
problem of Obesity 

 

• Obesity is a big problem. The rates 
of obesity have more than doubled 
in the last 30 years 

 
• Some people believe that one of the 

factors contributing to this is the large 
amounts of pop consumed - 
especially children . 

 
• Our testable hypothesis is that 

children who drink pop are heavier 
than children who do not. 

 
• We set out to test this 

hypothesis…………. 

 
 
Prevalence of obesity (BMI> 30) U.S. 
1960-2000. NHANES. (Flegal, 2002) 
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 An example hypothesis test 
 

• Null hypothesis (Ho): Ux = Uy 
•   the mean body wt. of pop-drinking children (Ux) is not different from the 

mean body wt. of children who abstain (Uy) 
 

• Alternative hypothesis (Ha):  Ux ≠ Uy 
•   the mean body wt. of pop-drinking children is not equal to the mean body wt. of 

children who abstain 
 

• Let’s set up an experiment: 
 

•   40 children randomized to pop-drinking (the intervention group [X]) or no- pop 
drinking (the control group [Y]) 

 
•   Measure body weight at day 90 

 
•   Calculate the mean difference in the body weights between group X and 

group Y 
 

•   Determine whether a statistical difference exists between mean wt. of group 
X and group Y using an appropriate statistical test (in this case the t-test) 

 
20 
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   The t-test…… 
 

X = mean weight of the pop group 
Y = mean weight of the control group 

 
 

Where:  
= standard error of the difference between two 
means. 
 
S2 = estimate of pooled population variance 

 
- Larger values of ‘t’ result in smaller p values which are more 
consistent with Ho being false 

 
All else equal, the value of ‘t’ increases with a bigger difference between the 
group means (numerator), or a smaller standard error (denominator) 

 
- Smaller standard error come from larger n (bigger studies 
have higher power) 21 

 
 
 
 
 
 
 
 
 

 Determining “statistical significance” 
 

•  A small p value, for example p = 0.01, indicates one of 
two things - either: 

 

 
•  i) a rare event has occurred 

 

 
OR 

 

 
•  ii) The Ho is false 

 
 
 

•  By convention, the probability where we decide to 
reject the Ho is set at 0.05 or 5%. This is called the 
significance level (or alpha) 

 
 
 

22 
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After 90 days of our pop drinking 
experiment………… 

 
• The mean increase in body weight in group X (intervention) was 

3.0 kg 
 

• The mean increase in body weight in group Y (control) was 0.5 kg 
 

• For this 2.5 kg difference the t-test calculated a p value of 0.02. 
 

•  Practical Interpretation 
•  Under the assumption that there is no difference 

between the two groups, the probability of observing 
an increase in body weight of >=2.5 kg by chance 
alone is only 2% (i.e., we would expect to see result 
as large or larger than this only two times out of 100 if 
there really was no difference) 

 
23 

 
 
 
 
 
 
 
 
 
 

What do we conclude? 
 

•  Because 0.02 is smaller than 0.05 (the pre-defined 
significance level) we conclude the result  is 
“statistically significant” and we therefore reject the Ho  
and accept the Ha 

 
•  By accepting the Ha we conclude that in this 

experiment the mean body weight of children 
randomized to pop-drinking was not equal to the mean 
body weight of children who were randomized to not 
drink pop 

 
•  Because this comparison was based on an 

experimental design (the RCT), bias is unlikely to be 
present (assuming we did a good job conducting the 
study) and so we can be confident that the exposure to 
pop caused the increase in body weight. 

24 
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The P value 
 
 

•   Defn: probability of obtaining a value of the test statistic at least as 
large as the one observed, given the Ho is true 

 
• P (Data|Ho true) 

 
• It is NOT  P (Ho true|Data)! 

 
• Working definitions: 

•   Under the assumption that there is no difference between the two 
groups, what is the probability that this result occurred due to chance 
alone? 

 
•   Under the assumption that there is no difference between the two 

groups, if this study was repeated many times, what proportion of 
studies would find a difference as large or larger than the one found in 
this study? 
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   Relationship between diagnostic test result and disease status 
 
 

DISEASE 
 

PRESENT (D+) ABSENT (D-) 
 
 

POSITIVE (T+) 
 
 

TEST 
 

NEGATIVE (T-) 

TP FP 
 

a b c  
d 

FN TN 
 
 
 

Se= a/a + c Sp= d/b + d 
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 Type I and Type II errors 
 
 

•  Just as in diagnostic testing, statistical testing 
can result in errors. 

 
 

•  There are two types of errors one can make in 
statistical testing: 

 
 

•  FP or Type I error 
 
 

•  FN or Type II error 
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    Relationship between significance test results and the truth 
 
 

TRUTH 
 

Ho False Ho True 
 
 

REJECT Ho 
(P < 0.05) 

 
 

SIGNF  
TEST 

 
ACCEPT Ho 
(P > 0.05) 

 

TP FP 
   Type I (a) 

 

 
 
FN TN 
Type II (B) 

 
 

Power = (1 - B) 
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Type I (FP) errors 
 

• Occurs when the Ho is rejected but the Ho is true 
 

 
• Determine a difference exists when it does not (hence it is a 

false positive (FP) result) 
 

 
• Measured by the Type I error rate (or significance level or alpha) (= 

false positive rate) 
 

•   Choice of alpha is arbitrary but by convention is set at 5% 
•   Scientists are a cautious lot, hence they make this error rate low so not 

to create many false alarms (they want to avoid FP results) 
•   Similarly judges are cautious in sentencing, hence instructions 

“guilty beyond a reasonable doubt”……… 
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Type II (FN) errors 
 
 

• Occurs when the Ho is accepted but the Ho is false 
 

•   Determine that no difference exists when it does (hence it is a 
FN result) 

 
• Measured by the Type II error rate (or beta) (= False negative 

rate) 
 

• Not set by convention, although when designing studies 
statisticians try to limit beta to 20% (or less) usually by 
increasing the sample size 

 
• Directly related to Power (Power = 1 - beta) 

 
• Note that small studies have inherently low power. 
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 Power (1 - B) 
 

•   Defn: Probability of correctly rejecting Ho when Ho is false 
 

 
• Power is used in the planning phase of a study 

•   try to have power of at least 80% (i.e., limit beta to 20% or less) 
 

•   If a study is designed to have 80% power, then it has an 80% 
chance of finding a significant difference if a difference exists 

•   (i.e., an 80% chance of rejecting the Ho when the Ho is false) 
 
 

• Power is analogous to the sensitivity of a diagnostic test 
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 Power (1 - B) 
 

•  Power  is a function of: 
 
 

•  Alpha (FP) error rate 
 

 
•  Beta (FN) error rate 

 

 
•  Effect size 

 

 
•  The Variability in the data 
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N.B. Alpha and beta are inversely related 
(analogous to the trade off between Se and Sp) 

 
 
 
 

β 
 

α 
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 Power  is a function of: 
 

•  Alpha (FP) error rate (usually 5%) 
– Smaller the alpha error the harder it will be to identify a 

difference (because beta goes up and so power is lower) 
 

– So, if you wanted to be extra cautious and use alpha = 0.01, 
power would automatically be lower 

 
•  Beta (FN) error rate 

– Smaller the beta error the easier it will be to identify a 
difference (hence the higher the Power) 

 
– Power is usually manipulated by increasing the size of the 

study (more observations, bigger N) or by increasing alpha 
from 0.05 to 0.1 (or by picking a one-sided Ha) 

 
– Typically set at 20%, four times larger than alpha (this reflects the 

greater attention placed on FP vs. FN errors) 
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 Power  is a function of: 
 
 

•  Effect size 
•  The magnitude of the difference you are trying to 

detect 
•  Bigger differences are easier to detect (in statistics 

SIZE MATTERS!!) 
•  When designing a study this is defined as the 

minimal clinically important difference 
– What is the smallest difference that would be important to 

know clinically? 
– e.g., In designing a BP reduction study what is a 

meaningful reduction in BP? Is a 0.5 mm Hg decline 
important? Or should it be 5 mm Hg? 
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 Power  is a function of: 
 

•  The variability in the data 
 
 

•  Continuous data 
– The greater the variability (a.k.a. dispersion or SD) in the 

data the harder it is to detect a difference 
– The more “noise” there is the harder it is to see the real 

“signal” 
 

 
•  Categorical data (rates and proportions) 

– The rarer an event (e.g., death, relapse) the harder it is to 
detect a difference 

– The absolute number of events counted is more important 
than the underlying size of the study groups 
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 The bigger difference and/or the less  
 the variation the greater the Power 

 
 
 
 

This difference is easy to 
detect (P < 0.05) 

 
 
 
 
 
 

     This is much      
      harder 
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 Consequences of Low Power Studies 
 
 

•  Difficult to interpret negative results: 
 
 

•  truly no difference?, or did study simply fail to detect the true 
difference that exists? 

 
•  Failure to identify potentially important associations 

 
 

•  Low power means low precision 
•  (as indicated by a wide confidence interval) 
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EPI-546: Fundamentals of Epidemiology and Biostatistics 
 

Course Notes – Statistics I 
 

Mathew J Reeves BVSc, PhD 
Michael Brown MD, MSc 

 
Objectives: 
 
• 1. Distinguish between hypothesis testing and estimation 
• 2. Understand the logic and steps associated with hypothesis testing 
• 3. Define and interpret the p-value, point estimate, and confidence interval 
• 4. Define and interpret the Type I and Type II error rates 
• 5. Understand what determines Power and why we care about it 
• 6. Distinguish between statistical and clinical significance 
• 7. On a conceptual level understand what multivariable analysis does 
• 8. On a conceptual level recognize and understand interaction 

 
Outline: 
 
I. Classical Hypothesis (significance) testing 

A. Ho, Ha, p value, alpha 
B. Summary - Steps in Classical Hypothesis Testing 
C. Common Statistical Tests 
D. Type I (alpha) error and Type II (beta) error 
E. Power and Sample Size 
F.  Summary of terms and definitions 

 
II. Estimation, Point Estimates and Confidence Intervals 
 
III. Multiple comparisons 
 
IV. Multivariable analysis and interaction. 
 
Introduction 
 

One of the most important tools available for improving the effectiveness of 
medical care is the information obtained from well-designed and properly analyzed 
clinical research. The purpose of this lecture is to teach concepts underlying appropriate 
statistical design and analysis of clinical and epidemiological studies, with an emphasis on 
using the clinical trial design as an example. 
 

Statistical Inference is defined as the process of drawing conclusions from data. 
There are two different but complementary categories of statistical inference: hypothesis 
testing and estimation. 
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I. Classical Hypothesis (Significance) Testing 
 
Hypothesis or significance testing is essentially concerned with making a decision about 
the value of an unknown parameter. It therefore views “experimentation” as a decision 
making exercise. 
 
A. H0, HA, p value, alpha 

Data from clinical trials are usually analyzed using p values and classical 
hypothesis testing. In classical hypothesis testing, two hypotheses which might be supported 
by the data are considered. The first, called the null hypothesis (H0), is the hypothesis that 
there is no difference between the groups being compared with respect to the measured 
quantity of interest. For example, in a study examining the use of a new sympathomimetic 
agent for blood pressure support in patients with sepsis, the null hypothesis is that there is 
no difference between the systolic blood pressure achieved with the new agent and the 
control agent. The alternative hypothesis (HA) is that the groups being compared are 
different i.e., the blood pressure for the new agent is either higher or lower. 
 

Null hypothesis (H0): Ux = Uy 
i.e., the mean blood pressure is NOT different between the new agent (x) and 
the control agent (y). 

 
Alternative hypothesis (HA): Ux ≠ Uy 

i.e., the mean blood pressure is different between the new agent (x) and the 
control agent (y). 

 
Sometimes the alternative hypothesis is specified in terms of the direction of the 

difference e.g., the blood pressure for the new agent is higher that the control agent (this is 
referred to as a one-sided alternative, as opposed to the two-sided alternative shown 
above). Regardless of whether a one-side or two sided alternative is used, the difference 
between the two groups is called the treatment effect. 

Once the null and alternative hypotheses are defined, the null hypothesis is 
"tested" to determine whether it will be accepted as true, or whether it will be rejected 
and the alternative hypothesis accepted as true. The process of testing the null hypothesis 
consists of calculating the probability of obtaining the results observed (or results that are 
even more extreme), assuming the null hypothesis is true. This probability is the p value. 
The p value is defined as the probability of observing the test statistic at least as large as 
the one observed under the assumption that the null hypothesis is true. In terms of 
conditional probabilities we can write it as: P (Data|H0 true). 

If the p value is less than a predefined value, denoted as the significance level or 
alpha (α), then the null hypothesis is rejected, and the alternative hypothesis is accepted 
as true. By convention, in most clinical studies the significance level is set to 5%, but it 
can be changed according to how stringent (e.g., 1% or 0.01) or “liberal” (e.g., 10% or 
0.1) the investigator wants to be. 

So, under the assumption that the null hypothesis is true, the p value indicates that 
we would expect to see the observed results (or results even more extreme) less than p % 
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of the time. For example, a p value of 0.02 means that in only 2 occurrences out of a 100 
would we expected to see the observed results, if the null hypothesis was true (i.e., that 
there really is no difference between the groups being tested). Because the p value is 
lower than our pre-specified significance level or alpha of 0.05, we would reject the null 
hypothesis and accept the alternative hypothesis. 

Note that it is very important to understand what the p values means and as you can 
imagine the p-value gets misused all the time. Perhaps the most common misinterpretation 
of the p-value is that it represents the probability of the null hypothesis being true given the 
data i.e., P (H0 true|Data). Since, we know that the p-value is calculated under the 
assumption that the Ho is true, we know that this cannot be the case! 
 
B. Summary - Steps in Classical Hypothesis Testing 
1. Define the null hypothesis: 
The null hypothesis is that there is no difference between the groups being compared. For 
example, in a clinical trial the null hypothesis might be that the response rate in the 
treatment group is equal to that in the control group. 
 
2. Define the alternative hypothesis: 
The alternative hypothesis would be that the response rate in the treatment group is 
different from the control group (two sided test) or is greater (or lesser) than the control 
group (one sided test). 
 
3. Calculate a p value: 
This calculation assumes that the null hypothesis is true. One determines the probability 
of obtaining the results found in the data (or results even more extreme) given the null 
hypothesis is true. This probability is the p value. 
 
4. Accept or reject the null hypothesis: 
If the probability of observing the actual data (or more extreme results), under the null 
hypothesis is smaller than the significance level (p < α), then we reject the null. The 
concept is that if the probability under the null hypothesis of observing the actual results is 
very small, then there is a conflict between the null hypothesis and the observed data, and 
we should conclude that the null hypothesis is not true. 
 
5. Accept the alternative hypothesis: 
If we reject the null hypothesis, we accept the alternative hypothesis by default. The only 
way the alternative can be accepted is by rejecting the null (this process of scientific 
inference is referred to as refutation). 
 
C. Summary of Selected Statistical Tests 

Depending on the characteristics of the data being analyzed, different statistical tests 
are used to determine the p value. The most common statistical tests are described in the 
Table below. 
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Statistical Test Description 
 Student's t test Used to test whether or not the means from two groups using 

continuous data are equal, assuming that the data are normally 
distributed and that the data from both groups have equal 
variance (parametric). 

 Wilcoxon rank sum test 
 (Mann-Whitney U test) 

Used to test whether two sets of observations have the same 
distribution. These tests are similar in use to the t test, but do not 
assume the data are normally distributed (non-parametric). 

 Chi-square test Used with categorical variables (two or more discrete 
treatments with two or more discrete outcomes) to test the null 
hypothesis that there is no effect of treatment on outcome. To be 
valid the chi-square test requires at least 5 observations in each 
‘cell” of the cross-classification table. 

 Fisher's exact test Used in an analogous manner to the chi-square test, Fisher's 
exact test may be used even when less than 5 observations in 
one or more ‘cells’. 

 One-way ANOVA* Used to test the null hypothesis that three or more sets of 
continuous data have equal means, assuming the data are 
normally distributed and that the data from all groups have 
identical variances (parametric). The one-way ANOVA may 
be thought of as a t test for three or more groups. 

 Kruskal-Wallis This is a non-parametric test analogous to the one-way 
ANOVA. No assumption is made regarding normality of the 
data. The Kruskal-Wallis test may be thought of as a 
Wilcoxon rank sum test for three or more groups. 

* Analysis of variance. 
 
 
 

Student's t test and Wilcoxon's rank sum test are used to compare continuous 
variables (e.g., serum glucose, respiratory rate, etc.) between two groups of patients. If there 
are three or more groups of patients, then one-way analysis of variance (ANOVA) and the 
Kruskal-Wallis test are used to compare continuous variables between the groups. The chi-
square test and Fisher's exact test are used to detect associations when both the treatment and 
the outcome are categorical variables (placebo versus active drug, lived versus died, admitted 
versus discharged, etc.). Student's t test and one-way analysis of variance are examples of 
parametric statistical tests. Parametric statistical tests make assumptions about the underlying 
distribution of the continuous variables. Both Student's 
t test and analysis of variance assume that the data are normally distributed, and that the 
different groups yield data with equal variance. 

When the data to be analyzed are not normally distributed, then the p value should be 
obtained using a non-parametric test. Non-parametric tests are referred to as 
‘distribution-free’ in that they do not rely on the data having any particular underlying 
distribution. The non-parametric alternative to a t test is the Wilcoxon rank sum test or 
the Mann-Whitney U test. The non-parametric alternative to one-way analysis of variance is 
the Kruskal-Wallis test. 
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TP 
 

FP 

Type I (a) 

 
FN 

Type II (B) 

 
TN 

 

D. Type I (alpha) and Type II (beta) errors 
 
When we either accept or reject the null hypothesis, there are two types of errors one can 
make: 
 

A Type I or a FP error 
 

A Type II or a FN error 
 
The relationship between significance testing and the truth can be illustrated in the 
following 2 x 2 table, which is set up in exactly the same fashion as the classic diagnostic 
2 x 2 table (see lecture on clinical testing). However, in this case we are using the 
significance test (i.e., P < 0.05 or P > 0.05) as a diagnostic test to infer the truth (i.e., 
whether the Ho is true or false), just as in the same manner that we use a diagnostic test to 
infer whether disease is present or not. 
 
 
 
 
 
 
 
 

SIGNF 
TEST 

 

 
 
 
REJECT Ho 
 

(P ≤ 0.05) 
 
 
 
ACCEPT H0 

(P > 0.05) 

TRUTH 
H0 False H0 True 

 
 
 

(1 – B) (= Power) 
 
 
 
Type I (FP) errors 
 
A type I error occurs when we reject the H0 when it is true – that is we determine a 
difference exists when it does not (hence it is a type of  “false-positive” FP result). A type I 
error occurs when a statistically significant p value is obtained when, in fact, there is no 
underlying difference between the groups being compared. The rate that FP results are 
expected to occur is measured by the significance level (α) which is also referred to as the 
Type I error rate. As discussed previously this is set, by convention, to 5%.1 This 5% 
rejection rule is used primarily because scientists by nature are cautious, so they want a low 
error rate to avoid false alarms. This is similar to judges providing the instructions to 
a jury to “only find the person guilty beyond a reasonable doubt”. You want to avoid 
finding someone guilty who is actually innocent. 
 
 
 
 
1   As will become more apparent after completing the Clinical Testing lecture, setting the alpha level to 
0.05 is equivalent to making all significance tests have a specificity of 95%. 
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Type II (FN) errors 
 
A type II error occurs when we accept the Ho when it is false – that is we determine that 
a difference does not exists when in fact it does (hence it is a type of  “false-negative” FN 
result). A type II error occurs when a statistically non-significant p value is obtained when, 
in fact, there is an underlying difference between the groups being compared. The rate that 
FN results are expected to occur is measured by the Type II error rate (or beta). Unlike 
alpha, beta is not set to any particular level, although, for studies that are actually being 
planned or designed, sample size estimates are usually based on setting beta to either 20% 
or even as low as 10%. Thus, such studies are set up with the expectation that 
a real difference would be missed between 10 and 20% of the time. However, it should be 
noted that many studies are not based on any formal sample size estimates, and so, 
particularly for smaller studies, the probability of a type II error maybe a lot higher. 
 
 
 
E. Power and Sample Size 
 
The complement of the type II error rate (i.e., 1 - beta) is called Power and is defined as: 
 

Probability of correctly rejecting Ho when Ho is false 
 
Power is therefore the probability of the study finding a difference when a difference 
truly exists.2 Power is a function 4 parameters: 
 

i) Alpha (FP) error rate ii) 
Beta (FN) error rate iii) 
Effect size 
iv) The variability in the data 

 
Alpha (FP) error rate 

 
As discussed above, the significance or alpha level is usually set at 5%. There is an 
inverse relationship between alpha and beta – as one increases the other must decrease 
(and vice versa). So, if alpha is made smaller (for example, reduced from 
0.05 to 0.01) the beta error must increase, which would lower the Power of the study 
making it harder for the study to identify a real difference (a type II error is more likely). 
This makes sense as a lower alpha is a more stringent test so it is harder to prove that a 
difference truly exists i.e., it is harder to reject the null hypothesis if the alpha level is 
changed from 5% to 1%. 

 
Beta (FN) error rate 

 
 
 
2 As will become more apparent after completing the Clinical Testing lecture, Power is equivalent to the 
Sensitivity of the experiment – the probability of finding a difference if a difference exits is equivalent in 
diagnostic testing to the probability of finding disease if disease exists (i.e., the test sensitivity) 
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The smaller the beta error rate the easier it will be for the study to identify a difference 
(because the Power is increased). The simplest way to increase the Power of a study is to 
increase the sample size. Large studies have more Power and so for a given treatment 
effect are more likely to identify a difference as statistically significant. Alternatively, 
Power can be increased by increasing alpha (say, from 0.05 to 0.10), since beta must 
decrease. Typically beta is set at 20%, which is four times larger than alpha (this reflects 
the greater attention placed on FP vs. FN errors – so scientist inherently value FP and FN 
errors differently – they are so risk adverse that they set the FP rate much lower than the 
FN rate) 

 
Effect size 
The effect size is the magnitude of the treatment difference you are trying to detect. 
Bigger differences are obviously easier to detect than smaller differences – this is why in 
statistics size does matter. When designing the study it is important to determine what 
size of an effect do you want to detect. This is usually determined by defining the 
minimal clinically important difference i.e., what is the smallest difference between 2 
alternative treatments that you would want to know from a clinical standpoint? For 
example, in the trial of sympathomimetic agents for patients with sepsis it might be 
determined that clinically a 5 mm Hg increase in mean blood 
pressure is likely to make an important difference to the clinical outcomes of patients. The 
study would then be powered to be able to detect at least this difference. Sometimes 
however, a larger minimal treatment effect is defined (e.g., 15 mm Hg), because designing 
a study to reliably detect the smallest clinically important 
treatment effect (i.e., 5 mm Hg) would require too large a sample size. 

 
The Variability in the data 
The greater the variability in the data the harder it is to detect a difference (the Power is 
lower). By analogy, it is harder to detect the true “signal” when there is a lot of “noise” to 
contend with. This effect of variability on study Power is also seen in studies that 
“count” events. If such outcomes are rare (e.g., death, or relapse in a follow-up study) 
then the study will have low Power - since it is harder to identify any real differences. 

 
These 4 parameters are all considered when determining the sample size of the 

study i.e., how big of a study do I need to detect the minimal clinically important 
difference. Most well designed clinical studies are usually set up to have a power of 0.80 
(80%) or greater. But it is surprisingly common for clinical studies to be published with 
negative results, which did not have adequate sample size to reliably detect a clinically 
important treatment effect in the first place. The problem with low power studies is that it is 
difficult to interpret negative results. Is there truly no effect?, or did the study simply fail to 
detect the true effect that does exist because it was too small or had too few outcomes? A 
low power study also means that any estimate will be measured imprecisely 
– as indicated by a wider confidence interval. 
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F. Summary of commonly used terms and definitions in classical hypothesis testing 
 
Term Definition 
α (significance level) The maximum p value to be considered statistically 

significant; the risk of committing a type I error when there 
is no difference between the groups. 

Alternative Hypothesis The hypothesis that is considered as an alternative to the 
null hypothesis; usually the alternative hypothesis is that 
there is an effect of the studied treatment on the measured 
variable of interest; sometimes called the test hypothesis. 

β The risk of committing a type II error. 
Null Hypothesis The hypothesis that there is no effect of the studied 

treatment on the measured variable of interest. 
Power Probability of correctly rejecting Ho when Ho is false. It is 

the probability of detecting a treatment effect if one truly 
exists. Power = 1 – β. 

p value The probability of obtaining results similar (or more 
extreme) to those actually obtained if the null hypothesis 
were true. 

Type I Error Obtaining a statistically significant p value when, in fact, 
there is no effect of the studied treatment on the measured 
variable of interest; a false-positive result. 

Type II Error Not obtaining a statistically significant p value when, in 
fact, there is an effect of the treatment on the measured 
variable of interest that is as large or larger than the effect 
the trial was designed to detect; a false-negative result. 

 
 
 
 
II. Estimation, Point Estimates and Confidence Intervals 
 
Estimation is an alternative approach to statistical inference which views experimentation as 
a measurement exercise. Estimation is concerned with estimating the specific value of an 
unknown population parameter and measuring the precision with which this specific value is 
measured. Thus, estimation involves the generation of a point estimate and confidence 
interval (CI), respectively. 
 

A point estimate is the observed single best estimate of the unknown treatment effect (or 
population parameter), given the data. It indicates the magnitude of an effect and 
answers the question: What did you find or estimate? 

 
A confidence interval is the set of all possible values for the parameter that are 
consistent with the data. It serves to quantify the precision of the estimate and 
answers the question: With what sort of precision did you measure the point estimate? 
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Suppose we wish to test whether one vasopressor is better than another, based on 
the mean post-treatment systolic blood pressure (SBP) in hypotensive patients and, in our 
trial, we observe a mean post-treatment SBP of 70 mm Hg for patients given vasopressor A 
and 95 mm Hg for patients given vasopressor B. The observed treatment difference or point 
estimate (mean SBP for patients on vasopressor B minus mean SBP for patients on 
vasopressor A) is therefore 25 mm Hg.  When hypothesis testing, if the p value is less than 
0.05 we reject the null hypothesis as false and we conclude that our study demonstrates a 
statistically significant difference in mean SBP between the groups. That the p value is less 
than 0.05 tells us only that the treatment difference that we observed is statistically 
significantly different from zero. It does not tell us the size of the treatment difference, 
which determines whether the difference is clinically important, nor how precisely our trial 
was able to estimate the true treatment difference (N.B. The true treatment difference is the 
difference that would be observed if all similar hypotensive patients could be included in 
the study). 

However, if instead of using hypothesis testing and reporting a p value, we view 
the trial’s data as a measurement exercise, we would report the point estimate and the 
corresponding confidence interval surrounding it. This would give readers the same 
information as the p value, plus several other pieces of valuable information including: 
 

- the size of the treatment difference (and therefore its clinical importance), 
- the precision of the estimated difference, 
- information that aids in the interpretation of a negative result. 

 
The p value answers only the question, “Is there a statistically significant 

difference between the two treatments?” The point estimate and its confidence interval 
also answer the questions, “What is the size of that treatment difference (and is it 
clinically important)?” and “How precisely did this trial determine or estimate the true 
treatment difference?” As clinicians, we should change our practice only if we believe the 
study has definitively demonstrated a treatment difference, and that the treatment difference 
is large enough to be clinically important. Even if a trial does not show a statistically 
significant difference, the confidence interval enables us to distinguish whether there really 
is no difference between the treatments, or the trial simply 
did not have enough patients to reliably demonstrate a difference. 

Returning to our example, a treatment difference of 0 is equivalent to the null 
hypothesis that there is no difference in mean SBP between patients on vasopressor A 
and patients on vasopressor B. In our hypothetical trial, the 95% confidence interval 
around the point estimate of 25 mm Hg was estimated to be 5 to 44 mm Hg which does 
not include 0, and so a true treatment difference of zero is not statistically consistent with 
our data. We therefore conclude that the null hypothesis is not statistically consistent with 
our observed data and we reject it, accepting the alternative hypothesis. In this example, 
because the 95% confidence interval does not include a zero treatment difference, this 
demonstrates that the results are statistically significant at p < 0.05. 

The confidence interval of 5 to 44 mm Hg with a point estimate of 25 would look 
like this: 
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5 25 44 
 

Our point estimate of 25 mm Hg gives an estimate for the size of the treatment 
difference. However, our results are also statistically consistent with any value within the 
range of the confidence interval of 5 to 44 mm Hg. In other words, the true treatment 
difference may be as little as 5 mm Hg, or as much as 44 mm Hg, however 25 mm Hg 
remains the most likely value given our data. If vasopressor B has many more severe side 
effects than vasopressor A, a reader may conclude that even an elevation of SBP as much 
as 44 mm Hg does not warrant use of vasopressor B, although the treatment difference is 
statistically significant. Another reader may feel that even an elevation in mean SBP of 5 
mm Hg would be beneficial, despite the side effects. With p values, authors report a 
result as statistically significant or not, leaving us with little basis for drawing 
conclusions relevant to our clinical practice. With confidence intervals we may decide 
what treatment difference we consider to be clinically important, and reach conclusions 
appropriate for our practice. 

We may also use confidence intervals to obtain important information from trials 
that did not achieve statistical significance (so called “negative” trials). Suppose we found 
the 95% confidence interval for the difference in mean SBP to be -5 mm Hg to 55 mm Hg, 
with the same point estimate of 25 mm Hg. Now our results are consistent with 
vasopressor B raising mean SBP as much as 55 mm Hg more than vasopressor A, or as 
much as 5 mm Hg less. Because the confidence interval includes 0 (a zero treatment 
difference equivalent to the null hypothesis), the results are not statistically significant and 
the p value is > 0.05. Since p > 0.05, we may be tempted to conclude that there is no 
advantage to using vasopressor A or B in our clinical practice. However, our data are still 
consistent with vasopressor B raising SBP by 25 mm Hg (i.e., the point estimate) and the 
data are also consistent with as much as a 55 mm Hg increase when vasopressor B is 
used. Although p > 0.05, there remains the possibility that a clinically important 
difference exists in the two vasopressors' effects on mean SBP. Negative trials whose 
results are still consistent with a clinically important difference usually occur when the 
sample size was too small, resulting in low power to detect an important treatment 
difference. 

It is important to know how precisely the point estimate represents the true 
difference between the groups. The width of the confidence interval gives us information on 
the precision of the point estimate. The larger the sample size the more precise the point 
estimate will be, and the confidence interval will be narrower. As mentioned above, 
negative trials that use too small a sample size may often not show a statistically significant 
result, yet still not be able to exclude a clinically important treatment difference. In this 
case, the confidence interval is wide and imprecise, and includes both zero (or no treatment 
difference), as well as clinically important treatment differences. Conversely, positive trials 
that use a very large sample size may show a statistically significant treatment difference 
that is not clinically important, for example an increase in mean SBP from 70 mm Hg to 72 
mm Hg. 
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Number of 
Comparisons 

Probability of 
at 
Least One 
Type I Error 

1 
2 
3 
4 
5 
10 
20 
30 

0.05 
0.10 
0.14 
0.19 
0.23 
0.40 
0.64 
0.79 

 

If a confidence interval includes both zero as well as clinically important treatment 
differences, we can not make any definitive conclusions regarding clinical practice. It is 
important to remember that the data are statistically consistent with the true value being 
anywhere within the entire range of the confidence interval. 
 
III.  Multiple Comparisons Whenever 
two groups of patients are compared 
statistically, even if they are fundamentally 
identical, there is a chance that a statistically 
significant p value will be obtained. If the 
significant level (α) is set to 
0.05, then there is a 5% chance that a 
statistically significant p value will be 
obtained even if there is no true difference 
between the two patient populations 
(remember the p value is defined on the 
basis of there being no difference between 
the null and alternative hypotheses). The 
risk of a false-positive p value occurs each 
time a statistical test is performed. When 
multiple comparisons are performed, for example, the comparison of many different 
characteristics between two groups of patients (i.e., sub-group analyses), the risk of at least 
one false-positive p value is increased, because the risk associated with each test is incurred 
multiple times. The risk of obtaining at least one false-positive p value, when comparing 
two groups of fundamentally identical patients, is shown in Table 4 as a function of the 
number of independent comparisons (i.e., statistical tests) made. For up to 
5 to 10 comparisons, the overall risk of at least one type I error is roughly equal to the 
maximum significant p value used for each individual test, multiplied by the total number 
of tests performed. 

The Bonferroni correction is a method for reducing the overall type I error risk for 
the whole study by reducing the maximum p value used for each of the individual statistical 
tests. The overall risk of a type I error that is desired (usually 0.05) is divided 
by the number of statistical tests to be performed, and this value is used as the maximum 
significant p value for each individual test. For example, if five comparisons are to be 
made, then a maximum significant P value of 0.01 should be used for each of the five 
statistical tests. 

The Bonferroni correction controls the overall (study-wise) risk of a type I error, at 
the expense of an increased risk of a type II error. Since each statistical test is conducted 
using a more stringent criteria for a statistically significant p value, there is an increased 
risk that each test might miss a clinically-important difference, and yield a p value that is 
non-significant using the new criteria of p < 0.01. The Bonferroni correction is regarded as 
a very conservative approach to the problem of multiple comparisons. 
 
IV. Multivariable analysis and interaction - (this topic is covered in EPI-547 the 
second year course). 
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Lecture - Statistics II 
Estimation 

 
 

- How big a difference did you find and how 
precisely did you measure it? 

 
 

Mathew J. Reeves BVSc, PhD 
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Objectives – Concepts- Statistics I and II 
 

•  1. Concept of sampling 
•  2. Systematic vs. random error 
•  3. Two approaches to statistical inference 

•   Hypothesis testing vs. estimation 

•  4. Hypothesis (significance) testing 
•   Null vs. alternative hypothesis 
•   P-values and statistical significance 
•   Type I (alpha) and Type II (beta) error rates 
•   Power and sample size estimation 

•  5. Estimation 
•   Limitations of the p-value 
•   Point estimates and Confidence Intervals 

•  6. Statistical vs. Clinical Importance 
•  7. Multiple comparisons 
•  8. Multivariable analysis and interaction 

Dr. Mathew Reeves, 2 
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Objectives – Concepts- Statistics II 
 

•  5. Estimation 
•   Limitations of the p-value 
•   Point estimates and Confidence Intervals 

 
•  6. Statistical vs. Clinical Importance 

 

 
•  7. Multiple comparisons 

 

 
•  8. Multivariable analysis and interaction 
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3. Statistical Inference 
 
 

•  The process of drawing conclusions from 
data 

 
 

•  Involves two different by complementary 
approaches: 

 
 

•  Hypothesis (significance) testing 
 
 

•  Estimation 
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Hypothesis testing vs. Estimation 
 

•  Hypothesis (significance) testing 
•  Concerned with making a decision about a hypothesized 

value of an unknown parameter 
•  Involves the use of the p-value. 
•  Views experimentation as decision making 
•  “Should I prescribe drug A or drug B?” 

 
 

•  Estimation 
•  Concerned with estimating the specific value of a unknown 

parameter 
•  Involves the use of the confidence interval (CI) 
•  Views experimentation as a measurement exercise 
•  “What did you find and how precisely did you measure it?” 
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Basic Steps in Hypothesis Testing 
 

 
• 1. Define the null hypothesis 
• 2. Define the alternative hypothesis 
• 3. Calculate the p value 
• 4. Accept or reject the null hypothesis based on 

the p value 
• If the null hypothesis is rejected, then accept the 

alternative hypothesis 
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    Clinical Study (statistical testing) Jury Trial (criminal law) 
 

    Assume the null hypothesis Presume innocent 
 
 
 

    Goal: detect a true difference Goal: convict the guilty 
    (reject the null hypothesis) 

 
 
 

    “Level of significance” “Beyond reasonable 
p < .05 doubt” 

 
    Requires: Requires: 
    adequate sample size convincing testimony 
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    Similar to clinical study in a Trial by Jury….. 
 

• There are only 1 of 4 possible outcomes: 
 
 

• 2 are correct: TP, TN 
 
 

• 2 are errors: FP, FN 
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Trial by Jury…..  
 
TRUTH 

 
Guilty Innocent 

 
 
 
 
 

Jury 

 

Guilty TP FP 

   Decision 
 

Not guilty 

 
 
FN TN 
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   Clinical Study (statistical testing) Jury Trial (criminal law) 
 

   Correct inference: Correct verdict: 
   reject the null hypothesis convict a guilty person 

 

 
   Correct inference: Correct verdict: 
   accept the null hypothesis acquit the innocent 

 
 
 
 

   Incorrect inference (FP) Incorrect verdict: 
   Type I error hang innocent person 

 

 
   Incorrect inference (FN) Incorrect verdict:  
   Type II error  guilty goes free 
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5. Estimation 
 
 

•  Concerned with estimating the  specific value of a 
unknown  parameter 

 
 

•  Involves the use of the confidence interval (CI) 
 
 

•  Views experimentation as a measurement 
exercise 

 
 

•  “What did you find and how precisely did you 
measure it?” 
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Estimation vs. Hypothesis Testing 
 

•  Estimation is increasingly favored by the medical 
scientific community over hypothesis testing 

 
 

•  Hypothesis testing forces an overly simplistic 
“significant” vs. “non-significant” approach. 

•  This artificial dichotomy is referred to as ‘intellectual 
economy’ 

 
 

•  Science is essentially a process of observation and 
interpretation ---- a measurement exercise. 
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P-values have many limitations 
 

•  They force an artificial dichotomy 
 
 

•  They are confounded by sample size 
•  Any difference can be found to be statistically significant if the 

sample size is large enough 
 
 

•  They provide no information on the precision or 
uncertainty around the point estimate 

 
 

•  They provide no information on the likelihood that the 
true treatment effect is clinically important 
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 Relationship between Sample Size and the P  
 Value 

 
 

•  Example RCT: 
•  Intervention: new a/b for pneumonia. 
•  Control: existing standard of care a/b for pneumonia. 
•  Outcome: 5 day case fatality rate = % of patients dying 

within 5 days 
 
 

•  Facts: 
•  Known = Existing drug of choice results in 40% CFR at 5 

days 
•  Unknown = New drug improves CFR by 5% (to 35%) 

 
 

Dr. Mathew Reeves, 14 
©  Epidemiology Dept., Michigan 

State Univ 



164 
 

 
 

 
 
 
 

P-values Generated by RCTs of Different 
Sample Size For a Constant 5% ARR 

 

Sample Size (N = 2x) P value (Chi-square) 

100 per group 0.465 

500 0.103 

600 0.074 

700 0.053 

800 0.039 

1000 0.021 

2000 <0.001 

Dr. Mathew Reeves, 15 
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The problem of too many observations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ref: Circ-CQO 2010 
Includes data on One million stroke patients 
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     The problem is that every difference tested no matter how   
     small is statistically significant P<0.0001!!! 
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P-values 
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 Estimation - Example 
 

•  Want to estimate the average weight of MSU 
undergraduates - we want to know the true 
population mean body weight (µ). 

 

 
•  Take Sample of 20 students: 

•  calculate sample mean = 60 kg (= point estimate), 
•  calculate standard deviation (σ ) = 10 kg. 

– (Standard deviation = a measure of variability or dispersion see 
lecture 2) 

 

 
•  Question: 

•  How good an approximation is this mean to the true 
unknown population mean (µ)? 
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 Point estimate 
 
 

•  Defn: The observed single best estimate of the unknown 
population parameter (or effect size), given the data 
•  e.g., mean body wt. = 60 kg 

 
 

•  Indicates the  magnitude of an effect 
 
 

•  Answers the question: What did you find or estimate? 
 

 
•  But then we also want to know how precisely you 

were able to measure this?….. 
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Confidence Intervals 
 

•  A way of quantifying the precision of the estimate 
 

•  Defn: A set of all possible values for the parameter 
that are consistent with the data 

 
 

•  How is it calculated? 
•  Point estimate +/- (percentile distrib * standard error) 

 
•  Example: 

•  95th Percentile t distribution (19 df) = 2.093 
– (= level of confidence) 

•  Standard error = σ /√n = 10/√20 = 10/4.472 = 2.23 
– (= an estimate of the variability in the data) 

•  95% CI = 60 kg +/- (2.093 * 2.23) = 55.3 kg, 64.7 kg 
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 The 95% CI of the mean wt. of MSU students 
 
 

 60 kg, 95% CI (55.3 kg, 64.7 kg) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

55.3 60 64.7 
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 95% CI…… Interpretation 
 
 

•   There is a 95% probability that the true (unknown) mean body 
weight of all MSU students is included in the interval, 55.3 to 
64.7 kg (and our best guess is that it is 60 kg) 

 
•   Other points 

•   A CI is not a uniform distribution….. values closer to the point estimate 
(60 Kg) are much more likely than values at the extreme (55.3 and 
64.7) (see Figure). 

 
•   CIs can be calculated for any level of confidence… 90%, 99% etc 

 
• Qu: Which is wider a 99% CI or a 90% CI? 

 
•   99% CI = 60 kg +/- (2.861 * 2.23) = 53.6 kg, 66.4 kg 
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 Link between confidence intervals and  
 significance testing 

 
•  Point estimate (95% CI) = 60 kg (55.3, 64.7) 

 
 

•  So, all values outside of the 95% CI (i.e., < 55.3 or > 64.7) would 
be statistically significant from the point estimate of 60 kg at p 
<0.05. 

 
•  Similarly, all values outside of the 99% CI (i.e., < 53.6 or 

> 66.4) would be statistically significant from the point 
estimate of 60 kg at p <0.01. 
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    Systematic review of evidence on thrombolytic therapy for acute ischemic stroke 
    Wardlow JM. Lancet 1997, 350 (607-614) 
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 Estimation - Summary 
 

•  Views "experimentation" as a measurement exercise 
 
 

•  A Point Estimate in conjunction with a Confidence 
Interval is a very powerful combination: 

 

 
•  Together they indicate the magnitude and precision of the 

findings 
 
 

•  Together they answer the question: 
– “What did you find and how precise was your measurement?” 

(…so how confident are you in your conclusions?) 
 

•  Isn't this all we really need to know?……. 
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Clinical Significance versus Statistical 
Significance 

 
•  A statistically significant result does not imply that the 

difference is of clinical or biological importance… only 
you can determine that. 

 
 

•  Example Medical Headline – 
– “In a recent clinical trial, Farmer Jack ASA was found to have 

statistically significantly faster ‘absorption’ compared to another 
leading brand……..” 

•  Meijer ASA – dissolves in 15 seconds 
•  Farmer Jack ASA – dissolves in 12 seconds 
•  So what?….. 
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6. Clinical vs. Statistical Significance? 
 

•  Not every finding that is statistically significant (P 
<0.001) is clinically significant or important 

 

 
•  Not every finding that is not statistically significant (P 

>0.05) is clinically unimportant 
 

 
•  The distinction requires: 

•  judgment as to what is clinically important, and 
•  judgment as to what statistical information is known about the 

effect of the drug or intervention (point estimate and 
confidence interval) 
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Clinical vs. Statistical Significance? 
 

•  How much of an increase in blood pressure would be 
clinically important in a patient with hypovolaemic shock 
(blood loss)? 

 
 

•  Which one of these 2 products would you use? 
•  Hemostim: In a large RCT it resulted in a 3 mm Hg increase 

(P <0.0001) compared to a saline control. 
 
 

•  Neuvostim: In a pilot RCT it resulted in a 30 mm Hg increase 
(P <0.10) compared to a saline control. 
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Confidence intervals can help 
determine clinical importance 

 
•  Hemostim: In a large RCT it resulted in a 3 mm Hg 

increase (P <0.0001) compared to a saline control. 
 
 

•  3 mm Hg (95% CI 0.05 – 5.5 mm Hg) 
 

3 
 
 
 

- 0 + 
Blood pressure 
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Confidence intervals can help 
determine clinical importance 

 
•  Neuvostim: In a pilot RCT resulted in a 30 mm Hg 

increase (P <0.10) compared to a saline control. 
 
 

•  30 mm Hg (95% CI -5.0 – 50 mm Hg) 
 

30 
 
 
 

- 0 + 
Blood pressure 
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7. The Problem of Multiple Comparisons 
 

• As with diagnostic tests, the more tests you run the more you are 
likely to find a significant (abnormal) result due to chance alone 

 
•  When multiple comparisons are performed, the risk of one or 

more false-positive p values is increases 
 

 
• Probability of observing 1 or more “positive” tests if alpha = 0.05 

•   Probability = 0.23 when n= 5, and 0.99 when n = 100 
–  Where n = number of tests 

 
•   Calculated by [1 – (1- alpha)n ] 
•   [1 – (1-0.05)5] = 0.23 
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The Problem of Multiple Comparisons 
 

• Certain type of studies are prone to the multiple 
comparison problem……. 

•  Studies that collect a lot of data (large number of variables, and 
outcome variables) 

•  Fishing trips! – not sure what you are looking for 
•  Whose a priori hypotheses were negative 

– got to find something “significant” to get it published! 
– analyze data from many sub-groups (post-hoc analyses) 

 
 

• Multiple comparisons include: 
–  Pair-wise comparisons of more than two groups 
–  The comparison of multiple characteristics between two groups 

(e.g., sub-group analyses in RCT’s) 
–  The comparison of two groups at multiple time points 
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Multiple Comparisons: Risk 
of ≥ 1 False Positive 

 
Number of 

Comparisons 
 

1 
2 
3 
4 
5 

10 
20 
30 

Probability of at 
Least One Type I Error 
 

0.05 
0.10 
0.14 
0.19 
0.23 
0.40 
0.64 
0.79 

 

Assumes a= 0.05, independent comparisons 
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 Multiple Comparisons: Bonferroni Correction 
 

• One method for reducing the overall risk of a type I 
error when making multiple comparisons 

 
 

• The overall (study-wise) type I error risk desired (e.g., 
0.05) is divided by the number of tests, and this new 
value is used as the α for each individual test 
• 10 comparisons = 0.05/10 = 0.005 

 
 

• Controls the type I error risk, but reduces the power 
• the type II error risk (beta) increases because alpha is 

reduced to 0.005, so it is harder to detect a difference 
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Optional reading – Multiple 
Comparisons Example (Austin) 

 
Results: We tested these 24 associations in the independent 
validation cohort. Residents born under Leo had a higher 
probability of gastrointestinal hemorrhage (P =.04), while 
Sagittarians had a higher probability of humerus fracture (P 
=.01) compared to all other signs combined. After adjusting the 
significance level to account for multiple comparisons, none of the 
identified associations remained significant in either the derivation or 
validation cohort. 

 
Bonferroni correction: .05/24 = 0.002 for statistical significance 
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8. Multivariable analysis and 
interaction 

 
 

•  See EPI-547 course notes (second year 
course). 
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   Finally, statistical Issues to consider when  
   planning a study 
 

• Define the most important question to be 
answered – the “primary objective” 

 
 
• Define the size of the difference you wish to 

detect (minimal clinically important difference) 
 
 
• Get as much information as possible about what 

you expect to see in the control group 
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    Statistical Issues to consider when 
     planning a study 

 
 

• Define values for α and power, and the 
maximum sample size that is realistic 

 
 

• Define clinically important subgroups of the 
population (a priori sub-group analyses) 

 
 

• Determine whether there are important multiple 
comparisons 
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    One last example (test of understanding):  
    Significance Testing vs. Interval Estimation 

 
 

OUTCOME 
 

+ - 
 

TRT A 7 13 20 P(+ outcome)= 35% 
 

TRT B 14 6 20 P (+ outcome)= 70% 
 
 

Significance test (TRT A vs. TRT B): P= 0.06 or NS! 
 

Interval estimation: ARR = 35% (95%CI = -1%, +71%) 
N.B. This CI illustrates that the difference is NS because it includes 0 
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EPI-546 Block I 
 

Lecture – Diagnosis/Clinical Testing 
 
 

Understanding the process of diagnosis and 
clinical testing 

 
 
 

Mathew J. Reeves BVSc, PhD 
Associate Professor, Epidemiology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Objectives - Concepts 
 
 

•  1. To understand the concept of ‘testing’ 
•  2. The 2 x 2 table 
•  3. The concept of the ‘gold standard’ 
•  4. Sensitivity (Se) and Specificity (Sp) 
•  5. Tradeoff in Se and Sp, ROC curves 
•  6. Predicted Values (PVP and PVN) 
•  7. The importance of Prevalence 
•  8. The concept of Bayes’ theorem (probability 

revision) 
•  9. Parallel vs. Serial testing 

 
Mathew J. Reeves 2 

© Dept. of Epidemiology, MSU 



178 
 

 
 
 
 
 

 Objectives - Skills 
 

 
•  1. Construct a 2 x 2 table 

 
 

•  2. Define, calculate, interpret and apply Se & Sp 
 
 

•  3. Define, calculate, interpret and apply PVP & PVN 
for any combination of Se, Sp, and Prevalence 

 
 

•  4. Begin to integrate the concept of prior probability 
or prevalence into diagnostic testing (Bayes theorem) 
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Important concepts covered in Epi-547 
not Epi-546 

 
•  Likelihood Ratios (LRs) 
•  Selection Bias 
•  Verification Bias 
•  Clinical Prediction Rules 
•  Assumption that test characteristics are fixed 

attributes 
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Riding a bike vs. mastering the 
balance beam…… 
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Clinical Diagnosis and Clinical Testing 
 

•  Diagnosis: the process of discovering a patient’s 
underlying disease status by: 
•  ascertaining the patient’s history, signs and symptoms, 

choosing appropriate tests, interpreting the results, and 
making correct conclusions. 

 
•  Highly complicated, not well understood process. 

 
 

•  Testing: the application of ‘clinical test information’ to 
infer disease status: 
•   ‘Clinical test information’ refers to any piece of information not just 

laboratory or diagnostic tests!! 
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 Fig 1. The 2 x 2 table 
 

 Relationship between Diagnostic Test Result and Disease Status 
 
 

DISEASE STATUS 
 

PRESENT (D+) ABSENT (D-) 
 
 
 

POSITIVE (T+) 
 

 TEST RESULT 

TP FP 
 

a b c  
d 

 
NEGATIVE (T-) FN TN 
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 The Gold Standard (or Referent Standard) 
 

•  Defn: the accepted standard for determining the true 
disease status 

 
 

•  Want to know the disease status with certainty but 
this is frequently not possible because: 
•  Gold standard test is difficult, expensive, risky, unethical, or 

simply not possible 
– e.g., DVT requires leg venogram (difficult, expensive) 
– e.g., vCJD requires autopsy (not possible) 

 
•  Frequently resort to using an imperfect proxy as a referent 

standard 
– e.g., Ultrasound and/or 3-month follow-up in place of venogram to 

confirm presence/absence of DVT. 
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Sensitivity (Se) & Specificity (Sp) 
 
 

•  Interpretation of diagnostic tests is concerned 
with comparing the relative frequencies and 
“costs” of the incorrect results (FNs and FPs) 
versus the correct results (TPs and TNs). 

 
 

•  Degree of overlap is a measure of the test’s 
effectiveness or discriminating ability which is 
quantified by Se and Sp. 
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Fig 2. Results for a Typical Diagnostic Test Illustrating Overlap 
Between Disease (D+) and Non-disease (D-) Populations 

 
 
 
 
 

Cut -point 
= FP 
 

= FN 
 
 

D - 
D+ 

 
 
 

TN TP 
 
 

T - T + 
Diagnostic test result (continuous) 

Mathew J. Reeves 10 
© Dept. of Epidemiology, MSU 



182 
 

 
 
 

FP 

 
 
 
 

 Sensitivity (Se) 
 

•  Defn: the proportion of individuals with disease that 
have a positive test result, or 

 
 

•  Se =    TP    =   a  . 
TP + FN a + c 

 

 
•  conditional probability of being test positive given that 

disease is present 
•  Se = P(T+ | D+) 

•  calculated solely from diseased individuals (LH 
column) 

•  also referred to as the true-positive rate 
•  a.k.a = “the probability of calling a case a case” 
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 Fig 3. Se and Sp are calculated from the left and  
 right columns, respectively 

DISEASE STATUS 
 

PRESENT (D+) ABSENT (D-) 
 
 
 

POSITIVE (T+) 
 

TEST RESULT 

TP FP 
 

a b c  
d 

 
NEGATIVE (T-) FN TN 

 
 
 
 

Se = TP/TP+FN Se 
= a / a + c 

Sp = TN/TN+FP 
Sp = d / d + b 
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Specificity (Sp) 
 

•  Defn: the proportion of individuals without disease 
that have a negative test result, or 

 
•  Sp =   TN   =   d . 

TN + FP d + b 
 

 
•  conditional probability of being test negative given 

that disease is absent 
•  Sp = P(T-|D-) 

•  calculated solely from non-diseased individuals (RH 
Column). 

•  also referred to as the true-negative rate. 
•  a.k.a = “the probability of calling a control a control” 
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 Fig 4. Se & Sp of D-dimer whole blood assay (SimpliRED assay) for 
 DVT (Ref: Wells PS, Circulation, 1995) 

 
 
 

DVT 
 

PRESENT (D+) ABSENT (D-) 
 
 
 

POS (T+) 
 

 
D- dimer 
test 

47 37 84 
 

a b c  
d 

 

NEG (T-) 6 124 130 
 
 
 

Se = 47/53 
= 89% 

Mathew J. Reeves 
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Sp = 124/161 
= 77% 
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  Tests with High Sensitivity 
 

•  Perfectly sensitive test (Se = 100%), all diseased 
patients test positive (no FN’s) 
•  Therefore all test negative patients are disease free (TNs) 

– But typical tradeoff is a decreased Sp (many FPs) 
 
 

•  Highly sensitive tests are used to rule-out disease 
•  if the test is negative you can be confident that disease is 

absent (FN results are rare!) 
 
 

•  SnNout = if a test has a sufficiently high Sensitivity, a 
Negative result rules out disease 
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Fig 5. Example of a Perfectly Sensitive Test (no FN’s) 
 
 
 
 
 

Cut -point 
= FP 

 
 
 

D - 
D+ 

 
 
 

TN TP 
 

T - T + 
Diagnostic test result 
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Clinical applications of tests with high Se 
 
 

•  1)  Early stages of a diagnostic work-up. 
– large number of potential diseases are being considered. 
– a negative result indicates a particular disease can be dropped 

(i.e., ruled out). 
 

•  2)  Important penalty for missing a disease. 
– dangerous but treatable conditions e.g., DVT, TB, syphilis 
– don’t want to miss cases, hence avoid false negative results 

 
•  3)  Screening tests. 

– the probability of disease is relatively low (i.e., low prevalence) 
– want to find as many asymptomatic cases as possible 

(increased ‘yield’ of screening) 
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Table 1. Examples of Tests with High Sensitivities 
 
 

       Patients with this 
      disease/condition 

…..will have this 
test result 

… X % of the 
time 

 
Disease/Condition Test Sensitivity 

 
Duodenal ulcer History of ulcer, 50+ yrs, pain relieved by eating 

or pain after eating 
95% 

 
Favourable prognosis following non-
traumatic coma 

Positive Corneal reflex 92% 

 
 

High intracranial pressure Absence of spont. pulsation of retinal veins 100% 
 
 

Deep vein thrombosis Positive D-dimer 89% 
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 Tests with High Specificity 
 

•  Perfectly specific test (Sp = 100%), all non-diseased 
patients test negative (no FP’s) 
•  Therefore all test positive patients have disease (TPs) 
•  But typical tradeoff is large number of FNs 

 
 
 

•  Highly specific tests are used to rule-in disease 
•  if the test is positive you can be confident that disease is 

present (FPs are rare). 
 

 
•  SpPin = if a test has a sufficiently high Specificity, a 
Positive result rules in disease. 
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Fig 6. Example of a Perfectly Specific Test (No FP’s) 
 
 
 

 
Cut -point 

= FN 
 
 
 

D - 
D + 

 
 
 

TN TP 
 

T - T + 
Diagnostic test result 
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Clinical applications of tests with high Sp 
 
 

•  1) To rule-in a diagnosis suggested by other tests 
– specific tests are therefore used at the end of a work-up to 

rule-in a final diagnosis e.g., biopsy, culture. 
 
 

•  2) False positive tests results can harm patient 
– want to be absolutely sure that disease is present. 
– example, the confirmation of HIV positive status or the 

confirmation of cancer prior to chemotherapy. 
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Table 2. Examples of Tests with High Specificities 
 

      Patients without this   
      disease/condition 

…… will have this 
test result 

… X % of the 
time 

 
Disease/Condition Test Specificity 

 
Alcohol dependency No to 3 or more of the 4 CAGE questions 99.7% 

 
 

Iron-deficiency anemia Negative serum ferritin 90% 

Strep throat Negative pharyngeal gram stain 96% 

Breast cancer Negative fine needle aspirate 98% 
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Trade off between Se and Sp 
 
 

•  Obviously we’d like tests with both high Se and Sp (> 
95%), but this is rarely possible 

 
 

•  An inherent trade-off exists between Se and Sp (if 
you increase one the other must decrease) 

 
 

•  Whenever clinical data take on a range of values the 
location of the cut-point is arbitrary 
•  Location should depend on the purpose of the test 

•  Methods exist to calculate the best cut-point based on the 
frequency and relative “costs” of the FN and FP results 

•  Trade-off between Se and Sp is demonstrated on ROC 
curve (refer to course notes and FF text) 
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 Fig 7. A ROC Curve (2-hr post-prandial blood sugar  
 for the diagnosis of Diabetes) 
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 Predictive Values 
 

•  In terms of conditional probabilities Se and Sp are 
defined as: 
•  Se = P(T+|D+) Sp = P(T-|D-) 

 
•  Problem: can only be calculated if the true disease 

status is known! 
 
 

•  But: the clinician is using a test precisely because the 
disease status is unknown! 

 

 
•  So, clinician actually wants the conditional 

probability of disease given the test result, OR 
•  P(D+|T+) and P(D-|T-) 
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 Predictive Value Positive (PVP) 
 

•  Defn: the probability of disease in a patient with a 
positive (abnormal) test. 

 
•  PVP =   TP   =   a  . 

TP + FP a + b 
 
 

•  calculated solely from test positive individuals (top 
row of 2 x 2 table) 

 
 

•  conditional probability of being diseased given the 
test was positive, or PVP =  P(D+|T+) 

 
•  N.B. the link between Sp and PVP via the FP rate (cell b).  

A highly specific test rules-in disease (think SpPin) 
because PVP Misathmew aJ. xReiemvesized. 26 
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 Fig 8. PVP and PVN are calculated from the top and  
 bottom rows, respectively 

 
DISEASE STATUS 

 
PRESENT (D+) ABSENT (D-) 

 
 
 

POSITIVE (T+) 
 

   TEST  
   RESULT 

TP FP 
 

a b c  
d 

PVP = TP/TP+FP 
PVP = a / a + b 

 
NEGATIVE (T-) FN TN PVN = TN/TN+FN 

PVN = d / d + c 
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Predictive Value Negative (PVN) 
 

•  Defn: the probability of not having disease when the 
test result is negative (normal). 

 
•  PVN =   TN   =   d . 

TN + FN d + c 
 

•  calculated solely from test negative individuals 
(bottom row of 2 x 2 table) 

 
 

•  conditional probability of not being diseased given the 
test was negative or PVN =  P(D-|T-) 

 
•  clinically we are also interested in the complement of the 

PVN i.e., 1- PVN, which is the probability of having 
disease despite testing negative 
•  1- PVN = P(D+|T-) 
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Fig 9. The PVP and PVN of D-dimer whole blood assay (SimpliRED 
assay) for DVT (Ref: Wells PS, Circulation, 1995). Prevalence = 25% 

 
 

DVT 
 

PRESENT (D+) ABSENT (D-) 
 
 

POS (T+) 
 
 
 
 
 

NEG (T-) 

 
47 37 

 

a b c  
d 

6 124 

PVP = 47/84 
= 56% 
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 Prevalence 
 

•  the proportion of the total population tested that have 
disease, or 

 
•  P = Total Number of Diseased 

Total Population (N) 
 

=  TP + FN =   a + c  . 
TP+FN+FP+TN a + b + c + d 

 
•  Equivalent names: 

•  prior probability, the likelihood of disease, prior belief, prior 
odds, pre-test probability, and pre-test odds. 

 

 
•  So what? Why is this so important? 
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Fig 10. The PVP and PVN of D-dimer whole blood assay (SimpliRED 
assay) for DVT (Ref: Wells PS, Circulation, 1995). Prevalence = 5% 
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POS (T+) 
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NEG (T-) 1 156 PVN = 156/157 
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Importance of Prevalence or Prior Probability 
 

•  Has a dramatic influence on predictive values 
 

 
•  Prevalence can vary widely from hospital to hospital, 

clinic to clinic, or patient to patient 
 
 

•  The same test (meaning the same Se and Sp) when 
applied under different scenarios (meaning different 
prevalence's) can give very different results (meaning 
different PVP and PVN!) 

 
•  N.B. Prior probability represents what the clinician 

believes (prior belief or clinical suspicion) 
•  set by considering the practice environment, patients history, 

physical examination findings, experience and judgment etc 
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    Fig 11. The PVP and PVN as a Function of 
    Prevalence for a Typical Diagnostic Test 
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Bayes’ Theorem 
 
 

•  Bayes’ theorem = a unifying methodology for 
interpreting clinical test results. 

 
 

•  Bayes’ formulae or equations are used to calculate 
PVP and PVN for any combination of Se, Sp, and 
Prev. 

 
 

•  PVP =  [Se . Prev] 
[Se . Prev] + [(1 - Sp) . (1 - Prev)] 

 
•  PVN =  [Sp . (1 - Prev)] 

[Sp . (1 - Prev)] + [(1 - Se) . Prev] 
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What is Bayes’ Theorem all about? 
It revises disease estimates in light of new test information 

 
 

Use of Bayes’ Formula 
 

After - test Before-test After + test 
 
 
 
 

0 0.5 
 

Probability of Disease 
1.0 
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Parallel testing 
 

•  Run tests simultaneously, 
•  Any positive test is a ‘positive’ result 
•  Increases Se, decreases Sp 
•  Helpful if none of the tests are very sensitive 

 
 

A + 
- 

B + 
- 

C + 
- Mathew J. Reeves 36 
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Serial testing 
 

•  Run tests sequentially 
•  Continue testing only if previous test positive 
•  Increases Sp, decreases Se 
•  Helpful if none of the tests are very specific 

 
 

A + B + C + 
- - - 

 
 
 
 
 

Mathew J. Reeves 37 
© Dept. of Epidemiology, MSU 

 
 
 
 
 
 
 
 
 

Summary 
I. Test Operating Characteristics 

 
 
 

Also 
Called 

Derived 
From 

Useful 
Result 

Most 
Affects 

 
 

Sensitivity true positive rate patients 
with 
disease 

n negative Negative 
predictive 
value 

 
 

Specificity true negative 
rate 

patients 
without 
disease 

p positive Positive 
predictive 
value 
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II. Testing Situations 
 
 

Likely disease 
prevalence 

Ne Need good.... Use a test which is... 

 
 
 

Rule Out low Negative predictive 
value 

Sensitive 

 
 
 

Rule In high Positive predictive 
value 

Specific 
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EPI-546: Fundamentals of Epidemiology and Biostatistics 
 

Course Notes - Clinical Testing 
 

Mat Reeves BVSc, PhD 
 
Objectives 
 
1.   To understand the concept of ‘testing’ 
2.   Construct a 2 x 2 table for a diagnostic test 
3.   Understand the concept of the ‘gold’ (reference) standard 
4.  To define, calculate, interpret and apply sensitivity (Se) and specificity (Sp) 
5.   To understand the inherent tradeoff in Se and Sp, 
6.   To understand the construction and interpretation of the ROC curve 
7.   To define, calculate, interpret and apply predicted values (PVP and PVN) 
8.   The understand the role and importance of Prevalence on predictive values 
9.   The concept of Bayes’ theorem (probability revision) 
10.  To understand the application of parallel and serial testing 

 
Outline: 
I. Clinical Testing 
II. Clinical Test Characteristics 

A.  Sensitivity (Se) and Specificity (Sp) 
B.  Example Clinical Problem - Deep Vein Thrombosis 
C.  Trade-off between Se and Sp 
D.  ROC curves 

III. Prevalence and Predictive Values 
IV. Using Bayes’ theorem to calculate predictive values 
V. Multiple testing strategies 
 
I. Clinical Testing (Diagnostic Strategies) 

Diagnosis is the process of discovering a patient’s underlying disease by ascertaining the 
patient’s signs and symptoms, choosing appropriate tests, interpreting the results and 
arriving at (hopefully correct) conclusions.  This is often a highly complicated process and 
the manner in which experienced clinicians arrive at a diagnosis is not well understood. 

 
Hypothetico-deductive reasoning refers to the diagnostic strategy that nearly all clinicians use 
most of the time. It is defined as the formulation from the earliest clues, of a short list of 
potential diagnoses or actions, followed by the performance of those clinical and laboratory 
tests that best reduce the length of the list to come up with a final diagnosis. The list of 
possibilities is reduced by considering the evidence for and against each, discarding those 
which are very unlikely and conducting further tests to increase the likelihood of the most 
plausible candidates. The process as used by experienced 
clinicians can be described in the following steps: 
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1. Formulate explanations (hypotheses) for the patient=s primary problem. 
2. First consider those explanations that are most likely and/or those that are 

 particularly harmful to miss (e.g., cerebral aneurysm for headache). 
3. Simultaneously rule-out those that would be particularly harmful or catastrophic and 

try to rule-in those that are considered to be most likely. 
4. Continue until the candidate list of explanations is shortened (i.e., 2-3) and/or one 

candidate disease is identified as having a very high likelihood (i.e., > 90% sure). 
 
II. Clinical Test Characteristics 
 

A.  Sensitivity and Specificity 
In clinical testing parlance a diagnostic test can be applied to any piece of clinical 
information whether obtained from the patient's history, the physical examination or use 
of diagnostic procedures such as radiography or electrocardiography. 
To aid our discussion we will assume, initially, that both the disease and the diagnostic 
test have only two levels.  So, the disease is either present (D+) or absent 
(D-) and the test is either positive (T+) (i.e., the test indicates that disease is present) 
or negative (T-) (i.e., the test indicates that the disease is absent). 

 
There are 4 possible interpretations of these test results, two of which are correct - true 
positive (TP) and true negative (TN) and two of which are incorrect - false positive (FP) 
and false negative (FN). The relationship between these 4 test results is typically shown 
in the form of a two-by-two table (Figure 1). 

 
Figure 1.  Relationship between a Dichotomous Test Result and Disease Status 

 
DISEASE STATUS 

 
PRESENT  (D+)  ABSENT  (D-) 

 
 

POSITIVE  (T+) 
 

TEST RESULT 

TP FP 

a b c  d 
 

NEGATIVE  (T-) FN TN 
 

 
 

Note that because of the inherent variability in biological systems there is no perfect test - 
false positive and false negative results always occur.  The interpretation of diagnostic test 
results is essentially concerned with comparing the relative frequencies of the two 
incorrect results - the FNs and FPs to the two correct results - the TPs and TNs. 

 
While some diagnostic tests results are inherently either positive or negative, for many 
common diagnostic tests the results are expressed on a continuous scale.  In such cases, 
it is common to divide the continuum of values into either ‘abnormal’ or 
‘normal’ findings, where ‘abnormal’ means a test measurement that is indicative of 
having disease, and ‘normal’ means indicative of not having disease.  The point at 
which values are determined to be either normal or abnormal is called the cut-point. 
Tests will seldom be perfect in separating out diseased from non-diseased patients - 
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virtually all have some overlap between the two populations, as illustrated in Figure 
2. 

 
Figure 2.  Results for a Typical Diagnostic Test Illustrating the Overlap between 
Diseased (D+) and Non-diseased (D-) Populations 

 
 
 

Cut -point 
= FP 

= FN 
 

D - 
D+ 

 
 

TN     TP 
 

T -  T + 
Diagnostic test result (continuous) 

 
 

To the extent that the two populations have similar measurements the test will not be 
able to discriminate between them.  Conversely, the less the extent of overlap between 
the diseased and non-diseased populations the greater the discriminatory power of the 
test.  The degree of overlap is therefore a measure of the test effectiveness and it is this 
that both sensitivity (Se) and specificity (Sp) quantity. 

 
When reading an article about a diagnostic test, the presence or absence of disease has 
to be determined using some other source of information known as the "gold standard".  
The gold standard may involve obtaining a culture or biopsy, performing an elaborate 
diagnostic procedure such as a CAT scan, confirming the presence or absence of disease 
at surgery or post-mortem or simply determining the response to treatment or the results 
of long-term follow up. 

 
Sensitivity:  Sensitivity (Se) is defined as the proportion of individuals with disease that 
have a positive test result, or 

 
Se =    True Positives   =    TP    =   a 
 True Positives + False Negatives TP + FN a + c 

 

Se is the conditional probability of being test positive given that disease is present, or Se 
= P(T+ | D+).   Se is also referred to as the true-positive rate.  Note that Se is calculated 
solely from diseased individuals. 

 
Specificity: Specificity (Sp) is defined as the proportion of individuals without 
disease that have a negative test result, or 

 
Sp =    True Negatives   =    TN     =    d 

True Negatives + False Positives TN + FP d + b 
 

Sp is the conditional probability of being test negative given that disease is absent, or 
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Sp = P(T-|D-).   Sp is also referred to as the true-negative rate.  Note that Sp is 
calculated solely from non-diseased individuals. 

 
B.  Example Clinical Problem - Deep Vein Thrombosis 

Deep vein thrombosis (DVT) is a condition of active thrombosis in the deep venous 
system of one or both lower extremities that can lead to significant complications of 
pulmonary embolism, chronic venous insufficiency, and possibly death. The presence 
or absence of clinical signs and symptoms (pain, tenderness, swelling and 
edema) do not correlate well with the presence or absence of DVT. The gold standard 
diagnostic test is ascending functional venography, which at proficient centers, provides 
adequate visualization of the venous system in 95-98% of patients.  The test is not perfect 
and can produce occasional false positive results.  A negative or normal study however, 
virtually confirms that the patient is free of disease.  There is a 2-4% risk of the procedure 
actually inducing DVT in patients who were originally free of the condition.  Because of 
the technical requirements of venography, the fact that it is an imperfect, and that it is 
associated with some complications, other non-invasive techniques have been developed. 

 
One such non-invasive test is the D-dimer assay. D-dimer is a specific degradation 
product of cross-linked fibrin and is therefore a marker of endogenous fibrinolysis (which 
would be expected to be elevated in the presence of a DVT). Several studies have shown 
that D-dimer assays have high Se but have only moderate Sp.  The example data we will 
use (Figure 3) is from a Canadian study (Wells PS et al, Circulation 1995;91:2184-87) of 
214 patients seen at two hospitals, all of whom had a whole blood assay for D-diner 
(SimpliRED) and underwent the gold standard test of contrast venography. The test 
characteristics were Se = 89% [95% CI = 77-96%], and Sp = 77% [95% CI = 63-80%]. 

 
Figure 3.  Se & Sp of D-dimer whole blood assay (SimpliRED) for DVT (Ref: Wells 
PS, Circulation, 1995) 

 
DVT 

 
PRESENT (D+)  ABSENT (D-) 

 
 

POS (T+) 
 

D- dimer test 

47  37  84 
 

a b c  d 
NEG (T-) 6  124 130 

 
 

Se = 47/53 
= 89% 

Sp = 124/161 
= 77% 

214 

 
Clinicians need to take into account the inherent attributes of a test (i.e., its Se and Sp) 
before a test is selected and used.  Since no test is perfect (i.e., 100% sensitive and 
100% specific), the usefulness of a particular test will depend on what information the 
clinician wants to get from it. 
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Tests with High Sensitivity 
 

For a perfectly sensitive test (i.e., Se = 100%), all diseased patients test positive - 
there are no false negative results (the false negative rate is zero) (Figure 4).  Note that 
all test negative patients are disease free but that in this example, a sizeable proportion 
of the disease-free population test positive (= false positive). 

 
A perfectly sensitive tests almost never exists, more typically we are interested in tests 
that have a high sensitivity (i.e., > 90%).  Here, false negative results among diseased 
individuals are few in number - the vast majority of test negative patients are disease free. 
Highly sensitive tests are most useful to rule-out disease because if the test is negative 
you can be confident that disease is absent since FN results are rare. 

 
Figure 4.  Example of a Perfectly Sensitive Test (no FN’s)  

 
 
 

Cut -point 
= FP 

 
 

D - 
D+ 

 
 

TN  TP 
 
 

T - T + 
Diagnostic test result 

 
It is important to understand that a highly sensitive test does not tell you if disease is 
present, despite the fact that Se is calculated using only diseased individuals and that 
nearly all of these patients test positive!  This is because Se provides no information 
regarding the number (or rate) of false positive results - this information is provided by 
the Sp of the test. 

 
A highly sensitive test is therefore most helpful to a clinician when the test result is 
negative, because it rules out disease, whereas the interpretation of a positive result will 
depend on the rate of false positive results (see Specificity). 

 
SnNout is a mnemonic designed to indicate that if a sign, symptom or other diagnostic 
tests has a sufficiently high Sensitivity, a Negative result rules out disease. 

 
There are three clinical scenarios when tests with high sensitivity should be selected: 

 
1) in the early stages of a work-up when a large number of potential diseases are 
being considered.  If the test has a high Se, a negative result indicates that a 
particular disease is very unlikely and it can therefore be dropped from 
consideration (i.e., ruled out). 
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2) when there is an important penalty for missing a disease.  Examples include 
tuberculosis and syphilis, which are dangerous but treatable conditions. We 
would not want to miss these cases, hence we want a test that has a low number of 
false negative results (i.e., a highly Se test). 

 
3) in screening tests where the probability of disease is relatively low (i.e., low 
disease prevalence) and the purpose is to discover asymptomatic cases of disease. 

 
Table 1.  Examples of Tests with High Sensitivities 

 
 

Patients with this 
disease/condition 

 

... will have this test result..... 
 

... X % of 
the time 

 

Duodenal ulcer 
 

History of ulcer, 50+ yrs, pain relieved by 
eating or pain after eating 

 

95% 

 

Favourable 
prognosis 
following non- 
traumatic coma 

 

Positive Corneal reflex 
 

92% 

 

High intracranial 
pressure 

 

Absence of spont. pulsation of retinal veins 
 

100% 

 

Deep vein 
thrombosis 

 

Positive D-dimer 
 

89% 

 

Pancreatic cancer 
 

Positive endoscopic retrograde cholangio- 
pancreatography (ERCP) 

 

95% 

 
Tests with High Specificity 

 
For a perfectly specific test (i.e., Sp = 100%), all non-diseased patients test negative - 
there are no false positive results (the false positive rate is zero) (Figure 5).  Also note that 
all test positive patients have disease but that in this example, a sizeable proportion of the 
diseased population test negative (= false negative). 

 
Again, a perfectly specific tests almost never exists, more typically we are interested in 
tests that have a high specificity (i.e., > 90%).  Here, false positive results among non-
diseased individuals are few in number, so the vast majority of test positive patients 
have disease.  Highly specific tests are most useful to rule-in disease, because if the test 
is positive you can be confident that disease is present since false positive results are 
rare. 
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Figure 5.  Example of a Perfectly Specific Test (no FP’s) 
 
 
 
 

Cut -point 
= FN 

 
 

D - 
D + 

 
 

TN TP 
 

T -  T + 
 

Diagnostic test result 
 

It is important to understand that a highly specific test does not tell you if disease is 
absent, despite the fact that Sp is calculated using only non-diseased individuals and 
that nearly all of them test negative. This is because Sp provides no information 
regarding the number (or rate) of false negative results - this information is provided by 
the Se of the test. 

 
SpPin is a mnemonic designed to show that if a sign, symptom or other diagnostic 
tests has a sufficiently high Specificity, a Positive result rules in disease. 

 
A highly specific test is therefore most helpful to a clinician when the test result is 
positive, since it rules-in disease.  There are two clinical scenarios when tests with 
high specificity should be selected: 

 
1) to rule-in a diagnosis that has been suggested by other tests - specific tests are 
therefore used at the end of a work-up to rule-in a final diagnosis e.g., biopsy, 
culture, CT scan. 

 
2) when false positive tests results can harm the patient physically or emotionally. For 
example, the confirmation of HIV positive status or the confirmation of 
cancer prior to chemotherapy.  A highly specific test is required when the 
clinician wants to be absolutely sure that a condition is present. 
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Table 2.  Examples of Tests with High Specificities 
 

 

Patients without this 
disease/condition 

 

... will have this test result..... 
 

... X % of the 
time 

 

Alcohol dependency 
 

No to 3 or more of the 4 CAGE 
questions 

 

99.7% 

 

Iron-deficiency anemia 
 

Negative serum ferritin 
 

90% 
 

Breast cancer 
 

Negative fine needle aspirate 
 

98% 
 

Strep throat 
 

Negative pharyngeal gram stain 
 

96% 
 
C.  Trade-off Between Sensitivity and Specificity 

 
Because there is no such thing as a perfect test (a test that has no FP or FN results) there is 
an inherent trade-off between sensitivity and specificity.  For clinical test results that have 
a continuous scale of measure, the location of the cut-point (the point on the continuum 
that divides normal and abnormal) is arbitrary and can be modified according to the 
purposes of the test.  For example, in Figure 6 below, we can see that if the cut-point is 
made lower (i.e., moved to the left) there will be less FN results but more FP results - 
therefore Se will be increased at the expense of Sp.  Figure 4 shows the extreme of this 
scenario, where the cut-point has been lowered to make Se = 
100% at the expense of Sp.  Conversely, Figure 5 shows the other extreme where the cut-
point has been increased (moved to the right) to maximize Sp at the expense of Se. The 
trade-off between Sp and Se cannot be avoided and points to the fact that the ideal cut-
point depends on what the purpose of the test is.  A Receiver Operator Characteristic 
(ROC) Curve is a graphical way of illustrating the trade off between Se and Sp for 
various cut-points of a diagnostic test. 

 
Fig 6.  Trade-off: Lowering the Test Cut-point Increases Se but Decreases Sp 
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D - 
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C. Receiver Operator Characteristic (ROC) Curves 
 

There are two main uses of the ROC curve – to compare the accuracy of two or more 
tests, and to show the trade off between the Se and Sp as the cut-point is changed. 

 
The ROC curve is constructed by plotting the sensitivity (or true positive rate) against the 
false positive rate (1 - Specificity), for a series of cut-points as illustrated in Figure 7 below 
which evaluates the utility of creatine kinase (CK) to diagnose acute myocardial infarction. 

 
Figure 7.  An Example Receiver Operator Characteristic Curve (The Accuracy of the CK 
Test in the Diagnosis of Myocardial Infarction) 

 
The ROC curve is a good way of comparing the usefulness of different tests.  The higher 
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the sensitivity and specificity of a test the further the curve is pushed up into the top left 
hand corner of the box.  Tests which discriminate best lie "further to the north-west", 
because they have both low FN rates (indicated by high Se) and low FP rates (indicated by 
a high Sp) (See Figure 3.5 in FF for an example of such a figure). 

 
A test that has no discriminating ability has equal TP and FP rates which is indicated by the 
diagonal straight line in the above figure.1   The ability of different tests to discriminate 
between diseased and non-diseased individuals can be quantified by calculating the Area 
Under the ROC Curve (AUROCC), which varies from 0.5 (no discriminating ability) to 1.0 
(perfect accuracy). 

 
1 This is equivalent to a likelihood ratio (LR) of 1.0 (we will discuss LRs in Epi-547). Note that the 

slope of the ROC curve (i.e., the ratio of the TP Rate to the FP Rate) for any given cut-point is the 
likelihood ratio. 
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The ROC curve is also helpful in deciding on the best cut-point for a particular test. The 
choice of best cut-point is influenced by the likelihood of disease (i.e., its prevalence) and the 
relative costs (or risk-benefit ratio) associated with errors in diagnosis - both false positive 
and false negative.  Advanced statistical decision theory can be applied to determine the 
optimal operating position on the ROC curve for a given test (the details of which are beyond 
this course), however, we can use the following intuition to understand the basic principle: 

 
If the cost of missing a diagnosis (a false negative result) is high compared to the cost of 
falsely labeling a healthy individual as diseased (a false positive result), then one would 
want to operate along the horizontal part of the curve (e.g., a cut-point of 60 
CK units in Figure 7), since at this point FN results are minimized at the expense of FP 
results.  A CK cut point of about 60 therefore maximizes sensitivity (i.e., ~90%) while 
providing reasonable specificity (i.e., ~50%) 

 
On the other hand, if the cost of falsely labeling a healthy person as diseased (a false 
positive result) is high compared to the cost of missing a diagnosis (a false negative 
result), then one would want to operate along the vertical part of the curve (e.g., a cut- 
point of 320 CK units in Figure 7), since at this point FP results are minimized.  A 
CK cut point of 320 therefore maximizes specificity (i.e., ~99%) while providing 
moderate sensitivity (i.e., ~40%) 

 
III. Prevalence and Predictive Values 

While Sensitivity and Specificity are important concepts to understand they, 
unfortunately, don't tell the full story of clinical testing. In terms of conditional 
probabilities Se and Sp can be defined as: 

 
Se = P(T+|D+) Sp 

= P(T-|D-) 

The problem is that these measures can only be calculated if the true disease status is known 
i.e., they are "conditional" on the disease status being either positive (for Se) or negative (for 
Sp). However, the clinician is using a test precisely because the true disease status of the 
patient is unknown! The clinician wants to know the conditional probability of disease given 
the test result e.g., P(D+|T+), hence Se and Sp are apparently not much use! 

 
In order to use diagnostic test data to infer the true disease status of a patient, the clinician 
needs to understand the concepts of predictive values and prevalence: 
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Predictive Value Positive (PVP): Predictive value positive is the probability of disease in a 
patient with a positive (abnormal) test. 

 
PVP =     True Positives   =    TP   =   a 

True Positives + False Positives TP + FP a + b 
 
PVP is the conditional probability of being diseased given that the test was positive, or PVP = 
P(D+|T+).  Note that Sp and PVP are "linked" in that they both provide information on the FP 
rate.  A highly specific test helps to rule-in disease because PVP is maximized. 

 
Predictive Value Negative (PVN):  Predictive value negative is the probability of not 
having disease when the test result is negative (normal). 

 
PVN =     True Negatives   =   TN   =   d 

True Negatives + False Negatives TN + FN d + c 
 

PVN is the conditional probability of not being diseased given that the test was negative, or 
PVN = P(D-|T-).  Note that Se and PVN are "linked" in that they both provide information 
on the FN rate.  A highly sensitive test helps to rule-out disease because PVN is maximized. 

 
From a clinical standpoint, we are actually more interested in the complement of the PVN or 
1 – PVN. This measure, which can also be expressed as P(D+|T-), tells the clinician what the 
probability is of having the disease despite testing negative (i.e., the rate of false negative test 
results among all negative test results). A high PVN means that there are 
few false negative results among all test negative results, so an alternative diagnosis 
should be sought. 

 
Prevalence: Prevalence simply represents the proportion of the total population tested that 
have disease, or 

 
P =  Total Number of Diseased  =   TP + FN    =    a + c 

Total Population (N) TP+FN+FP+TN a + b + c + d 
 
Prevalence is very important since it has a dramatic influence on predictive value positive and 
negative.  Prevalence is the "third force" - it is the player that often goes unnoticed only to 
reveal its influence in dramatic fashion! Other equivalent names for prevalence include the 
likelihood of disease, prior probability, prior belief, prior odds, pre-test probability and pre-
test odds. 

 
Lets go back and look at the example of D-dimer testing and DVT: 
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Figure 8.  The PVP and PVN of D-dimer whole blood assay (SimpliRED assay) for DVT 
(Ref: Wells PS, Circulation, 1995) Prevalence = 25% 

 
DVT 

 
PRESENT (D+)  ABSENT (D-) 

 
 

POS (T+) 
 
 
 
 

NEG (T-) 

 
47  37 

 
a b c  d 

6  124 

PVP = 47/84 
= 56% 

 
 
PVN = 124/130 

= 95% 
 

 
N = 53  N = 161  N = 214 

 

Se = 89%  Sp = 77% 
 
From this 2-by-2 table, we can calculate the PVP as 47/84 = 56% and the PVN as 
124/130 = 95%.  So, if the test is positive we are only 56% sure that the patient has the 
disease (about as sure a tossing a coin), whereas if the test is negative we are 95% sure that 
the subject is disease free.  Obviously this test is extremely good for ruling out DVT but 
practically worthless at ruling in DVT! The other important piece of information to note is 
the high prevalence of disease in this population i.e., 53/214 = 25%. 

 
The prevalence of DVT in this population was very high, since this group of patients had 
been admitted to one of 2 Hamilton, Ont., area referral hospitals participating in this research 
project. Now lets look at the situation that a community-based physician might face. In a 
typical community-based hospital, the prevalence of DVT in a group of patients complaining 
of leg pain and swelling is likely to be lower.  For illustration, lets say its 
5%.  The primary care physicians at this community-based hospital are very excited to try out 
the new test that performed so well in Hamilton.  The hospital used the same D-dimer test in 
another 214 sequential patients with clinical signs consistent with DVT.  The Se and Sp of the 
test are still the same (i.e., 89% and 77%, respectively).  The results 
obtained are shown below: 

 
Figure 9. The PVP and PVN of D-dimer whole blood assay (SimpliRED assay) for DVT 
(Ref:  Wells PS, Circulation, 1995). Prevalence of DVT = 5% 

 
DVT 

 
PRESENT (D+)  ABSENT (D-) 

 
 

POS (T+) 
 
 
 

NEG (T-) 

 
10  47 

 
a b c  d 

1  156 

PVP = 10/57 
= 18% 

 
 
PVN = 156/157 

= 99.4% 
 

N = 11  N = 203  N = 214 
 

Se = 89%  Sp = 77% 
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The physicians are surprised to find out that only 18% of the patients who tested positive 
actually had DVT. Explanation?.... The lower disease prevalence meant that proportionally 
more patients were placed in the disease absent column (cells b and d), while fewer patients 
were placed in the disease present column (cells a and c).  So, in the above example, 5% of 
the 214 subjects (i.e., 11) were put in the disease present column, while 203 were put in the 
disease absent column. Although the Sp remained at 77%, the 
23% FP rate meant that 47 of the 203 patients that did not have DVT had FP results (cell b).  
The Se also remained the same (89%), so 10 of the 11 patients that had DVT tested positive 
(cell a).  The PVP is lower because the relative size of cell a compared to cell b is now much 
smaller. 

 
One will also note from this example that PVN increased with the lower prevalence - 
again this is a result of the change in relative sizes of cells c and d.  The influence of 
prevalence on PVP and PVN is demonstrated in the following figure: 

 
Figure 10.  The PVP and PVN as a Function of Prevalence for a Typical Diagnostic Test 
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The effect of prevalence can be summarized as follows: 

 
As prevalence falls, positive predictive value must fall along with it, and negative 
predictive value must rise.  Conversely, as prevalence increases, positive predictive 
value will increase and negative predictive value will fall. 
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IV. Bayes’ theorem - the calculation of predictive values for any combination of Se, Sp 
and Prevalence values using a 2 x 2 table 

 
Bayes theorem is essentially the process by which disease probabilities are revised in face of 
new test information. We will learn much more about the application of Bayes 
theorem in diagnostic testing in Epi-547, but for now our task is to be able to calculate 
predictive values for any combination of Se, Sp and prevalence values using a 2 x 2 table. A 
step-by-step approach (using an example with Se = 90%, Sp = 80% and prevalence = 
10%) follows: 

 
1.   First pencil out a 2 x 2 table with disease status (present or absent) along the top 

(columns) and test status (positive or negative) along the left-hand side (or rows). 
2.   Next fix the total number of subjects (N) to be included in the table. You can use any 

number but obviously it makes it easier to use a whole number such as 100 or 
1000. Lets pick 1,000. 

3.   Now calculate the expected number of diseased individuals by applying the disease 
prevalence rate of 10% to the 1,000 subjects (= 100), and place them at the bottom 
of the left hand (disease +) column. 

4.   Place the 900 disease-free subjects at the bottom of the right hand column. 
5.   Calculate the number of subjects in the top left cell (cell “a”) by multiplying 100 by 

the sensitivity (i.e., 0.90 x 100 = 90) and place the remaining 10 in the lower left cell 
(cell “c”) – these are the false negative subjects. 

6.   Likewise use the Sp of 80% and the 900 subjects to calculate the numbers of 
subjects in cells “b” and “d” (180 and 720, respectively) 

7.   Now use the top row (cells a and b) to calculate the PPV (90/270 = 33%) 
8.   And use the lower row of cells (cells c and d) to calculate the PVN (720/730 = 

98.6%). (N.B. you can also calculate PVP and PVN directly using the two Bayes’ 
equations shown in the lecture). 

9.   Your table should look like below. 
10. Practice doing this using the table of Se, Sp and Prevalence values on D2L. 

 
Disease 

 
PRESENT (D+)  ABSENT (D-) 

 
 

POS (T+) 
 
 
 

NEG (T-) 

 
90 180 

 

a b c  d 
10 720 

PVP = 90/270 
= 33% 

 
 
PVN = 720/730 
= 98.6% 

 
N = 100 N = 900 N = 1000 

Se = 90% Sp = 80% 
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V. Multiple testing strategies 
 

Diagnostic tests that have sufficiently high sensitivity and specificity that they can 
simultaneously “rule out” and “rule-in” are very rare. Generally the physician has access to 
an array of imperfect tests. However, armed with a good understanding of these diagnostic 
test principles and Bayes’ theorem, she will be able to squeeze out more information from 
the available tool box by combining tests. There are two ways of doing this: 

 
Parallel testing 
This describes the situation where several test are run simultaneously (i.e., a panel of tests) 
and any one positive test leads onto further evaluation (see Figure 3.12 in FF). The net effect 
is to increase the likelihood of detecting disease, so sensitivity increases (because there are 
multiple opportunities for a positive test result), as does PVN. However, as is always the case, 
there is a price to pay - the probability of false positive results increases - so both specificity 
and PVP decline. Parallel testing is typically used in the early phases of the work up where 
you are trying to quickly rule out several 
conditions – by running a panel of related tests - if they all come back negative - then the 
condition(s) can be “ruled out” (think SnOut – parallel testing  maximizes Se and so PVN is 
maximized).  However, when using this strategy a positive test means little (other than more 
testing is required) because the increase false positive results in lower PVP. The parallel 
testing strategy can be easily abused by using it as a screening tool for “anything and 
everything”. This approach, often favoured by neophyte interns and residents, is very costly, 
highly inefficient, dangerous to the patient (who has to undergo unnecessary follow-up tests 
because of the false positive results), and is ultimately bad medicine. As explained in the FF 
text (page 53-55) this strategy works best when a highly sensitive test strategy is required but 
you are armed with 2 or more relative insensitive tests. If these tests measure different clinical 
phenomenon (i.e., they provide independent information), then combining them in parallel 
maximizes your chance of identifying diseased subjects. 

 
Serial testing 
This describes the situation where several tests are run in order or series and each subsequent 
test is only run if the first test was positive (see Figure 3.12 in FF). In this approach any 
negative test leads to the suspension of the work-up. The net effect is to increase specificity 
and PVP because each case has to test positive to multiple tests (so false positives are rare). 
However, again there is a price to pay - the probability of false negative results increases so 
sensitivity declines as dose PVN. Serial testing is typically used when one wants to be sure 
that a disease is ruled in with certainty, and there is no rush to do so. It is also used when a 
particular definitive test is expensive, difficult, or invasive – to avoid over-using such a test, a 
cheaper and/or less invasive test is run first and only those testing positive go on to have the 
definitive test. An example would be the use of a colonoscopy following a positive fecal 
occult blood test. Finally, the use of serial independent tests is a great example of the logic of 
Bayes’ theorem to revise 
probabilities. The results of the first test are used to provide the pre-test probability for the 
second test - see Fig 3.13 in FF which shows an example using likelihood ratios (a topic 
for Epi-547). 
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Objectives - Concepts 
 
 

• 1. Primary (1o), Secondary (2o), and Tertiary (3o) prevention 
•       2. Population-level vs. individual-level prevention 
• 3. Screening (secondary prevention) 

•   Mass screening vs. case-finding 
• 4. Screening concepts 

•   Pre-clinical phase, lead time, test Se & Sp, importance of trials, 
DSMR 

• 5. Screening Biases (Observational studies) 
•   Lead-time, Length-time, and Compliance 

• 6. Assessing the feasibility of screening 
• 7. Risks (Harms) vs. Benefits 
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Objectives - Skills 
 
 

•  1. Identify examples of 1o, 2o, and 3o prevention 
 
 

•  2. Communicate the pros and cons of screening 
 
 

•  3. Explain the importance of selection bias, lead-time 
and length-time bias in screening programmes 

 

 
•  4. Understand how to evaluate the efficacy of 

screening (trials) 
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 Primary (1o) Prevention 
 

 
•  Defn: the protection of health by personal and 

community-wide efforts with a focus on the whole 
population 

 
 

•  Objectives: 
•  To prevent new cases of disease occurring and therefore 

reduce the incidence of disease 
 

•  Where and How?: 
•  Population-level 

 
•  Individual level 
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  1o Prevention @ Population-level 
 
 

•  By reducing exposure to causal (risk) factors 
– e.g., reducing smoking initiation in teenagers 

 
•  By adding a factor that prevents disease 

– e.g., vaccination, water fluoridation 
 

•  Usually requires policy and/or legislation 
– Smoking = tobacco taxes, restrictions on smoking indoors 
– Physical activity = structural changes to the environment 

•  sidewalks, walking paths, bike lanes (Town planning) 
 

•  Primary prevention at the population-level works best 
when it is driven by changes in societal attitudes 

– e.g., drinking and driving, bikes lanes 
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  1o Prevention @ Individual-level 
 
 

•  By removing or lowering risk factors in at-risk patients 
•  Occurs at the patient-physician level 
•  Rationale behind the periodic health exam (PHE) 

– e.g., smoking cessation counseling 
– e.g., risk factor screening in at-risk patients (BP, BC, Physical 

inactivity, abdominal obesity) 
 

•  Distinction between primary prevention and 
secondary prevention hinges on the presence of 
existing disease 

– Primary prevention = no existing disease 
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Secondary (2o) Prevention 
 

•  Defn: measures available for the early detection and 
prompt treatment of health problems 

 
 

•  Objectives: 
•  To reduce the consequences of disease (death or morbidity) by 

screening asymptomatic patients to identify disease in its early 
stages and intervening with a treatment which is more effective 
because it is being applied earlier. 

•  It cannot reduce disease incidence 
 

 
•  Where and how do we screen?: 

•  Population-level or mass screening 
 

•  Individual-level screening or case finding 
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 Screening – two different approaches 
 
 

•  Population-level screening 
•  National level policy decision to offer mass screening to a 

whole sub-group of a population 
– e.g., mammography screening (women 40+) 
– e.g., Vision and hearing screening of all Michigan 2nd graders 

 

 
•  Individual-level screening 

•  Occurs at the individual patient-physician level 
•  Also refereed to case finding 

– e.g., BP screening every time you visit MD 
– e.g., PSA screening 

•  Also a component of the PHE. 
•  Focus is on identifying existing disease in patients who don’t 

know they have it. 
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 Tertiary (3o) Prevention 
 

•  Defn: measures available to reduce or eliminate long- 
term impairments and disabilities, minimize suffering, and 
promote adjustments to irremediable conditions 

 
 

•  Objectives: 
•  To reduce the consequences of disease (esp. complications and 

suffering) by treating disease and/or its direct complications in 
symptomatic patients. 

 
•  A proactive approach to medical care 

•  may involve rehabilitative and/or palliative care 
 

•  Examples 
– education about disease management (asthma) 
– regular foot exams in diabetics 
– pain management inMhatohsewpiJc. eRepevaetsi,ePnhDts 9 

© Dept. of Epidemiology, MSU 
 
 
 
 
 
 
 
 
 

Example - Fire Prevention 
 
 

•  Primary (prevent fires from starting) 
•  Education (Smokey the Bear) 
•  Outside fire bans (drought) 

 

 
•  Secondary (early detection) 

•  Smoke detectors 
•  Lookout towers 

 

 
•  Tertiary (reduce consequences) 

•  Fire brigades & smoke jumpers 
•  Fire resistant construction 
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Prevention – A Reality Check 
 

•  Very few preventive interventions are cost saving 
•  e.g., childhood vaccination, seatbelts 

 

 
•  Almost all preventive interventions – even those that 

work well - cost money!! 
•  e.g., Mam screening $40,000 per YLS 

 

 
•  Prof. Geoffrey Rose, 1992 

•  There is only one rationale to do prevention and that is 
ethical 
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 Prevention – A Reality Check 
 

•  Compared to the traditional clinical treatment 
(curative) approach, effective clinical prevention is 
hard to sustain because: 

 
 

•  Its much less effective (as measured by NNT) 
– NNT for 1 year statin use for stroke 1o prevention = >13,000 
– NNT for lifetime seatbelt use = 400 

 
 

•  Prevention Paradox: 
•  A measure that provides large benefit to the community may 

offer little to most individuals. 
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Screening - Introduction 
 
 

•   Objective: to reduce mortality and/or morbidity by early detection and 
treatment. 

 
• Secondary prevention. 

 
• Asymptomatic individuals are classified as either unlikely or 

possibly having disease. 
 

• Important distinction between mass or population-based 
screening and case finding. 

 
• The allure of screening brought on by new technology is almost 

irresistible….. 
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Screening - Introduction 
 
 

•  Effective screening involves both diagnostic 
and treatment components 

 
 

•  Screening differs from diagnostic testing: 
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I. Important Concepts in Screening 
 

The Pre-Clinical Phase (PCP) 
•  the period between when early detection by screening is 

possible and when the clinical diagnosis would normally 
have occurred. 

 
 
 

Pathology 
begins 

Disease detectable Normal Clinical Presentation 

 

 
 

Pre-Clinical Phase 
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 Pre-clinical Phase (PCP) 
 

•  Important to know PCP since it helps determine: 
•  Expected utility of screening 

– Colorectal cancer = 7-10 years 
– Childhood diabetes = 2-6 months 

•  Required minimal frequency of screening 
– Mam screening women 40-49 = 1-2 years 
– Mam screening women 50-69 = 3-4 years 

 
 

•  Prevalence of PCP indicates how much early disease 
there is to detect 

 
•  Prevalence of PCP is affected by: 

•  disease incidence, average duration of the PCP, previous 
screening, sensitivity of the test 

•  …..see concept of Prevalence pool (Lecture 3) 
Mathew J. Reeves, PhD 17 
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  Lead Time 
 
 

Lead time = amount of time by which diagnosis is advanced or 
made earlier 

 
Pathology 
begins 

Disease detectable Normal Clinical Presentation 

 
 
 
 

Lead Time 
 
 
 

Screen 
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Fig 1. Relationship between screening, pre-clinical 
phase, clinical phase and lead time 

 
 

(Survival = 2yrs) 
 
 
 
 
 
 
 
 
 

(‘Survival’ = 5yrs) 
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 Lead Time 
 
 

•  Equals the amount of time by which treatment is 
advanced or made “early” 

 
 

•  Not a theory or statistical artifact but what is expected 
and must occur with early detection 

 
 

•  Does not imply improved outcome!! 
 
 

•  Necessary but not sufficient condition for effective 
screening. 
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II. Characteristics of screening tests 
 

a) Sensitivity (Se) (Prob T+|D+) 
•  Defn: the proportion of cases with a positive screening test 

among all individuals with pre-clinical disease 
 

•  Want a highly Se test in order to identify as many cases as 
possible…… but there’s a trade off with…… 
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II. Characteristics of screening tests 
 

•  b) Specificity (Sp) (Prob T-|D-) 
•  Defn: the proportion of individuals with a negative screening test 

result among all individuals with no pre-clinical disease 
 
 

•  The feasibility and efficiency of screening programs is acutely 
sensitive to the PVP which is often very low due to the very 
low disease prevalence 

•  e.g., PVP of +ve FOBT for CR CA = < 10% 
 
 

•  N.B. Imperfect Sp affects many (the healthy), whereas an 
imperfect Se affects only a few (the sick) 
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 III. Evaluation of Screening Outcomes 
How do we know if screening is helpful? 

 
RCT 

• Compare disease-specific mortality rate (DSMR) 
between those randomized to screening and those 
not 

• Eliminates all forms of bias (theoretically) 
• But, problems of: 

–   Expense, time consuming, logistically difficult, 
contamination, non-compliance, ethical concerns, 
changing technology. 

• Can also evaluate screening programmes using 
Cohort and Case-control studies, but they are 
difficult to do and very susceptible to bias. 
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 The only valid measure of screening is… 
 

Disease-specific Mortality Rate (DSMR) 
 
 

the number of deaths due to disease 
Total person-years experience 

 
• The only gold-standard outcome measure for screening 
• NOT affected by lead time 
• when calculated from a RCT - not affected by compliance bias 

or length-time bias. 
• However, there can be problems with the correct assignment 

of cause of death (hence some researchers advocate using 
only all-cause mortality as the outcome). 
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    Example of a RCT reporting DSMR to measure  
    efficacy of FOBT screening on Colorectal CA 
    Mortality (Mandel, NEJM 1999) 
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 IV. Biases that effect screening studies 
 

•  Observational studies and especially survival data 
are acutely sensitive to: 

 
 

•  1. Compliance bias (Selection bias): 
– Volunteers or compliers are better educated and more health 

conscious – thus they have inherently better prognosis 
 

•  2. Lead-time bias 
– Apparent increased survival duration introduced by the lead time 

that results from screening. 
– Screen-detected cases survive longer event without benefit of 

early treatment (review Fig 2 in course notes). 
 

•  3. Length-time bias 
– Screening preferentially identifies slower growing or less 

progressive cases that have a better prognosis. 
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Length-time bias – cases with better 
prognosis detected by screening 

 
 

DX 
 

DX Worse Prognosis Cases 
 

DX 
 

DX 
 

X 
 

X 
Better Prognosis Cases 

 
X 

 
X 

 
SCREENING 
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 V. Pseudo-disease and Over-diagnosis 
 

 
•  Over-diagnosis 

•  Limited malignant potential 
•  Extreme form of length-biased sampling 
•  Examp: Pap screening and cervical carcinoma 

 
 

•  Competing risks 
•  Cases detected that would have been interrupted by an 

unrelated death 
•  Examp: Prostate CA and CVD death 

 
 

•  Serendipity 
•  Chance detection due to diagnostic testing for another 

reason 
•  Examp: PSA and prostate CA, FOBT and CR CA 
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Over-diagnosis – Effect of Mass Pap 
Screening in Connecticut (Laskey 1976) 

 
 Age-adj. Incidence Rate (per 100,000)  

Year In-situ Invasive To tal % In-situ 

1950-54 3.8 18.1 21.9 17 

1955-59 9.7 17.1 26.8 36 

1960-64 18.8 13.6 32.4 58 

1965-69 28.6 11.6 40.2 71 

1970-73 32.8 10.9 43.7 75 
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 VI. Assessing the feasibility of screening 
 

•  Burden of disease 
•  Effectiveness of treatment without screening 

•  Acceptability 
•  Convenience, comfort, safety, costs (= compliance) 

•  Efficacy of screening 
•  Test characteristics (Se, Sp) 
•  Potential to reduce mortality 

•  Efficiency 
•  Low PVP 
•  Risks and costs of follow-up of test positives 
•  Cost-effectiveness 

– Annual Mam screening (50-70 yrs) = $30 – 50,000 /YLS 
– Annual Pap screening (20-75 yrs) = $1,300,000 YLS 

•  Balance of risks (harms) vs. benefits 
Mathew J. Reeves, PhD 30 
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Feasibility 
 

• Three questions to ask before screening: 
 
 
 

•  Efficacy 
 
 

•  Effectiveness 
 
 

•  Cost-effectiveness 

•  Should we screen? (scientific) 
 
 
•  Can we screen? (practical) 
 
 

•  Is it worth it? (scientific, practical, 
policy, political) 
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EPI-546: Fundamentals of Epidemiology and Biostatistics 
 

Course Notes – Prevention 
 
 

Mat Reeves BVSc, PhD 

Objectives 

1.   Identify and distinguish between Primary (1o), Secondary (2o), and Tertiary (3o) prevention 
2.   Understand the difference between population-level vs. individual-level prevention and 

identify different examples 
3.   Understand the role of screening as a form of secondary prevention, and distinguish 

between mass screening and case-finding 
4.   Define, understand and apply the following key screening concepts: 

• Pre-clinical phase, lead time, test Se & Sp 
5.   Understand the importance of randomized trials and the role of the DSMR in determining the 

value of screening 
6.   Understand and identify the biases that occur in observational studies of screening: 

• Lead-time, Length-time, and Compliance 
7.   Understand and be able to apply the criteria used to assess the feasibility of screening 
8.   Understand the importance of balancing the harms versus benefits of screening at the 

individual and population level. 
 
Outline: 
 
I. Introduction 

II. Characteristics of disease (pre-clinical phase) 
III. Concept of lead time 
IV. Characteristics of screening tests 

A. Sensitivity  
B. Specificity  
C.  Yield 

V. Evaluation of the outcomes of screening 
A.  Study designs (methods) 
B.  Measures of effect 
C.  Biases 

VI. Pseudo-disease (Over-diagnosis) 
VII. Feasibility of screening (criteria for implementation) 
 
I. Introduction 

The goals of screening are to reduce mortality and morbidity (and/or avoiding expensive or 
toxic treatments).  Screening is a form of secondary prevention.  Screening is designed to 
detect disease early in its asymptomatic phase whereby early treatment then either slows 
the progression of disease or provides a cure.  The premise of screening is based on concept 
that early treatment will stop or retard progression of disease.  Screening therefore has both 
diagnostic and therapeutic components. 

 
Screening involves the examination of asymptomatic people who are then classified as 
either: 
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- Unlikely to have disease (TN or FN), or 
 

- Likely to have disease and therefore require further diagnostic evaluation. 

Screening is very different from diagnostic testing: 

Testing Screening 
Sick patients are tested Healthy, non-patients are screened 
Diagnostic intent No diagnostic intent 
Low to high disease prevalence Very low to low disease prevalence 

 
There are two fundamentally different types of screening: 

 
Mass or population-based screening is the application of screening tests to large, unselected 
populations e.g., mammography screening for breast cancer in women < 40 yrs of age. 

 
Case finding is the use of screening by clinicians to identify disease in patients who present for 
other unrelated problems e.g., blood pressure measurements. 

 
The format, organization, and intent of these two types of screening are fundamentally 
different. Mass screening requires a completely different organizational approach to 
successfully implement - involving policy makers, government, the medical community, and 
public health on a national basis. 

 
II. Characteristics of Disease 

For a disease to be a suitable candidate for screening it must have a sufficiently long pre- 
clinical phase.  Pre-clinical phase is defined as the period between when early detection by 
screening is possible and when the clinical diagnosis would usually have been made. 

 

 
 
 
 

Pathology begins  Disease detectable  Normal Clinical Presentation 
 
 
 
 
 
 

A.  Pre-clinical phase (PCP): 

Pre-Clinical Phase 

 
The point that a typical person seeks medical attention depends upon availability of 
medical care, as well as the level of medical awareness in the population.  An example of 
disease with a long pre-clinical phase that suggests screening might be useful is colorectal 
cancer (i.e., PCP = 7-10 years).  Diseases with a short pre-clinical phase are unlikely to be 
good candidates for screening e.g., childhood diabetes (weeks to a few months). 
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The prevalence of detectable pre-clinical disease in a population (and NOT the 
prevalence of disease itself) is a critical determinant of the potential utility of 
screening. The prevalence of pre-clinical disease is dependent upon: 

 
i incidence rate of disease 
ii.  average length (duration) of pre-clinical phase  
iii. recent screening (decreases prevalence) 
iv. detection capabilities of the test (greater sensitivity results in higher prevalence) 

 
III. Lead time 

Lead time is the interval from detection by screening to the time at which diagnosis would 
have been made without screening.  Lead time is the central rational of screening since it 
equals the amount of time by which treatment is advanced or made "early".  Lead time results 
in the longer awareness of the disease and does not necessarily imply any improved outcome 
(since after lead time has occurred early treatment must then be effective for screening to be 
beneficial).  Figure 1 illustrates this concept, in panel a (no screening), there are three cases at 
time zero who are already in the PCP i.e., in whom pathology has already started.  In panel b, 
screening is conducted at time 0 and ‘converts’ the PCP in these three subjects into lead time. 
Thus the disease is advanced 3 years, 2 years, and 1 year, respectively, in these 3 cases. 

 
Figure 1. Relationship Between Screening, Preclinical Phase, Clinical Phase and Lead Time 
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Lead time is not a theory or statistical artifact, it is what would be expected with early 
diagnosis and what must occur if screening is to be worthwhile (it is therefore a necessary but 
not sufficient condition for screening to be effective in reducing mortality). 
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Knowledge of the distribution of lead times is useful because it indicates the length of time by 
which detection and treatment must be advanced in order to achieve a level of improved 
mortality. It can also help suggest how often you should screen - for example, the 
estimated lead time for invasive colo-rectal cancer is 7-10 years. Thus guidelines suggest that 
an appropriate screening interval for sigmoidoscopy is every 5 years. 

 
IV. Characteristics of screening tests 
 

A.   Sensitivity: the proportion of cases with a positive screening test among all cases of 
pre-clinical disease. 

 
The target disorder is the pre-clinical lesion, not clinically evident disease.  Test operating 
characteristics maybe very different between the two.  Se is often first determined by 
applying tests to symptomatic patients, but screening Se is likely to be lower. For 
sensitivity to be accurately defined, all individuals who have the pre-clinical disease must 
be identified using an acceptable "gold standard" diagnostic test. However, the true disease 
status of individuals who have a negative screening test is impossible to verify, since there 
is no justification to do a full diagnostic work-up (this is an excellent example of 
verification bias). Usually, Se can only be estimated in screening studies by counting the 
number of interval cases that occur over a specified period (e.g., 12 months) in persons 
who tested negative to the screening test. These interval cases are regarded as false 
negatives (FNs). 

 
B.   Specificity: ability of screening test to designate as negative people who do not have 

pre-clinical disease. 
 

There is always an inherent trade-off between Se and Sp - as one increases the other must 
decline.  Note also that an imperfect Se affects a few (the cases), whereas an imperfect Sp 
affects many (the healthy!).  The FP rate (1 - Sp) needs to be sufficiently low for 
screening to be feasible, because the prevalence of pre-clinical disease is always low, thus 
the predictive value positive (PVP) will be low in most screening programs. (PVP is 
defined as the proportion of screen positive subjects who have pre- clinical disease i.e., 
TP/(TP + FP)). 

 
PVP can be improved by screening only high risk populations or using a lower frequency 
of screening (which increases prevalence of pre-clinical disease).  Because the prevalence 
of pre-clinical disease will fall in populations that are repeatedly screened, PVP will be 
expected to decline in a successful screening program making it increasingly inefficient. 

 
C.   Yield: the amount of previously unrecognized disease that is diagnosed and 

brought to treatment as a result of screening. 
 

Yield is affected by the Se of the screening test (a lower Se means that a smaller fraction 
of diseased individuals are detected at any screening), and the prevalence of pre-clinical 
disease in the population. A higher prevalence will increase the yield, thus aiming 
screening programs at high risk populations will increase its efficiency. 
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V. Evaluation of screening outcomes 
 

A.   Methods: 
Experimental:  Conduct a RCT of the screening modality and compare the disease- specific 
cumulative mortality rate between the groups randomized to screening or usual care 
(control). The randomized design is critical in eliminating confounding due to unknown 
and known factors, and in allowing a valid comparison (unaffected by lead time bias) 
between the two groups.   The RCT also allows one to study the effects of early treatment, 
to estimate the distribution of lead times, and identify prognostic factors. 

 
Problems:  Expense, time (many years before results are available by which time the 
screening technology has often changed logistical problems, ethical concerns. 

 
Non-experimental: 
I. Cohort - comparison of advanced illness or death rate between people who chose to be 

screened and those that do not. 
II.  CCS - comparison of screening history between people with advanced disease (or 

death) and those unaffected (healthy). 
III. Ecological - correlation of screening patterns and disease experience of several 

populations. 
 

Problems: 
I. Confounding due to "health awareness" (people who choose to get screened are 

more health conscious and have lower mortality). 
II.  Poor quality, often retrospective data. 
III. Difficult to distinguish screening from diagnostic examinations. 

 
B.   Measures of effect: 

 
1)  Comparison of survival experience (or duration) 
Important!!!  The efficacy of a screening program cannot be assessed by comparing the 
duration of survival of screen detected cases and cases diagnosed clinically. Despite the 
fact that this is commonly done, such analyses over-estimate the effect of screening 
because of the following three factors: 

 
i)   Selection bias - patients who choose to get screened are more health conscious, better 
educated and have an inherently better prognosis.  Selection bias can also occur when 
subjects decide to get screened because they have symptoms. 

 
ii) Lead-time Screen-detected cases will survive longer even without benefit of early 
treatment, simply because they are detected earlier! This is shown in Figure 2 - the average 
survival duration is increased from 1.3 years (with no screening - see panel a.) to 2.5 years 
(with screening - see panel b.) purely due to the fact that the 3 subjects with disease were 
identified earlier (i.e., survival is increased due to the lead time). 
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Figure 2. Effect of screening and effective treatment on survival duration and mortality rate 
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c)  Screening with reduction in MR 
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iii)  Length-biased sampling - screen detected cases are not simply a sample of all cases in a 
population but represent a sample of cases prevalent in the asymptomatic (pre- clinical) 
phase.  Screening preferentially identifies slow growing, indolent cases that have a long 
pre-clinical phase.  Slow growing tumours will obviously have a better prognosis because 
they have both a long pre-clinical phase and a long clinical phase, as illustrated in Figure 3. 

 
Figure 3.  Length-biased sampling (from Fletcher et al., 1997) 
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2)  Disease-specific mortality rate (DSMR) 
The only truly valid measure of the efficacy of a screening program is to conduct a 
randomized screening trial where the DSMR in the group assigned to screening is 
compared to the group assigned to no screening. Unlike the survival duration, the DSMR 
will not be changed by early diagnosis (i.e., lead time). This concept is illustrated in Figure 
2. In panel c, screening has resulted in a mortality reduction after 5 years, since the first 
subject no longer dies at year 5, (and so continues to live as indicated by the arrow). The 
average survival duration calculated at the end of year 5 is still 2.5 years. However, since 
there are now only 4 deaths (as opposed to 5 deaths previously) the DSMR drops from 100 
per 100,000 person years to 80 per 100,000 (equivalent to a 20% reduction in mortality). 
Thus, it is the DSMR and not the survival duration, that accurately reflects the benefit of 
screening. 

 
There is one caveat about the DSMR however; within the confines of a screening trial the 
specific cause of death is usually assigned by an adjudication committee. Ideally this 
assignment is done without knowledge of the screening group that a particularly subject 
was assigned to. However, maintain blinding to this fact is often difficult, especially given 
that there is usually a detailed examination of the specific circumstances around each 
death. If the original random assignment becomes unblinded there is the real potential for 
bias to be introduced into the process. For 
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Carcinoma in   Invasive Total 
situ carcinoma 
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example, in a breast cancer trial, there might be a tendency to call deaths that occurred in 
the mammography group not breast cancer related, while in the control group there might 
be a tendency to overdiagnose breast cancer as a cause of death. Because of these 
difficulties there is now considerable debate in the screening community that the ideal 
measure of screening efficacy should be all-cause mortality rather than the DSMR, 
because all-cause mortality is clearly not subject to these same biases (the subject is either 
dead or alive) (see Black WC, JNCI, 2002). 

 
VI. Pseudo-disease or Over-diagnosis 
 

One potential negative side-effect of screening is pseudo-disease or over-diagnosis which is 
the identification of disease that would not have become clinically apparent in the absence of 
screening.  This can involve three forms: 

 
i) Over-diagnosis - cases detected that would never have progressed to a clinical state – i.e., 
cancer cases with limited malignant potential.  This is in fact an extreme form of length-
biased sampling. A classic example is pap testing which despite reducing the incidence of 
invasive cervical cancer results in a large increase in the overall incidence of cervical cancer 
because of the “over-diagnosis’ of carcinoma in situ (See Table below). Other examples 
include PSA testing and low-grade prostate cancer, and mammography and ductal carcinoma 
in situ (see Ernster et al, 1996). 

 
Table.  Example of over-diagnosis: increase in carcinoma in situ of the cervix following 

introduction of mass screening (pap testing) in Connecticut (Laskey et al 1976) 
 
 
 

 
 
Year 

Age-adjusted Incidence rate (per 100,000) 
 

 
 
% in situ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii) Competing risks - cases are identified that would have been interrupted by an unrelated death.  
An example would be the identification of prostate cancer in an 85 year old man who would 
have died of stroke. 

 
iii) Serendipity - the identification of disease due to diagnostic testing that comes about for 
another reason. Example, chest x-ray for TB screening that identifies lung cancer, or 
colonoscopy detection of colorectal cancer following a positive FOBT (Ederer et al, 1997). 
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VII. Feasibility and Need for Screening 
 

There are several other important issues beyond the demonstration that screening leads to 
decreased mortality and/or morbidity that need to be addressed before deciding to invoke a 
screening program. These include: 

 
a)  Acceptability: The program should be convenient, free of discomfort, efficient and 

economical. 
 

b)  Efficiency: A low PVP indicates a wasteful program, as most of the test positive 
individuals worked up will not have disease. 
A high PVP can still be associated with only a few cases detected and a 
small reduction in overall mortality. 
If mortality from the disease is normally low or if the risk of death 
from other causes is high (for example in the very aged) then the 
screening program will not reduce mortality very much. 

 
c)  Cost-effectiveness:  Should these health care dollars be spent on this program?  Most 

population based screening programs run about $30-50,000 per year of 
life saved (or higher). 

 
Another way of evaluating the need and feasibility of screening is to place all the subjects who 
would develop the condition you are trying to help (e.g., lung cancer or prostate cancer) into one 
of the following three groups: 

 
1.  A cure is necessary but not possible (Nec,NotPos). In other words, if the target condition is 
death from lung cancer, these subjects are going to die of lung cancer regardless, and so 
would not be helped by a screening program. 

 
2.  Cure is possible but not necessary (Pos,NotNec). This group includes subjects who develop 
lung cancer but will not die of it – this is an example of over-diagnosis (cases die of something 
else before dying of lung cancer). Again, a screening program will not be helpful to this group. 

 
3. Cure is necessary and maybe possible (Nec,Pos) This is the only group that can benefit from 
screening! They represent cases of lung cancer who would have died of the disease had it not 
been for the effect of the screening program (this of course assumes that the screening program 
is effective in reducing the risk of death). 

 
In terms of feasibility of screening it is helpful to consider the relative sizes of these three groups. 
While it is not possible to be absolutely sure of the sizes of these three groups, a reasonable 
estimate can be made based on knowledge of the natural history of disease, the potential of the 
intervention to identify the condition early, and potential effect of treatment to impact the 
outcome, and finally the potential to identify undiagnosed but benign disease. 
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The charts below give a hypothetical example of this sort of assessment for two cancers. For 
Lung Cancer, the size of group 3 (Nec,Pos) is maybe 10%, but 80% are in group 1 (Nec, Not 
Pos) and hence can’t be helped at all, while a further 10% are in group 2 (Pos, Not Nec) and 
don’t need to be helped. For prostate cancer, the size of group 3 (Nec,Pos) is maybe 20%, but 
now we have a lot more men, say 60%, who are in group 2 (Pos, Not Nec) – these represent men 
with low grade or “benign” acting prostate cancer that will not kill them. Finally, there is another 
20% in group 1 (Nec, Not Pos) who will die of prostate cancer regardless of any screening 
program. Obviously you would like most people to be in group 3 because this represent the 
positive (worthwhile) effects of screening. You would also like to keep group 2 as small as 
possible, since this represent the negative (or wasteful) effects of a screening program. 
 
Lung Cancer: Prostate Cancer: 
 
 
 
 
 
 
 
 

Nec,NotPos 
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Nec,Pos 
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 Objectives 
 
 

• Understand the central role of randomization, concealment and 
blinding in RCT 

 
•   Understand the major steps in conducting a RCT 

 
 

• Understand the importance of loss-to-follow-up, non- 
compliance, and cross-overs 

 
 

• Understand the reasons for the ITT analysis and why to avoid the 
PP and AT approaches 

 
•    Understand the strengths and weaknesses of RCT’s 
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Experimental (Intervention) Studies 
 
 

•  Investigator completely controls exposure 
– type, amount, duration, and 
– who receives it (randomization) 

 
•  Regarded as the most scientifically vigorous study design. 

Why? 
– Random assignment reduces confounding bias 
– Concealment reduces selection bias 
– Blinding reduces biased measurement 

 
•  Can confidently attribute cause and effect due to the high 

internal validity of trials 
 

•  Trials are not always feasible, appropriate, or ethical 
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Types of Intervention Studies 
 

•  All trials test the efficacy of an intervention and 
assess safety 

 
 

•  Prophylactic vs Treatment 
•  evaluate efficacy of intervention designed to prevent 

disease, e.g., vaccine, vitamin supplement, patient education 
•  evaluate efficacy of curative drug or intervention or a drug 

designed to manage signs and symptoms of a disease (e.g., 
arthritis, hypertension) 

 

 
•  RCT vs Community Trials 

•  individuals, tightly controlled, narrowly focussed, highly 
select groups, short or long duration 

•  Cities/regions, less rigidly controlled, long duration, usually 
primary prevention 
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RCT’s – Overview of the Process 
 

•  1. Inclusion Criteria 
•  2. Exclusion Criteria 
•  3. Baseline Measurements 
•  4. Randomization and concealment 
•  5. Intervention 
•  6. Blinding 
•  7. Follow-up (FU) and Compliance 
•  8. Measuring Outcomes 
•  9. Statistical Analyses 
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RCT: Basic Design 
 
 
 
 

Treatment 
 
 

Eligible 
Sample 

 
Conceal, Randomize, Blind 

 
    Control (Placebo) 

 
 

Population of 
interest 
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Eligibility Criteria 
 
 

•  Explicit inclusion and exclusion criteria 
– Provide guidance for interpretation and generalization of 

study results 
– Balance between generalizability (external validity) and 

efficiency 

•  Criteria should: 
– Capture patients who have potential to benefit 
– Exclude patients that may be harmed, are not likely to 

benefit, or for whom it is not likely that the outcome 
variable can be assessed 
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1. Inclusion Criteria 
 

•  Goals – to optimize the following: 
•  Rate of primary outcome 
•  Expected efficacy of treatment 
•  Generalizability of the results 
•  Recruitment, follow-up (FU) and compliance 

 
 

•  Identify population in whom intervention is feasible 
and will produce desired outcome 

 
 

•  ….pick people most likely to benefit without 
sacrificing generalizability 
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2. Exclusion Criteria 
 

•  Goal: to identify subjects who would “mess up” the 
study 

 
 

•  Valid reasons for exclusion 
•  Unacceptable risk of treatment (or placebo) 
•  Treatment unlikely to be effective (not at risk) 

– Disease too severe, too mild, already on meds 
•  Unlikely to complete FU or adhere to protocol 
•  Other practical reasons e.g., language/cognitive barriers 

 
•  Avoid excessive exclusions 

•  Decrease recruitment, increased complexity and costs 
•  Decreased generalizability (external validity) 
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3. Baseline Measurements 
 
 

•  What to measure? 
•  Tracking info 

– Names, address, tel/fax #’s, e-mail, SSN 
– Contact info of friends, neighbours and family 

•  Demographics – describe your population 
•  Medical History 
•  Major prognostic factors for primary outcome 

– Used for subgroup analyses e.g., age, gender, severity 
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   4. Randomization and Concealment 
 

•  Results in balance of known and unknown confounders, 
eliminates bias in Tx assignment, and provides basis for 
statistical inference 

 
 

•  Randomization process should be described to ensure it is 
reproducible, unpredictable and tamper proof 

 
 

•  Simple randomization e.g., coin flip 
– Can result in unequal numbers within treatment groups, especially in 

small trials 

•  Blocked randomization 
– Used to ensure equal numbers in each group, randomize within 

blocks of 4-8 

•  Stratified blocked randomization 
– Randomize within major subgroups e.g., gender, disease severity 
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Concealment 
 

• Different from randomization per se 
 

• Unpredictability prevents selection bias 
•   assignment of the next subject should be unknown and 

unpredictable 
 

• Concealed studies 
•   sealed opaque envelopes, off-site randomization center 

 
•   Unconcealed studies 

•   Alternative day assignment, Date of birth 
 

• Concealment is NOT blinding!! – it is different! Although the 
terms are frequently confused: 
•   Blinding prevents measurement bias 
•   Concealment prevents selection bias 
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What is confounding? 
 

•  Bias = systematic error (distortion of the truth) 
 
 

•  Three broad classes of bias: 
•  Selection bias 
•  Confounding bias 
•  Measurement bias 

 

 
•  Confounding 

•  Defn: a factor that distorts the true relationship of the study 
variable of interest by virtue of being related to both the 
outcome of interest and the study variable. 
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Example of Confounding: 
MASCOTS Stroke Registry – Pre-existing 
statin use and in-hospital death in women 

 
Crude OR= 0.59 

Statins In-hospital death 
 

In this observational study, the risk of death in women hospitalized 
for acute stroke was 41% lower compared to women not on statins. 
However, statin users were younger and had fewer comorbidities – 
both of which are independent risk factors for in-hospital mortality. 

 
Adjusted OR= 1.1 

Statins In-hospital death 
 
 

+++  
 
Age, comorbidities 
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5. Intervention 
 

 
•  Balance between efficacy & safety 

•  Everyone is exposed to potential side effects but only the few 
who develop dis/outcome can benefit 

•  Hence, usually use “lowest effective dose” 
•  Most trials are under-powered to detect side effects – hence 

Phase IV trials and post-marketing surveillance 
 
 

•  Control group: 
•  Placebo or standard treatment 
•  Risk of contamination (getting the treatment somewhere 

else) 
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   Why is a control group important? 
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6. Blinding 
 

• Important as it prevents biased assessment of outcomes post- 
randomization (i.e., measurement or ascertainment bias) 

 
• Blinding also helps reduces non-compliance and contamination 

 
• Blinding is particularly important if have “soft” outcomes 

•   e.g., self-report, investigator opinion 
 

•   Sometimes blinding is not feasible (= Open trial). If so, 
•   Choose a “hard” outcome 
•   Standardize treatments as much as possible 

 
• Blinding may be hard to maintain e.g., when obvious side effects are 

associated with a drug. 
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Single vs. double vs. triple blind? 
 

 
•  Much confusion in use of the terms single, double, 

and triple blind, hence the study should describe 
exactly who was blinded. 

 
 

•  Ideally, blinding should occur at all of the following 
levels: 
•  Patients 
•  Caregivers 
•  Data collectors 
•  Adjudicators of outcomes 
•  Statisticians 
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 7. Loss to follow-up, non-compliance,  
 and contamination 

 
•  Needs to be carefully monitored and documented 

 
 

•  If loss-to-follow-up, non-compliance, and 
contamination are frequent and do not occur at 
random then results in: 
•  major bias 
•  decreased power 
•  and loss of credibility 

 
 

•  Why lost to-follow-up? 
– side effects, moved, died, recovered, got worse, lost interest 
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 7. Loss to follow-up, non-compliance  
 and contamination 
•  Why poor compliance? 

– side effects, iatrogenic reactions, recovered, got worse, lost 
interest 

 
•  Contamination = cross-overs (esp. in control group if 

unblinded) 
 
 

•  Maximize FU and compliance by using 
•  two screening visits prior to enrollment 
•  pre-randomization run-in period using placebo or active drug 
•  maintain blinding 
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   Loss to FU, poor compliance, contamination 
  = Slow death of a trial 

 

Non-compliant 
 
Loss to FU ? 

 

Trt Outcome 
 
 

Contamination (cross-overs) 
 
 
 

   Control Outcome 
 
 
 

Non- 
compliant 

? 
Loss to FU (drop-outs) 
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8. Measuring Outcomes 
•  Best = Hard clinically relevant end points 

•  e.g., disease rates, death, recovery, complications 
•  Must be measured with accuracy and precision 
•  Must be monitored equally in both groups 

 
•  Surrogate end points 

•  used in short-term clinical trials or to reduce size/length of 
follow-up 

– Must be biologically plausible 
– Association between surrogate and a hard endpoint must have 

been previously demonstrated 
– e.g., reduced BP in lieu of stroke incidence 

 
•  Best to use blinded adjudication, especially for soft 

outcomes 
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9. Statistical Analyses 
 

•  On the surface analysis is relatively simple because of 
RCT design: 

 

 
•  Measure clinical effect with 95% CI using 

– RR, RRR, ARR, NNT 
 

•  For time-dependent outcomes use Kaplan-Meire curves, 
and/or Cox regression modeling 

 
•  Test for statistical significance (p-value): 

– Categorical outcome – Chi-square test 
– Continuous outcome – t-test 
– Or use non-parametric methods where necessary 
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 RCT’s – Basic Analysis 
Dichotomous (Disease Yes/No) Outcome 

 

 
 
 
 
 

    Randomize 
 

 
Rt = a/n1 

 
 

Rc = c/n0 
 

 

   N 
RR = Rt/Rc and ARR = Rc- Rt 
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Measures of Effect used in RCT’s 
 
 
 
 
 
 
 

EER = 30/100= 30% CER 

= 40/100 = 40% 

 
EER = Experimental (or treatment) event rate 
CER = Control (or baseline) event rate 

 

RR = EER/CER = 30/40 = 75% 
RRR = 1 – RR = 25% 
ARR = CER - EER = 40 – 30 = 10% 
NNT = 1/ARR = 1/0.10 = 10 
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9. Statistical Analyses - ITT 
 

• Intention-to-Treat Analysis 
•   Gold Standard 
•   Compares outcomes based on original randomization scheme regardless of 

eligibility, non-compliance, cross-overs, and lost-to-follow-up 
 

• Per Protocol (PP) Analysis 
•   Compares outcomes based on actual treatment received among those who were 

compliant (analysis drops non-compliant) 
•   Asks whether the treatment works among only those that comply 

 
• As Treated (AT) Analysis 

•   Compares outcomes based on actual treatment received regardless of 
original assignment. 

•   Equivalent to analyzing the data as a cohort study! 
•   Asks whether the treatment works among those that took it. 

 
• Both PP and AT approaches ignore original randomization and are 

therefore subject to BIAS!!! 
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ITT vs. Per-Protocol vs. As Treated 
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Effect of ITT vs. PP vs. AT analyses on an RCT of coronary 
artery bypass surgery versus medical treatment in 767 men 
with stable angina. (Lancet 1979;i:889-93). 

 
 Allocated (vs. actual) treatment  

Medical 
(medical) 

Medical 
(surgical) 

Surgical 
(surgical) 

Surgical 
(medical) 

ARR (95% 
CI) 

Subjects 323 50 368 26  

Deaths 27 2 15 6  

Mortality 8.4% 4.0% 4.1% 23.1%  

ITT analysis 7.8% (29/373) 5.3% (21/394) 2.4% (-1.0, 6.1) 

PP analysis 8.4% (27/323) 4.1% (15/368) 4.3% (0.7, 8.2) 

AT analysis 9.5% (33/349) 4.1% (17/418) 5.4% (1.9, 9.3) 
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The problem of the lost-to-follow up? 
 

• LTFU is a common problem that is frequently ignored in the analysis of 
published RCTs. 

 
• All subjects LTFU should be included in the ITT analysis, but the 

problem is that we don’t know their final outcome! 
 

• An ITT analysis done in the face of LTFU is a de facto PP analysis and is 
therefore biased 

 
• Some studies impute an outcome measure. Example: 

•   Carry forward baseline or worst or last observation 
•   Multiple imputation i.e., use a model to predict the outcome 

 
• Bottom line: Minimize LTFU as much as possible – requires that you follow-

up with subjects who were non-compliant, ineligible, or chose to drop out 
for any reason! 
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9. Statistical Analyses 
 

•  Sub-group Analysis 
•  Analysis of the primary outcome within sub-groups defined by 

age, gender, race, disease severity, or any other prognostic 
variable 

 
•  Can provide critical information on which sub-groups a 

treatment works in and which groups it does not. 
– e.g. Low dose ASA was effective in preventing AMI in men but not 

women 
 

•  Potentially mis-leading analyses are not pre-planned 
– Sub-groups analyses maybe conducted because the primary 

analysis was non-significant leading to a large number of 
secondary analyses 

– This results in the problem of multiple comparisons and 
increased type I error rates 
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10. Equivalence and Non-inferiority Trials 
 

•   Equivalence trials 
•   A trial designed to prove that a new drug is equivalent to an existing 

standard drug with a given tolerance (∂) or equivalence margin 
•   Most often used in the area of generic drug development to prove that 

the new generic drug is bio-equivalent to the original drug 
–  i.e., similar bioavailability, pharmacology etc 

 
•   Non-inferiority trials 

•   A trial designed to prove that a new drug is no less effective than an 
existing standard drug 

–  This is a one-sided equivalence test 
–  More common especially as it is becoming more difficult to prove 

superiority of newer treatments 
•   Example 

–  GUSTO III, NEJM 1997 (reteplase vs.alteplase for treatment of AMI) 
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         Equivalence Trials 
 
 
 

∂ = equivalence margin 
 
 

0 
 
 

Worse Better 
 

Equivocal Equivocal 
 
 

Equivalent 
 

95% CIs 
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       Non-inferiority Trials 
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Summary of RCTs 
 

•  Advantages 
•  High internal validity 
•  Able to control selection, confounding and measurement 

biases 
•  True measure of treatment efficacy (cause and effect) 

•  Disadvantages 
•  Low external validity (generalizability) 
•  Strict enrollment criteria creates a unique, highly selected 

study population 
•  Complicated, expensive, time consuming 
•  Ethical and practical limitations 

 
 

Mathew J. Reeves,PhD 34 
© Dept. of Epidemiology, MSU 



256 
 

 



Mathew J. Reeves, PhD 
© Dept. of Epidemiology, MSU 

257 

 

EPI-546: Fundamentals of Epidemiology and Biostatistics 
 

Course Notes - The RCT 
 

Mat Reeves BVSc, PhD 
 

God gave us randomization so we can detect the modest effects of most treatments 
 
Objectives  

 
1. Understand, explain, and distinguish between randomization, concealment and blinding.  
2. Understand and explain how randomization, concealment and blinding prevent confounding, 

selection, and measurement biases, respectively. 
3. Understand the difference between internal and external validity in the context of a RCT. 
4. Understand the importance of the target population and how this is influenced by inclusion and 

exclusion criteria. 
5. Understand the major sequential steps in designing and conducting a RCT. 
6. Understand, explain, and distinguish between loss-to-follow-up, non-compliance, and cross-

overs. 
7. Understand, explain and differentiate between the intention-to-treat (ITT), per-protocol (PP) 

and as-treated (AT) analyses, and understand the role of non-compliance and cross-overs. 
8. Understand the importance and impact of loss-to-follow on the ITT analysis (need for 

imputation) and determine the impact of LTFU by best-case, worst–case analysis. 
9. Outcome measures – distinguish between composite vs. individual measures, patient 

orientated vs. surrogate outcomes,  pre-defined vs. post-hoc outcomes. 
10. Understand the basic organization of a RCT publication (Flow diagram of patient enrollment 

and follow-up, Table 1 comparisons of baseline characteristics). 
11. Describe the advantages and disadvantages of trials. 

 
Outline: 
 

I. Introduction to the RCT 
II. An Overview of the RCT Design  

1. Inclusion Criteria 
2. Exclusion Criteria 
3. Baseline Measurements 
4. Randomization and concealment 
5. Intervention 
6. Blinding 
7. Follow-up (FU), Non-Compliance and Contamination 
8. Measuring Outcomes, Sub-group analyses and Surrogate end points  
9. Statistical Analyses (ITT vs. PP vs. AS) 
10. RCTs and Meta-analyses - assessing trial quality, reporting, and trial registration 
11. Equivalence and Non-inferiority Designs 

III. Advantages and disadvantages of RCT’s 
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I. Introduction to the RCT 
 
The randomized clinical trial is an experimental study conducted on clinical patients (with their 
consent of course!).  The investigator seeks to completely control the exposure (in terms of its type, 
amount, and duration), and (most importantly) who receives it through the process of randomization.  
 
RCT’s are regarded as the most scientifically vigorous study design. Because: 
• An unpredictable (i.e., concealed) random assignment eliminates (or at least greatly reduces) 

confounding from known and unknown prognostic factors (that is, it makes the groups equivalent 
in terms of their prognosis at baseline). 

 
• Blinding eliminates biased measurement, so that outcomes are measured with the same degree 

of accuracy and completeness in every participant. 
 
Because of these conditions, it is then possible to confidently attribute cause and effect – that is, 
because the only thing that differed between the groups (or arms) of the trial was the presence or 
absence of the intervention, any effect can be ascribed to it (assuming a well conducted, unbiased 
study). The RCT is therefore described as having high internal validity – the experimental design 
ensures that, within reason, strong cause and effect conclusions can be drawn from the results. While 
RCT’s are the gold standard by which we determine the efficacy of treatments, trials are not always 
feasible, appropriate, or ethical.  
 
There are two types of RCTs:  
 
Prophylactic trials  
• evaluate the efficacy of an intervention designed to prevent disease, e.g., vaccine, vitamin 

supplement, patient education, screening. 
 
Treatment trials 
• evaluate efficacy of a curative drug or intervention or a drug or intervention designed to 

manage or mitigate signs and symptoms of a disease (e.g., arthritis, hypertension). 
 
Also, RCTs can be done at the individual level, where highly select groups of individuals are 
randomized under tightly controlled conditions, or they can be done at the community level, where 
large groups are randomized (e.g., cities, regions) under less rigidly controlled conditions. Community 
trials are usually conducted to test interventions for primary prevention purposes – so they are 
prophylactic trials done on a wide scale.  
 

II  An Overview of the RCT Design and Process 
 
1.  Inclusion Criteria 

Specific inclusion criteria are used to optimize the following: 
 

 The rate of the primary outcome 
 The expected efficacy of treatment 
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 The generalizability of the results 
 The recruitment, follow-up, and compliance of patients  
 

So, the goal is to identify the sub-population of patients in whom the intervention is feasible, and 
that will produce the desired effect. To this end, the choice of inclusion criteria represents a balance 
between picking the people who are most likely to benefit without sacrificing the generalizability 
of the study.  If you make the inclusion criteria too restrictive you run the risk of having the study 
population so unique that no one else will be able to apply your findings to their population. 

 
2. Exclusion Criteria 
Specific exclusion criteria are used to exclude subjects who would “mess up” the study. Valid 
reasons for excluding patients might include the following: 
 

 When the risk of treatment (or placebo) is unacceptable. 
 When the treatment is unlikely to be effective because the disease is too severe, or 

too mild, or perhaps the patient has already received (and failed) the treatment. 
 When the patient has other conditions (co-morbidities) that would either interfere 

with the intervention, or the measurement of the outcome, or the expected length of 
follow-up e.g., terminal cancer. 

 When the patient is unlikely to complete follow-up or adhere to the protocol. 
 Other practical reasons e.g., language/cognitive barriers/no phone at home etc. 

 
Again, one needs to be careful to avoid using excessive exclusions even when they appear perfectly 
rational. Excessive number of exclusions can add to the complexity to the screening process 
(remember, every exclusion criteria needs to be assessed in every patient), and ultimately to 
decreased recruitment. Once again, the choice of exclusion criteria represents a balance between 
picking subjects who are more likely to make your study a success without sacrificing 
generalizability. The real danger of setting very restrictive inclusion and exclusion criteria is that 
the final study population becomes so highly selective that nobody is interested in the results 
because they don’t apply to real-world patients. In other words, while internal validity may have 
been maximized, the study’s generalizability or external validity is badly compromised.  
 
3. Baseline Measurements  
At baseline you want to collect information that will: 
 
 Describe the characteristics of the subjects in your study i.e., demographics. This is 

especially important in demonstrating that the randomization process worked (i.e., that you 
achieved balance between the intervention and control groups).  

 Assist in the tracking the subject during the study (to prevent loss-to-follow-up). This 
includes names, address, tel/fax #’s, e-mail, SSN, plus contact information of friends, 
neighbours, and family (you can never collect too much information here). 

 Identify major clinical characteristics and prognostic factors for the primary outcome 
that can be evaluated in pre-specified subgroup analyses. For example, if you thought that 
the treatment effect could be different in women compared to men, then you would collect 
information on gender, so that the effect could be evaluated within each of these two sub-
groups.  
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The amount of baseline data that needs to be collected does not have to be excessive, because the 
randomization process should result in identical groups. However, it is always necessary to collect 
sufficient baseline information regarding demographics and clinical characteristics to prove this point. 
 
4. Randomization and concealment 
Randomization results in balance of known and unknown confounders. The randomization process should 
be reproducible, unpredictable, and tamper proof. It is critical that the randomization scheme itself should 
be unpredictable – so that it is not possible ahead of time to predict which group a given subject would 
be randomized to. Unpredictability is assured through the process of concealment which is critical in 
preventing selection bias – that is, the potential for investigators to manipulate who gets what treatment. 
Such “manipulation” in clinical trials has been well documented (for an example, see Schulz KF 
Subverting randomization in clinical trials. JAMA 1995;274:1456-8).  Finally, note that the issues of 
randomization and concealment should be kept separate from blinding – they are completely different!1 
 
The actual process of generating the randomization scheme and the steps taken to ensure concealment 
should be described in detail - whether it is a simple coin toss (the least preferable method), or the use of 
sealed opaque envelopes, or a sophisticated off-site centralized randomization centre. 
 
There are several different modifications to simple (individual level) randomization schemes such as a 
coin flip. Blocked randomization refers to the randomization done within blocks of 4 to 8 subjects. It is 
used to ensure that there is equal balance in the number of treatment and control subjects throughout the 
study. 
 
Stratified blocked randomization refers to the process whereby strata are defined according to a critically 
important factor or subgroup (e.g., gender, disease severity, or study center), and the randomization 
process conducted within each strata. Again, this design ensures that there is balance in the number of 
treatment and control subjects within each of the sub-groups (so that at the end of the trial the factor in 
question is distributed equally among the treatment and control groups).   
 
5. Intervention 
It is important that the balance between the potential benefits and risks of an intervention be considered 
carefully before a trial is begun. Remember that everyone is exposed to potential side effects of an 
intervention, whereas not everyone can benefit from the intervention itself (because not everyone will 
have or develop the outcome you are trying to prevent and no intervention is ever 100% effective). So 
caution dictates using the “lowest effective dose”. Since RCTs are designed under the premise that 
serious side effects are expected to occur much less frequently that the outcome, it is not surprising that 
RCT’s are invariably under-powered to detect side effects. This is the reason for Phase IV post-
marketing surveillance studies. It is only after the drug has reached the market, and has been used on 
many, many people, that evidence for rare but serious side effects is found. 

 
 
                                                           
1 Note that the Chapter 8 of the FF text refers to concealment as allocation concealment and includes it under the description of 
blinding. This is unfortunate in my opinion because concealment has a fundamentally different purpose from other aspects of 
blinding. Concealment is designed to prevent selection bias, whereas all other forms of blinding are undertaken to reduce 
measurement bias. So in my opinion these steps should be kept separate. Also note that the two conditions are mutually 
independent – so it’s possible to have a concealed but not-blinded study or an un-concealed but blinded study (further 
justification for keeping the concepts separate).  
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All RCT’s require a control group. The purpose of the control group is to measure the cumulative 
effects of all the other factors that can influence the outcome over time – other than the active 
treatment itself. As shown in the figure below, this includes spontaneous improvements (due to the 
natural history and the Hawthorne effect), as well as the well documented placebo effect (see below). 
 
Figure 1. Cumulative effects of spontaneous improvements, non-specific responses, and specific 
treatment effects (from Fletcher) 

 

 

 

 

 

 

 

 

 
6. Blinding (a.k.a. masking) 
The use of blinding is another cardinal feature of RCT’s. Blinding is important because it preserves the 
benefits of randomization by preventing the biased assessment of outcomes. Blinding therefore prevents 
measurement bias (as opposed to randomization and concealment which prevent confounding bias and 
selection bias, respectively). Blinding also helps to reduce non-compliance and contamination or cross-
overs - especially in the control group (since they are unaware that they are not getting the active 
treatment). Usually one thinks about either a single-blind study (where either the patient or the physician is 
blinded) or a double-blind study (where both the patient and the physician are blinded). However, ideally, 
blinding should occur at all of the following levels:  
 
 Patients 
 Caregivers 
 Collectors of outcome data (e.g., research assistants or study physicians),  
 Adjudicators of the outcome data (e.g., the adjudication committee or study physicians), and 
 The data analyst 

 
A placebo is any agent or process that attempts to mask (or blind) the identity of the true active 
treatment. It is a common feature of drug trials. The value of the placebo, and blinding in 
general, is especially important when the primary outcome measure being assessed is non-
specific or “soft” – for example, patient self-reported outcomes like degree of pain, nausea, or 
depression. The placebo effect refers to the tendency for such “soft” outcomes to improve when 
a patient is enrolled in a treatment study, regardless of whether they are actual receiving an 
active treatment. The placebo effect can be regarded as the baseline against which to measure 
the effect of the active treatment. 
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A true placebo may not be justifiable if a known proven treatment is already the standard of care. 
For example, in a stroke prevention study looking at a new anti-platelet agent, a true placebo 
control would be very hard to justify given the proven benefit of aspirin (which would be 
regarded as the minimum standard of care).  
 
Sometimes blinding (and/or the use of a placebo) is just not feasible – for example in a RCT of a 
surgical intervention it is very difficult to mask who got the surgery and who did not (at least to 
the patients and caregiver!). In such situations the study is referred to as an “open” trial. Blinding 
can also be hard to maintain – for example, when the treatment has very clear and obvious 
benefits, or side effects or other harms. In such cases it is important to try to choose a “hard” 
outcome – like death from any cause, and to standardize treatments and data collection as much as 
possible. 
 
7. Loss-to-follow-up, non-compliance, and contamination and missing data  
It is important that everyone assigned to either the intervention or control group receives equal 
follow-up and are ultimately all accounted for. Loss-to-follow-up (LTFU), non-compliance, and 
contamination are important potential problems in all RCT’s. If they occur with any frequency the 
study will have reduced power (because there are fewer subjects to provide information), and if 
they occur in a non random fashion (meaning they occur in one arm more than the other - which is 
often the case) then bias maybe introduced. 
 
Loss to-follow-up can occur for many reasons most of which can be related to the outcomes of 
interest. For example, subjects are more likely to be lost-to-follow-up if they have side effects, or 
if they have moved away, got worse, got better or have simply lost interest.  Death can be another 
cause of loss-to-follow-up.  If the final outcome of the subjects LTFU remains unknown, then 
they cannot be included in the final analysis and so (if the rate of loss to-follow-up is high and/or 
differentially affects one group more than the other) they can have a significant negative effect on 
the study’s conclusions (i.e., low power due to the smaller sample size and biased results due to 
the differential LTFU). Note that the negative effects of LTFU cannot be easily corrected by the 
intention-to-treat analysis, since without knowledge of the final outcome status these subjects 
have to be dropped from the analysis (See below for further details). 

 
Similarly, poor compliance can be expected to be related to the presence of side effects, 
iatrogenic drug reactions, whether the patient got better or got worse, or whether the patient 
simply lost interest. People who do not comply with an intervention can be expected to have a 
worse outcome than those that do. An example of this phenomenon is shown in the table below 
from the Clofibrate trial – one of the earliest lipid lowering therapy RCTs. The table shows the 5-
year cumulative mortality rate by treatment group (as assigned by randomization), and according 
to whether they complied with the trial protocol. Persons who did not comply had a much higher 
mortality rate at 5-years, regardless of the treatment group they were assigned to: 
 



Mathew J. Reeves, PhD 
© Dept. of Epidemiology, MSU 

263 

 

 
Clofibrate Trial Cumulative 5-year mortality 

 Compliant Non-compliant 

Treatment 15.0% 24.6% 

Control 15.1% 28.3% 

 
So the degree to which non-compliance occurs in a study, and the degree to which it differentially 
affects one arm of the study more than the other, is important to assess.  
 
Contamination refers to the situation when subjects cross-over from one arm of the study into the 
other – thereby contaminating the initial randomization process. Perhaps the most famous example 
of this was in the early AIDS treatment RCTs, where participants were able to get their assigned 
treatments “assayed” by private laboratories to find out whether they were receiving the placebo or 
active drug (AZT) (the folks in the placebo group would then seek the active AZT drug from other 
sources!).  
 
As one can imagine excessive loss to follow-up, poor compliance, and/or contamination (see 
Figure 2) can translate into the slow prolonged death of your trial! Essentially as these three effects 
take their toll, the original RCT degenerates into a mere observational (cohort) study because the 
active and compliant participants in each arm of the study are no longer under the control of the 
study investigator!   
 
The problem of LTFU is particularly problematic when trials are conducting the gold-standard 
intention-to-treat analysis (ITT) (which is the principle that all participants are analyzed 
according to their original randomization group or arm - regardless of protocol violations). Ideally 
all subjects should be accounted for in both the denominator and the numerator of the groups event 
rate. But with lost to follow-up, if the subject is included in the denominator but not the numerator 
then the event rate in that group will be underestimated. However, if the subjects are simply 
dropped from the analysis (a common approach) then the analysis can be biased (in fact, if subjects 
are dropped from the analysis because their outcome status is unknown then one is de facto doing a 
per protocol (PP) analysis). To mitigate the problems of LTFU some trials will impute an outcome 
based on a missing data protocol. Techniques for missing data protocols include using the last 
observation made on the subject (referred to as last observation carried forward), or using the 
worst observation made on the subject, or using multiple imputation. Multiple imputation uses 
multivariable statistical models to predict the unobserved outcome based on the specific 
characteristics of the subjects with missing values; when done properly, it is generally regarded as 
the best method. But, regardless of the approach used to address missing data, all methods are 
ultimately unverifiable, and so the results should be viewed with caution.  That said some form of 
imputation is probably better than ignoring the problem of missing data all together unless the 
amount is small (say, < 5%).  Ultimately the best defense is to MINIMIZE missing data through 
good study design and research practices.  
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One technique to assess the likely impact of poor compliance or LTFU is the “5 and 20 rule” 
which states that if LTFU or compliance affects < 5% of study participants then bias will be 
minimal, whereas if it affects >20% then bias is likely to be considerable.  One can also assess the 
potential impact of LTFU by doing a “best case worst case” sensitivity analysis.  In the best case 
scenario, the subjects LTFU are assumed to have had the best outcome (e.g., none of them had the 
adverse outcome) and the event rates in each group are calculated after counting all of the LTFU in 
the denominator but not in the numerator. In the worst case scenario, all of the subjects LTFU are 
assumed to have had the adverse outcome so the LTFU are counted in both the numerator and the 
denominator of the event rates. The overall potential impact of the LTFU is then gauged by 
comparing the actual results with the range of findings generated by the sensitivity analysis. Here’s 
an example:  
 

In a RCT of asthma patients visiting the emergency department (ED), only 100 of 150 
subjects assigned to the treatment arm (which involved an educational intervention 
requiring the subjects to attend 2 sessions at a local asthma treatment center) complied 
with the treatment and were available for follow-up. The rate of LTFU was therefore 
33% clearly exceeding the 5 and 20 rule. The primary outcome, which was defined as a 
repeat visit to the ED over the next 6 months, occurred in 15% of the 100 subjects who 
remained in follow-up (i.e., 15 of 100). The results of the best/worst case sensitivity 
analysis were: best case 15/150 = 10% and worst case 65/150 = 43%. So, clearly the 
study’s findings are questionable given the high loss to follow-up (33%) and the wide 
range of estimates for the repeat ED visit rate in the treatment arm. 

 
Trialist’s go to great lengths to attempt to reduce these problems by enrolling subjects who are 
more likely to be compliant and not lost-to-follow-up. To do this, studies will sometimes use two 
screening visits prior to actually performing the enrollment (to weed out the “time-wasters”), and 
in drug trials will often use pre-randomization run-in periods (using placebo and active drug) to 
weed out the early non-adheres. Once subjects are enrolled into a study it is very important to 
minimize LTFU as much as possible. This means that you should attempt to track and follow-up 
on all the subjects who were non-compliant, ineligible, or chose to drop out of your study for any 
reason. This is not easy to do! 
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Figure 2.  Effects of non-compliance, loss-to-follow-up, and contamination on a RCT. 

 
 
8. Measuring Outcomes, Sub-group analyses and Surrogate end points  
The primary and secondary study outcomes – with associated definitions should be defined before 
the study is started (these are termed a priori or pre-specified comparisons). The best outcome 
measures are hard, clinically relevant end points such as disease rates, death, recovery, 
complications, or hospital/ER use.  It is important that all outcomes are measured with accuracy 
and precision, and, most importantly, that they are measured in the same manner in both groups or 
arms. It is also important that the outcomes chosen for a trial are clinically relevant to the patients 
themselves – for example death, recovery, complications - are all important to individual patients. 
These measures are referred to as patient-reported outcomes measures (PROMs). 
 
Hard patient-relevant clinical outcomes cannot always be used however, for example it usually 
takes too long to measure disease mortality. To reduce the length and/or the size of the intended 
study surrogate end points may be used under the proviso that they are validated biologically 
relevant endpoints (often referred to as biomarkers). Obviously one should carefully consider 
whether a surrogate end point used is an adequate measure of the real outcome of interest. Ideally, 
prior RCTs should be proven that the end point is a valid surrogate measure for the real outcome of 
interest. For example, in a study designed to reduce stroke incidence, the degree of blood pressure 
reduction would be considered a valid surrogate end point given the known causal relationship 
between blood pressure and stroke risk, whereas the reduction in hs-CRP or CRP would not be.  
 
Pre vs. post-hoc sub-group analyses. Sub-group analyses refer to the examination of the primary 
outcome among study sub-groups defined by key prognostic variables such as age, gender, race, 
disease severity etc. Sub-group analyses can provide important information by identifying whether 
the treatment has a different effect within specific sub-populations (differences in the efficacy of a 
treatment between sub-groups may be described in terms of a treatment-by-sub-group 
interaction). It is critical that all sub-group analyses be pre-specified ahead of time. 
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This is because there is a natural tendency among authors of trials that did not show a positive 
treatment effect for the primary outcome of interest to go “fishing” for positive results by 
conducting all manner of sub-group comparisons. This approach naturally leads to the statistical 
problem of multiple comparisons and the potential for false positive statistical results (Type 1 
errors). Thus all sub-group comparisons which are not pre-specified (i.e., that were post-hoc) 
should be regarded as “exploratory findings” that should be re-examined in future RCT’s as pre-
panned comparisons. 
 
9. Statistical Analyses 
Statistical analyses of trials are on the face of it typically very straight forward, since the design has 
created balance in all factors, except for the intervention per se. So, oftentimes it’s a simple matter 
of comparing the primary outcome measure between the two arms. For continuous measures the t-
test is commonly used, while the Chi-square test is used for categorical outcomes. Non-parametric 
methods maybe used when the study is relatively small or when the outcomes are not normally 
distributed. In survival type studies, Kaplan Meire survival curves or advanced Cox regression 
modeling may be used to study the effect of outcomes which occur over time (and to help assess 
the problems of loss-to follow-up and censoring). 
 
The most important concept to understand in terms of the statistical analysis of RCT’s is the 
principle of Intention-to-Treat Analysis (ITT). This refers to the analysis that compares outcomes 
based on the original treatment arm that each individual participant was randomized to regardless 
of protocol violations.  Protocol violations include ineligibility (i.e., subjects who should not have 
been enrolled in the study in the first place), non-compliance, contamination or LTFU. The ITT 
analysis results in the most valid but conservative estimate of the true treatment effect. The ITT 
is the approach that is truest to the principles of randomization - which seeks to create perfectly 
comparable groups at the outset of the study.  It is important to note that not even the ITT analyses 
can fix the problem of loss-to-follow-up unless the missing outcomes are imputed using a valid 
method (which can never be fully verified).  Thus, in my opinion, no amount of fancy statistics can 
fix the problem that the final outcome is unknown for a sub-set of subjects. 
 
Two other alternative analytical approaches may be used (as shown the diagram below) but they 
are both fundamentally flawed. The first is the Per Protocol (PP) analysis in which subjects in 
the treatment arm who did not comply with the treatment and control subjects who got treated (i.e., 
cross-overs) are simply dropped from the analysis. Only those subjects who complied with the 
original randomization scheme are therefore analyzed. The PP analysis answers the question as to 
whether the treatment works among those that comply, but it can never provide an unbiased 
assessment of the true treatment effect (because the decision to comply with treatment is unlikely 
to occur at random). Also, as mentioned previously, if subjects are dropped from the ITT analysis 
because their outcome status is unknown, then one is de facto doing a PP analysis. 
N.B. alternative names for the PP analysis include efficacy, exploratory, or effectiveness analyses. 
 
The second alternative approach is the egregious As Treated (AT) analysis, in which subjects are 
analyzed according to whether they got the treatment or not (regardless of which group they were 
originally assigned to). So the non-compliant subjects in the intervention arm are moved over to the 
control arm, and vice versa. This analysis is akin to analyzing the trial as if a cohort study had been 
done (i.e., everyone had decided for themselves whether to get treated or not), and completely 
destroys any of the advantages afforded by randomization.  
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You will see examples of published studies that used the AT analysis (typically they are studies 
that did not show a positive ITT analysis), but you have to ask– “what was the point of doing the 
trial in the first place if you ended up doing an AT analysis?”  The AT approach is without merit!2  

 
The analysis of RCT’s - Intention-To-Treat versus Per Protocol or As Treated 

 

Intervention
Group

Control
Group

Randomize

Got
Treatment

Did NOT get
treatment

Got
Treatment

Did NOT get
treatment

YESYES NO NOInterntion-
to-Treat

YES

YES

DROP

NO

DROP

YES

NO

NO

Per protocol

As Treated  

 
Where: 
YES means that the group is included in the analysis as the group that got treatment. 
NO means that the group is included in the analysis as the group that DID NOT get treatment. 
DROP means that the group is not included in the analysis (it is simply ignored). 

 
In the table below is a real life example of the application of these three analytical approaches to a trial 
that compared surgical treatment (CABG) to medical treatment for stable angina pectoris in 768 men 
(European Coronary Surgery Study Group. Lancet 1979;i:889-93). 373 men were randomized to 
medical treatment but 50 ended up being treated by surgery. Of the 394 subjects randomized to surgery 
treatment, 26 did not receive it. A further subject was lost to follow-up and was dropped from these 
analyses which are based on 767 subjects. The death rates according to the actual treatments received 
are calculated and then the absolute risk reduction (ARR) (for surgery vs. medical)  with 95% CI are 
calculated using the three different approaches. 
 
Note the very high death rate in the 26 subjects who should have gotten surgery but received medical 
treatment – clearly these are a very sick group of patients who either died before surgery or were too 
sick to undergo it.  Note also the 52 subjects who should have gotten medical treatment but somehow 
got surgery. Their mortality (4%) is much lower than the rest of the medically treated group (8.4%) – 
however, these men could have been healthier at baseline and so its impossible to judge the relative 
merits of surgery based on these two figures.  
 

                                                           
2 The FF text refers to this analysis as an explanatory trial, which in my opinion this does not disparage this approach 
sufficiently! 
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Table: Effect of different analysis approaches on an RCT of coronary artery bypass 
surgery versus medical treatment in 767 men with stable angina. (Lancet 1979;i:889-93). 

 
 Allocated (vs. actual) treatment  

Medical 
(medical) 

Medical 
(surgical) 

Surgical 
(surgical) 

Surgical 
(medical) 

ARR 
(95% CI) 

Num.  subjects 323 50 368 26  
Deaths 27 2 15 6  
Mortality (%) 8.4% 4.0% 4.1% 23.1%  

ITT analysis 7.8% (29/373) 5.3% (21/394) 2.4% (-1.0, 6.1) 
PP analysis 8.4% (27/323) 4.1% (15/368) 4.3% (0.7, 8.2) 
AT analysis 9.5% (33/349) 4.1% (17/418) 5.4% (1.9, 9.3) 

 
When subjects were analyzed according to the groups they were randomized to (ITT), the results show 
that surgery had a small non-significant benefit vs. medical treatment. However, when the data was 
analyzed according to those that complied (PP), or according to the final treatment received (AT), the 
results show a larger and now statistically significant benefit for surgery. However, both estimates are 
biased in favour of surgery because the 26 high risk subjects were either dropped from the surgery 
group or were moved into the medical group – so clearly this analysis is stacked against medical 
treatment!!  
 
10. RCTs and Meta-analyses - assessing trial quality, trial reporting, and trial registration  
 
Meta-analyses of RCTs have fast become the undisputed king of the evidence-based tree. The 
preeminence of meta-analysis as a technique has had three important implications for the RCT. 
 
i) Assessment of study quality – Given the variability in the quality of published RCTs, meta-analysts 
will often attempt to assess their quality in order to determine whether the quality of a trial has an 
impact on the overall results. While there are several approaches to conducting quality assessment of 
RCTs (example: Jadad, 1996), they all essentially focus on the same criteria: a description of the 
randomization process, the use of concealment, the use of blinding, and a description of the loss-to-
follow-up and non-compliance rates. 
 
ii) Trial reporting – Quality assessment of published trials using the Jadad scale or other similar tools 
often indicates that the trials are of marginal or poor quality – in part, because they did not report 
information on the key quality criteria (i.e., randomization, concealment, blinding, LTFU). One is 
therefore left unsure as to whether the trial did not follow these basic steps, or whether the authors 
simply failed to report these steps in the paper. This problem has led to the development of specific 
guidelines for the reporting of clinical trials, called the CONSORT Statement (see Moher, JAMA 
2001). This statement aims to make sure that trials are reported in a consistent fashion and that 
specific descriptions are included so the validity criteria can be independently assessed. 
 
iii) Trial registration – A big problem for meta-analyses is the potential for publication bias. The 
results of any meta-analysis can be seriously biased if there is a tendency to not publish trials with 
negative or null results. Unpublished negative trials have the tendency to be either small studies (that 
had insufficient power to detect a clinically important difference), or on occasion, large trials that were 
sponsored by drug companies who do not want to release the information that shows their drug or 
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gadget did not live up to their expectations. Several controversies in the past few years has led to the 
International Committee of Medical Journal Editors (which includes JAMA, NEJM, Lancet etc) to 
require that for a trail to be published in any of these journals it must have been registered prior to 
starting it!. The idea here is that the scientific community will then have a registry of all trials 
undertaken on a topic, rather than the current situation where the published literature represents all 
trials that were deemed worthy of publication.  
 
Equivalence and Non-inferiority Designs 
 
For many conditions there exists a standard treatment which makes the use of a placebo-controlled 
trial not ethically acceptable. Therefore new drugs need to be compared to this active control. But it is 
increasingly difficult to prove that a new drug is better than an existing drug. Thus, an alternative 
approach is to prove that new drug is no worse than active control (within a given tolerance (∂) or 
equivalence margin. There is now increasing emphasis at the federal level on the conduct of 
comparative effectiveness trials i.e., trials done to directly compare alternative treatments. 
Comparative effectiveness trials use either equivalence or non-inferiority designs.  
 

 

 
Equivalence trials are trials designed to prove that a new drug is equivalent to an existing standard 
drug within a given tolerance (∂) or equivalence margin. They are most often used in the area of 
generic drug development to prove that a new generic drug is bio-equivalent to the original drug i.e., 
similar bioavailability, pharmacology etc.  

Non-inferiority Trials 

0 

Worse 

Non-inferior 

Equivocal 

 

 ∂ = equivalence margin 
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Non-inferiority trials are trials designed to prove that a new drug is no less effective than an existing 
standard drug. This is a one-sided equivalence test. The interest in non-inferiority trials assumes that 
the new drug has other advantages: 

Better safety profile - less side effects, less monitoring 
Easier dosing schedule - better compliance 
Cheaper 

 
Non-inferiority trials may therefore involve the evaluation of the same drug given using a different 
strategy, dose or duration.  
 
There are several methodological challenged associated with non-inferiority trials. First is that the null 
hypothesis being testing is opposite to that of a typical superiority trial. In a superiority trial the null 
and alternative hypotheses are: 
 
 H0:   New drug = Active Control vs. HA:   New drug ≠ Active Control.    
 
Whereas in the non-inferiority trial the null and alternative hypotheses are: 
 
H0:   New drug + ∂ < Active Control vs. HA:   New drug + ∂ > Active Control (where ∂ is the 
equivalence margin). 
 
The null hypothesis for the non-inferiority trial is that the active control is substantially better than the 
new drug. Accepting the null hypothesis means that the new drug is worse that active control by more 
than the equivalence margin (∂). Rejecting the null hypothesis means that the new drug is not inferior 
to the active control within the bounds of the equivalence margin.  
 
The equivalence margin (∂) (which is also referred to as tolerance or the non-inferiority margin) 
indicates by how much we are willing to accept that the new drug can have worse efficacy. The 
margin is set by deciding clinically on how big a difference there would have to be between the two 
drugs before we would decide that the drugs are clinically not equivalent i.e., that you would prefer 
one over the other. ∂ is the critical determinant of the success of the trial and its sample size. Smaller 
values of ∂ are more conservative, larger values more liberal. 
 
Other problems and limitations of non-inferiority trials 
Assay sensitivity - A poorly conducted trial may falsely show that the 2 drugs are equivalent. Poor 
trial conduct in terms of compliance, follow-up, blinded assessments etc will favour non-inferiority.  
 
Blinding – in superiority trials this is a vital step to reduce measurement bias. However, blinding does 
not have the same potential for benefit in a non-inferiority trial since it cannot protect against the 
investigators giving the same outcomes/ratings to all subjects and thereby showing non-inferiority.  
 
ITT analysis - In superiority trials the ITT is regarded as the gold standard analysis approach. But 
doing an ITT analysis for non-inferiority trials tends to bias towards finding non-inferiority! Including 
the non-compliant subjects in the treatment and active control groups tends to minimize differences 
between the groups thus potentially showing an inferior drug to be non-inferior. Compounding this 
problem is the fact that doing a PP analysis can introduce bias in either direction, hence it is not 
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recommended. The best approach is to do both an ITT and PP analysis and hope that the findings are 
consistent. But even then accepting the Ha of non-inferiority does not rule out the possibility of bias.   
 
III.  Advantages and disadvantages of RCT’s - Summary 

 
Advantages: 

High internal validity 
 
Control of exposure – including the amount, timing, frequency, duration 

 
Randomization - ensures balance of factors that could influence outcome i.e., it “controls” the 
effect of known and unknown confounders 
 
A true measure of efficacy. 
 

 
Disadvantages: 

Limited external validity 
 
Artificial environment, that includes the strict eligibility criteria and the fact that they are 
conducted in specialized tertiary care (referral) medical centers limits generalizability 
(external validity). 
 
Difficult/complex to conduct, take time, and are expensive. 
 
Because of ethical considerations they have limited scope – mostly therapeutic / preventive 
only 
 

Finally, one should be sure to re-familiarize yourself with the measures of effect that are commonly 
used to describe the results of RCT’s. These were covered in the Frequency lecture and include the 
CER or baseline risk, the TER, the RR, the RRR, the ARR and the NNT.  
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Objectives - Concepts 
 

•  Uses of risk factor information 
•  Association vs. causation 
•  Architecture of study designs (Grimes I) 
•  Cross sectional (XS) studies 
•  Cohort studies (Grimes II) 
•  Measures of association – RR, PAR, PARF 
•  Selection and confounding bias 
•  Advantages and disadvantages of cohort 

studies 
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Objectives - Skills 
 
 

•  Recognize different study designs 
•  Define a cohort study 
•  Explain the organization of a cohort study 

– Distinguish prospective from retrospective 
•  Define, calculate, interpret RR, PAR and 

PARF 
•  Understand and detect selection and 

confounding bias 
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“Risk Factor” – heard almost daily 
 
 

Cholesterol and heart disease 
HPV infection and cervical CA 
Cell phones and brain cancer 

TV watching and childhood obesity 
 
 

However, “association does not mean causation”! 
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Why care about risk factors? 
Fletcher lists the ways risk factors can be used: 

 
•  Identifying individuals/groups “at-risk” 

–  But ability to predict future disease in individual patients is 
very limited even for well established risk factors 

–  e.g., cholesterol and CHD 
•  Causation (causative agent vs. marker) 
•  Establish pretest probability (Bayes’ theorem) 
•  Risk stratification to identify target population 

–  Example: Age > 40 for mammography screening 
•  Prevention 

–  Remove causative agent & prevent disease 
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Predicting disease in individual patients 
 

Fig. Percentage distribution of serum cholesterol levels (mg/dl) in men aged 
50-62 who did or did not subsequently develop coronary heart disease 
(Framingham Study) 
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Causation vs. Association 
 
 

•  An association between a risk factor and 
disease can be due to: 
– the risk factor being a cause of the disease (= a 

causative agent) OR 
– the risk factor is NOT a cause but is merely 

associated with the disease (= a marker) 
 
 

•  Must guard against thinking that A causes B 
when really B causes A (reverse causation). 
– e.g. sedentariness and obesity. 
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Prevention 
 
 

• Removing a true cause → ↓ disease 
incidence. 
– Decrease aspirin use → ↓ Reye’s Syndrome 
– Discourage prone position 

“Back to Sleep” → ↓ SIDS 
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Back-To-Sleep Campaign 
Began in 1992 
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Architecture of study designs 
 

•  Experimental vs. observational 
 
 

•  Experimental studies 
–  Randomization? 

•  RCT vs. quasi-randomized or natural experiments 
 

•  Observational studies 
–  Analytical vs. descriptive 
–  Analytical 

•  XS, Cohort, CCS 
–  Descriptive 

•  Case report, case series 
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Cross-sectional studies 
 

•  Also called a prevalence study 
 

•  Prevalence measured by conducting a survey of the 
population of interest e.g., 
–   Interview of clinic patients 
–   Random-digit-dialing telephone survey 

 
•  Mainstay of descriptive epidemiology 

–   patterns of occurrence by time, place and person 
–   estimate disease frequency (prevalence) and time trends 

 
•  Useful for: 

–    program planning 
–    resource allocation 
–    generate hypotheses 
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Cross-sectional Studies 
 
 
 

•  Select sample of individual subjects and 
report disease prevalence (%) 

 
 

•  Can also simultaneously classify subjects 
according to exposure and disease status to 
draw inferences 
– Describe association between exposure and 

disease prevalence using the Odds Ratio (OR) 
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Cross-sectional Studies 
 
 

• Examples: 
– Prevalence of Asthma in School-aged Children in 

Michigan 
 
 

– Trends and changing epidemiology of hepatitis in 
Italy 

 
 

– Characteristics of teenage smokers in Michigan 
 
 

– Prevalence of stroke in Olmstead County, MN 
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Concept of the Prevalence “Pool” 
 
 
 

 New cases 
 
 
 
 

Recovery  
Death 
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Cross-sectional Studies 
 
 

• Advantages: 
– quick, inexpensive, useful 

 
 

• Disadvantages: 
– uncertain temporal relationships 
– survivor effect 
– low prevalence due to 

• rare disease 
• short duration 
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Cohort Studies 
 

•  A cohort is a group with something in common e.g., 
an exposure 

 

 
•  Start with disease-free “at-risk” population 

–  i.e., susceptible to the disease of interest 
 

•  Determine eligibility and exposure status 
 

•  Follow-up and count incident events 
 

•  a.k.a prospective, follow-up, incidence or longitudinal 
 
 

•  Similar in many ways to the RCT except that 
exposures are chosen by “nature” rather than by 
randomization 
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Types of Cohort Studies 
 

• Population-based (one-sample) 
– select entire popl (N) or known fraction of popl (n) 
– p (Exposed) in population can be determined 

 
 

• Multi-sample 
– select subgroups with known exposures 

• e.g., smokers and non-smokers 
• e.g., coal miners and uranium miners 

– p (Exposed) in population cannot be determined 
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Prospective Cohort Study – Population- 
based Design (select entire pop) 
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Prospective Cohort Study – Multi-sample 
Design (select specific exposure groups) 

 
 
 
 
 
 
 
 

Rate= a/ n 1 
 

 
Rate= c/ n 0 
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NOW FUTURE 
 

Disease 
 

Exposed 
 
 
 

Eligible 
subjects 

No disease 

 
 
 
 

Unexposed 
Disease 

 
 

No disease 
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Relative Risk – Cohort Study 
 
 

•  RR = Incidence rate in exposed 
Incidence rate in non-exposed 

 
•  The RR is the standard measure of association for 

cohort studies 
 
 

•  RR describes magnitude and direction of the 
association 

 

 
•  Incidence can be measured as the IDR or CIR 

 

 
•  RR =  a / ni or  a / (a + b) 

c / no c / (c + d) 
 

Mathew J. Reeves, PhD 24 
© Dept. of Epidemiology, MSU 



11/17/2014 

285 

 

 

 
 

 
 

 
 
 
 
 
 

Example - Smoking and Myocardial 
Infarction (MI) 

 

Study: Desert island, pop= 2,000 people, smoking prevalence= 50% 
Population-based cohort study. Followed for one year. 
What is the risk of MI among smokers compared to non-smokers? 

 
 
 
 
 
 
 
 
 
 
 
 
 

RR= 3 
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RR - Interpretation 
 
 

• RR = 1.0 
– indicates the rate (risk) of disease among exposed 

and non-exposed (= referent category) are 
identical (= null value) 

• RR = 2.0 
– rate (risk) is twice as high in exposed versus non- 

exposed 

• RR = 0.5 
– rate (risk) in exposed is half that in non-exposed 
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RR – Interpretation 
(Cohort Studies) 

• RR = > 5.0 or < 0.2 
– BIG 

 
 

• RR = 2.0 – 5.0 or 0.5 – 0.2 
– MODERATE 

 
 

• RR = <2.0 or >0.5 
– SMALL 
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Sources of Cohorts 
 

• Geographically defined groups: 
– Framingham, MA (sampled 6,500 of 28,000, 30-50 

yrs of age) 
– Tecumseh, MI (8,641 persons, 88% of population) 

 
 

•  Special resource groups 
– Medical plans e.g., Kaiser Permanente 
– Medical professionals e.g., 

– Physicians Health Study, Nurses Health Study 

– Veterans 
– College graduates e.g., Harvard Alumni 
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Sources of Cohorts 
 

•  Special exposure groups 
– Occupational exposures 

• e.g., pb workers, U miners 
• If everyone exposed then need an external cohort 

non-exposed cohort for comparison purposes 
• e.g., compare pb workers to car assembly workers 

 
 

– Specific risk factor groups 
• e.g., smokers, IV drug users, HIV+ 
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Cohort Design Options 
 
 

•  variation in timing of E and D measurement 
 
 
 

Design Past Present Future 
Prospective   E D 
Retrospective E D 

 

Historical/pros. 
 
E E D 
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Retrospective Cohort Study – Design 
Go back and determine exposure status based on historical 
information and then classify subjects according to their 
current disease status 

 
 
 
 
 
 

Rate= a/ n 1 
 

 
Rate= c/ n 0 
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PAST 
RECORDS 

NOW 
 
 

Disease 
 

Exposed 
 
 
 

Eligible 
subjects 

No disease 

 
 
 
 

Unexposed 
Disease 

 
 

No disease 
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Examples retrospective cohort 
 
 

•  Aware of cases of fibromyalgia in women in a 
large HMO. Go back and determine who had 
silicone breast implants (past exposure). 
Compare incidence of disease in exposed and 
non-exposed. 

 
 

•  Framingham study: use frozen blood bank to 
determine baseline level of hs-CRP and then 
measure incidence of CHD by risk groups 
(quartile) 
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PAR and PARF 
 
 

•  Important question for public health 
–  How much can we lower disease incidence if we 

intervene to remove this risk factor? 
•  Want to know how much disease an 

exposure causes in a population. 
•  PAR and PARF assume that the risk factor in 

question is causal 
•  See course notes on effect measures. 
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Venous thromboemolic disease (VTE) and oral 

contraceptives (OC) in woman of reproductive age 

 
•  Incidence of VTE: 

– OC users: 16 per 10,000 person-years 
– non-OC users: 4 per 10,000 person-years 
– Total population: 7 per 10,000 person-years 

 
 

•  RR = 16/4 = 4 
 
 

•  Prevalence of exposure to OC: 
– 25% of woman of reproductive age 
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Population attributable risk (PAR) 
 
 

•  The incidence of disease in a population that is 
associated with a risk factor. 

 

 
•  Calculated from the Attributable risk (or RD) and the 

prevalence (P) of the risk factor in the population 
–  PAR = Attributable risk x P 
–  PAR = (16-4) x 0.25 
–  PAR = 3 per 10,000 person years 

 
 

•  Equals the excess incidence of VTE in the population 
due to OC use 

 
 
 

Mathew J. Reeves, PhD 36 
© Dept. of Epidemiology, MSU 



11/17/2014 

291 

 

 

 
 
 
 
 
 
 

Population attributable risk 
fraction (PARF) 

 
•  The fraction of disease in a population that is 

attributed to a risk factor. 
 

•  PARF = PAR/Total incidence 
–  PARF = 3/7per 10,000 person years 
–  PARF = 43% 

 
•  Represents the maximum potential impact on 

disease incidence if risk factor was removed 
–  So, remove OC’s and incidence of VTE drops 43% in 

women of repro age (assuming OC is a cause of VTE) 
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NOW FUTURE 
 

Disease 
 

Exposed 
 
 
 

Eligible 
subjects 

No disease 

 
 
 
 

Unexposed 
Disease 

 
PARF = - 

 
 

+ 
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PARF Calculation 
 
 

•  PARF = P(RR-1)/ [1 + P(RR-1)] 
where: 

– P = prevalence, RR = relative risk 
 

•  PARF = 0.25(4-1)/ [1 + 0.25(4-1)] 
•  PARF = 43% 

 
 

•  Note that a factor with a small RR but a large 
P can cause more disease in a population 
than a factor with a big RR and a small P. 
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Selection Bias 
 

•  Selection bias can occur at the time the cohort is first 
assembled: 
–  Patients assembled for the study differ in ways other than 

the exposure under study and these factors may determine 
the outcome 

•  e.g., Only the Uranium miners at highest risk of lung cancer 
(i.e., smokers, prior family history) agree to participate 

•  Selection bias can occur during the study 
–  e.g., differential loss to follow-up in exposed and un-exposed 

groups (same issue as per RCT design) 
–  Loss to follow-up does not occur at random 

•  To some degree selection bias is almost inevitable. 
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Confounding Bias 
 

•  Confounding bias can occur in cohort studies 
because the exposure of interest is not 
assigned at random and other risk factors 
may be associated with both the exposure 
and disease. 

•  Example: cohort study of lecture attendance 

- 
Attendance Exam success 

 

- + 
Baseline epi proficiency 
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Cohort Studies - Advantages 
 
 

•  Can measure disease incidence 
•  Can study the natural history 
•  Provides strong evidence of casual association 

between E and D (time order is known) 
•  Provides information on time lag between E and D 
•  Multiple diseases can be examined 
•  Good choice if exposure is rare (assemble special 

exposure cohort) 
•  Generally less susceptible to bias vs. CCS 
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Cohort Studies - Disadvantages 
 

•  Takes time, need large samples, expensive 
•  Complicated to implement and conduct 
•  Not useful for rare diseases/outcomes 
•  Problems of selection bias 

–  At start = assembling the cohort 
–  During study = loss to follow-up 

•  With prolonged time period: 
–  loss-to-follow up 
–  exposures change (misclassification) 

•  Confounding 
–  Exposures not assigned at random 

Mathew J. Reeves, PhD 43 
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Prognostic Studies - predicting 
outcomes in those with disease 

 
• Also measured using a cohort design 

(of affected individuals) 
• Factors that predict outcomes among 

those with disease are called 
prognostic factors and may be 
different from risk factors. 

• Discussed further in Epi-547 
 
 
 

Mathew J. Reeves, PhD 44 
© Dept. of Epidemiology, MSU 



295 

 

 

 
 
 
 
 

EPI-546 Block I 
 
 
 
 
 
 

Lecture: Case-Control Studies 
 
 
 

Mathew J. Reeves BVSc, PhD 
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Observational Studies 
 

= Investigator has no control over exposure 
 

•  Descriptive 
•  Case reports & case series (Clinical) 
•  Prevalence survey (Epidemiological) 

 
 

•  Analytical 
•  Cohort 
•  Case-control 
•  Cross-sectional 
•  Ecological 
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Grimes DA and Schulz KF 2002. An overview of clinical research. Lancet 359:57-61. 

 
 
 
 
 
 
 
 
 

Objectives – CCS Concepts 
 

•  Define and identify case reports and case series 
•  Define, understand and identify (CCS) 

•  Distinguish CCS from other designs (esp. retrospective 
cohort) 

•  Understand the principles of selecting cases and 
controls 

•  Understand the analysis of CCS 
•  Calculation and interpretation of the OR 

•  Understand the concept of matching 
•  Understand the origin and consequence of recall bias 

•  Example of measurement bias 

•  Advantages and disadvantages of CCS 
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Case Report and Case Series 
 

•  Profile of a clinical case or case series which should: 
•  illustrate a new finding, 
•  emphasize a clinical principle, or 
•  generate new hypotheses 

 

 
•  Not a measure of disease occurrence! 

 
 

•  Usually cannot identify risk factors or the cause (no 
control or comparison group) 
•  Exception: 12 cases with salmonella infection, 10 had eaten 

cantaloupe 
 
 
 
 

5 
 
 
 
 
 
 
 
 
 
 

Occasionally case reports or case 
series become very important… 

 
•  Famous Examples: 

•  A report of 8 cases of GRID, LA County (MMWR 
1981) 

 
 

•  A novel progressive spongiform encephalopathy in 
Cattle (Vet Record, October 1987) 

– Clinical and pathologic findings of 6 cases reported 
 
 

•  Twenty five cases of ARDS due to Hanta-virus, 
Four Corners, US (NEJM, 1993) 
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Case-Control Studies (CCS) 
 
 

•  An alternative observational design to identify risk 
factors for a disease/outcome. 

 
•  Question: 

•  How do diseased cases differ from non-diseased (controls) 
with respect to prior exposure history? 

 
•  Compare frequency of exposure among cases and controls 

 
•  Effect cause. 

 
•  Cannot calculate disease incidence rates because the CCS 

does not follow a disease free- population over time 
 
 
 

7 
 
 
 
 
 
 
 
 
 
 

Case-control Study – Design 
 

Select subjects on the basis of disease status 
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Example Cohort Study 
Smoking and Myocardial Infarction (MI) 

 

Study: Desert island, pop= 2,000 people, smoking prevalence= 50% 
Population-based cohort study. Followed for one year. 
What is the risk of MI among smokers compared to non-smokers? 

 
 
 
 
 
 
 
 
 
 
 
 
 

RR= 3 
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Example CCS 
Smoking and Myocardial Infarction 
Study: Same desert island with population 2,000, prevalence of 
smoking = 50% [but this is unknown], identify all MI cases that 
occurred over last year (N=40), obtain a random sample of N=40 
controls (no MI). What is the association between smoking and MI? 

 
 
 

• 
 
 
 
 
 
 
 

40 40 
OR = a . d = 30 . 20  = 3.0 (same as the RR!) 

c . b 10 . 20 10 
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Examples of CCS 
 

•  Outbreak investigations 
•  What dish caused people at the church picnic to get sick? 
•  What is causing young women to die of toxic shock? 

•  Birth defects 
•  Drug exposures and heart tetralogy 

•  New (unrecognized) disease 
•  DES and vaginal cancer in adolescents 
•  Is smoking the reason for the increase in lung CA? (1940’s) 

– Four CCS implicating smoking and lung cancer appeared in 
1950, establishing the CCS method in epidemiology 
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Essential features of CCS design 
 
 

•   Directionality 
•   Outcome to exposure 

•   Timing 
•   Retrospective for exposure, but case ascertainment can be either 

retrospective or prospective. 
•   Rare or new disease 

•   Design of choice if disease is rare or if a quick “answer” is needed 
(cohort design not useful) 

•   Challenging 
•   The most difficult type of study to design and execute 

•   Design options 
•   Population-based vs. hospital-based 
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Selection of Cases 
 
 

•  Requires case-definition: 
•  Need for standard diagnostic criteria e.g., AMI 
•  Consider severity of disease? e.g., asthma 
•  Consider duration of disease 

– prevalent or incident case? 
 
 

•  Requires eligibility criteria 
•  Area of residence, age, gender, etc 
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Sources of Cases 
 

 
•  Population-based 

– identify and enroll all incident cases from a defined population 
– e.g., disease registry, defined geographical area, vital records 

 
 

•  Hospital-based 
•  identify cases where you can find them 

– e.g., hospitals, clinics. 
•  But…… 

– issue of representativeness? 
– prevalent vs incident cases? 
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Selection of Controls 
 

•  Controls reveal the ‘normal’ or ‘expected’ level of 
exposure in the population that gave rise to the 
cases. 

 
•  Issue of comparability to cases – concept of the 

“study base” 
•  Controls should be from the same underlying population or 

study base that gave rise to the cases? 
•  Need to answer this question: 

–  if the control subject had developed the disease would he or she be 
included as a case in this study? 

– If the answer is no then do not include! 
 

•  Controls should have the same eligibility criteria as 
the cases 

15 
 
 
 
 
 
 
 
 
 
 

Sources of Controls 
 
 

•  Population-based Controls 
– ideal, represents exposure distribution in the general 

population, e.g., 
• driver’s license lists (16+) 
• Medicare recipients (65+) 
• Tax lists 
• Voting lists 
• Telephone RDD survey 

 

 
•  But if low participation rate = response bias 

(selection bias) 
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Sources of Controls 
 

•  Hospital-based Controls 
•  Hospital-based case control studies used when population- 

based studies not feasible 
•  More susceptible to bias 

 
•  Advantages 

– similar to cases? (hospital use means similar SES, location) 
– more likely to participate (they are sick) 
– efficient (interview in hospital) 

 
•  Disadvantages 

– they have disease? 
•  Don’t select if risk factor for their disease is similar to the 

disease under study e.g., COPD and Lung CA 
– are they representative of the study base? 

 
17 

 
 
 
 
 
 
 
 
 
 

Other Sources of Controls 
 

•  Relatives, Neighbors, Friends of Cases 
•  Advantages 

– similar to cases wrt SES/ education/ neighborhood 
– more willing to co-operate 

 
 

•  Disadvantages 
– more time consuming 
– cases may not be willing to give information? 
– may have similar risk factors (e.g., smoke, alcohol, golf) 
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• Analysis of CCS 
• Odds of exposure among cases = a / c 
• Odds of exposure among controls = b / d 
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Analysis of CCS 
The OR is the only measure of association 

 

 
•  The only valid measure of association for the CCS is the 

Odds Ratio (OR) 
 
 

•  Under reasonable assumptions (– the rare disease 
assumption) the OR approximates the RR. 

 
•  OR = Odds of exposure among cases (disease) 

Odds of exposure among controls (non-dis) 
 

– Odds of exposure among cases = a / c 
– Odds of exposure among controls = b / d 
– Odds ratio =  a/c = a.d  [= cross-product ratio] 

b/d b.c 
 

20 
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Example CCS 
Smoking and Myocardial Infarction 
Study: Same desert island with population 2,000, prevalence of 
smoking = 50% [but this is unknown], identify all MI cases that 
occurred over last year (N=40), obtain a random sample of N=40 
controls (no MI). What is the association between smoking and MI? 

 
 
 

• 
 
 
 
 
 
 
 

40 40 
OR = a . d = 30 . 20  = 3.0 (same as the RR!) 

c . b 10 . 20 21 
 
 
 
 
 
 
 
 
 
 
 

Odds Ratio (OR) 
 
 

• Similar interpretation as the Relative Risk 
 

• OR = 1.0 (implies equal odds of exposure - no effect) 
 

• ORs provide the exact same information as the RR if: 
•  controls represent the target population 
•  cases represent all cases 
•  rare disease assumption holds (or if case-control study is 

undertaken with population-based sampling) 
 

• Remember: 
•  OR can be calculated for any design but RR can only be 

calculated in RCT and cohort studies 
•  The OR is the only valid measure for CCS 
•  Publications will occasionally mis-label OR as RR (or vice 

versa) 22 
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Controlling extraneous variables 
(confounding) 

 
•  Exposure of interest may be confounded by a 

factor that is associated with the exposure 
and the disease i.e., is an independent risk 
factor for the disease 

 

A B 
 
 
 

C 
 

23 
 
 
 
 
 
 
 
 
 
 

Example – Sex differences in stroke 
survival and confounding by age 

 
•  Women have higher risk of mortality following stroke 

vs. men (35% vs. 24%; OR = 1.6, 95% CI 1.29-2.06) 
•  But women are older than men (77 vs 72 years) 
•  Age is an important risk factor for dying 

 
 

Women Mortality 
 
 
 
 

Age 
24 
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Statistical control of confounding 
(using logistic regression analysis) 

 
Analysis Variable OR 95% CI P-value 
Unadjusted Women vs. 

men 
1.64 1.30-2.06 <0.0001 

     
Adjusted Women vs. 

men 
1.30 1.02-1.66 0.034 

 Age (>75 vs 
< 75) 

4.46 3.40-5.84 <0.0001 

 
 
 

The substantial change in the adjusted OR for women after 
adjustment for age indicates strong confounding by age. 
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How to control for confounding 
 

•  At the design phase 
– Randomization 
– Restriction 
– Matching 

 

 
•  At the analysis phase 

– Age-adjustment 
– Stratification 
– Multivariable adjustment (logistic regression modeling, 

Cox regression modeling) 
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Matching is commonly used in CCS 
 

•  Control an extraneous variable by matching 
controls to cases on a factor you know is an 
important risk factor or marker for disease 
•  Examples: 

– Age (within 5 years), Sex, Neighbourhood 
 
 

•  If a factor is fixed to be the same in the cases 
and controls then it can’t confound. But if the 
factor is “fixed” by the design then you can no 
longer study its effect in this particular study. 

 
 

•  Don’t confuse matching with the concept of 
the study base. 27 

 
 
 
 
 
 
 
 
 
 

Matching 
• Analysis of matched CCS needs to account for the matched 

case-control pairs 
•  Only pairs that are discordant with respect to exposure 

provide useful information 
•  Use McNemar’s OR = b/c 
•  Conditional logistic regression 

 
 

•   Can increase power by matching more than 1 control per case 
e.g., 4:1 
•  This is useful if few cases are available 

 
 

• Matching can improve the efficiency of a study particularly for 
rare exposures, but the downside is that it creates more 
complexity in the design and analysis stages. 

• Many epidemiologists prefer to use statistical techniques such 
as statistical adjustment to control for confounding. 
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Matched CCS - Discordant pairs 
 

Match 40 controls to 40 cases of AMI so they have the same age and 
sex. Then classify according to smoking status. Only the discordant 
cells (‘b’ and ‘c’) contribute to the OR. 

• 
 
 
 
 
 
 

Cases 
 
 
 

80 
 
 

McNemar’s OR = b  = 20  = 2.0 
c 10 29 

 
 
 
 
 
 
 
 
 
 
 

Over-matching 
 

•  Matching can result in controls being so 
similar to cases that all of the exposures are 
the same 

 

 
•  Example: 

•  8 cases of GRID, LA County, 1981 
•  All cases are gay men so match with other gay 

men who did not have signs of GRID 
•  Use 4:1 matching ration i.e. 32 controls 
•  No differences found in sexual or other lifestyle 

habits 
 

30 
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Recall Bias 
•  Form of measurement bias. 
•  Presence of disease may affect ability to recall or 

report the exposure. 
•  Example – exposure to OTC drugs during pregnancy 

use by moms of normal and congenitally abnormal 
babies. 

•  To lessen potential: 
•  Blind participants to study hypothesis 
•  Blind study personnel to hypothesis 
•  Use explicit definitions for exposure 
•  Use controls with an unrelated but similar disease 

– E.g., heart tetralogy (cases), hypospadia (controls) 
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Other issues in interpretation of CCS 
 
 

•  Beware of reverse causation 
•  The disease or sub-clinical manifestations of it 

results in a change in behaviour (exposure) 
 
 

•  Example: 
– Obese children found to be less physical active than non- 

obese children. 
– Multiple sclerosis patients found to use more multi- 

vitamins and supplements 
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CCS - Advantages 
 
 

•  Quick and cheap (relatively) 
•  so ideal for outbreaks 
(http://www.cdc.gov/eis/casestudies/casestudies.htm) 

 
 

•  Can study rare diseases (or new) 
 
 

•  Can evaluate multiple exposures (fishing 
trips) 

 
 
 

34 
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Case-control Studies - Disadvantages 
 
 

•  uncertain of E D relationship (esp. 
timing) 

•  cannot estimate disease rates 
•  worry about representativeness of controls 
•  inefficient if exposures are rare 
•  Bias: 

•  Selection 
•  Confounding 
•  Measurement (especially recall bias) 
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