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Chapter 1

Introduction

In this course, we will be describing all optical phenomena classically within the
framework of macroscopic Maxwell’s equations written in terms of macroscopic elec-
tromagnetic fields. The latter are obtained by averaging rapidly varying microscopic
fields over spatial scales much larger than characteristic material microstructure scales
(atomic size, lattice scale, etc). The averaging procedure is examined in detail in stan-
dard electrodynamics textbooks1. Within the framework of such a phenomenological
approach, which circumvents a detailed microscopic light-matter interaction descrip-
tion, external or driving volume charge and current densities, ρex and Jex, give rise to
the electromagnetic fields obeying the Maxwell equations in the form

∇ ·D = ρex, (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂B
∂t

, (1.3)

and
∇×H = Jex +

∂D
∂t

. (1.4)

The set of equations (1.1) through (1.4) is not closed, however, until we provide any
information about the material media. Such information is furnished by supplying phe-
nomenological constitutive relations among the four fields, E, D, B, and H. Without
much loss of generality we will assume hereafter that all material media are nonmag-
netic, which holds true for virtually all natural media at optical frequencies 2. We can
then represent the magnetic constitutive relation in its simplest form as

B = µ0H, (1.5)
1J. D. Jackson, Classical Electrodynamics (Wiley, New York, NY, 1999) 3rd edition.
2This criterion, however, breaks down for some artificial materials, the so-called metamaterials, which

we will not consider in this course.
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with µ0 being the free space permeability in the SI units we will be employing hereafter.
A general electric constitutive relation states

D = ε0E + P; P = P(E), (1.6)

where ε0 is the free space permittivity and P is a macroscopic polarization field. The
latter is in turn a function of the applied electric field. For sufficiently weak applied
fields, P is a linear function of E; this is a regime of linear optics. However, even in
the linear optics regime, the dependence of the polarization on the applied electric field
can be rather complicated to account for possible medium anisotropy and–temporal
and sometimes even spatial–dispersion. While the former implies that the medium
response in a particular direction can be affected by the electric field components or-
thogonal to this direction, the latter acknowledges the fact that the medium response
at a given space-time point can depend on the applied electric field in the past (tem-
poral dispersion) and/or on the fields in the neighborhood of the spatial point (spatial
dispersion). We will study all these cases in detail in the subsequent chapters.

As the magnitude of the applied electric field increases, the linear relationship be-
tween P and E breaks down and we enter the realm of nonlinear optics. If the electric
field intensity is far below a critical value, Ecr ∼ 109 V/cm needed to ionize a material
atom, the resulting polarization can be expressed as a series in increasing powers of the
electric field. Schematically, such a series can be expressed as

P = χ(1)E + χ(2)E2 + χ(3)E3 + . . . , (1.7)

where we ignored the vector nature of the fields as well as dispersion, for simplicity.
The expansion coefficients, χ(1) and χ(2), etc., are identified as linear and nonlinear
susceptibilities, respectively. The linear and nonlinear susceptibilities should be treated
as phenomenological constants in our classical description. The condition E � Ecr is
typically met with a vast majority of laser sources which rarely generate fields in excess
of 106 V/cm. However, even if the applied field does not exceed Ecr, the power series
expansion can fail, provided the carrier frequency of the field lies close to any internal
resonance of the medium. In the latter case, the material response tends to saturate
at high enough field intensities. The proper quantitative description of such nonlinear
saturation phenomena calls for a quantum mechanical treatment of the medium. When-
ever, the power expansion of P is valid, though, we shall refer to the lowest-order term
in the expansion as a linear contribution and designate the rest to be nonlinear polar-
ization such that

P = PL + PNL. (1.8)

Next, the external charge and current densities are not independent from each other.
Rather they are related by another fundamental law, the charge conservation law, which
takes the form of a well-known continuity equation viz.,

∂ρex

∂t
+∇ · Jex = 0. (1.9)

The external ρex and Jex drive the electromagnetic fields which, in turn, induce internal
charge and current densities, ρ and J, inside a medium. The induced charges and
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currents can be of either free (conduction) or bound (polarized) type and they also
obey the continuity equation,

∂ρ

∂t
+∇ · J = 0. (1.10)

We stress that charge conservation (1.9) amounts to a fundamental law which does
not follow from Maxwell’s equations. The electromagnetic energy conservation law,
however, does follow from the Maxwell equations by the same token as the mechanical
energy conservation follows from Newton’s laws.

To derive the electromagnetic energy conservation law or the Poynting theorem, we
take dot products of the both sides of Eqs. (1.3) and (1.4) with H and E, respectively,
and use the constitutive relations (1.5) and (1.6), yielding

H · (∇×E) = −µ0H · ∂H
∂t

(1.11)

and
E · (∇×H) = Jex ·E + ε0E ·

∂E
∂t

+ E · ∂P
∂t

. (1.12)

On subtracting Eq. (1.11) from Eq. (1.12) term by term, we obtain

ε0
2

∂E2

∂t
+

µ0

2
∂H2

∂t
+ Jex ·E = E · (∇×H)−H · (∇×E)−E · ∂P

∂t
. (1.13)

Further, using the vector identity

∇ · (E×H) = H · (∇×E)−E · (∇×H) (1.14)

we arrive, after minor algebra, at a differential form of the electromagnetic energy
conservation equation

∂wem

∂t
+∇ · S = −Jex ·E−E · ∂P

∂t
. (1.15)

Here the electromagnetic energy density wem is defined in the same way as in free
space,

wem = 1
2ε0E

2 + 1
2µ0H

2, (1.16)

and we introduced the electromagnetic energy flux density, the so-called Poynting vec-
tor, by the expression

S = E×H. (1.17)

Equation (1.15) is often referred to as Poynting’s theorem. In essence, it implies that
the time rate of change of the electromagnetic energy density is determined by the
energy flux density minus losses associated with external as well as internal currents.
The second term on the r.h.s of Eq. (1.15) describes Ohmic losses associated with
external currents and the third one is identified with the energy loss caused by induced
polarization currents, including the ones associated with the generation of nonlinear
polarizations. To reexpress the right-hand side of Eq. (1.15) in a more symmetric from,
we can explicitly define the induced polarization currents as

J =
∂P
∂t

, (1.18)
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and introduce the corresponding induced charge densities as

ρ = −∇ ·P, (1.19)

such that the continuity equation (1.10) is respected. We emphasize that our separation
of the charges into external (driving) and internal (induced) is much more natural at
optical frequencies than the standard separation into free and bound charges. The latter
is a rather arbitrary division3 which can be confusing at optical frequencies, especially
for metals4. We will then unify free and bound induced charges and currents under the
umbrella of ρ and J.

To better understand Eq. (1.15), we transform it into the integral form

dWem

dt
= −

∮
σ

dσ · S−
∫

v

dv(Jex + J) ·E. (1.20)

where
Wem =

∫
v

dvwem, (1.21)

is the total energy of electromagnetic field inside a given volume v, and we used a
divergence theorem to convert a volume integral on the the r.h.s of (1.20) into the
surface one. Equation (1.20) then implies that the total energy change inside a finite
region of the medium can occur as a result of the energy outflow through the boundary
surface of the region as well as via energy losses inside the region associated with
driving and induced currents. This situation is schematically illustrated in Fig. 1.

In many practical situations in nonlinear optics one deals with pulse or beam fields
with their carriers oscillating at optical frequencies. Such fast oscillations can never
be detected by even the fastest modern detectors whose response time is much larger
that an optical period. Consequently, it makes sense to talk about the field quantities
averaged over many optical cycles – it is those quantities that can actually be registered
in optical measurements anyway. In the absence of external currents, Jex = 0, we can
rewrite the time-averaged Poynting theorem as〈

∂wem

∂t

〉
+∇ · 〈S〉 = −

〈
E · ∂P

∂t

〉
. (1.22)

Here we define time-averaged quantities such as the average Poynting vector by the
expression

〈S〉 = 〈E×H〉 ≡ 1
T

∫ t+T/2

t−T/2

dt (E×H), (1.23)

where T is an optical period. In case of monochromatic fields, which can be conve-
niently represented via complex amplitudes as

E = 1
2 (Ee−iωt + c. c.), (1.24)

3Yu. A. Illinskii, L. V. Keldysh, Electromagnetic response of material media (Plenum Press, New York,
NY, 1994).

4S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, Berlin, 2007).

6



emW

EJ c .

t

P
E

∂
∂

.

S

Figure 1.1: Schematic illustration of energy conservation in nonlinear media.

and
H = 1

2 (He−iωt + c. c.), (1.25)

Eq. (1.23) can be shown to reduce to

〈S〉 = 1
2Re(E ×H∗). (1.26)
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Chapter 2

Plane electromagnetic waves in
linear media

2.1 Plane waves in free space
In the absence of external charges and currents, Maxwell’s equations in free space take
the form

∇ ·E = 0, (2.1)

∇ ·H = 0, (2.2)

∇×E = −µ0
∂H
∂t

, (2.3)

and
∇×H = ε0

∂E
∂t

. (2.4)

Linearity, stationarity, and homogeneity of Maxwell’s equations in free space point to
the existence of plane-wave solutions in the form

E(r, t) = Re{Eei(k·r−ωt)}, H(r, t) = Re{Hei(k·r−ωt)}. (2.5)

By linearity of Maxwell’s equations in free space, we can drop the real part and deal
with complex phasors describing the waves directly. The real part can be taken at the
end of all calculations to yield physical (real) electric and magnetic fields of a plane
wave.

The Maxwell equations in the plane-wave form can be rewritten as

k · E = 0, (2.6)

k ·H = 0, (2.7)

k× E = ωµ0H, (2.8)

and
k×H = −ωε0E. (2.9)
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In Eqs. (2.6) – (2.9) we dropped plane-wave phasors on both sides.
Next, we can exclude the magnetic field from the fourth Maxwell equation leading

to
k× (k× E) = −ε0µ0ω

2E. (2.10)

Rearranging the double cross-product on the left-hand side of Eq. (2.10), we arrive at

k(k · E)− k2E = −ε0µ0ω
2E. (2.11)

With the aid of Eq. (2.6), we obtain

(k2 − µ0ε0ω
2)E = 0, (2.12)

implying that
k = ω

√
ε0µ0 = ω/c (2.13)

where we introduced the speed of light in vacuum

c =
1

√
ε0µ0

= 3× 108 m/s. (2.14)

Equation (2.13) is a dispersion relation for plane electromagnetic waves in free
space; it relates the wave number to the wave frequency. The complex amplitudes E
and H–which determine the directions of E and H–are not independent, but are related
by the Maxwell equations (2.8) or (2.9). For instance, from the knowledge of E one
can determine H using Eq. (2.8),

H =
(ek × E)

η0
, (2.15)

where ek = k/k and η0 is the free space impedance defined as

η0 =
√

µ0

ε0
' 377 Ω. (2.16)

By the same token, E0 can be inferred from H0 with the help of Eq. (2.9):

E = −η0(ek ×H). (2.17)

It follows at once from Eqs. (2.15) and (2.17) that E , k and H are mutually orthogonal
for a plane wave in free space.

By convention, the wave polarization is associated with the time evolution of the
electric field vector. Let us consider a plane wave propagating along the z-axis in free
space. As, k = kez , and E⊥k, the electric field in the phasor form reads

E(z, t) = Re{(ex|Ex|eiφ0x + ey|Ey|eiφ0y )ei(kz−ωt)}, (2.18)

We will now show that, in general, the tip of the electric field vector moves around
an ellipse as the time evolves. This general polarization is called elliptic. To proceed,
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Figure 2.1: Mutual orientation of E, H and k of a plane wave propagating in free
space.

we rewrite the complex amplitude in the rectangular form as

Exex + Eyey = (ex|Ex| cos φ0x + ey|Ey| cos φ0y)︸ ︷︷ ︸
U

+ i (ex|Ex| sinφ0x + ey|Ey| sinφ0y)︸ ︷︷ ︸
V

. (2.19)

Note that U and V are not orthogonal which makes the situation tricky. We can how-
ever introduce a transformation from U and V to u, v involving an auxiliary parameter
θ such that

U + iV = (u + iv)eiθ, (2.20)

It follows at once from Eq. (2.20) that

U = u cos θ − v sin θ, V = u sin θ + v cos θ. (2.21)

Inverting Eqs. (2.21), we obtain

u = U cos θ + V sin θ, v = U sin θ −V cos θ. (2.22)

We can now use our freedom to choose θ wisely. In particular, choosing it such that
u · v = 0 (orthogonal axes), we obtain by taking the dot product of u and v,

tan 2θ =
2U ·V

U2 − V 2
=⇒ θ =

1
2

tan−1

(
2U ·V

U2 − V 2

)
. (2.23)

Here we made use of the trigonometric identities, sin 2θ = 2 sin θ cos θ and cos 2θ =
cos2 θ − sin2 θ. By combining Eqs. (2.19) and (2.20), we can rewrite our field as

E(z, t) = Re{(u + iv)ei(kz−ωt+θ)}. (2.24)

Using the orthogonality of u and v, we can write the two orthogonal components of
the field, Eu and Ev as

Eu = u cos(kz − ωt + θ), Ev = v sin(kz − ωt + θ). (2.25)
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It follows from Eq. (2.25) that
E2

u

u2
+

E2
v

v2
= 1, (2.26)

where u and v are given by Eq. (2.22) and θ by Eq. (2.23). Eq. (2.26) manifestly
represents an ellipse with the semi-major axis making the angle θ with the x-axis as is
shown in Fig. 3.6. The tip of E can move either clockwise or counterclockwise along

E


vE



uE

Figure 2.2: Illustrating elliptic polarization.

the ellipse; depending on the direction of motion of E, the polarization is left-hand
or right-hand elliptical. In the left-hand (right-hand) elliptical polarization, the fingers
of your left (right) hand follow the direction of rotation and the thumb points to the
wave propagation direction. Thus, for a general elliptic polarization, the electric field

E


xE



yE

xâ

yâ

Figure 2.3: Illustrating linear polarization.

amplitude takes the form

E(z, t) = ex|Ex| cos(kz − ωt + φ0x) + ey|Ey| cos(kz − ωt + φ0y). (2.27)

Although, in general, the electric field is elliptically polarized, there are two impor-
tant particular cases. The electric field is said to be linearly polarized if the phases of
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two orthogonal components of the field in Eq. (2.18) are the same, φ0x = φ0y .
In this case,

E(z, t) = (ex|Ex|+ ey|Ey|) cos(kz − ωt + φ0), (2.28)

and the electric field is always directed along the line making the angle

α = tan−1(|Ey|/|Ex|) (2.29)

with the x-axis as is shown in Fig. 3.7.
If the phases of the two orthogonal components in Eq. (2.19) differ by π/2, and |E0x| =
|E0y|, the wave is said to be circularly polarized. In this case

E(z, t) = |E|[ex cos(kz − ωt + φ0)∓ ey sin(kz − ωt + φ0)]. (2.30)

In a circularly polarized wave, the E has the same magnitude but is moving along

E


xE

yE

o

Figure 2.4: Illustrating circular polarization.

the circle. In the case of “-” sign in Eq. (2.30), E moves counterclockwise around the
circle and the wave is left circularly polarized; for the “+” sign it is right circularly
polarized.

2.2 Plane waves in homogeneous dielectrics
We now consider general phenomenological electric constitutive relations for station-
ary, homogeneous linear media. As a medium can be anisotropic and dispersive, we
can introduce the relative permittivity and conductivity tensors, εij and σij and express
D and J in terms of E as

Di(r, t) = ε0
∑

j=x,y,z

∫ ∞

−∞
dt′
∫

dr′ εij(r− r′, t− t′)Ej(r′, t′), (2.31)
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and

Ji(r, t) =
∑

j=x,y,z

∫ ∞

−∞
dt′
∫

dr′ σij(r− r′, t− t′)Ej(r′, t′). (2.32)

In Eqs. (2.31) and (2.32), the permittivity and conductivity tensors depend only on co-
ordinate and time differences because of homogeneity and stationarity of the medium:
All properties of such media are invariant with respect to translations in time and dis-
placements in space.

The translational invariance of the system prompts the use of plane-wave expan-
sions via Fourier transforms, i. e.,

D(r, t) =
∫

dω

∫
dkD(k, ω)ei(k·r−ωt), (2.33)

with similar expressions for the other fields. In physical terms, Fourier expansions give
all possible plane waves allowed to propagate in such media; the Fourier coefficients
specify field amplitudes of these plane waves. Introducing also Fourier expansions of
the permittivity and conductivity tensors viz.,

εij(r, t) =
∫

dω

∫
dk εij(k, ω)ei(k·r−ωt), (2.34)

and
σij(r, t) =

∫
dω

∫
dkσij(k, ω)ei(k·r−ωt), (2.35)

we can use convolution properties of Fourier transforms to cast Eqs. (2.31) and (2.32)
to

Di(k, ω) = ε0
∑

j=x,y,z

εij(k, ω)Ej(k, ω), (2.36)

and
Ji(k, ω) =

∑
j=x,y,z

σij(k, ω)Ej(k, ω). (2.37)

Next, on taking Fourier transforms of Eqs. (1.6), and (1.18) and combining Eqs. (2.36)
as well as (2.37), we can establish a relation between the permittivity and conductivity
tensors in the Fourier space,

εij(k, ω) = δij +
i

ε0ω
σij(k, ω). (2.38)

Exercise 2.1. Derive Eq. (2.38).
Thus, we conclude that the permittivity and conductivity tensors are actually related
and one can be eliminated in favor of the other. In condensed-matter calculations, it
is the conductivity tensor that is typically employed. On the other hand, optical wave
propagation in the media is more conveniently examined in terms of the permittivity
tensor. In the absence of external charges and currents, the Maxwell equations (1.1)
through (1.4) can be greatly simplified in the Fourier space to read

k ·D = 0, (2.39)
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k ·H = 0, (2.40)

k× E = µ0ωH, (2.41)

and
k×H = −ωD. (2.42)

Next, eliminating the magnetic field from Eqs. (2.39) - (2.42), and using the con-
stitutive relation (2.36), we can express Eqs. (1.1) and (2.41) in the component form
as ∑

i,j=x,y,z

kiεij(k, ω)Ej(k, ω) = 0, (2.43)

and ∑
j=x,y,z

[
k2δij − kikj − ω2

c2 εij(k, ω)
]
Ej(k, ω) = 0. (2.44)

Eqs. (2.43) and (2.44) determine all possible plane electromagnetic waves supported
by a given medium.
Exercise 2.2. Show that Eqs. (2.43) and (2.44) are always compatible.
Eq. (2.43 is called a generalized transversality condition, whereas Eq. (2.44) is a dis-
persion relation for the waves. The existence of nontrivial plane-wave solutions to
Eq. (2.44) can be expressed in terms of a determinant condition as

Det
[
k2δij − kikj − ω2

c2 εij(k, ω)
]

= 0. (2.45)

Let us now consider the important limiting case of an isotropic dielectric. It can be
inferred by inspection that the dielectric permittivity tensor of an isotropic medium can
only be composed of δij and kikj implying that

εij(k, ω) = δijA(k, ω) + kikjB(k, ω), (2.46)

where A(k, ω) and B(k, ω) are scalar functions. Instead of using A and B, however,
it will prove convenient to divide εij into a part transverse to the ek = k/k direction,
and that longitudinal to ek. Such a decomposition can be accomplished via

εij(k, ω) = ε⊥(k, ω)
(
δij − kikj

k2

)
+ ε‖(k, ω)kikj

k2 . (2.47)

On substituting from Eq. (2.47) into Eqs. (2.43) and (2.44), the latter can be trans-
formed to

ε‖(k, ω)(k · E) = 0, (2.48)

and [
k2 − ω2

c2 ε⊥(k, ω)
] [

E − k(k·E)
k2

]
−
(

ω2

k2c2

)
ε‖(k, ω)k(k · E) = 0. (2.49)

Eqs. (2.48) and (2.49) then imply the existence of a family of purely transverse plane
waves,

k · E = 0, (2.50)
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with the dispersion relation,

k = ±ω
c

√
ε⊥(k, ω), (2.51)

and a family of the waves which have longitudinal component(s) of the electric field,
k · E 6= 0, with the dispersion relation determined by a common solution of Eq. (2.51)
and of the following equation

ε‖(k, ω) = 0. (2.52)

In Eq. (2.51) the two signs on the right-hand side correspond to two plane waves at a
given frequency ω propagating the the opposite directions.
Exercise. 2.3. As we will see in Sec. 2.5., dielectric response of metals at high frequen-
cies can be modeled by the permittivity

εij(ω) = δij

(
1−

ω2
p

ω2

)
, (2.53)

where ωp is the so-called plasma frequency. Determine the frequency(s) and dispersion
relation of longitudinal electromagnetic waves propagating in metals at such ultravi-
olet frequencies and interpret your results in physical terms. Show that transverse
electromagnetic waves can only propagate if ω > ωp. What is their dispersion rela-
tion?

Note that the dispersion relation (2.51) is, in general, in the implicit form due to
spatial dispersion of the medium. It is then instructive to examine the limiting case
of local media which lack spatial dispersion. In reality the vast majority of inorganic
media are made of atoms or molecules with the size significantly smaller than the
optical wavelength. Hence, spatial nonlocality of their dielectric response to the applied
field is negligible, resulting in the absence of spatial dispersion in such media. Under
the circumstances, the permittivity tensor can be simplified as

εij(r− r′, t− t′) = δ(r− r′)εij(t− t′). (2.54)

It then follows at once from Eqs. (2.34) and (2.54) that the permittivity tensor in Fourier
space is independent of k, implying that

ε(k, ω) = ε(k = 0, ω) ≡ ε(ω). (2.55)

The dispersion relation for transverse electromagnetic waves can be expressed in the
explicit form as

k = ±ω
c

√
ε⊥(ω), (2.56)

and the generalized transversality condition states

ε‖(ω) = 0. (2.57)

In the following sections, we will explore several commonly occurring types of linear
optical media.
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2.2.1 Plane waves in homogeneous isotropic media with no spatial
dispersion

Medium isotropy and locality imply a greatly simplified form of the permittivity tensor,

εij(k, ω) = ε(ω)δij . (2.58)

It then follows from Eqs. (2.47) and (2.58) that ε‖(ω) = ε⊥(ω) = ε(ω). Assuming
further that in the spectral range of interest, ε(ω) 6= 0, we conclude that in this case, the
only allowed plane waves in such media must be transverse, governed by the dispersion
relation

k = ±ω
c

√
ε(ω), (2.59)

Representing the dielectric function in terms of its real and imaginary parts,

ε(ω) = ε′(ω) + iε′′(ω), (2.60)

we can express the wave number of the propagating wave as

k = β± + iα±/2. (2.61)

Here
β± = ± ω

2c

√√
ε′2 + ε′′2 + ε′, (2.62)

and
α± = ±ω

c

√√
ε′2 + ε′′2 − ε′. (2.63)

Exercise 2.4. Derive the equations (2.62) and (2.63).
Let us choose the z-axis of our coordinate system along propagation direction of

the wave, k = kez . It then follows from the Maxwell equations (2.39) through (2.42)
that the electric and magnetic field amplitudes are related as

E = −η(ez ×H), (2.64)

or, alternatively,

H =
(ez × E)

η
, (2.65)

where η is a complex impedance of the lossy medium, defined as

η(ω) =
√

µ0

ε0ε(ω)
=

η0√
ε(ω)

. (2.66)

To illustrate the plane wave propagation in such a medium, let us focus now on a
particular case of a linearly polarized in the x-direction plane wave which propagates
in the positive z-direction. The electric and magnetic fields of the wave can then be
represented as

E(z, t) = 1
2ex[Ee−α+z/2ei(β+z−ωt) + c. c., ] (2.67)

and
H(z, t) = 1

2ey

[
E
|η|e

−α+z/2ei(β+z−ωt−θη) + c. c
]
, (2.68)
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Figure 2.5: Inhomogeneous plane wave propagating in a lossy medium.

which describe inhomogeneous plane waves thanks to losses. Here we chose β+ and
α+ which describe a plane wave propagating to the right and exponentially decaying
on propagation into the medium; the magnitude and phase of the complex impedance
can be expressed as

|η| = η0

(ε′2 + ε′′2)1/4
, tan θη = −ε′′/ε′. (2.69)

We can then infer from Eqs. (2.67) and (2.68) that the presence of losses introduces a
phase lag between the magnetic and electric fields in such media as well.

Finally, we can work out the time-averaged energy flux density (Poynting vector),
and hence the optical intensity, associated with the inhomogeneous plane wave. On
substituting from Eqs. (2.67) and (2.68) into Eq. (1.26), we obtain for the optical inten-
sity

I = |〈S〉| = |E|2

2|η|
e−z/δ cos θη. (2.70)

Eq. (2.70) is known as Beer’s absorption law, and by measuring the intensity extinction,
one can infer the Beer absorption length, or skin depth

δ =
1

α+
. (2.71)

We note that Beer’s absorption length is then a directly measurable quantity. We can
also define a complex refractive index by the expression

N (ω) =
√

ε(ω) = n(ω) + iκ(ω), (2.72)

where n is a real refractive index which can be determined from reflectivity measure-
ments and κ is a so-called extinction coefficient, closely related to Beers’ absorption
length. In fact, it readily follows from Eqs. (2.59), (2.61) and (2.72) that

δ−1(ω) =
2κ(ω)ω

c
. (2.73)
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The magnitudes of real and imaginary parts of ε can then be inferred from the knowl-
edge of n and κ, i.e.,

ε′ = n2 − κ2, ε′′ = 2nκ. (2.74)

In particular, in the transparent regions of the spectrum, where ε′′ � ε′, ε′ ' n2 and
the optical intensity of a plane wave can be expressed as

I =
ε0nc

2
|E|2. (2.75)

2.2.2 Plane waves in uniaxial crystals
We will now explore the families of plane waves that can propagate in transparent
dispersionless anisotropic media. Most crystals fall into this category in the optical
frequency range. We will limit ourselves to the case of uniaxial crystals. Dielectric
properties of uniaxial crystals along a special axis, usually defined by a unit vector n,
are different from those in any direction orthogonal to the axis. The special direction is
called an optical axis of the crystal. In the absence of spatial dispersion, the dielectric
permittivity tensor can only depend on δij and ninj and can be conveniently expressed
in terms of transverse ε⊥ and longitudinal ε‖ components as

εij = ε⊥(δij − ninj) + ε‖ninj . (2.76)

One can always choose a coordinate systems such that the optical axis of the crystal
coincides with one of the axes, the z-axis, say. In these coordinates, the dielectric
tensor transforms to its canonical (diagonal) form represented by the matrix

εij =

 ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

 (2.77)

If ε‖ > ε⊥, the crystal is said to be a positive uniaxial crystal, and if ε‖ < ε⊥ the crystal
is referred to as a negative uniaxial one.

Let us assume, for simplicity that the wave vector lies in the xz-plane, k = kxex +
kzez . It then follows from Eqs. (2.44) and Eq. (2.77) that(

k2
z − ω2

c2 ε⊥

)
Ex − kxkzEz = 0, (2.78)

−kxkzEx +
(
k2

x − ω2

c2 ε‖

)
Ez = 0, (2.79)

and (
k2 − ω2

c2 ε⊥

)
Ey = 0. (2.80)

The generalized transversality condition (2.43) can then be cast into the form

kxε⊥Ex + kzε‖Ez = 0. (2.81)

The analysis of Eqs. (2.78) through (2.81) reveals that there are two possible polariza-
tions: ordinary and extraordinary one. For the ordinary polarization, it follows at once
from Eq. (2.80) that the ordinarily polarized wave is transverse,

E = Eyey, (2.82)
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and ita dispersion relation is given by the expression

ko = ω
c

√
ε⊥. (2.83)

We observe that ordinary waves in uniaxial crystals have all the same properties as
plane waves supported by transparent isotropic media.

xk

zk
zk

xk

0k ek

Figure 2.6: Graphical representation of the wave vectors of ordinary (left) and extraor-
dinary (right) waves in a uniaxial crystal.

The polarization of the extraordinary waves can be inferred from

E = Exex + Ezez, (2.84)

where Ex and Ez are related by Eq. (2.81). We can also derive their dispersion relation
from the determinant condition for Eqs. (2.78) and (2.79). The resulting dispersion
relation reads

k2
xc2

ω2ε‖
+

k2
zc2

ω2ε⊥
= 1. (2.85)

Using kx = ke sin θ, and kz = ke cos θ, we can cast Eq. (2.85) into the form

ω2

k2
ec

2
=

sin2 θ

ε‖
+

cos2 θ

ε⊥
. (2.86)

Thus the wave vector magnitude of an extraordinary wave depends on its propagation
direction which is a novel propagation feature arising in anisotropic media. The differ-
ence between ordinary and extraordinary waves can be best visualized by comparing
their dispersion relations. It is seen from Eqs. (2.83) and (2.86) that in the k-plane
the dispersion relations of ordinary and extraordinary waves can be represented by a
sphere of radius (ω/c)

√
ε⊥ and ellipse with the semi-axes (ω/c)

√
ε⊥ and (ω/c)√ε‖,

respectively. The situation is schematically depicted in the figure above.
Exercise 2.5. Using Maxwell’s equations show that the wave vector of the extraordi-
nary wave is not parallel to the Pointing vector, S = E ×H. In other words, demon-
strate that the direction of propagation of such a wave does not, in general, coincide
with the direction of the energy flow.
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2.2.3 Faraday effect and polarization rotation
We will now consider light propagation in an isotropic, weakly dispersive–and hence
lossless–dielectric medium with a weak homogeneous static magnetic field, B, applied
along the z−axis such that B = Bez . We assume that the influence of magnetic
field can be treated as a perturbation and we seek a phenomenological expression for
a dielectric permittivity tensor of an isotropic medium with a small correction due to
the magnetic field. The lowest-order correction is assumed to linear in the magnetic
field. Therefore, the second-order permittivity tensor can only be comprised of δij and
a component linear in Bi. Recall that both D and E are physical vectors that change
their sign upon reflections with respect to the origin of a coordinate system. It then
follows from Eq. (2.31) that εij should be invariant upon reflections. To respect the
reflectional invariance of the permittivity tensor, the correction term can only be of the
form

∑
k eijkBk, where

eijk =
{

1, clockwise permutation
−1, counterclockwise permutation (2.87)

is an antisymmetric Levi-Chivita symbol; exyz = 1, eyxz = −1 and so on up to a
cyclic permutation. Thus, on phenomenological grounds, the dielectric permittivity
tensor describing an isotropic dispersionless medium perturbed by a weak magnetic
field can be written as

εij(ω) = ε(ω)δij + ig(ω)
∑

k=x,y,z

eijkBk, |gB| � ε. (2.88)

where g(ω) is a phenomenological constant. In the end of this chapter, we will derive
Eq. (2.88) using a simple classical microscopic model of a medium. The permittivity
tensor (2.88) can be written in a matrix form as

εij(ω) =

 ε(ω) ig(ω)B 0
−ig(ω)B ε(ω) 0

0 0 ε

 . (2.89)

Let us now assume, for simplicity that the wave propagates along the magnetic
field, k = kez . It then follows from Eqs. (2.44) and (2.43) that[

k2 − ω2

c2 ε(ω)
]
Ex − ig(ω)B

(
ω2

c2

)
Ey = 0, (2.90)

ig(ω)B
(

ω2

c2

)
Ex +

[
k2 − ω2

c2 ε(ω)
]
Ey = 0, (2.91)

and
−ω2

c2 Ez = 0. (2.92)

Exercise 2.6. Derive Eqs. (2.90) – (2.92) from Eqs. (2.44), (2.43), and (2.88).
We can then show that up to the first order in fB/ε � 1, wave vector magnitude of
any wave existing in such media is given by

k± = k ±∆k, (2.93)
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where we introduced the notations

k =
ω

c

√
ε(ω); ∆k =

ωg(ω)B
2c
√

ε(ω)
. (2.94)

The plane waves supported by the media must be circularly polarized, i. e.,

Ez = 0, Ey = ±iEx, (2.95)

where the upper (lower) sign on the right-hand side of Eq. (2.95) corresponds to the
upper (lower) subscript on the left-hand side of Eq. (2.93). In other words, the medium
supports left- and right-circularly polarized waves with slightly different wave num-
bers.

We will now explore how a linearly polarized wave evolves in the medium. As-
suming the wave is polarized along the x-axis, say, at the entrance to the medium,

E0 = 1
2exE0e

−iωt + c.c, (2.96)

we can represent the incident electric field as

E0 = 1
2
E0√

2
(e+ + e−)e−iωt + c.c, (2.97)

where
e± =

ex ± iey√
2

, (2.98)

are the unit vectors associated with the two circular polarizations. We can now examine
wave propagation in the medium. The electric field in any transverse plane z = const
can be written as

E = (Ae+eik+z + Be−eik−z)e−iωt + c.c. (2.99)

It follows from the initial conditions that A = B = E0/2
√

2. Thus, we obtain subse-
quently the propagated wave expression in the form

E = 1
2
E0√

2
(e+ei∆kz + e−e−i∆kz)ei(kz−ωt) + c.c. (2.100)

We can transform Eq. (2.100) to

E = 1
2E0ep(z)ei(kz−ωt) + c.c, (2.101)

where
ep(z) = ex cos ∆kz − ey sin∆kz. (2.102)

Exercise 2.7. Derive Eq. (2.101) from Eq. (2.100)
It can be inferred from Eqs. (2.101) and (2.102) that the wave remains linearly po-
larized, but the plane of polarization rotates. Alternatively, one can conclude that the
polarization vector rotates in the transverse plane as the wave propagates along the z-
axis. This phenomenon is called Faraday rotation. The rate of rotation is customary
characterized by the Verdet constant V defined by the expression

∆k = V B, (2.103)
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It then follows at once from Eqs. (2.94) and (2.103) that for a plane wave propagating
along the magnetic field, the Verdet constant is given by

V =
ωg(ω)

2c
√

ε(ω)
. (2.104)

Exercise 2.8. Generalize the discussion of this section to the case when a plane wave
propagates at an angle θ to the magnetic field. Derive a generalized dispersion relation
and determine the Verdet constant in this case.

2.3 Refraction and reflection of plane waves at the in-
terface of homogeneous media

2.3.1 Reflection of plane waves at oblique incidence: Generalized
Snell’s law
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Figure 2.7: Illustrating Snell’s law for oblique incidence of a plane wave.

We now explore refraction and reflection of plane electromagnetic waves at an
interface of two homogeneous media. To reflect a typical physical situation, we will
assume that a plane wave is incident from a transparent medium with the permittivity ε1
onto a flat interface separating the medium from a lossy medium 2, characterized by the
complex permittivity ε2(ω) = ε′2(ω)+iε′′2(ω). We choose a coordinate system with the
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unit normal to the interface pointed along the z-axis. The geometry of the problem is
sketched in Fig. 2.3.1. Note that the incidence, refraction, and transmission angles, θi,
θr, and θt, respectively, are real angles only in the transparency window of the second
medium, ε′′2(ω) = 0. Otherwise, all sines and cosines of θt are complex. For this
reason, we will not use the angles hereafter. Rather, we will derive the Fresnel formulas
for transmission and reflection amplitudes in terms of the corresponding projections of
k-vectors which can, in general, be complex. Next, it will prove convenient hereafter
to introduce the notations

k1 = k0n1, k2 = k0N2, (2.105)

where k0 = ω/c and N2 is a complex refractive index of medium 2, c. f. Eq. (2.72).
The boundary conditions at the flat interface z = 0 should hold at any point in the
xz-plane and at any instant of time t, implying that

ei(ki·r−ωit)|z=0 = ei(kr·r−ωrt)|z=0 = ei(kt·r−ωtt)|z=0. (2.106)

Here the subscripts i, r, and t stand for incident, reflected and transmitted waves, re-
spectively. It follows at once from Eq. (2.106) that

ωi = ωr = ωt = ω, (2.107)

that is the frequencies of the incident, reflected and transmitted waves must match.
Further, it can be inferred from the boundary conditions (2.106) that

kix = krx = ktx = kx, (2.108)

In other words, the in-plane components of the wave vectors must match as well. No-
tice that since medium 1 is assumed to be transparent, Eq. (2.108) stipulates that in-
plane components of the wave vectors of all the involved waves be real. We stress that
Eq. (2.108) is a generalized Snell’s law. We shall also introduce the notations

kiz = −kir = k1z, ktz = k2z. (2.109)

It then follows from Eqs. (2.105) (2.108), and (3.30) that

ki = kxex + k1zez, (2.110)

kr = kxex − k1zez, (2.111)

and
kt = kxex + k2zez, (2.112)

where
k1z =

√
k2
1 − k2

x, and k2z =
√

k2
2 − k2

x. (2.113)

It is easy to see from the geometry of Fig. 2.3.1 that in the transparency window of
medium 2, all angles are real and Eq. (2.108 reduces to

θi = θr ≡ θ1, θt ≡ θ2 (2.114)
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and
n1 sin θ1 = n2 sin θ2. (2.115)

Put another way, the incidence and reflection angles should be equal and the Snell law
should simplify to its familiar form for refraction at the interface of two transparent
media.

2.3.2 Reflection of plane waves at oblique incidence: Fresnel For-
mulae

There are two important special cases of the incident polarization that should be distin-
guished: transverse magnetic (TM), or p-polarization, and transverse electric (TE), or
s-polarization. In the first instance, the magnetic field of an incident wave is directed
perpendicular to the plane of incidence, whereas in the second case it is the incident
electric field that is orthogonal to this plane. We will examine the two cases separately.
Note that an arbitrarily polarized incident field can be decomposed into a TM and TE
polarized components which are mutually orthogonal.

Transverse magnetic (TM) or p-polarization. – Consider first the TM case. Mag-
netic fields of the incident, reflected and transmitted TM waves are assumed to be
polarized along the y-axis, such that we can express their complex amplitudes as

Hs = Hsey, s = i, r, t. (2.116)

Since the magnetic field of a TM-polarized wave has only one component, it is conve-
nient to express the electric field in terms of the magnetic one. It follows at once from
the Maxwell equations (2.41) and (2.42) that

Es = −ηs(eks ×Hs), (2.117)

where ηi,r =
√

µ0/ε1 and ηt =
√

µ0/ε2 are relevant media impedances. We can then
infer from Eqs. (2.116) and (2.117) as well as Eqs. (2.109) through (2.113) that the
complex amplitudes of the incident, reflected, and transmitted fields can be represented
as

Hi = Hiey,

Ei =
η0Hi

k0ε1
(k1zex − kxez), (2.118)

Hr = Hrey,

Er =
η0Hr

k0ε1
(−k1zex − kxez), (2.119)

and

Ht = Htey,

Et =
η0Ht

k0ε2
(k2zex − kxez), (2.120)
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respectively.
The boundary conditions for the tangential components of the fields across the

interface state
Hi + Hr = Ht (2.121)

and
Hi

ε1
k1z −

Hr

ε1
k1z =

Ht

ε2
k2z. (2.122)

It then follows from Eqs. (2.121) and (2.122) that

Hr =
ε2k1z − ε1k2z

ε2k1z + ε1k2z
Hi, (2.123)

and
Ht =

2ε2k1z

ε2k1z + ε1k2z
Hi. (2.124)

Using (2.117) we arrive at the expressions for the electric fields in the form

Ei = η1Hi, Er = η1Hr, Et = η2Ht. (2.125)

Finally, the complex reflectivity and transmittance can be represented as

rp ≡
Er

Ei
=

ε2k1z − ε1k2z

ε2k1z + ε1k2z
, (2.126)

and

tp ≡
Et

Ei
=

2ε2k1z

ε2k1z + ε1k2z

√
ε1
ε2

. (2.127)

Equations (2.126) and (2.127) are the celebrated Fresnel formulas for the TM case.
Let us now focus on the situation when the wave is incident normally to the inter-

face, such that kx = 0, ksz = ks, s = 1, 2. It then follows from Eqs. (2.105), (2.126)
and (2.127) that

r⊥ =
N2 − n1

N2 + n1
, and t⊥ =

2n1

N2 + n1
. (2.128)

There are two instructive limiting cases here. First, the second medium is transparent,
N2 = n2, such that the reflectivity and transmittance are purely real,

r⊥ =
n2 − n1

n2 + n1
, and t⊥ =

2n1

n2 + n1
, (2.129)

and the latter relations simply quantify the relative amplitudes of the reflected and
transmitted waves. Note that no energy will be lost in transmission in this case.
Exercise 2.9. A plane wave is normally incident at an interface separating two trans-
parent media. Show that the electromagnetic energy fluxes on both sides of the interface
are the same.

Another interesting situation arises when medium 2 behaves as a good conductor
in a certain spectral range. As is seen from Eqs. (2.38), 2.60), (2.72), and (2.74), κ2 �
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max(n1, n2) in this case. Thus, the reflectivity and transmittance may be approximated
as

r⊥ ' 1− 2in2

κ2
and t⊥ ' −

2in1

κ2
. (2.130)

It follows that most of the incident wave power is reflected from the interface of a good
conductor; only is its tiny fraction transmitted into the conductor.
Exercise 2.10. Consider a plane wave incident normally at the interface separating air
from a good conductor. Determine the portion of the incident wave power absorbed by
the conductor.
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Figure 2.8: Normal incidence of a plane wave onto an interface separating a dielectric
and a perfect conductor.

In the extreme case of a perfect conductor, κ2 → ∞, such that r⊥ → 1–the wave
is perfectly reflected from the interface. The situation is sketched in the Fig. 2.3.2. The
electric and magnetic fields of the incident and reflected waves can then be represented
as

Ei(z, t) = exη1Hie
i(k1z−ωt), (2.131)

Hi(z, t) = eyHie
i(k1z−ωt). (2.132)

and
Er(z, t) = −exη1Hie

−i(k1z+ωt), (2.133)

Hr(z, t) = eyHie
−i(k1z+ωt), (2.134)

respectively. The total electric and magnetic fields in medium 1 can then be trans-
formed to

E1 = Re(Ei + Er) = 2exη1|Hi| sin k1z sinωt, (2.135)
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and
H1 = Re(Hi + Hr) = 2ey|Hi| cos k1z cos ωt. (2.136)

These equations describe standing waves carrying no energy which conforms to our
intuitive picture for reflection from a perfect conductor: The counterpropagating inci-
dent and reflected waves of equal amplitudes interfere to form a standing wave pattern
in medium 1.
Exercise 2.11. A right-hand circularly polarized wave, propagating in the positive
z-direction is normally incident on a perfect conductor wall z = 0. Determine (a) the
polarization of the reflected wave and (b) the induced current on the conducting wall.

Transverse electric (TE) or s-polarization. – In the TE case, the electric field is
normal to the incidence plane,

Ei = Eiey, (2.137)

and it is convenient to work with complex amplitudes of electric fields, expressing the
the magnetic field amplitudes as

Hs =
(es × Es)

ηs
; s = i, r, t. (2.138)

Similarly to the p-polarization case, we can obtain the expressions

Ei = Eiey

Hi =
Ei

η0k0
(−k1zex + kxez), (2.139)

Er = Erey,

Hr =
Er

η0k0
(k1zex + kxez), (2.140)

and

Et = Etey,

Ht =
Et

η0k0
(−k2zex + kxez), (2.141)

for the complex amplitudes of incident, reflected, and transmitted fields, respectively.
The continuity of tangential components of electric and magnetic fields across the in-
terface leads to

Ei + Er = Et, (2.142)

and
(−Ei + Er)k1z = −Etk2z (2.143)

Solving the last pair of equations, we arrive at the complex reflectivity and transmit-
tance of an s-polarized incident wave in the form

rs ≡
Er

Ei
=

k1z − k2z

k1z + k2z
, (2.144)

and
ts ≡

Et

Ei
=

2k1z

k1z + k2z
. (2.145)
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2.3.3 Brewster angle and surface plasmon polaritons  
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Figure 2.9: Surface electromagnetic wave (surface plasmon polariton) at a metal-
dielectric interface. The electric and magnetic field decay fast away from the interface

Let us return to the general case of p-polarized wave reflection form the interface
and study the behavior of reflectivity in more detail. We will assume both media to
be transparent, for simplicity. It can be inferred from Eq. (2.126) that the reflectivity
attains zero under the condition

ε2k1z = ε1k2z. (2.146)

Solving Eq. (2.146), together with (2.113), we obtain expressions for the in-plane and
normal components of the wave vectors as

kx =
ω

c

√
ε1ε2

ε1 + ε2
, (2.147)

and

kjz =
ω

c

√
ε2j

ε1 + ε2
, j = 1, 2. (2.148)

The analysis of Eqs. (2.147) and (2.148) reveals two options. First, if both media
permittivities are positive, εj > 0, we may introduce real refractive indices, nj =√

εj . It then follows at once from Eqs. (2.147) and (2.148) that there exists a special
incidence angle θB, given by the expression

tan θB = kx/k1z = n2/n1, (2.149)

such that there is no p-polarized reflected wave. This special incidence angle is known
as the Brewster angle. Alternatively, Eqs (2.147) and (2.148) describe a surface wave
propagating along the interface, k2

x > 0 and exponentially decaying in the direction
normal to the interface such that kjz is purely imaginary (for transparent media), k2

jz <
0, Eqs. (2.147) and (2.148) imply that this is possible under the conditions,

ε1 + ε2 < 0, (2.150)
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and
ε1ε2 < 0. (2.151)

In other words, at least one of the permittivities must be negative. Usually, the wave is
incident form a dielectric medium, ε1 > 0, implying that ε2 < 0. The latter condition
can be realized for metals as we will see in Sec. 5.

These surface electromagnetic waves are known as surface plasmon polaritons
(SPP). Using Eqs. (2.118), (2.120), and (2.148), the electromagnetic fields of SPPs
on each side of the interface can be expressed as

H(r, t) =
{

eyHie
−|k1z|zei(kxx−ωt), z > 0;

eyHie
|k2z|zei(kxx−ωt), z < 0,

(2.152)

and

E(r, t) =

{
η0Hi

k0ε1
(i|k1z|ex − kxez)e−|k1z|zei(kxx−ωt), z > 0,

η0Hi

k0ε2
(−i|k2z|ex − kxez)e|k2z|zei(kxx−ωt), z < 0.

(2.153)

Thus, SPP fields propagate along the interface and exponentially decay away from the
interface which is a characteristic signature of surface electromagnetic waves. In case
the second medium is an ideal metal, its permittivity can be successfully modeled by
the expression

ε2(ω) = 1−
ω2

p

ω2
, (2.154)

where ωp is the so-called plasma frequency. It can be seen from Eqs. (2.147) that in
the short wavelength approximation, kx → ∞, the SPP frequency tends to a constant
value, ω∞ given by the expression

ω∞ =
ωp√
1 + ε1

. (2.155)

In this case, the SPP approaches its quasi-static limit termed a surface plasmon (SP).
Exercise 2.12. Show that Eq. (2.155) can be derived in the quasi-static limit by solving
Laplace’s equation for the electrostatic potential and matching the appropriate bound-
ary conditions.

So far, we have assumed that the SPPs propagate on the interface of two transpar-
ent media. In reality, of course, all metals are lossy, albeit losses are usually small at
optical frequencies. Realistic metals can then be properly described by complex di-
electric permittivities to account for Joules’ losses. Introducing a complex permittivity
of medium 2 viz.,

ε2 = ε′2 + iε′′2 , (2.156)

and assuming that under at optical frequencies of interest |ε′′2 | � |ε′2|, we can express
the in-plane component of the SPP wave vector as

kx = k′x + ik′′x , (2.157)

where

k′x ' k0

√
ε1ε′2

ε1 + ε′2
, (2.158)
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and

k′′x ' k0

√
ε1ε′2

ε1 + ε′2

[
ε′′2ε1

2ε′2(ε1 + ε′2)

]
. (2.159)

Here the imaginary part specifies a characteristic inverse damping distance of the SPP,

LSPP = 1/k′′x . (2.160)

Exercise 2.13. Derive Eqs. (2.158) and (2.159).

It follows from Eq. (2.147) that a plane wave in the air with ε1 = 1 can never
excite a plasmon because of the wave vector mismatch: the plasmon wave vector com-
ponent along the interface is always greater than that of a plane wave in the air. One
way to generate an SPP then will be to nano-engineer the surface by creating periodic
imperfections such as grooves. The modified surface can serve as a diffraction grating
by shifting the in-plane wave vector component of the incident wave to achieve phase
matching. Introducing the lattice constant of the grooves a and assuming that the light
wave is incident from air, we can write down the matching condition

kxSPP = k0 sin θi + 2π/a, (2.161)

where θi is the incidence angle. This excitation scheme is sketched in the figure.

2.3.4 Total internal reflection
We saw in the previous section that a TM-polarized surface electromagnetic wave can
be excited at an interface of a metal and transparent dielectric. In this section, we
show that surface wave generation is also possible at an interface of two transparent
media with refractive indices n1 and n2, when light is incident form a more optically
dense medium, n1 > n2. This phenomenon is referred to as total internal reflection. It
follows from Eq. (2.113) and the geometry of Fig. 2.3.1 that

k2
2z = k2

0(n
2
2 − n2

1 sin2 θ1). (2.162)

It can be readily inferred from Eq. (2.162) that the in-plane component of the wave
vector in medium 2 becomes purely imaginary,

k2z = i|k2z| = ik2

√
n2

1
n2

2
sin2 θ1 − 1, (2.163)

whenever the incidence angle exceeds the threshold,

θc = sin−1(n2/n1), (2.164)

It then follows at once from Eqs. (2.126) and (2.163) that the for any wave incident at an
angle grater than the critical angle given by Eq. (2.164), the reflectivity is unimodular,
i. e.,

rp∗ =
ε2k1z − iε1|k2z|
ε2k1z + iε1|k2z|

. (2.165)
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Alternatively, the reflectivity of a totally internally reflected wave can be expressed as

rp∗ = e−2iφp∗ , (2.166)

where the phase can be expressed in terms of the incidence angle and refractive indices
of the media as

φp∗ = tan−1

(
ε1|k2z|
ε2k1z

)
. (2.167)

To better understand the behavior of the transmitted wave, we derive explicit ex-
pressions for its electric and magnetic fields. Using Eq. (2.163) in Eqs. (2.120), we can
cast complex amplitudes of the transmitted magnetic and electric fields into

Ht(r, t) = Hteye−|k2z|zei(kxx−ωt), (2.168)

and
Et(r, t) =

η0Ht

ε2k0
(i|k2z|ex − kxez)e−|k2z|zei(kxx−ωt). (2.169)

We can conclude from Eqs. (2.168) and (2.169) that the transmitted wave fields ex-
ponentially decay into medium 2. Next, let us determine the magnitude and direction
of the energy flow specified by the time-averaged Poynting vector. It follows from
Eqs. (1.26) (2.168), and (2.169) after some algebra that

〈St(z)〉 = ex
4ε2k

2
1zkx

k0(ε22k
2
1z + ε21|k2z|2)

Iie
−2|k2z|z, (2.170)

where Ii is an optical intensity of the incident wave. It can be concluded from Eq. (2.170)
that the power of the wave incident at an angle greater than the total internal reflection
angle does not flow into the less optically dense medium. Rather, it propagates along
the interface separating the two media, exponentially decaying in the direction normal
to the interface. This is a signature of a surface wave. Such surface waves generated by
total internal reflection are known as evanescent waves. The evanescent waves play a
prominent role in generating surface plasmon polaritons in the laboratory. Indeed, one
of the approaches to SPP generation employs evanescent waves. In practice, one uses
a device referred to as a Kretschmann prism shown in the figure below. The refractive
index of the prism makes it possible to match the in-plane wave vector components
for a plane wave launched through the Kretschmann prism under the conditions of to-
tal internal reflection to that of the SPP. The launch angle is then determined by the
matching condition,

kxpr = kxSPP, (2.171)

implying that

npr sin θSPP =
√

εdεm
εd + εm

, (2.172)

where npr is the refractive index of the prism, typically it is equal to 1.5 for a glass
prism, and εd and εm are the permittivities of the dielectric and metal on the two sides
of the interface supporting the SPP. In the figure, the SPP is produced at the metal-air
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Figure 2.10: Illustrating SPP excitation with Kretschmann method. Reproduced from
Novotny& Hecht, Principles of Nanooptics.

interface by an evanescent wave tunneling across the metal film from the glass prism.
Exercise 2.14. Show that the reflectivity of a totally internally reflected TE-wave is
given by the expression

rs∗ = e−2iφs∗ , (2.173)

where
φs∗ = tan−1(|k2z|/k1z). (2.174)

Derive an expression for the transmitted energy flux.

2.4 Refraction and reflection from dielectric slab: Multi-
wave interference

We will now examine a situation when two unbounded, homogeneous isotropic media–
media 1 and 3–are separated by a slab of finite thickness d filled with a third medium,
medium 3; for simplicity, we assume that the plane coincides with the xz-plane. The
situation is illustrated in the figure below. Suppose further that a plane wave is incident
from medium 1 onto the interface separating media 1 and 2 and limit ourselves to the
instructive case of a p-polarized incident wave throughout this section. We will seek to
determine the complex reflectivity and transmittance of the system. Next, we introduce
the reflectivity and transmittance of each individual interface, rij and tij , i, j = 1, 2, 3,
respectively, which are determined by Eqs. (2.126) and (2.127).

The incident, reflected, and transmitted magnetic field amplitudes can be expressed
as

Hs = Hsey, s = i, r, t. (2.175)
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Figure 2.11: Illustrating the multi-wave reflection and transmission through a film.

We will then find the reflected magnetic field in terms of the incident field by adding
up the contributions from reflected waves of all orders. Let us consider several lowest-
order reflected waves, labeling the reflection order with the corresponding superscript
assigned to Hr. The first-order reflected field is simply the field reflected from the first
interface once. Thus,

H(1)
r = r12Hiey. (2.176)

Next, the second-order reflected field is twice transmitted trough the first interface and
once reflected from the second one, i. e.,

H(2)
r = t12t21r23e

i2k2zdHiey, (2.177)

where we also included the accrued phase due to the optical path difference. By the
same token, the third- and fourth-order reflected waves can be represented as

H(3)
r = t12t21r

2
23r21e

i4k2zdHiey (2.178)

and
H(4)

r = t12t21r
3
23r

2
21e

i6k2zdHiey. (2.179)

Summing up the contributions to all orders, we obtain

Hr = eyHi

(
r12 + r23t12t21e

i2k2zd
∞∑

s=0

rs
21r

s
23e

i2sk2zd

)
. (2.180)

Observe that as follows from Eqs. (2.126) and (2.127),

r12 = −r21, and t12 = t21. (2.181)
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Hence, performing the summation on the right-hand side of Eq. (2.180) and employing
Eq. (2.181), yields, after minor algebra, the expression

Hr = eyHi
r12 + r23e

i2k2zd

1 + r12r23ei2k2zd
. (2.182)

Thus introducing the complex reflectivity,

r ≡ Er/Ei, (2.183)

and using Eqs. (2.125), (2.182), we arrive at

r =
r12 + r23e

2ik2zd

1 + r12r23e2ik2zd
. (2.184)

Eq. (2.184) gives the reflectivity of the slab. The outlined method for reflectivity cal-
culation using reflected wave summations of all orders is known as Airy technique.

The analysis of Eqs. (2.184) reveals two instructive particular cases which emerge
whenever the reflectivity attains zero,

r12 + r23e
2ik2zd = 0. (2.185)

First, we consider the reflectionless transmission of a homogeneous plane wave through
a transparent film. This is a multi-wave analog of the Brewster regime except it can
occur even for normal incidence. Indeed, as follows from Eq. (2.185) the reflectionless
transmission is possible for normal incidence, k2z = k2, provided that

2k2d = π, (2.186)

implying a constraint on the slab thickness,

d =
λ

4n2
. (2.187)

Eqs. (2.185) and (2.187) are compatible if the refractive index of the slab satisfies the
condition

n2 =
√

n1n3. (2.188)

The constraints (2.187) and (2.188) establish requirements for reflectionless transmis-
sion of a normally incident plane wave through a dielectric film. In practice, these
conditions are taken advantage of in fabricating antireflection coatings of dielectric
surfaces such as antireflection glass coating to protect against glare or improve night
vision.

The second instance of no reflectivity corresponds to the generation of SPPs on
both surfaces of the film. Under the circumstances, the waves multiply reflected from
the film interfere constructively to transfer their energy into the SPPs. Thus all power
of the incident wave is channeled into the surface waves, resulting in no reflection.
In this case, the normal components of all wave vectors must be purely imaginary, a
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signature of surface waves. In particular, the normal components of k in media 1 and
3 can be represented as

k1z = −iq1 = −i
√

k2
x − k2

1, (2.189)

and
k3z = iq3 = i

√
k2

x − k2
3, (2.190)

to ensure the exponential decay of the waves away from the interfaces. Note that these
definitions imply that q1,3 > 0 since the positive root is taken on the right-hand sides
of Eqs. (2.189) and (2.190). On the other hand, there exist both exponentially growing
and decaying waves inside the slab, implying that

k2z = iq2 = ±i
√

k2
x − k2

2. (2.191)

The SPP dispersion relation follows at once from Eqs. (2.126), (2.185) and Eqs. (2.189)
through (2.191):

e−2q2d =
(

ε1q2 + ε2q1

ε1q2 − ε2q1

)(
ε3q2 + ε2q3

ε3q2 − ε2q3

)
. (2.192)

In general, Eq. (2.192) describes a rather complicated dispersion relation. To gain
a better insight into the SPPs in the film, let us consider a particular case when media
1 and 3 are the same such that ε1 = ε3 and q1 = q3. It can then be inferred from
Eq. (2.192) after a minor algebra that two families of SPPs exist in this case with the
dispersion relations governed by the equations

tanh
(

q2d

2

)
= −ε1q2

ε2q1
, (2.193)

and

tanh
(

q2d

2

)
= −ε2q1

ε1q2
. (2.194)

Exercise 2.15. Derive Eqs. (2.193)and (2.194).
It follows at once from Eqs. (2.193) and (2.194) that as the film thickness increases
without limit, d →∞, both dispersion relations reduce to

ε1q2 = −ε2q1. (2.195)

Since in this case, q2 < 0, one of the permittivities ought to be negative, ε2 < 0, say.
Comparison of Eq. (2.195) with (2.146) leads to the conclusion that the SPPs on both
sides of a very thick film are uncoupled and have the same dispersion relation as the
SPP at the interface of two unbounded media.

In the other extreme of very thin films, d → 0, particularly simple results can be
obtained under the condition

1
2q2d � 1. (2.196)

In other words, the characteristic penetration depth in medium 2, δ ' |q2|−1 is much
smaller than half the film thickness. In physical terms, this condition implies strong
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coupling between SPPs propagating on both sides of the film. Eqs. (2.193) and (2.196)
then yield an approximate expression

q1 ' −
2ε1
ε2d

, (2.197)

for the normal component of the wave vector in medium 1. Further, the in-plane com-
ponent of the wave vector is given by

kx '

√
k2
0ε1 +

4ε21
ε22d

2
, (2.198)

and the other normal component of the wave vector is

q2 ' ±

√
k2
0(ε1 − ε2) +

4ε21
ε22d

2
. (2.199)

In particular, we apply our results to a thin metal film sandwiched between insulator
media (IMI). Such a thin-film IMI geometry implies the following conditions

0 < ε1 � |ε2|, ε2 < 0. (2.200)

Eqs. (2.196) through (2.200) will be consistent for genuinely thin films d � λ0, yield-
ing

|q2| '

√
k2
0|ε2|+

4ε21
ε22d

2
. (2.201)

such that the light penetration depth into the metal and dielectric are approximately
given by

δm '
1
|q2|

, δd '
|ε2|d
2ε1

. (2.202)

This case would correspond to a 20 nm thin metal film, say, with ε2 ∼ −20 illuminated
from glass ε1 ' 1.25 by a light beam with λ0 ∼ 500 nm, for example. The SPP con-
finement is still rather tight δd ∼ 200 nm, and δm ∼ 50 nm.
Exercise 2.16. Plot an explicit dispersion relation curve ω = ω(kx) given by Eq. (2.198).
What happens in the static limit, kx → ∞? You may assume an ideal metal with
ε(ω) = 1− ω2

p/ω2.
Exercise 2.17. Use the Airy technique to show that the transmittance of the slab exam-
ined in this section is given by the expression

t =
t12t23e

ik2zd

1 + r12r23e2ik2zd
. (2.203)

Suppose a dielectric film made of a transparent material is placed in the air. Define the
transmission coefficient of the film by the expression

T ≡ |Et|2

|Ei|2
, (2.204)
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and show that T can be expressed as

T =
T 2

(1−R)2
1

1 + F sin2 δ
. (2.205)

Here
δ = δr +

2πnd

λ
cos θt, (2.206)

and we introduced the transmission and reflection coefficients for each interface of the
slab, T and R, respectively, and the interferometer finesse F by the expression

F =
4R

(1−R)2
. (2.207)

The considered system serves as a basis for a Fabry-Perot interferometer used to pre-
cisely measure the wavelength of light. It can be inferred from Eq. (2.205) –(2.207)
that for large enough reflectance, R ' 1, T has very sharp maxima at

δ = πm, m = 0, 1, 2, . . . . (2.208)

In the ideal case, T = 1 at the maxima and T = 1/F at the minima. Thus boosting
the finesse, one can increase the contrast of the interferometer. The distance between
the adjacent maxima can be determined from Eqs. (2.206) and (2.208) to be

dm+1 − dm =
λ

2n cos θ
. (2.209)

For sufficiently small angles, θ ' 0, the latter reduces to

dm+1 − dm ' λ

2n
. (2.210)

Eq. (2.210) can be used to infer the value of λ from the measurements of the maxima
positions.

2.5 Classical theory of optical dispersion and absorp-
tion

2.5.1 Lorentz-Kramers expression for dielectric permittivity
As we saw in Sec. 2.2, atoms or molecules of realistic media do not respond instanta-
neously to an applied external electric field. The time lag between the applied electric
field and induced polarization manifests itself as frequency dispersion when one exam-
ines the frequency behavior of medium response to a harmonic applied electric field,

E(t) = Eωe−iωt. (2.211)
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Figure 2.12: Schematic of a trapping Coulomb potential (solid) for an electron in an
atom and its harmonic approximation (dashed) near the electron equilibrium position
x is a scalar displacement away from equilibrium.

To drive this point home, we develop a simple classical model of matter response to
an external time-harmonic field. In this model atoms are treated as simple harmonic
oscillators. A linear restoring force proportional to an electron displacement from its
equilibrium position–in the classical sense, of course–is due to a harmonic interaction
potential between an electron and the other electrons in an atom as well as the atomic
nucleus. In reality each atomic electron is trapped by a complicated electrostatic po-
tential which is strongly anharmonic. However, so long as the applied electric field
is sufficiently weak such that the electron displacement from its equilibrium position
is small compared to the characteristic atomic size, the electrostatic Coulomb poten-
tial in the vicinity of the electron equilibrium position can be well approximated by a
harmonic one. The situation is schematically depicted in the figure.

Further, we assume that each atom has Z bound electrons. Assume also that there
are fs electrons per atom having the binding frequency ωs which corresponds to a
particular type of the trapping harmonic potential. The quantities {fs} are referred to
as the oscillator strengths.

Whenever an electron having the binding frequency ωs is displaced by the displace-
ment vector rs in response to the external electric field, it experiences three forces: the
restoring force, Fr = −mω2

s rs, the damping force, Fd = −2mγsṙs–where γs is a
phenomenological damping constant–and the force due to the external electric field,
Fe = −eEωe−iωt.

The equation of electron motion (second law of Newton) is then

mr̈s = −mω2
s rs − 2mγsṙs − eEωe−iωt. (2.212)

Here each “dot” stands for a time derivative. We seek a driven solution to Eq. (2.212)
in the form,

rs(t) = rsωe−iωt. (2.213)
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It follows from Eqs. (2.212) and (2.213) that the electron displacement amplitude is

rsω = − eEω

m(ω2
s − ω2 − 2iωγs)

, (2.214)

implying that

rs(t) = − eE(t)
m(ω2

s − ω2 − 2iωγs)
. (2.215)

The induced individual dipole moment of the electron of this type will be ps = −ers.
Next, if there are N atoms per unit volume, the induced polarization is

P(t) = N
∑

s

fsps(t) = −Ne
∑

s

fsrs(t) =
Ne2

m

∑
s

fsE(t)
(ω2

s − ω2 − 2iωγs)
.

(2.216)
Note that the oscillator strengths satisfy the so-called sum rule∑

s

fs = Z. (2.217)

On comparing Eqs. (1.6), (2.36) and (2.216), we infer that

ε(ω) = 1 +
Ne2

ε0m

∑
s

fsLs(ω), (2.218)

where we introduced a complex Lorentzian line-shape factor by the expression

Ls(ω) =
1

(ω2
s − ω2 − 2iωγs)

. (2.219)

Eqs. (2.218) and (2.219) give a classical expression for the dielectric permittivity of
materials as a function of frequency of the applied electric field. The real part describes
dispersion while the imaginary part accounts for light absorption by medium atoms.
The latter simply because we identified the imaginary part of ε with losses as the light
propagates through the medium (c.f. Sec. 2.3). Clearly, the light wave loses its energy
to the medium atoms which is a classical picture of light absorption.

Let us now explore what happens if the frequency of the applied electric field is
close to a particular resonant frequency of the material. For the sake of clarity, let that
be the lowest bound frequency of the dielectric, ω0 6= 0, i.e, ω ≈ ω0. In this case, we
can single out the resonant term in Eq. (2.218) implying that

ε(ω) = εNR(ω) +
Ne2f0

ε0m

1
(ω2

0 − ω2 − 2iωγ0)
. (2.220)

As typically γs � ωs, the contribution to the permittivity due to non-resonant terms,
εNR is a purely real and only weakly frequency dependent. It can be expressed as

εNR(ω) '
∑
s 6=0

Ne2fs

ε0m(ω2
s − ω2)

. (2.221)
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Notice that close to resonance, we can approximate

−ω2 + ω2
0 − 2iγ0ω ' 2ω(ω0 − ω − iγ0) ' 2ω0(ω0 − ω − iγ0). (2.222)

It can be inferred from Eqs. (2.221) and (2.222) that the permittivity near optical reso-
nance can be represented as

ε(ω) = ε′(ω) + iε′′(ω), (2.223)

where

ε′(ω) = εNR(ω) +
Ne2f0

2ε0mω0

[
(ω − ω0)

(ω − ω0)2 + γ2
0

]
, (2.224)

and

ε′′(ω) =
Ne2f0

2ε0mω0

[
γ0

(ω − ω0)2 + γ2
0

]
. (2.225)

The real and imaginary parts of the permittivity are sketched as functions of the fre-
quency in Fig. 2.5.
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Figure 2.13: Imaginary (top) and real (bottom) parts of the electric permittivity as
functions of frequency near resonance.

As is seen in Fig. 2.5., the real part of the permittivity sufficiently far below and
above the resonance frequency increases with the frequency. Such a behavior is known
as normal dispersion. In the vicinity of resonance, however, ε′ decreases with the fre-
quency which is referred to as anomalous dispersion. Optical absorption is generally
small far from resonance, but is seen to sharply increase as we approach the reso-
nance frequency. Notice also that in regions of weak dispersion are nearly transparent,
whereas strong dispersion is accompanied with pronounced absorption as well. This
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connection is not accidental. In fact, we show in the following chapters that there are
fundamental quantitative relations, the Kramers-Kronig relations that link dispersive
and absorptive properties of optical media.

The difference between realistic conductors and dielectrics can be attributed to the
presence of free electrons in the former. Indeed, by looking into the low-frequency
limit, we notice that for pure dielectrics the lowest bound frequency must be nonzero,
while conductors can have a fraction of electrons, f0, say, that have ω0 = 0; those
are essentially free electrons. Consequently, the dielectric permittivity of conductors is
given by the expression

εc(ω) = εb(ω) + i
Nf0e

2

ε0mω(2γ0 − iω)
, (2.226)

where εb is the overall contribution of the bound electrons with ωs 6= 0. Since free
electrons can conduct currents, we can use Eq. (2.215) to determine the current density
to be

J = −Nef0ṙ0 =
Nf0e

2

m(2γ0 − iω)
E. (2.227)

On comparing Eqs (2.37) and (2.227), we infer the expression for the conductivity,

σ(ω) =
Nf0e

2

m(2γ0 − iω)
. (2.228)

It is seen from Eq. (3.86) that in the dc limit ω → 0, we arrive at

σ → Nf0e
2

2mγ0
= σ0, (2.229)

the conductivity is real, describing dc currents. In view of Eq. (2.229), the expression
for σ can be cast into the form

σ(ω) =
σ0

1− iωτ
, (2.230)

where τ = 1/2γ0 is a characteristic time for current relaxation in conductors.
Next, comparing Eqs. (2.226) and (2.228), we can express the former as

εc(ω) = εb(ω) + i
σ

ε0ω
. (2.231)

Eq. (2.231) implies that losses in real conductors/metals come in two guises: absorp-
tion of electromagnetic waves by bound electrons–which is described by the imaginary
part of εb–and ohmic losses due to generating electric currents as described by the sec-
ond term on the right-hand side of Eq. (2.231).
Exercise 2.18. Use the limiting case of Eq. (2.38) for isotropic media with no spatial
dispersion and Eq. (2.231) to relate real and imaginary parts of permittivity and con-
ductivity. Thus, you may argue that the distinction between conductors and dielectrics
is rather artificial at optical frequencies.

Next, we note that at the frequencies far exceeding the highest bound frequency,
ω � max(ωs), dielectrics and conductors respond to the applied electric field the same
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wave. In this limit, we can neglect all {ωs} and {γs} in the denominator of Eq. (2.218),
leading to

εc(ω) = 1−
ω2

p

ω2
, (2.232)

where we used Eq. (2.217) and introduced the plasma frequency

ωp =

√
NZe2

m
. (2.233)

Incidentally, Eq. (2.232) is a simplified form of the so-called Drude expression for
a dielectric constant of a metal. The Drude model describes well noble metals; it
follows from Eq. (2.232) that ε becomes negative for the frequencies above the plasma
frequency.

Finally, we note that the polarization caused by a monochromatic applied electric
field in an isotropic linear medium can be represented as

P(r, ω) = ε0χ(ω)E(r, ω), (2.234)

where χ(ω) is a linear susceptibility of the medium. In case of an optical pulse, con-
sisting of many monochromatic components, the electric field of the pulse can be rep-
resented as a Fourier integral viz.,

E(r, t) =
∫ ∞

−∞

dω

2π
E(r, ω)e−iωt, (2.235)

where E(r, ω) is the spectral amplitude of the pulse. The polarization field induced by
each spectral component of the pulse is given by

P(r, ω) = ε0χ(ω)E(r, ω). (2.236)

It follows at once from Eqs. (2.235) and (2.236) that the overall polarization field in-
duced by the pulse is given by a time convolution,

P(r, t) = ε0

∫ ∞

−∞
dt′χ(t− t′)E(r, t′). (2.237)

We will return to Eq. (2.237) in Chap. 4 where we will present a general theory of opti-
cal response of nonlocal noninstantaneous nonlinear media to electromagnetic pulses.

2.5.2 Classical theory of Faraday effect
Let us now consider the optical response of an isotropic dielectric to an applied static
magnetic field B0. We will use the Lorentz-Kramers harmonic oscillator model of
the medium elaborated in the previous subsection. We will assume that the external
magnetic field is weak enough such that it can be treated as a small perturbation. The
driven harmonic oscillator equation of motion of each electron can then be rewritten as

r̈s + 2γsṙs + ω2
s rs = − e

m
Eωe−iωt − ν

e

m
[ṙs ×B0]. (2.238)
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Here we assume that the Lorentz force experienced by an electron due to the external
magnetic field B0 is a small perturbation to the force exerted by the driving harmonic
electric field. Instead of using an explicit small dimensionless parameter, we introduced
a book-keeping parameter ν to aid keeping track of the same order terms in B0; we will
let ν = 1 at the end of our calculation. We can then represent the electron displacement
as a perturbation series in the formal parameter ν as

rs = r(0)
s + νr(1)

s + ν2r(2)
s + . . . (2.239)

We will seek a driven solution to Eq.(2.238) in the form (2.213). On substituting
Eq. (2.239) into (2.238), we can recover, to the first order in ν, the result of the previous
subsection, i. e.,

r(0)
sω = − e

m
Ls(ω)Eω. (2.240)

To the first order in ν, we obtain from Eq. (2.238)

r̈(1)
s + 2γsṙ(1)

s + ω2
s r

(1)
s =

e

m
[ṙ(0)

s ×B0]. (2.241)

Solving Eq. (2.241) in the steady-state regime, we arrive at the correction term as

r(1)
sω = − ie2ω

m2
L2

s(ω)[Eω ×B0]. (2.242)

Combining Eqs. (1.6) and (2.36, which furnish a macroscopic description of permittiv-
ity, with the classical microscopic picture of Eqs. (2.216) as well as with Eqs. (2.239)
through (2.242), we finally obtain the following expression for the permittivity tensor,

εij(ω) = ε(ω)δij + ig(ω)
∑

p

eijpB0p. (2.243)

Here

ε(ω) = 1 +
Ne2

ε0m

∑
s

fsLs(ω), (2.244)

is a dielectric permittivity of an isotropic medium and

g(ω) =
Ne3ω

ε0m2

∑
s

fsL2
s(ω), (2.245)

is a Faraday coefficient which determines the rate of Faraday polarization rotation; it
is related to the previously introduced Verdet constant, c. f., Sec. 2.2.3. Notice that
Eq. (2.243) is identical to the expression (2.88) which we have introduced before on
purely phenomenological grounds. Thus, the presented classical theory of Faraday’s
effect justifies the phenomenological approach of Sec. 2.3.3. Note also that the micro-
scopic theory furnishes a classical expression for the rotation coefficient g as well.
Exercise 2.19. Fill in missing steps in the derivation of Eq. (2.243).
Exercise 2.20. Extend the above discussion to determine the permittivity tensor correct
to the second-order of perturbation theory. Show that the quadratic correction solely
determines the rate of polarization rotation of a wave propagating orthogonally to the
external magnetic field. This is known as Cotton-Mouton effect.
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Chapter 3

Beams and pulses in linear
optics

3.1 Paraxial wave equation and Gaussian beam optics
We consider evolution of a monochromatic electromagnetic field in free space. The
electric and magnetic fields can be represented as

E(r, t) = E(r, ω)e−iωt, H(r, t) = H(r, ω)e−iωt. (3.1)

Thus Maxwell’s equations for the field envelopes read

∇× E = iµ0ωH, (3.2)

∇×H = −iε0ωE, (3.3)

and
∇ · E = 0, ∇ ·H = 0. (3.4)

Eliminating the magnetic field in favor of the electric in Eqs. (3.2) – (3.4), we arrive at
the equation for the electric field envelope in the form

∇2E + k2 E = 0, (3.5)

where k = ω/c.
We seek a plane polarized beam-like solution to (3.41):

E = eyE(x, z)eikz. (3.6)

Physically, the solution (3.34) represents a beam of light propagating in the z-direction
with an homogeneous electric field in the y-direction and an inhomogeneous inten-
sity distribution in the x-direction. It automatically satisfies the transversality condi-
tions (3.4). Note that in the limiting case when E = const, we have a plane wave.
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The beam is different in that its field amplitude should in some sense be a slowly vary-
ing function of coordinates. To make this requirement more quantitative we stipulate
that for the intensity distribution to represent a beam, the complex envelope E change
slowly at the wavelength scale, i. e.,

∂zE � kE , (3.7)

The latter condition is referred to as a slowly-varying amplitude approximation (SVEA).
On substituting from Eq. (3.34) and taking the SVEA into account, we arrive at the
paraxial wave equation for the beam envelope in the form

2ik∂zE + ∂2
xxE = 0. (3.8)

Let us now study the evolution of the beam with a Gaussian field profile in the
source plane z = 0,

E(x, 0) = E0e
−x2/2w2

0 , (3.9)

where w0 characterizes the width of the source intensity profile. We use a Fourier
transform method to address the problem. Consider a Fourier decomposition of the
beam amplitude in the transverse direction,

E(x, z) =
∫ +∞

−∞
dqeiqx Ẽ(q, z), (3.10)

where the Fourier (spectral) amplitude can be determined by the inverse transformation,

Ẽ(q, z) =
∫ +∞

−∞

dx

2π
e−iqx E(x, z). (3.11)

In particular, for the Gaussian beam of (3.9), we can obtain

Ẽ(q, 0) = E0

√
w

2π
e−q2w2

0/2. (3.12)

Here we used the following standard integral∫ +∞

−∞
dxe−ax2+bx =

√
π

a
eb2/4a, (3.13)

where a and b are arbitrary complex numbers.
Next, we use the properties of Fourier transforms to convert Eq. (3.44) to the k-

space,
2ik∂zẼ − q2Ẽ = 0. (3.14)

Solving the latter, we obtain

Ẽ(q, z) = Ẽ(q, 0) exp
(
− iq2z

2k

)
. (3.15)
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Combining Eqs. (3.12) and (3.15) and using the inverse Fourier transform (3.11), we
obtain after some algebra the expression for the Gaussian beam envelope at any z,

E(x, z) =
E0√

1 + iζ
exp

[
− x2

2w2
0(1 + iζ)

]
, (3.16)

where
ζ = z/Ld, Ld = kw2

0. (3.17)

Exercise 21. Derive Eq. (3.16).

To discuss the solution (3.16) it is convenient to represent it in the form where the
complex phase and real amplitude are expressed explicitly as

E(x, z) = E0

√
w0

w(z)
eiΦ(z) exp

[
ikx2

2R(z)

]
exp

[
− x2

2w2(z)

]
. (3.18)

Exercise 3.1. Derive Eq. 3.18).
Here we introduced the beam width w(z) as

w(z) = w0

√
1 + z2/L2

d, (3.19)

the radius of the wavefront curvature R(z),

R(z) = z(1 + L2
d/z2), (3.20)

and the accrued phase Φ(z),

Φ(z) = − 1
2 arctan(z/Ld). (3.21)

Notice first that although the intensity of a Gaussian beam steadily decreases upon
diffraction in free space, the beam profile remains Gaussian in any transverse plane
z = const. Further, the diffraction length Ld sets the characteristic spatial scale for
the problem. It is equal to the distance over which the beam width doubles from its
minimal value w0 at the source. The plane where the beam width is the smallest is
called the beam waist and the diffraction length is often referred to as the Rayleigh
range.

Consider now the wavefront Ψ(x, z) of the beam which is defined as a surface of
constant phase. It follows from Eq . (3.18) that

Ψ(x, z) = Φ(z) +
kx2

2R(z)
= const (3.22)

We observe that near the waist of the beam, z � Ld, the radius of the curvature is very
large, R ' L2

d/z, implying that in the limit z → 0, R →∞, and the wavefront is flat.
In the opposite limit, z → +∞, the accrued phase is Φ = −π/4. This is the so-called
Gouy phase shift of a Gaussian beam. Finally for large but finite propagation distances,
z � Ld such that R(z) ' z, the wavefront is parabolic

z ∝ x2/λ, (3.23)
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with the curvature decreasing in the inverse proportion to the propagation distance. The
curvature attains its maximum at the Rayleigh distance, zR = Ld.

Finally, we mention that a natural generalization of the paraxial equation to two
transverse dimensions is

2ik∂zE +∇2
⊥E = 0, (3.24)

where ∇2
⊥ is a Laplacian operator in the transverse plane defined as

∇2
⊥ ≡ ∂2

xx + ∂2
yy. (3.25)

3.2 Plane wave decomposition of beams: Angular spec-
trum

Let us now approach beam propagation in free space from a different perspective. To
this end, we consider any linearly polarized electromagnetic field–which, for simplic-
ity, is assumed to be uniform in the polarization direction–as a linear superposition of
plane waves in the form

E(x, z) = ey

∫ +∞

−∞

∫ +∞

−∞
dkxdkz Ã(kx, kz)ei(kxx+kzz). (3.26)

The electromagnetic field is supposed to propagate in free space into the half space
z > 0. The representation of the field by Eq. (3.26) is known as the angular spectrum:
The field is composed of plane waves propagating at different angles to the z-axis.

Substituting from Eq. (3.26) into the wave equation, we obtain the equation for the
spectral amplitude A as

Ã(kx, kz)(−k2
x − k2

z + k2) = 0. (3.27)

It follows at once from Eq. (4.211) that A is constrained to lie on the circle in the
k-space, i.e,

Ã(kx, kz) = A(kx)δ(k2
x + k2

z − k2). (3.28)

The circle in the k-space determines the dispersion relation for the wave vector com-
ponents,

k2
x + k2

z = k2 =⇒ kz =
√

k2 − k2
x. (3.29)

It can then be inferred from Eq. (3.29) that

kz =
{ √

k2 − k2
x, kx < k

±i
√

k2
x − k2, kx > k

(3.30)

Combining Eqs. (3.26) and (3.30), we arrive at the angular spectrum representation of
any linearly polarized (1 + 1)D electromagnetic field in the half-space z > 0

E(x, z) = ey

∫
kx<k

dkxA(kx)ei(kxx+
√

k2−k2
x z)︸ ︷︷ ︸

homogeneous waves

+ey

∫
kx>k

dkxA(kx)eikxe−
√

k2
x−k2 z︸ ︷︷ ︸

evanescent waves

.

(3.31)
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The first and second terms provide contributions of homogeneous and evanescent plane
waves; the latter exponentially decay away from the source plane z = 0. Notice inci-
dentally that we chose “ + ” sign to have the evanescent waves decay into z > 0 as the
exponentially growing solution does not obviously make any sense.

Next, the evanescent waves quickly damp out as the field propagates sufficiently
far from the source and their contribution is negligible outside of the source vicinity.
Thus, we have

E(x, z) = ey

∫
kx<k

dkxA(kx)ei(kxx+
√

k2−k2
x z). (3.32)

Let us now specialize to the beam case whereupon all the plane waves making up the
field propagate close to the z-axis such that kx � k. It then follows upon a Taylor
series expansion in Eq. (3.30) that√

k2 − k2
x ' k − k2

x

2k
,

Therefore we can rewrite our plane wave decomposition as

E(x, z) ' eyeikz

∫ +∞

−∞
dkxA(kx) eikxx exp

(
− ik2

xz

2k

)
. (3.33)

On comparing Eqs. (3.33) and

E(x, z) = eyE(x, z)eikz, (3.34)

we conclude that we can represent electric fields of optical beams as

E(x, z) =
∫ +∞

−∞
dkxA(kx) eikxx exp

(
− ik2

xz

2k

)
. (3.35)

It then follows from the Fourier transform definition that

E(x, z) =
∫ +∞

−∞
dkx Ẽ(kx, 0) exp

(
− ik2

xz

2k

)
eikxx. (3.36)

Hence,

Ẽ(kx, z) = Ẽ(kx, 0) exp
(
− ik2

xz

2k

)
, (3.37)

which coincides with Eq. (15) of Lecture 6. Thus our angular spectrum representation
treatment is equivalent to the paraxial equation approach. While the latter is usually
more convenient to solve practical problems and is straightforwardly generalized to
nonlinear situations, the former brings up more insight into the physics of beam prop-
agation in free space.

Finally, applying the convolution theorem of Fourier transforms to Eq. (3.37) and
using Eq. (3.13) we can derive the Fresnel representation for any (1 + 1)D beam evo-
lution in free space:

E(x, z) =

√
k

2πiz

∫ +∞

−∞
dx′ E(x′, 0) exp

[
ik(x− x′)2

2z

]
. (3.38)
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Exercise 3.2. Derive Eq. (3.38).
A natural generalization of the latter to two transverse dimensions is

E(ρ, z) =
(

k

2πiz

)∫
dρ E(ρ′, 0) exp

[
ik(ρ− ρ′)2

2z

]
, (3.39)

where ρ = xex + yey is a radius vector in the transverse plane of the beam.

3.3 Pulse propagation in dispersive media: non-resonant
case

Let us consider propagation of electromagnetic waves in nonmagnetic media with fre-
quency dispersion. The constitutive relation for the electric flux density in the space-
frequency representation reads

D̃(r, ω) = ε0ε(ω)Ẽ(r, ω), (3.40)

where frequency dispersion enters through the dependence of the dielectric permittivity
on the wave frequency. The corresponding wave equation takes the form

∇2Ẽ + ε(ω)ω2

c2 Ẽ = 0. (3.41)

We seek a linearly polarized spatially homogeneous frequency-dependent wave propa-
gating in the positive z-direction, i.e,

Ẽ(r, ω) = exẼ(ω, z)eik0z. (3.42)

Here k0 is a wave number associated with the carrier frequency ω0, and a slowly-
varying envelope is assumed such that

∂zẼ � k0Ẽ , (3.43)

Eqs. (3.42) and (3.43) represent a spectral envelope amplitude of a slowly varying
optical pulse. On substituting from Eqs. (3.42) and (3.98) into Eq. (3.41), we arrive at
the paraxial wave equation in the space-frequency representation,

2ik0∂zẼ + [k2(ω)− k2
0]Ẽ = 0, (3.44)

where we introduced the frequency-dependent wave number viz.,

k2(ω) = ε(ω)
ω2

c2
. (3.45)

Suppose now the bandwidth of the pulse is small compared to the carrier frequency,
i.e,

∆ω = 2|ωmax − ω0| � ω0, (3.46)
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where ωmax is the frequency of the highest harmonic within the pulse associated with a
finite amplitude. The combined approximations (3.98) and (3.99) constitute the slowly
varying envelope approximation for optical pulses. The SVEA implies that

Ẽ(ω, z) ' Ẽ(ω − ω0, z) = Ẽ(ω′, z), (3.47)

that is the pulse envelope changes slowly over an optical cycle. To this level of accu-
racy, we can then expand the wave number in a Taylor series as

k(ω) ' k0 + k′(ω0)︸ ︷︷ ︸
k1

(ω − ω0) +
1
2!

k′′(ω0)︸ ︷︷ ︸
k2

(ω − ω0)2. (3.48)

Assuming further that
k(ω) + k0 ' 2k0,

we can cast Eq. (3.44) into the form

i∂zẼ + k1ω
′Ẽ + 1

2k2ω
′2Ẽ = 0. (3.49)

The overall electric field can then be factorized into a fast carrier wave and slowly
varying pulse envelope as

E(t, z) = ex ei(k0z−ω0t)︸ ︷︷ ︸
carrier wave

∫ +∞

−∞
dω′e−iω′tẼ(ω′, z)︸ ︷︷ ︸
slow envelope

. (3.50)

Introducing a Fourier transform of the pulse envelope spectrum by

E(t, z) =
∫ +∞

−∞
dω′e−iω′tẼ(ω′), (3.51)

we can derive, using Fourier transform properties, a paraxial wave equation for the
temporal envelope

2i(∂zE + k1∂tE)− k2∂
2
ttE = 0. (3.52)

It is now convenient to transfer to a moving reference frame by introducing the coordi-
nate transformation

ζ = z; τ = t− k1z, (3.53)

One can then re-calculate the derivatives using the chain rules

∂tE = ∂τE ; ∂2
ttE = ∂2

ττE , (3.54)

and
∂zE = ∂ζE − k1∂τE , (3.55)

to arrive at the final form of the governing pulse propagation equation in linear disper-
sive media

2i∂ζE − k2∂
2
ττE = 0. (3.56)
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To elucidate physical meaning of each term in Eq. (3.56), we observe that if one
assumes that at the carrier frequency, k2(ω0) = 0, we arrive at the greatly simplified
equation

∂ζE = 0, (3.57)

with the solution
E(t, z) = E0(t− z/vg), (3.58)

where E0(t) is a pulse envelope in the source plane, and we introduced

k1 ≡ v−1
g . (3.59)

It can be concluded from Eq. (3.58) that the pulse maintains its shape and its peak
moves inside the medium with the speed vg . This velocity is referred to as the group
velocity of the pulse. To understand the role of k2, it is sufficient to observe that
Eq. (3.56) is a temporal analog of the paraxial wave equation governing beam diffrac-
tion in free space we have studied before. Hence the second derivative term in Eq. (3.56)
describes pulse spreading in dispersive media. The group velocity dispersion co-
efficient k2 then sets a spatial scale of the problem, the so-called dispersion length,
Ldis = t2p/k2, where tp is a characteristic duration of the pulse in the source plane
z = 0.

In the preceding development, we ignored spatial distribution of the pulse, which
is justified in a plane wave geometry. Alternatively, pulse propagation in single-mode
dispersive fibers can be of interest. In this case, the spatial distribution of the pulse is
dictated by the fiber mode such that a more appropriate Ansatz for the field,

Ẽ(r, ω) = exẼ(ω, z)φ(r⊥, ω) eiβ0z, (3.60)

should be considered instead. Here β0 is a carrier propagation constant in the fiber and
φ(r⊥, ω) is a fiber mode field distribution. Substituting from Eq. (3.60) into (3.41),
separating spatial and temporal degrees of freedom and assuming the SVEA (3.98), we
obtain the set of equations for the field amplitude

2iβ0∂zẼ + [β2(ω)− β2
0 ]Ẽ = 0, (3.61)

and the fiber mode
∇2
⊥φ + [k2(ω)− β2(ω)]φ = 0. (3.62)

Next, assuming (3.99) and that the only allowed fiber mode is excited at the carrier
frequency, we can approximate

φ(r⊥, ω) ' φ(r⊥, ω0), (3.63)

and replace k(ω) and β(ω) in the equation for the fiber mode by their values at the
carrier frequency, i.e,

∇2
⊥φ + [k2(ω0)− β2

0 ]φ = 0. (3.64)

The resulting eigenvalue equation, subject to the appropriate boundary conditions at
the fiber boundaries, determines the spatial distribution of the fiber mode and the mode
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propagation constant. Further, expanding the frequency dependent propagation con-
stant β(ω) in a Taylor series up to the second order

β(ω) ' β0 + β′(ω0)︸ ︷︷ ︸
β1

(ω − ω0) +
1
2!

β′′(ω0)︸ ︷︷ ︸
β2

(ω − ω0)2, (3.65)

and following exactly the same procedure as before, we can arrive at the paraxial wave
equation for pulse propagation in linear fibers as

2i∂ζE − β2∂
2
ττE = 0. (3.66)

3.4 Resonant pulse propagation in linear absorbers

3.4.1 Resonant interaction of short pulses with linear media: Ho-
mogeneous line broadening

Let us now discuss a more general case of a near-resonant optical pulse, propagating in
the medium in the positive z-direction. The displacement x of each Lorentz oscillator
induced by the pulse is governed by the equation

∂2
t x + 2γ∂tx + ω2

0x = −eE/m, (3.67)

where E is the electric field of the pulse in the scalar approximation. In the slowly-
varying envelope approximation (SVEA), the pulse field and atomic dipole moments
can be represented as

E(z, t) = 1
2 [E(z, t)ei(kz−ωt) + c.c]; ex(z, t) = 1

2 [d0σ(z, t)ei(kz−ωt) + c.c],
(3.68)

where ω is a carrier frequency of the pulse, and d0 = ex0 is a characteristic dipole
moment amplitude. Further, E and σ are slowly varying envelope fields in the sense
that

∂zE � kE , ∂tE � ωE (3.69)

and
∂tσ � ωσ. (3.70)

On substituting from (3.85) into (3.67) and using (3.99), we obtain the equation

−ω2σ − 2iω∂tσ − 2iγωσ + ω2
0σ = −eE/mx0. (3.71)

Next, we have near resonance,

ω2
0 − ω2 ' 2ω(ω0 − ω) = 2ω∆, (3.72)

where ∆ is a detuning of the carrier wave frequency ω from the atomic resonance fre-
quency ω0. On substituting from Eq. (3.87) into (3.71), we obtain, after some algebra,
the SVEA equation for atomic dipole envelope evolution as

∂tσ = −(γ + i∆)σ + iΩ, (3.73)
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where we introduced the field envelope in frequency units, Ω = −eE/2mωx0.
Alternatively, Eq. (3.86) can be written in a real form by introducing the in-phase

U and quadrature V components of the dipole moment viz.,

σ(t, z) = U(t, z)− iV (t, z), (3.74)

such that provided Ω∗ = Ω,
∂tU = −γU + ∆V, (3.75)

and
∂tV = −γV −∆U + Ω. (3.76)

Thus in the absence of pulse modulation, only the imaginary part of the dipole moment
is directly coupled to the electric field amplitude, and it determines the pulse intensity
evolution. For this reason, V is termed the absorptive part of σ. The real part U is
referred to as dispersive part because it is coupled to the field only via the absorptive
part. It will however govern pulse modulation dynamics, if any initial pulse modulation
is present.

To better understand physical implications of Eq. (3.86), let us study a particular
case of a cw electric field–which has induced the atomic dipole moments in the past–
being suddenly switched off. In this case, Ω(t) = θ(−t)Ω0(z), where θ(t) is a unit
step function. It then follows that for t > 0, Ω = 0 and, as follows from Eq. (3.86),
each dipole moment exponentially decays with time according to

σ(t, z) = σ(0, z)θ(t)e−γteiω0t. (3.77)

This is called free-induction decay of an individual dipole moment. One can introduce
a characteristic time T0 = 1/γ which is known as a dipole relaxation time.

A Fourier transform of σ can be defined as

σ̃(ω, z) ≡
∫ ∞

−∞
dt σ(t, z)e−iωt. (3.78)

The spectral response, S0(ω, z) ∝ |σ̃(ω, z)|2, obtained in a typical set of absorption
measurements, is then given by

S0(ω, z) ∝ |σ(0, z)|2

(ω − ω0)2 + γ2
(3.79)

The characteristic absorption spectral width is thus γ = 1/T0 and is referred to as the
width of homogeneous broadening as it is the same for each individual atom.

3.4.2 Inhomogeneous broadening
Consider the polarization of a macroscopic sample of atoms. Generally, in solid state
samples, the resonant frequency ω0 of atoms will vary from atom to atom due to local
defects which perturb the atomic transition frequencies. As a result, the polarization is
determined as an average over the resonant frequency fluctuations such that

P (t, z) = 1
2 [P(t, z)ei(kz−ωt) + c.c], (3.80)
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where
P(t, z) = Nd0〈σ(t, z, ω0)〉, (3.81)

and the averaging is defined as

〈σ(t, z, ω0)〉 =
∫ ∞

0

dω0 g(ω0)σ(t, z, ω0). (3.82)

Here the distribution function g(ω0) is normalized to unity as∫ ∞

0

dω0 g(ω0) = 1.

In reality, the distribution function is often sharply peaked around some value of ω0

which we denote by ω0, say, i. e.,

g(ω0) ' g(ω0 − ω0) = g(∆).

It then follows by changing the integration variable to ∆ that for any average,∫ ∞

0

dω0g(ω0)(. . .) =
∫ ∞

−ω0

d∆ g(∆)(. . .) '
∫ ∞

−∞
d∆ g(∆)(. . .).

Thus,

P(t, z) = Nd0

∫ ∞

−∞
d∆ g(∆)σ(t, z,∆). (3.83)

In gases or atomic vapors, Doppler’s effect is at the origin of the frequency detuning
distribution. To make this point clear, suppose a plane wave propagating in a laboratory
frame has the form ei(k·r−ωt). In the reference frame moving with the atom at the
velocity v, the plane wave has the form ei(k·r′−ω′t), where r′ = r − vt is a position
of the atom at time t. It then follows that the wave form will be the same in the two
frames–which it should as it is the same wave–if the frequencies ω′ and ω in the moving
and laboratory frames, respectively, are related as ω′ = ω − k · v. The frequency shift
of the wave in a moving reference frame is known as the Doppler effect. For a plane
wave propagating in the positive z-direction, the Doppler shifted frequency is

ω′ = ω − kvz. (3.84)

Next, the pulse field and atomic dipole moment distributions in the moving refer-
ence frame are

E(z, t) = 1
2 [E(z, t)ei[kz−(ω−kvz)t]+c.c]; ex(z, t) = 1

2 [d0σ(z, t)ei[kz−(ω−kvz)t]+c.c],
(3.85)

and we dropped the prime over z to simplify the notation. The derivation along the
lines outlined in the previous Lecture would yield the dipole evolution equation in the
form

∂tσ = −(γ + i∆)σ + iΩ, (3.86)

where
∆ = ω0 − ω + kvz. (3.87)
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Assuming that ω = ω0–the light is tuned to the atomic transition at rest–we obtain the
dependence of the detuning on the atom velocity,

∆ = kvz. (3.88)

The atom velocities are distributed according to Maxwell’s distribution such that for
the z-component of velocity, we have

g(vz) ∝ exp
(
− mv2

z

2kBT

)
, (3.89)

where kB is the Boltzmann constant and T is the temperature. It then follows from
Eqs. (3.88) and (3.89) that the detuning distribution is Maxwellian in this case,

g(∆) ∝ exp
(
− m∆2

2k2kBT

)
, (3.90)

Let us now revisit the free-induction decay experiment and examine the polariza-
tion evolution,

P(t, z) = Nd0

∫ ∞

−∞
d∆ g(∆)σ(t, z), (3.91)

which can be rewritten in the free-induction decay as

P (t, z) ∝ Nd0e
−t/T0eiω0t

∫ ∞

−∞
d∆ g(∆)ei∆t + c.c. (3.92)

Suppose, for definiteness, the detuning distribution is Lorentzian,

g(∆) ∝ 1
∆2 + 1/T 2

∆

, (3.93)

where 1/T∆ characterizes the width of g(∆). Using a Fourier transform table integral,

F
{

1
∆2 + 1/T 2

∆

}
∝ e−|t|/T∆ ,

we obtain for t > 0,
P (t, z) ∝ Nd0e

−t/Teff eiω0t + c.c. (3.94)

Here
1

Teff
=

1
T0︸︷︷︸

homogeneous

+
1

T∆︸︷︷︸
inhomogeneous

. (3.95)

The second term on the rhs describes inhomogeneous broadening which would occur
in the spectral domain due to fluctuations of atomic detunings; its nature is atom spe-
cific (distribution of resonant frequencies, velocity distributions, etc.) The functional
form of g(∆) and the magnitude of a characteristic damping time T∆ associated with
inhomogeneous broadening depend on a specific broadening mechanism.
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3.4.3 Maxwell-Lorentz pulse evolution equations and classical area
theorem

We start by considering propagation of an optical pulse in a resonant medium. As-
suming linear polarization, the electromagnetic field E of the pulse obeys the wave
equation in the form

∂2
zzE − c−2∂2

ttE = µ0∂
2
ttP, (3.96)

where the medium polarization P can be expressed as

P = −Ne〈x〉. (3.97)

In Eq. (3.97), the angle brackets denote averaging over detunings of the pulse from the
resonance frequency ω0.

In the slowly varying envelope approximation, we can use the representation (3.85)
and assume that

∂zE � kE , ∂tE � ωE (3.98)

and
∂tσ � ωσ. (3.99)

On substituting from Eq. (3.85) into (3.96) and using the SVEA (3.98), we can obtain
the reduced wave equation for the slowly-varying field envelope as

∂zΩ + c−1∂tΩ = iκ〈σ〉. (3.100)

which should be coupled with the derived dipole moment evolution equation (3.86). In
Eq. (3.100), we introduced a coupling constant, κ = ω2

pe/4c, where ωpe = (Ne2/ε0m)1/2

is the electron plasma frequency.
Exercise 3.3. Derive Eq. (3.100).
Transforming to the moving reference frame via τ = t − z/c and ζ = z just as we
did in the derivation of nonresonant pulse propagation equation, we finally arrive at the
coupled Maxwell-Lorentz propagation equations

∂ζΩ = iκ〈σ〉, (3.101)

and
∂τσ = −(γ + i∆)σ + iΩ. (3.102)

To solve Eqs. (3.101) and (3.102) we use the familiar now Fourier transform tech-
nique. First, we introduce temporal Fourier transforms of the field and dipole moment
as

Ω(τ, ζ) =
∫ ∞

−∞
dω Ω̃(ω, ζ)e−iωτ , (3.103)

and

σ(τ, ζ) =
∫ ∞

−∞
dω σ̃(ω, ζ)e−iωτ , (3.104)

Substituting those back into our evolution equations, we obtain the algebraic expression
for σ̃ in the form

σ̃(ω, ζ) =
iΩ̃(ω, ζ)

γ + i(∆− ω)
. (3.105)
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It then follows from Eq. (3.105) and a Fourier transformed Eq. (3.101) that

∂ζΩ̃ = −κR Ω̃, (3.106)

where the spectral material response function is defined as

R(ω) =
〈

1
γ + i(∆− ω)

〉
. (3.107)

Integrating Eq. (3.106) at once, we arrive at

Ω̃(ω, ζ) = Ω̃(ω, 0) exp[−κR(ω)ζ]. (3.108)

Hence the field envelope at any propagation distance can be expressed as

E(τ, ζ) =
∫ ∞

−∞
dω Ẽ(ω) exp[−iωτ − κR(ω)ζ], (3.109)

where

Ẽ(ω) =
∫ ∞

−∞

dt′

2π
eiωt′E(t′, 0). (3.110)

On combining Eqs. (3.109) and (3.110), we can express the answer in the original
variables in the form

E(t, z) =
∫ ∞

−∞

dt′

2π
E(t′, 0)

∫ ∞

−∞
dω eiω(t′−t) exp[iωz/c− κR(ω)z]. (3.111)

Exercise 3.4. Fill in missing steps in the derivation of Eq. (3.111).
Note that in the absence of inhomogeneous broadening (the so-called sharp line limit),
g(∆) = δ(∆) and

Rhom(ω) =
1

(γ − iω)
. (3.112)

The so-called classical area theorem follows directly from Eq. (3.111). Indeed, let
us introduce the classical area, A as

A(z) =
∫ ∞

−∞
dt E(t, z). (3.113)

Integrating Eq. (3.111) over time and using the integral representation of the delta
function,

δ(ω) =
∫ ∞

−∞

dω

2π
e−iωt, (3.114)

we arrive at the area theorem

A(z) = A0 exp[−κR(0)z], (3.115)

whereA0 = A(0) is the initial area under the pulse profile. In general, the area theorem
can be cast into the form

A(z) = A0e
−αz/2eiβz/2, (3.116)
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where we introduced a characteristic attenuation decrement α and the phase accumu-
lation factor β by the expressions

α =
〈

2κγ

γ2 + ∆2

〉
, (3.117)

and

β =
〈

2κ∆
γ2 + ∆2

〉
. (3.118)

Thus, regardless of the incident pulse shape, the area under the pulse will exponentially
decay on pulse propagation in linear resonant absorbers as a consequence of medium
absorption manifested, in general, through homogeneous and inhomogeneous broad-
ening.
Exercise 3.5. Derive Eqs. (4.211) and (3.116).

Finally, we examine the case of very long pulses such that the characteristic pulse
width Tp is much longer than the longer of homogeneous or inhomogeneous damping
times,

Tp � max(T0, T∆). (3.119)

It then follows from Eq. (3.102) that the dipole moment can be adiabatically eliminated:
It decays fast to its dynamic equilibrium value determined by the pulse amplitude.
Mathematically, we can formally set ∂τσ ' 0 in Eq. (3.102) and conclude that

σ ' iΩ
γ + i∆

, (3.120)

On substituting back into Eq. (3.101) we arrive at the pulse evolution equation as

∂ζE = −κ

〈
1

γ + i∆

〉
E . (3.121)

The latter implies that

E(t, z) = e−αz/2eiβz/2E0(t− z/c), (3.122)

where E0(t) is a pulse profile in the source plane.
Exercise 3.6. Derive Eq. (3.122).
Equation (3.122) is Beer’s absorption law, familiar from elementary optics treatment
of absorbers. It states that sufficiently long pulses propagate in absorbers undistorted
except that their amplitudes decay exponentially with the propagation distance; the
typical damping distance is known as Beers’ absorption length, LB = α−1.
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Chapter 4

Nonlinear optics

4.1 Introduction to nonlinear optics
Whenever an external electric field is applied to matter, it induces or reorients dipole
moments of atoms or molecules of the matter, resulting in a nonzero average dipole
moment per unit volume or polarization of the material. If the applied electric field is
not too large, the polarization is proportional to the field strength, i.e,

P = ε0χ
(1)E, (4.1)

where χ(1) is the usual susceptibility of linear optics. In writing Eq. (4.1) we ignored,
for simplicity, the vector nature of both the applied field and the resulting polarization.

As the magnitude of the field increases though, the simple linear relation (4.1)
no longer holds. However, typical electric fields generated by all but most powerful
modern lasers are in the range of 106 to 107 V/cm, whereas the electrons bound to
atoms or molecules experience far greater fields of the order of 109 to 1010 V/cm.
Consequently, one can assume the induced electron displacements in laser fields to be
rather small; the latter circumstance justifies using a power series representation for the
induced polarizations as

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + . . .), (4.2)

where χ(2) and χ(3) are referred to as second- and third-order susceptibilities, respec-
tively.

To estimate orders of magnitude of the nonlinear susceptibilities, we consider non-
linearity of electronic origin. In this case, the nonlinear polarization depends on the
displacements of the electrons from the nuclei. One could expect that the second-order
contribution to the polarization would definitely be of the same order as the first one
if the electrons are displaced a distance as large as the atomic size, which is roughly
of the order of the Bohr radius, a0 = h̄2/me2 ' 5 × 10−9 cm. The correspond-
ing electric field would be comparable with the field binding electrons to a nucleus,
Eat = e/4πε0a

2
0 ' 5× 1011 V/m. As the linear susceptibility is of the order of unity,
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χ(1) ∼ 1, it follows that the second-order susceptibility can be estimated as

χ(2) ∼ E−1
at ∼ 10−12, m/V. (4.3)

By the same token, a typical value of the third-order susceptibility for condensed-
matter systems would be

χ(3) ∼ 10−21 to 10−22, m2/V2. (4.4)

It can be readily inferred from Eqs. (4.3) and (4.4) that (a) one needs very large fields
indeed to probe nonlinear response of dielectric materials and (b) for most laser field
strengths encountered in practice, each higher-order contribution to the polarization
field P is much smaller than the corresponding lower-order one, enabling us to take
into account only the lowest order nonvanishing contribution to P in a given nonlinear
medium.

In the following subsection, we are going to discuss nonlinear optical susceptibil-
ities semi-quantitatively. A note of caution is due before we proceed any further: The
just introduced expansion (4.2) fails in the vicinity of any internal atomic resonance
of the medium, where nonlinear saturation effects start playing a role. Hence, a more
subtle quantum theory has to be developed to describe such resonant light-matter in-
teractions. Hereafter, we assume that frequencies of all electric fields involved are far
away from any material resonance.

4.1.1 Qualitative description of nonlinear optical processes
We now qualitatively examine second-order processes, starting with the second har-

monic generation (SHG). To this end, consider a monochromatic input field,

E(t) = 1
2 (Ee−iωt + c.c),

The second-order polarization associated with the field is

P (2)(t) = ε0χ
(2)E2(t) = 1

2ε0χ
(2)|E|2 + 1

4 (ε0χ(2)E2e−i2ωt + c.c).

The first process describes generation of a dc field, optical rectification while the
second is second harmonic generation. It is schematically illustrated in the block-
diagram below.

ω
ω

ω2

)2(χ

Figure 4.1: Illustrating the second harmonic generation.

In the SHG process an input wave of frequency ω generates an output at double
frequency in a nonlinear medium. Sum- and difference-frequency generation are
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more general processes taking place if two different input frequencies ω1 and ω2 are
present. The input field is then

E(t) = 1
2 (E1e

−iω1t + E2e
−iω2t + c.c).

The generated output polarization takes the form

P (2)(t) = 1
2

∑
s P(ωs)e−iωst + c.c, (4.5)

where the summation is over all possible combinations s of two frequency components
and

PSHG(2ωj) = 1
2ε0χ

(2)E2
j ,

PSFG(ω1 + ω2) = ε0χ
(2)E1E2,

PDFG(ω1 − ω2) = ε0χ
(2)E1E∗2 ,

POR(0) = ε0χ
(2)(|E1|2 + |E2|2).

While the first and last terms describe SHG and OR, the second and third correspond

1ω

2ω

1ω

2ω
213 ωωω +=)2(χ

Figure 4.2: Schematic illustration of the sum-frequency generation process.

to new processes of sum- and difference frequency generation, to be abbreviated as
(SFG) and (DFG), respectively. The block diagrams of the processes are displayed in
Figs. 2 and 3.

1ω

2ω

1ω

2ω
213 ωωω −=

)2(χ

Figure 4.3: Schematic illustration of the difference-frequency generation process.

The fundamental difference between the two processes can be seen from the energy-
level diagrams below.

In the SFG process two input photons at frequencies ω1 and ω2 annihilate giving
rise to one photon at the sum frequency, ω3 = ω1 + ω2. In the DFG process, however,
annihilation of a pump photon at frequency ω1 and generation of a difference frequency
photon ω3 = ω1−ω2–sometimes referred to as signal–go hand in hand with generation
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Figure 4.4: Energy-level description of sum-frequency generation.

2ω

3ω
1ω

)(a )(b

3ω

2ω
1ω

Figure 4.5: Energy-level diagram of difference-frequency generation.

of an idler photon at frequency ω2, say. Thus the DFG production is accompanied by
the amplification of one of input fields at the expense of the other. For this reason,
DFG is often referred to as optical parametric amplification. SHG, SFG and DFG are
collectively known as three-wave mixing processes.

Next, we briefly consider another three-wave mixing process, stimulated Raman
scattering (SRS) which can be quantitatively described quantum-mechanically. In the
SRS a pump photon of frequency ω gets blue-(Stokes mode) or red-shifted (anti-Stokes
mode) such that ωS = ω − ωv and ωA = ω + ωv exciting some medium degrees of
freedom on the way. As it was first studied in molecules where SRS causes medium
vibrations, we used the subscript “v” to indicate the frequency ωv of generated molec-
ular vibrations. The process can be described by energy-level diagrams to be presented
in class.

Further, we consider the third-order processes, associated with χ(3). As there are
plethora of those–all falling into a general category of four-wave mixing–we will limit
ourselves in this course to only third harmonic generation (THG) and self-focusing
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(SF), both excited by a monochromatic input field,

E(t) = 1
2 (Ee−iωt + c.c),

The third-order polarization,

P (3)(t) = ε0χ
(3)E3(t)

The application of the trigonometric identity, cos3 ωt = 1
4 cos 3ωt+ 3

4 cos ωt results in

P (3)(t) = 1
2 [P(3ω)e−i3ωt + P(ω)e−iωt + c.c.],

where the THG polarization field is

PTHG(3ω) = 1
2ε0χ

(3)E3,

and the SF polarization field takes the form

PSF (ω) = 3ε0
2 χ(3)|E|2E .

The THG process is a third-order analog of the THG process; the THG block diagram
is as follows The SF process is so called because the input field modifies the refractive

ω

ω

ω

ω
ω3)3(χω

Figure 4.6: Illustrating the third harmonic generation.

index of the medium to
n = n0 + n2|E|2,

leading to self-lensing of a light beam. The self-induced “medium lens” is a posi-
tive one if n2 > 0 and a negative one otherwise. Thus, either self-focusing or self-
defocusing ensues. Another third-order process that, in general, accompanies SF is
two-photon absorption (TPA). In the TPA process, two photons can be absorbed from
a light wave by a medium atom, promoting the latter to an excited state which cannot
be related to the ground state by a dipole transition.

4.2 Anharmonic oscillator model
Let us now generalize Lorentz’s model to treat a nonlinear response of the medium. A
natural generalization is to model atoms as anharmonic oscillators whose equation of
motion takes the form

mẍ = −2γmẋ− eE + Fr, (4.6)
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where the first term on the r.h.s of Eq. (4.6) is a velocity-dependent radiation-reaction
force, while the second term

Fr = −∂V

∂x
, (4.7)

represents a restoring force modeling the nonlinear coupling between the electron and
the nucleus. V (x) is the potential energy of the electron-nucleus interaction, which, in
general, contains quadratic as well as higher-order terms:

V (x) =
1
2
mω2

0x2 +
1
3
max3 +

1
4
mbx4 + . . . (4.8)

For sufficiently small electron displacements, the restoring force is linear, and using
the Lorentz model is justified. As the strength of the driving field E increases, larger
electron displacements become possible and nonlinear contributions to the restoring
force must be taken into account. If we restrict our consideration to the second-order
nonlinearity, the equation of motion reduces to

ẍ + ω2
0x + 2γẋ + ax2 = −λ

eE

m
. (4.9)

Here we introduced a formal bookkeeping perturbation parameter λ which is needed
to keep track of the same order terms in the driving field powers; we will let λ = 1 at
the end.

In general, the driving field governing any second-order process is bi-chromatic,
i.e,

E(t) = 1
2 (E1e

−iω1t + E2e
−iω2t + c. c.). (4.10)

We seek a driven solution to Eq. (4.9) to a given order in λ. Such a solution can be
sought in the form

x = λx(1) + λ2x(2) + λ3x(3) + . . . . (4.11)

To the first order in the perturbation parameter, we obtain

ẍ(1) + ω2
0x(1) + 2γẋ(1) = −eE1

m
e−iω1t − eE2

m
e−iω2t + c. c., (4.12)

We look for a solution to Eq. (4.12) in the form

x(1) = 1
2 (xω1e

−iω1t + xω2e
−iω2t + c. c.), (4.13)

and we arrive, after minor algebra, at the expression

xωj
= − eEj

mD(ωj)
. (4.14)

Here we introduced the spectral denominator

D(ωj) ≡ −ω2
j + ω2

0 − 2iγωj . (4.15)

To the second order in λ, the anharmonic oscillator equation of motion is

ẍ(2) + ω2
0x(2) + 2γẋ(2) = −a[x(1)]2. (4.16)
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A driven solution to Eq. (4.16) should be sought in the form

x(2) = 1
2

[
x2ω1e

−i2ω1t + x2ω2e
−i2ω2t + xω1+ω2e

−i(ω1+ω2)t

+xω1−ω2e
−i(ω1−ω2)t + xω2−ω1e

−i(ω2−ω1)t + c. c.
]

(4.17)

On substituting from Eqs. (4.17) into Eq. (4.16), we obtain the displacement terms cor-
responding to the second-harmonic generation (SHG), sum- and difference-frequency
generation, (SFG) and (DFG), respectively, as

SHG : x2ωj
= −

ae2E2
j

2m2D2(ωj)D(2ωj)
.

(4.18)

SFG : xω1+ω2 = − ae2E1E2

m2D(ω1)D(ω2)D(ω1 + ω2)
. (4.19)

DFG : xωj−ω3−j
= −

ae2EjE∗3−j

m2D(ωj)D∗(ω3−j)D(ωj − ω3−j)
. (4.20)

Here j = 1, 2.
Recall the definition of the polarization fields:

P(2ωj) = −Nex2ωj
, (4.21)

P(ω1 + ω2) = −Nexω1+ω2 , (4.22)

and
P(ωj − ω3−j) = −Nexωj−ω3−j ; j = 1, 2. (4.23)

On the other hand, the appropriate susceptibilities are determined from

P(2ωj) = 1
2ε0χ

(2)(−2ωj ;ωj , ωj)E2
j , (4.24)

P(ω1 + ω2) = ε0χ
(2)(−ω1 − ω2;ω1, ω2)E1E2, (4.25)

P(ωj − ω3−j) = ε0χ
(2)(−ωj + ω3−j ;ωj ,−ω3−j)EjE∗3−j ; j = 1, 2. (4.26)

It can then be concluded by inspection that

χ
(2)
SHG(−2ωj ;ωj , ωj) =

Nae3

ε0m2D2(ωj)D(2ωj)
, (4.27)

and

χ
(2)
SFG(−ω1 − ω2;ω1, ω2) =

Nae3

ε0m2D(ω1)D(ω2)D(ω1 + ω2)
, (4.28)

as well as

χ
(2)
DFG(−ωj + ω3−j ;ωj ,−ω3−j) =

Nae3

ε0m2D(ωj)D(−ω3−j)D(ωj − ω3−j)
, (4.29)

where
D(−ω3−j) = D∗(ω3−j). (4.30)
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Equations (4.27) – (4.29) can be used to estimate the magnitude of χ(2) for a typical
non-centrosymmetric system far off resonance. We can easily infer from (4.27) – (4.29)
– for a far off resonance driving frequencies we can safely assume ω0 � ω, γ, resulting
in the estimate D ∼ ω2

0 – that

χ(2) ' Ne3a

m2ε0ω6
0

. (4.31)

To estimate a, we notice that the electron displacement is expected to be of the order
of the atom size – which is also roughly equal to the interatomic distance d for solids –
and a is determined from the requirement that the linear and nonlinear restoring forces
be of the same order, that is

mω2
0d ∼ mad2, (4.32)

implying that
a ∼ ω2

0/d. (4.33)

Noting finally that d ∼ N−1/3, we obtain

χ(2) ' N4/3e3

m2ε0ω4
0

. (4.34)

Using the values ω0 ' 1016 rad/s, N ' 1028, m−3, e ' 10−19 C, and m ' 10−30 kg,
we arrive at the estimate

χ(2) ∼ 10−12m/V. (4.35)

Exercise 4.1. The third-order nonlinear response is determined from the equation of
motion

ẍ + ω2
0x + 2γẋ + ax2 + bx3 = λ

eE

m
. (4.36)

Find an expression for χ(3)(−ω, ω,−ω, ω) for the degenerate four-wave mixing pro-
cess and estimate the magnitude of χ(3) from it.
Exercise 4.2. Use the above anharmonic oscillator model to determine a frequency
dependence of the nonlinear susceptibility χ(3)(−3ω, ω, ω, ω), corresponding to the
the third harmonic generation.

4.3 Nonlinear optical processes generated by cw driv-
ing fields: A general approach

We first examine generic nonlinear response of media to a quasi cw input wave: The
input spectrum consists of a finite number of monochromatic components. In partic-
ular, we consider the nonlinear polarization field resulting from a general three-wave
mixing process,

P
(2)
i (t) = 1

2

∑
s Pi(ωs)e−iωst + c.c, (4.37)

where the summation is over all possible combinations s of two two monochromatic
components with frequencies ω1 and ω2. The complex amplitude of the second-order
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polarization is then

Pi(ω3) = ε0c
(2)(ω1, ω2)

∑
jk

χ
(2)
ijk(−ω3;ω1, ω2)Ej(ω1)Ek(ω2), (4.38)

Here the the subscripts stand for Cartesian components of the fields, c(2)(ω1, ω2) is
a degeneracy factor corresponding to a number of permutations of the two frequency
components giving the same ω3, and the following convention is adopted

El(−ωs) = E∗l (ωs).

Summarizing the results of Sec. 4.1.1, we readily conclude that

c(2)(ω1, ω2) =
{

1, ω1 6= ω2;
1/2, ω1 = ω2.

(4.39)

Similarly, the complex amplitude of the third-order polarization can be represented as

Pi(ω4) = ε0c
(3)(ω1, ω2, ω3)

∑
jkl

χ
(3)
ijkl(−ω4;ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3), (4.40)

The tensors χ
(2)
ijk and χ

(3)
ijkl are known as the second- and third-order nonlinear suscep-

tibility tensors, respectively, and are the formal generalizations of the corresponding
nonlinear susceptibilities studied in Sec. 4.1.1.

4.4 Nonlinear processes generated by arbitrary fields:
Spatial and temporal dispersion

In general, the input field can have an arbitrary space-time dependence. Suppose, how-
ever, that the medium is stationary and homogeneous. This is a fairly general assump-
tion which holds for most situations of practical interest. Under these conditions, the
most general form of linear response is as follows

P(1)(r, t) = ε0

∫
dr′
∫ ∞

−∞
dt′χ(1)(r− r′, t− t′)

...E(r′, t′), (4.41)

where we have assumed that the polarization is invariant with respect to translations in
space and shifts in time, thanks to stationarity and homogeneity of the medium. By the
same token, the second-order nonlinear polarization can be represented as

P(2)(r, t) = ε0

∫
dr1

∫
dr2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

×χ(2)(r− r1, r− r2; t− t1, t− t2)
...E(r1, t1)E(r2, t2), (4.42)

The expressions for higher-order nonlinear polarization fields can be expressed in a
similar fashion.
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To proceed further, we will assume the medium response to be spatially local; this
is a reasonably good approximation for a vast majority of optical media which we will
rely on hereafter. In these conditions, the susceptibility tensors can be simplified to

χ(1)(r− r′, t− t′) = δ(r− r′)χ(1)
t (t− t′), (4.43)

and

χ(2)(r− r1, r− r2; t− t1, t− t2) = δ(r− r1)δ(r− r2)χ
(2)
t (t− t1, t− t2). (4.44)

The corresponding contributions to the polarization field are greatly simplified as well:

P(1)(r, t) = ε0

∫ ∞

−∞
dt′χ(1)(t− t′)

...E(r, t′), (4.45)

P(2)(r, t) = ε0

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2χ

(2)(t− t1, t− t2)
...E(r, t1)E(r, t2). (4.46)

In equations (4.45) and (4.46) we dropped, for brevity, the subscript “t” for the temporal
parts of the linear and nonlinear susceptibilities.

The manifest translational invariance of susceptibilities prompts the introduction of
Fourier transforms

χ̃(1)(ω) =
∫ ∞

−∞
dtχ(1)(t)eiωt, (4.47)

and

χ̃(2)(ω1, ω2) =
2∏

s=1

∫ ∞

−∞
dtsχ

(2)(t1, t2)ei
P2

s=1 ωsts . (4.48)

An obvious generalization to the nth order is

χ̃(n)(ω1, . . . ωn) =
n∏

s=1

∫ ∞

−∞
dtsχ

(n)(t1, . . . tn)ei
Pn

s=1 ωsts . (4.49)

Using Eqs. (4.45) – (4.48), we can obtain in the component form

P̃
(1)
i (r, ω) = ε0

∑
j

χ̃
(1)
ij (ω)Ẽj(r, ω), (4.50)

and

P̃
(2)
i (r, ω3) = ε0

∑
jk

∫ ∞

−∞

dω1

2π
χ̃

(2)
ijk(−ω3, ω1, ω2)Ẽj(r, ω1)Ẽk(r, ω2), (4.51)

where ω3 = ω1 + ω2.
Exercise. 13.1 Derive Eq. (4.51).

Generalizing Eq. (4.51) to any order n, we can write down

P̃
(n)
jn

(r, ωn) = ε0
∑

j1...jn−1

n−1∏
s=1

∫ ∞

−∞

dωs

2π
χ̃

(n)
jnj1j2...jn−1

(−ωn, ω1, ω2, . . . ωn−1)

×Ẽj1(r, ω1) . . . Ẽjn−1(r, ωn−1), (4.52)
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with ωn =
∑n−1

s=1 ωs. In particular, the third-order polarization contribution is

P̃
(3)
i (r, ω4)=ε0

∑
jkl

2∏
s=1

∫ ∞

−∞

dωs

2π
χ̃

(3)
ijkl(−ω4, ω1, ω2, ω3)Ẽj(r, ω1)Ẽk(r, ω2)Ẽl(r, ω3),

(4.53)
where ω4 = ω1 + ω2 + ω3.

4.5 Formal properties of nonlinear optical susceptibili-
ties

We now list generic properties of optical susceptibilities which follow from their defi-
nitions.

• Intrinsic permutational symmetry:

χ̃
(n)
jj1...jn

(−ω, ω1 . . . ωn) = Pt · χ̃(n)
jj1...jn

(−ω, ω1 . . . ωn). (4.54)

where ω =
∑n

s=1 ωs, and Pt · (. . .) stands for a permutation of the n index pairs
(j1, ω1) . . . (jn, ωn) with the exclusion of the pair (j,−

∑
s ωs). This property fol-

lows at once from the definition of nonlinear optical susceptibilities (4.52): Indeed the
indices (j1 . . . jn) are dummy ones, and hence the polarization field does not change
upon interchanging any pair of them as long as we simultaneously exchange the corre-
sponding frequencies.

Example: χ̃
(2)
ijk(−ω, ω1, ω2) = χ̃

(2)
ikj(−ω, ω2, ω1).

• Reality of χ in the time-domain:

The reality of χ(n) in time domain implies the following relation in the Fourier domain

χ̃
(n)∗
jj1...jn

(−ω, ω1, . . . , ωn) = χ̃
(n)
jj1...jn

(ω,−ω1, . . . ,−ωn), (4.55)

where ∗ denotes, as usual, complex conjugation.

Example: χ̃
(2)∗
ijk (−ω, ω1, ω2) = χ̃

(2)
ijk(ω,−ω1,−ω2).

Exercise 4.3. Derive Eq. (4.55).

• Causality:

For the response of a physical medium to be causal, the polarization field must be equal
to zero at any instant before the electric field is applied, which implies, in accord with
Eq.(4.52) that

χ
(n)
jj1...jn

(t− τ1, . . . t− τn) = 0, for any τs > t. (4.56)
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Let us now exhibit very tangible constraints on the functional form of the real and
imaginary parts of the susceptibility functions in the Fourier domain, stemming from
causality.

We begin by considering the linear susceptibility. It follows from Eq. (4.56) that a
causal linear response function must obey

χ(1)(τ) = χ(1)(τ)θ(τ), (4.57)

where θ(τ) is a Heaviside step function defined as

θ(τ) =
{

1 τ ≥ 0,
0 τ < 0.

(4.58)

On introducing Fourier transforms of χ and θ by the expressions

χ̃(1)(ω) =
∫ ∞

−∞
dτ χ(1)(τ)eiωτ , (4.59)

and

θ̃(ω) =
∫ ∞

−∞
dτ θ(τ)eiωτ , (4.60)

we conclude from Eq. (4.57) that

χ̃(1)(ω) =
∫ ∞

−∞

dω′

2π
χ̃(1)(ω′)θ̃(ω − ω′). (4.61)

Recall further that

θ̃(ω − ω′) = P
[

1
i(ω − ω′)

]
+ πδ(ω − ω′), (4.62)

where P stands for a principal value, excluding the singularity in the denominator. It
follows from Eqs. (4.61) and (4.62), after simple algebra, that

χ̃(1)(ω) =
1
πi
P
∫ ∞

−∞
dω′

χ̃(1)(ω′)
ω − ω′

. (4.63)

Eq. (4.63) implies that real and imaginary parts of the linear susceptibility tensor are
related vie the following Kramers-Kronig relations

Re χ̃(1)(ω) =
1
π
P
∫ ∞

−∞
dω′

Im χ̃(1)(ω′)
ω − ω′

, (4.64)

and

Im χ̃(1)(ω) = − 1
π
P
∫ ∞

−∞
dω′

Re χ̃(1)(ω′)
ω − ω′

. (4.65)

Relations (4.64) and (4.65) not only impose a constraint on the functional form of the
real and imaginary parts of the linear susceptibility tensor, but they also enable one to
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reconstruct the real part – describing dispersion – from the imaginary one, which is
much easier to measure as it relates to absorption in the medium.

Kramers-Kronig relations can also be derived for some second-order susceptibili-
ties. In particular, starting from the causality condition

χ(2)(τ1, τ2) = χ(2)(τ1, τ2)θ(τ1)θ(τ2), (4.66)

and following the same line of argument as above, we obtain

χ̃(2)(−ω3, ω1, ω2) =
1
πi
P
∫ ∞

−∞
dω′1

χ̃(2)(−ω′3, ω
′
1, ω2)

ω1 − ω′1
. (4.67)

Here ω3 = ω1 + ω2 and ω′3 = ω′1 + ω2. This process is referred to as a sum-frequency
generation. By the same token, the Kramers-Kronig relations for a difference-frequency
generation are

χ̃(2)(−ω3, ω1,−ω2) =
1
πi
P
∫ ∞

−∞
dω′2

χ̃(2)(−ω′3, ω1,−ω′2)
ω2 − ω′2

, (4.68)

where in this case, ω3 = ω1 − ω2 and ω′3 = ω1 − ω′2.
Exercise 4.4. Derive Eqs. (4.67) and (4.68) .
Exercise 4.5.∗ Consider a degenerate case of the sum-frequency generation, ω1 =
ω2 = ω, and derive the following Kramers-Kronig relations

χ̃(2)(−2ω, ω, ω) =
1
πi
P
∫ ∞

−∞
dω′

χ̃(2)(−2ω′, ω′, ω′)
ω − ω′

. (4.69)

This case corresponds to an important second-order nonlinear process we will study
in detail later on – it is referred to as the second-harmonic generation.

Unfortunately, no general Kramers-Kronig relations can be derived for higher-
order nonlinear susceptibilities. Moreover, there are nonlinear processes for which
no Kramers-Kronig relations exist, one of the most prominent cases being the self-
focusing/self-defocusing process – specified by χ(3)(−ω, ω,−ω, ω) – which is the
most common nonlinear process in isotropic media with inversion symmetry.

The symmetry properties of nonlinear susceptibilities we have studied so far hold
quite generally. In addition, there are other symmetry properties of χ which depend
on the symmetries of underlying physical systems. First, consider the multitude of
orthogonal transformations – such as rotations, translations and inversions – that leave
the medium unchanged. It follows that the corresponding susceptibility tensor of any
rank must be invariant with respect to such transformations, implying for any n

χ
(n)
ii1...in

=
∑

jj1...jn

TijTi1j1 . . . Tinjn χ
(n)
jj1...jn

, (4.70)

where the summation over the dummy indices is implied as usual. For instance,

χ
(1)
ij =

∑
kl

TikTjl χ
(1)
kl , (4.71)
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or
χ

(2)
ijk =

∑
lsm

TisTjlTkm χ
(2)
slm, (4.72)

and so on.
Exercise 4.6. A rotation with respect to the z-axis can be described by the matrix

Tij =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Assume the medium is invariant with respect to rotations by θ = π/2. Determine the
constraints on the components of χ(1) imposed in this case.

One of the most important orthogonal transformations is inversion such that for an
every point in the medium r → −r implying Tij = −δij . It follows at once from
Eq. (4.70) that if the medium is symmetric with respect to inversions – i.e., if it has an
inversion center – then for any susceptibility tensor of odd rank , or for an even n = 2k,
we obtain

χ
(2k)
ii1...i2k

= −χ
(2k)
ii1...i2k

= 0. (4.73)

In particular, in media with the inversion centers the lowest-order nonlinear response
is cubic, described by χ

(3)
ijkl. Such inversion symmetric media are referred to as cen-

trosymmetric. Most gases and liquids as well as many solids possess such properties.
Another important constraint is imposed by requiring that media be lossless. In

lossless media, equations of motions are symmetric with respect to time reversal –
there are no losses and the microscopic evolution can in principle be reversed. Under
such conditions,

χ(n)(τ1 . . . τn) = χ(n)(−τ1 . . .− τn). (4.74)

It can then be readily inferred from Eq. (4.49) that

χ̃
(n)
jj1...jn

(−ω, ω1, . . . ωn) = χ
(n)∗
jj1...jn

(−ω, ω1, . . . ωn), (4.75)

that is a Fourier image of χ is real.
Exercise 4.7. Derive Eq. (4.75).
Exercise 4.8. Show that in lossless media εij must be symmetric.

Moreover, in lossless nonlinear media, there is an overall permutation symmetry
of the susceptibility tensor, similar to that expressed in Eq. (4.54), except the pair
(j,−

∑
s ωs) is included.

Example: χ̃
(3)
ijkl(−ω4, ω1, ω2, ω3) = χ̃

(3)
jlik(ω1, ω3,−ω4, ω2).

Finally, if all frequencies involved in the interaction are well below the lowest resonant
frequency of the medium, there exists a permutation symmetry of the Cartesian indices
alone, known as the Kleinman symmetry.

Example: χ̃
(2)
ijk(−ω3, ω1, ω2) = χ̃

(2)
jki(−ω3, ω1, ω2) = χ̃

(2)
kij(−ω3, ω1, ω2).
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We stress though that Kleinman’s symmetry is only an approximation valid far from
any internal resonances where dispersive properties of nonlinear media are negligible
such that one can virtually neglect frequency dependence of the nonlinear susceptibili-
ties. The Kleinman symmetry breaks down, for instance, if there is an absorption band
sandwiched between a pair of frequencies involved with a nonlinear interaction. In the
latter case, dispersive properties of the medium would be important at those frequencies
near the absorption band.

4.6 Nonlinear wave equation approach: Second-order
processes

4.6.1 Classical coupled-wave equations
We now proceed to deriving general nonlinear wave equations governing second-order
nonlinear processes. To this end, we represent the polarization field P as

P = PL + PNL, (4.76)

where the first and second terms correspond to linear and nonlinear contributions, re-
spectively. Eliminating H from Eqs. (??) – (??), we obtain a nonlinear wave equation
for the electric field alone in the form

∇× (∇×E) = −ε0µ0
∂2E
∂t2

− µ0
∂2P
∂t2

. (4.77)

Using a well-known vector identity, ∇ × (∇ × A) = ∇(∇ · A) − ∇2A, as well as
Eq. (4.76), we arrive at the equation

∇(∇ ·E)−∇2E = −µ0
∂2(ε0E + PL)

∂t2
− µ0

∂2PNL

∂t2
. (4.78)

Further, we can introduce a linear flux density by the expression

DL = ε0E + PL = ε⊗E, (4.79)

where the symbol ⊗ denotes the temporal convolution. Using Eq. (4.79) as well as
ε0µ0 = c−2, we can transform Eq. (4.78) into

∇(∇ ·E)−∇2E = − 1
ε0c2

∂2DL

∂t2
− µ0

∂2PNL

∂t2
. (4.80)

A further simplification of Eq. (4.80) is possible. To this end, we employ Eq. (4.79)
to rewrite the third Maxwell equation (??) as ∇ · E ≈ −(∇ε/ε)E, and, provided
|∇ε/ε| � 1, we can conclude that ∇ · E ≈ 0. The preceding line of argument tac-
itly implies that linear optical properties of the medium are weakly inhomogeneous
and isotropic – or weakly anisotropic at worst – which constitutes the so-called weak
guidance approximation. Hereafter, we will assume the weak guidance approximation
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holds true. Under the circumstances, the l.h.s. of Eq. (4.80) is considerably simplified,
yielding

∇2E− 1
ε0c2

∂2DL

∂t2
= µ0

∂2PNL

∂t2
. (4.81)

Equation (4.81) is a classical nonlinear wave equation, governing electromagnetic wave
propagation in nonlinear optical media.

The polarization field PNL plays the role of a driving source which generates op-
tical fields oscillating at new frequencies. To illustrate this point and to derive a set of
coupled wave equations governing second-order nonlinear interactions, we will con-
sider a cw optical field which is a linear superposition of monochromatic components:

E(r, t) =
1
2

∑
s

Ẽ(r, ωs)e−iωst + c. c. (4.82)

Such an electric field gives rise to the polarization field in the form

PNL(r, t) =
1
2

∑
s

P̃NL(r, ωs)e−iωst + c. c., (4.83)

On substituting from Eqs. (4.82) and (4.83) into (4.81, we obtain the wave equation in
the space-frequency domain as

∇2Ẽ + k2(ωs)Ẽ = −µ0ω
2
sP̃NL. (4.84)

Let us now consider a linearly polarized optical beam whose spatial profile changes
very slowly – at the wavelength scale – in the plane, transverse to the propagation
direction of the carrier wave which we choose to coincide with the z-axis. Under such
a paraxial approximation, we seek an electric field in the form

Ẽ(r, ωs) = e(ωs)E(r⊥, z, ωs)eiksz, (4.85)

which induces the polarization field such that

P̃NL(r, ωs) = e(ωs)PNL(r⊥, z, ωs)eiksz, (4.86)

where

k2(ωs) = ε(ωs)
ω2

s

c2
. (4.87)

Substituting from Eqs. (4.85) – (4.87), and using the slowly-varying envelope approxi-
mation (SVEA),

∂E
∂z

� ksE ;
∂2E
∂z2

� k2
sE , (4.88)

we arrive at the paraxial wave equation

2iks
∂E
∂z

+∇2
⊥E = −µ0ω

2
sPNL. (4.89)
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Our treatment has been general so far. We will now specialize to the second-order
processes. Recall that

P̃
(2)
i (r, ωs) = ε0c

(2)(ω1, ω2)
∑
jk

χ̃
(2)
ijk(−ωs;ω1, ω2)Ẽj(r, ω1)Ẽk(r, ω2), (4.90)

with ωs = ω1 + ω2 and

c(2)(ω1, ω2) =
{

1, ωs 6= 2ω1;
1/2, ωs = 2ω1.

(4.91)

Using Eqs. (4.90) and (4.86), we obtain for the slowly-varying second-order polariza-
tion field the expression

P(2)(r, ωs) = ε0c
(2)(ω1, ω2)

∑
ijk

χ̃
(2)
ijk(−ωs;ω1, ω2)ei(ωs)

×ej(ω1)ek(ω2)E(r⊥, ω1)E(r⊥, ω2)ei∆kz, (4.92)

where
∆k ≡ k(ω1) + k(ω2)− k(ωs). (4.93)

Utilizing Eq. (4.92) and introducing

χ
(2)
eff (−ωs;ω1, ω2) ≡ c(2)(ω1, ω2)

∑
ijk

χ̃
(2)
ijk(−ωs;ω1, ω2)ei(ωs)ej(ω1)ek(ω2),

(4.94)
we finally arrive at the paraxial wave equation governing the second-order nonlinear
processes:

∂Es

∂z
− i

2k(ωs)
∇2
⊥Es =

iω2
s

2k(ωs)c2
χ

(2)
eff (−ωs;ω1, ω2)E1E2e

i∆kz. (4.95)

Here we adopted the convention

Ej(r⊥, z,−ωj) = E∗j (r⊥, z, ωj).

introduced short-hand notations

Ej ≡ E(r⊥, z, ωj); j = s, 1, 2.

4.7 Second-harmonic generation

4.7.1 Coupled wave equations and phase matching considerations
The process of second harmonic generation involves the interaction of two waves at
frequency ω to produce a wave with the frequency 2ω. It is schematically illustrated in
Fig. 1 below.
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Figure 4.7: Illustrating the second harmonic generation.

The coupled wave equations governing the second harmonic generation (SHG) in
lossless media can be obtained directly from the general coupled-mode equations de-
rived in the previous Lecture by specializing to the case of two identical mixing fre-
quencies. The resulting wave equations for the fundamental Eω and the second har-
monic E2ω fields are

∂Eω

∂z
− i

2kω
∇2
⊥Eω =

iω2

2kωc2
χ

(2)
eff (−ω, 2ω,−ω)E2ωE∗ωe−i∆kz. (4.96)

and
∂E2ω

∂z
− i

2k2ω
∇2
⊥E2ω =

i4ω2

2k2ωc2
χ

(2)
eff (−2ω, ω, ω) E2

ω ei∆kz, (4.97)

where the wave number mismatch is now defined as

∆k = 2kω − k2ω. (4.98)

In Eqs. (4.96) – (4.98), we have introduced the notations

kω =
ωn(ω)

c
, k2ω =

2ωn(2ω)
c

. (4.99)

It follows from general properties of susceptibilities in the absence of losses that

χ
(2)
eff (−ω, 2ω,−ω) = 2χ

(2)
eff (−2ω, ω, ω) ≡ χ

(2)
eff . (4.100)

Using (4.100), we can transform the SHG coupled wave equations in the plane wave
geometry to

dEω

dz
=

iω2

2kωc2
χ

(2)
eff E2ωE∗ωe−i∆kz. (4.101)

and
dE2ω

dz
=

iω2

k2ωc2
χ

(2)
eff E

2
ω ei∆kz. (4.102)

Let us now study the second harmonic generation in the undepleted pump approx-
imation, which implies that the power of the fundamental wave is high enough and
the efficiency of the second harmonic generation is low enough that we can neglect
the power depletion of the fundamental wave. As the efficiency ηSHG of the second
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harmonic generation can be defined as the ratio of the second harmonic intensity at the
output to the input intensity of the fundamental,

ηSHG ≡
I2ω(L)
Iω(0)

, (4.103)

we can define a quantitative criterion for the undepleted pump approximation to hold:

ηSHG � 1. (4.104)

In the undepleted pump approximation, Eq. (4.102) can be integrated at once with
the result

E2ω(L) =
iω2

k2ωc2
χ

(2)
eff E

2
ω

ei∆kL − 1
i∆k

=
ω2Lχ

(2)
eff

k2ωc2
E2

ωei∆kL/2 ei∆kL/2 − e−i∆kL/2

2i(∆kL/2)
,

(4.105)
where L is the length of the interaction region and Eω = const. Further, equa-
tion (4.105) can be simplified as

E2ω(L) =
ω2Lχ

(2)
effE2

ω

k2ωc2
ei∆kL/2 sin(∆kL/2)

∆kL/2
. (4.106)

It can be readily inferred from Eq. (4.106) that the intensity of the second harmonic is
given by

I2ω(L) =
ω2L2χ

(2)2
eff I2

ω

2ε0n2ωn2
ωc3

sinc2

(
∆kL

2

)
, (4.107)

where we defined
sinc(x) ≡ sinx

x
. (4.108)

The analysis of Eq. (4.107) reveals that if the phases of the fundamental and second
harmonic waves are matched, the intensity of the second harmonic is proportional to
the square of the interaction length, I2ω(L) ∝ L2. Physically, it can be interpreted
by observing that if all N polarized atomic dipoles in the interaction volume – whose
total number is proportional to L – radiate in phase, their resulting fields interfere
constructively; consequently the total intensity of the second harmonic is such that
I2ω(L) ∝ N2 ∝ L2. On the other hand, if the phase matching condition (4.109) is
not met, the efficiency of the second harmonic generation decreases dramatically, as is
shown in Fig. 2.

Let us now discuss the efficiency of the SHG process. It follows from Eqs. (4.104)
and (4.107) that under the best possible condition of the perfect phase matching

∆k = 0, (4.109)

the undepleted pump approximation is valid provided

ηSHG =
ω2L2χ

(2)2
eff Iω

2ε0n2ωn2
ωc3

� 1, (4.110)
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Figure 4.8: Second harmonic output as a function of the interaction length in the unde-
pleted pump approximation

which can be physically interpreted as a limitation on the allowed interaction length
for a (large) given power of the fundamental wave: the power depletion of the funda-
mental can no longer be neglected for sufficiently large interaction lengths. To estimate
the efficiency of the SHG under typical experimental conditions, we can estimate the
intensity of the fundamental as

Iω =
P

πw2
0

, (4.111)

where P is the laser power and w0 is the spot size of the laser output beam, which we
choose by stipulating that the corresponding diffraction length, Ld ' kw2

0 , be much
greater that the interaction length,

Ld � L, (4.112)

for the plane wave approximation to hold. Using typical values, for moderate-to-high
power lasers P ∼ 1 W, and χ2

eff ∼ 5× 10−23 m2/V2, for LiNbO3, say; with the other
parameters being chosen as follows: L ∼ 1 cm, nω ∼ n2ω ∼ 2, λ ∼ 5×10−5 cm, and
the spot size w0 ∼ 100 µm, such that Ld ∼ 10 cm, we obtain the order-of-magnitude
estimate as ηSHG ∼ 10−3 � 1. Clearly, the undepleted pump approximation is a
good one even for relatively high power laser sources in the plane wave geometry. To
increase the SHG conversion efficiency, it is advised that (a) pulsed lasers be employed
to augment the input power and (b) source light beam be tightly focused into the in-
teraction volume to significantly increase the intensity of the fundamental input wave.
In general, the analysis of the SHG with such tightly focused laser beams requires a
more careful consideration of diffraction effects. With this in mind, however, we could
still make a rough order-of-magnitude estimate of the efficiency using Eq. (4.110) by
taking the spot size of a focused beam to be w0 ∼ 10 µm, even though Ld � L. The
resulting efficiency is of the order of 10%, which is already quite an improvement.

Due to the importance of phase matching, we briefly discuss the ways of realizing
the condition (4.109), which, when translated in terms of the refractive indices, implies

n(2ω) = n(ω). (4.113)
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First, we note that the requirement (4.113) cannot be satisfied in an isotropic medium
because of frequency dispersion: Typically, the refractive index of a nonlinear medium
far below absorption resonances is a monotonically increasing function of frequency, a
phenomenon referred to as normal dispersion. Thus isotropic media are in general not
phase matchable.

Phase matching can be realized in anisotropic media, which is referred to as bire-
fringence phase matching. As we previously mentioned, the distribution of the ordi-
nary wave vectors is spherically symmetric–which is graphically illustrated in Fig. 3–
where we assumed, for simplicity, the wave vector lies in the xz-plane–and one can
introduce the corresponding frequency-dependent refractive index no(ω) by the ex-
pression

no(ω) ≡ koc

ω
=
√

ε⊥(ω). (4.114)

The extraordinary wave vector, on the other hand, does depend on the propagation
direction, and the associated extraordinary refractive index is given by

ne(θ, ω) ≡ kec

ω
=
(

sin2 θ

ε⊥(ω)
+

cos2 θ

ε‖(ω)

)−1/2

. (4.115)

The surface ne(θ, ω) = const is, in general, an ellipsoid, but it reduces to an ellipse if
we restrict the extraordinary wave vector to lie in the xz− plane, see Fig. 3.
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zk
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Figure 4.9: Graphical representation of the wave vectors of ordinary (left) and extraor-
dinary (right) waves in a uniaxial crystal.

Assume now that the fundamental is an ordinary wave and the second harmonic is
an extraordinary one. It can then be inferred from Fig. 4 that provided the extraordinary
refractive index for the SH along the crystal axis is smaller than the ordinary refractive
index of the fundamental, which can be mathematically expressed by the inequality

ε‖(2ω) < ε⊥(ω), (4.116)

the phase matching is possible at the angle θ∗ which can be determined from Eqs. (4.113),
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Figure 4.10: Illustrating phase matching for the SHG in uniaxial crystals.

(4.114) and (4.115) to be

tan θ∗ =

√√√√ 1
ε‖(2ω) −

1
ε⊥(ω)

1
ε⊥(ω) −

1
ε⊥(2ω)

. (4.117)

Unfortunately, whenever the angle between the ordinary and extraordinary wave
vectors is other than 90deg, a spatial walkoff accrues on propagation of the two waves
as a consequence of directional mismatch between the Poynting vector and propagation
direction of an extraordinary wave. The walkoff reduces spatial overlap between the
polarization modes, thereby drastically reducing the SHG efficiency. Fortunately, some
nonlinear crystals, such as lithium niobate, have a pronounced dependence of their
birefringence on the temperature. Thus, one can achieve phase matching by keeping
the angle between the modes fixed at 90deg and varying the temperature of the crystal.
This is called temperature phase matching.

In the situations when neither birefringence nor temperature phase matching is pos-
sible, the most powerful phase matching technique is used, the so-called quasi-phase-
matching. The technique involves periodically polling χ(2) samples to modulate the
second-order susceptibility. The latter can then be expanded in a Fourier series

χ(2)(z) =
∞∑

m=−∞
χ(2)

m ei2πmz/Λ,

where Λ is a spatial period of the structure. The phase mismatch is then modified to
∆keff = ∆k − 2πm/Λ. As χ

(2)
m decreases with m, reducing the SH intensity, it is

preferable to work with m = 1 harmonic and choose the period Λ to phase match the
interaction, i.e.,

Λ = 2π/∆k.

If ∆k is so large, ∆k ∼ k that it is impossible to attain perfect phase matching, quasi-
phase-matching allows to extend, at least, the effective interaction length to

Leff = L(1 + 2π/Λ∆k),

80



where the smallest available Λ should be used.

4.7.2 Second-harmonic generation: Beyond the undepleted pump
approximation

In this section, we describe the second harmonic generation process under general
conditions. To this end, we rewrite the governing coupled wave equations in the form

dEω

dz
=

iω2

2kωc2
χ

(2)
eff E2ωE∗ωe−i∆kz, (4.118)

dE2ω

dz
=

iω2

k2ωc2
χ

(2)
eff E

2
ω ei∆kz. (4.119)

Let us now introduce the total optical intensity of the fundamental and second harmonic
waves as

I = I1 + I2. (4.120)

It is convenient to transform to dimensionless real amplitudes A and phases φ, related
to the complex amplitudes of the fundamental and second harmonic waves by the ex-
pressions

Eω =
√

I

nωε0c
Aωeiφω , (4.121)

and

E2ω =
√

I

n2ωε0c
A2ωeiφ2ω . (4.122)

Using the definitions (4.121) and (4.122), one can derive from Eqs. (4.118) and (4.119)
the equations for the real amplitudes as

dAω

dz
=
AωA2ω

l
sin θ, (4.123)

dA2ω

dz
= −A

2
ω

l
sin θ, (4.124)

where
θ = 2φω − φ2ω + ∆kz, (4.125)

and we have introduced the characteristic spatial period l of the power exchange be-
tween the fundamental and second harmonic by the expression

1
l

=
ωχ

(2)
eff

2c

√
I

n2
ωn2ωε0c

. (4.126)

Similarly, the equations for the phases take the form

dφω

dz
=
A2ω

l
cos θ, (4.127)

81



dφ2ω

dz
=

A2
ω

lA2ω
cos θ. (4.128)

Introducing ζ = z/l, we can cast our equations into the following dimensionless form

dAω

dζ
= AωA2ω sin θ, (4.129)

dA2ω

dζ
= −A2

ω sin θ, (4.130)

dφω

dζ
= A2ω cos θ, (4.131)

dφ2ω

dζ
=
A2

ω

A2ω
cos θ. (4.132)

It can be inferred at once from Eqs. (4.131) and (4.132) as well as from Eq. (4.125)
that θ obeys the equation

dθ

dζ
= ∆s +

(
2A2ω −

A2
ω

A2ω

)
cos θ, (4.133)

where we have introduced the quantity

∆s = ∆kl. (4.134)

We can easily see from Eqs. (4.129) and (4.130) that the set possesses the integral
of motion

A2
ω +A2

2ω = 1, (4.135)

which implies the power conservation in the SHG process in a lossless medium. It then
follows from Eqs. (4.129) and (4.130) that

A2ω =
1

sin θ

d

dζ
lnAω, (4.136)

and
A2

ω

A2ω
= − 1

sin θ

d

dζ
lnA2ω. (4.137)

Substituting from the last two equations into Eq. (4.125), we obtain the equation for
the phase difference in the form

dθ

dζ
= ∆s + cot θ

d

dζ
ln(A2

ωA2ω). (4.138)

Hereafter we focus on the perfect phase matching situation, ∆s = 0. In this case,
we can transform Eq. (4.138), with the aid of Eq. (4.130) to

d ln cos θ

dζ
= − d

dζ
ln(A2

ωA2ω), (4.139)
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Figure 4.11: Intensity of the fundamental and second harmonic as functions of the
interaction distance in the case of perfect phase matching.

which can be integrated at once yielding the second integral of motion as

A2
ωA2ω cos θ = Γ. (4.140)

Suppose now that Γ = 0 implying a fixed phase difference between the FW and
SH, θ = −π/2. It then follows that the equations of motion for the mode amplitudes
simplify to

dAω

dζ
= AωA2ω, (4.141)

dA2ω

dζ
= −A2

ω, (4.142)

Using Eq. (4.135), we can eliminate the fundamental from Eq. (4.142) resulting in

dA2ω

dζ
= −(1−A2

2ω), (4.143)

which can be integrated at once yielding

A2ω = tanh ζ; Aω = sechζ. (4.144)

The intensities of the fundamental and second harmonic are displayed in the Fig. 5.
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4.8 Sum-frequency generation

4.8.1 Coupled wave equations and their solution in the undepleted
pump approximation

In this Lecture, we examine the sum-frequency generation (SFG), which involves mix-
ing a signal wave at frequency ω1 with a pump wave at frequency ω2 to yield a har-
monic oscillating at ω3 = ω1 + ω2, to be referred to as the sum-frequency (SF) wave.
The SFG process is schematically illustrated in Fig. 1.

1ω

2ω

1ω

2ω
213 ωωω +=)2(χ

Figure 4.12: Schematic illustration of the sum-frequency generation process.

The wave equations governing the SFG can be readily obtained from the general
coupled wave equations, yielding the following set

∂E1

∂z
− i

2k1
∇2
⊥E1 =

iω2
1

2k1c2
χ

(2)
eff (−ω1;ω3,−ω2)E3E∗2 e−i∆kz. (4.145)

∂E2

∂z
− i

2k2
∇2
⊥E2 =

iω2
2

2k2c2
χ

(2)
eff (−ω2;ω3,−ω1)E3E∗1 e−i∆kz. (4.146)

and
∂E3

∂z
− i

2k3
∇2
⊥E3 =

iω2
3

2k3c2
χ

(2)
eff (−ω3;ω1, ω2) E1E2 ei∆kz. (4.147)

Here Ej = E(ρ, z, ωj), kj = k(ωj); we also introduced the wave number mismatch
∆k

∆k = k1 + k2 − k3. (4.148)

Exercise 4.9. Using general symmetry properties of the second-order susceptibilities,
show that

χ
(2)
eff (−ω2;ω3,−ω1) = χ

(2)∗
eff (−ω3;ω1, ω2), (4.149)

and
χ

(2)
eff (−ω1;ω3,−ω2) = χ

(2)∗
eff (−ω3;ω1, ω2). (4.150)

The situation is further simplified if we neglect diffraction by focusing on a plane
wave geometry. In these circumstances and taking account of the properties (4.149)
and (4.150) to drop arguments of χ

(2)
eff , we can reduce Eqs. (4.145) – (4.147) to the set

of ODEs in the form
dE1

dz
=

iω2
1

2k1c2
χ

(2)∗
eff E3E∗2 e−i∆kz, (4.151)
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dE2

dz
=

iω2
2

2k2c2
χ

(2)∗
eff E3E∗1 e−i∆kz, (4.152)

dE3

dz
=

iω2
3

2k3c2
χ

(2)
effE1E2e

i∆kz. (4.153)

Although Eqs. (4.151) – (4.153) can be solved in general, the solution is very compli-
cated and not too instructive. Instead, we will study the SFG process in the so-called
undepleted pump approximation, i.e, when the amplitude of the pump wave E2 is so
much larger than those of the other waves that we can neglect the pump depletion –
that is we will assume E2 = const – which enables us to rewrite Eqs. (4.151) – (4.153)
as

dE1

dz
= κ1E3e

−i∆kz, (4.154)

and
dE3

dz
= κ3E1e

i∆kz. (4.155)

Here we introduced the notations

κ1 =
iω2

1χ
(2)∗
eff

2k1c2
E∗2 , κ3 =

iω2
3χ

(2)
eff

2k3c2
E2. (4.156)

Let us then assume perfect phase matching, ∆k = 0. In this case, we can eliminate
one of the fields from Eqs. (4.154) and (4.155) in favor of the other, reducing the set to
a second-order ODE; for instance,

d2E1

dz2
+ κ2

effE1 = 0, (4.157)

with

κ2
eff = −κ1κ3 =

ω2
1ω2

3 |χ
(2)
eff |2|E2|2

4k1k3c4
. (4.158)

A general solution to (4.157) is

E1 = C1 cos κeffz + C2 sinκeffz, (4.159)

where C1 and C2 are arbitrary constants. It then follows from Eqs. (4.154), (4.155)
and (4.159) that

E3 = −κeffC1

κ1
sinκeffz +

κeffC2

κ1
cos κeffz. (4.160)

Specifying the initial conditions, E1(z = 0) = E1(0) and E3(z = 0) = 0 – there is
no SF at the entrance to the medium – we obtain the expressions for the signal and the
SF waves as

E1 = E1(0) cos κeffz, (4.161)

and
E3 = −E1(0)

κeff

κ1
sinκeffz, (4.162)
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In physical terms, the SFG in the undepleted pump approximation describes periodic
power exchange between the signal and the SF waves. The periodic character of the
power exchange between the signal and the SF can be explained by observing that to
create an SF photon, a signal photon has to be annihilated, ω3 = ω1 +ω2, such that the
more the power residing with the SF, the less the power of the signal and vice versa.
Exercise 4.10. Solve Eqs. (4.154) and (4.155) for ∆k 6= 0 in the case when initially
all power resides with ω1 harmonic. Determine the SF intensity and show that its
maximum reduces precipitously as ∆k increases. Comment on the importance of phase
matching for efficient SFG. Hint: look for solutions in the form

E1 = A1e
−i∆kz/2, E3 = A3e

i∆kz/2, (4.163)

and show that (4.154) and (4.155) reduce to homogeneous equations

dA1

dz
=

i∆k

2
A1 + κ1A3, (4.164)

and
dA3

dz
= − i∆k

2
A3 + κ3A1, (4.165)

which can be solved by usual methods.

4.8.2 Manley-Rowe relations
Consider now the SFG in a lossless medium such that

χ
(2)
eff = χ

(2)∗
eff . (4.166)

The wave equations in the plane wave geometry, (4.151) – (4.153), can then be cast
into the form

dE1

dz
=

iω2
1

2k1c2
χ

(2)
effE3E∗2 e−i∆kz, (4.167)

dE2

dz
=

iω2
2

2k2c2
χ

(2)
effE3E∗1 e−i∆kz, (4.168)

and
dE3

dz
=

iω2
3

2k3c2
χ

(2)
effE1E2e

i∆kz. (4.169)

Let us now study relations among the energy fluxes associated with the mixing waves.
To this end, we derive the following equations for the wave intensities

d|E1|2

dz
=

ω1

n1c
χ

(2)
eff Im(E∗1E∗2E3e

i∆kz), (4.170)

d|E2|2

dz
=

ω2

n2c
χ

(2)
eff Im(E∗1E∗2E3e

i∆kz), (4.171)

d|E3|2

dz
= − ω3

n3c2
χ

(2)
eff Im(E∗1E∗2E3e

i∆kz), (4.172)
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where we introduced kj = njωj/c.
Further, we introduce the optical intensities of the signal, pump and the SF waves

as
Ij =

ε0njc

2
|Ej |2, (4.173)

with j = 1, 2, 3. It can then be inferred from Eqs. (4.170) – (4.173) that

dI1

dz
=

ε0ω1

2
χ

(2)
eff Im(E1E2E∗3 ei∆kz), (4.174)

and
dI2

dz
=

ε0ω2

2
χ

(2)
eff Im(E1E2E∗3 ei∆kz), (4.175)

as well as
dI3

dz
= −ε0ω3

2
χ

(2)
eff Im(E1E2E∗3 ei∆kz). (4.176)

It follows at once by adding Eqs. (4.174), (4.175) and (4.176) that
3∑

j=1

Ij = const, (4.177)

which is tantamount to energy conservation for the SFG in lossless media. We can also
infer from Eqs. (4.174) – (4.176) that

d

dz

(
I1

ω1
− I2

ω2

)
= 0, (4.178)

d

dz

(
I1

ω1
+

I3

ω3

)
= 0, (4.179)

and
d

dz

(
I2

ω2
+

I3

ω3

)
= 0. (4.180)

The preceding differential laws are equivalent to the three new invariants for the SFG
process, which are known as the Manley-Rowe relations; the latter take the form

I1

ω1
− I2

ω2
= M1 = const, (4.181)

I1

ω1
+

I3

ω3
= M2 = const, (4.182)

I2

ω2
+

I3

ω3
= M3 = const. (4.183)

The physical interpretation of Eqs. (4.181) – (4.183) can be best furnished using the
photon picture. To this end, one can introduce the photon number fluxes – the number
of photons at frequency ωj created or annihilated per second – by the expression, Nj =
Ij/h̄ωj . It then follows from Eq. (4.181) – (4.183) that the numbers of signal and idler
photons generated per unit time in any SFG process must be separately equal to the
number of pump photons destroyed per unit time. Summarizing, we can say that to
generate one SF photon, a signal and a pump photon must be destroyed. The qualitative
photon picture of the SFG is exhibited in the form of a simple three-photon diagram in
Fig. 2.
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Figure 4.13: Illustrating Manley-Rowe relations with a photon diagram.

4.9 Difference-frequency generation
Let us now look into the difference-frequency generation (DFG), a second-order pro-
cess of generating a difference frequency (DF) wave at frequency ω3 = ω1 − ω2 from
the pump wave at frequency ω1 and the idler wave at frequency ω2 so named as its
mere presence is required for realization of the process. The DF wave is often referred
to as the signal. The DF generation is schematically illustrated in Fig. 1.

1ω

2ω

1ω

2ω
213 ωωω −=

)2(χ

Figure 4.14: Schematic illustration of the difference-frequency generation process.

The paraxial wave equations governing DFG can be shown to take the form

∂E1

∂z
− i

2k1
∇2
⊥E1 =

iω2
1

2k1c2
χ

(2)
eff (−ω1;ω2, ω3)E2E3e

i∆kz, (4.184)

and

∂E2

∂z
− i

2k2
∇2
⊥E2 =

iω2
2

2k2c2
χ

(2)
eff (−ω2;ω1,−ω3)E1E∗3 e−i∆kz, (4.185)

as well as

∂E3

∂z
− i

2k3
∇2
⊥E3 =

iω2
3

2k3c2
χ

(2)
eff (−ω3;ω1,−ω2) E1E∗2 e−i∆kz, (4.186)
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where the wave number mismatch is now defined as

∆k = k1 − k2 − k3, (4.187)

and the signal frequency is given by

ω3 = ω1 − ω2. (4.188)

Using general symmetries of nonlinear susceptibilities it can be demonstrated that

χ
(2)
eff (−ω3;ω1,−ω2) = χ

(2)∗
eff (−ω1;ω2, ω3) = χ

(2)
eff (−ω2;ω1,−ω3). (4.189)

It follows from Eqs. (4.184) – (4.186) and (4.189) that in the plane wave geometry, one
can obtain the following set of DFG wave equations

dE1

dz
=

iω2
1

2k1c2
χ

(2)
effE2E3e

i∆kz, (4.190)

dE2

dz
=

iω2
2

2k2c2
χ

(2)∗
eff E1E∗3 e−i∆kz, (4.191)

and
dE3

dz
=

iω2
3

2k3c2
χ

(2)∗
eff E1E∗2 e−i∆kz. (4.192)

We will restrict ourselves to studying DFG in the undepleted pump approximation,
E1 = const, implying that

dE2

dz
= ζ2E∗3 e−i∆kz, (4.193)

and
dE3

dz
= ζ3E∗2 e−i∆kz. (4.194)

Here we introduced the quantities

ζj =
iω2

j

2kjc2
χ

(2)∗
eff E1, j = 2, 3. (4.195)

Assuming, for simplicity, there is perfect phase matching, ∆k = 0, we can reduce
Eqs. (4.193) and (4.194) to

d2E3

dz2
− ζ2

effE3 = 0, (4.196)

where

ζ2
eff =

ω2
2ω2

3 |χ
(2)
eff |2|E1|2

4k2k3c4
. (4.197)

A general solution to (4.196) is

E3(z) = D1 cosh ζeffz + D2 sinh ζeffz. (4.198)
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Stipulating that initially all power reside with the idler, E3(z = 0) = E3(0) and E2(z =
0) = 0, yields the solution

E3(z) = E3(0) cosh ζeffz, (4.199)

and

E2(z) =
ζeffE∗3 (0)

ζ∗3
sinh ζeffz. (4.200)
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1ω

Figure 4.15: Schematic illustration of the difference-frequency generation process.

It can be easily inferred from Eq. (4.199) and (4.200) that both the signal and the
idler monotonically grow with the distance z. Such a behavior – which is in sharp
contrast with the SFG – is graphically presented in the diagram in Fig. 2. To explain
the diagram, it is sufficient to notice that in the DFG process, the signal and idler
photons are created and annihilated in pairs, ω1 = ω3 +ω2. In other words, the greater
the power of one wave – be it the signal or the idler – the greater the power of the other.
The two possibilities are illustrated in Figs. 2(a) and 2(b), respectively.

We can show that the monotonic character of the signal and idler wave growth
depends on the pump power level in case of finite mismatch ∆k 6= 0. To this end, we
transform Eqs. (4.193) and (4.194) to

dE∗2
dz

= ζ∗2E3e
−i∆kz. (4.201)

dE3

dz
= ζ3E∗2 e−i∆kz. (4.202)

Introducing the new variables viz.,

E∗2 = E2e
i∆kz/2, E3 = E3e

−i∆kz/2, (4.203)

we arrive at the equations
E ′2 + 1

2 i∆kE2 = ζ∗2E3, (4.204)

and
E ′3 − 1

2 i∆kE2 = ζ3E2. (4.205)
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Seeking solutions to Eqs. (4.204) and (4.205) in the form

E2(z) = E(0)

2 eΩeff z; E3(z) = E(0)

3 eΩeff z, (4.206)

we obtain from the determinant condition, the expression for Ωeff :

Ωeff =
√

ζ2
eff − (∆k/2)2. (4.207)

The latter implies that in the presence of phase mismatch, there exists a power threshold
for simultaneous amplification of the signal and idler modes,

Ith =
2ε0n1n2n3c

3

ω2ω3|χ(2)
eff |2

(
∆k

2

)2

. (4.208)

Thus, for a given phase mismatch, the pump intensity must be greater than a certain
critical value, I1 ≥ Ith, for parametric amplification to take place.

Next, general solutions for the idler and signal modes can be expressed above
threshold as

E2(z) = E∗2 (0) coshΩeffz + A sinhΩeffz, (4.209)

and
E3(z) = E3(0) coshΩeffz + B sinhΩeffz. (4.210)

Substituting from Eqs. (4.209) and (4.210) into Eqs. (4.204) and (4.205), we determine
the coefficients A and B:

A =
ζ∗2E3(0)− 1

2∆kE∗2 (0)
Ωeff

, (4.211)

and

B =
ζ3E∗2 (0) + 1

2∆kE3(0)
Ωeff

, (4.212)

Finally, on substituting from Eqs. (4.211) and (4.212) into (4.209) and (4.210) we ob-
tain, upon a slight rearrangement, the signal and idler fields in the form

E3(z) =
[
E3(0)

(
coshΩeffz +

i∆k

2Ωeff
sinhΩeffz

)
+

ζ3E∗2 (0)
Ωeff

sinhΩeffz

]
e−i∆kz/2,

(4.213)
and

E2(z) =
[
E2(0)

(
coshΩeffz +

i∆k

2Ωeff
sinhΩeffz

)
+

ζ2E∗3 (0)
Ωeff

sinhΩeffz

]
e−i∆kz/2.

(4.214)
Exercise 4.11. Show that below threshold, the solutions can be obtained with the

substitutions,

Ωeff → iΩeff ; cosh iΩeffz → cos Ωeffz, sinh iΩeffz → i sinΩeffz,
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yielding

E3(z) =
[
E3(0)

(
cos Ωeffz +

i∆k

2Ωeff
sinΩeffz

)
+

ζ3E∗2 (0)
Ωeff

sinΩeffz

]
e−i∆kz/2,

and

E2(z) =
[
E2(0)

(
cos Ωeffz +

i∆k

2Ωeff
sinΩeffz

)
+

ζ2E∗3 (0)
Ωeff

sinΩeffz

]
e−i∆kz/2.

How can you reconcile the periodic power exchange between the signal and idler
modes with the photon diagram of Fig. 2 demanding that signal and idler photons
be created or annihilated in pairs?

The DFG process is also known as parametric down-conversion: A high-frequency
pump photon generates a signal-idler photon pair at lower frequencies. It is the key
process to generate a pair of entangled photons from a single pump photon in χ(2)

nonlinear media; the latter finds numerous applications in quantum optics.
Exercise 4.12. Show that the Manley-Rowe relations for the DFG without the unde-
pleted pump approximation take the form

I1

ω1
+

I2

ω2
= M1 = const,

I1

ω1
+

I3

ω3
= M2 = const,

I2

ω2
− I3

ω3
= M3 = const.

and interpret your results using the photon diagram of Fig. 2.

4.10 Four-wave mixing: General considerations
In general, third-order nonlinear processes are much weaker than their second-order
counterparts. For example, in solids the ratio of the third- to the second-order suscep-
tibility is of the order of 10−9 m/V, implying that the fields as large as 103 MV/m are
required to make the influence of the third-order nonlinearities felt in presence of the
second-order ones. On the other hand, if the medium atoms do have the center of in-
version, the third-order nonlinearity makes the dominant contribution to the nonlinear
polarization. As most isotropic nonlinear media fall into this category, the third-order
nonlinear interactions, involving mixing of four waves with, in general, different fre-
quencies, are of the utmost importance both for our fundamental understanding of non-
linear optical processes and in potential applications. Quite generally, the third-order
nonlinear processes are commonly referred to as four-wave mixing. We will study four-
wave mixing in isotropic lossless media by deriving coupled wave equations describing
the interaction of four quasi-monochromatic paraxial waves with different carrier fre-
quencies. We will assume the beams to be linearly or circularly polarized. The electric
field of a beam with the carrier frequency ωs can be represented as

Ẽ(r, ωs) = e(ωs)E(r⊥, z, ωs)eiksz. (4.215)
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Since a linearly –or circularly – polarized field maintains its state of polarization in an
isotropic medium, the induced polarization field is then given by the expression

P̃NL(r, ωs) = e(ωs)PNL(r⊥, z, ωs)eiksz, (4.216)

where

k2
s = ε(ωs)

ω2
s

c2
. (4.217)

The paraxial wave equation governing the field evolution is

2iks
∂Es

∂z
+∇2

⊥Es = −µ0ω
2
sPNL. (4.218)

Here we introduced the notation

Es ≡ E(r, ωs). (4.219)

Recall that the third-order polarization field can be expressed as

P̃
(3)
i (r, ωs) = ε0c

(3)(ω1, ω2, ω3)
∑
jkl

χ̃
(3)
ijkl(−ωs;ω1, ω2, ω3)

×Ẽj(r, ω1)Ẽk(r, ω2)Ẽl(r, ω3), (4.220)

with ωs = ω1 + ω2 + ω3. Using Eqs. (4.220) and (4.216), we obtain for the slowly-
varying third-order polarization field the expression

P(3)
i (r, ωs) = ε0c

(3)(ω1, ω2, ω3)
∑
jkl

χ̃
(3)
ijkl(−ωs;ω1, ω2, ω3)ei(ωs)

×ej(ω1)ek(ω2)el(ω3)E(r, ω1)E(r, ω2)E(r, ω3)ei∆kz,(4.221)

where the phase mismatch is defined as

∆k ≡ k(ω1) + k(ω2) + k(ω3)− k(ωs). (4.222)

Introducing the notation

χ
(3)
eff (−ωs;ω1, ω2, ω3) ≡ c(3)(ω1, ω2, ω3)

∑
ijkl

χ̃
(3)
ijkl(−ωs;ω1, ω2, ω3)ei(ωs)ej(ω1)ek(ω2)el(ω3),

(4.223)
we finally arrive at the paraxial wave equation governing the four-wave mixing pro-
cesses

∂Es

∂z
− i

2k(ωs)
∇2
⊥Es =

iω2
s

2k(ωs)c2
χ

(3)
eff (−ωs;ω1, ω2, ω3)E1E2E3e

i∆kz. (4.224)

The family of third-order processes is very large; each particular process is specified
by a choice of four mixing frequencies. In the following, we will only consider two
commonly encountered processes: third-harmonic generation and self-focusing.
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Figure 4.16: Illustrating the third harmonic generation.

4.11 Third harmonic generation
Third harmonic generation (THG) is a process of producing a wave that oscillates at
the frequency 3ω by mixing three waves, each having the same carrier frequency ω as
is indicated in the diagram below.

The set of THG governing equations can be easily obtained from (4.224) to be

∂Eω

∂z
− i

2kω
∇2
⊥Eω =

iω2

2kωc2
χ

(3)
eff (−ω; 3ω,−ω,−ω)E3ωE∗2ω e−i∆kz. (4.225)

and

∂E3ω

∂z
− i

2k3ω
∇2
⊥E3ω =

9iω2

2k3ωc2
χ

(3)
eff (−3ω;ω, ω, ω) E3

ω ei∆kz, (4.226)

where the phase mismatch is given by

∆k = 3k(ω)− k(3ω). (4.227)

The analysis reveals that the degeneracy factors associated with the corresponding mix-
ing processes, (3ω = ω + ω + ω) and (ω = 3ω − ω − ω) are related as

c(3)(3ω,−ω,−ω) = 3c(3)(ω, ω, ω), (4.228)

implying the relation between the effective susceptibilities as

χ
(3)
eff (−ω; 3ω,−ω,−ω) = 3χ

(3)
eff (−3ω;ω, ω, ω) ≡ 3χ

(3)
eff (4.229)

Using Eq. (4.229) and assuming a plane wave geometry, we can transform the
governing coupled wave equations, Eqs. (4.225) and (4.226), into the form

dEω

dz
=

3iω

2nωc
χ

(3)
eff E3ωE∗2ω e−i∆kz. (4.230)

and
dE3ω

dz
=

3iω

2n3ωc
χ

(3)
eff E

3
ω ei∆kz. (4.231)

The last equations are very similar to those describing second harmonic generation.
Unfortunately, though, third harmonic generation is a rather weak process. There-
fore relatively high optical intensities are required to generate THG in a crystal with a
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reasonable efficiency. To estimate the THG efficiency, we consider the THG process
in the undepleted pump approximation, Eω = const. Under these conditions, equa-
tions (4.230) and (4.231) can be easily integrated to give an expression for the third
harmonic field in the form

E3ω(L) =
i3ω

2n3ωc
χ

(3)
effE

3
ωei∆kL/2sinc(∆kL/2). (4.232)

In complete analogy with the SHG theory, we introduce the THG efficiency by the
expression

ηTHG =
I3ω(L)
Iω(0)

. (4.233)

It follows from Eqs. (4.232) and (4.233), assuming perfect phase matching that in the
undepleted pump approximation,

ηTHG = 36π2

(
L

λ

)2 χ
(3)2
eff I2

ω

n3ωn3
ωε20c

2
. (4.234)

Even if we assume the fundamental field intensity is as large as a typical breakdown
intensity in solids, I ∼ 100 MW/cm2 and take realistic values of the other parameters:
L ∼ 1 cm, nω ∼ n3ω ∼ 1.5, λ ∼ 5× 10−5 cm, and χ

(3)
eff ∼ 10−21 m2/W2, we arrive

at an estimate
ηTHG ∼ 5× 10−7 � 1, (4.235)

which is tiny for all practical purposes. Moreover, it is hard to achieve phase matching
in crystals; all of which effectively precludes the laboratory THG realization in most
solid media.

However, THG can be generated in gases, such as sodium or rubidium vapors, in the
vicinity of an optical resonance where the magnitude of χ(3) is significantly enhanced.
Unfortunately, such an enhancement is, in general, accompanied by the increase in
linear as well as nonlinear absorption that must also be reckoned with whenever third
harmonic generation in gases is attempted. As linear absorption dominates at reso-
nance, the best way to boost the THG efficiency is to tune the laser to a two-photon
resonance as is indicated in Fig. 2(a).

ω

ω

ω

ω3 ω3ω3

ω

ω

ω

)(a )(b )(c

ω

ω

ω

Figure 4.17: Illustrating the third-harmonic generation in gases under resonant excita-
tion conditions. The laser is tuned to either two- or one- or else three-photon resonance
in parts (a), (b) and (c), respectively.
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4.12 Self-focusing and spatial solitons
Whenever a light beam propagates inside a nonlinear medium whose refractive index
depends on the beam intensity, the light rays near the beam center, where the inten-
sity is the highest, experience stronger refraction – assuming the nonlinear refractive
index of the medium increases with the intensity – causing the rays to bend toward the
center. As a result, the intensity increases toward the beam center on propagation in
the medium. The light evolution looks as if the rays were focused by a positive lens
toward the beam center. Such a behavior is termed self-focusing of light in a nonlinear
medium, and the medium with a positive nonlinear refractive index forming a focusing
lens, self-focusing. As a consequence of self-focusing, the beam narrows and its peak
intensity is enhanced with the propagation distance. On the other hand, every beam
tends to spread due to diffraction which tends to decrease light intensity at the center.
The two opposing trends are characterized by different spatial scales. We can easily es-
timate such scales – referred to as nonlinear and diffraction lengths, respectively – from
elementary considerations. The characteristic diffraction length was defined before in
the studies of Gaussian beam diffraction in free space:

LD ' kw2
0, (4.236)

where k = n0ω/c, ω being the carrier frequency of the beam.
On the other hand, the intensity-dependent nonlinear refractive index modulates the

optical phase of the beam electric field. This phenomenon is known as the self-phase
modulation. Further, due to coupling of the intensity and phase dynamics of the field
in nonlinear media, the change in the phase of the optical field induces modifications
of the beam intensity profile. The influence of nonlinearity becomes important over
distances such that the phase accretion is of the order of, at least, one radian, i. e.,

k∆nNLLNL ∼ 1, (4.237)

where the nonlinear change in the refractive index ∆nNL can be estimated using the
peak intensity of the beam as

∆nNL ∼ n2I0. (4.238)

Here I0 is the peak intensity and n2 > 0 is a nonlinear refractive index coefficient to
be discussed in greater detail below. It follows from Eqs. (4.237) and (4.238) that

LNL ∼
1

kn2I0
. (4.239)

The beam evolution scenario entirely depends on the relative sizes of the two char-
acteristic lengths. In particular, if LD < LNL, diffraction dominates, and the beam
spreads. However, if the diffraction and nonlinearity operate at the characteristic scales
of the same order, exact balance of the two opposing trends is possible, leading to the
formation of spatial solitons, i. e., the beams whose spatial profiles and widths do not
change upon propagation in self-focusing nonlinear media. A soliton can be formed
if the optical power of the beam is exactly equal to a certain critical power such that
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the nonlinearity can arrest diffraction-induced spreading. We can estimate the critical
power necessary for soliton formation by imposing the balance condition

LD ' LNL. (4.240)

It follows at once from Eqs. (4.236), (4.239) and (4.240) that the critical power, Pcr =
Icrπw2

0 is given by

Pcr '
λ2

0

4πn0n2
, (4.241)

where λ0 = 2π/k0 = 2πc/ω.
Exercise 4.13. The magnitude of the nonlinear refractive index for carbon disulfide

(CS2) is n2 ' 3× 10−14 cm2/W, the linear refractive index is equal to 1.63. Estimate
the critical power for spatial soliton formation at λ0 ' 1 µm. Compare your results
with Pcr for silica glass for which n2 ' 5× 10−16 cm2/W, and n0 ' 1.4.

stθ
0w

stz

Figure 4.18: Illustrating the focal length in the self-focusing regime.

If the characteristic nonlinear length is smaller than the diffraction length, the non-
linearity prevails, causing self-focusing of the beam. One can estimate a characteristic
self-focusing distance in the limit LNL � LD. In this case, diffraction is negligible,
and geometrical optics approach would suffice for a rough estimate. According to Fer-
mat’s principle, any ray traveling from the wavefront up to the focusing point must
traverse the same optical path,

∫
dsn(s) = const. As a result, we obtain for the paths

exhibited in Fig. 3,

(n0 + δn)zf =
(

n0 +
δn

2

)√
z2
f + w2

0 ' n0zf

(
1 +

δn

2n0

)(
1 +

w2
0

2z2
f

)
, (4.242)

where we have assumed that the refractive index along the central ray is n0 + δn,
whereas the peripheral ray experiences the refractive index strength of roughly n0 +
δn/2. It then follows from (4.242) after simple algebra that the self-focusing distance
is

zf ' w0

√
n0

δn
' w0

√
n0

n2I0
. (4.243)

Finally, using the expressions for the beam power and the critical power as

P = Iπw2
0, Pcr = I0πw2

0, (4.244)
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we obtain the estimate

zf '
LD

2

√
Pcrn0

P
, P � Pcr. (4.245)

Note that our approximate result (4.245) is consistent with our premise that diffraction
is negligible, zf � LD in the given power range. In reality, high-power optical beams,
P � Pcr, will disintegrate into multiple filaments, each carrying approximately the
power of Pcr, long before the self-focusing distance is reached. The filamentation is
caused by a transverse instability resulting from the growth of tiny imperfections of the
beam wave front.

To describe self-focusing and soliton formation, we can derive the nonlinear wave
equation corresponding to the self-action process by a fundamental wave of frequency
ω. Mathematically, the corresponding susceptibility tensor is χ(3)(−ω;ω,−ω, ω). The
resulting equation takes the form

∂Eω

∂z
− i

2kω
∇2
⊥Eω =

iω2

2kωc2
χ

(3)
eff (−ω;ω,−ω, ω)|Eω|2Eω, (4.246)

where we have introduced the quantities

χ
(3)
eff =

3
4
χ(3), (4.247)

and
χ(3) ≡

∑
ijkl

χ̃
(3)
ijkl(−ω;ω,−ω, ω)ei(ω)ej(ω)ek(ω)el(ω). (4.248)

Notice that there is no phase mismatch involved in the process of self-focusing, ∆k =
k(ω) + k(−ω) + k(ω) − k(ω) = 0, because k(−ω) = −k(ω) in lossless media.
Physically, this is the consequence of the fact that there is only one fundamental wave
involved in the process which implies automatic conservation of the energy and mo-
menta at the photon level.

We assume, for simplicity, the linear polarization of the beam – such that any
polarization effects can be ignored – and introduce the scalar nonlinear polarization
Ptot ≡ Piei, by the expression

Ptot = ε0

(
χ(1)E +

3
4
χ(3)|E|2E

)
= ε0χtotE , (4.249)

where the total susceptibility is given by

χtot = χ(1) +
3
4
χ(3)|E|2. (4.250)

We can then defines the total refractive index as

n2 = 1 + χtot, (4.251)

and the Kerr nonlinear refractive index by the expression

n = n0 + n2|E|2. (4.252)
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It follows from Eq. (4.250) and (4.251) and the fact that the nonlinear refraction is
always a small effect as compared with the linear one, we obtain

(n0 + n2|E|2)2 ' n2
0 + 2n0n2|E|2. (4.253)

On comparing Eqs. (4.250) and (4.253), we infer that

n2 =
3χ(3)

8n0
, (4.254)

which provides a relation between the third-order susceptibility and the nonlinear re-
fractive index. In terms of the latter, the nonlinear wave equation for self-focusing can
be rewritten as

i
∂E
∂z

+
1
2k
∇2
⊥E +

kn2

n0
|E|2E = 0. (4.255)

Equation (4.255) is referred to as the nonlinear Schrödinger equation (NLSE) because
of its formal similarity with the Schrödinger equation in quantum mechanics.

Before we proceed further, we note that often the nonlinear refractive index associ-
ated with the optical intensity is introduced viz.,

n = n0 + n2I, (4.256)

where I is the optical intensity – the energy density flux – defined as

I =
ε0cn0

2
|E|2. (4.257)

The nonlinear nonlinear refractive index n2 has the units of m2/V2 whereas the other
one, n2, is measured in m2/W2. The two indices are related as

n2 =
ε0cn0

2
n2. (4.258)

We can now introduce dimensionless variables, Z = z/LD, U = E/E0, R⊥ =
r⊥/w0, E0 = (2I0/ε0cn0)1/2, and transform the NLSE to the dimensionless form

i
∂U

∂Z
+

1
2
∇2
⊥U +N 2|U |2U = 0. (4.259)

Here we have introduced the only dimensionless parameter – the soliton parameterN ,
governing the dynamics of the system. It is defined as follows

N 2 ≡ LD

LNL
, (4.260)

where the diffraction and nonlinear lengths, LD and LNL are given by the expressions

LD = kw2
0, LNL =

1
kn2I0

. (4.261)

A numerical analysis of Eq. (4.259) confirms formation of a spatial soliton for
the beam power such that N = 1. However, the soliton turns out to be unstable with
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respect to small perturbations. Stable solitons can be formed in two-spatial dimensions,
provided the saturation of nonlinear refractive index is allowed. Stable spatial solitons
can be generated in Kerr-like nonlinear media in a planar waveguide geometry where
trapping in one spatial dimension is realized by the nonlinear medium whereas the
other spatial dimension is trapped by the waveguide. The dimensionless NLSE in the
planar waveguide geometry takes the form

i
∂U

∂Z
+

1
2

∂2U

∂X2
+N 2|U |2U = 0. (4.262)

The lowest order soliton corresponds to the exact balance between the nonlinearity and
diffraction, N = 1, and its spatial profile is given by

U(Z,X) = sech X e−iZ/2. (4.263)

Higher-order solitons also exist. They correspond to more intense beams, N > 1. In
such cases, the nonlinearity dominates at first, causing self-focusing of the beam. How-
ever, in (1 + 1)D geometry – indicating one transverse dimension plus one dimension
along the waveguide unaffected by the waveguide trapping – the initial self-focusing
can be slowed down and eventually reversed by increased diffraction of a more tightly
focused beam. As a result, the periodic pattern of contraction and expansion of the
soliton manifests itself, with the soliton returning to its initial shape and transverse size
every half-period. Such solitons are called optical breathers. An example of a breather
is displayed in Fig. 4(b) for N = 3.

Figure 4.19: Intensity of the fundamental (a) and the third-order (b) soliton as function
of the propagation distance.

Exercise 4.14. Show that the 1D NLSE is invariant with respect to the Galilean
transformation,

X ′ = X − vZ; Z ′ = Z,

for an arbitrary speed v. In other words, demonstrate that Eq. (4.262) has the same
form in the “primed” variables, provided the fields in the two coordinate systems are
related by a gauge transformation,

U(Z,X) = V (Z ′, X ′)eif(Z′,X′).

Determine the phase f . Draw conclusions about the functional form of a moving soli-
ton field.
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4.13 Polarization dynamics of third-order processes
So far we have ignored tensor properties of nonlinear optical susceptibilities by consid-
ering linearly or circularly polarized light whose polarization properties do not change
on propagation in isotropic media. Whenever elliptically polarized light is launched
into such media, its state of polarization does in general change despite the isotropy of
the medium. Thus, we shall be interested in polarization dynamics of light propagating
in isotropic nonlinear media. If the isotropic medium possesses reflectional symmetry,
the lowest order of the optical susceptibility tensor is the third. Remarkably, the mere
isotropy and reflectional symmetry of the medium are sufficient to determine a gen-
eral form of the third-order susceptibility tensor which we will do following a seminal
work of Maker and Tehrune. In the next subsection, we examine tensor properties of
the third-order susceptibility in the media with isotropic linear and nonlinear responses,
while we will then explore the influence of linear anisotropy of the nonlinear medium
– whose nonlinear properties can still be assumed isotropic – on light polarization dy-
namics in such media.

4.13.1 Isotropic nonlinear media with inversion symmetry
We begin by observing that since there is no privileged direction in such a medium,
the third-order susceptibility tensor cannot have an index – corresponding to a given
Cartesian coordinate – repeat an odd number of times: In other words, χ

(3)
ijjj = 0 for

any j = x, y, z. To demonstrate this property, consider a polarization component, Px,
say. If χ

(3)
xyyy 6= 0, it follows that Px = χ

(3)
xyyyEyEyEy 6= 0. On the other hand, polar-

ization along the x−axis in an isotropic medium should not be affected by reflections
with respect to the xz−plane. The latter affect the y-component of the field, though,
Ey → −Ey . Consequently, Px = χ

(3)
xyyyEyEyEy = (−1)3χ(3)

xyyyEyEyEy , implying
that χ

(3)
xyyy = 0. By the same token, all the other tensor components containing three

repeated indices can be shown to be zero.
Further, we conclude by inspection that there are four kinds of nonzero tensor ele-

ments which are mutually related by the symmetry relations as

χ(3)
xxxx = χ(3)

yyyy = χ(3)
zzzz, (4.264)

χ(3)
xxyy = χ(3)

xxzz = χ(3)
yyxx = χ(3)

yyzz = χ(3)
zzyy = χ(3)

zzxx, (4.265)

χ(3)
xyxy = χ(3)

xzxz = χ(3)
yzyz = χ(3)

zxzx = χ(3)
zyzy = χ(3)

yxyx, (4.266)

χ(3)
xyyx = χ(3)

yxxy = χ(3)
xzzx = χ(3)

zxxz = χ(3)
yzzy = χ(3)

zyyz. (4.267)

Moreover, as χ
(3)
ijkl must be invariant with respect to rotations, the diagonal and off-

diagonal elements of the susceptibility tensor can be shown to satisfy the relations

χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyyx + χ(3)

xyxy, (4.268)

with similar ones for χ
(3)
yyyy and χ

(3)
zzzz . We can then infer from Eqs. (4.264) – (4.267)

as well as Eq. (4.268) that the third-order susceptibility tensor in isotropic media with
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inversion symmetry takes a general form

χ
(3)
ijkl = χ(3)

xxyyδijδkl + χ(3)
xyxyδikδjl + χ(3)

xyyxδilδjk. (4.269)

The expression (4.269) can be simplified even further for particular nonlinear pro-
cesses if one recalls intrinsic symmetries of χ(3) with respect to frequency permuta-
tions. We will focus here on the self-focusing (SF) process, ω1 = ω2 = −ω3 =
−ω4 = ω. The intrinsic permutation symmetry then implies

χ
(3)
ijkl(−ω, ω,−ω, ω) = χ

(3)
ilkj(−ω, ω,−ω, ω). (4.270)

It follows at once that

χ(3)
xxyy(−ω, ω,−ω, ω) = χ(3)

xyyx(−ω, ω,−ω, ω). (4.271)

We can then arrive at the final form for the third-order susceptibility for SF in isotropic
media,

χ
(3)
ijkl(−ω, ω,−ω, ω) = χ(3)

xxyy(−ω, ω,−ω, ω)(δijδkl + δilδjk)

+ χ(3)
xyxy(−ω, ω,−ω, ω)δikδjl. (4.272)

Exercise 4.15. Use intrinsic permutation symmetries of χ
(3)
ijkl to determine a general

form of the susceptibility tensor χ
(3)
ijkl(−3ω, ω, ω, ω) for the third harmonic generation

in isotropic media.

The third-order polarization field for self-focusing takes the form

Pi(ω) =
3ε0
4

∑
jkl

χ
(3)
ijkl(−ω, ω,−ω, ω)Ej(ω)Ek(−ω)El(ω), (4.273)

where
Ek(−ω) = E∗k (ω). (4.274)

Substituting from Eqs. (4.272) into (4.273) we obtain, after some algebra, the expres-
sion

Pi =
3ε0
2

χ(3)
xxyyEi

∑
k

EkE∗k +
3ε0
4

χ(3)
xyxyE∗i

∑
l

ElEl. (4.275)

The latter can be written in the vector form as

PNL = A(E · E∗)E + 1
2B(E · E)E∗, (4.276)

where we have introduced the notations of Maker and Terhune (1965)

A ≡ 3ε0
2

χ(3)
xxyy, B ≡ 3ε0

2
χ(3)

xyxy. (4.277)

Equation (4.276) gives the most general form of the third-order polarization response to
an applied field of any polarization for a self-focusing process in an isotropic non-chiral
nonlinear medium.
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To better understand the role of the two terms entering the expression (4.276), we
consider an elliptically polarized wave, propagating in the positive z-direction, which
can be conveniently represented as a linear superposition of the right- and left-handed
circular polarizations as

E = E+e+ + E−e−, (4.278)

where the unit vectors associated with the circular polarizations are defined as

e± =
ex ± iey√

2
; e− = e∗+. (4.279)

It follows from (4.279) that

e± · e± = 0, e± · e∓ = 1. (4.280)

The dot product of the two electric field vectors can then be expressed as

E · E = 2E+E−, E · E∗ = |E+|2 + |E−|2. (4.281)

Let us define the nonlinear polarization field in the circular polarization basis by
the expression

PNL = P(+)
NLe+ + P(−)

NLe−, (4.282)

It can be inferred from (4.276), (4.281) and (4.282) that

P(±)
NL = [A|E±|2 + (A + B)|E∓|2]E±. (4.283)

Further, we can represent the total polarization field as a linear superposition of the
circular polarization components as

P = P+e+ + P−e−, (4.284)

where P+ and P− are effectively decoupled – there is an indirect coupling, though, via
the nonlinear susceptibility – such that each polarization component is proportional to
the corresponding electric field viz.,

P± =
[
χL + χ

(±)
NL

]
E±. (4.285)

Here the nonlinear susceptibility of each component is given by

χ
(±)
NL = A|E±|2 + (A + B)|E∓|2. (4.286)

The corresponding effective refractive index, including linear as well as nonlinear parts,
can be defined as

n2
± = 1 + χL + χ

(±)
NL. (4.287)

Since in practice, χNL � χL, we can make the approximation

n± ' nL +
χ

(±)
NL

2nL
. (4.288)
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The analysis of Eqs. (4.284) – (4.288) reveals that in the circular polarization basis,
the nonlinear wave equation in isotropic media can be effectively decoupled into the
two as

∂2E±

∂t2
−

n2
±

c2

∂2E±

∂z2
= 0, (4.289)

where we have neglected any spatial dependence in the transverse directions. Equa-
tions (4.289) are satisfied by the plane wave solutions

E±(z, t) = E±ei(k±z−ωt), (4.290)

where
k± =

n±ω

c
. (4.291)

On substituting from Eq. (4.288) into (4.290), and using the identities

n± = n±∆n/2, (4.292)

where
n ≡ n+ + n−

2
, ∆n = n+ − n−; (4.293)

we obtain the expression for the total field as

E(z, t) = [E+ei∆nωz/2ce+ + E−e−i∆nωz/2ce−]eiω(nz/c−t). (4.294)

Here we have introduced the average effective refractive index

n = nL +
(2A + B)

4nL
(|E+|2 + |E−|2), (4.295)

and the refractive index difference,

∆n = n+ − n− =
B

2nL
(|E−|2 − |E+|2), (4.296)

respectively. The electric field can be represented as

E(z, t) = [E+e+(z) + E−e−(z)]eiω(nz/c−t), (4.297)

where the rotating circular polarization basis is

e±(z) =
ex(z)± iey(z)√

2
, (4.298)

with
ex(z) = cos(∆nωz/2c)ex + sin(∆nωz/2c)ey, (4.299)

ey(z) = cos(∆nωz/2c)ey − sin(∆nωz/2c)ex. (4.300)

Exercise 4.16. Verify that the representation of the field in terms of rotating polar-
ization vectors, given by Eqs. (4.297) – (4.300), does indeed correspond to our field of
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Eq. (4.294).

Analyzing Eqs. (4.298) – (4.300), we can conclude that the electric field is ellipti-
cally polarized at any position z, according to Eq. (4.297); yet the polarization ellipse
rotates in the xy− plane at the rate proportional to the differences of refractive indices
along the two principal axes. The latter is referred to as birefringence; it is the nonlin-
ear birefringence of the medium that gives rise to polarization rotation even in isotropic
optical media. Notice also that the rate of polarization rotation depends only on the co-
efficient B as is evidenced by Eqs. (4.296) and (4.299), (4.300). Hence the second
term on the r.h.s. of Eq. (4.276) is wholly responsible for nonlinear birefringence ef-
fects. The first term on the r.h.s of (4.276) contributes to the overall phase accretion
factor which is proportional to n, but it does not affect polarization rotation.

Exercise 4.17. In the fiber optical case, the nonlinear response of the medium is
of electronic type such that A = B. Silica-glass optical fibers can serve as an im-
portant particular example. Linear birefringence of the fiber is typically introduced –
either intentionally or inadvertently – at the fabrication stage. On account of linear
birefringence, the most general field propagating in such a fiber can be represented as

E =
1
2
(
exExeiβxz + eyEyeiβyz

)
e−iωt + c. c,

where βx,y is the propagation constant of the corresponding linear polarization com-
ponent; the field components are assumed to be polarized along the principal axes of
the fiber. Show that the polarization field at the frequency ω is then given by

PNL =
1
2
(
exPxeiβxz + eyPyeiβyz

)
e−iωt + c. c., (4.301)

where

Px =
3ε0
4

χ(3)
xxxx

[
(|Ex|2 +

2
3
|Ey|2)Ex +

1
3
E∗xE2

ye−2i∆βz

]
, (4.302)

Py =
3ε0
4

χ(3)
xxxx

[
(|Ey|2 +

2
3
|Ex|2)Ex +

1
3
E∗yE2

xe2i∆βz

]
. (4.303)

Here ∆β = βx − βy .

4.14 Electro-optical Kerr effect
In this section, we study the electro-optical Kerr effect which manifests itself in the
modification of a linear refractive index of an isotropic non-chiral media in presence
of an electrostatic field. The effect becomes possible due to the second-order (Kerr)
nonlinearity – which is the leading nonlinearity in such media – and hence the name,
electro-optical Kerr effect. Classically, the corresponding polarization reads

PNLi = 3ε0
∑
jkl

χ
(3)
ijkl(−ω, ω, 0, 0)Ej(ω)Ek(0)El(0). (4.304)
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Substituting from Eq. (4.269) into Eq. (4.304), we obtain

PNLi = 3ε0χ
(3)
xxyyEi(ω)

∑
k

E2
k(0) + 3ε0χ

(3)
xyxyEi(0)

∑
j

Ej(0)Ej(ω)

+ 3ε0χ
(3)
xyyxEi(0)

∑
j

Ej(ω)Ej(0). (4.305)

The intrinsic permutation symmetry, χ
(3)
ijkl(−ω, ω, 0, 0) = χ

(3)
ijlk(−ω, ω, 0, 0), implies

that
χ(3)

xyxy = χ(3)
xyyx, (4.306)

Using Eq. (4.306), Eq. (4.305) can be written in the vector form as

PNL = 3ε0[χ(3)
xxyy E(E0 ·E0) + 2χ(3)

xyxy E0(E ·E0)], (4.307)

where we have introduced the notations,

E ≡ E(ω) and E0 ≡ E(0). (4.308)

Equation (4.307) represents the general form of the polarization associated with the
electro-optical Kerr effect for the electrostatic and optical fields of any polarizations.
Let us focus on the case of linear polarization of the dc field such that

E0 = E0ex, E = Exex + Eyey. (4.309)

Under the circumstances, the polarization components take the form

PNLx = 3ε0[χ(3)
xxyyExE2

0 + 2χ(3)
xyxyE2

0Ex]

= 3ε0[(χ(3)
xxyy + 2χ(3)

xyxy)]E2
0Ex = 3ε0χ

(3)
xxxxE2

0Ex, (4.310)

and
PNLy = 3ε0χ(3)

xxyyE2
0Ey. (4.311)

It can be inferred from Eqs. (4.310) and (4.311) that the components of the total polar-
ization field can be represented as

Px,y = ε0χx,yEx,y, (4.312)

where the components of the effective susceptibility tensor are

χx = χ(1) + 3χ(3)
xxxxE2

0 , (4.313)

and
χy = χ(1) + 3χ(3)

xxyyE2
0 . (4.314)

The corresponding components of the total refractive index are given by

nx ' n +
3χ

(3)
xxxx

2n
E2

0 , (4.315)
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and

ny ' n +
3χ

(3)
xxyy

2n
E2

0 . (4.316)

It follows from Eqs. (4.312) – (4.314) that in electro-optical Kerr effect with the
dc field breaking the azimuthal symmetry, it is the Cartesian components of the optical
field that are decoupled; each satisfies the wave equation – neglecting spatial depen-
dence in the transverse plane – of the form

∂2Ex,y

∂t2
−

n2
x,y

c2

∂2Ex,y

∂z2
= 0, (4.317)

The plane-wave solutions to Eq. (4.317) are

Ex,y(z, t) = Ex,yei(kx,yz−ωt), (4.318)

where
kx,y =

nx,yω

c
. (4.319)

The evolution of the optical field can then be represented as

E(z, t) = Ex[ex + ey tan θe−i∆nωz/c]eiω(nxz/c−t), (4.320)

where tan θ = Ey/Ex, and

∆n =
3χ

(3)
xyxyE2

0

n
. (4.321)

The analysis of Eq. (4.320) reveals that the Kerr effect is present in two guises:
the dc field breaks the symmetry of the isotropic medium turning the medium into a
uniaxial one and it generates effective linear birefringence which manifests itself in the
polarization rotation. The latter can be seen by observing, for instance, that if the wave
is initially linearly polarized at 45◦ to the dc field, such that tan θ = 1, it can acquire
a circular polarization provided, e−i∆nωL/c = ±i at the exit to the medium, z = L.
In general, the polarization rotation angle for the beam having traversed a distance L
inside the medium is given by

∆φL =
∆nωL

c
=

3ω

nc
χ(3)

xyxyE2
0L. (4.322)

In experimental work, the so-called Kerr constant K is often introduced via the relation

∆n = KλE2
0 . (4.323)

The Kerr constant is related to relevant components of the susceptibility tensor by the
expression

K =
3χ

(3)
xyxy

nλ
. (4.324)

Exercise 4.18. Determine the dc field strength needed to produce a circular polariza-
tion by a 10 cm long Kerr cell filled with carbon disulfide, CS2. For carbon disulfide,
K = 3.6× 10−14 m/V2.
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