
Ulisses Braga-Neto

Fundamentals
of Pattern
Recognition and
Machine Learning

Fundamentals of Pattern Recognition
and Machine Learning

Ulisses Braga-Neto

Fundamentals of Pattern
Recognition and Machine
Learning

Ulisses Braga-Neto

Department of Electrical

Texas A&M University

College Station, TX, USA

ISBN 978-3-030-27655-3 ISBN 978-3-030-27656-0 (eBook)

https://doi.org/10.1007/978-3-030-27656-0

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,

specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar

or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore

free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true
and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied,

with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral
with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

and Computer Engineering

https://doi.org/10.1007/978-3-030-27656-0

To Flávia

Preface

“Only the educated are free.”

–Epictetus.

The field of pattern recognition and machine learning has a long and distinguished history. In

particular, there are many excellent textbooks on the topic, so the question of why a new textbook

is desirable must be confronted. The goal of this book is to be a concise introduction, which combines

theory and practice and is suitable to the classroom. It includes updates on recent methods and

examples of applications based on the python programming language. The book does not attempt an

encyclopedic treatment of pattern recognition and machine learning, which has become impossible

in any case, due to how much the field has grown. A stringent selection of material is mandatory

for a concise textbook, and the choice of topics made here, while dictated to a certain extent by

my own experience and preferences, is believed to equip the reader with the core knowledge one

must obtain to be proficient in this field. Calculus and probability at the undergraduate level are

the minimum prerequisites for the book. The appendices contain short reviews of probability at the

graduate level and other mathematical tools that are needed in the text.

This book has grown out of lecture notes for graduate classes on pattern recognition, bioinformat-

ics, and materials informatics that I have taught for over a decade at Texas A&M University. The

book is intended, with the proper selection of topics (as detailed below), for a one or two-semester

introductory course in pattern recognition or machine learning at the graduate or advanced under-

graduate level. Although the book is designed for the classroom, it can also be used e↵ectively for

self-study.

The book does not shy away from theory, since an appreciation of it is important for an education

in pattern recognition and machine learning. The field is replete with classical theorems, such as the

Cover-Hart Theorem, Stone’s Theorem and its corollaries, the Vapnik-Chervonenkis Theorem, and

several others, which are covered in this book. Nevertheless, an e↵ort is made in the book to strike

a balance between theory and practice. In particular, examples with datasets from applications

vii

PREFACE

in Bioinformatics and Materials Informatics are used throughout the book to illustrate the theory.

These datasets are also used in end-of-chapter coding assignments based on python. All plots in the

text were generated using python scripts, which can be downloaded from the book website. The

reader is encouraged to experiment with these scripts and use them in the coding assignments. The

book website also contains datasets from Bioinformatics and Materials Informatics applications,

which are used in the plots and coding assignments. It has been my experience in the classroom

that the understanding of the subject by students is increased significantly once they engage in

assignments involving coding and data from real-world applications.

The book is organized as follows. Chapter 1 is a general introduction to motivate the topic. Chapters

2–8 concern classification. Chapters 2 and 3 on optimal and general sample-based classification

are the foundational chapters on classification. Chapters 4-6 examine the three main categories

of classification rules: parametric, nonparametric, and function-approximation, while Chapters 7

and 8 concern error estimation and model selection for classification. Chapter 9 on dimensionality

reduction still deals with classification, but also includes material on unsupervised methods. Finally,

Chapters 10 and 11 deal with clustering and regression. There is flexibility for the instructor or

reader to pick topics from these chapters and use them in a di↵erent order. In particular, the

“Additional Topics” sections at the end of most chapters cover miscellaneous topics, and can be

included or not, without a↵ecting continuity. In addition, for the convenience of instructors and

readers, sections that contain material of a more technical nature are marked with a star. These

sections could be skipped at a first reading.

The Exercises section at the end of most chapters contain problems of varying di�culty; some of

them are straightforward applications of the concepts discussed in the chapter, while others introduce

new concepts and extensions of the theory, some of which may be worth discussing in class. Python

Assignment sections at the end of most chapters ask the reader to use python and scikit-learn to

implement methods discussed in the chapter and apply them to synthetic and real data sets from

Bioinformatics and Materials Informatics applications.

Based on the my experience teaching the material, I suggest that the book could be used in the

classroom as follows:

1. A one-semester course focusing on classification, covering Chapters 2-9, while including the

majority of the starred and additional topics sections.

2. An applications-oriented one-semester course, skipping most or all starred and additional top-

ics sections in Chapters 2-8, covering Chapters 9-11, and emphasizing the coding assignments.

3. A two-semester sequence covering the entire book, including most or all the starred and addi-

tional topics sections.

viii

This book is indebted to several of its predecessors. First, the classical text by Duda and Hart (1973,

updated with Stork in 2001), which has been a standard reference in the area for many decades.

In addition, the book by Devroye, Györfi and Lugosi (1996), which remains the gold standard in

nonparametric pattern recognition. Other sources that were influential to this text are the books

by McLachlan (1992), Bishop (2006), Webb (2002), and James et al. (2013).

I would like to thank all my current and past collaborators, who have helped shape my understanding

of this field. Likewise, I thank all my students, both those whose research I have supervised and those

who have attended my lectures, who have contributed ideas and corrections to the text. I would

like to thank Ed Dougherty, Louise Strong, John Goutsias, Ascendino Dias e Silva, Roberto Lotufo,

Junior Barrera, and Severino Toscano, from whom I have learned much. I thank Ed Dougherty,

Don Geman, Al Hero, and Gábor Lugosi for the comments and encouragement received while writing

this book. I am grateful to Caio Davi, who drew several of the figures. I appreciate very much the

expert assistance provided by Paul Drougas at Springer, during di�cult times in New York City.

Finally, I would like to thank my wife Flávia and my children Maria Clara and Ulisses, for their

patience and support during the writing of this book.

Ulisses Braga-Neto

College Station, TX
July 2020

PREFACE ix

Contents

Preface

1 Introduction 1

1.1 Pattern Recognition and Machine Learning . 1

1.2 Basic Mathematical Setting . 2

1.3 Prediction . 2

1.4 Prediction Error . 4

1.5 Supervised vs. Unsupervised Learning . 4

1.6 Complexity Trade-O↵s . 5

1.7 The Design Cycle . 7

1.8 Application Examples . 7

1.8.1 Bioinformatics . 8

1.8.2 Materials Informatics . 11

1.9 Bibliographical Notes . 13

2 Optimal Classification 15

2.1 Classification without Features . 15

2.2 Classification with Features . 16

vii

xi

CONTENTS

2.3 The Bayes Classifier . 20

2.4 The Bayes Error . 24

2.5 Gaussian Model . 28

2.5.1 Homoskedastic Case . 29

2.5.2 Heteroskedastic Case . 31

2.6 Additional Topics . 32

2.6.1 Minimax Classification . 32

2.6.2 F-errors . 34

2.6.3 Bayes Decision Theory . 37

*2.6.4 Rigorous Formulation of the Classification Problem 38

2.7 Bibliographical Notes . 40

2.8 Exercises . 41

2.9 Python Assignments . 47

3 Sample-Based Classification 51

3.1 Classification Rules . 51

3.2 Classification Error Rates . 54

*3.3 Consistency . 55

3.4 No-Free-Lunch Theorems . 59

3.5 Additional Topics . 60

3.5.1 Ensemble Classification . 60

3.5.2 Mixture Sampling vs. Separate Sampling . 61

3.6 Bibliographical Notes . 63

3.7 Exercises . 63

3.8 Python Assignments . 65

xii

CONTENTS

4 Parametric Classification 67

4.1 Parametric Plug-in Rules . 67

4.2 Gaussian Discriminant Analysis . 69

4.2.1 Linear Discriminant Analysis . 70

4.2.2 Quadratic Discriminant Analysis . 73

4.3 Logistic Classification . 75

4.4 Additional Topics . 77

4.4.1 Regularized Discriminant Analysis . 77

*4.4.2 Consistency of Parametric Rules . 79

4.4.3 Bayesian Parametric Rules . 81

4.5 Bibliographical Notes . 83

4.6 Exercises . 84

4.7 Python Assignments . 87

5 Nonparametric Classification 89

5.1 Nonparametric Plug-in Rules . 89

5.2 Histogram Classification . 91

5.3 Nearest-Neighbor Classification . 93

5.4 Kernel Classification . 95

5.5 Cover-Hart Theorem . 98

*5.6 Stone’s Theorem . 101

5.7 Bibliographical Notes . 103

5.8 Exercises . 104

5.9 Python Assignments . 105

xiii

CONTENTS

6 Function-Approximation Classification 109

6.1 Support Vector Machines . 109

6.1.1 Linear SVMs for Separable Data . 111

6.1.2 General Linear SVMs . 113

6.1.3 Nonlinear SVMs . 115

6.2 Neural Networks . 120

6.2.1 Backpropagation Training . 126

6.2.2 Convolutional Neural Networks . 129

*6.2.3 Universal Approximation Property of Neural Networks 133

*6.2.4 Universal Consistency Theorems . 135

6.3 Decision Trees . 136

6.4 Rank-Based Classifiers . 141

6.5 Bibliographical Notes . 142

6.6 Exercises . 143

6.7 Python Assignments . 146

7 Error Estimation for Classification 151

7.1 Error Estimation Rules . 151

7.2 Error Estimation Performance . 153

7.2.1 Deviation Distribution . 153

7.2.2 Bias, Variance, RMS, and Tail Probabilities 153

*7.2.3 Consistency . 155

7.3 Test-Set Error Estimation . 157

7.4 Resubstitution . 159

7.5 Cross-Validation . 160

xiv

CONTENTS

7.6 Bootstrap . 163

7.7 Bolstered Error Estimation . 165

7.8 Additional Topics . 171

7.8.1 Convex Error Estimators . 171

7.8.2 Smoothed Error Estimators . 173

7.8.3 Bayesian Error Estimation . 174

7.9 Bibliographical Notes . 177

7.10 Exercises . 179

7.11 Python Assignments . 182

8 Model Selection for Classification 185

8.1 Classification Complexity . 186

8.2 Vapnik-Chervonenkis Theory . 189

*8.2.1 Finite Model Selection . 189

8.2.2 Shatter Coe�cients and VC Dimension . 191

8.2.3 VC Parameters of a Few Classification Rules 192

8.2.4 Vapnik-Chervonenkis Theorem . 196

8.2.5 No-Free-Lunch Theorems . 197

8.3 Model Selection Methods . 198

8.3.1 Validation Error Minimization . 198

8.3.2 Training Error Minimization . 199

8.3.3 Structural Risk Minimization . 200

8.4 Bibliographical Notes . 201

8.5 Exercises . 202

xv

CONTENTS

9 Dimensionality Reduction 205

9.1 Feature Extraction for Classification . 206

9.2 Feature Selection . 207

9.2.1 Exhaustive Search . 208

9.2.2 Univariate Greedy Search . 209

9.2.3 Multivariate Greedy Search . 211

9.2.4 Feature Selection and Classification Complexity 213

9.2.5 Feature Selection and Error Estimation . 214

9.3 Principal Component Analysis (PCA) . 216

9.4 Multidimensional Scaling (MDS) . 220

9.5 Factor Analysis . 222

9.6 Bibliographical Notes . 224

9.7 Exercises . 226

9.8 Python Assignments . 228

10 Clustering 231

10.1 K-Means Algorithm . 231

10.2 Gaussian Mixture Modeling . 236

10.2.1 Expectation-Maximization Approach . 237

10.2.2 Relationship to K-Means . 243

10.3 Hierarchical Clustering . 243

10.4 Self-Organizing Maps (SOM) . 246

10.5 Bibliographical Notes . 248

10.6 Exercises . 249

10.7 Python Assignments . 251

xvi

CONTENTS

11 Regression 253

11.1 Optimal Regression . 254

11.2 Sample-Based Regression . 257

11.3 Parametric Regression . 258

11.3.1 Linear Regression . 260

11.3.2 Gauss-Markov Theorem . 262

11.3.3 Penalized Least Squares . 265

11.4 Nonparametric Regression . 266

11.4.1 Kernel Regression . 267

11.4.2 Gaussian Process Regression . 267

11.5 Function-Approximation Regression . 275

11.6 Error Estimation . 277

11.7 Variable Selection . 278

11.7.1 Wrapper Search . 278

11.7.2 Statistical Testing . 279

11.7.3 LASSO and Elastic Net . 279

11.8 Model Selection . 279

11.9 Bibliographical Notes . 281

11.10 Exercises . 282

11.11 Python Assignments . 284

Appendix 287

A1 Probability Theory . 287

A1.1 Sample Space and Events . 287

A1.2 Probability Measure . 289

xvii

xviii CONTENTS

A1.3 Conditional Probability and Independence . 292

A1.4 Random Variables . 293

A1.5 Joint and Conditional Distributions . 298

A1.6 Expectation . 299

A1.7 Vector Random Variables . 305

A1.8 Convergence of Random Sequences . 308

A1.9 Asymptotic Theorems . 312

A2 Basic Matrix Theory . 313

A3 Basic Lagrange-Multiplier Optimization . 315

A4 Proof of the Cover-Hart Theorem . 319

A5 Proof of Stone’s Theorem . 321

A6 Proof of the Vapnik-Chervonenkis Theorem . 323

A7 Proof of Convergence of the EM Algorithm . 327

A8 Data Sets Used in the Book . 329

A8.1 Synthetic Data . 329

A8.2 Dengue Fever Prognosis Data Set . 330

A8.3 Breast Cancer Prognosis Data Set . 330

A8.4 Stacking Fault Energy Data Set . 331

A8.5 Soft Magnetic Alloy Data Set . 331

A8.6 Ultrahigh Carbon Steel Data Set . 331

List of Symbols 333

Bibliography 335

Index 351

Chapter 1

Introduction

“The discipline of the scholar is a consecration

to the pursuit of the truth.”

–Norbert Wiener, I am a Mathematician, 1956.

After a brief description of the pattern recognition and machine learning areas, this chapter sets

down basic mathematical concepts and notation used throughout the book. It introduces the key

notions of prediction and prediction error for supervised learning. Classification and regression

are introduced as the main representatives of supervised learning, while PCA and clustering are

mentioned as examples of unsupervised learning. Classical complexity trade-o↵s and components of

supervised learning are discussed. The chapter includes examples of application of classification to

Bioinformatics and Materials Informatics problems.

1.1 Pattern Recognition and Machine Learning

A pattern is the opposite of randomness, which is closely related to the notions of uniformity and

independence. For example, the outcomes of an unloaded die are “random,” and so is the sequence

of digits in the decimal expansion of ⇡, because the frequency distribution of outcomes is uniform.

Had that not been the case, the series of outcomes would have revealed a pattern, in the form

of “clumps” in their frequency distribution. Pattern recognition in this sense is the domain of

unsupervised learning. On the other hand, there is “randomness” between two events if they are

independent. For example, musical preference is independent of the occurrence of heart disease, but

food preference is not: there is a pattern of association between a high-fat diet and heart disease.

Pattern recognition in this sense is the domain of supervised learning.

© Springer Nature Switzerland AG 2020
U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_1

1

https://doi.org/10.1007/978-3-030-27656-0_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_1&domain=pdf

2 CHAPTER 1. INTRODUCTION

Furthermore, the wakeful human mind is constantly acquiring sensorial information from the en-

vironment, in the form of vision, hearing, smell, touch, and taste signals. The human mind is the

best learning system there is to process these kind of data, in the sense that no computer as yet

can consistently outperform a rested and motivated person in recognizing images, sounds, smells,

and so on. Machine learning applications in fields such as computer vision, robotics, speech recogni-

tion and natural language processing, generally have as their goal to emulate and approach human

performance as closely as possible.

Pattern recognition became a significant engineering field during the American space program in

the 1960’s. Initially, it was closely associated with the analysis of digital images transmitted by

deep space vehicles and probes. From this beginning in image analysis, pattern recognition has

expanded today to a very broad spectrum of applications in imaging, signal processing, and more.

On the other hand, machine learning originated mainly in the neuroscience and computer science

areas. This is a field that has achieved great popularity in recent years. Pattern recognition and

machine learning have substantial overlap with each other, and a common mathematical setting.

In this book, we treat these two subjects as complementary parts of a whole. Other identifiable

areas closely related to this topic are artificial intelligence, data science, discriminant analysis, and

uncertainty quantification.

1.2 Basic Mathematical Setting

In supervised learning, information about the problem is summarized into a vector of measurements

X 2 Rd, also known as a feature vector, and a target Y 2 R to be predicted. The relationship

between the feature vector X and the target Y is, in practice, rarely deterministic, i.e., in real

applications it is seldom the case that there is a function f such that Y = f(X). Instead, the

relationship between X and Y is specified by a joint feature-target distribution PX,Y . See Figure 1.1

for an illustration. This state of uncertainty is due mainly to the presence of: 1) hidden or latent

factors, that is, factors on which Y depends but that are not available to be observed or measured;

2) measurement noise in the values of the predictor X itself.

1.3 Prediction

The objective in supervised learning is to predict Y given X. A prediction rule produces a predictor

 : Rd
! R, such that (X) predicts Y . Notice that the predictor itself is not random; this is the

case since in practice one is interested in definite predictions (however, a few examples of random

 are considered briefly in the book). Design of the predictor uses information about the joint

1.3. PREDICTION 3

Figure 1.1: Stochastic relationship between the features and target in supervised learning.

feature-target distribution PX,Y , which can be:

• Direct knowledge about PX,Y .

• Indirect knowledge about PX,Y through an independent and identically distributed (i.i.d.)

sample Sn = {(X1, Y1), . . . , (Xn, Yn)} from PX,Y ; this is often called the training data. (How-

ever, as seen in Section 3.5.2, the i.i.d. assumption does not hold, even approximately, in

certain problems.)

Any predictor design method employs a combination of these two sources of information. In the

extreme case where complete knowledge of PX,Y is available, an optimal predictor ⇤(X) can be

obtained in principle, and data are not needed (optimal predictors are discussed in Chapter 2 and

Chapter 11). In the other direction, if no knowledge about PX,Y is available, then a data-driven

prediction rule must rely solely on Sn. Surprisingly, there are conditions under which certain data-

driven predictors can approach the optimal predictor as n ! 1, regardless of what the unknown

PX,Y is; however, the convergence rate must be arbitrarily slow in the worst case. Therefore, for

finite n, which is the practical case, having some knowledge about PX,Y is necessary to guarantee

good performance; this is known as a no-free-lunch theorem (such convergence issues are discussed

in Chapter 3).

4 CHAPTER 1. INTRODUCTION

1.4 Prediction Error

Validity of a predictor, including its optimality, is defined with respect to a prespecified loss function

` : R ⇥ R ! R that measures the “distance” between the predicted value (X) and the target Y .

For example, common loss functions are the quadratic loss `((X), Y) = (Y � (X))2, the absolute

di↵erence loss `((X), Y) = |Y � (X)|, and the misclassification loss

`((X), Y) = IY 6= (X) =

8
<

:
1 , Y 6= (X) ,

0 , Y = (X) ,
(1.1)

where IA 2 {0, 1} is an indicator variable, such that IA = 1 if and only if A is true.

As we are dealing with a stochastic model, the loss of a predictor must be averaged over the random

variables X and Y . Accordingly, the expected loss of , or its prediction error, is defined by

L[] = E[`(Y, (X))] . (1.2)

An optimal predictor ⇤ minimizes L[] over all 2 P, where P is the class of all predictors under

consideration.

1.5 Supervised vs. Unsupervised Learning

In supervised learning, the target Y is always defined and available. There are two main types of

supervised learning problems:

• In classification, Y 2 {0, 1, . . . , c� 1}, where c is the number of classes. Variable Y is called a

label to emphasize that it has no numeric meaning but simply codes for the di↵erent categories.

In binary classification, c = 2 and there are only two classes. For example, the binary classes

“healthy” and “diseased” can be coded into the numbers 0 and 1, respectively. A predictor in

this case is called a classifier. The basic loss criterion for classification is the misclassification

loss in (1.1), in which case (1.2) yields the classification error rate

"[] = E[IY 6= (X)] = P (Y 6= (X)) , (1.3)

i.e., simply the probability of an erroneous classification. In the case of binary classification,

IY 6= (X) = |Y � (X)| = (Y � (X))2, so that the quadratic, absolute di↵erence, and misclas-

sification losses all yield the classification error in (1.3). Classification is the major concern of

the book, being covered extensively in Chapters 2–9.

1.6. COMPLEXITY TRADE-OFFS 5

• In regression, Y represents a numerical quantity, which could be continuous or discrete. A

common loss function used in regression is the quadratic loss, in which case the prediction error

in (1.2) is called the mean-square error. In real-valued regression, Y 2 R is a continuously-

varying real number. For example, the lifetime of a device is a positive real number. Regression

methods are discussed in detail in Chapter 11.

On other other hand, in unsupervised learning, Y is unavailable and only the distribution of X

specifies the problem. Therefore, there is no prediction and no prediction error, and it is not

straightforward to define a criterion of performance. Unsupervised learning methods are mainly

concerned in detecting structure in the distribution ofX. Examples include dimensionality reduction

methods such as Principal Component Analysis (PCA), to be discussed in Chapter 9, and clustering,

which is the topic of Chapter 10.

If the target Y is available for only a subpopulation of the feature vector X, we have a hybrid case,

called semi-supervised learning, which can be semi-supervised classification or regression, according

to the nature of Y . The main question in semi-supervised learning is when and how the set of points

with missing Y can increase the accuracy of classification or regression.

In addition to supervised and unsupervised learning, another area that is often associated with

machine learning is known as reinforcement learning . This is a somewhat di↵erent problem, however,

since it concerns decision making in continuous interaction with an environment, where the objective

is to minimize a cost (or maximize a reward) over the long run.

1.6 Complexity Trade-O↵s

Complexity trade-o↵s involving sample size, dimensionality, computational complexity, interpretabil-

ity, and more, are a characteristic feature of supervised learning methods. The resolution of these

trade-o↵s often involve di�cult choices.

A key complexity trade-o↵is known as the curse of dimensionality or the peaking phenomenon: for

a fixed sample size, the expected classification error initially improves with increasing number of

features, but eventually starts to increase again. This is a consequence of the large size of high-

dimensional spaces, which require correspondingly large training sample sizes in order to design good

classifiers. The peaking phenomenon is illustrated in Figure 1.2(a), which displays the expected

accuracy in a discrete classification problem for various training sample sizes as a function of the

number of predictors. The plot is based on exact formulas for the expected classification accuracy

derived by G. Hughes in a classic paper (this was the first paper to demonstrate the peaking

phenomenon, which is thus also known as Hughes Phenomenon). One can observe that accuracy

6 CHAPTER 1. INTRODUCTION

Peaking Phenomenon Scissors Plot

Figure 1.2: Two basic complexity trade-o↵s in supervised learning. Left: the peaking phenomenon

(plot generated by c01 hughes.py). Right: the scissors plot.

increases and then decreases as the number of predictors increases. The error increases eventually

due to overfitting, which occurs when the sample size is too small (compared to the dimensionality

of the problem) for the classification rule to learn the classifier properly. Therefore, the optimal

number of features moves to the right (i.e., accuracy “peaks later”) with increasing sample size.

Notice that the expected accuracy in all cases decreases to the no-information value of 0.5, except

for the optimal classification error, which corresponds in this case to an infinite training sample

size. The optimal error can never decrease as more features are added (the optimal classifier and

classification error are studied in detail in Chapter 2).

Another complexity trade-o↵in supervised learning can be seen in the so-called scissors plot, dis-

played in Figure 1.2(b), which displays the expected errors of two classification rules and the error of

the optimal classifier. The complex classification rule in this example is consistent, i.e., its expected

error converges to the optimal error as sample size increases, whereas the simple classification rule

is not consistent. Perhaps the complex classification rule in this example is universally consistent,

i.e., consistent under any feature-label distribution (see Chapter 3). However, in this example, the

simple classification rule performs better under small sample sizes, by virtue of requiring less data.

There is a problem-dependent critical sample size N0, under which one is in the “small-sample” re-

gion, and should use the simpler, non-consistent classification rule. Here, as elsewhere in the book,

“small sample” means a small number of training points in comparison to the dimensionality or com-

plexity of the problem. The powerful Vapnik-Chervonenkis theory provides distribution-free results

relating classification performance to the ratio between sample size and complexity (see Chapter 8).

7

Figure 1.3: The design cycle in supervised learning.

1.7 The Design Cycle

The typical design cycle in supervised learning problems is depicted in Figure 1.3. The process

starts with the key step of experimental design, which includes framing the question that needs

to be addressed, identifying the populations and features of interest, determining the appropriate

sample sizes and sampling mechanism (e.g., whether the populations are to be sampled jointly

or separately). Next, there is the step of data collection itself, followed by the three main steps:

dimensionality reduction, which seeks to extract the important discriminatory information from the

data, predictor design, which might be a classifier or regressor, and error estimation, where the

accuracy of the constructed predictor is evaluated. If the estimated accuracy is not desirable, the

process may cycle back over the dimensionality reduction and predictor design steps. In case no

good predictor can be found, it is possible that the data collection process was flawed, e.g., due to

the presence of bad sensors. Finally, it is possible that the experiment was badly designed, in which

case the process has to restart again from the beginning. In this book, we focus on the three key

steps of dimensionality reduction, predictor design, and error estimation. We however also examine

briefly experimental design issues, such as the e↵ects of sample size and sampling mechanism on

prediction accuracy (see Chapter 3).

1.8 Application Examples

In this section, we illustrate concepts described previously by means of two classification examples

from real-world problems in Bioinformatics and Materials Informatics. This section also serves as

1.8. APPLICATION EXAMPLES

8 CHAPTER 1. INTRODUCTION

an introduction to these application areas, which are employed in examples and coding assignments

throughout the book.

1.8.1 Bioinformatics

A very important problem in modern medicine is classification of disease using the activity of genes

as predictors. All cells in a given organism contain the same complement of genes (DNA), also

known as a genome, but di↵erent cell types are associated with di↵erent levels of activation of the

genes in the genome. A gene could be silent, or it could be active. When active, the genetic code is

transcribed into messenger RNA (mRNA), which in turn is translated into a protein, according to

the “fundamental dogma of molecular biology”:

DNA ! mRNA ! Protein.

A gene is more or less expressed according to how much mRNA is transcribed, and therefore

how much protein is produced. This can be measured on a genome-wide scale by means of high-

throughput gene-expression experiments, e.g., by hybridization of the mRNA to DNA microarrays,

or by direct sequencing and counting of the mRNA molecules, also known as RNA-seq technology. In

this context, specific mRNA sequences are also called transcripts. Most transcripts can be mapped

to unique genes.

Example 1.1. This example concerns the prediction of the clinical outcome of dengue fever. Dengue

is a viral disease, which is transmitted by mosquitos in the genus Aedes and is endemic in tropi-

cal regions. Its clinical outcome can be categorized into “classical” dengue fever (DF), which is

a debilitating disease but typically nonlethal, and dengue hemorrhagic fever (DHF), which has a

significant mortality rate. It is important during outbreaks to be able to determine which variety

is present in patients, in order to avoid overwhelming medical services with unnecessary hospital-

izations. Unfortunately, this discrimination can only be made by clinical methods in the second

week after the onset of fever. Nascimento et al. [2009] hypothesized that pattern recognition and

machine learning methods could be applied to gene expression data from cells of the immune system

to predict the development of DHF much earlier than available clinical methods. To investigate

this hypothesis, they employed a data set with the expression of 1981 transcripts in 26 patients on

the early days of fever, who were later diagnosed with dengue fever, dengue hemorrhagic fever, or

nonspecific fever (see Section A8.2). Figure 1.4 displays microarray data for 40 transcripts of the

DF and DHF patients from the original data set. These transcripts were obtained by univariate

filter feature selection, which is discussed in detail in Chapter 9. The particular method used here

was to rank the transcripts according to discriminatory power between the DF and DHF classes,

as measured by the absolute value of the test statistic of a two-sample t-test, and keep the top 40

transcripts. The data matrix corresponding to the 40 transcripts measured on the DF and DHF

1.8. APPLICATION EXAMPLES 9

Figure 1.4: Dengue fever prognosis example. Left: heatmap for the gene expression microarray data

matrix. Red and green code for high and low expression values, respectively. Rows are organized

by hierarchical clustering, with dendrogram displayed on the left of the heatmap. Right: bivariate

LDA classifier using two chosen transcripts (plot generated by c01 bioex.py). Left panel from

[Nascimento et al., 2009], reprinted under a creative commons attribution (CC BY) license.

patients is displayed in the heatmap on the left of Figure 1.4. The heatmap uses a color scale to

represent expression level, whereby one goes from bright red to bright green as gene expression goes

from high to low (with respect to the average expression). Each column of the data matrix is the

gene expression profile for the corresponding patient. The rows of the matrix correspond to the

expression of each gene, and are organized here according to similarity using hierarchical clustering.

This produces the dendrogram, seen on the left of the data matrix. Hierarchical clustering, which

is discussed in detail in Chapter 10, allows us to see clear patterns in the heatmap. In particular,

we can observe that the expression of the transcripts at the top, from SELPLG to LRRFIP1, is

predominantly low in the DF patients, while expression of these genes is mixed, but mostly high,

in the DHF patients. The reverse is observed in the bottom transcripts, from PDCD4 to CXXC5.

Hence, simple univariate classifiers, consisting of a single transcript, could be used to discriminate

the two classes.

10 CHAPTER 1. INTRODUCTION

However, using multivariate classifiers based on multiple variables makes it is possible to discrim-

inate the two classes with higher accuracy. Indeed, accurate univariate classifiers do not exist in

most problems, which requires pattern recognition and machine learning methods to be inherently

multivariate. We illustrate the multivariate approach with a two-dimensional classifier based on

two of the 40 transcripts: PSMB9 and MTA2. The two-dimensional space corresponding to the

expression of these two variables is the feature space. Each point in this space represents a patient

in the sample data, which are used to train a Linear Discriminant Analysis (LDA) classifier (see

Chapter 4). The decision boundary of this classifier is a line in two dimensions (and a hyperplane

in higher dimensions). The feature space, sample points, and linear decision boundary are plotted

on the right side of Figure 1.4. Since the transcripts come from the top of the data matrix, high

expression of both, corresponding to the upper right area in the plot, is predictive of DF (good

prognosis). On the other hand, low expression of these transcripts, corresponding to the lower left

area, is predictive of DHF (poor prognosis). This interpretability property of linear classifiers is a

big advantage in many applications: it leads to simple and testable scientific hypotheses about the

phenomena at hand (which is not the case if complex nonlinear classification rules are used). It also

o↵ers the opportunity for validation using prior domain knowledge; in this particular example, it

was previously known that PSMB9 participates in key cellular viral defense mechanisms, so that its

lower expression is compatible with an increased exposure to the severe form of the disease. The

general problem of selecting the appropriate variables for discrimination is called feature selection,

which is a dimensionality reduction technique, to be discussed in detail in Chapter 9.

The problem of error estimation, mentioned previously, concerns how to use sample data to estimate

the error of a predictor, such as the one in Figure 1.4. Ideally, one would have available a large

amount of independent testing data, which is never used in training the classifier, and would compute

a test-set error estimate as the total number of disagreements between the label predicted by the

classifier and the actual label of each testing point divided by the total number of testing points.

This estimator is guaranteed to be unbiased, but its variance depends on the testing sample size, so

that the estimate will be accurate only if there is a large amount of labeled testing data, which is

often an unrealistic requirement in real applications. The classifier on the right of Figure 1.4 used

the entire data set for training, so there is no testing data available. An alternative is to test the

classifier on the training data itself. We can see in Figure 1.4 that there are 18 training points and

the classifier makes one error. Hence, the training-set error, also known as the apparent error or

the resubstitution error estimator, comes out to 1/18 ⇡ 5.55%. This seems good, but one must be

careful, because under small sample sizes, as is the case here, the resubstitution error estimator can

display substantial optimistic bias, i.e., be significantly smaller on average than the true error, due

to overfitting. Error estimation for classification is discussed in detail in Chapter 7. ⇧

1.8. APPLICATION EXAMPLES 11

1.8.2 Materials Informatics

Pattern recognition and machine learning are typically used in Materials Science to establish Quan-

titative Structure Property Relationships (QSPR), i.e., predictive models that link the structure or

composition of a material to its macroscopic properties, such as strength, ductility, malleability, and

so on, with the ultimate goal of accelerating the discovery of new materials.

Example 1.2. This example concerns experimentally recorded values of atomic composition and

stacking fault energy (SFE) in austenitic stainless steel specimens, obtained by Yonezawa et al. [2013]

(See Section A8.4 for details about this data set.) The stacking fault energy is a microscopic property

related to the resistance of austenitic steels. The purpose of the experiment is to develop a model

to classify a steel sample as high-SFE or low-SFE based only on the atomic composition; high-SFE

steels are less likely to fracture under strain and may be desirable in certain applications. The data

set contains 17 features corresponding to the atomic composition (percentage weight of each atomic

element) of 473 steel specimens. We face the problem that the data matrix contains many zero

values, which are typically measurements that fell below the sensitivity of the experiment, and are

therefore unreliable. These constitute missing values (this can occur for other reasons as well, such

as a faulty or incomplete experiment). One option to address this issue is to apply data imputation.

For example, a simple imputation method is to fill in missing values with an average of neighboring

values. Given a large sample size and abundance of features, a simpler, and possibly safer, option is

to discard measurements containing zero/missing values. Here, we discard all features that do not

have at least 60% nonzero values across all sample points, and then remove any remaining sample

points that contain zero values. The remaining training points are categorized into high-SFE steels

(SFE�45) vs. low-SFE steels (SFE 35), with points of intermediate SFE value being dropped.

This results in a reduced data set containing 123 specimens and 7 features.

Univariate histograms1 of the two classes for three of the atomic features are plotted at the top

of Figure 1.5. Also displayed are kernel estimates of the corresponding probability densities (see

Chapter 5 for a discussion of kernel density estimators). From the left to the right, we can see

that there is substantial overlap between the class histograms and density estimates for the first

feature (Cr, chromium). Intuitively, this should not be a good feature for discriminating between

low and high stacking fault energy steels. The next feature (Fe, iron) seems much more promising

for classification, given the small overlap between the density estimates. In fact, one could draw

a rough decision boundary, according to which steels with an iron percent weight less than about

67.5% is predicted to be a high-SFE material; otherwise, it is predicted to be a low-SFE material (in

other words, iron content and stacking fault energy are negatively correlated, according to this data

set). The next feature (Ni, Nickel) appears to be even more predictive, as the overlap between the

1
Histograms are normalized counts of instances that fall inside intervals (also called “bins”) that partition the

domain. A histogram is a rough approximation of the probability density associated with a numerical measurement.

12 CHAPTER 1. INTRODUCTION

Figure 1.5: Materials Structure-Property Relationships. Top: univariate class-specific histograms,

probability density estimates, and decision boundaries for a few of the features in the data set.

Bottom: bivariate LDA classifier (plots generated by c01 matex.py).

density estimates is very small. Here, nickel content is positively correlated with SFE. Once again,

we can draw a decision boundary, according to which a nickel content of roughly more than 13%

seems to be predictive of a high-SFE material. These density estimates are approximations of the

class-conditional densities, to be defined in Chapter 2, where it is shown that the classification error

is determined by the overlap between the class-conditional densities weighted by the corresponding

prior probabilities. As already mentioned in Example 1.1, one need not restrict oneself to classifying

with a single feature; the two good features Ni and Fe can be combined to obtain a bivariate linear

classifier, again an LDA classifier, displayed at the bottom of Figure 1.5. Both the univariate and

bivariate classifiers in Figure 1.5 are linear, and therefore interpretable: it is easy to conclude from

them that a steel with a smaller content of iron and a larger content of nickel likely exhibits high

stacking fault energy. ⇧

1.9. BIBLIOGRAPHICAL NOTES 13

We caution that the bivariate linear classifier in the previous example was put together by selecting

two good-looking univariate features; this would be an example of filter feature selection, already

mentioned in Example 1.2. However, theoretical and empirical considerations indicate that this

could be a bad idea (e.g., for a theoretical result, see “Toussaint’s Counter-Example” in Chapter 9).

The issue is that looking at individual features misses the synergistic multivariate e↵ects that occur

when features are joined. So bad features in isolation could in theory produce a good classifier when

put together; and the opposite could also happen, good features in isolation can join to produce a

bad classifier (this is not a common occurrence, but it is possible nevertheless).

1.9 Bibliographical Notes

The standard reference in pattern recognition, since its first edition in 1973, has been Duda et al.

[2001]. The classical references on parametric and nonparametric methods in pattern recognition,

respectively, are the treatises by McLachlan [1992] and Devroye et al. [1996]. Other references

include the books by Hastie et al. [2001], Webb [2002], James et al. [2013], Bishop [2006], and

Murphy [2012b]. The latter two references take a mostly Bayesian perspective of the field.

The area of statistical classification was inaugurated by Fisher [1936], where the famous Iris data

set was introduced. Regression is a much older problem in statistics. The basic method of fitting

a regression line is the least-squares method, invented by Gauss more than two centuries ago. The

name “regression” was coined by Sir Francis Galton, an English Victorian statistician, in the late

1800’s [Galton, 1886], where he observed that children of short or tall parents tend to be taller or

shorter than them, respectively (thus, “regression towards the mean”). Duda et al. [2001] attribute

the beginnings of unsupervised learning and clustering to the work of K. Pearson on mixtures of

Gaussians in 1894. The classical paper by Hughes [1968] demonstrated the peaking phenomenon

analytically for the first time.

A popular introduction to the field of reinforcement learning is the book by Sutton and Barto [1998].

A recent edited volume on semi-supervised learning [Chapelle et al., 2010] provides a comprehensive

overview of this topic.

A standard reference on molecular biology, including the “fundamental dogma,” is Alberts et al.

[2002]. The original papers on DNA microarray technology are Schena et al. [1995]; Lockhart et al.

[1996], while RNA-seq technology is covered in Marguerat and Bahler [2010]. A detailed description

of the classifier depicted on the right side of Figure 1.4 can be found in Braga-Neto [2007]. A good

general reference on Bioinformatics is Kohane et al. [2003]. An up-to-date reference on Materials

Informatics is the recent edited book by Rajan [2013].

Chapter 2

Optimal Classification

“But although all our knowledge begins with experience,

it does not follow that it all arises from experience.”

– Immanuel Kant, Critique of Pure Reason, 1781.

As discussed in Chapter 1, the main objective of supervised learning is to predict a target variable Y

given the information in a vector of measurements or featuresX. In classification, Y has no numerical

meaning, but codes for a number of di↵erent classes. If complete knowledge about the joint feature-

label distribution PX,Y is available, then an optimal classifier can be obtained, in principle, and

no training data are needed. Classification becomes in this case a purely probabilistic problem,

not a statistical one. In this chapter, we consider at length the probabilistic problem of optimal

classification, including the important Gaussian case. We assume that Y 2 {0, 1}; extensions to the

multiple-label case Y 2 {0, 1, . . . , c � 1}, for c > 2, are considered in the Exercises section. The

reason is that the multiple-label case introduces extra complexities that may obscure the main issues

about classification, which become readily apparent in the binary case.

2.1 Classification without Features

We begin with the very simple case where there are no measurements or features to base classification

on. In this case, a predictor Ŷ of the binary label Y 2 {0, 1} must be constant, returning always

0 or 1 for all instances to be classified. In such a case, it seems to natural to make the following

decision:

Ŷ =

8
<

:
1 , P (Y = 1) > P (Y = 0) ,

0 , P (Y = 0) � P (Y = 1) .
(2.1)

© Springer Nature Switzerland AG 2020
U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_2

15

https://doi.org/10.1007/978-3-030-27656-0_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_2&domain=pdf

16 CHAPTER 2. OPTIMAL CLASSIFICATION

i.e., assign the label of the most common class. The probabilities P (Y = 1) and P (Y = 0) are called

the class prior probabilities or prevalences. (Since P (Y = 0) + P (Y = 1) = 1, only one of the prior

probabilities need be specified.) Notice that Ŷ = 1 if and only if P (Y = 1) > 1/2.

Notice also that this is equivalent to assigning the label that is closest to the mean E[Y] = P (Y = 1).

The predictor Ŷ is indeed optimal, in the sense that its classification error rate

"[Ŷ] = P (Ŷ 6= Y) = min{P (Y = 1), P (Y = 0)} (2.2)

is minimum over all constant predictors, as can be readily verified. Note that if either of the

prevalences P (Y = 1) or P (Y = 0) is small, i.e., one of the two classes is unlikely to be observed,

then "[Ŷ] is small, and this simple classifier without features actually has a small classification error.

However, consider testing for a rare disease: it clearly will not do to call all patients healthy without

any examination (we return to this topic in Section 2.4 below).

2.2 Classification with Features

There is something odd about classifying without features: one calls the same label for all instances

being considered. Luckily, in practice, one always has access to a feature vector X = (X1, . . . , Xd) 2

Rd to help classification; each Xi is a feature, for i = 1, . . . , d, and Rd is called the feature space.

We assume for definiteness that X is a continuous feature vector in each class, which is an important

case in practice. Formally, this means there are two nonnegative functions p(x | Y = 0) and

p(x | Y = 1) on Rd, called the class-conditional densities, such that:

P (X 2 E, Y = 0) =

Z

E

P (Y = 0)p(x | Y = 0) dx ,

P (X 2 E, Y = 1) =

Z

E

P (Y = 1)p(x | Y = 1) dx ,
(2.3)

for any Borel set E ✓ Rd, i.e., a set to which a probability can be assigned.1 With E = Rd, the

left-hand sides yield the prior probabilities, which also shows that the class-conditional densities

integrate to 1. Furthermore, by adding the two equations in (2.3), it follows that p(x) = P (Y =

0)p(x | Y = 0) + P (Y = 1)p(x | Y = 1). Hence, the feature-label distribution PX,Y is completely

specified by the class-conditional densities p(x | Y = 0) and p(x | Y = 1) weighted by the prior

probabilities P (Y = 0) and P (Y = 1), respectively. The case of discrete PX,Y is considered briefly

in Exercise 2.1 as well as in Chapter 3. See Figure 2.1 for a univariate example.

1
Section 2.6.3 and Appendix A1 contain the full technical details.

2.2. CLASSIFICATION WITH FEATURES 17

Figure 2.1: Weighted class-conditional densities in a univariate classification problem.

Assuming that p(x) > 0,2 define the posterior probabilities of Y given X = x by

P (Y = 0 | X = x) =
P (Y = 0)p(x | Y = 0)

p(x)
=

P (Y = 0)p(x | Y = 0)

P (Y = 0)p(x | Y = 0) + P (Y = 1)p(x | Y = 1)
,

P (Y = 1 | X = x) =
P (Y = 1)p(x | Y = 1)

p(x)
=

P (Y = 1)p(x | Y = 1)

P (Y = 0)p(x | Y = 0) + P (Y = 1)p(x | Y = 1)
.

(2.4)

Posterior probabilities are not probability densities (e.g., they do not integrate to 1) but are simply

probabilities. In particular, their values are always between 0 and 1, and

P (Y = 0 | X = x) + P (Y = 1 | X = x) = 1 , (2.5)

for all x 2 Rd, so that only one of the posterior probabilities need be specified. We pick one

arbitrarily and define the posterior-probability function

⌘(x) = E[Y | X = x] = P (Y = 1 | X = x) , x 2 Rd , (2.6)

which plays an important role in the sequel. See Figure 2.2 for a univariate example.

The goal of classification is to predict Y accurately using a classifier, i.e. a {0, 1}-valued function

of X. Formally, a classifier is defined as a Borel-measurable function : Rd
! {0, 1}, i.e. a very

general function that still allows probabilities, such as the classification error, to be computed (see

Appendix A1). A classifier partitions the feature space Rd into two sets: the 0-decision region

{x 2 Rd
| (x) = 0} and the 1-decision region {x 2 Rd

| (x) = 1}. The boundary between these

two regions is called the decision boundary. Figure 2.3 depicts a univariate classifier with decision

boundary x0.

2
We can assume an e↵ective feature space S = {x 2 R

d | p(x) > 0} — regions of the feature space with probability

zero can be ignored.

18 CHAPTER 2. OPTIMAL CLASSIFICATION

Figure 2.2: Posterior probabilities in a univariate classification problem.

The error of a classifier is the probability of misclassification:

"[] = P ((X) 6= Y) . (2.7)

Measurability of guarantees that this probability is well defined. The class-specific errors of are

defined as

"0[] = P ((X) = 1 | Y = 0) =

Z

{x| (x)=1}
p(x | Y = 0) dx ,

"1[] = P ((X) = 0 | Y = 1) =

Z

{x| (x)=0}
p(x | Y = 1) dx .

(2.8)

These are the errors committed in each class separately. In some contexts, "0[] and "1[] are known

as the classifier false positive and false negative error rates, respectively. In addition, 1� "1[] and

1� "0[] are sometimes called the classifier sensitivity and specificity, respectively.

Notice that

"[] = P ((X) 6= Y) = P ((X) = 1, Y = 0) + P ((X) = 0, Y = 1)

= P ((X) = 1 | Y = 0)P (Y = 0) + P ((X) = 0 | Y = 1)P (Y = 1)

= P (Y = 0) "0[] + P (Y = 1) "1[]

=

Z

{x| (x)=1}
P (Y = 0)p(x | Y = 0) dx+

Z

{x| (x)=0}
P (Y = 1)p(x | Y = 1) dx .

(2.9)

With p = P (Y = 1), we have "[] = (1 � p)"0[] + p"1[], i.e., a linear combination of the class-

specific error rates, with weights given by the corresponding prevalences. Also, "[] is the sum of

the integrals of the weighted densities over the opposite decision regions. These integrals are the

shaded areas in Figure 2.3.

2.2. CLASSIFICATION WITH FEATURES 19

Figure 2.3: Univariate classifier, with indicated decision boundary x0 and corresponding decision

regions. The blue and orange shaded areas are equal to P (Y = 1)"1[] and P (Y = 0)"0[],

respectively. The classification error is the sum of the two shaded areas.

The conditional error of a classifier is defined as

"[| X = x] = P ((X) 6= Y | X = x) . (2.10)

This can be interpreted as the “error at each point x of the feature space.” Using the “Law of Total

Probability” for random variables (A.53), we can express the classification error as the “average”

conditional classification error over the feature space:

"[] = E["[| X = x]] =

Z

x2Rd
"[| X = x] p(x) dx . (2.11)

Therefore, knowing the error at each point x 2 Rd of the feature space plus its “weight” p(x) is

enough to determine the overall classification error.

In addition, given a classifier , the conditional classification error "[| X = x] is determined by

the posterior-probability function ⌘(x), as follows

"[| X = x] = P ((X) = 0, Y = 1 | X = x) + P ((X) = 1, Y = 0 | X = x)

= I (x)=0 P (Y = 1 | X = x) + I (x)=1P (Y = 0 | X = x)

= I (x)=0 ⌘(x) + I (x)=1(1� ⌘(x)) =

8
<

:
⌘(x), if (x) = 0,

1� ⌘(x), if (x) = 1.

(2.12)

20 CHAPTER 2. OPTIMAL CLASSIFICATION

2.3 The Bayes Classifier

The primary criterion of performance in classification is the error rate in (2.7). Therefore, we would

like to find an optimal classifier that minimizes it.

A Bayes classifier is defined as a classifier that minimizes the classification error in (2.7),

 ⇤ = argmin
 2C

P ((X) 6= Y) , (2.13)

over the set C of all classifiers. In other words, a Bayes classifier is an optimal minimum-error

classifier. Since Y 2 {0, 1}, we have

"[] = P ((X) 6= Y) = E[| (X)� Y |] = E[| (X)� Y |
2] . (2.14)

Therefore, a Bayes classifier is also the MMSE classifier and the minimum absolute deviation (MAD)

classifier.

There may be more than one solution to (2.13), i.e., there may be more than one Bayes classifier;

in fact, there may be an infinite number of them, as we show below. Knowledge of the feature-label

distribution PX,Y must be enough, in principle, to obtain a Bayes classifier. The next theorem

shows that, in fact, only knowledge of the posterior-probability function ⌘(x) = P (Y = 1 | X = x)

is needed.

Theorem 2.1. (Bayes classifier.) The classifier

 ⇤(x) = argmax
i

P (Y = i | X = x) =

8
<

:
1, ⌘(x) > 1

2
,

0, otherwise,
(2.15)

for x 2 Rd, satisfies (2.13).

Proof. (Fun with indicator variables.) We show that "[] � "⇤[], for all 2 C. From (2.11), it is

enough to show that

"[| X = x] � "[⇤
| X = x] , for all x 2 Rd . (2.16)

Using (2.12), we can write, for any x 2 Rd,

"[| X = x]� "[⇤
| X = x] = ⌘(x)(I (x)=0 � I ⇤(x)=0) + (1� ⌘(x))(I (x)=1 � I ⇤(x)=1) . (2.17)

Now, by exhausting all possibilities for (x) and ⇤(x) (there are four total cases), we can see that

I (x)=0 � I ⇤(x)=0 = �(I (x)=1 � I ⇤(x)=1) . (2.18)

2.3. THE BAYES CLASSIFIER 21

Substituting this back into (2.17), we get

"[| X = x]� "[⇤
| X = x] = (2⌘(x)� 1)(I (x)=0 � I ⇤(x)=0) . (2.19)

Now, there are only two possibilities: either ⌘(x) > 1/2 or ⌘(x)  1/2. In the first case, the terms

in parentheses in the right-hand side of (2.19) are both nonnegative, while in the second case, they

are both nonpositive. In either case, the product is nonnegative, establishing (2.16). ⇧

The optimal decision boundary is the set {x 2 Rd
| ⌘(x) = 1/2}. Notice that this does not have to

be a thin boundary (e.g., a set of measure zero), though it often is. In the example in Figure 2.2,

the decision boundary is the single point where the two posterior functions intersect, so it is a set

of measure zero, in this case.

In Theorem 2.1, the decision boundary was assigned to class 0, though the proof allows it to be

assigned to class 1, or even be split between the classes. All of these classifiers are therefore optimal

classifiers, so that there may be an infinite number of them. Note also that the Bayes classifier is

defined locally (pointwise) to minimize "[| X = x] at each value x 2 Rd, which also minimizes

"[] globally. Hence, the Bayes classifier is both the local and global optimal predictor.

Example 2.1.3 Educational experts have built a model to predict whether an incoming freshman

will pass or fail their introductory calculus class, based on the number of hours/day spent studying

the lectures (S) and doing the homework (H). Using a binary random variable Y to code for

pass/fail, the model is given by:

Y =

8
<

:
1 (pass) , if S +H +N > 5,

0 (fail) , otherwise,
(2.20)

for S,H,N � 0, where N is an unobservable variable corresponding to factors such as motivation,

focus, discipline, etc., here translated to the equivalent in hours/day. The variable N acts as a

noise term and models the uncertainty of the model. The variables S, H, and N are modeled as

independent and exponential with parameter � = 1 (the exponential distribution being a common

model for nonnegative continuous-valued variables). We compute the optimal predictor of whether

a given student will pass the class based on the observed values of S and H. Notice that this is a

problem of optimal classification, and the optimal predictor is the Bayes classifier. From Thm. 2.1,

we need to find the posterior-probability function ⌘(x) = P (Y = 1 | X = x), where X = (S,H),

3
Examples 2.1 and 2.2 are adapted from the example in [Devroye et al., 1996, Section 2.3].

22 CHAPTER 2. OPTIMAL CLASSIFICATION

and then apply (2.15). Using (2.20), we have

⌘(s, h) = P (Y = 1 | S = s,H = h) = P (S +H +N > 5 | S = s,H = h)

= P (N > 5� (s+ h) | S = s,H = h)

= P (N > 5� (s+ h)) =

8
<

:
es+h�5, if s+ h < 5,

1, otherwise,

(2.21)

for s, h � 0. Here we used the fact that the upper tail of an exponential random variable X with

parameter � is P (X > x) = e��x, if x � 0 (being trivially equal to 1 if x < 0). In the next-

to-last inequality, we also used the independence of N from S,H. The optimal decision boundary

D = {x 2 Rd
| ⌘(x) = 1/2} is thus determined by:

⌘(s, h) = 1/2) es+h�5 = 1/2) s+ h = 5� ln 2 ⇡ 4.31 . (2.22)

The optimal decision boundary is therefore a line. Notice that ⌘(s, h) > 1/2 i ↵s + h > 5 � ln 2.

The optimal classifier is thus

 ⇤(s, h) =

8
<

:
1 (pass) , if s+ h > 5� ln 2,

0 (fail , otherwise,
(2.23)

for s, h � 0. In other words, if the given student spends around 4.31 hours/day, at a minimum,

studying the lectures or doing the homework, we optimally predict that the student will pass the

class. Comparing this to (2.20), we note that the term ln 2 allows for the uncertainty associated

with the lack of information about N . If there were no noise (N = 0), then the optimal decision

boundary would be at s + h = 5 — the boundary moves due to the uncertainty introduced by N .

Notice that this is quantified uncertainty, as the complete probability structure of the problem is

known. See Figure 2.4 for an illustration. ⇧

We close this section with additional ways to obtain a Bayes classifier. First, note that (2.15) is

equivalent to

 ⇤(x) =

8
<

:
1, ⌘(x) > 1� ⌘(x) ,

0, otherwise,
(2.24)

for x 2 Rd. It follows from (2.4) and (2.24) that

 ⇤(x) =

8
<

:
1 , P (Y = 1)p(x | Y = 1) > P (Y = 0)p(x | Y = 0) ,

0 , otherwise,
(2.25)

for x 2 Rd. Hence, a Bayes classifier can be determined by comparing, at each point in the feature

space, the weighted class-conditional densities. The optimal decision boundary is the loci of points

2.3. THE BAYES CLASSIFIER 23

Figure 2.4: Optimal classifier in Example 2.1.

where these functions meet; see Figure 2.5 in the next section for an illustration in a simple univariate

case. Notice that increasing P (Y = 1) or P (Y = 0) would have the e↵ect of pushing the optimal

decision boundary away from the corresponding class center. In the case P (Y = 1) = P (Y = 0) = 1

2
,

a Bayes classifier can be determined by comparing the unweighted class-conditional densities to each

other directly.

In addition, a simple manipulation of (2.25) allows us to write a Bayes classifier in the following

form:

 ⇤(x) =

8
<

:
1 , D⇤(x) > k⇤ ,

0 , otherwise,
(2.26)

where the optimal discriminant D⇤ : Rd
! R is given by

D⇤(x) = ln
p(x | Y = 1)

p(x | Y = 0)
, (2.27)

for x 2 Rd, with optimal threshold

k⇤ = ln
P (Y = 0)

P (Y = 1)
. (2.28)

If p(x | Y = 1) = 0 or p(x | Y = 0) = 0, we define D⇤(x) to be �1 or 1, respectively. The case

where both p(x | Y = 1) and p(x | Y = 0) are zero can be ignored, since in that case p(x) = 0.

The optimal discriminant D⇤ is also known in the statistics literature as the log-likelihood function.

If P (Y = 0) = P (Y = 1) (equally-likely classes), then k⇤ = 0, and the decision boundary is

implicitly determined by the simple equation D⇤(x) = 0. In many cases, it is more convenient

to work with discriminants than directly with class-conditional densities or posterior-probability

functions. Examples of discriminants are given in Section 2.5.

24 CHAPTER 2. OPTIMAL CLASSIFICATION

2.4 The Bayes Error

Given a Bayes classifier ⇤, the error "⇤ = "[⇤] is a fundamental quantity in supervised learning,

known as the Bayes error. Of course, all Bayes classifiers share the same Bayes error, which is

unique. The Bayes error is the lower bound on the classification error that can be achieved in a

given problem. It should be su�ciently small if there is to be any hope of designing a good classifier

from data.

Theorem 2.2. (Bayes error.) In the two-class problem,

"⇤ = E[min{⌘(X), 1� ⌘(X)}] . (2.29)

Furthermore, the maximum value "⇤ can take is 0.5.

Proof. It follows from (2.11), (2.12), and (2.24) that

"⇤ =

Z
(I⌘(X)1�⌘(X) ⌘(X) + I⌘(X)>1�⌘(X)(1� ⌘(X)))p(x) dx = E[min{⌘(X), 1� ⌘(X)}] . (2.30)

Now, applying the identity

min{a, 1� a} =
1

2
�

1

2
|2a� 1| , 0  a  1, (2.31)

to (2.30), we can write

"⇤ =
1

2
�

1

2
E[|2⌘(X)� 1|] , (2.32)

from which it follows that "⇤  1

2
. ⇧

Therefore, the maximum optimal error in a two-class problem is 1

2
, not 1. This can be understood

intuitively by reasoning that the long-run error achieved by repeatedly flipping an unbiased coin

to make a binary decision is 50%.. As the classification error lower bound, the Bayes error cannot

exceed that. In addition, from (2.4) in the proof of the previous theorem, we can see that

"⇤ =
1

2
, E[|2⌘(X)� 1|] = 0 , ⌘(X) =

1

2
with probability 1. (2.33)

(Since expectation is not a↵ected by what happens over regions of probability zero.) In other words,

the maximum Bayes error rate is achieved when ⌘(X) = 1� ⌘(X) = 1

2
with probability 1, i.e., there

is no separation between the posterior-probability functions over all regions of the feature space

with positive probability (refer to Figure 2.2). This means that there is total confusion, and no

discrimination is possible between Y = 0 and Y = 1 using X as feature vector. In this case, the

best one can do is indeed equivalent to flipping a coin. A problem where the Bayes error is 0.5

2.4. THE BAYES ERROR 25

Figure 2.5: Class-conditional weighted by prior probabilities in a univariate problem. The optimal

decision boundary is the point x⇤. The Bayes error is the sum of the orange and blue shaded areas.

(or very close to it) is hopeless: no classification method, no matter how sophisticated, can achieve

good discrimination. In this case, a di↵erent feature vector X must be sought to predict Y .

Application of (2.9) and (2.25) yields:

"⇤ = P (Y = 0) "0[⇤] + P (Y = 1) "1[⇤]

=

Z

{x|P (Y=1)p(x|Y=1)>P (Y=0)p(x|Y=0)}
P (Y = 0)p(x | Y = 0) dx +

Z

{x|P (Y=1)p(x|Y=1)P (Y=0)p(x|Y=0)}
P (Y = 1)p(x | Y = 1) dx .

(2.34)

See Figure 2.5 to see an illustration in a simple univariate problem. The orange and blue shaded

regions are equal to P (Y = 1)"1[⇤] and P (Y = 0)"0[⇤], respectively, and the Bayes error is the sum

of the two areas. We can see that the Bayes error has to do with the amount of “overlap” between

the (weighted) class-conditional densities. Comparing Figures 2.3 and 2.5 reveals that shifting the

decision boundary increases the classification error, so that x⇤ is indeed optimal.

An important consequence of Thm 2.2 follows from an application of Jensen’s inequality (A.66):

"⇤ = E[min{⌘(X), 1� ⌘(X)}]

 min{E[⌘(X)], 1� E[⌘(X)]} = min{P (Y = 1), P (Y = 0)} ,
(2.35)

where we used the facts that the function f(u) = min{u, 1� u} is concave and that

E[⌘(X)] =

Z

Rd
P (Y = 1 | X = x)p(x) dx = P (Y = 1) . (2.36)

It follows from (2.35) that the error of the optimal classifier with any feature vector X is bounded

from above by the error of the optimal classifier without features in (2.2). (As far as optimal

prediction is concerned, having any information is at least as good as having no information.) It

26 CHAPTER 2. OPTIMAL CLASSIFICATION

also follows from (2.35) that if one of the two classes is unlikely to be observed, the Bayes error is

small no matter what. Caution must be exercised here; for example, as pointed out in Section 2.1,

in the case of a rare disease, a small error rate means little. The solution in this case would be

to look at the class-specific error rates "0[⇤] and "1[⇤] — one would like both to be small. This

observation is consistent with (2.34): "⇤ = P (Y = 0) "0[⇤] + P (Y = 1) "1[⇤], so that the Bayes

error will be small even if "0[⇤] or "1[⇤] are large, as long as P (Y = 0) or P (Y = 1) is small,

respectively.

Incidentally, the “optimal” class-specific error rates "0[⇤] and "1[⇤] are not optimal in the same

sense that "⇤ is optimal: for a given classifier , it may occur that "0[] < "0[⇤] or "1[] < "1[⇤];

but both cannot occur, as can be seen by comparing (2.9) and (2.34). (It is a general fact that

the decision boundary of a classifier can be shifted to make one class-specific error rate as small as

desired, while making the other one large.)

Next, we consider the e↵ect on the Bayes error of a transformation applied to the feature vector. This

is a common occurrence in practice: for example, preprocessing or normalization may be applied to

the data, or dimensionality reduction (to be considered at length in Chapter 9) may be employed,

in which a transformation “projects” the data from a high-dimensional space to a lower-dimensional

one.

Theorem 2.3. Let X 2 Rp be the original feature vector, t : Rp
! Rd be a (Borel-measurable)

transformation between feature spaces, and X0 = t(X) 2 Rd be the transformed feature vector. Let

"⇤(X, Y) and "⇤(X0, Y) be the Bayes errors corresponding to the original and transformed problems.

Then

"⇤(X0, Y) � "⇤(X, Y) , (2.37)

with equality if t is invertible.

Proof. First we show that ⌘(X0) = E[⌘(X) | t(X)] (note that, strictly speaking, we should write

⌘0(X0) since ⌘0 is in general a di↵erent function than ⌘, but we will ignore that, as it creates no

confusion). Using Bayes Theorem, we have:

⌘(x0) = P (Y = 1 | X0 = x0) = P (Y = 1 | t(X) = x0)

=
P (Y = 1)P (t(X) = x0

| Y = 1)

P (t(X) = x0)

=
1

P (t(X) = x0)

Z

Rp
p(x | Y = 1)P (Y = 1)It(x)=x0 dx

=
1

P (t(X) = x0)

Z

Rp
⌘(x)It(x)=x0p(x) dx

=
E[⌘(X)It(X)=x0]

P (t(X) = x0)
= E[⌘(X) | t(X) = x0] ,

(2.38)

2.4. THE BAYES ERROR 27

which proves the claim, where we used the fact that, by definition, E[Z | F] = E[ZIF]/P (F), for a

random variable Z and an event F . Combining (2.29) and (2.38) gives

"⇤(X0, Y) = E[min{⌘(X0), 1� ⌘(X0)}]

= E[min{E[⌘(X) | t(X)], 1� E[⌘(X) | t(X)]}]

� E[E[min{⌘(X), 1� ⌘(X)} | t(X)]]

= E[min{⌘(X), 1� ⌘(X)}] = "⇤(X, Y) ,

(2.39)

where the inequality follows from Jensen’s Inequality (A.66), and the law of total expectation (A.82)

was used to obtain the next-to-last equality. Finally, if t is invertible, then apply the result to t and

t�1 to obtain "⇤(X0, Y) � "⇤(X, Y) and "⇤(X, Y) � "⇤(X0, Y). ⇧

This is a fundamental result in supervised learning, which is used at several points in the book. It

states that a transformation on the feature vector never adds discriminatory information (in fact, it

often destroys the information). Therefore, the Bayes error cannot possibly decrease after a trans-

formation to the feature vector (and, in fact, typically increases). If the transformation is invertible,

then it does not remove any information; hence, the Bayes error stays the same (it is possible for the

Bayes error to stay the same even if the transformation is not invertible; examples of that are given

in Chapter 9. Unfortunately, many useful and interesting feature vector transformations, such as

dimensionality reduction transformations (a topic we discuss in detail in Chapter 9), are not invert-

ible and therefore generally increase the Bayes error. On the other hand, simple transformations

such as scalings, translations, and rotations, are invertible and thus do not a↵ect the Bayes error.

Example 2.2. Continuing Example 2.1, we compute the Bayes error, i.e., the error of the classi-

fier (2.23). We do the computation using two distinct methods.

First Method: Using (2.29), we obtain

"⇤ = E[min{⌘(S,H), 1� ⌘(S,H)}]

=

ZZ

{s,h�0 | ⌘(s,h) 1
2}

⌘(s, h)p(s, h) dsdh +

ZZ

{s,h�0 | ⌘(s,h)> 1
2}

(1� ⌘(s, h))p(s, h) dsdh

=

ZZ

{s,h�0 | 0s+h5�ln 2}
e�5 dsdh +

ZZ

{s,h�0 | 5�ln 2<s+h5}
(e�(s+h)

� e�5) dsdh

= e�5


(6� ln 2)2 �

35

2

�
⇡ 0.0718 ,

(2.40)

where we used the expression for ⌘(s, h) in (2.21) and independence to write p(s, h) = p(s)p(h) =

e�(s+h), for s, h > 0. Hence, the prediction will fail for about 7.2% of the students, who will pass

while being predicted to fail or fail while being predicted to pass.

Second Method: The previous method requires double integration. A simpler computation can

28 CHAPTER 2. OPTIMAL CLASSIFICATION

be obtained if one realizes that the posterior-probability function ⌘(s, h) in (2.21), and hence the

optimal classifier, depend on s, h only through s+h. We say that U = S+H is a su�cient statistic

for optimal classification based on (S,H). It is shown in Exercise 9.4 that the Bayes error using a

su�cient statistic, in this case the univariate feature U = S +H, is the same as using the original

feature vector (S,H), even though the transformation s, h 7! s+h is not invertible, and Theorem 2.3

cannot be used to show equality. We can thus write the Bayes error in terms of univariate integrals

as follows:
"⇤ = E[min{⌘(U), 1� ⌘(U)}]

=

Z

{u�0 | ⌘(u) 1
2}

⌘(u)p(u) du +

Z

{u�0 | ⌘(u)> 1
2}

(1� ⌘(u))p(u) du

=

Z

{0u5�ln 2}
e�5u du +

Z

{5�ln 2<u5}
(e�u

� e�5)u du

= e�5


(6� ln 2)2 �

35

2

�
⇡ 0.0718 ,

(2.41)

where we used the fact that U = S+H is distributed as a Gamma random variable with parameters

� = 1 and t = 2, so that p(u) = ue�u, for u � 0 (see Section A1 for the density of a Gamma

r.v.). This is a consequence of the general fact that the sum of n independent exponential random

variables with parameter � is a Gamma random variable with parameters � and t = n. ⇧

2.5 Gaussian Model

We consider now the important special case where the class-conditional densities are multivariate

Gaussian

p(x | Y = i) =
1p

(2⇡)d det(⌃i)
exp


1

2
(x� µ)T⌃�1

i
(x� µi)

�
, i = 0, 1 . (2.42)

The vector means µ0 and µ1 are the class centers and the covariance matrices⌃ 0 and⌃ 1 specify the

ellipsoidal shape of the class-conditional densities (see Section A1.7 for a review of the multivariate

Gaussian and its properties).

It can be readily verified that the optimal discriminant in (2.27) assumes here the following form:

D⇤(x) =
1

2
(x� µ0)

T⌃�1

0
(x� µ0)�

1

2
(x� µ1)

T⌃�1

1
(x� µ1) +

1

2
ln

det(⌃0)

det(⌃1)
. (2.43)

We study separately the cases where the covariance matrices are equal and di↵erent. In classi-

cal statistics, these are known as the homoskedastic and heteroskedastic models, respectively. In

classification, these cases produce linear and quadratic optimal decision boundaries, respectively.

2.5. GAUSSIAN MODEL 29

2.5.1 Homoskedastic Case

In the homoskedastic case,⌃ 0 = ⌃1 =⌃. This case has very nice properties, as we will see next.

First, the optimal discriminant in (2.43) can be simplified in this case to

D⇤
L(x) =

1

2

�
||x� µ0||

2

⌃ � ||x� µ1||
2

⌃

�
, (2.44)

where

||x0 � x1||⌃ =
q
(x0 � x1)T⌃�1(x0 � x1) (2.45)

is the Mahalanobis distance between x0 and x1. (It can be shown that this is an actual distance

metric, provided that⌃is strictly positive definite; see Exercise 2.10.) Notice that if⌃= Id, the

Mahalanobis distance reduces to the usual Euclidean distance.

It follows from (2.26) and (2.44) that the Bayes classifier can be written as

 ⇤
L(x) =

8
<

:
1 , ||x� µ1||

2

⌃
< ||x� µ0||

2

⌃
+ 2 ln P (Y=1)

P (Y=0)
,

0 , otherwise.
(2.46)

If P (Y = 0) = P (Y = 1) (equally-likely classes), then ⇤(x) = 1 if ||x � µ1||⌃ < ||x � µ0||⌃,

otherwise ⇤(x) = 0. In other words, the optimal prediction is the class with center closest to x,

i.e., ⇤ is a Nearest-Mean Classifier, with respect to the Mahalanobis distance. In the case⌃= Id,

this is a nearest-mean classifier in the usual Euclidean distance sense — clearly, this is still the case

if⌃= �2Id, for an arbitrary variance parameter �2 > 0.

A straightforward algebraic manipulation shows that, despite appearances to the contrary, the

discriminant in (2.44) is a linear function of x:

D⇤
L(x) = (µ1 � µ0)

T⌃�1

✓
x�

µ0 + µ1

2

◆
. (2.47)

It follows from (2.26) that the Bayes classifier in (2.46) can be written alternatively as

 ⇤
L(x) =

8
<

:
1 , aTx+ b > 0 ,

0 , otherwise,
(2.48)

where
a = ⌃�1(µ1 � µ0) ,

b = (µ0 � µ1)
T⌃�1

✓
µ0 + µ1

2

◆
+ ln

P (Y = 1)

P (Y = 0)
.

(2.49)

Hence, the optimal decision boundary is a hyperplane in Rd, determined by the equation aTx+b = 0.

If P (Y = 0) = P (Y = 1) (equally-likely classes), then the midpoint xm = (µ0 + µ1)/2 between the

30 CHAPTER 2. OPTIMAL CLASSIFICATION

(a) (b)

(c)

Figure 2.6: Gaussian class-conditional densities and optimal decision boundary in a two-dimensional

feature space with P (Y = 0) = P (Y = 1). (a) Homoskedastic case with perpendicular decision

boundary (µ1�µ0 is an eigenvector of⌃). (b) General homoskedastic case. (c) Heteroskedastic case.

class centers satisfies aTxm+b = 0, which shows that the hyperplane passes through xm. Finally, the

hyperplane will be perpendicular to the axis joining the class centers µ0 and µ1 provided that the

normal vector a = ⌃�1µ1 �µ0 is colinear with the vector µ1 �µ0, which can happen in two cases:

1)⌃= �2Id (the Euclidean nearest-mean classifier case); 2) µ1 � µ0 is an eigenvector of⌃ �1, and

thus of⌃. The latter case means that one of the principal axes of the ellipsoidal density contours is

aligned with the axis between the class centers. See Figures 2.6(a)-(b) for two-dimensional examples

in the case P (Y = 0) = P (Y = 1) (in the general case P (Y = 1) 6= P (Y = 0), the decision boundary

is merely pushed away from the center of the most likely class).

Another very useful property of the homoskedastic case is that the optimal classification error can

be written in closed form, as we show next. First, it follows from (2.47) and the properties of

Gaussian random vectors in Section A1.7 that D⇤
L
(X) | Y = 0 ⇠ N

�
�

1

2
�2, �2

�
and D⇤

L
(X) | Y =

2.5. GAUSSIAN MODEL 31

1 ⇠ N
�
1

2
�2, �2

�
, where

� =
q
(µ1 � µ0)T⌃�1(µ1 � µ0) (2.50)

is the Mahalanobis distance between the class centers. It follows that

"0[⇤
L] = P (D⇤

L(X) > k⇤ | Y = 0) =�

�k⇤ � 1

2
�2

�

!
,

"1[⇤
L] = P (D⇤

L(X)  k⇤ | Y = 1) =�

k⇤ � 1

2
�2

�

!
,

(2.51)

where k⇤ = lnP (Y = 0)/P (Y = 1) and�(·) is the cumulative distribution function of a standard

N (0, 1) Gaussian random variable, and thus the Bayes error is obtained by the formula:

"⇤L = c�

k⇤ � 1

2
�2

�

!
+ (1� c)�

�k⇤ � 1

2
�2

�

!
, (2.52)

where c = P (Y = 1). In the case P (Y = 0) = P (Y = 1) = 0.5, then

"0[⇤
L] = "1[⇤

L] = "⇤L = �

✓
�
�

2

◆
. (2.53)

Notice that, regardless of the value of P (Y = 0) and P (Y = 1), the error rates "0[⇤
L
], "1[⇤

L
], and

"⇤
L
are all decreasing functions of the Mahalanobis distance � between the class centers. In fact,

"0[⇤
L
], "1[⇤

L
], "⇤

L
! 0 as � ! 1.

2.5.2 Heteroskedastic Case

This is the general case,⌃ 0 6= ⌃1. In this case, discrimination has no simple interpretation in terms

of nearest-mean classification, and there are no known analytical formulas for the Bayes error rates,

which must be computed by numerical integration. However, the shape of the optimal decision

boundaries can still be characterized exactly: they are in a family of surfaces known in Geometry

as hyperquadrics.

In this case, the optimal discriminant in (2.43) is fully quadratic. It follows from (2.26) and (2.43)

that the Bayes classifier can be written as

 ⇤
Q(x) =

8
<

:
1 , xTAx+ bTx+ c > 0 ,

0 , otherwise,
(2.54)

32 CHAPTER 2. OPTIMAL CLASSIFICATION

where

A =
1

2

�
⌃�1

0
� ⌃�1

1

�
,

b = ⌃�1

1
µ1 � ⌃

�1

0
µ0 ,

c =
1

2
(µT

0 ⌃
�1

0
µ0 � µT

1 ⌃
�1

1
µ1) +

1

2
ln

det(⌃0)

det(⌃1)
+ ln

P (Y = 1)

P (Y = 0)
.

(2.55)

In particular, the optimal decision boundary is a hyperquadric surface in Rd, determined by the

equation xTAx+bTx+c = 0. Depending on the coe�cients, the resulting decision boundaries can be

hyperspheres, hyperellipsoids, hyperparaboloids, hyperhyperboloids, and even a single hyperplane

or pairs of hyperplanes. See Figure 2.6(c) for a two-dimensional example, where the optimal decision

boundary is a parabola. Notice that, even in the case P (Y = 0) = P (Y = 1), the decision boundary

does not generally pass through the midpoint between the class centers. See Exercise 2.9 for several

additional examples of the heteroskedastic case.

2.6 Additional Topics

2.6.1 Minimax Classification

Absence of knowledge about the prior probabilities P (Y = 1) and P (Y = 0) implies that the optimal

threshold k = lnP (Y = 0)/P (Y = 1) in (2.26) is not known, and the Bayes classifier cannot be

determined. In this section, we show that an optimal procedure, based on a minimax criterion,

can still be defined in this case. This will have an impact later when we discuss parametric plug-in

classification rules in Chapter 4, in the case where the prior probabilities are unknown and cannot

be estimated reliably (or at all).

Given a classifier , the error rates "0[] and "1[] in (2.8) do not depend on P (Y = 1) and P (Y = 0)

and so they are available (even though the overall error rate "[] is not). The optimal discriminant

D⇤ in (2.26) is also available, but the optimal threshold k⇤ = lnP (Y = 0)/P (Y = 1) is not. Define

classifiers

 ⇤
k
(x) =

8
<

:
1 , D⇤(x) > k ,

0 , otherwise,
(2.56)

for k 2 R, with error rates "0(k) = "0[⇤
k
] and "1(k) = "1[⇤

k
]. Increasing k decreases "0(k) but

increases "1(k), while decreasing k has the opposite e↵ect. A better discriminant possesses uniformly

smaller error rates "0(k) and "1(k), as k varies. Accordingly, a plot of 1� "1(k) against "0(k), called

a receiver operating characteristic curve (ROC) in the signal detection area, is often used to assess

discriminatory power. Alternatively, one can use the area under the ROC curve (AUC) to evaluate

discriminants; larger AUC corresponds to better discriminants.

2.6. ADDITIONAL TOPICS 33

Each classifier ⇤
k
is a Bayes classifier for a particular choice of P (Y = 1) and P (Y = 0), with

k = lnP (Y = 0)/P (Y = 1). Recall from (2.34) that the Bayes error "⇤(k) corresponding to the

Bayes classifier ⇤
k
is a linear combination of "0(k) and "1(k); it follows that the maximum value

that the Bayes error can take is max{"0(k), "1(k)}. The minimax criterion seeks the value kmm that

minimizes this maximum possible value for the Bayes error:

kmm = argmin
k

max{"0(k), "1(k)} , (2.57)

which leads to the minimax classifier

 mm(x) = ⇤
kmm

(x) =

8
<

:
1 , D⇤(x) > kmm ,

0 , otherwise.
(2.58)

The following theorem characterizes the minimax threshold kmm and thus the minimax classifier

 mm, under a mild distributional assumption, namely, the continuity of the error rates.

Theorem 2.4. Assume that the error rates "0(k) and "1(k) are continuous functions of k.

(a) The minimax threshold kmm is the unique real value that satisfies

"0(kmm) = "1(kmm) . (2.59)

(b) The error of the minimax classifier is equal to the maximum Bayes error rate:

"⇤(kmm) = max
k

"⇤(k) . (2.60)

Proof. (a): For notation convenience, let c0 = P (Y = 0) and c1 = P (Y = 1). Suppose that there

exists a value kmm such that "0(kmm) = "1(kmm). In this case, "⇤(kmm) = c0"0(kmm) + c1"1(kmm) =

"0(kmm) = "1(kmm), regardless of the values of c0, c1. Now, suppose that there exists k0 > kmm

such that max{"0(k0), "1(k0)} < max{"0(kmm), "1(kmm)} = "⇤(kmm). Since "0(k) and "1(k) are

continuous, they are strictly increasing and decreasing functions of k, respectively, so that there

are �0, �1 > 0 such that "0(k0) = "0(kmm) + �0 = "⇤(kmm) + �0 and "1(k0) = "1(kmm) � �1 =

"⇤(kmm)� �1. Therefore, max{"0(k0), "1(k0)} = "⇤(kmm) + �0 > "⇤(kmm), a contradiction. Similarly,

if k0 < kmm, there are �0, �1 > 0 such that "0(k0) = "⇤(kmm)� �0 and "1(k0) = "⇤(kmm) + �1, so that

max{"0(k0), "1(k0)} = "⇤(kmm) + �1 > "⇤(kmm), again a contradiction. We conclude that, if there

is a kmm such that "0(kmm) = "1(kmm), then it maximizes max{"0(k), "1(k)}. But this point must

exist because "0(k) and "1(k) are assumed to be continuous functions of k, and, from (2.8), we have

"0(k) ! 1 and "1(k) ! 0 as k ! 1 and "0(k) ! 0 and "1(k) ! 1 as k ! �1. Furthermore,

since "0(k) and "1(k) are strictly increasing and decreasing functions of k, respectively, this point is

unique.

Part (b): Define

"(c, c1) = (1� c1)"
0

✓
ln

1� c

c

◆
+ c1 "

1

✓
ln

1� c

c

◆
. (2.61)

34 CHAPTER 2. OPTIMAL CLASSIFICATION

For any given value k = ln(1�c1)/c1, we have "⇤(k) = "(c1, c1). In addition, kmm = ln(1�cmm)/cmm

is the only value such that "⇤(kmm) = "(cmm, cmm) = "(cmm, c1), for all c1 (since "0(kmm) = "1(kmm)).

Hence, by definition of the Bayes error, "⇤(kmm) = "(cmm, c1) � "(c1, c1) = "⇤(k), for all k. On the

other hand, "⇤(kmm) = "(cmm, cmm)  maxc1 "(c1, c1). This shows that "
⇤(kmm) = maxc1 "(c1, c1) =

maxk "⇤(k). ⇧

Let us apply the preceding theory to the Gaussian homoskedastic model discussed in Section 2.5.

Using the notation in the current section, we write the error rates in (2.51) as:

"0(k) = �

�k �

1

2
�2

�

!
and "1(k) = �

k �

1

2
�2

�

!
, (2.62)

where � =
p
(µ1 � µ0)T⌃�1(µ1 � µ0) is the Mahalanobis distance between the class centers, which

is assumed known, and�(·) is the cumulative distribution of the standard normal r.v. Clearly, "0(k)

and "1(k) are continuous functions of k, so that, according to Theorem 2.4, the minimax threshold

kmm is the unique value that satisfies

�

kmm �

1

2
�2

�

!
= �

�kmm �

1

2
�2

�

!
. (2.63)

Since�is monotone, the only solution to this equation is

kL,mm = 0 , (2.64)

where we use the subscript L to conform with the notation used in Section 2.5 with the homoskedastic

case. It follows from (2.47) and (2.58) that the minimax classifier in the Gaussian homoskedastic

case is given by

 L,mm(x) =

8
<

:
1 , (µ1 � µ0)

T⌃�1

⇣
x�

µ0+µ1
2

⌘
� 0 ,

0 , otherwise.
(2.65)

Notice that the minimax classifier corresponds to the Bayes classifier in the case P (Y = 0) = P (Y =

1). The minimax threshold kmm = 0 is conservative in the sense that, in the absence of knowledge

about P (Y = 0) and P (Y = 1), it assumes that they are both equal to 1/2. However, under the

heteroskedastic Gaussian model, the minimax threshold can di↵er substantially from 0.

2.6.2 F-errors

An F-error is a generalization of the Bayes error, which can provide a measure of distance between

the classes, and thus can be used to measure the quality of the pair (X, Y) for discrimination.

Assuming Y fixed, this means the quality of the feature vector X, in which case F-errors can be

2.6. ADDITIONAL TOPICS 35

used for feature selection and feature extraction, to be discussed in Chapter 9. The idea is that

in some situations, some of these F-errors may be easier to estimate from data than the Bayes

error. F-errors can also be useful in theoretical arguments about the Bayes error and the di�culty

of classification. Finally, they also have historical significance.

Given any concave function F : [0, 1] ! [0,1), the corresponding F -error is defined as:

dF (X, Y) = E[F (⌘(X))] . (2.66)

Notice that the Bayes error is an F-error:

"⇤ = E[min{⌘(X), 1� ⌘(X)}] = E[F (⌘(X)] (2.67)

where F (u) = min{u, 1� u} is nonnegative and concave on the interval [0, 1].

The class of F-errors include many classical measures of discrimination that were introduced inde-

pendently over the years. The most well-known is probably the nearest-neighbor distance:

"NN = E[2⌘(X)(1� ⌘(X))] , (2.68)

where F (u) = 2u(1 � u) is nonnegative and concave on [0, 1]. The name comes from the fact that

this coincides with the asymptotic error of the nearest-neighbor classification rule, which is part of

a famous result known as the Cover-Hart Theorem, to be discussed in Chapter 5.

Define the entropy of a binary source as the function

H(u) = �u ln2 u� (1� u) ln2(1� u) , 0  u  1 . (2.69)

The conditional entropy of Y given X is a classical metric in information theory, defined by:

H(Y | X) = E[H(⌘(X))] (2.70)

This is an F-error, since the function H(u) is nonnegative and concave on [0, 1].

The Cherno↵error is an F-error resulting from the choice F↵(u) = u↵(1 � u)1�↵, for 0 < ↵ < 1.

The special case F1/2(u) =
p
u(1� u) leads to the so-called Matsushita error:

⇢ = E
hp

⌘(X)(1� ⌘(X))
i
. (2.71)

See Figure 2.7 for an illustration. Notice in the figure that

p
u(1� u) � 2u(1� u) � min{u, 1� u} , 0  u  1 . (2.72)

It follows that ⇢ � "NN � "⇤, regardless of the distribution of the data. Similarly, we can show that

H(Y | X) � "NN � "⇤. However, it is not true in general that H(Y | X) � ⇢ or ⇢ � H(Y | X)

(notice the behavior of the corresponding curves near 0 and 1).

36 CHAPTER 2. OPTIMAL CLASSIFICATION

Figure 2.7: F functions corresponding to the Bayes, nearest-neighbor, Matsushita, and conditional

entropy errors (plot generated by c02 Ferror.py).

The following theorem collects some useful properties of F-errors. Parts (a)–(c) are immediate, while

part (d) can be proved in the same way as Theorem 2.3.

Theorem 2.5.

(a) The F-error dF is nonnegative, and if F (u) = 0 only at u = 0, 1, then dF = 0 if and only if "⇤ = 0.

(b) If F (u) reaches a maximum at u = 1

2
then dF is maximum if and only if "⇤ = 1

2
.

(c) If F (u) � min(u, 1� u) for all u 2 [0, 1], then dF � "⇤.

(d) Let X0 = t(X), where t : Rd
! Rk is a feature-set transformation. Then dF (X0, Y) � dF (X, Y),

with equality if t is invertible.

Part (a) of the Theorem implies that, for example, "NN = 0 if and only if "⇤ = 0. Therefore,

a small value for "NN is desirable. In fact, the Cover-Hart Theorem (see Chapter 5), states that

"⇤  "NN  2"⇤. Conversely, a large vale of "NN is undesirable, according to part (b) of the Theorem.

This illustrates the relationship of F -errors with the Bayes error, and their potential usefulness in

feature selection/extraction problems.

Concavity of F is required to apply Jensen’s inequality in the proof of part (d), as was the case

in the proof of Theorem 2.3. That is the reason for requiring concavity of F in the definition of

an F -error: invariance under an invertible transformation of the feature vector is a very desirable

property for any discriminating metric in classification.

2.6. ADDITIONAL TOPICS 37

2.6.3 Bayes Decision Theory

Bayes decision theory provides a general procedure for decision making that includes optimal clas-

sification as a special case.

Suppose that upon observing the feature vector X = x one takes an action ↵(x) in a finite set of a

possible actions ↵(x) 2 {↵0,↵1, . . . ,↵a�1}. Assume further that there are c states of nature, which

are coded into Y 2 {0, 1, . . . , c� 1}. Each action incurs a loss

�ij = cost of taking action ↵i when true state of nature is j . (2.73)

Action ↵i may be simply deciding that the true state of nature is i, but we may have a > c, in which

case one of the extra actions might be, for example, rejecting to make a decision.

The expected loss upon observing X = x is

R[↵(x) = ↵i] =
c�1X

j=0

�ijP (Y = j | X = x) . (2.74)

This is called the conditional risk given X = x. The risk is given by

R = E[R(↵(X))] =

Z

x2Rd

R(↵(x))p(x) dx . (2.75)

To minimize R, it is enough to select ↵(x) = ↵i such that R[↵(x) = ↵i] is minimum, at each value

x 2 Rd. This optimal strategy is called the Bayes decision rule, with corresponding optimal Bayes

risk R⇤.

In the special case that a = c = 2, that is, there are two classes and two actions, we have

R[↵(x) = ↵0] = �00P (Y = 0 | X = x) + �01P (Y = 1 | X = x)

R[↵(x) = ↵1] = �10P (Y = 0 | X = x) + �11P (Y = 1 | X = x)
(2.76)

We decide for action ↵0 if R[↵(x) = ↵0] < R[↵(x) = ↵1], that is, if

(�10 � �00)P (Y = 0 | X = x) > (�01 � �11)P (Y = 1 | X = x) , (2.77)

which is equivalent to
p(x | Y = 0)

p(x | Y = 1)
>

�01 � �11
�10 � �00

P (Y = 1)

P (Y = 0)
, (2.78)

by an application of Bayes Theorem (assuming that �10 > �00) and �01 > �11).

The loss
�00 = �11 = 0

�10 = �01 = 1
(2.79)

38 CHAPTER 2. OPTIMAL CLASSIFICATION

is called the 0-1 loss. This is equivalent to the misclassification loss, already mentioned in Chapter 1.

In this case, (2.77) is equivalent to the expression for the Bayes classifier in (2.26). Therefore, if

action ↵i is simply deciding that the state of nature is i, for i = 0, 1, then the 0-1 loss case leads

to the optimal binary classification case considered before: The (conditional) risk reduces to the

(conditional) classification error, and the Bayes decision rule and Bayes risk reduce to the Bayes

classifier and Bayes error, respectively.

The general case in (2.77) may be useful in classification in cases where the class-specific error rates

are not symmetric; for example, in a diagnostic test, the cost �10 of a false positive involves further

testing or unnecessary treatment, but a false negative could be fatal in some cases, so that a much

larger cost �01 ought to be assigned to it.

*2.6.4 Rigorous Formulation of the Classification Problem

Our goal is to construct the feature-label distribution PX,Y for the pair (X, Y), where X 2 Rd

and Y 2 R takes values in {0, 1, . . . , c � 1}, for c � 2 (the arguments below also go through for a

countably infinite number of classes). Concepts of probability theory mentioned in this section are

reviewed briefly in Section A1 of the Appendix.

Given a Borel set B in Rd+1, define its sections By = {x 2 Rd
| (x, y) 2 B}, for y = 0, 1, . . . , c� 1.

It can be shown [Billingsley, 1995, Thm 18.1] that each By is a Borel set in Rd. An important

property used below is that the section of the union is the union of the sections: (
S
Bi)y =

S
By

i
.

Consider probability measures µy, for y = 1, . . . , c�1 on (Rd,Bd), and a discrete probability measure

on (R,B) putting masses py > 0 on y = 0, 1, . . . , c� 1. Define a set function PX,Y on B
d+1 by

PX,Y (B) =
c�1X

y=0

pyµy(B
y) . (2.80)

Clearly, PX,Y is nonnegative, PX,Y (Rd+1) =
P

c�1

y=0
pyµy(Rd) = 1, and if B1, B2, . . . are pairwise

disjoint Borel sets in Rd+1, then PX,Y (
S1

i=1
Bi) =

P
c�1

y=0
pyµy(

S1
i=1

By

i
) =

P
c�1

y=0
py
P1

i=1
µy(B

y

i
) =

P1
i=1

P
c�1

y=0
pyµy(B

y

i
) =

P1
i=1

PX,Y (Bi). Hence, PX,Y is a probability measure on (Rd+1,Bd+1).

The feature-label pair (X, Y) is a random vector associated with the distribution PX,Y . Note that

P (Y = y) = PX,Y (R
d
⇥ {y}) = pyµy(R

d) = py (2.81)

are the class prior probabilities, for y = 0, 1, . . . , c� 1.

This formulation is entirely general: the measures µy can be discrete, singular continuous, absolutely

continuous, or a mixture of these. In this chapter, we have considered in detail the case where each

2.6. ADDITIONAL TOPICS 39

measure µy is absolutely continuous with respect to Lebesgue measure. In this case, there is a

density, i.e., a nonnegative function on Rd integrating to one, which we denote by p(x | Y = y),

such that

µy(E) =

Z

E

p(x | Y = y)�(dx) , (2.82)

for a Borel set E ✓ Rd, in which case, (2.80) gives

P (X 2 E, Y = y) = PX,Y (E ⇥ {y}) =

Z

E

P (Y = y)p(x | Y = y)�(dx) , (2.83)

for each y = 0, 1, . . . , c� 1, which is equation (2.3). Adding the previous equation over y gives

P (X 2 E) =

Z

E

c�1X

y=0

P (Y = y)p(x | Y = y)�(dx) , (2.84)

which shows that X itself is absolutely continuous with respect to Lebesgue measure, with density

p(x) =
c�1X

y=0

P (Y = y)p(x | Y = y) . (2.85)

An alternative approach begins instead with a single probability measure µ on (Rd,Bd), and non-

negative µ-integrable functions ⌘y on Rd, for y = 0, 1, . . . , c � 1, such that
P
⌘y(x) = 1, for each

x 2 Rd. Define PX,Y on B
d+1 by

PX,Y (B) =
c�1X

y=0

Z

By
⌘y(x)µ(dx) . (2.86)

Clearly, PX,Y is nonnegative, and

PX,Y (R
d+1) =

c�1X

y=0

Z

Rd
⌘y(x)µ(dx) =

Z

Rd

0

@
c�1X

y=0

⌘i(x)

1

Aµ(dx) = 1 . (2.87)

If B1, B2, . . . are pairwise disjoint Borel sets in Rd+1,

PX,Y

 1[

i=1

Bi

!
=

c�1X

y=0

Z

S1
i=1 B

y
i

⌘y(x)µ(dx) =
1X

i=1

c�1X

y=0

Z

B
y
i

⌘y(x)µ(dx) =
1X

i=1

PX,Y (Bi). (2.88)

Hence, PX,Y is a probability measure on (Rd+1,Bd+1). Notice that

P (X 2 E) = PX,Y (E ⇥R) =
c�1X

y=0

Z

E

⌘y(x)µ(dx) =

Z

E

c�1X

y=0

⌘y(x)µ(dx) =

Z

E

µ(dx) . (2.89)

40 CHAPTER 2. OPTIMAL CLASSIFICATION

Hence, µ is the distribution of X. Once again, this formulation is general, where µ, and thus the

feature vector X, can be discrete, singular continuous, absolutely continuous, or a mixture of these.

Notice that (2.83) here becomes

P (X 2 E, Y = y) = PX,Y (E ⇥ {y}) =

Z

E

⌘y(x)µ(dx) = E[⌘y(X)IE] , (2.90)

for each y = 0, 1, . . . , c� 1. The random variable ⌘y(X) therefore has the properties of a conditional

probability P (Y = y | X) [Rosenthal, 2006, Defn. 13.1.4], and so we write ⌘y(x) = P (Y = y | X = x).

If X is absolute continuous with density p(x), then (2.90) becomes

P (X 2 E, Y = y) =

Z

E

⌘y(x)p(x)�(dx) . (2.91)

If in addition µy is absolutely continuous, for i = 0, 1, . . . , c� 1, then (2.83) and (2.91) yield (2.4):

⌘y(x) = P (Y = y | X = x) =
P (Y = y)p(x | Y = y)

p(x)
. (2.92)

The formulation in (2.80) specifies the distribution of the label Y directly, whereas the one in (2.86)

specifies the distribution of the feature vector X directly. The formulation in (2.80) is perhaps more

flexible, since it allows the specification of c probability measures µy for each class separately.

2.7 Bibliographical Notes

Chapter 2 of Duda et al. [2001] contains an extensive treatment of optimal classification. In particu-

lar, it contains several instructive graphical examples of 2-dim and 3-dim optimal decision boundaries

for the Gaussian case.

Our proof of Theorem 2.1 is based on the proof of Theorem 2.1 in Devroye et al. [1996]. Theorem 2.3

is Theorem 3.3 in Devroye et al. [1996], though the proof presented here is di↵erent. Examples 2.1

and 2.2 are adapted from the example in Section 2.3 of Devroye et al. [1996].

Precision and recall are alternatives to the specificity and sensitivity error rates of a classifier [Davis

and Goadrich, 2006]. Recall is simply the sensitivity P ((X) = 1 | Y = 1), but the precision

is defined as P (Y = 1 | (x) = 1) and replaces specificity as a measure of true negative rate;

the precision asks instead that there is a small number of negatives among the cases classified as

positives. This may be appropriate in cases where most of the cases are negatives, as in rare diseases

or object detection in imaging. However, precision is a↵ected by the class prior probabilities, whereas

the specificity is not [Xie and Braga-Neto, 2019].

2.8. EXERCISES 41

Minimax estimation has played an important role in statistical signal processing; e.g. see Poor

and Looze [1981]. Theorem 2.4 appears in a di↵erent form in Esfahani and Dougherty [2014] and

Braga-Neto and Dougherty [2015].

See Devroye et al. [1996] for an extended coverage of F -errors and other alternative class distance

metrics, including several additional results.

There are many excellent references on probability theory, and we mention but a few next. At the

undergraduate level, Ross [1994] o↵ers a thorough treatment of non-measure-theoretical probability.

At the graduate level, Billingsley [1995], Chung [1974], Loève [1977], and Cramér [1999] are classical

texts that provide mathematically rigorous expositions of measure-theoretical probability theory,

while Rosenthal [2006] presents a modern, concise introduction.

2.8 Exercises

2.1. Suppose that X is a discrete feature vector, with distribution concentrated over a countable

set D = {x1,x2, . . .} in Rd. Derive the discrete versions of (2.3), (2.4), (2.8), (2.9), (2.11),

(2.30), (2.34), and (2.36).

Hint: Note that if X has a discrete distribution, then integration becomes summation, P (X =

xk), for xk 2 D, play the role of p(x), and P (X = xk | Y = y), for xk 2 D, play the role of

p(x | Y = y), for y = 0, 1.

2.2. Redo Examples 2.1 and 2.2 if:

(a) only H is observable.

(b) no observations are available.

Hint: The sum of t independent and identically distributed exponential random variables with

common parameter � is a Gamma random variable X with parameters � > 0 and t = 1, 2, . . .

(also known as an Erlang distribution, in this case), with upper tail given by

P (X > x) =

0

@
t�1X

j=0

(�x)j

j!

1

A e��x , (2.93)

for x � 0 (being trivially equal to 1 if x < 0).

2.3. This problem seeks to characterize the case "⇤ = 0.

(a) Prove the “Zero-One Law” for perfect discrimination:

"⇤ = 0 , ⌘(X) = 0 or 1 with probability 1. (2.94)

42 CHAPTER 2. OPTIMAL CLASSIFICATION

Hint: Use an argument similar to the one employed to show (2.33).

(b) Show that

"⇤ = 0 , there is a function f s.t. Y = f(X) with probability 1 . (2.95)

(c) If class-conditional densities exist, and if trivialities are avoided by assuming that

P (Y = 0)P (Y = 1) > 0, show that

"⇤ = 0 , P (p(X | Y = 0)p(X | Y = 1) > 0) = 0 , (2.96)

i.e., the class-conditional densities do not “overlap” with probability 1.

2.4. This problem concerns the extension to the multiple-class case of some of the concepts derived

in this chapter. Let Y 2 {0, 1, . . . , c� 1}, where c is the number of classes, and let

⌘i(x) = P (Y = i | X = x) , i = 0, 1, . . . , c� 1 ,

for each x 2 Rd. We need to remember that these probabilities are not independent, but

satisfy ⌘0(x) + ⌘1(x) + · · · + ⌘c�1(x) = 1, for each x 2 Rd, so that one of the functions is

redundant. In the two-class case, this is made explicit by using a single ⌘(x), but using the

redundant set above proves advantageous in the multiple-class case, as seen below.

Hint: you should answer the following items in sequence, using the previous answers in the

solution of the following ones.

(a) Given a classifier : Rd
! {0, 1, . . . , c � 1}, show that its conditional error P ((X) 6=

Y | X = x) is given by

P ((X) 6= Y | X = x) = 1�
c�1X

i=0

I (x)=i ⌘i(x) = 1� ⌘ (x)(x) .

(b) Assuming that X has a density, show that the classification error of is given by

" = 1�
c�1X

i=0

Z

{x| (x)=i}

⌘i(x)p(x) dx .

(c) Prove that the Bayes classifier is given by

 ⇤(x) = arg max
i=0,1,...,c�1

⌘i(x) , x 2 Rd .

Hint: Start by considering the di↵erence between conditional expected errors P ((X) 6=

Y | X = x)� P (⇤(X) 6= Y | X = x).

2.8. EXERCISES 43

(d) Show that the Bayes error is given by

"⇤ = 1� E


max

i=0,1,...,c�1

⌘i(X)

�
.

(e) Show that the maximum Bayes error possible is 1� 1/c.

2.5. In a univariate classification problem, we have the following model

Y = T [cos(⇡X) +N] , 0  X  1 , (2.97)

where X is uniformly distributed on the interval [0, 1], N ⇠ N (0,�2) is a Gaussian noise term,

and T [·] is the standard 0-1 step function. Find the Bayes classifier and the Bayes error.

Hint: Use
R
0.5

0
�(cos⇡u) du ⇡ 0.36, where�is the cumulative distribution function of the

standard Gaussian distribution.

2.6. Assume the model

Y = T

dX

i=1

aiXi +N

!
,

where Y is the label, X ⇠ N (0, Id) is the feature vector, N ⇠ N (0,�2) is a noise term, and

T (x) = Ix>0 is the zero-one step function. Assume that X and N are independent, and that

||a|| = 1.

(a) Find the Bayes classifier, and show that it is linear.

(b) Find the Bayes error.

Hint: you can use the fact that the sum of independent Gaussian r.v.’s Zi ⇠ N (µi,�2i) is

again Gaussian, with parameters (
P

i
µi,
P

i
�2
i
), and you can use the formula

Z 1

0

Z 1

u

e�
v2

2�2 dv e�
u2

2 du = � arctan(�).

2.7. Consider the following univariate Gaussian class-conditional densities:

p(x | Y = 0) =
1

p
2⇡

exp

✓
�
(x� 3)2

2

◆
and p(x | Y = 1) =

1

3
p
2⇡

exp

✓
�
(x� 4)2

18

◆
.

Assume that the classes are equally likely, i.e., P (Y = 0) = P (Y = 1) = 1

2
.

(a) Draw the densities and determine the Bayes classifier graphically.

(b) Determine the Bayes classifier.

(c) Determine the specificity and sensitivity of the Bayes classifier.

Hint: use the standard Gaussian CDF�(x).

(d) Determine the overall Bayes error.

44 CHAPTER 2. OPTIMAL CLASSIFICATION

2.8. Consider the general heteroskedastic Gaussian model, where

p(x | Y = i) ⇠ Nd(µi,⌃i) , i = 0, 1 .

Given a linear classifier

 (x) =

8
<

:
1 , g(x) = aTx+ b � 0

0 , otherwise.

obtain the classification error of in terms of�(the c.d.f. of a standard normal random

variable), and the parameters a, b,µ0,µ1,⌃0,⌃1, c0 = P (Y = 0) and c1 = P (Y = 1).

2.9. Obtain the optimal decision boundary in the Gaussian model with P (Y = 0) = P (Y = 1) and

(a) µ0 = (0, 0)T , µ1 = (2, 0)T , ⌃0 =

"
2 0

0 1

#
, ⌃1 =

"
2 0

0 4

#
.

(b) µ0 = (0, 0)T , µ1 = (2, 0)T , ⌃0 =

"
2 0

0 1

#
, ⌃1 =

"
4 0

0 1

#
.

(c) µ0 = (0, 0)T , µ1 = (0, 0)T , ⌃0 =

"
1 0

0 1

#
, ⌃1 =

"
2 0

0 2

#
.

(d) µ0 = (0, 0)T , µ1 = (0, 0)T , ⌃0 =

"
2 0

0 1

#
, ⌃1 =

"
1 0

0 2

#
.

In each case draw the optimal decision boundary, along with the class means and class-

conditional density contours, indicating the 0- and 1-decision regions.

2.10. Show that the Mahalanobis distance in (2.45) satisfies all properties of a distance, if⌃is

strictly positive definitive:

i. ||x0 � x1||⌃ > 0 and ||x0 � x1||⌃ = 0 if and only if x0 = x1.

ii. ||x0 � x1||⌃ = ||x1 � x0||⌃.

iii. ||x0 � x1||⌃ � ||x0 � x2||⌃ + ||x1 � x2||⌃ (triangle inequality).

2.11. The exponential family of densities in Rd is of the form

p(x | ✓) = ↵(✓)�(x) exp

kX

i=1

⇠i(✓)�i(x)

!
, (2.98)

where ✓ 2 Rm is a parameter vector, and ↵,⇠ 1, . . . , ⇠k : Rm
! R and �,�1, . . . ,�k : Rd

! R

with ↵,� � 0.

2.8. EXERCISES 45

(a) Assume that the class-conditional densities are p(x | ✓0) and p(x | ✓1). Show that the

Bayes classifier is of the form

 ⇤(x) =

8
<

:
1 ,

P
k

i=1
ai(✓0,✓1)�i(x) + b(✓0,✓1) > 0 ,

0 , otherwise.
(2.99)

This is called a generalized linear classifier. The decision boundary is linear in the trans-

formed feature vector X0 = (�1(X), . . . ,�k(X)) 2 Rk, but it is generally nonlinear in the

original feature space.

(b) Show that the exponential r.v. with parameter � > 0, the gamma r.v. with parameters

�, t > 0, and and the beta r.v. with parameters a, b > 0 (see Section A1.4) belong to the

exponential family. Obtain the Bayes classifier in each case.

(c) Show that the multivariate Gaussian r.v. with parameters µ,⌃ > 0 belong to the expo-

nential family. Show that the Bayes classifier obtained from (2.99) coincides with the one

in (2.54) and (2.55).

2.12. Suppose that repeated measurements X(j)
2 Rd are made on the same individual, for j =

1, . . . ,m. For example, these might be measurements repeated every hour, or every day (this

is relatively common in medical studies as well as industrial settings). Assume the following

additive model for the multiple measurements:

X(i) = Z+ "(i) , i = 1, . . . ,m , (2.100)

where Z | Yi = j ⇠ N (µj ,⌃j), for j = 0, 1, and "(j) ⇠ N (0,⌃err), i = 1, . . . ,m are the

“signal” and the “noise”, respectively. Independence among noise vectors and between noise

vectors and signal vectors is assumed. We would like to obtain an optimal classifier in this

case. The simplest approach is to stack all measurements up in a single feature vector X =

(X(1), . . . ,X(m)) 2 Rdm.

(a) Show that the optimal discriminant D⇤(x) in (2.27), where x = (x(1), . . . ,x(m)) 2 Rdm is

a point in the stacked feature space, is given by

D⇤(x) =
1

2
(x̄� µ0)

T (⌃0 + ⌃err/m)�1(x̄� µ0)�
1

2
(x̄� µ1)

T (⌃1 + ⌃err/m)�1(x̄� µ1)

+
1

2
ln

det(⌃0 + ⌃err/m)

det(⌃1 + ⌃err/m)
+

m� 1

2
Trace(⌃̄(⌃�1

0
� ⌃�1

1
)) ,

(2.101)

where

x̄ =
1

m

mX

j=1

x(j) , (2.102)

46 CHAPTER 2. OPTIMAL CLASSIFICATION

and

⌃̄ =
mX

j=1

(x(j)
� x̄)(x(j)

� x̄)T . (2.103)

Compare (2.43) and (2.101). What happens in the case m = 1?

Hint: Notice that

X | Y = k ⇠ N (µk ⌦ 1m,⌃k ⌦ 1m1Tm + ⌃err ⌦ Im) , k = 0, 1 , (2.104)

where 1m is an m⇥ 1 unit vector and “⌦” denotes the Kronecker product of matrices.

(b) Write an expression for the Bayes classifier similar to (2.54) and (2.55).

(c) Specialize items (a) and (b) to the homoskedastic case⌃ 0 = ⌃1. Write an expression for

the Bayes classifier similar to (2.48) and (2.49). Obtain an expression for the Bayes error

similar to (2.52). What happens to the Bayes error as m increases?

2.13. In a univariate pattern recognition problem, the feature X is uniform over the interval [0, 2] if

Y = 0, and X is uniform over the interval [1, 3] if Y = 1. Assuming that the labels are equally

likely, compute:

(a) A Bayes classifier ⇤.

(b) The Bayes error "⇤.

(c) The asymptotic nearest-neighbor error ✏NN .

2.14. Consider the following measure of distance between classes:

⌧ = E
⇥
8⌘(X)2(1� ⌘(X))2

⇤

and consider the proposed relationship ✏⇤  ⌧  ✏NN .

(a) Show that ⌧  ✏NN holds regardless of the distribution of (X,Y).

Hint: You are given that 1� 5x+ 8x2 � 4x3 � 0, for 0  x  1.

(b) Indicate a distribution of (X,Y) for which ✏⇤  ⌧ fails.

Hint: Consider what happens when ⌘(X) = 0.1.

2.15. This problem concerns classification with a rejection option. Assume that there are c classes

and c+1 “actions” ↵0,↵1, . . . ,↵c. For i = 0, . . . , c�1, action ↵i is simply to classify into class

i, whereas action ↵c is to reject, i.e., abstain from committing to any of the classes, for lack

of enough evidence. This can be modeled as a Bayes decision theory problem, where the cost

�ij of taking action ↵i when true state of nature is j is given by:

�ij =

8
>>><

>>>:

0 , i = j, for i, j = 0, . . . , c� 1

�r , i = c

�m , otherwise,

2.9. PYTHON ASSIGNMENTS 47

where �r is the cost associated with a rejection, and �m is the cost of misclassifying a sample.

Determine the optimal decision function ↵⇤ : Rd
! {↵0,↵1, . . . ,↵c} in terms of the posterior

probabilities ⌘i(x) — see the previous problem — and the cost parameters. As should be

expected, the occurrence of rejections will depend on the relative cost �r/�m. Explain what

happens when this ratio is zero, 0.5, and greater or equal than 1.

2.9 Python Assignments

2.16. Suppose in Example 2.1 that the model is

Y =

8
<

:
1 (pass) , if S +H +N >  ,

0 (fail) , otherwise,
(2.105)

for a given real-valued threshold  > 0.

(a) Show that the Bayes classifier is

 ⇤(s, h) =

8
<

:
Is+h>�ln 2,  >ln 2

1 , 0 <  < ln 2.
(2.106)

In particular, if  < ln 2, the optimal prediction is that all students will pass the class.

(b) Show that the Bayes error is

"⇤ =

8
<

:
e�k

h
(+ 1� ln 2)2 � (+2)

2

i
,  >ln 2,

1� e�k

h
1 + (+2)

2

i
, 0 <  < ln 2.

(2.107)

Plot this as a function of  and interpret the resulting graph.

(c) Di↵erentiate (2.107) to find at what value of  the maximum Bayes error occurs.

(d) Show that

c = P (Y = 1) = e�k


1 +

(+ 2)

2

�
(2.108)

and then show that the bound (2.35) holds, by plotting it in the same graph as the Bayes

error in item (b).

2.17. This problem concerns the Gaussian model for synthetic data generation in Section A8.1.

(a) Derive a general expression for the Bayes error for the homoskedastic case with µ0 =

(0, . . . , 0), µ1 = (1, . . . , 1), and P (Y = 0) = P (Y = 1). Your answer should be in terms

48 CHAPTER 2. OPTIMAL CLASSIFICATION

of k, �2
1
, . . . ,�2

k
, l1, . . . , lk, and ⇢1, . . . , ⇢k.

Hint: Use the fact that

2

66664

1 ⇢ · · · ⇢

⇢ 1 · · · ⇢
...

...
. . .

...

⇢ ⇢ · · · 1

3

77775

�1

l⇥l

=
1

(1�⇢)(1+(l�1)⇢)

2

66664

1+(l�2)⇢ �⇢ · · ·� ⇢

�⇢ 1+(l�2)⇢ · · ·� ⇢
...

...
. . .

...

�⇢ �⇢ · · · 1+(l�2)⇢

3

77775
.

(2.109)

(b) Specialize the previous formula for equal-sized blocks l1 = · · · = lk = l with equal

correlations ⇢1 = · · · = ⇢k = ⇢, and constant variance �2
1
= · · · ,�2

k
= �2. Write the

resulting formula in terms of d, l, �, and ⇢.

i. Using the python function norm.cdf in the scipy.stats module, plot the Bayes

error as a function of � 2 [0.01, 3] for d = 20, l = 4, and four di↵erent correlation

values ⇢ = 0, 0.25, 0.5, 0.75 (plot one curve for each value). Confirm that the Bayes

error increases monotonically with � from 0 to 0.5 for each value of ⇢, and that the

Bayes error for larger ⇢ is uniformly larger than that for smaller ⇢. The latter fact

shows that correlation between the features is detrimental to classification.

ii. Plot the Bayes error as a function of d = 2, 4, 6, 8, . . . , 40, with fixed block size l = 4

and variance �2 = 1, and ⇢ = 0, 0.25, 0.5, 0.75 (plot one curve for each value). Confirm

that the Bayes error decreases monotonically to 0 with increasing dimensionality, with

faster convergence for smaller correlation values.

iii. Plot the Bayes error as a function of the correlation ⇢ 2 [0, 1] for constant variance

�2 = 2 and fixed d = 20 with varying block size l = 1, 2, 4, 10 (plot one curve for

each value). Confirm that the Bayes error increases monotonically with increasing

correlation. Notice that the rate of increase is particularly large near ⇢ = 0, which

shows that the Bayes error is very sensitive to correlation in the near-independent

region.

(c) Use numerical integration to redo the plots in item (b) in a heteroskedastic case, where

the features in class 0 are always uncorrelated.

i. For parts i and ii, discretize the range for � in steps of 0.02, and use ⇢ = 0 for class

0 and ⇢ = 0.25, 0.5, 0.75 for class 1 (plot one curve for each value).

ii. For part iii, use ⇢ = 0 for class 0 and ⇢ 2 [0, 1] for class 1. Discretize the range for ⇢

in steps of 0.02.

Compare to the results obtained in the homoskedastic case.

Hint: Generate a large sample from the synthetic model, apply the optimal Gaussian

discriminant to it, and form an empirical error estimate.

2.9. PYTHON ASSIGNMENTS 49

2.18. The univariate Student’s t random variable with ⌫ > 0 degrees of freedom provides a model

for “heavy-tailed” unimodal distributions, with a density given by:

fµ(x) = K(⌫)

✓
1 +

x2

⌫

◆� ⌫+1
2

, (2.110)

where K(⌫) > 0 is a normalization constant to make the density integrate to 1. The smaller

⌫ is, the heavier the tails are, and the fewer moments exist. The case ⌫ = 1 corresponds to

the Cauchy r.v., which has no moments. Conversely, larger ⌫ leads to thinner tails and the

existence of more moments. It can be shown that the univariate Gaussian is the limiting case

as ⌫ ! 1.

Let the class-conditional densities in a classification problem be modeled by shifted and scaled

univariate t distributions:

p(x | Y = i) = f⌫

✓
x� ai

b

◆
, i = 0, 1 , (2.111)

where a0, a1, and b > 0 play the role of µ0, µ1, and �, respectively, in the Gaussian case.

Assume P (Y = 0) = P (Y = 1).

(a) Determine the Bayes classifier.

(b) Determine the Bayes error as a function of the parameters a0, a1, and b, and ⌫. You may

assume a0 < a1, without loss of generality, and express your answer in terms of the CDF

F⌫(t) of a standard Student’s t random variable with ⌫ degrees of freedom.

(c) Using the python function t.cdf in the scipy.stats module, plot the Bayes error as a

function of (a1�a0)/b, for ⌫ = 1, 2, 4, 100 (the case ⌫ = 100 corresponds essentially to the

Gaussian case). How does the value ⌫ a↵ect the Bayes error? Where do the maximum

and minimum values of the Bayes error occur?

Chapter 3

Sample-Based Classification

“I often say that when you can measure what you are

speaking about, and express it in numbers, you know

something about it; but when you cannot express it in

numbers, your knowledge is of a meagre and

unsatisfactory kind; it may be the beginning of

knowledge, but you have scarcely, in your thoughts,

advanced to the stage of science.”

– Lord Kelvin, Popular Lectures and Addresses, 1889.

Optimal classification requires full knowledge of the feature-label distribution. In practice, that is

a relatively rare scenario, and a combination of distributional knowledge and sample data must be

employed to obtain a classifier. In this chapter, we introduce the basic concepts related to sample-

based classification, including designed classifiers and error rates, and consistency. The chapter

includes a section showing that distribution-free classification rules have important limitations. The

material in this chapter provides the foundation for the next several chapters on sample-based

classification.

3.1 Classification Rules

The training data Sn = {(X1, Y1), . . . , (Xn, Yn)} of n consists of sample feature vectors and their

associated labels, which are typically produced by performing a vector measurement Xi on each of n

specimens in an experiment, and then having an “expert” produce a label Yi for each specimen. We

assume that Sn is an independent and identically distributed (i.i.d.) sample from the feature-label

© Springer Nature Switzerland AG 2020
U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_3

51

https://doi.org/10.1007/978-3-030-27656-0_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_3&domain=pdf

52 CHAPTER 3. SAMPLE-BASED CLASSIFICATION

distribution PX,Y ; i.e., the set of sample points is independent and each sample point has distribution

PX,Y (but see Section 3.5.2 for a di↵erent scenario). For each specimen corresponding to feature

vector Xi, the “expert” produces a label Yi = 0 with probability P (Y = 0 | Xi) and a label Yi = 1

with probability P (Y = 1 | Xi). Hence, the labels in the training data are not the “true” labels, as

in general there is no such a thing; the labels are simply assumed to be assigned with the correct

probabilities. In addition, notice that the numbers N0 =
P

n

i=1
IYi=0 and N1 =

P
n

i=1
IYi=1 of sample

points from class 0 and class 1 are binomial random variables with parameters (n, 1� p) and (n, p),

respectively, where p = P (Y = 1). Obviously, N0 and N1 are not independent, since N0 +N1 = n.1

Given the training data Sn as input, a classification rule is an operator that outputs a trained

classifier n. The subscript “n” reminds us that n is a function of the data Sn (it plays a similar

role to the hat notation used for estimators in classical statistics). It is important to understand

the di↵erence between a classifier and a classification rule; the latter does not output class labels,

but rather classifiers.

Formally, let C denote the set of all classifiers, i.e., all (Borel-measurable) functions from Rd into

{0, 1}. Then a classification rule is defined as a mapping n : [Rd
⇥ {0, 1}]n ! C. In other words,

 n maps sample data Sn 2 [Rd
⇥ {0, 1}]n into a classifier n = n(Sn) 2 C.

Example 3.1. (Nearest-Centroid Classification Rule.) Consider the following simple classifier:

 n(x) =

8
<

:
1 , ||x� µ̂1|| < ||x� µ̂0|| ,

0 , otherwise,
(3.1)

where

µ̂0 =
1

N0

nX

i=1

XiIYi=0 and µ̂1 =
1

N1

nX

i=1

XiIYi=1 (3.2)

are the sample means for each class. In other words, the classifier assigns to the test point x the label

of the nearest (sample) class mean. It is easy to see that this classification rule produces hyperplane

decision boundaries. By replacing the sample mean with other types of centroids (e.g., the sample

median), a family of like-minded classification rules can be obtained. Notice the similarity between

(2.46) and (3.1) — more on this in Chapter 4. ⇧

Example 3.2. (Nearest-Neighbor Classification Rule.) Another simple classifier is given by

 n(x) = Y(1)(x) , (3.3)

where (X(1)(x), Y(1)(x)) is the nearest training point:

X(1)(x) = arg min
X1,...,Xn

||X� x|| . (3.4)

1
All these concepts can be immediately extended to any number of classes c > 2.

3.1. CLASSIFICATION RULES 53

Figure 3.1: Discrete histogram rule: top shows distribution of the sample data in the bins; bottom

shows the designed classifier.

(If there is a tie, take the point with the smallest index i.) In other words, the classifier assigns

to the test point x the label of the nearest neighbor in the training data. The decision boundaries

produced by this classification rule are very complex. A family of similar classification rules is

obtained by replacing the Euclidean norm with other metrics (e.g., the correlation). In addition, a

straightforward generalization of this classification rule is obtained by assigning to the test point the

majority label in the set of k nearest training points (k = 1 yielding the previous case), with odd k

to avoid ties. This is called the k-nearest neighbor classification rule, which is studied in detail in

Chapter 5. ⇧

Example 3.3. (Discrete Histogram Classification Rule.) Assume that the distribution of X is

concentrated over a finite number of points {x1, . . . ,xb
} in Rd. This corresponds to the case where

the measurement X can yield only a finite number of di↵erent values. Let Uj and Vj be the number

of training points with (Xi = xj , Yi = 0) and (Xi = xj , Yi = 1), respectively, for j = 1, . . . , b. The

discrete histogram rule is given by

 n(x
j) =

8
<

:
1 , Uj < Vj

0 , otherwise,
(3.5)

for j = 1, . . . , b. In other words, the discrete histogram rule assigns to xj the majority label among

the training points that coincide with xj . In the case of a tie, the label is set to zero. See Figure 3.1

for an illustration. ⇧

One of the problems with small training sample size in the occurrence of ties between Uj and Vj

54 CHAPTER 3. SAMPLE-BASED CLASSIFICATION

(including missing categories, i.e., Uj = Vj = 0). In addition to setting the classifier arbitrarily to

zero (or one), once could use the majority label in the overall data, or assign zero if the value of

Uj = Vj is even, and one if it is odd. If random factors are allowed in the definition of a classification

rule, then one can also attribute the label randomly, with 50%-50% probabilities, or using the

observed values N0/n and N1/n as probabilities. In this case, one has a random classifier: repeating

the procedure generates di↵erent classifiers for the same training data. Unless otherwise stated,

all classification rules considered in the sequel are nonrandom. (See Section 3.5.1 for additional

examples of random classification rules.)

3.2 Classification Error Rates

Given a classification rule n, the error of a designed classifier n = n(Sn) trained on data Sn is

given by

"n = P (n(Sn)(X) 6= Y | Sn) = P (n(X) 6= Y | Sn) . (3.6)

Here, (X,Y) can be considered to be a test point, which is independent of Sn. Notice that "n is

similar to the classifier error defined in (2.7). However, there is a fundamental di↵erence between the

two error rates, as "n is a function of the random sample data Sn and therefore a random variable.

On the other hand, assuming that n is nonrandom, the classification error "n is an ordinary real

number once the data Sn is specified and fixed. The error "n is sometimes called the conditional

error, since it is conditioned on the data.

Another important error rate in sample-based classification is the expected error:

µn = E["n] = P (n(X) 6= Y) . (3.7)

This error rate is nonrandom. It is sometimes called the unconditional error.

Comparing "n and µn, we observe that the conditional error "n is usually the one of most practical

interest, since it is the error of the classifier designed on the actual sample data at hand. Nevertheless,

µn can be of interest because it is data-independent: it is a function only of the classification rule.

Therefore, µn can be used to define global properties of classification rules, such as consistency

(see the next section). In addition, since it is nonrandom, µn can be bounded, tabulated and

plotted. This can be convenient in both analytical and empirical (simulation) studies. Finally, the

most common criterion for comparing the performance of classification rules is to pick the one with

smallest expected error µn, for a fixed given sample size n.

55

Similarly to what was done in (2.8), we can define class-specific error rates:

"0n = P (n(X) = 1 | Y = 0, Sn) ,

"1n = P (n(X) = 0 | Y = 1, Sn) ,
(3.8)

with classification error as in (2.9):

"[n] = P (n(X) 6= Y | Sn)

= P (n(X) = 1 | Y = 0, Sn)P (Y = 0) + P (n(X) = 0 | Y = 1, Sn)P (Y = 1)

= P (Y = 0) "0n[] + P (Y = 1) "1n[] .

(3.9)

*3.3 Consistency

Consistency has to do with the natural requirement that, as the sample size increases, the classi-

fication error should approach the optimal error. Accordingly, the classification rule2 is said to be

consistent if, as n ! 1,

"n ! "⇤, in probability, (3.10)

that is, given any ⌧ > 0, P (|"n � "⇤| > ⌧) ! 0. (See Section A1.8 for a review of modes of

convergence for random variables.) In other words, for a large sample size n, "n will be near "⇤ with

a large probability. The classification rule n is said to be strongly consistent if, as n ! 1,

"n ! "⇤, with probability 1, (3.11)

that is, P ("n ! "⇤) = 1. Since convergence with probability 1 implies convergence in probability,

strong consistency implies ordinary (“weak”) consistency. Strong consistency is a much more de-

manding criterion than ordinary consistency. It roughly requires "n to converge to "⇤ for almost all

possible sequences of training data {Sn;n = 1, 2, . . .}. In a very real sense, however, ordinary con-

sistency is enough for practical purposes. Furthermore, all commonly used consistent classification

rules turn out, interestingly, to be strongly consistent as well.

The previous definitions hold for a given fixed feature-label distribution PX,Y . So a classification rule

can be consistent under a feature-label distribution but not under another. A universally (strong)

consistent classification rule is consistent under any distribution; hence, universal consistency is a

property of the classification rule alone.

It should be kept in mind that consistency is a large-sample property, and therefore, is not generally

indicative of classification performance under small sample sizes. Universally consistent rules tend

to produce complex classifiers and could thus produce a “Scissors E↵ect,” as discussed in Section 1.6.

2
Throughout this section, what we call a classification rule n is actually a sequence { n;n = 1, 2, . . .}.

3.3. CONSISTENCY

56 CHAPTER 3. SAMPLE-BASED CLASSIFICATION

Example 3.4. (Consistency of the Nearest-Centroid Classification Rule.) The classifier in (3.1) can

be written as:

 n(x) =

8
<

:
1 , aTnx+ bn > 0 ,

0 , otherwise,
(3.12)

where an = µ̂1� µ̂0 and bn = (µ̂1� µ̂0)(µ̂1+ µ̂0)/2 (use the fact that ||x� µ̂||2 = (x� µ̂)T (x� µ̂)).

Now, assume that the feature-label distribution of the problem is specified by multivariate spherical

Gaussian densities p(x | Y = 0) ⇠ Nd(µ0, Id) and p(x | Y = 1) ⇠ Nd(µ1, Id), with µ0 6= µ1 and

P (Y = 0) = P (Y = 1). The classification error is given by

"n = P (n(X) = 1 | Y = 0)P (Y = 0) + P (n(X) = 0 | Y = 1)P (Y = 1)

=
1

2

�
P (aTnX+ bn > 0 | Y = 0) + P (aTnX+ bn  0 | Y = 1)

�

=
1

2

✓
�

✓
aTnµ0 + bn

||an||

◆
+ �

✓
�
aTnµ1 + bn

||an||

◆◆
,

(3.13)

where�(·) is the CDF of a standard Gaussian and we used the fact that aTnX + bn | Y = i ⇠

N (aTnµi + bn, ||an||2), for i = 0, 1 (see Section A1.7 for the properties of the multivariate Gaussian

distribution). We also know from (2.53) that the Bayes error for this problem is

"⇤ = �

✓
�
||µ1 � µ0||

2

◆
. (3.14)

Now, by the vector version of the Law of Large Numbers (see Thm. A.12), we know that, with

probability 1, µ̂0 ! µ0 and µ̂1 ! µ1, so that an ! a = µ1�µ0 and bn ! b = (µ1�µ0)(µ1+µ0)/2,

as n ! 1. Furthermore, "n in (3.13) is a continuous function of an and bn. Hence, by the Continuous

Mapping Theorem (see Thm. A.6),

"n(an, bn) ! "n(a, b) = �

✓
�
||µ1 � µ0||

2

◆
= "⇤ with probability 1, (3.15)

as can be easily verified. Hence, the nearest-centroid classification rule is strongly consistent under

spherical Gaussian densities with the same variance and equally-likely classes. ⇧

The nearest-centroid classification rule is not universally consistent; if the covariance matrices are not

spherical, or the class-conditional densities are not Gaussian, then the classification error does not

converge in general to the Bayes error as sample size increases. But, if the classes are known to be at

least approximately Gaussian with spherical shapes, then the nearest-centroid rule is “approximately

consistent,” and in fact can perform quite well even under small sample sizes.

Example 3.5. (Consistency of the Discrete Histogram Rule.) With c0 = P (Y = 0), c1 = P (Y = 1),

pj = P (X = xj
| Y = 0), and qj = P (X = xj

| Y = 1), for j = 1, . . . , b, we have that

⌘(xj) = P (Y = 1 | X = xi) =
c1qj

c0pj + c1qj
, (3.16)

57

for j = 1, . . . , b. Therefore, the Bayes classifier is

 ⇤(xj) = I⌘(xj)>1/2 = Ic1qj>c0pj , (3.17)

for j = 1, . . . , b, with Bayes error

"⇤ = E[min{⌘(X), 1� ⌘(X)}] =
bX

j=1

min{c0pj , c1qj} . (3.18)

Now, the error of the classifier in (3.5) can be written as:

"n = P (n(X) 6= Y) =
bX

j=1

P (X = xj , n(x
j) 6= Y)

=
bX

j=1

⇥
P (X = xj , Y = 0)I n(xj)=1 + P (X = xj , Y = 1)I n(xj)=0

⇤

=
bX

j=1

⇥
c0pj IVj>Uj + c1qj IUj�Vj

⇤
.

(3.19)

Clearly Uj is a binomial random variable with parameters (n, c0pj). To see this, note that Uj is

the number of times that one of the n training points independently goes into the “bin” (X =

xj , Y = 0) with probability c0pi. Thus Uj =
P

n

i=1
Zji, where the Zji are i.i.d. Bernoulli random

variables with parameter c0pj , and it follows from the Law of Large Numbers (see Thm. A.12) that

Uj/n
a.s.
�! c0pj as n ! 1. Similarly, Vj is a binomial random variable with parameters (n, c1qj) and

Vj/n
a.s.
�! c1qj as n ! 1. By the Continuous Mapping Theorem (see Thm. A.6), it follows that

IVj/n>Uj/n

a.s.
�! Ic1qj>c0pj , provided that c1qj 6= c0pj , as the function Iu�v>0 is continuous everywhere

except at u� v = 0. But notice that we can rewrite (3.18) and (3.19), respectively, as

"⇤ =
bX

j=1
c0pj=c1qj

c0pj +
bX

j=1

c0pj 6=c1qj

⇥
c0pj Ic1qj>c0pj + c1qj (1� Ic1qj>c0pj)

⇤
(3.20)

and

"n =
bX

j=1
c0pj=c1qj

c0pj +
bX

j=1

c0pj 6=c1qj

h
c0pj IVj/n>Uj/n

+ c1qj (1� IVj/n>Uj/n
)
i
, (3.21)

from which it follows that "n
a.s.
�! "⇤ and the discrete histogram rule is universally strongly consistent

(over the class of all discrete feature-label distributions). ⇧

The following result, which is a simple application of the Thm A.10, shows that consistency can be

fully characterized by the behavior of the expected classification error as sample size increases.

3.3. CONSISTENCY

58 CHAPTER 3. SAMPLE-BASED CLASSIFICATION

Figure 3.2: Representation of the expected classification error vs. sample size for a consistent clas-

sification rule.

Theorem 3.1. The classification rule n is consistent if and only if, as n ! 1,

E["n] ! "⇤ . (3.22)

Proof. Note that {"n; n = 1, 2, . . .} is a uniformly bounded random sequence, as 0  "n  1 for all

n. Since "n � "⇤ > 0, it follows from Thm A.10 that "n ! "⇤ in probability is equivalent to

E["n � "⇤] = E[|"n � "⇤|] ! 0 , (3.23)

i.e., E["n] ! "⇤. ⇧

Theorem 3.1 demonstrates the remarkable fact that consistency is characterized entirely by the first

moment of the random variable "n as n increases. This is not su�cient for strong consistency, which

in general depends on the behavior of the entire distribution of "n. Notice that {µn;n = 1, 2, . . .}

is a sequence of real numbers (not random variables) and the convergence in (3.22) is ordinary

convergence, and thus can be plotted to obtain a graphical representation of consistency. See

Figure 3.2 for an illustration, where the expected classification error is represented as a continuous

function of n for ease of interpretation.

Example 3.6. (Consistency of the Nearest-Neighbor Classification Rule.) In Chapter 5, it is

shown that the expected error of the nearest-neighbor classification rule of Example 3.2 satisfies

limn!1E["n]  2"⇤. Assume that the feature-label distribution is such that "⇤ = 0. Then, by

Theorem 3.1, the nearest-neighbor classification rule is consistent. ⇧

3.4. NO-FREE-LUNCH THEOREMS 59

The condition "⇤ = 0 is quite restrictive, as it implies that perfect discrimination is achievable, which

requires nonoverlapping classes (see Exercise 2.3). In fact, the k-nearest-neighbor classification rule

is not universally consistent, for any fixed k = 1, 2, . . . However, we will see in Chapter 5 that the

k-nearest neighbor classification rule is universally consistent, provided that k is allowed to increase

with n at a specified rate.

Consistency is a large sample property, and could be irrelevant in small-sample cases, as non-

consistent classification rules are typically better than consistent classification rules when the train-

ing data size is small. The reason is that consistent classification rules, especially universal ones,

tend to be complex, while non-consistent ones are often simpler. We saw this counterintuitive phe-

nomenon represented in the “scissors plot” of Figure Fig-basic(b). As was mentioned previously,

the blue curve in the plot represents the expected error of a consistent classification rule, while the

green one does not. However, the non-consistent classification rule is still better at small-sample

sizes (n < N0 in the plot), in which case the performance of the complex consistent rule degrades

due to overfitting. The precise value of N0 is very di�cult to pinpoint, as it depends on the com-

plexity of the classification rules, the dimensionality of the feature vector, dimensionality, and the

feature-label distribution. We will have more to say about this topic in later chapters.

3.4 No-Free-Lunch Theorems

Universal consistency is a remarkable property in that it appears to imply that no knowledge at all

about the feature-label distribution is needed to obtain optimal performance, i.e., a purely data-

driven approach obtains performance arbitrarily close to the optimal performance if one has a large

enough sample.

The next two theorems by Devroye and collaborators show that this is deceptive. They are some-

times called “No-Free-Lunch” theorems, as they imply that some knowledge about the feature-label

distribution must be obtained to guarantee acceptable performance (or at least, to avoid terrible

performance), after all. The proofs are based on finding simple feature-label distributions (in fact,

discrete ones with zero Bayes error) that are “bad” enough.

The first theorem states that all classification rules can be arbitrarily bad at finite sample sizes. In

the case of universally consistent classification rules, this means that one can never know if their

finite-sample performance will be satisfactory, no matter how large n is (unless one knows something

about the feature-label distribution). For a proof, see [Devroye et al., 1996, Thm 7.1].

60 CHAPTER 3. SAMPLE-BASED CLASSIFICATION

Theorem 3.2. For every ⌧ > 0, integer n, and classification rule n, there exists a feature-label

distribution PX,Y (with "⇤ = 0) such that

E["n] �
1

2
� ⌧ . (3.24)

The feature-label distribution in the previous theorem may have to be di↵erent for di↵erent n. The

next remarkable theorem applies to a fixed feature-label distribution and implies that, though one

may get E["n] ! "⇤ in a distribution-free manner, one must know something about the feature-label

distribution in order to guarantee a rate of convergence. For a proof, see [Devroye et al., 1996,

Thm 7.2].

Theorem 3.3. For every classification rule n, there exists a monotonically decreasing sequence

a1 � a2 � . . . converging to zero such that there is a feature-label distribution PX,Y (with "⇤ = 0)

for which

E["n] � an , (3.25)

for all n = 1, 2, . . .

For the discrete histogram rule with "⇤ = 0, one can show that there exists a constant r > 0 such

that E["n] < e�rn, for n = 1, 2, . . . (see Exercise 3.2). This however does not contradict Theorem 3.3,

because the constant r > 0 is distribution-dependent. In fact, it can be made as close to zero as

wanted by choosing the distribution.

For another example of no-free-lunch result, see Exercise 3.4.

3.5 Additional Topics

3.5.1 Ensemble Classification

Ensemble classification rules combine the decision of multiple classification rules by majority voting.

This is an application of the “wisdom of the crowds” principle, which can reduce overfitting and

increase accuracy over the component classification rules (which are called in some contexts weak

learners).

Formally, given a set of classification rules { 1
n, . . . ,

m
n }, an ensemble classification rule E

n,m pro-

duces a classifier

 E

n,m(x) =

8
<

:
1, 1

m

P
m

j=1
 j

n(Sn)(x) >
1

2

0, otherwise.
(3.26)

3.5. ADDITIONAL TOPICS 61

In other words, the ensemble classifier assigns label 1 to the test point x if a majority of the

component classification rules produce label 1 on x; otherwise, it assigns label 0.

In practice, ensemble classifiers are almost always produced by resampling. (This is a general

procedure, which will be important again when we discuss error estimation in Chapter 7.) Consider

an operator ⌧ : (Sn, ⇠) 7! S⇤
n, which applies a “perturbation” to the training data Sn and produces

a modified data set S⇤
n. The variable ⇠ represents random factors, rendering S⇤

n random, given the

data Sn. A base classification rule n is selected, and the components classification rules are defined

by j
n(Sn) = n(⌧(Sn)) = n(S⇤

n). Notice that this produces random classification rules due to the

randomness of ⌧ . It follows that the ensemble classification rule E
n,m in (3.26) is likewise random.

This means that di↵erent classifiers result from repeated application of E
n,m to the same training

data Sn. We will not consider random classification rules in detail in this book.

The perturbation ⌧ may consist of taking random subsets of the data, adding small random noise

to the training points, flipping the labels randomly, and more. Here we consider in the detail an

example of perturbation called bootstrap sampling. Given a fixed data set Sn = {(X1 = x1, Y1 =

y1), . . . , (Xn = xn, Yn = yn)}, the empirical feature-label distribution is a discrete distribution, with

probability mass function given by P̂ (X = xi, Y = yi) =
1

n
, for i = 1, . . . , n. A bootstrap sample is

a sample S⇤
n from the empirical distribution; it consists of n equally-likely draws with replacement

from the original sample Sn. Some sample points will appear multiple times, whereas others will not

appear at all. The probability that any given sample point will not appear in S⇤
n is (1�1/n)n ⇡ e�1.

It follows that a bootstrap sample of size n contains on average (1� e�1)n ⇡ 0.632n of the original

sample points. The ensemble classification rule in (3.26) is called in this case a bootstrap aggregate

and the procedure is called “bagging.”

3.5.2 Mixture Sampling vs. Separate Sampling

The assumption being made thus far is that the training data Sn is an i.i.d. sample from the

feature-label distribution PX,Y ; i.e., the set of sample points is independent and each sample point

has distribution PX,Y . In this case, each Xi is distributed as p(x | Y = 0) with probability P (Y = 0)

or p(x | Y = 1) with probability P (Y = 1). It is common to say then that each Xi is sampled from

a mixture of the populations p(x | Y = 0) and p(x | Y = 1), with mixing proportions P (Y = 0) and

P (Y = 1), respectively.

This sampling design is pervasive in the literature — most papers and textbooks assume it, often

tacitly. However, suppose sampling is not from the mixture of populations, but rather from each

population separately, such that a nonrandom number n0 of sample points are drawn from p(x | Y =

0), while a nonrandom number n1 of points are drawn from p(x | Y = 1), where n0 + n1 = n. This

62 CHAPTER 3. SAMPLE-BASED CLASSIFICATION

separate sampling case is quite distinct from unconstrained random sampling, where the numbers

N0 and N1 of sample points from each class are binomial random variables (see Section 3.1). In

addition, in separate sampling, the labels Y1, . . . , Yn are no longer independent: knowing that, say,

Y1 = 0, is informative about the status of Y2, since the number of points from class 0 is fixed.

A key fact in the separate sampling case is that the class prior probabilities p0 = P (Y = 0) and

p1 = P (Y = 1) are not estimable from the data. In the random sampling case, p̂0 =
N0
n

and p̂1 =
N1
n

are unbiased estimators of p0 and p1, respectively; they are also consistent estimators, i.e., p̂0 ! p0

and p̂1 ! p1 with probability 1 as n ! 1, by virtue of the Law of Large Numbers (Theorem A.12).

Therefore, provided that the sample size is large enough, ĉ0 and ĉ1 provide decent estimates of the

prior probabilities. However, ĉ0 and ĉ1 are clearly nonsensical estimators in the separate sampling

case. As a matter of fact, there are no sensible estimate of p0 and p1 under separate sampling.

There is simply no information about p0 and p1 in the training data.

Separate sampling is a very common scenario in observational case-control studies in biomedicine,

which typically proceed by collecting data from the populations separately, where the separate

sample sizes n0 and n1, with n0 +n1 = n, are pre-determined experimental design parameters. The

reason is that one of the populations is often small (e.g., a rare disease). Sampling from the mixture

of healthy and diseased populations would produce a very small number of diseased subjects (or

none). Therefore, retrospective studies employ a fixed number of members of each population, by

assuming that the outcomes (labels) are known in advance.

Separate sampling can be seen as an example of restricted random sampling, where in this case, the

restriction corresponds to conditioning on N0 = n0, or equivalently, N1 = n1. Failure to account for

this restriction in sampling will manifest itself in two ways. First, it will a↵ect the design of classifiers

that require, directly or indirectly, estimation of p0 and p1, in which case alternative procedures,

such as minimax classification (see Section 2.6.1) need to be employed; an example of this will be

seen in Chapter 4. Secondly, it will a↵ect population-wide average performance metrics, such as the

expected classification error rates. Under a separate sampling restriction, the expected error rate is

given by

µn0,n1 = E["n | N = n0] = P (n(X) 6= Y | N = n0) . (3.27)

This is in general di↵erent, and sometimes greatly so, from the unconstrained expected error rate

µn. Failure to account for the sampling mechanism used to acquire the data can have practical

negative consequences in the analysis of performance of classification algorithms, and even in the

accuracy of the classifiers themselves.

3.6. BIBLIOGRAPHICAL NOTES 63

3.6 Bibliographical Notes

Tibshirani et al. [2002] proposed the “nearest-shrunken centroids” algorithm, a popular version of the

nearest-centroid classification rule for high-dimensional gene-expression data, where the class means

are estimated by “shrunken centroids,” i.e., regularized sample means estimators driven towards

zero (this resembles the LASSO, to be discussed in Chapter 11, also proposed by Tibshirani et al.

[2002]).

Glick [1973] gave a general (distribution-dependent) bound on the rate of convergence of E["n � "⇤]

to zero for the discrete histogram rule. This does not contradict Theorem 3.3 since the bound is

distribution-dependent.

The equivalence of consistent and strongly consistent rules for “well-behaved” classification rules is

discussed in Devroye et al. [1996].

Wolpert [2001] proved well-known “no-free lunch” theorems for classification, though using a di↵er-

ent setting (random distributions and “out-of-sample” classification error).

The bootstrap was proposed by Efron [1979], while bagging was introduced by Breiman [1996].

boosting is a di↵erent ensemble approach where the di↵erent classifiers are trained sequentially,

instead of in parallel, and decisions made by early classifiers a↵ect decisions made by later classifiers

by means of weights assigned to the training points [Freund, 1990].

For an extensive treatment of the mixture vs. separate sampling issue, see McLachlan [1992]. This

topic is also discussed at length in Braga-Neto and Dougherty [2015]. For more on separate sampling

in biomedical studies, see Zolman [1993].

3.7 Exercises

3.1. Show that the expected classification error of the discrete histogram rule is given by:

E["n] = c1 +
bX

j=1

(c0pj�c1qj)
nX

k,l=0

k<l

k+ln

n!

k!l!(n� k � l)!
(c0pj)

k (c1qj)
l (1�c0pj�c1qj)

n�k�l (3.28)

Hint: first show that

E["n] =
bX

j=1

[c0pj P (Vj > Uj) + c1qj P (Uj � Vj)] . (3.29)

64 CHAPTER 3. SAMPLE-BASED CLASSIFICATION

3.2. For the discrete histogram rule with "⇤ = 0 and ties broken in the direction of class 0, show

that

E["n] < e�rn , (3.30)

for n = 1, 2, . . ., where r > 0 is given by

r = ln

✓
1

1� cs

◆
, (3.31)

with c = P (Y = 1) and s = min{sj = P (X = xj
| Y = 1) s.t. sj 6= 0}. If ties are broken in

the direction of class 1, then the same result holds, with Y = 1 replaced by Y = 0 everywhere.

Hint: use (3.29) and the fact that the distributions {pj} and {qj} do not overlap if "⇤ = 0.

(Indeed, the only source of error in this case comes from tie-breaking over empty cells.)

3.3. A classification rule is called smart if the sequence of expected classification errors {µn;n =

1, 2, . . .} is nonincreasing for any feature-label distribution PX,Y . This expresses the natural

requirement that, as the sample size increases, the expected classification error should never

increase, regardless of the feature-label distribution.

(a) Consider a simple univariate classification rule such that n(x) = Ix>0 if
P

n

i=1
IXi>0,Yi=1 >P

n

i=1
IXi>0,Yi=0, otherwise n(x) = Ix0 (this classifier assigns to x the majority label

among the training points that have the same sign as x). Show that this classification

rule is smart.

(b) Show that the nearest-neighbor classification rule is not smart.

Hint: consider the univariate feature-label distribution such that (X,Y) is equal to (0, 1)

with probability p < 1/5 and is equal to (Z, 0) with probability 1 � p, where Z is a

uniform random variable on the interval [�1000, 1000]. Now compute E["1] and E["2].

(This example is due to Devroye et al. [1996].)

3.4. (No super classification rule.) Show that for every classification rule n, there is another

classification rule 0
n, with classification error "0n, and a feature-label distribution PX,Y (with

"⇤ = 0) such that

E["0n] < E["n] , for all n. (3.32)

Hint: Find a feature-label distribution PX,Y such that X is concentrated over a finite number

of points over Rd and Y is a deterministic function of X.

3.5. In the standard sampling case, P (Yi = 0) = p0 = P (Y = 0) and P (Yi = 1) = p1 = P (Y = 1),

for i = 1, . . . , n. Show that in the separate sampling case (see Section 3.5.2) we have instead

P (Yi = 0 | N0 = n0) =
n0

n
and P (Yi = 1 | N0 = n0) =

n1

n
, (3.33)

for i = 1, . . . , n.

Hint: Under the restriction N0 = n0, only the order of the labels Y1, . . . , Yn may be random.

Thus, f(Y1, . . . , Yn | N0 = n0) is a discrete uniform distribution over all
�
n

n0

�
possible orderings.

3.8. PYTHON ASSIGNMENTS 65

3.8 Python Assignments

3.6. Using the synthetic data model in Section A8.1 for the homoskedastic case with µ0 = (0, . . . , 0),

µ1 = (1, . . . , 1), P (Y = 0) = P (Y = 1), and k = d (independent features), generate a large

number (e.g., M = 1000) of training data sets for each sample size n = 20 to n = 100, in steps

of 10, with d = 2, 5, 8, and � = 1. Obtain an approximation of the expected classification

error E["n] of the nearest centroid classifier in each case by averaging "n, computed using the

exact formula (3.13), over the M synthetic training data sets. Plot E["n] as a function of the

sample size, for d = 2, 5, 8 (join the individual points with lines to obtain a smooth curve).

Explain what you see.

3.7. (Learning with an unreliable teacher.) Consider that the labels in the training data Sn =

{(X1, Y1), . . . , (Xn, Yn)} can be flipped with probability t < 1/2. That is, the observed data

is actually Sn = {(X1, Z1), . . . , (Xn, Zn)}, where Zi = 1 � Yi with probability p, otherwise

Zi = Yi, independently for each i = 1, . . . , n.

(a) Repeat Problem 3.6 with t = 0.1 to t = 0.5 in steps of 0.1. Plot in the same graph

E["n] as a function of n for each value of t plus the original result (t = 0), for d = 2, 5, 8.

Explain what you see.

(b) Here we try to recover from the unreliability of the labels by using a rejection procedure:

compute the distance d(Xi, µ̂j) from each training point to its ostensible class centroid; if

d(Xi, µ̂j) > 2�, then flip the corresponding label Zi, otherwise accept the label. Update

the centroid after each flip (this means that the order in which you go through the data

may change the result). Repeat item (a) with the correction procedure and compare the

results.

Chapter 4

Parametric Classification

“But the real glory of science is

that we can find a way of thinking

such that the law is evident.”
– Richard Feynman, The Feynman

Lectures on Physics, 1965.

In this chapter and the next, we discuss simple classification rules that are based on estimating the

feature-label distribution from the data. If ignorance about the distribution is confined to a few nu-

merical parameters, then these algorithms are called parametric classification rules. After presenting

the general definition of a parametric classification rule, we discuss the important Gaussian discrim-

inant case, including Linear and Quadratic Discriminant Analysis and their variations, and then

logistic classification is examined. Additional topics include an extension of Gaussian discriminant

analysis, called Regularized Discriminant Analysis, and Bayesian parametric classification.

4.1 Parametric Plug-in Rules

In the parametric approach, we assume that knowledge about the feature-label distribution is coded

into a family of probability density functions {p(x | ✓) | ✓ 2 ⇥ ✓ Rm
}, such that class-conditional

densities are p(x | ✓⇤
0) and p(x | ✓⇤

1), for “true” parameter values ✓⇤
0,✓

⇤
1 2 Rm. Let ✓0,n and ✓1,n be

estimators of ✓⇤
0 and ✓⇤

1 based on the sample data Sn = {(X1, Y1), . . . , (Xn, Yn)}. The parametric

plug-in sample-based discriminant is obtained by plugging ✓0,n and ✓1,n in the expression for the

optimal discriminant in (2.27):

Dn(x) = ln
p(x | ✓1,n)

p(x | ✓0,n)
. (4.1)

67© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_4

https://doi.org/10.1007/978-3-030-27656-0_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_4&domain=pdf

68 CHAPTER 4. PARAMETRIC CLASSIFICATION

A parametric plug-in classifier results from plugging this in the Bayes classifier formula in (2.26):

 n(x) =

8
<

:
1 , Dn(x) > kn,

0 , otherwise.
(4.2)

Example 4.1. Consider the exponential family of densities (see Exercise 2.11):

p(x | ✓) = ↵(✓)�(x) exp

kX

i=1

⇠i(✓)�i(x)

!
. (4.3)

It is easy to see that the sample-based discriminant is given by

Dn(x) =
kX

i=1

[⇠i(✓1,n)� ⇠i(✓0,n)]�i(x) + ln
↵(✓1,n)

↵(✓0,n)
. (4.4)

In particular, the discriminant does not depend on �(x). This highlights the fact that only the

discriminatory information in the class-conditional densities is relevant for classification. ⇧

There are a few choices for obtaining the threshold kn, in rough order of preference:

(1) If the true prevalences c0 = P (Y = 0) and c1 = P (Y = 1) are known (e.g., from public

health records in the case of disease classification), one should use the optimal threshold value

k⇤ = ln c0/c1, as given by (2.28).

(2) If c0 and c1 are not known, but the training sample size is moderate to large and sampling is

random (i.i.d.), then, following (2.28), one can use the estimate

kn = ln
N0/n

N1/n
= ln

N0

N1

, (4.5)

where N0 =
P

n

i=1
IYi=0 and N1 =

P
n

i=1
IYi=1 are the class-specific sample sizes.

(3) If c0 and c1 are not known, and the sample size is small or the sampling is not random (e.g.,

see Section 3.5.2), then one could use the minimax approach (see Section 2.6.1) to obtain kn.

(4) Vary kn and search for the best value using error estimation methods (see Chapter 7).

(5) In some applications, the sample size may be small due to the cost of labeling the data,

but there may be an abundance of unlabeled data (e.g., this is the case in many imaging

applications). Assuming that the unlabeled data is an i.i.d. sample from the same distribution

as the training data, a method for estimating c0 and c1, and thus kn, is discussed in Exercise 4.1.

4.2. GAUSSIAN DISCRIMINANT ANALYSIS 69

The method in item (4) above produces an estimate a Receiver Operating Characteristic (ROC)

curve (see Section 2.6.1). For many classification rules, it is not as straightforward to build a ROC;

this is an advantage of the parametric classifier in (4.2)

Another method to obtain parametric plug-in classifiers is to assume that the posterior-probability

function ⌘(x | ✓⇤) is a member of a parametric family {⌘(x | ✓) | ✓ 2 ⇥ ✓ Rm
}. A classifier results

from plugging an estimator ✓n of ✓⇤ in the Bayes classifier formula in (2.15):

 n(x) =

8
<

:
1, ⌘(x | ✓n) >

1

2
,

0, otherwise.
(4.6)

Notice that this approach avoids dealing with multiple parameters ✓⇤
0 and ✓⇤

1 as well as the choice

of the discriminant threshold kn. The disadvantage is that in practice it is often easier to model the

class-conditional densities of a problem than the posterior-probability function directly. We will see

in the next sections examples of both parametric approaches.

4.2 Gaussian Discriminant Analysis

The most important class of parametric classification rules correspond to the choice of multivariate

Gaussian densities parametrized by the mean vector µ and covariance matrix⌃:

p(x | µ,⌃) =
1p

(2⇡)d det(⌃)
exp


�
1

2
(x� µ)T⌃�1(x� µ)

�
. (4.7)

This case is referred to as Gaussian Discriminant Analysis. It is the sample-based plug-in version of

the optimal Gaussian case discussed in Section 2.5. The parametric discriminant in (4.2) corresponds

to plugging in estimators (µ̂0, ⌃̂0) and (µ̂1, ⌃̂1)1 for the true parameters (µ0,⌃0) and (µ1,⌃1) in

the expression for the optimal discriminant in (2.43):

Dn(x) =
1

2
(x� µ̂0)

T ⌃̂�1

0
(x� µ̂0)�

1

2
(x� µ̂1)

T ⌃̂�1

1
(x� µ̂1) +

1

2
ln

det(⌃̂0)

det(⌃̂1)
. (4.8)

Di↵erent assumptions about the parameters (µ0,⌃0) and (µ1,⌃1) lead to di↵erent classification

rules, which we examine next.

1
We employ in this case the classical statistical notation µ̂, ⌃̂, instead of µn, ⌃n.

70 CHAPTER 4. PARAMETRIC CLASSIFICATION

4.2.1 Linear Discriminant Analysis

This is the sample-based version of the homoskedastic Gaussian case in Section 2.5. The maximum-

likelihood estimators of the mean vectors are given by the sample means:

µ̂0 =
1

N0

nX

i=1

XiIYi=0 and µ̂1 =
1

N1

nX

i=1

XiIYi=1 , (4.9)

where N0 =
P

n

i=1
IYi=0 and N1 =

P
n

i=1
IYi=1 are the class-specific sample sizes. Under the ho-

moskedastic assumption that⌃ 0 = ⌃1 =⌃, the maximum likelihood estimator of⌃is

⌃̂ML =
N0

n
⌃̂ML

0 +
N1

n
⌃̂ML

1 , (4.10)

where

⌃̂ML

0 =
1

N0

nX

i=1

(Xi � µ̂0)(Xi � µ̂0)
T IYi=0 , (4.11)

⌃̂ML

1 =
1

N1

nX

i=1

(Xi � µ̂1)(Xi � µ̂1)
T IYi=1 . (4.12)

In order to obtain unbiased estimators, it is usual to consider the sample covariance estimators

⌃̂0 = (N0/N0 � 1)⌃̂ML

0
, ⌃̂1 = (N1/N1 � 1)⌃̂ML

1
, and ⌃̂ = n/(n� 2)⌃̂ML, so that one can write

⌃̂ =
(N0 � 1)⌃̂0 + (N1 � 1)⌃̂1

n� 2
. (4.13)

This estimator is known as the pooled sample covariance matrix. It reduces to 1

2
(⌃̂0+⌃̂1) if N0 = N1,

i.e., if the sample is balanced.

The LDA discriminant is obtained by substituting the pooled sample covariance matrix ⌃̂for ⌃̂0

and ⌃̂1 in (4.8), which leads to

DL,n(x) = (µ̂1 � µ̂0)
T ⌃̂�1

✓
x�

µ̂0 + µ̂1

2

◆
. (4.14)

The LDA classifier is then given by (4.2), with Dn = DL,n. This discriminant DL,n is also known

as Anderson’s W statistic.

Similarly as in the homoskedastic Gaussian case in Section 2.5, the LDA classifier produces a hy-

perplane decision boundary, determined by the equation aTnx+ bn = kn, where

an = ⌃̂�1(µ̂1 � µ̂0) ,

bn = (µ̂0 � µ̂1)
T ⌃̂�1

✓
µ̂0 + µ̂1

2

◆
.

(4.15)

4.2. GAUSSIAN DISCRIMINANT ANALYSIS 71

It was shown in Section 2.6.1 that the minimax threshold for the homoskedastic Gaussian case is

kmm = 0. Accordingly, if the true prevalences P (Y = 0) and P (Y = 1) are not known, and the

sample size is small or the sampling is nonrandom, a common choice of threshold for LDA is kn = 0.

(See the discussion on the choice of threshold in Section 4.1.) In that case, the decision hyperplane

passes through the midpoint x̂m = (µ̂0 + µ̂1)/2 between the sample means.

Estimation of the full pooled sample covariance matrix ⌃̂involves d+ d(d� 1)/2 parameters (since

the covariance matrix is symmetric). In small-sample cases, where the number of training points

n is small compared to the dimensionality d, this may cause problems. If d approaches n, large

eigenvalues of⌃tend to be overestimated, while small eigenvalues of⌃tend to be underestimated.

The latter fact means that ⌃̂becomes nearly singular, which renders its computation numerically

intractable. The following variants of LDA, ordered in terms of increasing restrictions on the estima-

tor of the pooled covariance matrix⌃, may perform better than the standard LDA in small-sample

cases.

(1) Diagonal LDA: The estimator of⌃is constrained to be a diagonal matrix ⌃̂D. The diagonal

elements are the univariate pooled sample variances along each dimension, i.e.:

(⌃̂D)jj = (⌃̂)jj , (4.16)

with (⌃̂D)jk = 0 for j 6= k.

(2) Nearest-Mean Classifier (NMC): The estimator of⌃is constrained to be a diagonal matrix ⌃̂M

with equal diagonal elements. The common value is the sample variance across all dimensions:

(⌃̂M)jj = �̂2 =
dX

k=1

(⌃̂)kk , (4.17)

with (⌃̂M)jk = 0 for j 6= k. From the expression of an in (4.15), it is clear that the decision

boundary is perpendicular to the line joining the sample means. Furthermore, the term 1/�̂2

appears in both an and bn. With the choice kn = 0, this term drops out and the resulting

classifier does not depend on �̂ (which need not be estimated); moreover, the classifier assigns

to a test point x the label of the sample mean closest to x. Only the sample means need to

be estimated in this case.

(3) Covariance Plug-In. If⌃is assumed to be known or can be guessed, it can be used in place

of ⌃̂in (4.14). As in the case of the MNC, only the sample means need to be estimated.

Other such shrinkage estimators of⌃exist to balance the degrees of freedom of the model with

small sample sizes; see the Bibliographical Notes.

72 CHAPTER 4. PARAMETRIC CLASSIFICATION

Example 4.2. The training data in a classification problem is:

Sn = {((1, 2)T , 0), ((2, 2)T , 0), ((2, 4)T , 0), ((3, 4)T , 0), ((4, 5)T , 1), ((6, 4)T , 1), ((6, 6)T , 1), ((8, 5)T , 1)}.

Assuming kn = 0, we obtain the LDA, DLDA and NMC decision boundaries below. First, we

compute the sample estimates:

µ̂0 =
1

4

 "
1

2

#
+

"
2

2

#
+

"
2

4

#
+

"
3

4

#!
=

"
2

3

#
,

µ̂1 =
1

4

 "
4

5

#
+

"
6

4

#
+

"
6

6

#
+

"
8

5

#!
=

"
6

5

#
,

⌃̂0 =
1

3

 "
�1

�1

#
[�1 � 1] +

"
0

�1

#
[0 � 1] +

"
0

1

#
[0 1] +

"
1

1

#
[1 1]

!
=

2

3

"
1 1

1 2

#
,

⌃̂1 =
1

3

 "
�2

0

#
[�2 0] +

"
0

�1

#
[0 � 1] +

"
0

1

#
[0 1] +

"
2

0

#
[2 0]

!
=

2

3

"
4 0

0 1

#
,

⌃̂ =
1

2

⇣
⌃̂0 + ⌃̂1

⌘
=

1

3

"
5 1

1 3

#
) ⌃̂�1 =

3

14

"
3 �1

�1 5

#
.

(4.18)

The 2-dimensional LDA decision boundary is given by an,1x1 + an,2x2 + bn = 0, where
"
an,1

an,2

#
= ⌃̂�1(µ̂1 � µ̂0) =

3

14

"
3 �1

�1 5

#"
4

2

#
=

3

7

"
5

3

#
,

bn = (µ̂0 � µ̂1)
T ⌃̂�1

✓
µ̂0 + µ̂1

2

◆
=

3

14
[�4 � 2]

"
3 �1

�1 5

#"
4

4

#
= �

96

7
.

(4.19)

Thus, the LDA decision boundary is given by 5x1 + 3x2 = 32. On the other hand,⌃ D is obtained

from⌃by zeroing the o↵-diagonal elements, so that

⌃̂D =
1

3

"
5 0

0 3

#
) ⌃̂�1

D
=

1

5

"
3 0

0 5

#
. (4.20)

The DLDA decision boundary is given by cn,1x1 + cn,2x2 + dn = 0, where
"
cn,1

cn,2

#
= ⌃̂�1

D
(µ̂1 � µ̂0) =

1

5

"
3 0

0 5

#"
4

2

#
=

2

5

"
6

5

#
,

dn = (µ̂0 � µ̂1)
T ⌃̂�1

✓
µ̂0 + µ̂1

2

◆
=

1

5
[�4 � 2]

"
3 0

0 5

#"
4

4

#
= �

88

5
.

(4.21)

Thus, the DLDA decision boundary is given by 6x1+5x2 = 44. As for the NMC decision boundary,

it is given by en,1x1 + en,2x2 + fn = 0, where
"
en,1

cn,2

#
= µ̂1 � µ̂0 =

"
4

2

#
, (4.22)

4.2. GAUSSIAN DISCRIMINANT ANALYSIS 73

Figure 4.1: Sample data and linear decision boundaries in Example 4.2.

dn = (µ̂0 � µ̂1)
T

✓
µ̂0 + µ̂1

2

◆
= [�4 � 2]

"
4

4

#
= �24 . (4.23)

Thus, the NMC decision boundary is given by 2x1 + x2 = 12.

Figure 4.1 displays the training data with superimposed LDA, DLDA, and NMC decision boundaries.

We can see that, as a result of the choice kn = 0, all three decision boundaries go through the

midpoint between the two class means; however, only the NMC decision boundary is perpendicular

to the line joining the two sample means. ⇧

4.2.2 Quadratic Discriminant Analysis

This is the sample-based version of the heteroskedastic Gaussian case in Section 2.5. The QDA

discriminant is simply the general discriminant in (4.8) using the sample means µ̂0 and µ̂1 and the

sample covariance matrices ⌃̂0 and ⌃̂1 introduced in the previous subsection.

It is easy to show that the QDA classifier decision boundary produces a hyperplane decision bound-

74 CHAPTER 4. PARAMETRIC CLASSIFICATION

ary, determined by the equation xTAnx+ bTnx+ cn = kn, where

An = �
1

2

⇣
⌃̂�1

1
� ⌃̂�1

0

⌘

bn = ⌃̂�1

1
µ̂1 � ⌃̂

�1

0
µ̂0

cn = �
1

2

⇣
µ̂T

1 ⌃̂
�1

1
µ̂1 � µ̂T

0 ⌃̂
�1

0
µ̂0

⌘
�

1

2
ln

|⌃̂1|

|⌃̂0|

(4.24)

Clearly, the LDA parameters in (4.15) result from (4.24) in the case ⌃̂0 = ⌃̂1 = ⌃̂. The optimal QDA

decision boundaries are hyperquadric surfaces in Rd, as discussed in Section 2.5.2: hyperspheres,

hyperellipsoids, hyperparaboloids, hyperhyperboloids, and single or double hyperplanes. Di↵erently

than LDA, the decision boundary does not generally pass through the midpoint between the class

means, even if the classes are equally-likely. As in the case of LDA, corresponding diagonal, spherical,

and covariance plug-in restrictions, and other shrinkage constraints, can be placed on the covariance

matrix estimators ⌃̂0 and ⌃̂1 in order to cope with small sample sizes.

Example 4.3. The training data in a classification problem is:

Sn = {((1, 0)T, 0), ((0, 1)T, 0), ((�1, 0)T, 0), ((0,�1)T, 0), ((2, 0)T, 1), ((0, 2)T, 1), ((�2, 0)T, 1), ((0,�2)T, 1)}.

Assuming kn = 0, we obtain the QDA decision boundary below. As in Example 4.2, we first compute

the sample estimates:

µ̂0 =
1

4

 "
1

0

#
+

"
0

1

#
+

"
�1

0

#
+

"
0

�1

#!
=

"
0

0

#
,

µ̂1 =
1

4

 "
2

0

#
+

"
0

2

#
+

"
�2

0

#
+

"
0

�2

#!
=

"
0

0

#
,

⌃̂0 =
1

3

 "
1

0

#
[1 0] +

"
0

1

#
[0 1] +

"
�1

0

#
[�1 0] +

"
0

�1

#
[0 � 1]

!
=

2

3
I2) ⌃̂�1

0
=

3

2
I2 ,

⌃̂1 =
1

3

 "
2

0

#
[2 0] +

"
0

2

#
[0 2] +

"
�2

0

#
[�2 0] +

"
0

�2

#
[0 � 2]

!
=

8

3
I2) ⌃̂�1

1
=

3

8
I2 ,

(4.25)

The 2-dimensional QDA decision boundary is given by an,11x21 + 2an,12x1x2 + an,22x22 + bn,1x1 +

bn,2x2 + cn = 0, where
"
an,11 an,12

an,12 an,22

#
= �

1

2

⇣
⌃̂�1

1
� ⌃̂�1

0

⌘
=

9

16

"
1 0

0 1

#
,

"
bn,1

bn,2

#
= ⌃̂�1

1
µ̂1 � ⌃̂

�1

0
µ̂0 =

"
0

0

#
,

cn = �
1

2

⇣
µ̂T

1 ⌃̂
�1

1
µ̂1 � µ̂T

0 ⌃̂
�1

0
µ̂0

⌘
�

1

2
ln

|⌃̂1|

|⌃̂0|
= �2 ln 2 .

(4.26)

4.3. LOGISTIC CLASSIFICATION 75

Figure 4.2: Sample data and quadratic decision boundary in Example 4.3.

Thus, the QDA decision boundary is given by

9

16
x21 +

9

16
x22 � 2 ln 2 = 0) x21 + x22 =

32

9
ln 2 , (4.27)

which is the equation of a circle with center at the origin and radius equal to 4
p
2 ln 2/3 ⇡ 1.57.

Figure 4.2 displays the training data with the superimposed QDA decision boundary. This classifier

is completely determined by the di↵erent variances between the classes, since the class means co-

incide. Obviously, neither LDA, DLDA or NMC could achieve any degree of discrimination in this

case. In fact, no linear classifier (i.e., a classifier with a line for a decision boundary) could do a

good job. This is an example of a nonlinearly-separable data set. ⇧

4.3 Logistic Classification

Logistic classification is an example of the second kind of parametric classification rule discussed in

Section 4.1. First, define the “logit” transformation

logit(p) = ln

✓
p

1� p

◆
, 0 < p < 1 , (4.28)

76 CHAPTER 4. PARAMETRIC CLASSIFICATION

Figure 4.3: Univariate logistic curve with parameters a > 0 and b.

which maps the [0, 1] interval onto the real line. In logistic classification, the posterior-probability

function is linear in logit space, with parameters (a, b):

logit(⌘(x | a, b)) = ln

✓
⌘(x | a, b)

1� ⌘(x | a, b)

◆
= aTx+ b . (4.29)

Note that the logit transformation is necessary since a probability, which must be bounded between

0 and 1, could not be modeled by a linear function otherwise.

Inverting (4.29) yields

⌘(x | a, b) =
ea

Tx+b

1 + eaTx+b
=

1

1 + e�(aTx+b)
. (4.30)

This function is called the logistic curve with parameters (a, b). The logistic curve is strictly in-

creasing, constant, or strictly decreasing in the direction of xj according to whether aj is positive,

zero, or negative, respectively. See Figure 4.3 for a univariate example with parameter a > 0 (so

the curve is strictly increasing).

Estimates an and bn of the logistic curve coe�cients are typically obtained by maximizing the

conditional log-likelihood L(a, b | Sn) of observing the data Sn (with the training feature vectors

X1, . . . ,Xn assumed fixed) under the parametric assumption ⌘(x | a, b):

L(a, b | Sn) = ln

nY

i=1

P (Y = Yi | X = Xi)

!
=

nX

i=1

ln
�
⌘(Xi | a, b)

Yi(1� ⌘(Xi | a, b))
1�Yi

�

=
nX

i=1

Yi ln(1 + e�(a
TXi+b)) + (1� Yi) ln(1 + ea

TXi+b)

(4.31)

This function is strictly concave so that the solution (an, bn), if it exists, is unique and satisfies the

4.4. ADDITIONAL TOPICS 77

equations:

@L

aj
(an, bn) =

nX

i=1

Yi
e�(aT

nXi+bn)an,j
1 + e�(aT

nXi+bn)
+ (1� Yi)

ea
T
nXi+bnan,j

1 + eaT
nXi+bn

=
nX

i=1

Yi ⌘(Xi |�an,�bn) an,j + (1� Yi) ⌘(Xi | an, bn) an,j = 0 , j = 1, . . . , d ,

@L

b
(an, bn) =

nX

i=1

Yi
e�(aT

nXi+bn)

1 + e�(aT
nXi+bn)

+ (1� Yi)
ea

T
nXi+bn

1 + eaT
nXi+bn

=
nX

i=1

Yi ⌘(Xi |�an,�bn) + (1� Yi) ⌘(Xi | an, bn) = 0 .

(4.32)

This is a system of d + 1 highly nonlinear equations, which must be solved by iterative numerical

methods.

The logistic classifier is then obtained by plugging in the estimates an and bn into (4.30) and (4.6):

 n(x) =

8
<

:
1,

1

1 + e�(aT
nx+bn)

>
1

2
,

0, otherwise,
=

8
<

:
1, aTnx+ bn > 0 ,

0, otherwise.
(4.33)

This reveals that, perhaps surprisingly, the logistic classifier is a linear classifier, with a hyperplane

decision boundary determined by the parameters an and bn.

4.4 Additional Topics

4.4.1 Regularized Discriminant Analysis

The NMC, LDA, and QDA classification rules discussed in Section 4.2 can be combined to obtain

hybrid classification rules with intermediate characteristics.

In particular, one of the problems faced in parametric classification is the estimation of the param-

eters. When the sample size is small compared to the number of dimensions, estimation becomes

poor and so do the designed classifiers. For example, ⌃̂becomes a poor estimator of⌃under small

sample size: small eigenvalues of⌃tend to be underestimated, while large eigenvalues of⌃tend to

be overestimated. It is also possible that all eigenvalues of ⌃̂are too small and the matrix cannot

be inverted.

Among the three rules, QDA demands the most data, followed by LDA, and then NMC. LDA can

be seen as an attempt to regularize or shrink QDA by pooling all the available data to estimate a

78 CHAPTER 4. PARAMETRIC CLASSIFICATION

↵ = 0 and � = 0) QDA

↵ = 1 and � = 0) LDA

↵ = 1 and � = 1) NMC

Figure 4.4: Parameter space for Regularized Discriminant Analysis.

single sample covariance matrix. The shrinkage from QDA to LDA can be controlled by introducing

a parameter 0  ↵  1 and setting

⌃̂R

i (↵) =
Ni(1� ↵)⌃̂i + n↵⌃̂

Ni(1� ↵) + n↵
, (4.34)

for i = 0, 1, where ⌃̂is the pooled sample covariance matrix, and ⌃̂i and Ni are the individual

sample covariance matrices and sample sizes. Notice that ↵ = 0 leads to QDA, while ↵ = 1 leads

to LDA. Intermediate values 0 < ↵ < 1 produce hybrid classification rules between QDA and LDA.

To get more regularization while not overly increasing bias, one can further shrink ⌃̂R

i
(↵) towards its

average eigenvalue multiplied by the identity matrix, by introducing a further parameter 0  �  1

(this has the e↵ect of decreasing large eigenvalues and increasing small eigenvalues, thereby o↵setting

the biasing e↵ect mentioned earlier):

⌃̂R

i (↵,�) = (1� �)⌃̂R

i (↵) + �
trace(⌃̂i(↵))

d
Id , (4.35)

for i = 0, 1. Note that ↵ = � = 1 leads to NMC. Hence, this rule ranges from QDA to LDA to

NMC, and intermediate cases, depending on the selected values of ↵ and �. This is called regularized

discriminant analysis. See Figure 4.4 for an illustration. The “unknown” vertex ↵ = 0 and � = 1

corresponds to ⌃̂R

0
= m0Id and ⌃̂R

1
= m1Id, where mi = trace(⌃̂i)/d � 0, for i = 0, 1. It can

be shown that this leads to a spherical decision boundary for m0 6= m1 (m0 = m1 yields the plain

NMC): ����

����X �
m1µ̂0 �m0µ̂1

m1 �m0

����

����
2

=
m1m0

m1 �m0

✓
||µ̂1 � µ̂0||

2

m1 �m0

+ d ln
m1

m0

◆
. (4.36)

Each value of ↵ and � corresponds to a di↵erent classification rule. Therefore, these parameters are

not of the same kind as, for example, the means and covariance matrices in Gaussian discriminant

analysis. Picking the value of ↵ and � corresponds to picking a classification rule; this process is

called model selection (see Chapter 8).

4.4. ADDITIONAL TOPICS 79

*4.4.2 Consistency of Parametric Rules

It might be expected that if the estimators ✓0,n and ✓1,n are consistent, meaning that ✓0,n ! ✓⇤
0

and ✓1,n ! ✓⇤
1 in probability as n ! 1, and additionally the prior probabilities P (Y = 0) and

P (Y = 1) are known or can also be estimated consistently, then "n ! "⇤ in probability, i.e., the

corresponding parametric classification rule is consistent. This is indeed not the case, as additional

smoothness conditions are required. This is shown by the following example.

Example 4.4. Consider parametric classification with a family of univariate Gaussian distributions

specified by

p(x | ✓) =

8
<

:
N (✓, 1), ✓  1,

N (✓ + 1, 1), ✓ >1,
(4.37)

for ✓ 2 R. Assume that the class prior probabilities are known to be P (Y = 0) = P (Y = 1) = 1/2

and that the (unknown) true values of the parameters are ✓⇤
0
= �1 and ✓⇤

1
= 1. The Bayes error is

found using (2.53):

"⇤L = �

✓
�
|✓⇤

1
� ✓⇤

0
|

2

◆
= � (�1) ⇡ 0.1587 . (4.38)

A simple computation reveals that Dn(x) = ln p(x | ✓1,n)/p(x | ✓0,n) = anx + bn is a linear

discriminant, with parameters

an = (✓1,n � ✓0,n) + (I✓1,n>1� I✓0,n>1)

bn = �an

✓
✓0,n + ✓1,n

2
+

I✓0,n>1+ I✓1,n>1

2

◆ (4.39)

and the classification error is equal to (see Exercise 4.3):

"n =
1

2


�

✓
an✓0 + bn

|an|

◆
+ �

✓
�
an✓1 + bn

|an|

◆�
. (4.40)

The natural estimators ✓0,n and ✓1,n are the usual sample means. By the Law of Large Numbers

(see Thm. A.12), ✓0,n ! ✓⇤
0
= �1 and ✓1,n ! ✓⇤

1
= 1 as n ! 1, with probability 1. The function

I✓>1 is continuous at ✓⇤0 = �1, and this implies that I✓0,n>1 ! 0 with probability 1. However, I✓>1 is

not continuous at ✓⇤
1
= 1, and I✓1,n>1 does not converge, as lim inf I✓1,n>1 = 0 and lim sup I✓1,n>1 = 1

with probability one. In fact, since�is a continuous increasing function, it follows from (4.40) that,

with probability one,

lim inf "n =
1

2


�

✓
lim inf

an✓0 + bn
|an|

◆
+ �

✓
� lim inf

an✓1 + bn
|an|

◆�
= � (�1) = "⇤ ⇡ 0.1587 ,

(4.41)

but

lim sup "n =
1

2


�

✓
lim sup

an✓0 + bn
|an|

◆
+ �

✓
� lim sup

an✓1 + bn
|an|

◆�
= �

✓
�
1

2

◆
⇡ 0.3085 .

(4.42)

80 CHAPTER 4. PARAMETRIC CLASSIFICATION

As there are no subsequences along which there is convergence of I✓1,n>1, and thus of "n, with

probability one, it follows from Theorem A.9 that "n does not converge to "⇤ in probability either.

⇧

The trouble in the previous example is that the function p(x | ✓) is not continuous at ✓ = ✓1 for

any value of x 2 R. Without further ado, we have the following theorem on the consistency of

parametric classification rules.

Theorem 4.1. If the parametric class-conditional density function p(X | ✓) is continuous at the true

parameter values ✓⇤
0 and ✓⇤

1 almost everywhere in the measure of X, and if ✓0,n ! ✓⇤
0, ✓1,n ! ✓⇤

1,

and kn ! k⇤ in probability, then "n ! "⇤ in probability and the parametric classification rule given

by (4.2) is consistent.

Proof. Given x 2 X, if p(x | ✓) is continuous at ✓⇤
0 and ✓⇤

1 and ✓0,n

P
�! ✓⇤

0 and ✓1,n

P
�! ✓⇤

1, then

Dn(x) = ln
p(x | ✓1,n)

p(x | ✓0,n)

P
�! ln

p(x | ✓⇤
1)

p(x | ✓⇤
0)

= D⇤(x) , (4.43)

by the Continuous Mapping Theorem (see Thm. A.6). Now, the conditional classification error of

the parametric classifier (4.2) is given by

"[n | X = x] = P (Dn(X) > kn | X = x, Y = 0, Sn)P (Y = 0)

+ P (Dn(X)  kn | X = x, Y = 1, Sn)P (Y = 1)

= E[IDn(x)�kn>0 | X = x, Y = 0, Sn]P (Y = 0) + E[IDn(x)�kn0 | X = x, Y = 1, Sn]P (Y = 1)

P
�! E[ID⇤(x)�k⇤>0 | X = x, Y = 0]P (Y = 0) + E[ID⇤(x)�k⇤0 | X = x, Y = 1]P (Y = 1)

= P (D⇤(x)� k⇤ > 0 | X = x, Y = 0]P (Y = 0) + P (D⇤(x)� k⇤  0 | X = x, Y = 1]P (Y = 1)

= "[⇤
| X = x]

(4.44)

by the Bounded Convergence Theorem (see Thm. A.11), since IDn(x)�kn

P
�! ID⇤(x)�k. But since this

holds with probability one over X, another application of the Bounded Convergence Theorem gives

"n = E["[n | X]]
P
�! E["[⇤

| X]] = "⇤. ⇧

Note that the previous theorem includes the case where k⇤ = lnP (Y = 0)/P (Y = 1) is known (in

this case, set kn ⌘ k⇤). As an application, consider Gaussian Discriminant Analysis. In this case,

p(x | µ,⌃) is continuous at any values of x, µ, and⌃. Since the sample means are sample covariance

matrix estimators are consistent (e.g., see Casella and Berger [2002]), and using kn = lnN0/N1,

which is consistent under random sampling, it follows from Theorem 4.1 that the NMC, LDA,

DLDA, and QDA classification rules are consistent if their respective distributional assumptions

hold (consistency of the NMC was shown directly in Chapter 3).

4.4. ADDITIONAL TOPICS 81

More generally, the exponential density p(x | ✓) in (4.3) satisfies the conditions in Theorem 4.1 if

and only if the functions ↵ and ⇠i, for i = 1, . . . , k, are continuous at ✓⇤
0 and ✓⇤

1. Using consistent

estimators then leads to consistent classification rules.

If the parametric classification rule is instead specified as in (4.6), then a similar result to Theorem 4.1

holds. The proof of the following theorem is left as an exercise.

Theorem 4.2. If the parametric posterior-probability function ⌘(x | ✓) is continuous at the true

parameter value ✓⇤ almost everywhere in the measure of X, and if ✓n ! ✓⇤ in probability, then

"n ! "⇤ in probability and the parametric classification rule in (4.6) is consistent.

The logistic function ⌘(x | a, b) in (4.30) is clearly continuous at all values of a and b, for all values

of x 2 Rd. Furthermore, the maximum-likelihood estimators an and bn discussed in Section 4.3 are

consistent, in principle (if one ignores the approximation introduced in their numerical computa-

tion). Therefore, by Theorem 4.2, the logistic classification rule is consistent under the parametric

assumption (4.29).

4.4.3 Bayesian Parametric Rules

A Bayesian approach to estimation of the parameters leads to the Bayesian parametric classification

rules. These classification rules have found a lot of application (see the Bibliographical notes). They

allow the introduction of prior knowledge into the classification problem, by means of the “prior”

distributions of the parameters. Bayesian classification rules are particularly e↵ective in small-

sample and high-dimensional cases, even in the case where the priors are uninformative. Bayesian

statistics is a classical theory with a long history, to which we do not have space to do justice

here (but see the Bibliographical notes). In this Section, we will only provide a brief glimpse of its

application to parametric classification.

We still have a a family of probability density functions {p(x | ✓) | ✓ 2 ⇥ ✓ Rm
}. But now the true

parameter values ✓0 and ✓1 (note that we remove the star) are assumed to be random variables.

That means that there is a joint distribution p(✓0,✓1), which is called the prior distribution (or more

compactly, just “priors”). It is common to assume, as we will do here, that ✓0 and ✓1 are independent

prior to observing the data, in which case p(✓0,✓1) = p(✓0)p(✓1) and there are individual priors for

✓0 and ✓1. In what follows, we will assume for simplicity that c = P (Y = 1) is known (or can be

estimated accurately), but it is possible to include it as a Bayesian parameter as well.

The idea behind Bayesian inference is to update the prior distribution with the data Sn, using Bayes

82 CHAPTER 4. PARAMETRIC CLASSIFICATION

Theorem, to obtain the posterior distribution:

p(✓0,✓1 | Sn) =
p(Sn | ✓0,✓1)p(✓0,✓1)R

✓0,✓1
p(Sn | ✓0,✓1)p(✓0,✓1)d✓0d✓1

. (4.45)

The distribution

p(Sn | ✓0,✓1) = ⇧
n

i=1(1� c)1�yip(xi | ✓0)
1�yicyip(xi | ✓1)

yi (4.46)

is the likelihood of observing the data under the model specified by ✓0 and ✓1. By assumption, a

closed-form analytical expression exists to compute p(Sn | ✓0,✓1); this constitutes the parametric

(model-based) assumption in Bayesian statistics (some modern Bayesian approaches attempt to

estimate the likelihood from the data, see the Bibliographical notes). We note that the denominator

in (4.45) acts as a normalization constant (it is not a function of the parameters), and therefore is

often omitted by writing p(✓0,✓1 | Sn) / p(Sn | ✓0,✓1)p(✓0,✓1). In addition, it can be shown that

if ✓0 and ✓1 are assumed to be independent prior to observing Sn, they remain so afterwards, hence

p(✓0,✓1 | Sn) = p(✓0 | Sn)p(✓1 | Sn) (see Exercise 7.12).

Bayesian classification is based on the idea of computing predictive densities p0(x | Sn) and p1(x | Sn)

for each label by integrating out the parameters:

p0(x | Sn) =

Z

Rm
p(x | ✓0)p(✓0 | Sn)d✓0 and p1(x | Sn) =

Z

Rm
p(x | ✓1)p(✓1 | Sn)d✓1 . (4.47)

A sample-based discriminant can be defined in the usual way:

Dn(x) = ln
p1(x | Sn)

p0(x | Sn)
(4.48)

and the Bayesian classifier can be defined as

 n(x) =

8
<

:
1 , Dn(x) > ln c0

c1

0 , otherwise.
(4.49)

Example 4.5. The Gaussian case for Bayesian parametric classification has been extensively stud-

ied. We consider here the multivariate Gaussian parametric family p(x | µ,⌃) in (4.7), where the

class means µ0 and µ1 and class covariance matrices⌃ 0 and⌃ 1 are general and unknown, with

“vague” priors p(µi) / 1 and p(⌃�1) / |⌃i|
d�1
2 (note that the prior is defined on⇤=⌃ �1, also

known as the “precision matrix”). These priors are improper, that is, they do not integrate to 1 as

a usual density. They are also “uninformative,” meaning roughly that they are not biased towards

any particular value of the parameters. Indeed, in the case of the means, the priors are “uniform”

over the entire space Rd. However, the posterior densities obtained from these priors are proper.

It can be shown that the predictive densities in this case are given by

pi(x | Sn) = tNi�d

✓
x | µ̂i,

N2

i
� 1

Ni � d
⌃̂i

◆
, for i = 0, 1 , (4.50)

4.5. BIBLIOGRAPHICAL NOTES 83

where µ̂0, µ̂1, ⌃̂0, and ⌃̂1 are the usual sample means and sample covariance matrices, and t⌫(a, B)

is a multivariate t density with µ degrees of freedom:

t⌫(a, B) =
�(⌫+d

2
)

�(⌫
2
)(⌫⇡)

p
2 |B|

1
2


1 +

1

⌫
(x� a)TB�1(x� a)

�� ⌫+d
2

, (4.51)

where�(t) is the Gamma function (see Section A1). It can be seen that the decision boundary for

this classifier is polynomial. In fact, it can be shown that it reduces to a quadratic decision boundary,

as in the ordinary heteroskedastic Gaussian case, under further assumptions on the parameters. ⇧

4.5 Bibliographical Notes

Linear Discriminant Analysis has a long history, having been originally based on an idea by Fisher

[1936] (the “Fisher’s discriminant”, see Chapter 9), developed by Wald [1944], and given the form

known today by Anderson [1951]. There is a wealth of results on the properties of the classification

error of LDA under Gaussian class-conditional densities. For example, the exact distribution and

expectation of the true classification error were determined by John [1961] in the univariate case,

and in the multivariate case by assuming that the covariance matrix⌃is known in the formula-

tion of the discriminant. The case when⌃is not known and the sample covariance matrix S is

used in discrimination is very di�cult, and John [1961] gave only an asymptotic approximation to

the distribution of the true error. In publications that appeared in the same year, Bowker [1961]

provided a statistical representation of the LDA discriminant, whereas Sitgreaves [1961] gave the

exact distribution of the discriminant in terms of an infinite series when the numbers of samples in

each class are equal. Several classical papers have studied the distribution and moments of the true

classification error of LDA under a parametric Gaussian assumption, using exact and approximate

methods [Harter, 1951; Sitgreaves, 1951; Bowker and Sitgreaves, 1961; Teichroew and Sitgreaves,

1961; Okamoto, 1963; Kabe, 1963; Hills, 1966; Raudys, 1972; Anderson, 1973; Sayre, 1980]. McLach-

lan [1992] and Anderson [1984] provide extensive surveys of these methods, whereas Wyman et al.

[1990] provide a compact survey and numerical comparison of several of the asymptotic results in

the literature on the true error for Gaussian discrimination. A survey of similar results published

in the Russian literature has been given by [Raudys and Young, 2004, Section 3]. McFarland and

Richards [2001, 2002] gave a statistical representation of the QDA discriminant in the multivariate

heteroskedastic case.

In addition, to nearest-mean classification and diagonal LDA, other approaches based on shrinkage

of the covariance matrix include the cases where 1) the matrix has constant diagonal elements �̂2 and

constant o↵-diagonal (constant covariance) elements ⇢̂, 2) the diagonal elements �̂2
i
are di↵erent and

the o↵-diagonal elements are nonzero but are not estimated, being given by the “perfect” covariance

84 CHAPTER 4. PARAMETRIC CLASSIFICATION

�̂i�̂j ; 3) the diagonal elements �̂2
i
are di↵erent but the o↵-diagonal elements are constant and equal

to ⇢̂. See Schafer and Strimmer [2005] for for an extensive discussion of such shrinkage methods.

In extreme high-dimensional cases, shrinkage of the sample means themselves might be useful, as

is the case of the nearest-shrunken centroid method proposed by Tibshirani et al. [2002], already

mentioned in the Bibliographical Notes section of Chapter 3.

The covariance plug-in classifier is due to John [1961]. It is called John’s Linear Discriminant in the

book by Braga-Neto and Dougherty [2015].

For details on the numerical solution of the system of equations (4.32), see Section 12.6.4 of Casella

and Berger [2002].

The classical reference on bayesian statistics is Je↵reys [1961]. A modern, comprehensive treatment

is found in Robert [2007]. According to McLachlan [1992], citing Aitchison and Dunsmore [1975],

Bayesian parametric classification was proposed for the first time by Geisser [1964], who studied

extensively the univariate and multivariate Gaussian cases, and stated that the idea of a Bayesian

predictive density goes back to Je↵reys [1961] and even, using a fiducial argument, to Fisher [1935].

Dalton and Dougherty [2013] showed that this approach, which they call the Optimal Bayesian

Classifier (OBC), is optimal in the sense of minimizing the posterior expected classification error

over the class of all models. See this latter reference for more details on Example 4.5; e.g., the

conditions under which the decision boundary of the Bayesian classifier becomes quadratic. Braga-

Neto et al. [2018] provide a survey of the application of Bayesian classification algorithms in a

number of problems in Bioinformatics.

4.6 Exercises

4.1. As discussed in Section 4.1, there are a few options for setting the threshold kn in (4.2). One

of them is to form estimates ĉ0 and ĉ1 from the data Sn and set kn = ln ĉ0/ĉ1. However, if the

data Sn are obtained under separate sampling, estimation of c0 and c1 is not possible, since the

data contain no information about them. Estimation of these probabilities is important also

in other contexts, such as determining disease prevalence. But suppose that a large amount

of unlabeled data Su
m = {Xn+1, . . . ,Xn+m} obtained by mixture sampling is available (this

is common in many applications), and let be a fixed classifier (e.g., it might be a classifier

trained on the original data Sn). Then the proportions R0,m and R1,m of points in Su
m assigned

by to classes 0 and 1 are estimators of c0 and c1, respectively.

4.6. EXERCISES 85

(a) Show that

E[R0,m] = c0(1� "0) + c1"
1 ,

E[R1,m] = c0"
0 + c1(1� "1) .

(4.52)

where
"0 = P ((X) = 1 | Y = 0) ,

"1 = P ((X) = 0 | Y = 1) .
(4.53)

Conclude that the estimators R0,m and R1,m are generally biased, unless the classifier

is perfect, or "1/"0 = c1/c0.

Hint: Notice that mR0,m and mR1,m are binomially distributed.

(b) Show that

Var(R0,m) = Var(R1,m) =
1

m
(c0(1� "0) + c1"

1)(c1(1� "1) + c0"
0) . (4.54)

(c) Now suppose that "0 and "1 are known or can be accurately estimated (estimation of "0

and "1 does not require knowledge of c0 and c1). Show that

c0,m =
R0,m � "1

1� "0 � "1
and c1,m =

R1,m � "0

1� "0 � "1
(4.55)

are unbiased estimators of c0 and c1, respectively, such that c1,m = 1�c0,m. Furthermore,

use the result of item (b) to show that c0,m and c1,m are consistent estimators of c0 and c1,

respectively, i.e., c0,m ! c0 and c1,m ! c1 in probability as m ! 1. This leads to a good

estimator ln c0,m/c1,m for the threshold kn in (4.2), provided that m is not too small.

Hint: First show that an unbiased estimator with an asymptotically vanishing variance

is consistent.

4.2. A common method to extend binary classification rules to K classes, K > 2, is the one-vs-one

approach, in which K(K�1) classifiers are trained between all pairs of classes, and a majority

vote of assigned labels is taken.

(a) Formulate a multiclass version of parametric plug-in classification using the one-vs-one

approach.

(b) Show that if the threshold kij,n between classes i and j is given by ln ĉj/ ln ĉi, then the

one-vs-one parametric classification rule is equivalent to the simple decision

 n(x) = arg max
k=1,...,K

ĉk p(x | ✓k,n) , x 2 Rd . (4.56)

(For simplicity, you may ignore the possibility of ties.)

(c) Applying the approach in items (a) and (b), formulate a multiclass version of Gaussian

discriminant analysis. In the case of multiclass NMC, with all thresholds equal to zero,

how does the decision boundary look like?

86 CHAPTER 4. PARAMETRIC CLASSIFICATION

4.3. Under the general Gaussian model p(x | Y = 0) ⇠ Nd(µ0,⌃0) and p(x | Y = 1) ⇠ Nd(µ1,⌃1),

the classification error "n = P (n(X) 6= Y) | Sn) of any linear classifier in the form

 n(x) =

8
<

:
1, aTnx+ bn > 0 ,

0, otherwise,
(4.57)

(examples discussed so far include LDA and its variants, and the logistic classifier) can be

readily computed in terms of�(the c.d.f. of a standard normal random variable), the classifier

parameters an and bn, and the distributional parameters c = P (Y = 1), µ0, µ1, ⌃0, and⌃ 1.

(a) Show that

"n = (1� c)�

aTnµ0 + bnp

aTn⌃0an

!
+ c�

�
aTnµ1 + bnp

aTn⌃1an

!
. (4.58)

Hint: the discriminant aTnx+ bn has a simple Gaussian distribution in each class.

(b) Compute the errors of the NMC, LDA, and DLDA classifiers in Example 4.2 if c = 1/2,

µ0 =

"
2

3

#
, µ1 =

"
6

5

#
, ⌃0 =

"
1 1

1 2

#
, and⌃ 1 =

"
4 0

0 1

#
. Which classifier does the best?

4.4. Even in the Gaussian case, the classification error of quadratic classifiers in general require

numerical integration for its computation. In some special simple cases, however, it is possible

to obtain exact solutions. Assume a two-dimensional Gaussian problem with P (Y = 1) = 1/2,

µ0 = µ1 = 0, ⌃0 = �2
0
I2, and⌃ 1 = �2

1
I2. For definiteness, assume that �0 < �1.

(a) Show that the Bayes classifier is given by

 ⇤(x) =

8
<

:
1, ||x|| > r⇤,

0, otherwise,
where r⇤ =

s

2

✓
1

�2
0

�
1

�2
1

◆�1

ln
�2
1

�2
0

. (4.59)

In particular, the optimal decision boundary is a circle of radius r⇤.

(b) Show that the corresponding Bayes error is given by

"⇤ =
1

2
�

1

2

�
�21/�

2

0 � 1
�
e�(1��2

0/�
2
1)

�1
ln�

2
1/�

2
0 . (4.60)

In particular, the Bayes error is a function only of the ratio of variances �2
1
/�2

0
, and

"⇤ ! 0 as �2
1
/�2

0
! 1.

Hint: Use polar coordinates to solve the required integrals analytically.

(c) Compare the optimal classifier to the QDA classifier in Example 4.3. Compute the error

of the QDA classifier and compare to the Bayes error.

4.7. PYTHON ASSIGNMENTS 87

4.5. (Detection of signal in noise.) Suppose that a (nonrandom) message s = (s1, . . . , sd) is to be

sent through a noisy channel. At time t = k, if the message is present, the receiver reads

Xk = s+ "k , (4.61)

otherwise, the receiver reads

Xk = "k , (4.62)

where "k ⇠ N (0,⌃) is a noise term (note that the noise can be correlated). The problem is

to detect whether there is a message at time t or there is only noise. Suppose that the first

n time points are used to “train” the receiver, e.g., by sending the message at t = 1, . . . , n/2

and nothing over t = n/2 + 1, . . . , n.

(a) Formulate this problem as a Linear Discriminant Analysis problem. Find the LDA de-

tector (write the LDA coe�cients in terms of the signal and the noise values).

(b) Find the LDA detection error, in terms of the classifier coe�cients and the true values

of s = (s1, . . . , sd) and⌃.

(c) Say as much as you can about the di�culty of the problem in terms of the values of

s = (s1, . . . , sd),⌃, and the training sample size n.

4.6. Consider the parametric classification rule in (4.6).

(a) Prove that

"n � "⇤  2E [|⌘(X | ✓n)� ⌘(X | ✓⇤)| | Sn] . (4.63)

Hint: Show that, given Sn,

"[n | X = x]� "[⇤
| X = x] = 2

����⌘(x | ✓⇤)�
1

2

���� I n(x) 6= ⇤(x)  2| ⌘(x | ✓n)� ⌘(x | ✓⇤)|,

(4.64)

then take expectation over X.

(b) Conclude that if ⌘(X | ✓) is continuous at ✓⇤, in the sense that ✓n

P
�! ✓⇤ implies

⌘(X | ✓n)
L
1

�! ⌘(X | ✓⇤), then the classification rule is consistent if ✓n is. Compare

with Theorem 4.2.

4.7 Python Assignments

4.7. Using the synthetic data model in Section A8.1 for the 2-D homoskedastic case, with µ0 =

(0, 0), µ1 = (1, 1), P (Y = 0) = P (Y = 1), � = 0.7 and independent features, set np.random.seed

to 0 for reproducibility, and generate training data sets for each sample size n = 20 to n = 100,

88 CHAPTER 4. PARAMETRIC CLASSIFICATION

in steps of 10. Obtain the LDA, DLDA and NMC decision boundaries corresponding to these

data, by calculating the sample means and sample covariance matrices using np.mean and

np.cov, and applying the corresponding formulas. Also determine the optimal classifier for

this problem.

(a) Plot the data (using O’s for class 0 and X’s for class 1), with the superimposed decision

boundaries for the optimal classifier and the designed LDA, DLDA, and NMC classifiers.

Describe what you see.

(b) Compute the errors of all classifiers, using two methods:

i. the formulas (2.53) for the Bayes error and (4.58) for the other errors.

ii. Computing the proportion of errors committed on a test set of size M = 100. Com-

pare the errors among the classifiers as well as between the exact (item i) and ap-

proximate (item ii) methods of computation.

(c) Generate a large number (e.g., N = 1000) of synthetic training data sets for each sample

size n = 20 to n = 100, in steps of 10. For each data set, obtain the errors of the

LDA, DLDA, and NMC classifiers using the exact formula (no need to plot any of the

classifiers), and average over the N = 1000 data sets to obtain an accurate approximation

of E["n] for each classifier. Plot this estimated expected error as a function of n for each

classifier. Repeat for � = 0.5 and � = 1. What do you observe?

4.8. Apply linear discriminant analysis to the stacking fault energy (SFE) data set (see Sec-

tion A8.4), already mentioned in Chapter 1. Categorize the SFE values into two classes,

low (SFE  35) and high (SFE � 45), excluding the middle values.

(a) Apply the preprocessing steps in c01 matex.py to obtain a data matrix of dimensions

123 (number of sample points) ⇥7 (number of features), as described in Section 1.8.2.

Define low (SFE  35) and high (SFE � 45) labels for the data. Pick the first 20% of

the sample points to be the training data and the remaining 80% to be test data.

(b) Using the function ttest ind from the scipy.stats module, apply Welch’s two-sample

t-test on the training data, and produce a table with the predictors, T statistic, and

p-value, ordered with largest absolute T statistics at the top.

(c) Pick the top two predictors and design an LDA classifier. (This is an example of filter fea-

ture selection, to be discussed in Chapter 9.) Plot the training data with the superimposed

LDA decision boundary. Plot the testing data with the superimposed previously-obtained

LDA decision boundary. Estimate the classification error rate on the training and test

data. What do you observe?

(d) Repeat for the top three, four, and five predictors. Estimate the errors on the training

and testing data (there is no need to plot the classifiers). What can you observe?

Chapter 5

Nonparametric Classification

“The task of science is both to extend the range of

our experience and to reduce it to order.”

– Niels Bohr, Atomic Theory and

the Description of Nature, 1934.

Nonparametric classification rules di↵er from parametric classification rules in one key respect: no

assumption about the shapes of the distributions are made, but rather these are approximated by a

process of smoothing. This allows these rules to be distribution-free and produce complex decision

boundaries, and thus achieve universal consistency in many cases. The price paid for this flexibility

is a larger data requirement than in the parametric case and an increased risk of overfitting. In

addition, all nonparametric classification rules introduce free parameters that control the amount

of smoothing, and these must be set using model selection criteria. In this chapter, after discussing

general aspects of nonparametric classification, we present the histogram, nearest-neighbor, and

kernel classification rules. We also discuss the famous Cover-Hart and Stone Theorems on the

asymptotic performance of nonparametric classification rules.

5.1 Nonparametric Plug-in Rules

The nonparametric approach is based on smoothing the available data to obtain approximations

pn(x | Y = 0) and pn(x | Y = 1) of the class-conditional densities, or an approximation ⌘n(x) =

Pn(Y = 1 | X = x) of the posterior-probability function, and then plug it in the definition of the

Bayes classifier. A critical aspect of this process is selecting the “right” amount of smoothing given

the sample size and complexity of the distribution.

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_5

89

https://doi.org/10.1007/978-3-030-27656-0_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_5&domain=pdf

90 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

� = 0.01 � = 0.3 � = 1

Figure 5.1: Sample data and kernel-based smoothing using di↵erent kernel standard deviations

(plots generated by c05 kern dnst.py).

Example 5.1. Figure 5.1 illustrates smoothing using a kernel-based approximation. If too little

smoothing is applied (leftmost plot), i.e., the kernel standard deviation (also known as the bandwidth)

is too small, then a poor approximation is obtained; the approximation skews too close to the data,

leading to overfitting. On the other hand, if too much smoothing is applied (rightmost plot), i.e.,

the kernel standard deviation is too large, then an equally poor approximation results, where the

structure of the data cannot be captured, leading to underfitting. In this example, it appears

that the center plot would correspond to the appropriate kernel standard deviation and amount of

smoothing. The kernel bandwidth in this case is a free parameter that needs to be set by the user;

the existence of such parameters is a constant of all nonparametric classification methods. ⇧

We will focus here on the case of smoothing estimates ⌘n(x) of the posterior-probability function ⌘(x)

(this covers the most common examples of nonparametric classification rules). Given the training

data Sn = {(X1, Y1), . . . , (Xn, Yn)}, we consider general approximations of the following kind:

⌘n(x) =
nX

i=1

Wn,i(x,X1, . . . ,Xn)IYi=1 , (5.1)

where the weights Wn,i(x,X1, . . . ,Xn) satisfy

Wn,i(x,X1, . . . ,Xn) � 0 , i = 1, . . . , n and
nX

i=1

Wn,i(x,X1, . . . ,Xn) = 1 , for all x 2 Rd . (5.2)

Each Wn,i(x,X1, . . . ,Xn) weights the corresponding training point (Xi, Yi) in forming the estimate

⌘n(x). Being a function of x, the weights can change from point to point, while being a function of

X1, . . . ,Xn, the weights depend on the entire spatial configuration of the training feature vectors.

For ease of notation, from this point on, we will denote the weights by Wn,i(x), with the dependence

on X1, . . . ,Xn being implicit.

5.2. HISTOGRAM CLASSIFICATION 91

As can be easily verified, the plug-in classifier is given by

 n(x) =

8
<

:
1, ⌘n(x) >

1

2
,

0, otherwise,
=

8
<

:
1,

P
n

i=1
Wn,i(x)IYi=1 >

P
n

i=1
Wn,i(x)IYi=0,

0, otherwise.
(5.3)

This can be seen as adding the “influences” of each data point (Xi, Yi) on x and assigning the

label of the most “influent” class (with ties broken in an arbitrary deterministic manner, here in

the direction of class 0). Typically, Wn,i(x) is inversely related to the Euclidean distance ||x�Xi||;

hence, the “influence” of training point (Xi, Yi) is larger if Xi is closer to x, and smaller, otherwise.

This spatial coherence assumption is a key premise of nonparametric classification and, indeed, of

all smoothing methods: points that are spatially close to each other are more likely to come from

the same class than points that are far away from each other. In the next few sections we consider

specific examples of nonparametric classification rules based on this approach.

5.2 Histogram Classification

Histogram rules are based on partitions of the feature space. A partition is a mapping A from Rd

to the power set P(Rd), i.e., the family of all subsets of Rd, such that

A(x1) = A(x2) or A(x1) \A(x2) = ;, for all x1,x2 2 Rd , (5.4)

and

Rd =
[

x2Rp

A(x) . (5.5)

A partition consists therefore of non-overlapping zones A(x) that tile the entire feature space Rd.

The general histogram classification rule is in the form (5.3), with weights

Wn,i(x) =

8
<

:

1

N(x) , Xi 2 A(x)

0, otherwise,
(5.6)

where N(x) denotes the total number of training points in A(x). Only the points inside the same

zone as the test point contribute (equally) to the posterior probability estimate, and therefore to

the classification.

We can see that the histogram classifier assigns to each zone of the partition the majority label

among the training points that fall into the zone. Following (5.3), ties are broken in a deterministic

manner, always in the direction of class 0. Notice that this is equivalent to quantizing, or discretizing,

the feature space using the partition, and then applying the discrete histogram rule of Example 3.3.

In the cubic histogram rule, the partition is a regular grid, and each zone is a (hyper)cube with a

side of length l.

92 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

l = 0.5 l = 1

l = 2 l = 3

Figure 5.2: Classifiers produced by the cubic histogram classification rule on synthetic Gaussian

training data (plots generated by c05 cubic.py).

Example 5.2. Figure 5.2 displays classifiers produced by the cubic histogram classification on data

sampled from spherical Gaussian densities centered at (2, 2) and (4, 4) with variance equal to 4.

The sample size is 50 points per class. The optimal decision boundary is therefore a line with slope

�45o going through the point (3, 3). We can see that the histogram rule cannot provide a good

approximation of the optimal classifier, since the orientation of its grid does not match it (this is

a similar problem faced by the CART rule, discussed in Chapter 6). Notice that l plays the role

of smoothing parameter: if is too small for the sample size, there is not enough points inside each

zone to estimate correctly the posterior probability, while if is too large the estimate is too coarse.

5.3. NEAREST-NEIGHBOR CLASSIFICATION 93

At very fine grids, such as the case l = 0.5, there are many empty zones. This creates “0-0” ties,

which are artificially broken towards class 0 (In Python Assignment 5.8, the e↵ect of using random

tie-breaking instead is considered.) ⇧

5.3 Nearest-Neighbor Classification

The k-nearest-neighbor (kNN) classification rule is the oldest, most well-known (and most studied)

nonparametric classification rule. It consists of assigning the majority label among the k nearest

neighbors to the test point in the training data. By simply using odd values of k, the possibility of

ties between the labels is removed, avoiding one of the main problems with the histogram rule. In

addition, the kNN classification rule is able to adapt to any shape or orientation of the data, unlike

the histogram rule. If k = 1, the classifier simply assigns to the test point the label of the nearest

training point. This simple nearest-neighbor (1NN) rule can be surprisingly good if the sample size

is su�ciently large, as shown by the famous Cover-Hart Theorem, to be discussed below. However,

the 1NN rule can be very bad in small-sample cases due to overfitting. It also tends to perform

badly in case the classes overlap substantially. There is theoretical and empirical evidence that the

3NN and 5NN rules are much better than 1NN, under both large and small sample sizes.

The kNN classification rule is in the form (5.3) with weights

Wn,i(x) =

8
<

:

1

k
, Xi is among the k nearest neighbors of x,

0, otherwise.
(5.7)

Hence, only the points that are among the k nearest neighbors of the test point contribute (equally)

to the posterior probability estimate, and therefore to the classification. Weights that assign di↵erent

importance according to distance rank among the k-nearest neighbors can also be used, which leads

to weighted kNN classification rules. Distances other than Euclidean can also be used. The choice

of k is a model selection problem, but as already mentioned, k = 3 or k = 5 are usually good choices

in most practical situations.

Example 5.3. Figure 5.3 displays classifiers produced by the standard kNN classification rule on

the training data in Figure 5.2. The plots show that the decision boundaries in all cases are complex,

but this is true especially in the 1NN case. In fact, one can see that the 1NN classifier badly overfits

the data, due to the small sample size and the overlapping densities. The 3NN and 5NN rules

produce much better classifiers. The 7NN rule produces some improvement, but not much, over

5NN. At this point, the kNN classification rule produces a decision boundary that is very close to

the optimal one (a line with slope �45o going through the center of the plot, as mentioned in the

previous section). Note that k is the smoothing parameter and has the same interpretation as in

94 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

k = 1 k = 3

k = 5 k = 7

Figure 5.3: Classifiers produced by the kNN classification rule on the training data in Figure 5.2

(plots generated by c05 knn.py).

other nonparametric classification rules: if it is too small (e.g. k = 1) compared to the sample

size/complexity of the problem, there is overfitting due to lack of smoothing, while if it is too large,

the posterior probability estimate may become too coarse. The choice of k is a model selection

problem (see Chapter 8). Problem 5.9 shows that the value of k should be increased further in this

example. ⇧

5.4. KERNEL CLASSIFICATION 95

Figure 5.4: Univariate kernels used in kernel classification (plot generated by c05 kern univ.py).

5.4 Kernel Classification

A kernel is a nonnegative function k : Rd
! R. Kernel rules are very general nonparametric

classification rules, where the weighting functions Wn,i in (5.3) and (5.1) are expressed in terms of

kernels. A kernel that is a monotonically decreasing function of ||x|| is also known as a radial basis

function (RBF). Some examples are: are:

• Gaussian kernel: k(x) = e�||x||2 .

• Cauchy kernel: k(x) = 1

1+||x||d+1 .

• Triangle kernel: k(x) = (1� ||x||) I{||x||1}.

• Epanechnikov kernel: k(x) = (1� ||x||2) I{||x||1}.

• Uniform (spherical) kernel: k(x) = I{||x||1}.

• Uniform (cubic) kernel:

k(x) =

8
<

:
1 , |xj | 

1

2
, for all j = 1, . . . , d,

0 , otherwise.
(5.8)

All the previous kernels, with the exception of the uniform cubic kernel, are RBFs. In addition, all

the previous kernels have bounded support, with the exception of the Gaussian and Cauchy kernels.

See Figure 5.4 for an illustration. Notice that in the univariate case, the spherical and cubic kernels

coincide.

96 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

The kernel classification rule is in the form (5.3) with weighting function

Wn,i(x) =
k
⇣
x�Xi

h

⌘

P
n

i=1
k
⇣
x�Xi

h

⌘ , (5.9)

where the smoothing parameter h is the kernel bandwidth. The nonparametric classifier in (5.3)

can be written in this case as

 n(x) =

8
<

:
1,

P
n

i=1
k
⇣
x�Xi

h

⌘
I{Yi=1} �

P
n

i=1
k
⇣
x�Xi

h

⌘
I{Yi=0},

0, otherwise.
(5.10)

Hence, the class with larger cumulative kernel values at the test point x assigns its label to x.

This has a physics analogy, in which the training points from di↵erent classes represent charges of

opposite signs, and a resultant electrostatic potential is computed at x, the assigned class depending

on the sign of the potential.

Example 5.4. Figure 5.5 displays classifiers produced by the Gaussian-RBF kernel classification

rule on the training data in Figures 5.2 and 5.3. We can see the the decision boundaries become

progressively smooth as the bandwidth increases. If the bandwidth h is too small, namely, h = 0.1

and h = 0.3, the rule is too “local” (only the closest points exert influence on the test point x)

which leads to overfitting. At h = 1, the decision boundary is very close to the optimal one (a

line with slope �45o going through the center of the plot). It is instructive to compare the plots

in Figures 5.3 and 5.5. We can see that the kernel classifier with h = 0.1 closely resembles the

1NN classifier; at such a small bandwidth, the influence of the nearest training point to the test

point is much larger than that of any other training point, and the kernel classifier is essentially

a 1NN classifier. As h increases, however, the behaviors are di↵erent: we can see that the kernel

classification rule, with a Gaussian RBF, produces more smooth decision boundaries than the kNN

classification rule. If h becomes too large, the kernel rule can become too “global” (far points exert

influence on x), which can lead to underfitting. In general, The best value of h must in general

be chosen using model selection criteria (see Chapter 8). Problem 5.10 shows that the value of h

should be increased further in this example. ⇧

Notice that the requirement that k(x) � 0, for all x 2 Rd, is necessary to guarantee that the weights

in (5.9) are nonnegative, and make (5.1) a “sensible” estimate of the posterior-probability function.

However, the expression of the kernel nonparametric classifier in (5.10) does not require nonnegative

of k, i.e., the kernel can take negative values and still define a valid classifier. For example, the

Hermite kernel:

k(x) = (1� ||x||2) e�||x||2 , (5.11)

and the sinc kernel:

k(x) =
sin(⇡||x||)

⇡||x||
, (5.12)

5.4. KERNEL CLASSIFICATION 97

h = 0.1 h = 0.3

h = 0.5 h = 1

Figure 5.5: Classifiers produced by the Gaussian-RBF kernel classification rule on the training data

in Figure 5.2 and 5.3 (plots generated by c05 kernel.py).

take negative values (see Figure 5.6 for a univariate example), but can be used for kernel classifica-

tion. In fact, there are examples of problems where the Hermite kernel outperforms all nonnegative

kernels (see Exercise 5.7). This illustrates the fact that classification and distribution estimation are

di↵erent problems. For example, the statement that one needs good density estimation to design

good classifiers is mistaken, as the former requires more conditions (and more data) than the latter.

98 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

Figure 5.6: Univariate Hermite and sinc kernels (plot generated by c05 kern neg.py).

5.5 Cover-Hart Theorem

In this section we present a famous and influential result, due to Cover and Hart [1967], about the

asymptotic behavior of the expected error of the kNN classification rule. It is often expressed as “the

error of the nearest-neighbor classifier with a large sample size cannot be worse than two times the

Bayes error.” We investigate below the rigorous formulation of this idea. For convenience, we divide

the result into three separate theorems (but still call them collectively “The Cover-Hart Theorem”).

One of the theorems is proved in this section, while the other two are proved in Appendix A4.

The first theorem shows that the NN rule, in the limit as sample size goes to infinity, cannot err

more than twice as the Bayes classifier itself. This is a distribution-free result, i.e., it applies to any

feature-label distribution. See Appendix A4 for a proof.

Theorem 5.1. (Cover-Hart Theorem) The expected error of the NN classification rule satisfies

"NN = lim
n!1

E["n] = E[2⌘(X)(1� ⌘(X))] , (5.13)

from which it follows that

"NN  2"⇤(1� "⇤)  2"⇤. (5.14)

Recall that "NN was previously defined in (2.68), where it was called the nearest-neighbor distance

(an example of F-error). The first part of Thm. 5.1 shows that this is in fact the asymptotic error

of the NN classification rule.

Thm. 5.1 places the asymptotic classification error of the NN rule in the interval

"⇤  "NN  2"⇤(1� "⇤) . (5.15)

Clearly, the interval shrinks to zero and "NN = "⇤ (so the NN rule is consistent) if "⇤ = 0. The next

theorem shows when the lower and the upper bounds in (5.15) are achieved in the general case.

5.5. COVER-HART THEOREM 99

Figure 5.7: Relationship between asymptotic NN classification error "NN and the Bayes error "⇤.

Theorem 5.2. The asymptotic classification error of the NN rule satisfies:

(a) "NN = 2"⇤(1� "⇤) if and only if ⌘(X) 2 {"⇤, 1� "⇤} with probability 1.

(b) "NN = "⇤ if and only if ⌘(X) 2 {0, 1
2
, 1} with probability 1.

Proof. From the proof of Theorem 5.1, we have

"NN = 2"⇤(1�"⇤)� 2Var(min{⌘(X), 1�⌘(X)}) . (5.16)

See Figure 5.7 for an illustration. Hence, "NN = 2"⇤(1�"⇤) if and only if Var(min{⌘(X), 1�⌘(X)}) =

0, which occurs if and only if min{⌘(X), 1� ⌘(X)} is constant with probability 1, i.e., ⌘(X) = a or

1 � a, with probability 1, for some 0  a  1. But then "⇤ = a, showing part (a). Now, rewrite

(5.16) as

"NN = 2"⇤ � 2E[min{⌘(X), 1� ⌘(X)}2] . (5.17)

Let r(X) = min{⌘(X), 1 � ⌘(X)}. To obtain "NN = "⇤ we need 2E[r2(X)] = "⇤ = E[r(X)], i.e.,

E[2r2(X) � r(X)] = 0. But since 2r2(X) � r(X) � 0, this requires that 2r2(X) � r(X) = 0, i.e.,

r(X) 2 {0, 1
2
}, all with probability one, which shows part (b). ⇧

The previous theorem shows that the lower bound "⇤ and upper bound 2"⇤(1 � "⇤) are achieved

only in very special cases, but they are achieved; this shows that the inequality in the Cover-Hart

Theorem is tight (it cannot be improved). The theorem also shows that the NN rule is consistent if

and only if the class-conditional densities do not overlap (⌘(X) = 0 or 1) or they are equal to each

other if they overlap (⌘(X) = 1

2
).

Theorem 5.3 can be generalized to the kNN classification rule, with odd k > 1, as the next theorem

shows. See Appendix A4 for a proof.

Theorem 5.3. The expected error of the kNN classification rule, with odd k > 1, satisfies

"kNN = lim
n!1

E["n] = E[↵k(⌘(X))] , (5.18)

100 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

Figure 5.8: Plot of polynomial ↵k(p) (solid line) and the function ak min{p, 1 � p} (dashed line)

in the interval p 2 [0, 1], where ak > 1 is the smallest possible. It can be observed that ak is the

slope of the tangent to ↵k(p) through the origin. Also plotted is the function min{p, 1 � p} (red),

corresponding to the Bayes error (plot generated by c05 knn thm.py).

where ↵k(p) is a polynomial of order k + 1 given by

↵k(p) =

(k�1)/2X

i=0

✓
k

i

◆
pi+1(1� p)k�i +

kX

i=(k+1)/2

✓
k

i

◆
pi(1� p)k+1�i, (5.19)

from which it follows that

"kNN  ak"
⇤, (5.20)

where the constant ak > 1 is the slope of the tangent line to ↵k(p) through the origin, that is, ak

satisfies

ak = ↵0
k
(p0) =

↵k(p0)

p0
, (5.21)

for some p0 2 [0, 1
2
].

Notice that with k = 1, we have ↵1(p) = 2p(1� p), and

↵0
1(p0) = 2� 4p0 =

2p0(1� p0)

p0
=

↵1(p0)

p0
) p0 = 0 , (5.22)

so that a1 = ↵0
1
(0) = 2, which leads to (5.13) and (5.14) in the original Cover-Hart Theorem.

101

For k = 3, we have ↵3(p) = p(1� p)3 + 6p2(1� p)2 + p3(1� p), hence

"3NN = E[⌘(X)(1� ⌘(X))3] + 6E[⌘(X)2(1� ⌘(X))2] + E[⌘(X)3(1� ⌘(X))] . (5.23)

In addition, it can be checked that (5.21) requires p0 to be a solution of

(p0)
3
�

4

3
(p0)

2 +
1

4
p0 = 0 . (5.24)

This has three solutions:
p10 = 0 ,

p20 =
4 +

p
7

6
,

p30 =
4�

p
7

6
.

(5.25)

The first candidate p1
0
is invalid because the tangent is not above ↵k(p), the second is invalid because

p2
0
> 1, while the last one is valid and gives:

a3 = ↵0
3

4�

p
7

6

!
=

17 + 7
p
7

27
h 1.3156 . (5.26)

Hence, "3NN  1.316 "⇤, which is better than the "NN bound: a1 = 2 > a3 = 1.316.

Notice that "kNN = E[↵k(⌘(X))] has the general form of an F-error, defined in Section 2.6.2. How-

ever, as suggested by Figure 5.8, the function ↵k(p) is concave in p 2 [0, 1] only for k = 1, so that

only "NN is an F-error.

From Figure 5.8 it can also be deduced that ↵1(p) � ↵3(p) � ↵5(p) � · · · � min{p, 1 � p}, for all

p 2 [0, 1], from which it follows that

"NN � "3NN � "5NN � · · · � "⇤ . (5.27)

In fact, it can be shown that "kNN ! "⇤ as k ! 1.

*5.6 Stone’s Theorem

Given the distribution-free nature of nonparametric classification rules, it is not surprising that they

make ideal candidates for universally consistent rules. However, if the amount of smoothing is fixed

and not a function of sample size, then the rule cannot be universally consistent, as it was proved

in Section 5.3 with regards to a kNN classification rule with a fixed number of nearest neighbors k.

Stone’s theorem was the first result to prove that universally consistent rules exist, by showing

that nonparametric classification rules of the form (5.3) can achieve consistency under any feature-

label distribution, provided that the weights are carefully adjusted as sample size increases. We

5. . STONE’S THEOREM6

102 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

state Stone’s theorem (see Appendix A5 for a proof) and give some of its corollaries, which provide

results on the universal consistency of nonparametric classification rules examined previously.

Stone’s theorem is in fact a result about consistency of nonparametric regression, not nonparametric

classification. However, it turns out that it can be applied to nonparametric classification through

the following lemma, the proof of which mirrors the steps followed in Exercise 4.6.

Lemma 5.1. The nonparametric classification rule specified by (5.1)–(5.3) is consistent if

E[|⌘n(X)� ⌘(X)|] ! 0, as n ! 1.

Since E[X]2  E[X2] (as Var(X) = E[(X � E[X])2] = E[X2] � E[X]2 � 0), it turns out that a

su�cient condition for consistency is that E[(⌘n(X) � ⌘(X))2] ! 0, as n ! 1. In other words,

consistent regression estimation of ⌘(x), in the L1 or L2 norms, leads to consistent classification.

Theorem 5.4. (Stone’s Theorem) The classification rule specified by (5.1)–(5.3) is universally

consistent, provided that the weights have the following properties, for all distributions of (X, Y):

(i)
P

n

i=1
Wn,i(X)I||Xi�X||>�

P
�! 0, as n ! 1, for all � > 0,

(ii) maxi=1,...,nWn,i(X)
P
�! 0, as n ! 1,

(iii) there is a constant c � 1 such that, for every nonnegative integrable function f : Rd
! R and

all n � 1, E [
P

n

i=1
Wn,i(X)f(Xi)]  cf(X).

Condition (i) in Stone’s Theorem says that the weights outside a ball of radius � around the test

point X vanish as n ! 1, for all � > 0. This means that estimation becomes more and more local as

sample size increases. Condition (ii) says that the weights go uniformly to zero so that no individual

training point can dominate the inference. Finally, condition (iii) is a technical assumption that is

required in the proof of the theorem.

The following result about the histogram classification rule can be proved by checking the conditions

in Stone’s theorem. See Devroye et al. [1996] for a direct proof.

Theorem 5.5. (Universal consistence of the Histogram Classification Rule.) Let An be a sequence

of partitions and let Nn(x) be the number of training points in the zone A(x). If

(i) diam[An(X)] = supx,y2An(X) ||x� y||! 0 in probability,

(ii) Nn(X) ! 1 in probability,

then E["n] ! "⇤ and the histogram classification rule is universally consistent.

5.7. BIBLIOGRAPHICAL NOTES 103

Conditions (i) and (ii) of the previous theorem correspond to conditions (i) and (ii) of Stone’s

Theorem, respectively. This application of Stone’s Theorem illuminates the issue: condition (i) says

that the zone of influence of the training data around the test point must shrink to zero, while

condition (ii) says that this must happen slow enough that an infinite number of training points

is allowed to accumulate inside the zone. These two conditions are natural conditions to obtain

an accurate and universal estimator of the posterior-probability function. Condition (iii) of Stone’s

Theorem, necessary for its proof, can also be shown to hold.

As a corollary of the previous theorem, we get universal consistency of the cubic histogram rule, in

which case the partitions are indexed by the hypercube side hn. The proof of the result consists of

checking conditions (i) and (ii) of Theorem 5.5.

Theorem 5.6. (Universal consistence of the Cubic Histogram Rule.) Let Vn = hdn be the common

volume of all cells. If hn ! 0 (so Vn ! 0) but nVn ! 1 as n ! 1, then E["n] ! "⇤ and the cubic

histogram rule is universally consistent.

One of the main achievements in Stone’s paper was proving the universal consistency of the kNN

classification rule, for a number of di↵erent weight families, including the uniform weights of the

standard kNN rule.

Theorem 5.7. (Universal consistence of the kNN Rule.) If K ! 1 while K/n ! 0 as n ! 1,

then for all distributions E["n] ! "⇤ and the kNN classification rule is universally consistent.

The proof of the previous theorem is based again on checking the conditions of Theorem 5.5, though

this turns out to be a nontrivial task. Detailed proofs can be found in Stone [1977] and in Devroye

et al. [1996].

In the case of kernel rules, direct application of Stone’s Theorem is problematic. If the class-

conditional densities exist then any consistent kernel density estimator leads to a consistent rule.

The following result is proved in Devroye et al. [1996] and does not require any assumptions on the

distributions (only on the kernel).

Theorem 5.8. (Universal consistence of Kernel Rules.) If the kernel k is nonnegative, uniformly

continuous, integrable, and bounded away from zero in a neighborhood of the origin, and hn ! 0

with nhdn ! 1 as n ! 1, then the kernel rule is (strongly) universally consistent.

5.7 Bibliographical Notes

Nonparametric classification methods comprise some of the most classical work done in supervised

learning. The area was inaugurated by the pioneering work by Fix and Hodges [1951] on the k-

104 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

nearest-neighbor classification rule, which stated: “There seems to be a need for discrimination

procedures whose validity does not require the amount of knowledge implied by the normality as-

sumption, the homoscedastic assumption, or any assumption of parametric form.” Other milestones

include the paper by Cover and Hart [1967] on the asymptotic error rate of the kNN rule (where

Theorem 5.1 appears), and the paper by Stone [1977] on universal consistency of nonparametric

rules. Nonparametric classification is covered in detail in Devroye et al. [1996].

5.8 Exercises

5.1. Consider that an experimenter wants to use A 2-D cubic histogram classification rule, with

square cells with side length hn, and achieve consistency as the sample size n increases, for

any possible distribution of the data. If the experimenter lets hn decrease as hn = 1p
n
, would

they be guaranteed to achieve consistency and why? If not, how would they need to modify

the rate of decrease of hn to achieve consistency?

5.2. Consider that an experimenter wants to use the kNN classification rule and achieve consistency

as the sample size n increases. In each of the following alternatives, answer whether the

experimenter is successful and why.

(a) The experimenter does not know the distribution of (X,Y) and lets k increase as k =
p
n.

(b) The experimenter does not know the distribution but knows that ✏⇤ = 0 and keeps k

fixed, k = 3.

5.3. Show by example that the Hermite kernel can lead to a kernel classification rule that has a

strictly smaller classification error than any positive kernel.

Hint: Consider a simple discrete univariate distribution with equal masses at x = 0 and x = 2,

with ⌘(0) = 0 and ⌘(1) = 1.

5.4. Extend the Cover-Hart theorem to M classes, proving that

"⇤ < "NN < "⇤
✓
2�

M

M � 1
"⇤
◆
. (5.28)

Hint: The main di↵erence with respect to the proof of Theorem 5.1 is the way that the Bayes

error "⇤ and the conditional error rate P (n(X) 6= Y | X,X1, . . . ,Xn) are written in terms of

the posterior-probability functions ⌘i(X) = P (Y = i | X), for i = 1, . . . ,M . Use the inequality

L
LX

l=1

a2
l
�

LX

l=1

al

!2

. (5.29)

5.9. PYTHON ASSIGNMENTS 105

5.5. Show that "kNN  ↵̃k("⇤), where ↵̃k is the least concave majorant of ↵k in the interval [0, 1],

that is, ↵̃k is the smallest concave function such that ↵̃k(p) � ↵k(p), for 0  p  1.

Note: It is clear that ↵̃1 = ↵1, giving the usual inequality "NN  2"⇤(1� "⇤). For odd k � 3,

↵̃k 6= ↵k.

5.6. Assume that the feature X in a classification problem is a real number in the interval [0, 1].

Assume that the classes are equally likely, with p(x|Y = 0) = 2xI{0x1} and p(x|Y = 1) =

2(1� x)I{0x1}.

(a) Find the Bayes error "⇤.

(b) Find the asymptotic error rate "NN for the NN classification rule.

(c) Find E["n] for the NN classification rule for finite n.

(d) Show that indeed E["n] ! "NN and that "⇤ < "NN < 2"⇤(1� "⇤).

5.7. Consider a problem in R2 with equally-likely classes, such that p(x | Y = 0) is uniform over

a unit-radius disk centered at (�3, 0) and p(x | Y = 1) is uniform over a unit-radius disk

centered at (3, 0). Since the class-conditional densities do not overlap, "⇤ = 0.

(a) Show that the expected error of the 1NN classification rule is strictly smaller than that

of any kNN classification rule with k > 1. This shows that, despite its often poor per-

formance in practice, the 1NN classification rule is not universally dominated by nearest

neighbor rules with larger k.

Hint: Remember that the expected classification error is just the unconditional probabil-

ity P (n(X) 6= Y).

(b) Show that, for fixed k, limn!1E["n] = 0.

Hint: See Theorem 5.3.

(c) Show that, for fixed n, limk!1E["n] = 1/2. This shows overfitting as k becomes much

larger than n.

(d) Show that, if kn is allowed to vary, limn!1E["n] = 0, if kn < n for all n.

5.9 Python Assignments

5.8. This assignment concerns Example 5.2.

(a) Modify the code in c05 cubic.py to obtain plots for l = 0.3, 0.5, 1, 2, 3, 6, and n =

50, 100, 250, 500 per class. In addition, obtain and plot the classifiers over the range

[�6, 9]⇥ [�6, 9] in order to visualize the entire data. To facilitate visualization, you may

want to reduce the marker size from 12 to 8. Which classifiers are closest to the optimal

106 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

classifier? How do you explain this in terms of underfitting/overfitting?

Coding hint: In order to generate the same training data as in Figure 5.2 (with n = 50),

the data for class 1 has to be simulated immediately following that for class 0. This can

be accomplished, using python’s list comprehension feature, by means of the code snippet

N = [50,100,250,500]

X = [[mvn.rvs(mm0,Sig,n),mvn.rvs(mm1,Sig,n)] for n in N]

The various data sets can be accessed by looping through this list.

(b) Under the assumption of equally-likely classes, obtain an estimate of the error rate of

each of the 24 classifiers in part (a), by testing them on a large independent data set of

size M = 500 per class (you may use the same test set for all classifiers). The estimate

is the total number of errors made by each classifier on the test set divided by 2M (this

test-set error estimate is close to the true classification error due to the large test sample

size, as will be seen in Chapter 7). Also, compute the Bayes error using (2.50) and (2.53)

(the test set is not necessary in this case and should not be used). Generate a table

containing each classifier plot in part (a) with its test set error rate. Which combinations

of sample size and grid size produce the top 5 smallest error rates?

(c) If plotted as a function of sample size, the classification errors in part (b) produce jagged

curves, since they correspond to a single realization of the random error rate. The proper

way of studying the e↵ect of sample size is to consider the expected error rate instead,

which can be estimated by repeating the experiment for each value of n and l for a total of

R times and averaging the error rates. Plot these estimates of the expected classification

error rates, in the same plot, as a function of sample size n for each value of l, with

R = 50. Do the expected error rates approach the Bayes error and how do they compare

to each other? Now, plot the expected error rates, in the same plot, as a function of l

for each value of sample size. What value of l would you select for each sample size?

(This is a model selection problem.) How do you interpret your conclusions in light of

Theorem 5.6?

(d) Repeat parts (a)–(c) using a histogram classification rule that breaks ties randomly with

equal probabilities to class 0 and 1. Does this significantly change the results?

Coding hint: The command rnd.binomial(1,0.5) generates a Bernoulli random variable

with equal probabilities. In order to generate the same training and testing data sets as

in parts (a)–(c), set the same random seed and generate the data sets at the top of the

code.

5.9. This assignment concerns Example 5.3.

(a) Modify the code in c05 knn.py to obtain plots for k = 1, 3, 5, 7, 9, 11 and n = 50, 100, 250,

500 per class. Plot the classifiers over the range [�3, 9]⇥ [�3, 9] in order to visualize the

5.9. PYTHON ASSIGNMENTS 107

entire data and reduce the marker size from 12 to 8 to facilitate visualization. Which

classifiers are closest to the optimal classifier? How do you explain this in terms of

underfitting/overfitting? See the coding hint in part (a) of Problem 5.8.

(b) Compute test set errors for each classifier in part (a), using the same procedure as in part

(b) of Problem 5.8. Generate a table containing each classifier plot in part (a) with its

test set error rate. Which combinations of sample size and number of neighbors produce

the top 5 smallest error rates?

Coding hint: the score method of sklearn.neighbors.KNeighborsClassifier returns

the accuracy of the fitted classifier on an input data set.

(c) Compute expected error rates for the kNN classification rules in part (a), using the same

procedure as in part (c) of Problem 5.8. Since error computation is faster here, a larger

value R = 200 can be used, for better estimation of the expected error rates. Which

number of neighbors should be used for each sample size?

(d) Repeat parts (a)–(c) using the L1 distance d(x0,x1) =
P

d

i=1
|x1i�x0i| to calculate near-

est neighbors. Do the results change significantly?

Coding hint: change the metric attribute of sklearn.neighbors.KNeighborsClassifier

to “manhattan” (the L1 distance).

5.10. This assignment concerns Example 5.4.

(a) Modify the code in c05 kernel.py to obtain plots for k = 1, 3, 5, 7, 9, 11 and n =

50, 100, 250, 500 per class. Plot the classifiers over the range [�3, 9] ⇥ [�3, 9] in or-

der to visualize the entire data and reduce the marker size from 12 to 8 to facilitate

visualization. Which classifiers are closest to the optimal classifier? How do you explain

this in terms of underfitting/overfitting? See the coding hint in part (a) of Problem 5.8.

(b) Compute test set errors for each classifier in part (a), using the same procedure as in

part (b) of Problem 5.8. Generate a table containing each classifier plot in part (a) with

its test set error rate. Which combinations of sample size and kernel bandwidth produce

the top 5 smallest error rates?

(c) Compute expected error rates for the Gaussian kernel classification rule in part (a), using

the same procedure as in part (c) of Problem 5.8. Since error computation is faster here,

a larger value R = 200 can be used, for better estimation of the expected error rates.

Which kernel bandwidth should be used for each sample size?

(d) Repeat parts (a)–(c) for the Epanechnikov kernel, which, unlike the Gaussian kernel, is

a bounded support kernel. How do the results change?

Coding hint: change the kernel attribute of sklearn.neighbors.KernelDensity to

“epanechnikov”.

108 CHAPTER 5. NONPARAMETRIC CLASSIFICATION

5.11. (Nonlinearly separable data.) The optimal decision boundary in the previous coding assign-

ments is linear. However, nonparametric rules are most useful in nonlinear problems. Repeat

Problems 5.8–5.10 with data generated from mixtures of Gaussians, where the mixture for

class 0 has centers at (2, 2) and (4, 4), and the mixture for class 1 has centers at (2, 4) and

(4, 2). Assume that all covariance matrices are spherical with variance equal to 4.

Chapter 6

Function-Approximation Classification

“That is why no reasonable scientist has ever claimed to

know the ultimate cause of any natural process, or to

show clearly and in detail what goes into the causing of

any single e↵ect in the universe These ultimate sources

and principles are totally hidden from human enquiry.”

–David Hume, Enquiry Concerning Human

Understanding, 1748.

All the classification rules seen so far were plug-in rules, that is, they could be viewed as distribution

estimation using training data. We consider now a di↵erent idea: iteratively adjusting a discriminant

(decision boundary) to the training data by optimizing an error criterion. This is reminiscent in

some ways to the process of human learning. Not surprisingly, this is the basic idea behind many

popular classification rules: support vector machines, neural networks, decision trees, and rank-

based classifiers. We examine each of these classification rules in this chapter.

6.1 Support Vector Machines

Rosenblatt’s Perceptron, invented in the late 50’s, was the first function-approximation classification

rule. It assumes a linear discriminant function

gn(x) = a0 +
dX

i=1

aixi, (6.1)

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_

109

6

https://doi.org/10.1007/978-3-030-27656-0_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_6&domain=pdf

110 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Figure 6.1: Sample data with indicated maximum-margin hyperplane, margin hyperplanes, and

support vectors, in the case d = 2. The decision boundary is a function only of the support vectors.

so that the designed classifier is given by

 n(x) =

8
<

:
1 , if a0 +

P
aixi � 0,

0 , otherwise,
(6.2)

for x 2 Rd. The perceptron algorithm iteratively adjusts (“learns”) the parameters a0, a1, . . . , ad in

order to maximize an empirical criterion related to the performance of n on the training data.

Now, consider a version of the perceptron algorithm that attempts to adjust the linear discriminant

so that the margin, i.e. the distance between the separating hyperplane and the closest data points,

is maximal. The separating hyperplane in this case is called a maximum-margin hyperplane and

the closest data points, which sit on the margin hyperplanes, are the support vectors. The distance

between the maximum-margin hyperplane and each margin hyperplane is called the margin. See

Figure 6.1 for an illustration in the case d = 2. Notice that the maximum-margin hyperplane

is entirely determined by the support vectors (e.g., moving other data points does not alter the

hyperplane, as long as they are further away from it than the margin). The resulting classification

rule is called a linear Support Vector Machine (SVM). This section discusses a few di↵erent SVM

classification rules, both linear and nonlinear, which are all based on this simple idea. We will see

that nonlinear SVMs are nonparametric kernel classifiers, albeit of a peculiar sort.

6.1. SUPPORT VECTOR MACHINES 111

6.1.1 Linear SVMs for Separable Data

In this section, we describe an algorithm for determining the maximum-margin hyperplane. We will

assume, for now, that the data is linearly separable, as in Figure 6.1 — this assumption will be

relaxed in Section 6.1.2.

Consider the linear classifier in (6.2). If we change our convention and assign labels yi = �1 and

yi = 1 to the classes, then it is clear that each training point is correctly classified if:

yi(a
Txi + a0) > 0 , i = 1, . . . , n , (6.3)

where a = (a1, . . . , ad). In other to impose a margin, we change the constraint to

yi(a
Txi + a0) � b , i = 1, . . . , n , (6.4)

where b > 0 is a parameter to be determined. It is possible to show (see Exercise 6.1) that the

constraint (6.4) is satisfied if and only if all training points points at a distance at least b/||a|| from

the decision hyperplane. Since the parameters a, a0 and b can be freely scaled without altering

the constraint, they are not identifiable. In order to fix this, we can arbitrarily set b = 1, and the

constraint becomes:

yi(a
Txi + a0) � 1 , i = 1, . . . , n . (6.5)

With b = 1, the margin becomes 1/||a||, and the points that are at this exact distance from the

hyperplane are the margin vectors. (We will determine in the sequel the condition that needs to be

satisfied for them to be support vectors).

In order to obtain the maximal-margin hyperplane, we need to maximize 1/||a||, which is equivalent

to minimizing ||a||2 = 1

2
aTa. The optimization problem to be solved is therefore:

min
1

2
aTa

s.t. yi(a
Txi + a0) � 1 , i = 1, . . . , n .

(6.6)

This is a convex optimization problem in (a, a0), with a convex cost function a�ne inequality con-

straints. The KKT conditions are necessary and su�cient for an optimal solution in this case. See

Section A3 for a review of the required optimization results.

The primal Lagrangian functional codes the constraints into the cost functional as follows:

LP (a, a0,�) =
1

2
aTa�

nX

i=1

�i
�
yi(a

Txi + a0)� 1
�
, (6.7)

where �i � 0 is the Langrage multiplier for the ith constraint (data point), i = 1, . . . , n, and

� = (�1, . . . ,�n). As shown in Section A3, a solution (a⇤, a⇤
0
,�⇤) of the previous constrained

112 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

problem simultaneously minimizes Lp with respect to (a, a0) and maximizes it with respect to �,

i.e., we search for a saddle point in Lp.

The KKT stationarity condition demands that the gradient of Lp with respect to (a, a0) be zero,

which yields the equations:

a =
nX

i=1

�iyixi , (6.8)

and
nX

i=1

�iyi = 0 . (6.9)

Substituting these back into Lp eliminates a and a0, yielding the dual Lagrangian functional:

LD(�) =
nX

i=1

�i �
1

2

nX

i=1

nX

j=1

�i�jyiyjx
T

i xj . (6.10)

The functional LD(�) must be maximized with respect to �i subject to the constraints:

�i � 0 and
nX

i=1

�iyi = 0 . (6.11)

This is a quadratic programming problem that can be e�ciently solved numerically.

According to the KKT complementary slackness condition, �⇤
i
= 0 whenever

yi((a
⇤)Txi + a⇤0) > 1 (inactive or slack constraint). (6.12)

A support vector is a training point (xi, yi) such that �⇤
i
> 0, i.e., for which

yi((a
⇤)Txi + a⇤0) = 1 (active or tight constraint). (6.13)

The degenerate case where the constraint is active but �⇤
i
= 0 does not violate the complementary

slackness condition and can happen; this would be a point that is just touching the margin but is

not constraining the solution.

Once �⇤ is found, the solution vector a⇤ is determined by (6.8):

a⇤ =
nX

i=1

�⇤i yixi =
X

i2S
�⇤i yixi , (6.14)

where S = {i | �⇤
i
> 0} is the set of support vector indices. Notice that the larger �⇤

i
is, the larger

the influence of the corresponding support vector on the direction vector a⇤ is. The intercept a⇤
0
can

be determined from any of the support vectors, since the constraint (a⇤)Txi + a⇤
0
= yi is active, or,

for better numerical accuracy, from their sum:

|S|a⇤0 + (a⇤)T
X

i2S
xi =

X

i2S
yi , (6.15)

6.1. SUPPORT VECTOR MACHINES 113

which yields:

a⇤0 = �
1

|S|

X

i2S

X

j2S
�⇤i yix

T

i xj +
1

|S|

X

i2S
yi . (6.16)

Collecting all the results, the maximum-margin hyperplane classifier is given by

 n(x) =

8
<

:
1 , if

P
i2S �

⇤
i
yixT

i
x�

1

|S|
P

i2S
P

j2S �
⇤
i
yixT

i
xj +

1

|S|
P

i2S yi > 0 ,

0 , otherwise.
(6.17)

Despite the apparent complexity of the expression, this is a linear classifier, with a hyperplane

decision boundary. Notice that the classifier is a function only of the support vectors and no other

training points. Furthermore, it is a function of inner products of the form xTx0, a fact that will be

important later.

6.1.2 General Linear SVMs

The algorithm given in the previous section is simple, but tends to be unusable in practice, since it

is not possible to guarantee that the training data will be linearly separable (unless the Bayes error

is zero and the class-conditional densities are linearly separable). Luckily, it is possible to modify

the basic algorithm to allow for nonlinearly separable data. This leads to the general linear SVM

classification rule described in this section.

To handle nonlinearly separable data, one introduces a vector of nonnegative slack variables ⇠ =

(⇠1, . . . , ⇠n), one slack for each of the constraints, resulting in a new set of 2n constraints:

yi(a
Txi + a0) � 1� ⇠i and ⇠i � 0, i = 1, . . . , n . (6.18)

If ⇠i > 0, the corresponding training point is an outlier, i.e., it can lie closer to the hyperplane than

the margin, or even be misclassified. In order to keep slackness under control, one introduces a

penalty term C
P

n

i=1
⇠i in the functional, which then becomes:

1

2
aTa+ C

nX

i=1

⇠i . (6.19)

The constant C modulates how large the penalty for the presence of outliers are. If C is small, the

penalty is small and a solution is more likely to incorporate outliers. If C is large, the penalty is

large and therefore a solution is unlikely to incorporate many outliers. This means that small C

favors a soft margin and therefore less overfitting, whereas large C leads to a hard margin and more

overfitting. In summary, the amount of overfitting is directly proportional to the magnitude of C.

Too small a C on the other hand may lead to underfitting, that is, too much slackness is allowed

and the classifier does not fit the data at all.

114 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

The optimization problem is now

min
1

2
aTa+ C

nX

i=1

⇠i

s.t. yi(a
Txi + a0) � 1� ⇠i , i = 1, . . . , n

⇠i � 0 , i = 1, . . . , n .

(6.20)

This is a convex problem in (a, a0, ⇠) with a�ne constraints. We follow a similar solution method

as in the separable case. This time there are 2n constraints, so there is a total of 2n Lagrange

multipliers: � = (�1, . . . ,�n) and ⇢ = (⇢1, . . . , ⇢n). The primal functional can then be written as:

LP (a, a0, ⇠,�,⇢) =
1

2
aTa+ C

nX

i=1

⇠i �
nX

i=1

�i
�
yi(a

Txi + a0)� 1 + ⇠i
�
�

nX

i=1

⇢i⇠i

=
1

2
aTa�

nX

i=1

�i
�
yi(a

Txi + a0)� 1
�
+

nX

i=1

(C � �i � ⇢i)⇠i .

(6.21)

This is equal to the previous primal functional (6.7) plus an extra term
P

n

i=1
(C��i�⇢i)⇠i. Setting

the derivatives of Lp with respect to a and a0 to zero yields therefore the same equations (6.8) and

(6.9) as in the separable case. Setting the derivatives of Lp with respect to ⇠i to zero yields the

additional equations

C � �i � ⇢i = 0, i = 1, . . . , n . (6.22)

Substituting these equations back into LP clearly leads to the same quadratic dual Lagrangian

functional (6.10), which must be maximized with respect to � under the same constraints (6.11),

plus the additional constraints:

�i  C, i = 1, . . . , n , (6.23)

which follow from (6.22) and the nonnegativity condition ⇢i � 0, for i = 1, . . . , n. The solution

(�⇤,⇢⇤) can be obtained by quadratic programming methods, as before.

An outlier is a support vector (xi, yi) for which

⇠⇤i > 0) ⇢⇤i = 0) �⇤i = C . (6.24)

If 0 < �⇤
i
< C, then (xi, yi) is a regular support vector, i.e., it lies on one of the margin hyperplanes.

We refer to these support vectors as margin vectors.

Notice that the separable case corresponds to C = 1. In that case, no outlier is possible and all

support vectors are margin vectors (the case �i = C is not possible). For finite C, outliers are

possible. If C is small, more of the constraints �i  C may be active (i.e., �i = C), so that there

can be more outliers. If C is large, the opposite happens and there are fewer outliers. This is in

agreement with the conclusion that C controls overfitting.

6.1. SUPPORT VECTOR MACHINES 115

The solution vector a⇤ is given, as before, by

a⇤ =
nX

i=1

�⇤i yixi =
X

i2S
�⇤i yixi . (6.25)

The intercept a⇤
0
can be determined from any of the active constraints (a⇤)Txi+a⇤

0
= yi with ⇠⇤i = 0,

that is, the constraints for which 0 < �⇤
i
< C (the margin vectors), or from their sum:

|Sm|a⇤0 + (a⇤)T
X

i2Sm

xi =
X

i2Sm

yi , (6.26)

where Sm = {i |0 < �⇤
i
< C} ✓ S is the margin vector index set, resulting in

a⇤0 = �
1

|Sm|

X

i2S

X

j2Sm

�⇤i yix
T

i xj +
1

|Sm|

X

i2Sm

yi . (6.27)

The general linear SVM classifier is thus given by:

 n(x) =

8
<

:
1 , if

P
i2S �

⇤
i
yixT

i
x�

1

|Sm|
P

i2S
P

j2Sm
�⇤
i
yixT

i
xj +

1

|Sm|
P

i2Sm
yi > 0 ,

0 , otherwise.
(6.28)

Once again, this classifier is only a function of the support vectors and inner products of the

form xTx0.

6.1.3 Nonlinear SVMs

The idea behind nonlinear SVMs is to apply the general algorithm in the previous section in a

transformed space Rp, with p > d. If p is su�ciently large, then the data can be made linearly

separable (or close to) in the high-dimensional space. If � : Rd
! Rp denotes the transformation,

then the previous derivation goes through unchanged with �(x) in place of x everywhere. Thus, the

nonlinear SVM classifier in the original space Rd is given by

 n(x) =

8
<

:
1 , if

P
i2S �

⇤
i
yi�(xi)T�(x)�

1

|Sm|
P

i2S
P

j2Sm
�⇤
i
yi�(xi)T�(xj) +

1

|Sm|
P

i2Sm
yi > 0 ,

0 , otherwise.

(6.29)

This produces in general a nonlinear decision boundary.

This classification rule would not be that useful if one had to compute the high-dimensional trans-

formation explicitly. Luckily, this is not the case, due to the so-called Kernel Trick. Let us introduce

a kernel function:

k(x,x0) = �T(x)�(x0) , x,x0
2 Rd. (6.30)

116 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Such kernels di↵er from the ones in Chapter 5 by being functions of two points in feature space.

(These kernels will appear again in Chapter 11.) The kernel trick consists in avoiding computing

�(x) completely by using k(x,x0). This is possible because the linear SVM classifier (6.28) is only

a function of inner products of the form xTx0 and hence the nonlinear SVM classifier (6.29) is

only a function of quantities k(x,x0) = �(x)T�(x0). In order to determine the support vectors and

associated Lagrange multipliers, one needs to maximize the dual functional:

LD(�) =
nX

i=1

�i �
1

2

nX

i=1

nX

j=1

�i�jyiyjk(xi,xj) , (6.31)

with respect to �, subject to the constraints

0  �i  C and
nX

i=1

�iyi = 0 . (6.32)

Once again, this is possible because the original dual functional (6.10) is only a function of terms

xT

i
xj .

Once �⇤ is found, the nonlinear SVM classifier is given by:

 n(x) =

8
<

:
1 , if

P
i2S �

⇤
i
yik(xi,x)�

1

|Sm|
P

i2S
P

j2Sm
�⇤
i
yik(xi,xj) +

1

|Sm|
P

i2Sm
yi > 0 ,

0 , otherwise.

(6.33)

This corresponds to sparse kernel classification, where only a subset of the training set, the support

vectors, have any influence on the decision. Furthermore, the kernel influence is weighted by the

corresponding support vector sensitivity parameter �⇤
i
.

The next question is whether it is necessary to construct a kernel by specifying �(x) and using the

definition (6.30). As we will see next, not even that is necessary, so that �(x) is entirely superfluous.

One can specify directly a function k(x,x0), as long as certain conditions are met. To be admissible,

k(x,x0) must be expressible as an inner product �T(x)�(x0) in some space (which can be an infinite-

dimensional space). It can be shown that this is true if and only if

• k is symmetric: k(x,x0) = k(x0,x), for all x,x0
2 Rd.

• k is positive semi-definite: Z
k(x,x0)g(x)g(x0) dx dx0

� 0 , (6.34)

for any function square-integrable function g : Rd
! R, that is, any function g satisfyingR

g2(x) dx < 1.

This result is called Mercer’s Theorem and the conditions above are Mercer’s conditions.

6.1. SUPPORT VECTOR MACHINES 117

Some examples of kernels used in applications are:

• Polynomial kernel: k(x,x0) = (1 + xTx0)p, for p = 1, 2,

• Gaussian kernel: k(x,x0) = exp(��||x� x0
||
2), for � > 0.

• Sigmoid kernel: k(x,x0) = tanh(�xTx0
� �).

The Gaussian kernel is also called the radial basis function (RBF) kernel in the context of SVMs. It

can be shown that all examples of kernels above satisfy Mercer’s condition (for the sigmoid kernel,

this will be true for certain values of � and �), so that k(x,x0) = �T(x)�(x0) for a suitable mapping �.

In the case of the Gaussian kernel, the mapping � is into an infinite-dimensional space, so it cannot

be computed exactly (but we do not need to). The choice of the kernel parameters, as was the case

with the smoothing parameters in Chapter 6, is a model selection problem. In some cases, they

can be chosen automatically based on the data, as is the case of the parameter � in scikit-learn’s

implementation of the RBF SVM.

Example 6.1. (XOR data set.)1 The XOR (read “X-or”) data set is the simplest (i.e., with the

minimal number of points) nonlinearly separable data set in two dimensions (more on this topic

in Chapter 8). The data set is Sn = {((�1, 1),�1), ((1,�1),�1), ((�1,�1), 1), ((1, 1), 1)}. See the

left plot in Figure 6.2(a) for an illustration. We let C = 1 and consider the polynomial kernel of

order p = 2:

k(x,x0) = (1 + xTx0)2 = (1 + x1x
0
1 + x2x

0
2)

2 . (6.35)

Note that the dual functional (6.10) can be written compactly as:

LD(�) = �T1�
1

2
�TH � , (6.36)

where Hij = yiyjk(xi,xj). In the present case,

H =

2

66664

9 �1 �1 1

�1 9 1 �1

�1 1 9 �1

1 �1 �1 9

3

77775
. (6.37)

In this example, it is possible to maximize LD(�) analytically. First we obtain the gradient of LD(�)

in (6.36) and set it to zero:
@LD

@�
= H�� 1 = 0) H� = 1 . (6.38)

1
This example is adapted from Example 2 of Chapter 5 in Duda et al. [2001].

118 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

(a) (b)

Figure 6.2: Nonlinear SVM with the XOR data set. (a) Training data, where the solid and hol-

low points have labels 1 and -1, respectively. (b) SVM classifier, where the red and green decision

regions correspond to labels 1 and -1, respectively. Dashed lines indicated the hyperbolic margin

boundaries.

Hence, we need to solve the following system of equations:

9�1 � �2 � �3 + �4 = 1

��1 + 9�2 + �3 � �4 = 1

��1 + �2 + 9�3 � �4 = 1

�1 � �2 � �3 + 9�4 = 1

(6.39)

The solution to this system of equations is �⇤
1
= �⇤

2
= �⇤

3
= �⇤

4
= 1

8
. Because matrix H is positive

definite, the functional LD(�) is strictly concave and the condition @LD
@� = 0 is necessary and

su�cient for an unconstrained global maximum. But since the vector �⇤ = (1
8
, 1
8
, 1
8
, 1
8
)T is an

interior point of the feasible region defined by the conditions (6.32), this is in fact the solution �⇤ to

the dual problem (note that all 4 training points are support vectors and margin vectors, an usual

occurrence). Plugging these values in (6.33) yields the following simple expression for the nonlinear

SVM classifier

 n(x) =

8
<

:
1 , if x1x2 > 0 ,

0 , otherwise.
(6.40)

as can be easily verified. The decision boundary is x1x2 = 0, which is the union of the lines x1 = 0

and x2 = 0. The margin boundaries are the loci of points where the discriminant is equal to ±1. In

6.1. SUPPORT VECTOR MACHINES 119

this case, we have x1x2 = ±1, which describe hyperbolas passing through the training data points.

The classifier is depicted in Figure 6.2(b). It can be seen that this highly nonlinear classifier is able

to separate the XOR data set, i.e., obtain zero error on the training data.

The high-dimensional space where the data is mapped to was never invoked in the previous deriva-

tion. Let us investigate it, though it is not a necessary step for SVM classification. Expanding

(6.35) reveals that

k(x,x0) = 1 + 2x1x
0
1 + 2x2x

0
2 + 2x1x2x

0
1x

0
2 + x21(x

0
1)

2 + x22(x
0
2)

2

= �T(x)�(x0) ,
(6.41)

where

z = �(x) = (z1, z2, z3, z4, z5, z6) = (1,
p

2x1,
p

2x2,
p

2x1x2, x
2

1, x
2

2) . (6.42)

Hence, the transformation is to a six-dimensional space. The original data points are projected to

z1 = �((�1, 1)) = (1,�
p

2,
p

2,�
p

2, 1, 1) ,

z2 = �((1,�1)) = (1,
p

2,�
p

2,�
p

2, 1, 1) ,

z3 = �((�1,�1)) = (1,�
p

2,�
p

2,
p

2, 1, 1) ,

z4 = �((1, 1)) = (1,
p

2,
p

2,
p

2, 1, 1) .

(6.43)

The hyperplane decision boundary designed by the SVM in this six-dimensional space has parame-

ters:

a⇤ =
4X

i=1

�⇤i yizi = (0, 0, 0, 1/
p

2, 0, 0)T (6.44)

and

a⇤0 = �
1

4

4X

i=1

4X

j=1

�⇤i yiz
T

i zj +
1

4

4X

i=1

yi = 0 (6.45)

The decision boundary is therefore determined by

(a⇤)T z+ a⇤0 = z4/
p

2 = 0) z4 = 0 , (6.46)

with margin is 1/||a⇤|| =
p
2, while the margin hyperplanes are determined by

(a⇤)T z+ a⇤0 = z4/
p

2 = ±1) z4 = ±

p

2 . (6.47)

We cannot visualize the data set or these boundaries in six-dimensional space. However, we observe

that z1, z5, and z6 are constant in the transformed data (6.43). Hence, the transformation is

essentially to the three-dimensional subspace defined by z2, z3, and z4. In this subspace, the data

lie on four vertices of a cube of size
p
2 centered at the origin, and the decision boundary z4 = 0 is

a plane going through the origin and perpendicular to z4, while the the margin boundaries are the

120 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Figure 6.3: Projection of the XOR data set into a three-dimensional subspace, where it is linearly

separable. The SVM decision boundary is a plane passing through the origin.

planes z4 = ±
p
2. We can see that the points from class -1 are on the plane z4 = �

p
2 while the ones

from class 1 are on the plane z4 =
p
2. See Figure 6.3 for an illustration. Notice that the data are

now linearly separable (three is the minimum number of dimensions necessary to linearly separate

a general set of four points; more on this in Chapter 8). Notice also that, with z4 =
p
2x1x2, (6.46)

and (6.47) yield the same decision and margin boundaries in the original space as before. ⇧

Example 6.2. Figure 6.4 displays classifiers produced by a nonlinear SVM on the synthetic Gaus-

sian training data used in Figures 5.2, 5.3, and 5.5 of the previous chapter. The Gaussian-RBF

kernel with � = 1/2 and varying C is used. The plots show that the decision boundaries in all cases

are complex, but this is true especially for large C, in which case outliers are not allowed and there

is overfitting, as was discussed previously. With C = 1, the nonlinear SVM produces a decision

boundary that is not too di↵erent from the optimal one (a line with slope �45o going through the

center of the plot). The choice of C is a model selection problem (see Chapter 8). ⇧

6.2 Neural Networks

Neural Networks (NNs) combine linear functions and univariate nonlinearities to produce complex

discriminants with arbitrary approximation capability (as discussed in Section 6.2.2). A neural

network consists of units called neurons, which are organized in layers. Each neuron produces a

univariate output that is a nonlinear function of the neuron activation, which consists of a linear

6.2. NEURAL NETWORKS 121

C = 1 C = 10

C = 100 C = 1000

Figure 6.4: Classifiers produced by a Gaussian-RBF nonlinear SVM rule on the training data in

Figures 5.2, 5.3, and 5.5 of Chapter 5 (plots generated by c06 svm.py).

combination of the neuron univariate inputs, where the coe�cients of the linear combination are the

neural network weights. Figure 6.5 displays three consecutive layers of a neural network. The neuron

activations are the functions ↵(x), the neuron outputs are the functions �(x), and the weights are

the scalars w, where x is the input feature vector.

Notice that Rosenblatt’s Perceptron, introduced at the beginning of Section 6.1, can be understood

as a neural network classifier with a single layer. For this reason, neural networks with more than

one neuron are also called multilayer perceptrons.

122 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Figure 6.5: Three consecutive layers of a neural network.

The univariate nonlinearities are often sigmoids, i.e., nondecreasing functions �(x) such that

�(�1) = �1 and �(1) = 1. A few examples are:

• Threshold sigmoid:

�(x) =

8
<

:
1, if x > 0 ,

0, otherwise.
(6.48)

• Logistic sigmoid:

�(x) =
1

1 + e�x
. (6.49)

• Arctan sigmoid:

�(x) =
1

2
+

1

⇡
arctan(x) . (6.50)

• Gaussian sigmoid:

�(x) = � (x) =
1

2⇡

Z
x

�1
e�

u2

2 du . (6.51)

These nonlinearities di↵er by their slope (derivative), from extremely sharp (threshold) to very

smooth (arctan). This distinction matters in backpropagation training, as we will see.

6.2. NEURAL NETWORKS 123

Figure 6.6: Neural network nonlinearities (plot generated by c06 nonlin.py).

In addition, a popular nonlinearity that is not a sigmoid is the Rectifier Linear Unit (ReLU):

�(x) = max(x, 0) =

8
<

:
x, if x > 0 ,

0, otherwise.
(6.52)

See Figure 6.6 for an illustration. Although the ReLU stands out by not being bounded, its derivative

is just the threshold nonlinearity. So it can be seen as a kind of smoothed threshold nonlinearity.

(Similarly, one could define nonlinearities whose derivatives are logistic, arctan, and so on.)

Consider a two-layer neural network with k neurons in one hidden layer and one neuron in an output

layer. The activation function of the output neuron in such a network corresponds to the simple

discriminant:

⇣(x) = c0 +
kX

i=1

ci⇠i(x) , (6.53)

where ⇠i(x) = �(�(x)) is the output of the i-th neuron in the hidden layer, which in turn is the

result of passing the linear activation

�i(x) = bi +
dX

j=1

aijxj , i = 1, . . . , k , (6.54)

through the nonlinearity �. (For simplicity, we will assume here that all neurons use the same

nonlinearity.) The vector of parameters, or weights, for this neural network is

w = (c0, . . . , ck, a10, . . . , a1d, . . . , ak1, . . . , akd) (6.55)

for a total of (k + 1) + k(d + 1) = k(d + 2) + 1 weights. Thus, as k and d increase, the number of

weights in this two-layer network is roughly equal to k ⇥ d.

124 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

(a) (b)

Figure 6.7: Neural network with the XOR data set. (a) Original data and neural network classifier

(same color conventions as in Figure 6.2 are used). (b) Neural network graph.

A neural network classifier can be obtained by thresholding the discriminant at zero, as usual:

 n(x) =

8
<

:
1, ⇣(x) > 0 ,

0, otherwise.
(6.56)

This is equal to the output of the neural network if the nonlinearity of the output neuron is a

threshold sigmoid.

Neural networks are similar to nonlinear SVMs in that any hidden layers nonlinearly map the original

feature space into a di↵erent space, and the output layer acts on the transformed features by means

of a linear decision (hyperplane). The decision in the original feature space is nonlinear.

Example 6.3.2 Here we separate the XOR data set in Example 6.1 using a neural network with

two neurons in one hidden layer. Here the k(d+2)+1 = 9 weights are set manually to achieve zero

empirical error on the data. The neural network classifier and corresponding graph are displayed in

Figure 6.7. The upper and lower linear boundaries of the class 1 decision region are implemented

by the two perceptrons in the hidden layer, while the output perceptron generates the labels of the

decision regions. ⇧

Example 6.4. Figure 6.8 displays classifiers produced by a neural network on the training data

in Figure 6.4. One hidden layer containing a varying number of neurons with logistic sigmoids is

considered. The plots show that overfitting quickly occurs with an increasing number of neurons.

2
This example is adapted from the example in Figure 6.1 in Duda et al. [2001].

6.2. NEURAL NETWORKS 125

5 hidden neurons 10 hidden neurons

15 hidden neurons 30 hidden neurons

Figure 6.8: Classifiers produced by a neural network with one hidden layer and logistic sigmoids on

the training data in Figure 6.4 (plots generated by c06 nnet.py).

With 5 hidden neurons, the neural network produces a nearly linear decision boundary, which is

close to the optimal one (a line with slope �45o going through the center of the plot). Choosing the

number of neurons, and the architecture itself, is a model selection problem (see Chapter 8). ⇧

126 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

6.2.1 Backpropagation Training

All neural network training methods seek to minimize a empirical score J(w), which is a function of

how well the NN predicts the labels of the training data. This minimization is necessarily iterative

due to the complexity of the problem. It is this process of iteratively adjusting the weights based

on “rewards and punishments” dictated by the labeled training data that draws a comparison with

learning in biological neural networks. Given data Sn = {(x1, y1), . . . , (xn, yn)} (since we threshold

discriminants at zero, it is convenient here to assume yi = ±1), examples of empirical scores include:

• The empirical classification error:

J(w) =
1

n

nX

i=1

Iyi 6= n(xi;w) , (6.57)

where n(·;w) is the NN classifier with weights w.

• The mean absolute error:

J(w) =
nX

i=1

|yi � ⇣(xi;w)| , (6.58)

where ⇣n(·;w) is the NN discriminant with weights w.

• The mean-square error:

J(w) =
1

2

nX

i=1

(yi � ⇣(xi;w))2. (6.59)

Using the empirical classification error in training is not practical, since it is not di↵erentiable, and

thus not amenable for gradient descent methods (it is still of theoretical interest). The mean absolute

error is di↵erentiable but not twice di↵erentiable. The most widespread criterion used in practice

is the mean-square error. The classical backpropagation algorithm arises from the application of

gradient descent to minimize the mean-square error criterion. Backpropagation is therefore a least-

squares fitting procedure. We remark that gradient descent is not by any means the only procedure

used in NN training. Other popular nonlinear minimization procedures include the Gauss-Newton

Algorithm and the Levenberg-Marquardt Algorithm (see the Bibliographical Notes).

In online backpropagation training, the score is evaluated at each training point (xi, yi) separately:

Ji(w) =
1

2
(yi � ⇣n(xi;w))2. (6.60)

By contrast, in batch backpropagation training, the total error over the entire training set is used,

which is the score J(w) in (6.59). Notice that

J(w) =
nX

i=1

Ji(w) . (6.61)

6.2. NEURAL NETWORKS 127

In the sequel, we will examine in detail online backpropagation. The basic gradient descent step in

this case is:

�w = �`rwJi(w) , (6.62)

that is, upon presentation of the training point (xi, yi), the vector of weights w is updated in the

direction that decreases the error criterion, according to the step length `. Writing the above in

component form, we get the updates for each weight separately:

�wi = �`
@J

@wi

. (6.63)

The backpropagation algorithm applies the chain rule of calculus to compute the partial derivatives

in (6.63).

A single presentation of the entire training set is called an epoch. The amount of training is typically

measured by the number of epochs. Each update in (6.62) is guaranteed to lower the individual

error Ji(w) for the pattern, but it could increase the total error J(w). However, in the long run

(over several epochs), J(w) will generally decrease as well. It has been claimed that online training,

in addition to leading to simpler updates, can avoid flat patches in the batch score J(w) that slow

down convergence.

Let us examine how to compute the backpropagation updates (6.63) for a depth-2, one-hidden layer

neural network, in which case the weight vector w is given by (6.55), upon presentation of a training

point (x, y). Using artificial bias units, we can write (we omit the dependencies on the weights):

⇣(x) =
kX

i=0

ci⇠i(x) , (6.64)

where ⇠i(x) = �(�(x), with

�i(x) =
dX

j=0

aijxj , i = 1, . . . , k. (6.65)

When computing the activations and outputs �i(x), ⇠i(x), and ⇣(x) from the input x, the network

is said to be in feed-forward mode.

To find the update of the hidden-to-output weights ci, notice that

@J

@ci
=

@J

@⇣

@⇣

@ci
= �[y � ⇣(x)] ⇠i(x) . (6.66)

Define the output error

�o = �
@J

@⇣
= y � ⇣(x) . (6.67)

According to (6.63), the update is

�ci = ` �o⇠i(x) . (6.68)

128 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

For the input-to-hidden weights aij , we have

@J

@aij
=

@J

@�i

@�i
@aij

=
@J

@�i
xj , (6.69)

where
@J

@�i
=

@J

@⇣

@⇣

@⇠i

@⇠i
@�i

= ��o ci �
0(�i(x)) . (6.70)

Define the errors

�Hi = �
@J

@�i
= �o ci �

0(�i(x)) . (6.71)

This is the backpropagation equation. According to (6.63), the update is

�aij = ` �Hi xj . (6.72)

Notice that the slope of the nonlinearity a↵ects �H
i

and the magnitude of the update to aij .

In summary, one iteration of backpropagation for this simple network proceeds as follows. At the

start of each iteration, the new training point x is passed through the network in feed-forward mode

using the old weights, which updates all network activations and outputs. The output error �0 is

then computed using the label y and (6.67), and the weights ci are updated using (6.68). Next, the

error �o is backpropagated using (6.71), to obtain the errors �H
i

at the hidden layer, and the weights

aij are updated using (6.72). When computing the errors �H
i

from the error �o, the network is in

backpropagation mode.

To obtain the general update equations for a multilayer network, consider the graph in Figure 6.5.

Here, �i
k
(x) = �(↵i

k
(x)), where

↵i

k
(x) =

ni�1X

j=0

wi

jk
�i�1

j
(x) . (6.73)

Now,
@J

@wi

jk

=
@J

@↵i

k

@↵i

k

@wi

jk

= ��i
k
�i�1

j
(x) , (6.74)

where the error is defined as

�i
k
= �

@J

@↵i

k

. (6.75)

Hence, the update rule for weight wi

jk
can be written as

�wi

jk
= �`

@J

@wi

jk

= ` �i
k
�i�1

j
(x) . (6.76)

To determine �i
k
one uses the chain rule:

�i
k
= �

@J

@↵i

k

= �

ni+1X

l=1

@J

@↵i+1

l

@↵i+1

l

@↵i

k

=

ni+1X

l=1

�i+1

l

@↵i+1

l

@↵i

k

, (6.77)

6.2. NEURAL NETWORKS 129

while
@↵i+1

l

@↵i

k

=
@↵i+1

l

@�i
k

@�i
k

@↵i

k

= wi+1

kl
�0(↵i

k
(x)) . (6.78)

This results in the backpropagation equation:

�i
k
= �0(↵i

k
(x))

ni+1X

l=1

wi+1

kl
�i+1

l
. (6.79)

Hence, the deltas at one hidden layer are backpropagated from the deltas in the next layer. The

slope of the nonlinearity a↵ects �i
k
and thus the magnitude of the update to wi

jk
in (6.76). SS Online

backpropagation training proceeds as follows. First, all weights are initialized with random numbers

(they cannot be all zeros). At each backpropagation iteration, a new training point is presented,

and the network is run in feed-forward mode to update all activations and outputs. Then weight

updates proceed from the output layer backwards to the first hidden layer. Weight updates are

based on errors backpropagated from the later layers to earlier ones. This process is repeated for

all points in the training data, which consists in one epoch of training. The process can continue,

and the training data reused, for any desired number of epochs. Training stops when there is no

significant improvement to the empirical score function.

In practice, training needs to be stopped early to avoid overfitting. This can be done by selecting

ahead of time a fixed number of training epochs, or by checking performance on a separate validation

data set. More will be said on this in Chapter 8. In addition, gradient descent can get stuck in

local minima of the empirical score function. The simplest method to deal with this is to train the

network multiple times with di↵erent random initialization of weights and compare the results.

6.2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) have a special architecture that makes them very e↵ective in

computer vision and image analysis applications. Even though they were invented in the 1980’s,

interest in them has surged recently due to the ability of training deep versions of these networks

and their impressive performance in various tasks (see the Bibliographical Notes).

In a CNN, there are special layers, called convolutional layers, where the activation function g(i)

of each neuron i is a very sparse function of the outputs f(j) of the neurons j of the previous

convolutional layer. In fact, by arranging the neurons in layer i in a 2-dimensional array of size

n⇥m, called a feature map, then the relation between activation and outputs is given by

g(i, j) =
XX

(k,l)2N

w(k, l)f(i+ k, j + l) , (6.80)

for (i, j) 2 {(0, 0), . . . , (n,m)}, where the filter w(k, l) is a (typically small) array defined on a square

domain N . It is common to zero-pad f , i.e., add a proper number of rows and columns of zeros

130 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

around it, to avoid indices (i + k, j + l) out of bounds in (6.80) and allow g to be of the same

dimensions as f . Recall that each activation g(i, j) needs to pass through a nonlinearity to obtain

the output to the next layer, so that nonlinear discriminants can be implemented (in CNNs, the

ReLU nonlinearity is usually employed).

A common example of domain is an origin-centered 3⇥3 arrayN = {(�1,�1), (�1, 0), . . . , (0, 0), . . . ,

(1, 0), (1, 1)}, in which case (6.80) can be expanded as

g(i, j) = w(�1,�1)f(i� 1, j � 1) + w(�1, 0)f(i� 1, j) + . . .

+ w(0, 0)f(i, j) + . . .+ w(1, 0)f(i+ 1, j) + w(1, 1)f(i+ 1, j + 1)
(6.81)

for (i, j) 2 {(0, 0), . . . , (n,m)}. Notice that in this case each neuron is connected to only nine

neurons in the previous layer. The sum in (6.80 is known as the convolution of f by w in signal and

image processing (strictly speaking, this sum is a correlation, since convolution requires flipping the

domain N , but the two operations are closely related).

The values of the filter w(k, l) over the domain N specify the operation being performed. Two

example of filters are specified by the arrays

1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9

-1 -1 -1

0 0 0

1 1 1

The first one performs averaging, which has the e↵ect of smoothing or blurring, while the second

one performs di↵erentiation in the vertical direction and thus enhances horizontal edges. The main

idea behind CNNs is that, instead of being manually specified for a particular application, the filter

coe�cients become weights of the neural network and are learned from the data as part of the

training process.

In practice, the convolutional layers of a CNN are a little more complex than the previous discussion

indicates, as the neurons in each layer are actually arranged in a volume n ⇥m ⇥ r, rather than a

2-dimensional array. The filters are of dimension p⇥ q ⇥ r, where the depth r must exactly match

that of the previous layer, in order to make the result of the convolution a 2-dimensional feature

map as before (no zero padding is performed in the depth direction). Other than that, p and q can

be freely selected (though they are usually very small, between 3⇥ 3 and 7⇥ 7). However, several

di↵erent filters wk, k = 1, . . . , s, all of the same dimensions, are employed, which means that the

activation g is again a volume, of dimensions n⇥m⇥s (with the appropriate zero-padding). There is

no required relationship between r and s: the first can be smaller, equal, or larger than the second,

but in many architectures in practice, s � r.

6.2. NEURAL NETWORKS 131

Example 6.5. Suppose that the output volume from the previous layer f has dimensions 8⇥ 8⇥ 3

(e.g., this would be the case if f were a 8⇥ 8 color image input to the first layer, in which case the

3 feature maps are the red, green and blue components). Assume that there are a total of six filters

of dimensions 3 ⇥ 3 ⇥ 3 (the last dimension must be 3, in order to match the depth of f). With

zero-padding of size 1 in both height and width, the result is a 8⇥ 8⇥ 6 activation volume g for the

current layer.

In the previous example, g has the same height n and width m as f . In practice, dimensionality

reduction (i.e., reduction in n and m) from one layer to the next is accomplished in two di↵erent

ways. First, dimensionality reduction can be accomplished by striding, i.e., skipping some of the

indices (i, j) in (6.80). For example, a stride of 2 in each direction means that only every other point

of the convolution is computed, resulting in a reduction by 2 in the dimensions of the activation

array g. In the previous example, this would result in a 4⇥ 4⇥ 6 activation volume g. Secondly, a

special layer, called a max-pooling layer, can be interposed between two consecutive convolutional

layers. The max-pooling layer applies a maximum filter (typically of size 2⇥ 2 with a stride of 2) to

each feature map, producing an activation volume to the next layer of the same depth, but reduced

height and width. (In the first CNNs, average-pooling was also common, but now max-pooling is

almost exclusively used).

Figure 6.9 displays the architecture of the VGG16 (Visual Geometry Group 16-layer) CNN for image

classification, which is typical representative of the class of deep CNNs in current use. The VGG16

CNN distinguishes itself by the use of very small filters, of height and width 3⇥3 (or smaller), in all

layers. The idea is that, through the use of max-pooling and a large number of convolutional layers,

the local nature of small filters in the early layers become nonlocal in the later layers. The ReLU

nonlinearity is used in all non-pooling layers. We can see in Figure 6.9 that there are 16 non-pooling

hidden layers (plus the output layer), hence the name VGG16, and 5 max-pooling layers. Notice

that the height and width of the volumes are progressively reduced from input to output, while the

depth (i.e., the number of feature maps, or filters) is increased. The three last layers, before the

softmax, are not convolutional, but are fully-connected layers, i.e., ordinary layers of hidden neurons.

The VGG16 CNN was originally an entry in the ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC), which classifies images in a very large database into one of 1000 classes. To handle the

multiple classes, the output layer has 1000 neurons (compare to the one-neuron output layer for

binary classification in previous sections), which uses as nonlinearity the softmax function. The

softmax nonlinearity is a multivariate function S : Rc
! Rc, where c is the number of classes (it

thus di↵ers from the univariate nonlinearities in the previous sections). Each component Si of the

softmax function is given by

Si(z) =
eziP
c

j=1
ezj

, (6.82)

132 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Figure 6.9: Architecture of the VGG16 network. Adapted from Hassan [2018].

for i = 1, . . . , c, where z = (z1, . . . , zc) is the activation of the output layer (z generalizes the

discriminant ⇣ of previous sections). We can see that the softmax function “squashes” all activations

into the interval [0, 1] and makes them add up to one. Hence, the output can be interpreted as a

vector of discrete probabilities, which can be trained to indicate the likelihood of each class.

The total number of weights in the VGG16 network is 138 million, an astounding number, nearly

90% of which are in the last three fully-connected layers (see Exercise 6.5). Such a large network

requires an inordinately large amount of data and is very di�cult to train. According to the

authors, it originally took 2-3 weeks of 2014 state-of-the-art high-performance computer time to

train on the ImageNet database, which consists of roughly 14M images (as of 2010) and 1000

classes. Regularization techniques, known as dropout, where a fraction, usually 50%, of the neurons

are randomly ignored during each backpropagation iteration, and weight decay, which constrains

the L2-norm of the weight vector to be small by adding a penalty term to the score (this is similar

to ridge regression, discussed in Chapter 11), are used in an e↵ort to avoid overfitting. Due to this

training di�culty, the VGG16, and other similar deep networks, are often used with the pre-trained

weights in other imaging applications, in what is called a transfer learning approach (see Python

Assignment 6.12).

6.2. NEURAL NETWORKS 133

*6.2.3 Universal Approximation Property of Neural Networks

In this section, we review classical and recent results on the expressive power of neural networks.

These results do not take into account training, so they are not directly relatable to universal

consistency (see Section 6.2.2 for such results). All the theorems in the section are given without

proof; see the Bibliographical Notes for the sources.

The idea behind neural networks was to some extent anticipated by the following result. Let C(Id)

be the set of all continuous functions defined on the closed hypercube Id.

Theorem 6.1. (Kolmogorov-Arnold Theorem.) Every f 2 C(Id) can be written as:

f(x) =
2d+1X

i=1

Fi

0

@
dX

j=1

Gij(xj)

1

A , (6.83)

where Fi : R ! R and Gij : R ! R are continuous functions.

The previous result guarantees that a multivariate function can be computed as a finite sum of

univariate functions of sums of univariate functions of the coordinates. For example, for d = 2, the

function f 2 C(I2) given by f(x, y) = xy can be written as:

f(x, y) =
1

4

�
(x+ y)2 � (x� y)2

�
. (6.84)

However, the Kolmogorov-Arnold theorem does not say how to find the functions Fi and Gij required

to compute exactly a general function f . Furthermore, the functions Fi and Gij could be quite

complicated. Neural networks give up exact representation and instead use a combination of simple

functions: linear functions and univariate nonlinearities.

The discriminant of a neural network with k neurons in one hidden layer is specified by (6.53) and

(6.54). This discriminant can be written in a single equation as:

⇣(x) =
kX

i=0

ci�

0

@
dX

j=0

aijxj

1

A . (6.85)

where we use artificial bias units with constant unit output in order to include the coe�cients ai0

and c0 in the summations. Comparing (6.85) with (6.83) reveals the similarity with the Kolmogorov-

Arnold result.

Even though exact representation is lost, neural networks are universal approximators in the sense

of the following classical theorem by Cybenko.

134 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Theorem 6.2. (Cybenko’s Theorem.) Let f 2 C(Id). For any ⌧ > 0, there is a one-hidden layer

neural network discriminant ⇣ in (6.85) and sigmoid nonlinearity �, such that

|f(x)� ⇣(x)| < ⌧ , for all x 2 Id . (6.86)

An equivalent way to state this theorem is as follows. A subset A of a metric space X is dense if

given every point x 2 X, there is a point a 2 A arbitrarily close to it, i.e., given any x 2 X and

⌧ > 0, the ball B(x,⌧) in the metric of X contains at least one point of A. Hence, any x 2 X

can be obtained as the limit of a sequence {an} in A. The classic example is the set of rational

numbers, which is dense in the real line. If Zk(�) denotes the set set of neural network discriminants

with k neurons in one hidden layer, Theorem 6.2 states that Z(�) =
S1

k=1
Zk(�) is dense in the

metric space C(Id), with the metric ⇢(f, g) = supx2Rd |f(x)� g(x)|, provided that � is a continuous

sigmoid. Any continuous function on Id is the limit of a sequence of neural network discriminants,

and so can be approximated arbitrarily well by such discriminants. We remark that the result can

be modified to replace Id by any bounded domain D in Rd.

Since classifiers can be defined from discriminants, it is not surprising that denseness of discriminants

translate to universal approximation of the optimal classifier by neural networks. This is shown by

the following result, which is a corollary of Theorem 6.2.

Theorem 6.3. If Ck is the class of one-hidden layer neural networks with k hidden nodes and

sigmoid nonlinearity �, then

lim
k!inf

inf
 2Ck

"[] = "⇤ , (6.87)

for any distribution of (X, Y).

The ReLU nonlinearity is not included in Theorem 6.2, since it is not a sigmoid. In particular, it

is not bounded. Before we give a universal approximation result for the ReLU, we point out that

Theorem 6.2 is predicated on the fact that the number of neurons k in the hidden layer, i.e., the

width of the neural network, must be allowed to increase without bound. The only bound is on

the depth of the neural network, which in this case is two (one hidden layer and one output layer).

These theorems apply therefore to depth-bound networks.

The next recent result by Lu and collaborators applies to width-bound networks, where the maximum

number of neurons per layer is fixed, but the number of layers themselves is allowed to increase freely.

Let ⇠ : Rd
! R be the discriminant implemented by such a network (we do not give an explicit

expression of it here).

Theorem 6.4. Let f be an integrable function defined on Rn. Given any ⌧ > 0, there is a neural

network discriminant ⇠ with ReLU nonlinearities and width  d+ 4, such that
Z

Rn
|f(x)� ⇠(x)| dx < ⌧ . (6.88)

6.2. NEURAL NETWORKS 135

The important point here is that to obtain universal approximation capability with a width-bound

neural network, an arbitrary number of layers may be necessary. These are known as deep neu-

ral networks. This represents a paradigm shift with respect to the previous practice, where wide

networks with small depth (perhaps only one hidden layer) were widely preferred.

Interestingly, for approximation of arbitrary accuracy, a deep network has to be su�ciently (but not

arbitrarily) wide as well, as shown by the next result by the same authors.

Theorem 6.5. Given any f 2 C(In) that is not constant along any direction, there exists a ⌧⇤ > 0

such that Z

Rn
|f(x)� ⇠(x)| dx � ⌧⇤ , (6.89)

for all neural network discriminants ⇠ with ReLU nonlinearities and width  d� 1.

*6.2.4 Universal Consistency Theorems

The results in Section 6.2.2 do not consider data. In particular, they do not weigh directly on the

issue of consistency of neural network classification. In this section, we state without proof (see

Bibliographical Notes) two strong universal consistency for neural network classification rules. The

first one is based on minimization of the empirical classification error (6.57), while the second assumes

minimization of the mean absolute error (6.58). Though these results are mostly of theoretical

interest, given the di�culty of minimizing these scores in practice, they do illustrate the expressive

power of depth-2 neural networks, in agreement with Theorems 6.2 and 6.3 (which do not consider

training).

The first result applies to to threshold sigmoids and empirical error minimization.

Theorem 6.6. Let n be the classification rule that uses minimization of the empirical error to

design a neural network with k hidden nodes and threshold sigmoids. If k ! 1 such that k lnn/n !

0 as n ! 1, then n is strongly universally consistent.

As usual for these kinds of results, Theorem 6.6 requires that the complexity of the classification

rule, in terms of the number of neurons k in the hidden layer, be allowed to grow, slowly, with the

sample size n.

The next result applies to arbitrary sigmoids and absolute error minimization, but regularization

must be applied in the form of a constraint on the magnitude of the output weights.

Theorem 6.7. Let n be the classification rule that uses minimization of the absolute error to

design a neural network with kn hidden nodes and arbitrary sigmoid, with the constraint that the

136 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

output weights satisfy
knX

i=0

|ci|  �n . (6.90)

If kn ! 1 and �n ! 1 and kn�
2
n ln(kn�n)

n
! 0 as n ! 1, then n is universally consistent.

Notice that this result requires that complexity be allowed to grow, slowly, with sample size, both

in terms of the number of neurons k in the hidden layer and the bound on the output weights.

6.3 Decision Trees

The main idea behind decision tree classification rules is to cut up the space recursively, as in a

game of “20 questions.” This means that decision trees can handle categorical features as well as

numeric ones.

One of the strong points of decision trees is that they provide nonlinear, complex classifiers that

also have a high degree of interpretability, i.e., the inferred classifier specifies simple logical rules

that can be validated by domain experts and help generate new hypotheses.

A tree classifier consists of a hierarchy of nodes where data splitting occurs, except for terminal leaf

nodes where label assignment are made. All tree classifiers have an initial splitting node, known as

the root node. Each splitting node has at least two descendants. The depth of a tree classifier is the

maximum number of splits between the root node and any leaf node. In a binary tree, all splitting

nodes have exactly two descendants. It is easy to see that the leaf nodes partition the feature space,

i.e., they are do not overlap and cover the entire space. The following example illustrates these

concepts.

Example 6.6. Here we separate the XOR data set in Example 6.1 using a binary tree with three

splitting nodes and four leaf nodes. The tree classifier and node diagram are displayed in Figure 6.10.

(We are back to employing the usual labels 0 and 1 for the classes.) The decision boundary and

regions are the same as for the nonlinear SVM classifier in Example 6.1. In the diagram, the root

node is depicted at the top, and the leaf nodes at the bottom. Each leaf in this case corresponds to

a di↵erent rectangular connected piece of the decision regions. A general fact about decision trees

is that each leaf node can be represented by a logical AND of the intermediate decisions. In the

present example, the left most leaf node corresponds to the clause “[x1  0]AND[x2  0].” Di↵erent

leaf nodes can be combined with the OR logic. For example, for the present tree classifier we have

Class 0: ([x1  0] AND [x2 > 0]) OR ([x1 > 0] AND [x2  0]) .

Class 1: ([x1  0] AND [x2  0]) OR ([x1 > 0] AND [x2  0]) .
(6.91)

6.3. DECISION TREES 137

(a) (b)

Figure 6.10: Decision tree with the XOR data set. (a) Original data and tree classifier (same color

conventions as in Figure 6.2 are used). (b) Tree diagram.

Logical simplifications should be carried out if possible to obtain the smallest expressions. This

illustrates the interpretability capabilities of decision tree classifiers. ⇧

Next we examiner how to train tree classifiers from sample data. We consider the well-known

Classification and Regression Tree (CART) rule, where the decision at each node is of the form

xj  ↵ where xj is one of the coordinates of the point x, just as in the case of Example 6.6. It is

clear that this always partitions the feature space into unions of rectangles. Here we consider CART

for classification, while the regression case will be considered in Section 11.5.

For each node, the coordinate to split on j and the split threshold ↵ are determined in training by

using the concept of an impurity criterion. Given a node R (a hyper-rectangle in feature space, in

the case of CART), let Ni(R) be the number of training points from class i in R, for i = 0, 1. Hence,

N(R) = N0(R) +N1(R) is the total number of points in R. The impurity of R is defined by

(R) = ⇠(p, 1� p) , (6.92)

where p = N1(R)/N(R) and 1� p = N0(R)/N(R). The impurity function ⇠(p, 1� p) is nonnegative

and satisfies the following intuitive conditions:

(1) ⇠(0.5, 0.5) � ⇠(p, 1 � p) for any p 2 [0, 1] (so that (R) is maximum when p=1�p=0.5, i.e.

N1(R)=N0(R), corresponding to maximum impurity).

138 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Figure 6.11: Common impurity functions used in CART (plot generated by c06 impurity.py).

(2) ⇠(0, 1) = ⇠(1, 0) = 0 (so that (R) = 0 if either N1(R) = 0 or N0(R) = 0; i.e. R is pure).

(3) As a function of p, ⇠(p, 1 � p) increases for p 2 [0, 0.5] and decreases for p 2 [0.5, 1] (so that

(R) increases as the ratio N1(R)/N0(R) approaches 1).

Three common choices for ⇠ are:

1. The entropy impurity: ⇠(p, 1� p) = �p ln p� (1�p) ln(1�p).

2. The Gini or variance impurity: ⇠(p, 1� p) = 2p(1� p).

3. The misclassification impurity: ⇠(p, 1� p) = min(p, 1� p).

See Figure 6.11 for an illustration. These functions should look familiar, as they are just the same

as some of the criteria used in F -errors in Chapter 2. They are related to, respectively, the entropy

of a binary source in (2.69), the function used in the nearest-neighbor distance in (2.68), and the

function used in the Bayes error in (2.67).

For a node R, the coordinate j to split on and the split threshold ↵ are determined as follows. Let

Rj

↵,� = sub-rectangle resulting from splitxj  ↵

Rj

↵,+
= sub-rectangle resulting from splitxj > ↵

(6.93)

6.3. DECISION TREES 139

The impurity drop is defined by

�R(j,↵) = (R) �
N(Rj

↵,�)

N(R)
(Rj

↵,�) �
N(Rj

↵,+
)

N(R)
(Rj

↵,+
) (6.94)

The strategy is to search for the j and ↵ that maximize the impurity drop. Since there are only a

finite number of data points and coordinates, there is only a finite number of distinct candidate splits

(j,↵), so the search can be exhaustive (e.g., consider as candidate ↵ only the mid-points between

successive data points along the given coordinate j). In a fully-grown tree, splitting stops when

a pure node is encountered, which is then declared a leaf node and given the label of the points

contained in it. Training terminates when all current nodes are pure.

As a general rule, however, fully-grown trees should never be employed, as they are almost certain

to produce overfitting, even in simple problems. Instead, regularization techniques should be used

to avoid overfitting. Simple examples of such techniques include:

• Stopped Splitting: Call a node a leaf and assign the majority label if (1) there are fewer

than a specified number of points in the node, (2) the best impurity drop is below a specified

threshold, or (3) a maximum tree depth has been reached, or (4) a maximum number of leaf

nodes has been obtained.

• Pruning: Fully grow the tree, then successively merge pairs of neighboring leafs that increase

impurity the least until a specified maximum level of impurity is achieved.

A more sophisticated form of stopped splitting rules out candidate splits that leave fewer than a

specified number of points in either of the child nodes. Splitting stops when no remaining legal

splits are left.

Another regularization strategy to reduce overfitting of decision trees is to use ensemble classifica-

tion, described in Section 3.5.1. For example, in the random forest family of classification rules, a

number of fully-grown trees are trained on randomly perturbed data (e.g. through bagging), and

the decisions are combined by majority voting.

Example 6.7. Figure 6.12 displays classifiers produced by a CART classification rule with Gini

impurity on the training data in Figure 6.4. Regularization is employed, whereby no splits that

leave fewer than s points in either child node are allowed. The plots show that overfitting quickly

occurs with decreasing s. The case s = 1, which corresponds to a fully-grown tree, displays gross

overfitting, in agreement with the remark made previously that fully-grown trees should not be

used. The case s = 20 is interesting: there is only one split and the decision tree consists of a single

node, i.e., the root node. Such one-split decision trees are known as stumps and can be surprisingly

e↵ective (see the Bibliographical Notes). Stumps can always be obtained by making s large enough

140 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

s = 20 s = 8

s = 4 s = 1

Figure 6.12: Classifiers produced by a CART rule with Gini impurity on the training data in

Figures 6.4 and 6.8. No splits that leave fewer than s points in either child node are allowed. The

case s = 1 corresponds to a fully-grown tree (plots generated by c06 tree.py).

(of course they can be also obtained more simply by imposing a maximum depth of 1 or a maximum

leaf node number of 2). The choice of the regularization parameter s is a model selection problem

(see Chapter 8). ⇧

Finally, we remark that CART with impurity-based splitting is, surprisingly, not universally consis-

tent in general, meaning that, for every impurity criterion, one can find a distribution of the data

for which things go wrong. There are however other universally consistent decision tree rules. For

6.4. RANK-BASED CLASSIFIERS 141

example, if splitting depends only on X1, . . . ,Xn, and the labels are used only for majority voting

at the leaves, one can apply Theorem 5.5 to obtain universal consistency, provided that the parti-

tions satisfy conditions (i) and (ii) of that theorem. In addition, there are examples of universally

consistent tree rules that use the labels in splitting (see the Bibliographical notes).

6.4 Rank-Based Classifiers

In this section, we discuss briefly the family of rank-based classification rules, which are based only

on the relative order between feature values and not their numerical magnitude. This makes these

rules resistant to noisy and unnormalized data. Rank-based rules generally produce simple classifiers

that are less prone to overfit and likely to be interpretable.

The original and most well-known example of rank-based classifier is the Top Scoring Pair (TSP)

classification rule. Given two feature indices 1  i, j  d, with i 6= j, the TSP classifier is given by

 (x) = Ixi<xj =

8
<

:
1 , xi < xj ,

0 , otherwise.
(6.95)

Therefore, the TSP classifier uses a fixed decision boundary (a 45-degree line) and depends only on

the feature ranks, and not on their magnitudes.

Training of a TSP classifier involves only finding a pair (i⇤, j⇤) that maximizes an empirical score

given the data:

(i⇤, j⇤) = arg max
1i,jd

h
P̂ (Xi < Xj | Y = 1)� P̂ (Xi < Xj | Y = 0)

i

= arg max
1i,jd

"
1

N0

nX

k=1

IXki<XkjIYk=1 �
1

N1

nX

k=1

IXki<XkjIYk=0

#
.

(6.96)

There are e�cient greedy search procedures to perform this maximization in case d is large (see the

Bibliographical Notes).

We classify TSP as a function-approximation classification rule because it, like all preceding exam-

ples of classification rules in this chapter, seeks to adjust a discriminant, in this case, the simple

discriminant g(x) = xi � xj , to the training data by optimizing an empirical score. Notice that the

amount of adjusting is small since, given the selected pair (i⇤, j⇤), the TSP classifier is independent

of the sample data.

The TSP approach can be extended to any number k of pairs of features, by means of majority

voting between k TSP classifiers. This could be done by a perturbation approach, as in the ensemble

142 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

classification rules in Section 3.5.1, but the published k-TSP classification rule does this by taking

the top TSPs according to the score in (6.96). Another example of rank-based classification rule is

the Top-Scoring Median (TSM) algorithm, which is based on comparing the median ranks between

two groups of features.

6.5 Bibliographical Notes

The Support Vector Machine was introduced in Boser et al. [1992]. Our discussion of SVMs follows

for the most part that in Webb [2002].

The model of the neuron as a linear network followed by a trigger nonlinearity was originally proposed

by McCulloch and Pitts [1943]. Rosenblatt’s Perceptron algorithm appeared in Rosenblatt [1957];

see Duda et al. [2001] for a thorough description. A history of the Neural Networks is provided in

Section 16.5.3 of Murphy [2012a], where the invention of the backpropagation algorithm is credited

to Bryson and Ho [1969]. It seems to have been rediscovered at least two other times [Werbos, 1974;

Rumelhart et al., 1985].

Convolutional Neural Networks go back at least to the Neocognitron architecture proposed by

Fukushima [1980]. CNNs became well-known after the publication of the LeNet-5 architecture

for recognition of signatures in bank checks in the 1990’s [LeCun et al., 1998]. “AlexNet,” as it

became eventually known, was an innovative CNN architecture that used ReLU nonlinearities and

dropout, winning the ImageNet competition in 2012 by a large margin [Krizhevsky et al., 2012].

The VGG16 architecture was one of a few architectures proposed in Simonyan and Zisserman [2014],

which introduced the use of very large CNNs using small 3⇥ 3 filters. The ImageNet database was

described in Deng et al. [2009]. The statistics about ImageNet are from Fei-Fei et al. [2010]. A recent

compact treatment of CNNs and other deep neural network architectures is found in Buduma and

Locascio [2017].

CART was introduced in Breiman et al. [1984]. A counter-example that shows that CART is

not universally consistent is given in Section 20.9 of Devroye et al. [1996]. On the other hand,

Theorem 21.2 in Devroye et al. [1996] gives conditions that a decision tree rule that uses the labels

in splitting must satisfy to achieve strong consistency. The same authors go on to exhibit some

specific cases where such rules are universally strongly consistent. The application of bagging to

CART was explored by Breiman [2001]. There has been considerable interest in the application of

random forests in di↵erent areas of Bioinformatics; e.g. see Alvarez et al. [2005]; Izmirlian [2004];

Knights et al. [2011].

6.6. EXERCISES 143

The TSP classification rule was introduced in Geman et al. [2004], while the kTSP extension of it

appeared in Tan et al. [2005]. The TSM classification rule was introduced in Afsari et al. [2014].

The latter reference defines the family of rank-in-context (RIC) classification rules, which includes

all the previous examples as special cases. This reference also discusses greedy search procedures to

find the top scoring pairs.

Theorem 6.1 appears in Lorentz [1976]; see also Devroye et al. [1996]. Girosi and Poggio [1989]

cite results from the Russian literature [Vitushkin, 1954] to argue that Theorem 6.1 is not useful in

practice, given the high irregularity of the functions involved. Theorem 6.2 is Theorem 2 of Cybenko

[1989]. The continuity of the sigmoid assumed in that theorem is shown to be unnecessary by

Theorem 30.4 in Devroye et al. [1996]. See also Hornik et al. [1989]; Funahashi [1989]. Theorem 6.3

is Corollary 30.1 of Devroye et al. [1996]. Theorems 6.4 and 6.5 are from Lu et al. [2017]. For

a description of nonlinear least-squares algorithms, including the Gauss-Newton and Levenberg-

Marquardt Algorithms, see Chapter 9 of Nocedal and Wright [2006]. Theorem 6.6 is due to is due

to Faragó and Lugosi, while Theorem 6.7 is due to Lugosi and Zeger; they are Theorems 30.7 and

30.9 in Devroye et al. [1996], respectively.

6.6 Exercises

6.1. Consider a linear discriminant g(x) = aTx+ b.

(a) Use the method of Lagrange multipliers to show that the distance of a point x0 to the

hyperplane g(x) = 0 is given by |g(x0)|/||a||.

Hint: Set up a minimization problem with an equality constraint. (The theory is similar to

the case with inequality constraints, except that the Lagrange multiplier is unconstrained

and there is no complementary slackness condition).

(b) Use the result in item (a) to show that the margin in a linear SVM is equal to 1/||a||.

6.2. Show that the polynomial kernel K(x, y) = (1 + xT y)p satisfies Mercer’s condition.

6.3. Show that the decision regions produced by a neural network with k threshold sigmoids in the

first hidden layer, no matter what nonlinearities are used in succeeding layers, are equal to the

intersection of k half-spaces, i.e., the decision boundary is piecewise linear.

Hint: All neurons in the first hidden layer are perceptrons and the output of the layer is a

binary vector.

6.4. A neural network with l and m neurons in two hidden layers implements the discriminant:

⇣(x) = c0 +
lX

i=1

ci⇠i(x) , (6.97)

144 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

where ⇠i(x) = �(�i(x)), for i = 1, . . . , l,

�i(x) = bi0 +
mX

j=1

bij�j(x) , i = 1, . . . , l , (6.98)

where �j(x) = �(�j(x)), for j = 1, . . . ,m, and

�j(x) = aj0 +
dX

k=1

ajkxk , j = 1, . . . ,m . (6.99)

(a) Determine the backpropagation algorithm updates for the coe�cients ci, bij , and ajk.

(b) Find the backpropagation equations for this problem.

6.5. For the VGG16 CNN architecture (see Figure 6.9):

(a) Determine the number of filters used in each convolution layer.

(b) Based on the fact that all filters are of size 3⇥ 3⇥ r, where r is the depth of the previous

layer, determine the total number of convolution weights in the entire network.

(c) Add the weights used in the fully-connected layers to obtain the total number of weights

used by VGG16.

6.6. Consider the simple CART classifier in R2 depicted below, consisting of three splitting nodes

and four leaf nodes.

Figure 6.13: Diagram for Problem 6.6

Find the weights of a two-hidden-layer neural network with threshold sigmoids, with three

neurons in the first hidden layer and four neurons in the second hidden layer, which implements

the same classifier.

Hint: Note the correspondence between the number of neurons in the first and second hidden

layers and the numbers of splitting nodes and leaf nodes, respectively.

6.6. EXERCISES 145

6.7. Consider the training data set given in the figure below.

Figure 6.14: Diagram for Problem 6.7

(a) By inspection, find the coe�cients of the linear SVM hyperplane a1x1 + a2x2 + a0 = 0

and plot it. What is the value of the margin? Say as much as you can about the values

of the Lagrange multipliers associated with each of the points.

(b) Apply the CART rule, using the misclassification impurity, and stop after finding one

splitting node (this is the “1R” or “stump” rule). If there is a tie between best splits,

pick one that makes at most one error in each class. Plot this classifier as a decision

boundary superimposed on the training data and also as a binary decision tree showing

the splitting and leaf nodes.

(c) How do you compare the classifiers in (a) and (b)? Which one is more likely to have a

smaller classification error in this problem?

6.8. Consider the training data set given in the figure below.

Figure 6.15: Diagram for Problem 6.8

146 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

(a) There are exactly two CART classifiers with two splitting nodes (root node plus another

node) that produce an apparent error of 0.125. Plot these classifiers in the form of a

decision boundary superimposed on the training data and also as a binary decision tree

showing the splitting and leaf nodes.

(b) Find the architecture and weights of neural network implementations of the two classifiers

in item (a).

Hint: See Exercise 6.6.

6.7 Python Assignments

6.9. This assignment concerns Example 6.2.

(a) Modify the code in c06 svm.py to obtain plots for C = 0.001, 0.01, 0.1, 1, 10, 100, 1000

and n = 50, 100, 250, 500 per class. Plot the classifiers over the range [�3, 9]⇥ [�3, 9] in

order to visualize the entire data and reduce the marker size from 12 to 8 to facilitate

visualization. Which classifiers are closest to the optimal classifier? How do you explain

this in terms of underfitting/overfitting? See the coding hint in part (a) of Problem 5.8.

(b) Compute test set errors for each classifier in part (a), using the same procedure as in part

(b) of Problem 5.8. Generate a table containing each classifier plot in part (a) with its

test set error rate. Which combinations of sample size and parameter C produce the top

5 smallest error rates?

(c) Compute expected error rates for the SVM classification rules in part (a), using the same

procedure as in part (c) of Problem 5.8, with R = 200. Which parameter C should be

used for each sample size?

(d) Repeat parts (a)–(c) using the polynomial kernel with order p = 2. Do the results change

significantly?

6.10. This assignment concerns Example 6.4.

(a) Modify the code in c06 nnet.py to obtain plots for H = 2, 3, 5, 8, 10, 15, 30 neurons in

the hidden layer and n = 50, 100, 250, 500 per class. Plot the classifiers over the range

[�3, 9]⇥ [�3, 9] in order to visualize the entire data and reduce the marker size from 12

to 8 to facilitate visualization. Which classifiers are closest to the optimal classifier? How

do you explain this in terms of underfitting/overfitting? See the coding hint in part (a)

of Problem 5.8.

(b) Compute test set errors for each classifier in part (a), using the same procedure as in

part (b) of Problem 5.8. Generate a table containing each classifier plot in part (a) with

6.7. PYTHON ASSIGNMENTS 147

its test set error rate. Which combinations of sample size and number of hidden neurons

produce the top 5 smallest error rates?

(c) Compute expected error rates for the neural network classification rules in part (a), using

the same procedure as in part (c) of Problem 5.8, with R = 200. Which number of hidden

neurons should be used for each sample size?

(d) Repeat parts (a)–(c) using ReLU nonlinearities. How do the results change?

6.11. This assignment concerns Example 6.7.

(a) Modify the code in c06 tree.py to obtain plots for s = 20, 16, 8, 5, 4, 2, 120, 16, 8, 5, 4, 2, 1

and n = 50, 100, 250, 500 per class. Plot the classifiers over the range [�3, 9]⇥ [�3, 9] in

order to visualize the entire data and reduce the marker size from 12 to 8 to facilitate

visualization. Which classifiers are closest to the optimal classifier? How do you explain

this in terms of underfitting/overfitting? See the coding hint in part (a) of Problem 5.8.

(b) Compute test set errors for each classifier in part (a), using the same procedure as in part

(b) of Problem 5.8. Generate a table containing each classifier plot in part (a) with its

test set error rate. Which combinations of sample size and parameter s produce the top

5 smallest error rates?

(c) Compute expected error rates for the tree classification rules in part (a), using the same

procedure as in part (c) of Problem 5.8, with R = 200. Which parameter s should be

used for each sample size?

(d) Repeat parts (a)–(c) by limiting the number of leaf nodes to l = 10, 6, 4, 2 (notice that

l = 2 must produce a stump). How do you compare this to the previous method as a

regularization technique? Is it as e↵ective in producing accurate tree classifiers?

6.12. In this assignment, we apply the VGG16 convolutional neural networks and a Gaussian Radial-

Basis Function (RBF) nonlinear SVM to the Carnegie Mellon University ultrahigh carbon steel

(UHCS) dataset (see Section A8.6). We will apply a transfer learning approach, where the

VGG16 network with pre-trained weights is used to generate features to train the SVM.

We will classify the micrographs according to primary microconstituent. As explained in

Section A8.6, there are a total of seven di↵erent labels, corresponding to di↵erent phases of

steel resulting from di↵erent thermal processing. The training data will be the first 100 data

points in the spheroidite, carbide network, pearlite categories and the first 60 points in the

spheroidite+Widmanstätten category. The remaining data points will compose the various

test sets (more on this below). Figure 6.16 displays sample micrographs in each of the four

categories. These materials are su�ciently di↵erent that classifying their micrographs should

be easy, provided that one has the right features. In this assignment, we use the pre-trained

convolutional layers of the VGG16 to provide the featurization.

148 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Spheroidite Pearlite

Carbide Network Spheroidite+Widmanstätten

Figure 6.16: Sample micrographs from the CMU-UHCS database. From the top left clockwise, these

are micrographs 2, 5, 9, and 58 in the database. Source: CMU-UHCS database [Hecht et al., 2017;

DeCost et al., 2017]. See Section A8.6. Images used with permission.

The classification rule to be used is a Radial Basis Function (RBF) nonlinear SVM. We will

use the one-vs-one approach (see Exercise 4.2), to deal with the multiple labels, where each

of 4 choose 2 = 6 classification problems for each pair of labels are carried out. Given a new

image, each of the six classifiers is applied and then a vote is taken to achieve a consensus for

the most often predicted label.

To featurize the images, we will use the pre-trained VGG16 deep convolutional neural network

(CNN), discussed in Section 6.2.2. We will ignore the fully connected layers, and take the

features from the input to the max-pooling layers only, using the “channels” mean value as

the feature vector (each channel is a 2D image corresponding to the output of a di↵erent

6.7. PYTHON ASSIGNMENTS 149

filter). This results in feature vectors of length 64, 128, 256, 512, 512, respectively (these

lengths correspond to the number of filters in each layer and are fixed, having nothing to do

with the image size). In each pairwise classification experiment, we will select one of the five

layers according to the best 10-fold cross-validation error estimate (cross-validation estimators

will be discussed in detail in Chapter 7).

You are supposed to record the following:

(a) The convolution layer used and the cross-validated error estimate for each of the six

pairwise two-label classifiers.

(b) Separate test error rates on the unused micrographs of each of the four categories, for

the pairwise two-label classifiers and the multilabel one-vs-one voting classifier described

previously. For the pairwise classifiers use only the test micrographs with the two labels

used to train the classifier. For the multilabel classifier, use the test micrographs with

the corresponding four labels.

(c) For the mixed pearlite + spheroidite test micrographs, apply the trained pairwise classifier

for pearlite vs. spheroidite and the multilabel voting classifier. Print the predicted labels

by these two classifiers side by side (one row for each test micrograph). Comment your

results.

(d) Now apply the multilabel classifier on the pearlite + Widmanstätten and martensite

micrographs and print the predicted labels. Compare to the results in part (c).

In each case above, interpret your results. Implementation should use the scikit-learn and

Keras python libraries.

Coding hints:

1. The first step is to read in and preprocess each micrograph and featurize it. This will take

most of the computation time. First read in the images using the Keras image utility:

img = image.load img(‘image file name’)

x = image.img to array(img)

Next, crop the images to remove the subtitles:

x = x[0:484,:,:]

add an artificial dimension to specify a batch of one image (since Keras works with batches

of images):

x = np.expand dims(x,axis=0)

and use the Keras function preprocess input to remove the image mean and perform

other conditioning:

x = preprocess input(x)

150 CHAPTER 6. FUNCTION-APPROXIMATION CLASSIFICATION

Notice that no image size reduction is necessary, as Keras can accept any input image

size when in featurization mode.

2. The features are computed by first specifying as base model VGG16 with the pretrained

ImageNet weights in featurization mode (do not include the top fully-connected layers):

base model = VGG16(weights=‘imagenet’, include top=False)

extracting the desired feature map (e.g. for the first layer):

model = Model(inputs=base model.input,

outputs=base model.get layer(‘block1 pool’).output)

xb = model.predict(x)

and computing its mean

F = np.mean(xb,axis=(0,1,2))

Notice that steps 1 and 2 have to be repeated for each of the micrographs.

3. The next step is to separate the generated feature vectors by label and by training/testing

status, using standard python code. You should save the features to disk since they are

expensive to compute.

4. You should use the scikit-learn functions svm.SVC and cross val score to train the SVM

classifiers and calculate the cross-validation error rates, respectively, and record which

layer produces the best results. When calling svm.SVC, set the kernel option to ‘rbf’

(this corresponds to the Gaussian RBF) and the C and gamma parameters to 1 and

‘auto’, respectively.

5. Obtain test sets using standard python code. Compute the test set errors for each pairwise

classifier and for the multiclass classifier, using the correspond best featurization (layer)

for each pairwise classifier, obtained in the previous item. For the multiclass classifier,

you should use the scikit-learn function OnevsOneClassifier, which has its own internal

tie-breaking procedure.

6. The remaining classifiers and error rates for parts (c) and (d) can be obtained similarly.

Chapter 7

Error Estimation for Classification

“The game of science is, in principle, without end. He who

decides one day that scientific statements do not call for

any further test, and that they can be regarded as finally

verified, retires from the game.”

– Sir Karl Popper, The Logic of Scientific Discovery, 1935.

If one knew the feature-label distribution of a problem, then one could in principle compute the exact

error of a classifier. In many practical cases, such knowledge is not available, and it is necessary to

estimate the error of a classifier using sample data. If the sample size is large enough, it is possible

to divide the available data into training and testing samples, design a classifier on the training set,

and evaluate it on the test set. In this chapter, it is shown that this produces a very accurate error

estimator, provided that there is an abundance of test points. However, large test samples are not

possible if the overall sample size is small, in which case training and testing has to be performed

on the same data. This chapter provides a comprehensive survey of di↵erent classification error

estimation procedures and how to assess their performance.

7.1 Error Estimation Rules

Good classification rules produce classifiers with small average error rates. But is a classification

rule good if its error rate cannot be estimated accurately? In other words, is a classifier with a small

error rate useful if this error rate cannot be stated with confidence? It can hardly be disputed that

the answer to the question is negative. Hence, at a fundamental level, one can only speak of the

goodness of a classification rule together with an error estimation rule that complements it. We

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_

151

7

https://doi.org/10.1007/978-3-030-27656-0_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_7&domain=pdf

152 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

will focus on estimation of the error "n of a sample-based classifier, since this is the most important

error rate in practice. Estimation of other error rates, such as the expected error rate µn or the

Bayes error "⇤, are comparatively rare in current practice (however, we shall have opportunity to

comment on those as well).

Formally, given a classification rule n and sample data Sn = {(X1, Y1), . . . , (Xn, Yn)}, an error

estimation rule is a mapping⌅ n : (n, Sn, ⇠) 7! "̂n, where 0  "̂n  1 and ⇠ denotes internal

random factors (if any) of⌅ n that do not depend on the random sample data. If there are no such

internal random factors, the error estimation rule is said to be nonrandomized, otherwise, it is said

to be randomized.

If n, Sn, and ⇠ are all fixed, then "̂n is called an error estimate of the fixed classifier n = n(Sn).

If only n is specified, "̂n is called an error estimator. This emphasizes the distinction that, while

an error estimation rule is a general procedure, an error estimator is associated with a classification

rule, and therefore can have di↵erent properties and perform di↵erently with di↵erent classification

rules. The goodness of a given classification procedure relative to a specific feature-label distribution

involves both how well the classification error "n approximates the optimal error "⇤ as well as how

well the error estimator "̂n approximates the classification error "n. The latter depends on the joint

distribution between the random variables "n and "̂n.

Example 7.1. (Resubstitution Error Estimation Rule.) This rule is based on testing the classifier

directly on the training data:

⌅ r

n(n, Sn) =
1

n

nX

i=1

|Yi � n(Sn)(Xi)| . (7.1)

The resulting resubstitution estimate is also variously known as the apparent error, the training

error, or the empirical error. It is simply the fraction of errors committed on Sn by the classifier

designed by n on Sn itself. For example, in Figure 3.1, the resubstitution error estimate is 13/40

= 32.5%. On the other hand, all the classifiers in Examples 4.2 and 4.3 of Chapter 4 have zero

apparent error. Note that ⇠ is omitted in (7.1), as this is a nonrandomized error estimation rule. ⇧

Example 7.2. (Cross-Validation Error Estimation Rule.) This rule is based on training on a subset

of the data, testing on the remaining data, and averaging the results over a number of repetitions. In

the basic version of this rule, known as k-fold cross-validation, the sample Sn is randomly partitioned

into k equal-size folds S(i) = {(X(i)

j
, Y (i)

j
); j = 1, . . . , n/k}, for i = 1, . . . , k (assume that k divides n),

each fold S(i) is left out of the design process to obtain a deleted sample Sn�S(i), a classification rule

 n�n/k is applied to Sn�S(i), and the error of the resulting classifier is estimated as the proportion

of errors it makes on S(i). The average of these k error rates is the cross-validated error estimate.

7.2. ERROR ESTIMATION PERFORMANCE 153

The k-fold cross-validation error estimation rule can thus be formulated as

⌅ cv(k)

n (n, Sn, ⇠) =
1

n

kX

i=1

n/kX

j=1

|Y (i)

j
� n�n/k(Sn � S(i))(X

(i)

j
)| . (7.2)

The random factors ⇠ specify the random partition of Sn into the folds; therefore, k-fold cross-

validation is, in general, a randomized error estimation rule. However, if k = n, then each fold

contains a single point, and randomness is removed as there is only one possible partition of the

sample. As a result, the error estimation rule is nonrandomized. This is called the leave-one-out

error estimation rule. ⇧

7.2 Error Estimation Performance

The performance of error estimators depends on the the classification rule, feature-label distribution,

and sample size. From a frequentist perspective, performance is determined by the joint sampling

distribution of the random variables "n and "̂n as they vary with respect to the sample data Sn.

Roughly speaking, we are interested in the “average” performance over all possible sample data (and

random factors, if any). This section examines performance criteria for error estimators, including

the deviation with respect to the true error, bias, variance, RMS, and consistency.

7.2.1 Deviation Distribution

As the purpose of an error estimator is to approximate the true error, the distribution of the

deviation "̂n � "n is central to accuracy characterization; see Figure 7.1 for an illustration. In

contrast to the joint distribution between "n and "̂n, the deviation distribution has the advantage

of being a univariate distribution; it contains a useful subset of the larger information contained in

the joint distribution. For a specified feature-label distribution and classification rule, the deviation

distribution can be estimated by designing classifiers over a large number of simulated training data

sets, computing the estimated and true errors "̂n and "n (the latter can be computed analytically

if formulas are available, or estimated using large separate test sets) and then fitting a smooth

finite-support density to the di↵erences "̂n � "n.

7.2.2 Bias, Variance, RMS, and Tail Probabilities

Certain moments and probabilities associated with the deviation distribution play key roles as

performance metrics for error estimation:

154 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

Figure 7.1: Deviation distribution and a few performance metrics derived from it.

1. The bias,
Bias("̂n) = E["̂n � "n] = E["̂n]� E["n] . (7.3)

The error estimator "̂n is said to be optimistically biased if Bias("̂n) < 0 and pessimistically

biased if Bias("̂n) > 0. It is unbiased if Bias("̂n) = 0.

2. The deviation variance,

Vardev("̂n) = Var("̂n � "n) = Var("̂n) + Var("n)� 2Cov("n, "̂n) . (7.4)

3. The root mean-square error,

RMS("̂n) =
p
E[("̂n � "n)2] =

p
Bias("̂n)2 +Vardev("̂n) . (7.5)

The square of the RMS is called the mean-square error (MSE).

4. The tail probabilities,

P (|"̂n � "n| � ⌧) = P ("̂n � "n � ⌧) + P ("̂n � "n  �⌧), for ⌧ > 0. (7.6)

Good error estimation performance requires that the bias (magnitude), deviation variance, RMS/MSE,

and the tail probabilities be as close as possible to zero. Note that the bias, the deviation variance,

and the MSE are respectively the first moment, central second moment, and second moment of the

deviation distribution (see Figure 7.1). Therefore, the deviation distribution should be centered at

zero and be as thin and tall as possible, i.e., it should approach a point mass centered at zero.

The RMS is generally considered the most important error estimation performance metric. The

other performance metrics appear within the computation of the RMS; indeed, all of the five basic

7.2. ERROR ESTIMATION PERFORMANCE 155

moments — the expectations E["n] and E["̂n], the variances Var("n) and Var("̂n), and the covariance

Cov("n, "̂n) — appear within the RMS. In addition, applying Markov’s Inequality (A.70) with

X = |"̂n � "n|2 and a = ⌧2 yields

P (|"̂n � "n| � ⌧) = P (|"̂n � "n|
2
� ⌧2) 

E[|"̂n � "n|2]

⌧2
=

✓
RMS("̂n)

⌧

◆2

, for ⌧ > 0 . (7.7)

Therefore, a small RMS implies small tail probabilities.

A further comment about the deviation variance is in order. In classical statistics, one considers

only the variance of the estimator, in this case, Var("̂n). However, unlike in classical statistics,

here the quantity being estimated, "n, is a “moving target,” as it is random itself. This is why it is

appropriate to consider the variance of the di↵erence, Var("̂n�"n). However, if the classification rule

is competent with respect to the sample size and complexity of the problem, then the classification

error should not change much with varying training data, i.e., Var("n) ⇡ 0 — in fact, overfitting

could be defined as present if Var("n) is large, since in that case the classification rule is learning the

changing data and not the fixed underlying feature-label distribution (more on this in Chapter 8).

It follows, from the Cauchy-Schwarz Inequality (A.68) with X = "n�E["n] and Y = "̂n�E["̂n] that

Cov("n, "̂n) 
p
Var("n)Var("̂n) ⇡ 0, and thus, from (7.4), Var("̂n � "n) ⇡ Var("̂n). In other words,

as Var("n) becomes small, the estimation problem becomes closer to the one in classical statistics.

The e↵ect of randomization of the error estimation rule on Var("̂n) can be investigated as follows.

If the error estimation rule is randomized, then the error estimator "̂n is still random even after Sn

is specified. Accordingly, we define the internal variance of "̂n as

Vint = Var("̂n|Sn) . (7.8)

The internal variance measures the variability due only to the internal random factors, while the

full variance Var("̂n) measures the variability due to both the sample Sn and the internal random

factors ⇠. Letting X = "̂n and Y = Sn in the Conditional Variance Formula (A.84), one obtains

Var("̂n) = E[Vint] + Var(E["̂n|Sn]) . (7.9)

This variance decomposition equation illuminates the issue. The first term on the right-hand side

contains the contribution of the internal variance to the total variance. For nonrandomized "̂n,

Vint = 0; for randomized "̂n, E[Vint] > 0. Randomized error estimation rules, such as cross-validation,

attempt to make the internal variance small by averaging and intensive computation.

*7.2.3 Consistency

One can also consider asymptotic performance as sample size increases. In particular, an error

estimator is said to be consistent if "̂n ! "n in probability as n ! 1, and strongly consistent if

156 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

convergence is with probability 1. It turns out that consistency is related to the tail probabilities of

the deviation distribution: by definition of convergence in probability, "̂n is consistent if and only

if, for all ⌧ > 0,

lim
n!1

P (|"̂n � "n| � ⌧) = 0 . (7.10)

By Theorem A.8, we obtain that "̂n is, in addition, strongly consistent if the following stronger

condition holds:
1X

n=1

P (|"̂n � "n| � ⌧) < 1 , (7.11)

for all ⌧ > 0, i.e., the tail probabilities vanish su�ciently fast for the summation to converge.

If an estimator is consistent regardless of the underlying feature-label distribution, one says it is

universally consistent.

It will be seen in Chapter 8 that, if the classification rule has finite VC dimension, then the tail

probabilities of the resubstitution estimator satisfy, regardless of the feature-label distribution,

P (|"̂ rn � "n| > ⌧)  8(n+ 1)VCe�n⌧
2
/32, (7.12)

for all ⌧ > 0, where VC is the VC dimension. Since
P1

n=1
P (|"̂ rn � "n| � ⌧) < 1, for all ⌧ > 0,

the resubstitution estimator is universally strongly consistent if VC < 1. The finite VC dimension

ensures that the classification rule is well-behaved in the sense that, as the sample size goes to infinity,

the classifier produced is “stable,” so that the empirical error is allowed to converge to the true error,

in a similar fashion as sample means converge to true means. For example, linear classification rules,

such as LDA, linear SVM, and the perceptron, produce simple hyperplane decision boundaries and

have finite VC dimension, but decision boundaries produced by nearest-neighbor classification rules

are too complex and do not. Incidentally, it will also be shown in Chapter 8 that |E["̂ rn � "n]| is

O(
p
ln(n)/n) as n ! 1,1 regardless of the feature-label distribution, so that the resubstitution error

estimator is not only universally strongly consistent but also universally asymptotically unbiased,

provided that the VC dimension is finite.

If the given classification rule is consistent and the error estimator is consistent, then "n ! "⇤ and

"̂n ! "n, implying "̂n ! "⇤. Hence, "̂n provides a good estimate of the Bayes error, provided one has

a large sample Sn. The question of course is how large the sample size needs to be. While the rate

of convergence of "̂n to "n can be bounded for some classification rules and some error estimators

regardless of the distribution (more on this later), there will always be distributions for which "n

converges to "⇤ arbitrarily slowly, as demonstrated by the “no-free lunch” Theorem 3.3. Hence, one

cannot guarantee that "̂n is close to "⇤ for a given n, unless one has additional information about

the distribution.

1
The notation f(n) = O(g(n)) as n ! 1 means that the ratio |f(n)/g(n)| remains bounded as n ! 1; in

particular, g(n) ! 0 implies that f(n) ! 0 and that f(n) goes to 0 at least as fast as g(n) goes to zero.

7.3. TEST-SET ERROR ESTIMATION 157

As in the case of classification, an important caveat is that, in small-sample cases, i.e., when the

number of training points is small for the dimensionality or complexity of the problem, consistency

does not play a significant role in the choice of an error estimator, the key issue being accuracy as

measured, for example, by the RMS.

7.3 Test-Set Error Estimation

We begin the examination of specific error estimation rules by considering the most natural one,

namely, test-set error estimation. This error estimation rule assumes the availability of a second

random sample Sm = {(Xt

i
, Y t

i
); i = 1, . . . ,m}, known as the test data, which is independent and

identically distributed with the training data Sn, and is to be set aside and not used in classifier

design. The classification rule is applied on the training data and the error of the resulting classifier

is estimated to be the proportion of errors it makes on the test data. This test-set or holdout error

estimation rule error estimation rule can thus be formulated as:

⌅n,m(n, Sn, Sm) =
1

m

mX

i=1

|Y t

i � n(Sn)(X
t

i)| . (7.13)

This is a randomized error estimation rule, with the test data themselves as the internal random

factors, ⇠ = Sm.

For any given classification rule n, the test-set error estimator "̂n,m = ⌅n,m(n, Sn, Sm) has a few

remarkable properties. First of all, it is clear that the test-set error estimator is unbiased in the

sense that

E["̂n,m | Sn] = "n , (7.14)

for m = 1, 2, . . . From this and the Law of Large Numbers (see Theorem A.12) it follows that,

given the training data Sn, "̂n,m ! "n with probability 1 as m ! 1, regardless of the feature-label

distribution. In addition, it follows from (7.14) that E["̂n,m] = E["n]. Hence, the test-set error

estimator is also unbiased in the sense of Section 7.2.2:

Bias("̂n,m) = E["̂n,m]� E["n] = 0 . (7.15)

We now show that the internal variance of this randomized estimator vanishes as the number of

testing samples increases to infinity. Using (7.14) allows one to obtain

Vint = E[("̂n,m � E["̂n,m | Sn])
2
| Sn] = E[("̂n,m � "n)

2
| Sn] . (7.16)

Moreover, given Sn, m"̂n,m is binomially distributed with parameters (m," n):

P (m"̂n,m = k | Sn) =

✓
m

k

◆
"kn(1� "n)

m�k, (7.17)

158 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

for k = 0, . . . ,m. From the formula for the variance of a binomial random variable, it follows that

Vint = E[("̂n,m � "n)
2
|Sn] =

1

m2
E[(m"̂n,m �m"n)

2
|Sn]

=
1

m2
Var(m"̂n,m | Sn) =

1

m2
m"n1� "n) =

"n(1� "n)

m
.

(7.18)

The internal variance of this estimator can therefore be bounded as follows:

Vint 
1

4m
. (7.19)

Hence, Vint ! 0 as m ! 1. Furthermore, by using (7.9), we get that the full variance of the holdout

estimator is simply

Var("̂n,m) = E[Vint] + Var("n). (7.20)

Thus, provided that m is large, so that Vint is small — this is guaranteed by (7.19) for large enough

m — the variance of the holdout estimator is approximately equal to the variance of the true error

itself, which is typically small if n is large.

It follows from (7.16) and (7.19) that

MSE("̂n,m) = E[("̂n,m � "n)
2] = E[E[("̂n,m � "n)

2
| Sn]] = E[Vint] 

1

4m
. (7.21)

Thus, we have the distribution-free bound on the RMS:

RMS("̂n,m) 
1

2
p
m

. (7.22)

With m = 400 test points, the RMS is guaranteed to be no larger than 2.5%, regardless of the

classification rule and the feature-label distribution, which would be accurate enough for most

applications.

Despite its many favorable properties, the holdout estimator has a considerable drawback. In

practice, one has n total labeled sample points that must be split into training and testing sets

Sn�m and Sm. For large n, E["n�m] ⇡ E["n], so that n�m is still large enough to train an accurate

classifier, while m is still large enough to obtain a good (small-variance) test-set estimator "̂n,m.

However, in scientific applications data is often scarce, and E["n�m] may be too large with respect

to E["n] (i.e., the loss of performance may be intolerable, see Figure 7.2 for an illustration), m may

be too small (leading to a poor test-set error estimator), or both. Setting aside a part of the sample

for testing means that there are fewer data available for design, thereby typically resulting in a

poorer performing classifier, and if fewer points are set aside to reduce this undesirable e↵ect, there

are insu�cient data for testing.

The variance can also be a problem if sample data are limited. If the number m of testing samples

is small, then the variance of "̂n,m is usually large and this is reflected in the RMS bound of (7.22).

7.4. RESUBSTITUTION 159

Figure 7.2: Expected error as a function of training sample size, demonstrating the problem of

higher rate of classification performance deterioration with a reduced training sample size in the

small-sample region.

For example, to get the RMS bound down to 0.05, it would be necessary to use 100 test points.

Data sets containing fewer than 100 overall sample points are quite common. Moreover, the bound

of (7.19) is tight, it being achieved by letting "n = 0.5 in (7.18).

In conclusion, splitting the available data into training and test data is problematic in practice due

to the unavailability of enough data to be able to make both n and m large enough. Therefore,

for a large class of practical problems, where data are at a premium, test-set error estimation is

e↵ectively ruled out. In such cases, one must use the same data for training and testing.

7.4 Resubstitution

The simplest and fastest error estimation rule based solely on the training data is the resubstitution

estimation rule, defined previously in Example 7.1. Given the classification rule n, and the classifier

 n = n(Sn) designed on Sn, the resubstitution error estimator is given by

"̂ rn =
1

n

nX

i=1

|Yi � n(Xi)|. (7.23)

An alternative way to look at resubstitution is as the classification error according to the empirical

feature-label distribution given the training data, which is the probability mass function pn(X, Y) =

160 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

P (X = Xi, Y = Yi | Sn) =
1

n
, for i = 1, . . . , n. It can be shown that the resubstitution estimator is

given by

"̂ rn = Epn [|Y � n(X)|] . (7.24)

The concern with resubstitution is that it is typically optimistically biased; that is, Bias("̂ rn) < 0 in

most cases. The optimistic bias of resubstitution may not be of great concern if it is small; however,

it tends to become unacceptably large for overfitting classification rules, especially in small-sample

situations. An extreme example is given by the 1-nearest neighbor classification rule, where "̂ rn ⌘ 0

for all sample sizes, classification rules, and feature-label distributions. Although resubstitution may

be optimistically biased, the bias will often disappear as sample size increases, as shown below. In

addition, resubstitution is typically a low-variance error estimator. This often translates to good

asymptotic RMS properties.

It will be seen in Chapter 8 that resubstitution is useful in a classification rule selection procedure

known as structural risk minimization, provided that all classification rules considered have finite

VC dimension.

7.5 Cross-Validation

The cross-validation error estimation rule improves upon the bias of resubstitution by using a re-

sampling strategy in which classifiers are trained and tested on non-overlapping subsets of the data.

Several variants of the basic k-fold cross-validation estimation rule defined in Example 7.2 are possi-

ble. In stratified cross-validation, the classes are represented in each fold in the same proportion as

in the original data; it has been claimed that this can reduce variance. As with all randomized error

estimation rules, there is concern about the internal variance of cross-validation; this can be reduced

by repeating the process of random selection of the folds several times and averaging the results.

This is called repeated k-fold cross-validation. In the limit, one will be using all possible folds of size

n/k, and there will be no internal variance left, the estimation rule becoming nonrandomized. This

has been called complete k-fold cross-validation.

The most well-known property of the k-fold cross-validation error estimator is its near-unbiasedness

property

E["̂ cv(k)n] = E["n�n/k] . (7.25)

This is a distribution-free property, which holds as long as sampling is i.i.d. (However, see Exer-

cise 7.10.) This property is often and mistakenly taken to imply that the k-fold cross-validation error

estimator is unbiased, but this is not true, since E["n�n/k] 6= E["n], in general. In fact, E["n�n/k]

is typically larger than E["n], since the former error rate is based on a smaller sample size, and so

7.5. CROSS-VALIDATION 161

the k-fold cross-validation error estimator tends to be pessimistically biased. To reduce the bias, it

is advisable to increase the number of folds (which in turn will tend to increase estimator variance).

The maximum value k = n corresponds to the leave-one-out error estimator "̂ ln, already introduced

in Example 7.2. This is typically the least biased cross-validation estimator, with

E["̂ ln] = E["n�1] . (7.26)

The major concern regarding cross-validation is not bias but estimation variance. Despite the fact

that, as mentioned previously, leave-one-out cross-validation is a nonrandomized error estimation

rule, the leave-one-out error estimator can still exhibit large variance. Small internal variance (in

this case, zero) by itself is not su�cient to guarantee a low-variance estimator. Following (7.9), the

variance of the cross-validation error estimator also depends on the term Var(E["̂ cv(k)n |Sn]), which is

the variance corresponding to the randomness of the sample Sn. This term tends to be large when

sample size is small due to overfitting. In the case of leave-one-out, the situation is made worse by

the large degree of overlap between the folds. In small-sample cases, cross-validation not only tends

to display large variance, but can also display large bias, and even negative correlation with the true

error; for an example, see Exercise 7.10.

One determining factor for the the variance of cross-validation is the fact that it attempts to estimate

the error of a classifier n = n(Sn) via estimates of the error of surrogate classifiers n,i =

 n�n/k(Sn � S(i)), for i = 1, . . . , k. If the classification rule is unstable (e.g. overfitting), then

deleting di↵erent sets of points from the sample may produce wildly disparate surrogate classifiers.

The issue is beautifully quantified by the following theorem, which we state without proof. A

classification rule is symmetric if the designed classifier is not a↵ected by permuting the points in

the training sample (this includes the vast majority of classification rules encountered in practice).

Theorem 7.1. For a symmetric classification rule n,

RMS("̂ ln) 

r
E["n�1]

n
+ 6P (n(Sn)(X) 6= n�1(Sn�1)(X)) . (7.27)

The previous theorem relates the RMS of leave-one-out with the stability of the classification rule:

the smaller the term P (n(Sn)(X) 6= n�1(Sn�1)(X)) is, i.e., the more stable the classification rule

is (with respect to deletion of a point), the smaller the RMS of leave-one-out is guaranteed to be.

For large n, P (n(Sn)(X) 6= n�1(Sn�1)(X)) will be small for most classification rules; however,

with small n, the situation is di↵erent. This is illustrated in Figure 7.3, which shows di↵erent

classifiers resulting from a single point left out from the original sample. (These are the classifiers

that most di↵er from the original one in each case.) We can observe in these plots that LDA is the

most stable rule among the three and CART is the most unstable, with 3NN displaying moderate

stability. Accordingly, it is expected that P (n(Sn)(X) 6= n�1(Sn�1)(X)) will be smallest for LDA,

162 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

LDA

3NN

CART

Original classifier A few classifiers from deleted data

Figure 7.3: Illustration of instability of di↵erent classification rules. Original classifier and a few

classifiers obtained after one of the sample points is deleted. Deleted sample points are represented

by “x” (plots generated by c07 deleted.py).

guaranteeing a smaller RMS for leave-one-out, and largest for CART. Instability of the classification

rule is linked to its overfitting potential.

Theorem 7.1 proves very useful in generating distribution-free bounds on the RMS of the leave-

one-out estimator for classification rules for which bounds for P (n(Sn)(X) 6= n�1(Sn�1)(X)) are

known. For example, for the kNN classification rule with randomized tie-breaking, n(Sn)(X) 6=

 n�1(Sn�1)(X) is only possible if the deleted point is one of the k nearest neighbors of X. Owing

to symmetry, the probability of this occurring is k/n, as all sample points are equally likely to be

among the k nearest neighbors of X. Together with the fact that E["n�1]/n < 1/n, Theorem 7.1

proves that

RMS("̂ ln) 

r
6k + 1

n
. (7.28)

7.6. BOOTSTRAP 163

Via (7.7), bounds on the RMS lead to corresponding bounds on the tail probabilities P (|"̂ ln�"̂n| � ⌧).

For example, from (7.28) it follows that

P (|"̂ ln � "̂n| � ⌧) 
6k + 1

n⌧2
. (7.29)

Clearly, P (|"̂ ln�"n| � ⌧) ! 0, as n ! 1, i.e., leave-one-out cross-validation is universally consistent

(see Section 7.2.2) for kNN classification.

The previous bounds are “large-sample bounds.” By being distribution-free, they are worst-case,

and tend to be loose for small n. Failure to acknowledge this may lead to meaningless results. For

example, with k = 5 and n = 31, the bound in (7.28) yields RMS("̂ ln)  1. To be assured that the

RMS is less than 0.1, one must have n � 1900.

Finally, we remark that, since k-fold cross-validation relies on an average of error rates of surrogate

classifiers designed on samples of size n � n/k, it is more properly an estimator of E["n�n/k] than

of "n. This is a reasonable approach if both the cross-validation and true error variances are small,

since the rationale here follows the chain "̂ cv(k)n ⇡ E["̂ cv(k)n] = E["n�n/k] ⇡ E["n] ⇡ "n. However, the

large variance typically displayed by cross-validation under small sample sizes implies that the first

approximation "̂ cv(k)n ⇡ E["̂ cv(k)n] in the chain is not valid, so that cross-validation cannot provide

accurate error estimation in small-sample settings.

7.6 Bootstrap

The bootstrap methodology is a resampling strategy that can be viewed as a kind of smoothed cross-

validation, with reduced variance The bootstrap methodology employs the notion of the feature-label

empirical distribution F ⇤
XY

introduced at the beginning of Section 7.4. A bootstrap sample S⇤
n from

F ⇤
XY

consists of n equally-likely draws with replacement from the original sample Sn. Some sample

points will appear multiple times, whereas others will not appear at all. The probability that any

given sample point will not appear in S⇤
n is (1� 1/n)n ⇡ e�1. It follows that a bootstrap sample of

size n contains on average (1� e�1)n ⇡ 0.632n of the original sample points.

The basic bootstrap error estimation procedure is as follows: given a sample Sn, independent boot-

strap samples S⇤,j
n , for j = 1, . . . , B, are generated; B has been recommended to be between 25 and

200. Then a classification rule n is applied to each bootstrap sample S⇤,j
n , and the number of errors

the resulting classifier makes on Sn � S⇤,j
n is recorded. The average number of errors made over all

B bootstrap samples is the bootstrap estimate of the classification error. This zero bootstrap error

estimation rule can thus be formulated as

⌅ boot

n (n, Sn, ⇠) =

P
B

j=1

P
n

i=1
|Yi � n(S

⇤,j
n)(Xi)| I(Xi,Yi) 62S⇤,j

nP
B

j=1

P
n

i=1
I
(Xi,Yi) 62S⇤,j

n

. (7.30)

164 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

The random factors ⇠ govern the resampling of Sn to create the bootstrap sample S⇤,j
n , for j =

1, . . . , B; hence, the zero bootstrap is a randomized error estimation rule. Given a classification

rule n, the zero bootstrap error estimator "̂ bootn = ⌅ boot
n (n, Sn, ⇠) tends to be a pessimistically

biased estimator of E["n], since the number of points available for classifier design is on average only

0.632n.

As in the case of cross-validation, several variants of the basic bootstrap scheme exist. In the

balanced bootstrap, each sample point is made to appear exactly B times in the computation; this is

supposed to reduce estimation variance, by reducing the internal variance associated with bootstrap

sampling. This variance can also be reduced by increasing the value of B. In the limit as B increases,

all bootstrap samples will be used up, and there will be no internal variance left, the estimation rule

becoming nonrandomized. This is called a complete zero bootstrap error estimator, and corresponds

to the expectation of the "̂ bootn over the bootstrap sampling mechanism:

"̂ zeron = E["̂ bootn | Sn] , (7.31)

The ordinary zero bootstrap "̂ bootn is therefore a randomized Monte-Carlo approximation of the

nonrandomized complete zero bootstrap "̂ zeron . By the Law of Large Numbers (see Thm. A.12),

"̂ bootn converges to "̂ zeron with probability 1 as the number of bootstrap samples B grows without

bound. Note that E["̂ bootn] = E["̂ zeron]. The pessimistic bias of the zero bootstrap error estimator

stems from the fact that, typically, E["̂ zeron] > E["n].

A practical way of implementing the complete zero bootstrap estimator is to generate beforehand

all distinct bootstrap samples (this is possible if n is not too large) and form a weighted average

of the error rates based on each bootstrap sample, the weight for each bootstrap sample being its

probability. As in the case of cross-validation, for all bootstrap variants there is a trade-o↵between

computational cost and estimation variance.

The 0.632 bootstrap error estimator is a convex combination of the (typically optimistic) resubsti-

tution and the (typically pessimistic) zero bootstrap estimators:

"̂632n = 0.368 "̂rn + 0.632 "̂ bootn . (7.32)

Alternatively, the complete zero bootstrap "̂ zeron can be substituted for "̂ bootn . The weights in (7.32)

are set heuristically; they can be far from optimal for a given feature-label distribution and classi-

fication rule. A simple example where the weights are o↵is a↵orded by the 1NN rule, for which

"̂rn ⌘ 0.

In an e↵ort to overcome these issues, an adaptive approach to finding the weights has been pro-

posed. The basic idea is to adjust the weight of the resubstitution estimator when resubstitu-

tion is exceptionally optimistically biased, which indicates strong overfitting. Given the sample

7.7. BOLSTERED ERROR ESTIMATION 165

Sn = {(X1, Y1), . . . , (Xn, Yn)}, let

�̂ =
1

n2

nX

i=1

nX

j=1

IYi 6= n(Sn)(Xj)
, (7.33)

and define the relative overfitting rate by

R̂ =
"̂ bootn � "̂rn
�̂ � "̂rn

. (7.34)

To be certain that R̂ 2 [0, 1], one sets R̂ = 0 if R̂ < 0 and R̂ = 1 if R̂ > 1. The parameter R̂ indicates

the degree of overfitting via the relative di↵erence between the zero bootstrap and resubstitution

estimates, a larger di↵erence indicating more overfitting. Although we shall not go into detail, �̂� "̂rn
approximately represents the largest degree to which resubstitution can be optimistically biased, so

that usually "̂ bootn � "̂rn  �̂ � "̂rn. The weight

ŵ =
0.632

1� 0.368R̂
(7.35)

replaces 0.632 in (7.32) to produce the 0.632+ bootstrap error estimator,

"̂632+n = (1� ŵ) "̂rn + ŵ "̂ bootn , (7.36)

except when R̂ = 1, in which case �̂ replaces "̂ bootn in (7.36). If R = 0, then there is no overfitting,

ŵ = 0.632, and the 0.632+ bootstrap estimate is equal to the plain 0.632 bootstrap estimate. If

R = 1, then there is maximum overfit, ŵ = 1, the 0.632+ bootstrap estimate is equal to �̂, and the

resubstitution estimate does not contribute, as in this case it is not to be trusted. As R changes

between 0 and 1, the 0.632+ bootstrap estimate ranges between these two extremes. In particular,

in all cases we have "̂632+n � "̂632n . The nonnegative di↵erence "̂632+n � "̂632n corresponds to the amount

of “correction” introduced to compensate for too much resubstitution bias.

7.7 Bolstered Error Estimation

The resubstitution estimator is written in (7.24) in terms of the empirical distribution pn(X, Y),

which is confined to the original data points, so that no distinction is made between points near or

far from the decision boundary. If one spreads out the probability mass put on each point by the

empirical distribution, variation is reduced in (7.24) because points near the decision boundary will

have more mass go to the other side than will points far from the decision boundary. Another way

of looking at this is that more confidence is attributed to points far from the decision boundary than

points near it. For i = 1, . . . , n, consider a d-variate probability density function p⇧
i
, called a bol-

stering kernel. Given the sample Sn = {(X1, Y1), . . . , (Xn, Yn)}, the bolstered empirical distribution

166 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

p⇧n(X, Y) has probability density:2

p⇧n(x, y) =
1

n

nX

i=1

p⇧i (x�Xi)Iy=Yi . (7.37)

Given a classification rule n, and the designed classifier n = n(Sn), the bolstered resubstitution

error estimator is obtained by replacing pn by p⇧n in (7.24):

"̂ brn = Ep⇧n [|Y � n(X)|] . (7.38)

The following result gives a computational expression for the bolstered resubstitution error estimate.

Theorem 7.2. Let Aj = {x 2 Rd
| n(x) = j}, for j = 0, 1, be the decision regions for the designed

classifier. Then the bolstered resubstitution error estimator can be written as

"̂ brn =
1

n

nX

i=1

✓Z

A1

p⇧i (x�Xi) dx IYi=0 +

Z

A0

p⇧i (x�Xi) dx IYi=1

◆
. (7.39)

Proof. From (7.38),

"̂ brn =

Z
|y � n(x)| dF

⇧(x, y)

=
1X

y=0

Z

Rd
|y � n(x)| f

⇧(x, y) dx (7.40)

=
1

n

1X

y=0

nX

i=1

Z

Rd
|y � n(x)| f

⇧
i (x�Xi)Iy=Yi dx

=
1

n

nX

i=1

Z

Rd
 n(x) f

⇧
i (x�Xi) dx IYi=0

+

Z

Rd
(1� n(x)) f

⇧
i (x�Xi) dx IYi=1.

But n(x) = 0 over A0 and n(x) = 1 over A1, from which (7.39) follows. ⇧

The integrals in (7.39) are the error contributions made by the data points, according to the label

Yi = 0 or Yi = 1. The bolstered resubstitution estimate is equal to the sum of all error contributions

divided by the number of points (see Figure 7.4 for an illustration, where the bolstering kernels are

given by uniform circular distributions). Notice that this allows counting partial errors, including

errors for correctly classified points that are near the decision boundary.

2
This is not a true density since Y is discrete; see Section 2.6.4.

7.7. BOLSTERED ERROR ESTIMATION 167

Original classifier Bolstering kernels for class 0 Bolstering kernels for class 1

Figure 7.4: Bolstered resubstitution for LDA with uniform circular bolstering kernels. The error

contribution made by each point is the area of the disk segment extending across the decision

boundary (if any) divided by the area of the entire disk. The bolstered resubstitution error is the

sum of all contributions divided by the number of points (plots generated by c07 bolst.py).

In general, the integrals in (7.39) are too complicated and must be computed numerically. For

example, one may apply a simple Monte-Carlo estimate to obtain:

"̂brn ⇡
1

nM

nX

i=1

0

@
MX

j=1

IXij2A1IYi=0 +
MX

j=1

IXij2A0IYi=1

1

A , (7.41)

where {Xij ; j = 1, . . . ,M} are random points drawn from the density p⇧
i
. In this case, the estimation

rule is randomized due to MC sampling.

However, in some cases the integrals can be computed in closed-form, rendering the estimator

nonrandomized and very fast to compute. The example in Figure 7.4 is one such example. The next

theorem shows that using zero-mean multivariate Gaussian densities as bolstering kernels

p⇧i (x) =
1p

(2⇡)d det(Ci)
exp

✓
�
1

2
xTC�1

i
x

◆
, (7.42)

where the kernel covariance matrix Ci can in principle be distinct at each training point Xi, and

the classification rule is produced by a linear discriminant (e.g. this includes LDA, linear SVMs,

perceptrons), also leads to closed-form integration.

Theorem 7.3. Let n be a linear classification rule, defined by

 n(Sn)(x) =

8
<

:
1 , aTnx+ bn  0 ,

0 , otherwise,
(7.43)

168 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

where an 2 Rd and bn 2 R are sample-based coe�cients. Then the Gaussian-bolstered resubstitution

error estimator can be written as

"̂ brn =
1

n

nX

i=1

�

�
aTnXi + bnp

aTnCian

!
IYi=0 + �

aTnXi + bnp

aTnCian

!
IYi=1

!
, (7.44)

where �(x) is the cumulative distribution function of a standard N(0, 1) Gaussian random variable.

Proof. By comparing (7.39) and (7.44), it su�ces to show that

Z

Aj

p⇧i (x�Xi) dx = �

(�1)j

aTnXi + bnp
aTnCian

!
, j = 0, 1 . (7.45)

We show the case j = 1, the other case being entirely similar. Let p⇧
i
(a � ai) be the density of a

random vector Z. We have that
Z

A1

p⇧i (x�Xi) dx = P (Z 2 A1) = P (aTnZ + bn  0) . (7.46)

Now, by hypothesis, Z ⇠ Nd(Xi, Ci). From the properties of the multivariate Gaussian (see Sec-

tion A1.7), it follows that aTnZ + bn ⇠ N(aTnXi + bn,aTnCian). The result follows from the fact that

P (U  0) =�(�E[U]/
p
Var(U)) for a Gaussian random variable U . ⇧

Note that for any training point Xi exactly on the decision hyperplane, we have aTnXi+ bn = 0, and

thus its contribution to the bolstered resubstitution error estimate is exactly�(0) = 1 /2, regardless

of the label Yi.

Selecting the correct amount of bolstering, that is, the “size” of the bolstering kernels, is critical for

estimator performance. Accordingly, we describe a simple non-parametric procedure for adjusting

the kernel covariance matrices Ci, for i = 1, . . . , d to the sample data. The only (implicit) as-

sumption is that the class-conditional densities are approximately unimodal; no other distributional

assumption is made.

Under small sample sizes, restrictions have to be imposed on the kernel covariances. First, a natural

assumption is to make all kernel densities, and thus covariance matrices, equal for training points

with the same class label: Ci = D0 if Yi = 0 or Ci = D1 if Yi = 1. This reduces the number of

parameters to be estimated to 2d(d + 1). Furthermore, it could be assumed that the covariance

matrices D0 and D1 are diagonal, with diagonal elements, or kernel variances, �2
01
, . . . ,�2

0d
and

�2
11
, . . . ,�2

1d
. This further reduces the number of parameters to 2d. Finally, it could be assumed

that D0 = �2
0
Id and D1 = �2

1
Id, which corresponds to spherical kernels with variances �2

0
and �2

1
,

respectively, in which case there are only two parameters to be estimated.

7.7. BOLSTERED ERROR ESTIMATION 169

In the diagonal and spherical cases, there is a simple interpretation of the relationship between the

bolstered and plain resubstitution estimators. As the kernel variances all shrink to zero, it is easy to

see that the bolstered resubstitution error estimator reduces to the plain resubstitution estimator.

On the other hand, as the kernel variances increase, the bolstered estimator becomes more and more

distinct from plain resubstitution. As resubstitution is usually optimistically biased, increasing the

kernel variances will initially reduce the bias, but increasing them too much will eventually make

the estimator pessimistic. Hence, from the point of view of bias, there is typically optimal values for

the kernel variances that make the estimator unbiased. In addition, increasing the kernel variances

generally decreases variance of the error estimator. Therefore, by properly selecting the kernel

variances, one can simultaneously reduce estimator bias and variance.

If the kernel densities are multivariate Gaussian, then (9.17) and (9.18) apply in both the spherical

and diagonal cases, which presents a computational advantage in the presence of feature selection.

Let us consider first a method to fit spherical kernels, in which case we need to determine the kernel

variances �0 and �1 for the kernel covariance matrices D0 = �2
0
Id and D1 = �2

1
Id. One reason

why plain resubstitution is optimistically biased is that the test points in (7.23) are all at distance

zero from the training points (i.e., the test points are the training points). Bolstered estimators

compensate for that by spreading the test point probability mass over the training points. We

propose to find the amount of spreading that makes the test points to be as close as possible to the

true mean distance to the training data points. The true mean distance d0 and d1 among points

from populations⇧ 0 and⇧ 1, respectively, are estimated here by the sample-based mean minimum

distance among points from each population:

d̂j =
1

nj

nX

i=1

0

B@ min
i
0
=1,...,n

i
0 6=i,Yi0=j

{||Xi �Xi0 ||}

1

CA IYi=j , j = 0, 1. (7.47)

The basic idea is to set the kernel variance �j in such a way that the median distance of a point

randomly drawn from a kernel to the origin matches the the estimated mean distance d̂j , for j = 0, 1.

This implies that half of the probability mass (i.e., half of the test points) of the bolstering kernel

will be farther from the center than the estimated mean distance and the other half will be nearer.

Assume for the moment a unit-variance kernel covariance matrix D0 = Id (to fix ideas, we consider

class label 0). Let R0 be the random variable corresponding to the distance of a point randomly

selected from the kernel density to the origin with cumulative distribution function FR0(x). The

median distance of a point randomly drawn from a kernel to the origin is given by ↵d,0 = F�1

R0
(1/2),

where the subscript d indicates explicitly that ↵d,0 depends on the dimensionality. For a kernel

covariance matrix D0 = �2
0
Id, all distances get multiplied by �0. Hence, �0 is the solution of the

equation �0 F
�1

R0
(1/2) = �↵d,0 = d̂0. The argument for class label 1 is obtained by replacing 0 by 1

170 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

throughout; hence, the kernel standard deviations are set to

�j =
d̂j
↵d,j

, j = 0, 1 . (7.48)

As sample size increases, it is easy to see that d̂0 and d̂1 decrease, so that the kernel variances �0

and �1 also decrease, and there is less bias correction introduced by bolstered resubstitution. This is

in accordance with the fact that resubstitution tends to be less optimistically biased as the sample

size increases. In the limit, as sample size grows to infinity, the kernel variances tend to zero, and

the bolstered resubstitution converges to the plain resubstitution.

For the specific case where all bolstering kernels are multivariate spherical Gaussian densities, the

distance variables R0 and R1 are both distributed as chi random variables with d degrees of freedom,

with density

fR0(r) = fR1(r) =
21�d/2rd�1e�r

2
/2

�(d
2
)

, (7.49)

where�denotes the gamma function. For d = 2, this becomes the well-known Rayleigh density.

The cumulative distribution function FR0 or FR1 can be computed by numerical integration of (7.49)

and the inverse at point 1/2 can be found by a simple binary search procedure (using the fact that

cumulative distribution functions are monotonically increasing), yielding the dimensional constant

↵d. There is no subscript “j” in this case because the constant is the same for both class labels. The

kernel standard deviations are then computed as in (7.48), with ↵d in place of ↵d,j . The constant

↵d depends only on the dimensionality, and in fact can be interpreted as a type of “dimensionality

correction,” which adjust the value of the estimated mean distance to account for the feature space

dimensionality. In the spherical Gaussian case, the values of the dimensional constant up to five

dimensions are ↵1 = 0.674, ↵2 = 1.177, ↵3 = 1.538, ↵4 = 1.832, ↵5 = 2.086.

To fit diagonal kernels, we need to determine the kernel variances �2
01
, . . ., �2

0d
and �2

11
, . . . ,�2

1d
. A

simple approach is to estimate the kernel variances �2
0k

and �2
1k

separately for each k, using the

univariate data Sn,k = {(X1k, Y1), . . . , (Xnk, Yn)}, for k = 1, . . . , d, where Xik is the kthe feature

(component) in vector Xi. This is an application of the Naive Bayes principle. We define the mean

minimum distance along feature k as

d̂jk =
1

nj

nX

i=1

0

B@ min
i
0
=1,...,n

i
0 6=i,Yi0=j

{||Xik �Xi0k)k|}

1

CA IYi=j , j = 0, 1 . (7.50)

The kernel standard deviations are set to

�jk =
d̂jk
↵1,j

, j = 0, 1 , k = 1, . . . , d . (7.51)

In the Gaussian case, one has �jk = d̂jk/↵1 = d̂jk/0.674, for j = 0, 1, k = 1, . . . , d.

7.8. ADDITIONAL TOPICS 171

When resubstitution is too optimistically biased due to overfitting classification rules, it is not a

good idea to spread incorrectly classified data points because that increases the optimistic bias of

the error estimator. Bias is reduced if one assigns no bolstering kernels to incorrectly classified

points. This decreases bias but increases variance because there is less bolstering. This variant is

called semi-bolstered resubstitution.

Finally, we remark that bolstering can be in principle applied to any error-counting error estima-

tion method. For example, consider leave-one-out estimation. Let Ai

j
= {x 2 Rd

| n�1(Sn �

{(Xi, Yi)})(x) = j}, for j = 0, 1, be the the decision regions for the classifier designed on the deleted

sample Sn � {(Xi, Yi)}. The bolstered leave-one-out estimator can be computed via

"̂ bloon =
1

n

nX

i=1

 Z

A
i
1

p⇧i (x�Xi) dx IYi=0 +

Z

A
i
0

p⇧i (x�Xi) dx IYi=1

!
. (7.52)

When the integrals cannot be computed exactly, a Monte-Carlo expression similar to (7.41) can be

employed.

7.8 Additional Topics

7.8.1 Convex Error Estimators

Given any two error estimation rules, a new one (in fact, an infinite number of new ones) can be

obtained via convex combination. Usually, this is done in an attempt to reduce bias. Formally,

given an optimistically biased estimator "̂ opmn and a pessimistically biased estimator "̂ psmn , we define

the convex error estimator

"̂ convn = w "̂ opmn + (1� w) "̂ psmn , (7.53)

where 0  w � 1, Bias("̂ opmn) < 0, and Bias("̂ psmn) > 0. The 0.632 bootstrap error estimator

discussed in Section 7.6 is an example of a convex error estimator, with "̂ opmn = "̂ bootn , "̂ psmn = "̂ rn,

and w = 0.632. However, according to the this definition, the 0.632+ bootstrap is not, because its

weights are not constant.

A simple convex estimator employs the typically optimistically biased resubstitution estimator and

the pessimistically biased cross-validation estimator with equal weights:

"̂r, cv(k)n = 0.5 "̂rn + 0.5 "̂ cv(k)n . (7.54)

The next theorem shows that, for unbiased convex error estimation, one should look for component

estimators with low variances. The 0.632 bootstrap estimator addresses this by replacing the high-

variance cross-validation in (7.54) with the lower-variance estimator "̂ bootn .

172 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

Theorem 7.4. For an unbiased convex error estimator,

MSE("̂ convn)  max{Var("̂ opmn),Var("̂ psmn)} . (7.55)

Proof.

MSE("̂ convn) = Vardev("̂
conv

n) = w2Vardev("̂
opm

n) + (1� w)2Vardev("̂
psm

n) +

2w(1� w) ⇢("̂ opmn � "n, "̂
psm

n � "n)
q
Vard("̂

opm
n)Vard("̂

psm
n)

 w2Vardev("̂
opm

n) + (1� w)2Vardev("̂
psm

n +

2w(1� w)
q
Vard("̂

opm
n)Vard("̂

psm
n)

=

✓
w
q
Vard("̂

opm
n) + (1� w)

q
Vard("̂

psm
n)

◆2

 max{Var("̂ opmn),Var("̂ psmn)} ,

(7.56)

where the last inequality follows from the relation

(wx+ (1� w)y)2  max{x2, y2} , 0  w  1 . (7.57)

⇧

The following theorem provides a su�cient condition for an unbiased convex estimator to be more

accurate than either component estimator.

Theorem 7.5. If "̂ convn is an unbiased convex estimator and

|Var("̂ psmn)�Var("̂ opmn)|  min{Bias("̂ opmn)2,Bias("̂ psmn)2} , (7.58)

then

MSE("̂ convn)  min{MSE("̂ opmn),MSE("̂ psmn)} . (7.59)

Proof. If Var("̂ opmn)  Var("̂ psmn), then we use Theorem 7.4 to get

MSE("̂ convn)  Var("̂ psmn)  MSE("̂ psmn) . (7.60)

In addition, if Var("̂ psmn)�Var("̂ opmn)  Bias("̂ opmn)2, we have

MSE("̂ convn)  Var("̂ psmn)

= MSE("̂ opmn)� Bias("̂ opmn)2 +Var("̂ psmn)�Var("̂ opmn)

 MSE("̂ opmn) .

(7.61)

The two previous equations result in (7.59). If Var("̂ psmn)  Var("̂ opmn), an analogous derivation

shows that (7.59) holds if Var("̂ opmn) � Var("̂ psmn)  Bias2("̂ psmn). Hence, (7.59) holds in general if

(7.58) is satisfied. ⇧

7.8. ADDITIONAL TOPICS 173

While it may be possible to achieve a lower MSE by not requiring unbiasedness, these inequalities

regarding unbiased convex estimators carry a good deal of insight. For instance, since the bootstrap

variance is generally smaller than the cross-validation variance, (7.55) implies that convex combi-

nations involving bootstrap error estimators are likely to be more accurate than those involving

cross-validation error estimators when the weights are chosen in such a way that the resulting bias

is very small.

7.8.2 Smoothed Error Estimators

Smoothed error estimators attempt to improve bias and variance of error estimators for linear

classification rules. They are similar to bolstering in that they attempt to smooth the error count.

First, note that the resubstitution estimator can be rewritten as

"̂ rn =
1

n

nX

i=1

(n(Xi)IYi=0 + (1� n(Xi))IYi=1) , (7.62)

where n = n(Sn) is the designed classifier. The classifier n is a sharp 0-1 step function that can

introduce variance by the fact that a point near the decision boundary can change its contribution

from 0 to 1

n
(and vice-versa) via a slight change in the training data, even if the corresponding change

in the decision boundary is small, and hence so is the change in the true error. In small-sample

settings, 1

n
is relatively large.

The idea behind smoothed error estimation is to replace n in (7.62) by a suitably chosen smooth

function taking values in the interval [0, 1], thereby reducing the variance of the original estimator.

Consider a linear discriminant WL(X) = aTX + b; the sign of WL gives the decision region to

which a point belongs, and its magnitude measures the robustness of that decision: it can be shown

that |WL(x)| is related to the Euclidean distance from a point x to the separating hyperplane (see

Exercise 6.1). To achieve smoothing of the error count, the idea is to use a monotone increasing

function r : R ! [0, 1] applied on WL. The function r should be such that r(�u) = 1 � r(u),

limu!�1 r(u) = 0, and limu!1 r(u) = 1. The smoothed resubstitution estimator is given by

✏̂rsn =
1

n

nX

i=1

((1� r(WL(Xi)))IYi=0 + r(WL(Xi))IYi=1) , (7.63)

For instance, the Gaussian smoothing function is given by

r(u) = �

✓
u

b �̂

◆
(7.64)

where�is the cumulative distribution function of a standard Gaussian variable,

�̂ =
q
(X̄1 � X̄0)T ⌃̂�1(X̄1 � X̄0) (7.65)

174 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

is the estimated Mahalanobis distance between the classes (recalling that ⌃̂is the pooled sample

covariance matrix), and b is a free parameter that must be provided, which is typical of smoothing

methods. Another example is the windowed linear function r(u) = 0 on (�1,�b), r(u) = 1 on

(b,1), and r(u) = (u + b)/2b on [�b, b]. Generally, a choice of function r depends on tunable

parameters, such as b in the previous examples. The choice of parameter is a major issue, which

a↵ects the bias and variance of the resulting estimator (see the Bibliographical Notes).

7.8.3 Bayesian Error Estimation

All error estimation rules surveyed in this chapter up to this point share the fact that they do not

involve prior knowledge regarding the feature-label distribution in their computation. Following

the approach for parametric Bayesian classification in Section 4.4.3, one can obtain a model-based

Bayesian error estimation rule, as described briefly next.

As in Section 4.4.3, we assume that there is a family of probability density functions {p(x | ✓) |

✓ 2 Rm
}, where the true parameter values ✓0 and ✓1 are random variables. Here we also assume

that c = P (Y = 1) is a random variable. The problem is therefore parametrized by the vector

⇥ = (c,✓0,✓1), with a prior distribution p(⇥). For a given classifier n, consider the error rates

"0n(⇥) = P⇥(n(X) 6= Y | Y = 0, Sn)

"1n(⇥) = P⇥((X) 6= Y | Y = 1, Sn)

"n(⇥) = P⇥((X) 6= Y | Sn) = (1� c)"0n(⇥) + c"1n(⇥)

(7.66)

The Bayesian error estimator "̂bayes is defined as the function of the data Sn that minimizes the

MSE with respect to the true error:

"̂bayes = argmin
⇠(Sn)

E
⇥
("n(⇥)� ⇠(Sn))

2
| Sn

⇤
. (7.67)

It is well-known that the solution is the conditional expectation:

"̂bayes = E ["n(⇥) | Sn] , (7.68)

which is the definition of the Bayesian error estimator. The expectation is with respect to the

posterior distribution of⇥given the data Sn:

p(⇥ | Sn) =
p(Sn | ⇥)p(⇥)R

⇥
p(Sn | ⇥)p(⇥)d⇥

, (7.69)

where the data likelihood is given by

p(Sn | ⇥) = p(Sn | c,✓0,✓1) = ⇧
n

i=1(1� c)1�yip(xi | ✓0)
1�yicyip(xi | ✓1)

yi . (7.70)

7.8. ADDITIONAL TOPICS 175

As in Section 4.4.3, if one assumes that the parameters are independent a priori, i.e., p(c,✓0,✓1) =

p(c)p(✓0)p(✓1), then it can be shown that the parameters remain independent after observing the

data, i.e., p(c,✓0,✓1 | Sn) = p(c | Sn)p(✓0 | Sn)p(✓1 | Sn) (see Exercise 7.12). In this case, the

Bayesian error estimator can be written as

"̂bayes = E ["n(⇥) | Sn] = E
⇥
(1� c)"0n(✓0) + c"1n(✓1) | Sn

⇤

= (1� E[c | Sn])E["0n(✓0) | Sn] + E[c | Sn]E["1n(✓1) | Sn]

= (1� ĉbayes)"̂bayes,0 + ĉbayes"̂bayes,1,

(7.71)

where

ĉbayes = E[c | Sn] =

Z
1

0

c p(c | Sn)dc ,

"̂bayes,0 = E["0n(✓0) | Sn] =

Z

Rm
"0n(✓0)p(✓0 | Sn)d✓0 ,

"̂bayes,1 = E["1n(✓1) | Sn] =

Z

Rm
"1n(✓1)p(✓1 | Sn)d✓1 .

(7.72)

Notice that these estimators depend on the separate posteriors p(c | Sn), p(✓0 | Sn), and p(✓1 | Sn),

respectively.

A common choice of prior for c is the beta prior, p(c) = Beta(↵,�) (see Section A1.4), when it can be

shown that the posterior is a so-called beta-binomial distribution, p(c | Sn) / cn0+↵�1(1� c)n1+��1,

in which case one obtains and

ĉbayes = E[c | Sn] =
n1 + �

n+ ↵+ �
. (7.73)

where n1 is the observed number of sample points with label 1. The uninformative (uniform) prior

corresponds to the special case ↵ = � = 1, so that

ĉbayes =
n1 + 1

n+ 2
. (7.74)

Finally, another case that often arises in practice is where c is known, in which case the prior and

posterior are unit masses on the value of c, with ĉbayes = c.

Example 7.3. (Bayesian error estimator for the Discrete Histogram Rule.) As in Example 3.3,

assume that p(x) is concentrated over a finite number of points {x1, . . . ,xb
} in Rd. Provided b is

not too large, we may use the raw parametrization ✓0 = {p(x1
| Y = 0), . . . , p(xb

| Y = 0)} and

✓1 = {p(x1
| Y = 1), . . . , p(xb

| Y = 1)} (one of the parameters in ✓0 and ✓1 is redundant, since the

values in each case must add up to 1). An appropriate choice of prior is the Dirichlet distribution

with concentration parameters (↵1, . . . ,↵b) > 0 and (�1, . . . ,�b) > 0 for ✓0 and ✓1, respectively:

p(✓0) /

bY

j=1

✓0(j)
↵j�1 and p(✓1) /

bY

j=1

✓1(j)
�j�1. (7.75)

176 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

Using the same notation as in Example 3.3, it can be shown that the posteriors are again Dirichlet,

p(✓0 | Sn) /

bY

j=1

✓0(j)
Uj+↵j�1 and p(✓1 | Sn) /

bY

j=1

✓1(j)
Vj+�j�1. (7.76)

From this, one obtains

"̂bayes,0 = E["0n(✓0) | Sn] =
bX

j=1

Uj + ↵j

n0 +
P

b

k=1
↵k

IUj<Vj

"̂bayes,1 = E["1n(✓1) | Sn] =
bX

j=1

Vj + �j

n1 +
P

b

k=1
�k

IUj�Vj

(7.77)

If a beta prior is assumed for c, the complete Bayesian error estimator can be written using (7.71)

and (7.73):

"̂bayes =
n0 + 1

n+ 2

0

@
bX

j=1

Uj + 1

n0 + b
IUj<Vj

1

A+
n1 + 1

n+ 2

0

@
bX

j=1

Vj + 1

n1 + b
IUjVj

1

A . (7.78)

⇧

The next theorem, which is an application of Fubini’s Theorem (change of order of integration)

characterizes the Bayesian error estimator in terms of the predictive densities defined in (4.47), and

repeated here for convenience

p0(x | Sn) =

Z

Rm
p(x | ✓0)p(✓0 | Sn) d✓0 and p1(x | Sn) =

Z

Rm
p(x | ✓1)p(✓1 | Sn) d✓1 . (7.79)

Theorem 7.6. Let Aj = {x 2 Rd
| n(x) = j}, for j = 0, 1, be the decision regions for the designed

classifier. Then the class-specific Bayesian error estimator in (7.72) can be written simply as

"̂bayes,0 =

Z

A1

p0(x | Sn) dx and "̂bayes,0 =

Z

A0

p1(x | Sn) dx . (7.80)

Proof. We derive the expression for "̂bayes,0, as the one for "̂bayes,1 is entirely analogous. We have

"0n(✓0) =

Z

A1

p(x | ✓0) dx . (7.81)

Therefore
"̂bayes,0 = E["0n(✓0) | Sn]

=

Z

Rm

Z

A1

p(x | ✓0)p(✓0 | Sn) dx d✓0

=

Z

A1

Z

Rm
p(x | ✓0)p(✓0 | Sn) d✓0 dx

=

Z

A1

p0(x | Sn) dx

(7.82)

by change of order of integration. ⇧

7.9. BIBLIOGRAPHICAL NOTES 177

The Bayesian error estimator can thus be written as

"̂bayes = (1� ĉbayes)

Z

A1

p0(x | Sn) dx+ ĉbayes
Z

A0

p1(x | Sn) dx . (7.83)

7.9 Bibliographical Notes

The subject of error estimation has a long history and has produced a large body of literature; four

main review papers summarize major advances in the field up to 2000 [Toussaint, 1974; Hand, 1986;

McLachlan, 1987; Schiavo and Hand, 2000]; recent advances in error estimation since 2000 include

work on model selection [Bartlett et al., 2002], bolstering [Braga-Neto and Dougherty, 2004; Sima

et al., 2005b], feature selection [Sima et al., 2005a; Zhou and Mao, 2006; Xiao et al., 2007; Hanczar

et al., 2007], confidence intervals [Kaariainen and Langford, 2005; Kaariainen, 2005; Xu et al., 2006],

model-based second-order properties [Zollanvari et al., 2011, 2012], and Bayesian error estimators

[Dalton and Dougherty, 2011b,c]. A book entirely devoted to the subject was published in 2015

[Braga-Neto and Dougherty, 2015], which covers the classical studies as well as the developments

after 2000. In that reference, a classification rule and error estimation rule pair is called a pattern

recognition rule.

The resubstitution error estimation rule is usually attributed to Smith [1947]. Cross-validation on

the other hand is variously attributed to Lachenbruch and Mickey [1968]; Cover [1969]; Toussaint

and Donaldson [1970]; Stone [1974]. Complete cross-validation is named in Kohavi [1995]. For a

proof of the near-unbiasedness property (7.25) of k-fold cross-validation, see Chapter 5 of Braga-

Neto and Dougherty [2015]. The variance problem of cross-validation has been known for a long

time; for further discussion, see Toussaint [1974]; Glick [1978]; Devroye et al. [1996]; Braga-Neto and

Dougherty [2004]. Theorem 7.1 is credited by Devroye et al. [1996] to Devroye and Wagner [1976]

and Rogers and Wagner [1978]. The form that appears here is a slight modification of Theorem 24.2

in Devroye et al. [1996].

The general bootstrap sampling methodology is due to Efron [1979]. The application of the bootstrap

to classification error estimation, and the zero and 0.632 bootstrap error estimators, appear in Efron

[1983]. The recommendation of a number of bootstrap sample B between 25 and 200 appears in the

latter reference. The balanced bootstrap appears in Chernick [1999]. The 0.632+ bootstrap error

estimator is due to Efron and Tibshirani [1997].

Bolstered error estimation was introduced in Braga-Neto and Dougherty [2004] and further studied

in Sima et al. [2005b]; Vu et al. [2008]; Sima et al. [2014]; Jiang and Braga-Neto [2014]. The

nonparametric estimator of the bolstering kernel variance in (7.48) follows a distance argument used

in Efron [1983]. Theorem 7.2 and Equation (7.39) extends a similar expression proposed in Kim

178 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

et al. [2002] in the context of LDA. The expression for the chi density in (7.49) is from Evans et al.

[2000]. For an approach to estimating the kernel variances for the bolstered leave-one-out estimator,

see Braga-Neto and Dougherty [2004]. The Naive-Bayes bolstered error estimator is due to Jiang

and Braga-Neto [2014]. The Naive-Bayes principle is described in Dudoit et al. [2002].

Convex error estimation was studied in depth in Sima and Dougherty [2006]. Theorems 7.4 and 7.5

appear in that reference. See also Toussaint and Sharpe [1974], where the simple estimator (7.54)

appears, and Raudys and Jain [1991]

Smoothed error estimation for LDA is credited to Glick [1978] being investigated inGlick [1978];

Snapinn and Knoke [1985, 1989]; Hirst [1996]. The same basic idea can be applied to any linear

classification rule. A few approaches for choosing the smoothing parameter have been tried, namely,

arbitrary choice [Glick, 1978; Tutz, 1985], arbitrary function of the separation between classes [Tutz,

1985], parametric estimation assuming normal populations [Snapinn and Knoke, 1985, 1989], and

simulation-based methods [Hirst, 1996]. Extension of smoothing to nonlinear classification rules

is not straightforward, since a suitable discriminant is not generally available. In Devroye et al.

[1996], and under a di↵erent but equivalent guise in Tutz [1985], using a nonparametric estimator

⌘̂(x) of the posterior-probability function ⌘(x), as in Chapter 5, and a monotone increasing function

r : [0, 1] ! [0, 1], such that r(u) = 1 � r(1 � u), r(0) = 0, and r(1) = 1 (this may simply be the

identity function r(u) = u), the smoothed resubstitution estimator is given as before by (7.63), with

WL replaced by ⌘̂. In the special case r(u) = u, one has the posterior-probability error estimator

of Lugosi and Pawlak [1994]. However, this approach depends on the availability of an estimator ⌘̂

and lacks, in general, a geometric interpretation.

Bayesian error estimation was introduced in Dalton and Dougherty [2011b,c]. For a continuous

feature-space counterpart of Example 7.3 using a Gaussian model, see Dalton and Dougherty [2011a,

2012a]. Relative to performance, a key di↵erence between non-Bayesian and Bayesian error estima-

tion rules is that the latter allow the definition of a RMS conditional on the training sample [Dalton

and Dougherty, 2012a,b]. See also Chapter 8 of Braga-Neto and Dougherty [2015].

Finally, we comment on the distributional study of error estimation under Gaussianity (for a com-

prehensive treatment, see Braga-Neto and Dougherty [2015], as well as McLachlan [1992]). The first

works in this area in English are Lachenbruch [1965]; Hills [1966], though results were published

in Russian a few years earlier [Toussaint, 1974; Raudys and Young, 2004]. Hills [1966] provided

an exact formula for the expected resubstitution error estimate in the univariate case that involves

the bivariate Gaussian cumulative distribution. M. Moran extended this result to the multivariate

case when⌃is known in the formulation of the discriminant [Moran, 1975]. Moran’s result can also

be seen as a generalization of a similar result given by John [1961] for the expectation of the true

error. McLachlan provided an asymptotic expression for the expected resubstitution error in the

7.10. EXERCISES 179

multivariate case, for unknown covariance matrix [McLachlan, 1976], with a similar result having

been provided by Raudys [1978]. Foley [1972] derived an asymptotic expression for the variance of

the resubstitution error. Finally, Raudys applied a double asymptotic approach where both sample

size and dimensionality increase to infinity, which we call the “Raudys-Kolmogorov method,” to ob-

tain a simple asymptotically exact expression for the expected resubstitution error [Raudys, 1978].

Recent contributions include Zollanvari et al. [2009a, 2010, 2011, 2012]; Vu et al. [2014]; Zollanvari

and Dougherty [2014].

7.10 Exercises

7.1. Suppose that the classification error "n and an error estimator "̂n are jointly Gaussian, such

that

"n ⇠ N("⇤ + 1/n, 1/n2) , "̂n ⇠ N("⇤ � 1/n, 1/n2) , Cov("n, "̂n) = 1/(2n2) ,

where "⇤ is the Bayes error. Find the bias, deviation variance, RMS, correlation coe�cient and

tail probabilities P ("̂n�"n < �⌧) and P ("̂n�"n > ⌧) of "̂n. Is this estimator optimistically or

pessimistically biased? Does performance improve as sample size increases? Is the estimator

consistent?

7.2. You are given that an error estimator "̂n is related to the classification error "n through the

simple model

"̂n = "n + Z , (7.84)

where the conditional distribution of the random variable Z given the training data Sn is

Gaussian, Z ⇠ N(0, 1/n2). Is "̂n randomized or nonrandomized? Find the internal variance

and variance of "̂n. What happens as the sample size grows without bound?

7.3. Obtain a su�cient condition for an error estimator to be consistent in terms of the RMS.

Repeat for strong consistency.

Hint: Consider (7.10) and (7.11), and then use (7.7).

7.4. You are given that Var("n)  5 ⇥ 10�5. Find the minimum number of test samples m that

will guarantee that the standard deviation of the test-set error estimator "̂n,m will be at most

1%.

7.5. You are given that the error of a given classifier is "n = 0.1. Find the probability that the

test-set error estimate "̂n,m will be exactly equal to "n, if m = 20 testing samples are available.

180 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

7.6. This problem concerns additional properties of test-set error estimation.

(a) Show that

Var("̂n,m) =
E["n](1� E["n])

m
+

m� 1

m
Var("n) . (7.85)

From this, show that Var("̂n,m) ! Var("n), as the number of testing samples m ! 1.

(b) Using the result of part (a), show that

Var("n)  Var("̂n,m)  E["n](1� E["n]) (7.86)

In particular, this shows that when E["n] is small, so is Var("̂n,m).

Hint: For any random variable X such that 0  X  1 with probability 1, one has

Var(X)  E[X](1� E[X]).

(c) Show that the tail probabilities given the training data Sn satisfy:

P (|"̂n,m � "n| � ⌧ | Sn)  e�2m⌧
2
, for all ⌧ > 0 . (7.87)

Hint: Use Hoe↵ding’s inequality (see Theorem A.14).

(d) By using the Law of Large Numbers (see Theorem A.12), show that, given the training

data Sn, "̂n,m ! "n with probability 1 (i.e., the test-set error estimator is universally

strongly consistent with respect to the test sample size).

(e) Repeat item (d), but this time using the result from item (c).

(f) The bound on RMS("̂n,m) in (7.22) is distribution-free. Show the distribution-based

bound

RMS("̂n,m) 
1

2
p
m

min(1, 2
p
E["n]). (7.88)

7.7. Consider the discrete histogram rule of Example 3.3. Show that the resubstitution and leave-

one-out error estimators for this rule can be written respectively as

"̂ rn =
1

n

bX

j=1

min{Uj , Vj} =
1

n

bX

i=1

⇥
Uj IUj<Vj + Vj IUj�Vj

⇤
, (7.89)

and

"̂ ln =
1

n

bX

j=1

⇥
Uj IUj�Vj + Vj IUj�Vj�1

⇤
. (7.90)

where the random variables Uj and Vj , for j = 1, . . . , b, were defined in Example 3.3.

7.8. Show that for the discrete histogram rule,

E["̂ rn]  "⇤  E["n]. (7.91)

Hence, the resubstitution estimator in this case is not only guaranteed to be optimistically

biased, but its expected value provides a lower bound for the Bayes error.

Hint: Use (7.89) and apply Jensen’s Inequality (A.66).

7.10. EXERCISES 181

7.9. Despite the guaranteed optimistic bias of resubstitution in the case of discrete histogram

classification, shown in the previous problem, it has very good large-sample properties.

(a) Show that "̂ rn ! "n with probability one as n ! 1 regardless of the distribution, i.e.,

the resubstitution estimator is universally strongly consistent.

Hint: Use the Law of Large Numbers (see Thm. A.12).

(b) Show that this implies that E["̂ rn] ! E["n] as n ! 1, i.e., the resubstitution estimator

is asymptotically unbiased. In view of (7.91), this implies that E["n] converges to "bay

from above, while E["̂ rn] converges to "bay from below, as n ! 1.

7.10. This problem illustrates the very poor (even paradoxical) performance of cross-validation with

very small sample sizes. Consider the resubstitution and leave-one-out error estimators "̂ rn
and "̂ln for the 3NN classification rule, with a sample of size n = 4 from a mixture of two

equally-likely Gaussian populations⇧ 0 ⇠ Nd(µ0,⌃) and⇧ 1 ⇠ Nd(µ1,⌃). Assume that µ0

and µ1 are far enough apart to make � =
p
(µ1 � µ0)T⌃�1(µ1 � µ0) � 0 (in which case the

Bayes error is "bay = � (��/2) ⇡ 0).

(a) For a sample Sn with N0 = N1 = 2, which occurs P (N0 = 2) =
�
4

2

�
2�4 = 37.5% of the

time, show that "n ⇡ 0 but "̂ln = 1.

(b) Show that E["n] ⇡ 5/16 = 0.3125, but E["̂ ln] = 0.5, so that Bias("̂ ln) ⇡ 3/16 = 0.1875,

and the leave-one-out estimator is far from unbiased.

(c) Show that Vard("̂ ln) ⇡ 103/256 ⇡ 0.402, which corresponds to a standard deviation

of
p
0.402 = 0.634. The leave-one-out estimator is therefore highly-biased and highly-

variable in this case.

(d) Consider the correlation coe�cient of an error estimator "̂n with the true error "n:

⇢("n, "̂n) =
Cov("n, "̂n)

Std("n)Std("̂n)
. (7.92)

Show that ⇢("n, "̂ ln) ⇡ �0.98, i.e., the leave-one-out estimator is almost perfectly nega-

tively correlated with the true error.

(e) For comparison, show that, although E["̂ rn] = 1/8 = 0.125, so that Bias("̂ rn) ⇡ �3/16 =

�0.1875, which is exactly the negative of the bias of leave-one-out, we have Vard("̂ rn) ⇡

7/256 ⇡ 0.027, for a standard deviation of
p
7/16 ⇡ 0.165, which is several times smaller

than the leave-one-out variance, and ⇢("n, "̂ rn) ⇡
p
3/5 ⇡ 0.775, showing that the resub-

stitution estimator is highly positively correlated with the true error.

7.11. Show that bolstered resubstitution can be written as

"̂ brn =
n0

n

Z

A1

p⇧n,0(x) dx+
n1

n

Z

A0

p⇧n,1(x) dx , (7.93)

182 CHAPTER 7. ERROR ESTIMATION FOR CLASSIFICATION

where

p⇧n,0(x) =
1

n0

nX

i=1

p⇧i (x�Xi) IYi=0 and p⇧n,1(x) =
1

n1

nX

i=1

p⇧i (x�Xi) IYi=1. (7.94)

Compare to the expression for the Bayes error estimator in (7.83).

7.12. Show that if the parameters in a Bayesian setting are independent a priori, i.e., p(c,✓0,✓1) =

p(c)p(✓0)p(✓1), then the parameters remain independent after observing the data, i.e., p(c,✓0,✓1 |

Sn) = p(c | Sn)p(✓0 | Sn)p(✓1 | Sn).

Hint: write p(c,✓0,✓1 | Sn) = p(c | Sn,✓0,✓1)p(✓0 | ✓1, Sn) = p(✓1 | Sn), and write

Sn = (Sn0 , Sn1) where Sn0 and Sn1 are the class-specific subsamples.

7.13. Redo Example 7.3 by deriving the predictive densities in (7.79) and then applying Theorem 7.6.

7.14. For the discrete histogram rule, derive a relationship between the Bayes error estimator using

Dirichlet priors in (7.78) and the resubstitution estimator in (7.89).

7.11 Python Assignments

7.15. This assignment concerns bolstered error estimation with uniform spherical kernels.

(a) Develop formulas equivalent to (7.44) and (7.49) for the uniform spherical kernel case.

Show that the dimensionality correction factors are given by ↵d = 2�1/d in this case.

Hint: it is more convenient to work with the radius rather than the variance of the

spherical kernel.

(b) Modify the code in c07 bolst.py to compute the bolstered and semi-bolstered resub-

stitution estimates for the classifier and data in Figure 7.4. Compare to the the plain

resubstitution estimate and the true error of the LDA classifier (which can be found

exactly, since the distribution is Gaussian).

(c) Repeat item (b) a total of M = 1000 times, using a di↵erent random seed each time, and

compare the resulting average error rates.

(d) Repeat items (b) and (c) with the bolstered resubstitution estimate using Gaussian ker-

nels and compare the results.

7.16. Consider the synthetic data model in Section A8.1 with homoskedasticity, equally-likely classes,

d = 6, � = 1, 2, ⇢ = 0.2, 0.8, k = 2, 6 (with l1 = �2 = 3 if k = 2; the features are independent

with k = 6). There are thus a total of six di↵erent models: independent, low-correlated and

highly-correlated features, under low or high variance. Consider the LDA, QDA, 3NN, and

linear SVM classification rules.

7.11. PYTHON ASSIGNMENTS 183

(a) Generate a large number (e.g., N = 1000) synthetic training data sets for each sample

size n = 20 to n = 100, in steps of 10. Also generate a test set of size M = 400 to estimate

the true classification error in each case. Plot the performance metrics (7.3)–(7.5) as a

function of the sample size for the resubstitution, leave-one-out, 5-fold cross-validation,

.632 bootstrap, and bolstered resubstitution estimators. Describe what you see.

(b) Obtain the deviation distributions (all error estimators on the same plot) for each case

above, by fitting beta densities to 1000 values. What do you observe?

7.17. Parts (b)–(d) of Problems 5.8, 5.9, and 5.10 concern test-set error rates. Obtain the same re-

sults concerning the resubstitution error rates. The di↵erence between the estimated expected

resubstitution and test-set error rates gives an estimate of the bias of resubstitution, since the

test-set error rate is unbiased. What is the behavior of the resubstitution bias as a function of

sample size and of the various classification parameters? How can you explain this in terms

of overfitting?

Chapter 8

Model Selection for Classification

“It can scarcely be denied that the supreme goal of all theory

is to make the irreducible basic elements as simple and as few

as possible without having to surrender the adequate

representation of a single datum of experience.”

–Albert Einstein, On the Method of Theoretical Physics, 1933.

In this chapter, we address an obvious question about classification: which classification rule should

one choose for a given problem? A related question is how to pick the free parameters of a clas-

sification rule. For example, how to pick the number of neighbors k to use in kNN classification,

or how to choose the kernel bandwidth in kernel classification, or even how to select the number of

training epochs to train a neural network. These are all model selection questions. The answer to

such questions depends, as we argue in this chapter, on the ratio of complexity to sample size, where

complexity includes the degrees of freedom in the classification rule and the dimensionality of the

problem. All model selection procedures look for classifiers that both fit the training data well and

display a good complexity to sample size ratio. If sample size is small compared to the complexity

of the classification rule, overfitting is bound to occur, and a good fit to the training data does

not translate to good prediction of future data. Under small sample sizes, constrained classifica-

tion rules, with smaller degrees of freedom, smaller dimensionality, and simpler decision boundaries,

are therefore preferable. This chapter begins with an analysis of classification complexity and the

Vapnik-Chervonenkis theory of classification, and then examines a few practical methods for model

selection.

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_

185

8

https://doi.org/10.1007/978-3-030-27656-0_8
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_8&domain=pdf

186 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

8.1 Classification Complexity

Let C be a classifier space, i.e., an arbitrary set of classifiers. A classification rule n picks a classifier

 n in C based on training data Sn. For example, the LDA, linear SVM and perceptron classification

rules produce classifiers in the space C of linear classifiers in Rd, while the QDA classification

rule produces classifiers in the space C
0 of quadratic classifiers in Rd. (In this example, C ⇢ C

0.)

Parameters such as the weights of a fixed-architecture NN or the direction of a LDA hyperplane are

part of the design process, and are thus modeled as part of C. However, free parameters, such as

the number of hidden layers and neurons in an NN or the dimensionality of the LDA classifier are

assumed fixed and thus lead to di↵erent classes C.

The best classifier in C according to the classification error is

 C = argmin
 2C

"[] = argmin
 2C

P [(X) 6= Y] , (8.1)

with error "C = "[C]. In addition, given Sn, the designed classifier is n,C = n(Sn) 2 C, with

error "n,C = "[n,C].

The approximation error is the di↵erence between the best error in the class and the Bayes error:

�C = "C � "d > 0 (8.2)

This reflects how well the classification rule can approximate the Bayes error. The design error is

the di↵erence between the error of the designed classifier and the best error in the class:

�n,C = "n,C � "C > 0 . (8.3)

This reflects how good a job one can do with the available data to design the best possible classifier

in C. In practice, what concerns us is the error of the designed classifier from the available data

"n,C . Combining the previous two equations yields:

"n,C = "d +�C +�n,C (8.4)

See Figure 8.1 for a graphical representation of this decomposition.

As mentioned in Chapter 3, the generally accepted performance measure for a classification rule is

the expected classification error, which does not depend on the particular particular data. Applying

expectation on both sides of (8.4) yields:

E["n,C] = "d +�C + E[�n,C] . (8.5)

In order to select the best C, we want the the expected classification error E["n,C] to be as small as

possible. Therefore, we would like both the approximation error� C and the expected design error

E[�n,C] to be small. Unfortunately, that is not in general possible, as we argue next.

8.1. CLASSIFICATION COMPLEXITY 187

Figure 8.1: Designed classifier error decomposition into error of the Bayes classifier, approximation

error, and design error.

As previously mentioned, the complexity of a classification rule has to do with the size of C. A larger

C (i.e., a more complex classification rule) is guaranteed to yield a smaller approximation error� C

— if we make C big enough, eventually d 2 C and we will obtain� C = 0. However, a larger C

generally means that the expected designed error will be larger. Making C smaller (i.e., choosing a

simpler classification rule) will generally produce a smaller expected design error E[�n,C], but will

increase the approximation error. This complexity dilemma is a manifestation in classification of

the general bias-variance dilemma in statistics: one can generally control the bias or control the

variance, but not both. Here, the “bias” is� C and the “variance” is E[�n,C].

The sample size dictates where the optimal operation point is in the complexity dilemma. For large

samples, the design problem is minimized (E[�n,C] tends to be small), and the most important

objective is to have a small approximation error� C , so in this case the use of complex classifica-

tion rules is warranted. However, in small-sample settings, which are prevalent in many scientific

applications, the trade-o↵is tilted in the other direction. The design problem dominates (E[�n,C]

tends to become large), and having a small approximation error� C becomes secondary. In this case

the use of complex classification rules should be avoided. The situation is depicted graphically in

Figure 8.2. Since C
0
⇢ C, the latter is strictly more expressive than the former (e.g., C0 and C could

be the families of linear and quadratic classifiers, respectively). It is assumed that n2 >> n1. We

can see that under sample size n2, C is the better classification rule. However, under sample size n1,

188 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

Figure 8.2: Complexity dilemma and sample size: C is better for n2, but C0 is better for n1.

even though the approximation error for C
0 is larger, its expected design error is much smaller,

making it overall better than C.

The relationship between complexity and sample size can also be seen clearly in the scissors plot,

already mentioned in Chapter 1. In Figure 8.3(a), we can see that, for n > N0, the more complex

class C is better, but for n < N0, the simpler class C0 is better instead. What the actual value of N0

is depends on the distribution of the problem.

Increasing the dimensionality d has the e↵ect of increasing the size of C, that is, it increases classi-

fication complexity. For fixed n, the di ↵ erence

E["n,d]� "d = �d + E[�n,d] . (8.6)

will generally increase as d increases, as the expected design error E[�n,d] cannot be controlled. The

net result is that E["n,d] initially decreases, following the decrease in "d, but eventually increases,

creating an optimal dimensionality d⇤. See Figure 8.3(b) for an illustration. This is the phenomenon

already referred to in Chapter 1, which has been variously called the “curse of dimensionality,” the

“peaking phenomenon,” and the “Hughes Phenomenon.” Notice that feature selection is a type of

model selection, which ideally would reduce dimensionality to the optimal value d⇤. This value is,

however, usually unknown, as it depends on the sample size and distribution of the problem.

8.2. VAPNIK-CHERVONENKIS THEORY 189

(a) (b)

Figure 8.3: Complexity Dilemma. (a) Scissors plot: for n > N0, the more complex class C is better,

but for n < N0, the simpler class C
0 is better. (b) Peaking phenomenon: as d increases, E["n,d]

initially decreases, following the decrease in "d, but eventually increases.

8.2 Vapnik-Chervonenkis Theory

Vapnik-Chervonenkis (VC) theory introduces intuitively satisfying metrics for classification com-

plexity, namely, the shatter coe�cients and the VC dimension. The main result of VC theory is

the VC theorem, which uniformly bounds the di↵erence between empirical and true errors over an

arbitrary family of classifiers, in a distribution-free manner, in terms of the shatter coe�cients and

VC dimension of the family. This leads to a practical model selection algorithm, known as Structural

Risk Minimization, to be discussed in Section 8.3.

All results in VC theory are worst-case, as there are no distributional assumptions, and thus they

can be very loose for a particular feature-label distribution and small sample sizes. Nevertheless,

the VC theorem remains a powerful tool for the analysis of the large-sample deviation between the

true and empirical (i.e., resubstitution) classification errors.

*8.2.1 Finite Model Selection

If space of classifiers C is finite, then model selection is simple, and the full generality of VC

theory would not be needed, as we see in this section. Let 2 C and consider sample data

Sn = {(X1, Y1), . . . , (Xn, Yn)}. The true error of is "[] = P (psi(X) 6= Y), while its empirical

190 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

error on Sn is

"̂[] =
1

n

nX

i=1

I (Xi) 6=Yi
(8.7)

If is not a function of Sn, then we can get a bound on the tail probability P (|"̂[] � "[]| � ⌧)

directly from Hoe↵ding’s Inequality (Theorem A.14). To see this, consider the independent binary

random variables Wi = I (Xi) 6=Yi
, i = 1, . . . , n, and let Zn =

P
n

i=1
Wi = n"̂[]. Since is not

a function of Sn, we have E["̂[]] = E["[]] (it is as if "̂[] is a test-set error estimator) so that

E[Zn] = E[n"̂[]] = nE["̂[]] = nE["[]]. Applying Hoe↵ding’s Inequality to Zn yields:

P (|"̂[]� "[]| � ⌧)  2e�2n⌧
2
, for all ⌧ > 0 , (8.8)

regardless of the distribution of (X, Y). This result is true whether C is finite or not. However, it

fails if = n is a classifier selected in C by using Sn, as in this case E["̂[n]] 6= E["[n]] in general

(here "̂[n] is the resubstitution estimator). Since n is the classifier we are really interested in, the

analysis needs to be modified. The solution is to bound |"̂[]� "[]| uniformly over C, by a simple

application of the Union Bound. The result is collected in the following theorem.

Theorem 8.1. If the space of classifiers C is finite then, regardless of the distribution of (X, Y),

P

✓
max
 2C

|"̂[]� "[]| > ⌧

◆
 2|C|e�2n⌧

2
, for all ⌧ > 0 . (8.9)

Proof. First note that {max 2C |"[]� "̂[]| > ⌧} =
S
 2C {|"[]� "̂[]| > ⌧}. We can then apply

the Union Bound (A.10) to obtain: P (max 2C |"[]� "̂[]| > ⌧) 
P

 2C P (|"[] � "̂[]| > ⌧) .

Application of (8.8) then gives (8.9). ⇧

Now, the designed classifier n is a member of C, therefore the bound in (8.9) applies:

P (|"̂[n]� "[n]| > ⌧)  2|C|e�2n⌧
2
, for all ⌧ > 0 . (8.10)

This result states that the resubstitution estimator "̂[n] gets arbitrarily close to the true error

"[n], with high probability, as n ! 1 (it also means that the resubstitution estimator is universally

strongly consistent, by an application of Theorem A.8). Applying Lemma A.1 to (8.10) leads to

E [|"̂[n]� "[n]|] 

r
1 + ln 2|C|

2n
. (8.11)

When the ratio between the complexity ln |C| and the sample size n is small, the bound is tighter,

and E["̂[n]] must be close to E["[n]] (since �E[|Z|]  E[Z]  E[|Z|]). This implies that a smaller

complexity relative to the sample size leads to less overfitting. As n ! 1, with fixed |C|, E["̂[n]]

tends to E["[n]], and the bias of resubstitution disappears.

This analysis holds if C is finite. Although some classification rules correspond to finite C (e.g., the

histogram rule with a finite number of zones), in most cases of practical interest, |C| is not finite.

The full generality of VC theory is necessary to extend the previous analysis to arbitrary C.

8.2. VAPNIK-CHERVONENKIS THEORY 191

8.2.2 Shatter Coe�cients and VC Dimension

We begin by defining the key concepts of shatter coe�cients and VC dimension for families of sets.

In the next section, the connection with classification is made.

Intuitively, the complexity of a family of sets should have to do with its ability to “pick out” subsets

of a given set of points. We formalize this next. For a given n, consider a set of points x1, . . . , xn in

Rd in general position (i.e., two points are not on top of each other, three points are not on a line,

etc.) Given a set A ✓ Rd, then

A \ {x1, . . . , xn} ✓ {x1, . . . , xn} (8.12)

is the subset of {x1, . . . , xn}“picked out” by A. Now, consider a family A of subsets of Rd, and let

NA(x1, . . . , xn) = |{A \ {x1, . . . , xn} | A 2A}| , (8.13)

i.e., the total number of subsets of {x1, . . . , xn} that can be picked out by sets in A. The nthe

shatter coe�cient of the family A is defined as

s(A, n) = max
{x1,...,xn}

NA(x1, . . . , xn) . (8.14)

The shatter coe�cients {s(A, n);n = 1, 2, . . .} measure the size or complexity of A. Note that

s(A, n)  2n for all n. If s(A, n) = 2n, then there is a set of points {x1, . . . , xn} such that

NA(x1, . . . , xn) = 2n, and we say that A shatters {x1, . . . , xn}. This implies that s(A,m) = 2m, for

all m < n, as well. On the other hand, if s(A, n) < 2n, then any set of points {x1, . . . , xn} contains

at least one subset that cannot be picked out by any member of A, in which case s(A,m) < 2m, for

all m > n, as well. Therefore, there is a largest integer k � 1 such that s(A, k) = 2k. This integer is

called the VC dimension VA of A (assuming |A|� 2). If s(A, n) = 2n for all n, then VA = 1. The

VC dimension of A is thus the maximal number of points in Rd that can be shattered by A. Like the

shatter coe�cients, VA is a measure of the size of A.

Example 8.1. For the class of half-lines A1 = {(�1, a] | a 2 R},

s(A1, n) = n+ 1 and VA = 1 , (8.15)

while for the class of intervals A2 = {[a, b] | a, b 2 R},

s(A2, n) =
n(n+ 1)

2
+ 1 and VA = 2 . (8.16)

These examples can be generalized as follows: for the class of “half-rectangles”

Ad = {(�1, a1]⇥ · · ·⇥ (�1, ad] | (a1, . . . , ad) 2 Rd
} , (8.17)

192 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

it is easy to check that VAd = d, while for the class of rectangles

A2d = {[a1, b1]⇥ · · ·⇥ [ad, bd] | (a1, . . . , ad, b1, . . . , bd]) 2 R2d
} , (8.18)

we have VA2d = 2d. ⇧

Note that in the example above, class Am has m parameters and its VC dimension is m, i.e., the

VC dimension is equal to the number of parameters. While this is intuitive, it is not true in general.

This is demonstrated emphatically by the next well-known example.

Example 8.2. (One-parameter, infinite-VC family of sets.) Let

A = {A! = {x 2 R | sin(!x) > 0} | ! 2 R} . (8.19)

Like A1 in Example 8.1, this is a family of one-dimensional sets A! indexed by a single parameter !.

However, we claim that VA = 1. To see this, consider the set of points {x1, . . . , xn} such that

xi = 10�i, for i = 1, . . . , n, and consider any of its subsets of points {xi1 , . . . , xim}. It is possible to

select a ! such that A! 2 A “picks out” this subset, namely:

! = ⇡
⇣
1 +

P
n

j=1
yj10j

⌘
, (8.20)

where yij = 0, for j = 1, . . . ,m, and yi = 1, otherwise. This is so because sin(!xi) > 0 if yi = 0

while sin(!xi) < 0 if yi = 1 (Exercise 8.1). Hence, A shatters {x1, . . . , xn}, for n = 1, 2, . . . ⇧

The previous example shows that there is essentially no relationship between number of parameters

and complexity.

A general bound for shatter coe�cients is

s(A, n) 
VAX

i=0

✓
n

i

◆
, for all n . (8.21)

Note that A1 and A2 in Example 8.1 achieve this bound, so it is tight. Assuming that VA < 1, it

follows directly from the Binomial Theorem that

s(A, n)  (n+ 1)VA . (8.22)

8.2.3 VC Parameters of a Few Classification Rules

The preceding concepts can be apply to classification rules, through their associated space of clas-

sifiers C. Given a classifier 2 C, define the set

A = {x 2 Rd
| (x) = 1} , (8.23)

8.2. VAPNIK-CHERVONENKIS THEORY 193

that is, the 1-decision region for (this specifies the classifier completely, since the 0-decision region

is simply Ac

), and let AC = {A | 2 C}, that is, the family of all 1-decision regions produced by

C. Then the shatter coe�cients S(C, n) and VC dimension VC for C are defined as

S(C, n) = s(AC , n)

VC = VAC

(8.24)

All concepts defined in the previous section now have a classification interpretation. For example,

a subset of {x1, . . . , xn} is “picked out” by if gives the label 1 to the points in the subset and

label 0 to the points not in the subset. The set of points {x1, . . . , xn} is shattered by C if there are

2n classifiers in C that produce all possible 2n labeling assignments to {x1, . . . , xn}. Furthermore, all

the results discussed previously apply in the new setting; for example, following (8.22), if VC < 1,

S(C, n)  (n+ 1)VC . (8.25)

Hence, if VC is finite, s(C, n) grows polynomially, not exponentially, with n, which will be important

in Section 8.2.4.

Next, results on the VC dimension and shatter coe�cients corresponding to commonly used classi-

fication rules are given.

Linear Classification Rules

Linear classification rules are those that produce classifiers with hyperplane decision boundaries.

This includes NMC, LDA, Perceptrons, and Linear SVMs. Let Cd be the class of linear classifiers in

Rd. Then it can be proved that

S(Cd, n) = 2
dX

i=0

✓
n� 1

i

◆

VCd = d+ 1 .

(8.26)

The fact that VC = d + 1 means that there is a set of d + 1 points that can be shattered by linear

classifiers in Rd, but no set of d+2 points can be shattered. Consider the case d = 2 as an example.

From the formula above,

s(C2, 1) = 2

✓
0

0

◆
= 2 = 21

s(C2, 2) = 2

✓
1

0

◆
+

✓
1

1

◆�
= 4 = 22

s(C2, 3) = 2

✓
2

0

◆
+

✓
2

1

◆
+

✓
2

2

◆�
= 8 = 23

s(C2, 4) = 2

✓
3

0

◆
+

✓
3

1

◆
+

✓
3

2

◆�
= 14 < 16 = 24

(8.27)

194 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

Figure 8.4: A set of n = 3 points in R2 can be shattered, i.e., can be given all possible 23 = 8 label

assignments, by a linear classification rule. Adapted from Figure 1 in Burges [1998].

Figure 8.5: The two labeling assignments for a set of n = 4 points in R2 that cannot be produced

by linear classifiers.

Therefore, VC2 = 3. This means that there is a set of 3 points in R2 that can be shattered by

linear classifiers. In fact, any set of 3 points (in general position) in R2 can be shattered by linear

classifiers, as can be seen in Figure 8.4.

In addition, VC2 = 3 means that no set of 4 points (in general position) can be shattered— since

there are at least 24 � s(C2, 4) = 16� 14 = 2 labeling assignments out of the possible 24 = 16 that

cannot be produced by linear classifiers. These correspond to the two variations of the XOR data

set of Chapter 6. See Figure 8.5 for an illustration.

The VC dimension of linear classification rules increases linearly with the number of variables, which

is an advantage of such rules. Note however that all linear classification rules having the same VC

dimension does not mean they will always perform the same, particularly in small-sample cases.

8.2. VAPNIK-CHERVONENKIS THEORY 195

kNN Classification Rule

For k = 1, clearly any set of n points can be shattered (giving label 1 to a subset of points and

label 0 to its complement produces a 1NN classifier that “picks out” that subset), and thus the

1NN classification rule has infinite VC dimension. Some reflection shows that this is true for k > 1

as well, so the VC dimension of any kNN classification rule is infinite. Classes C with finite VC

dimension are called VC classes. Thus, the class Ck of kNN classifiers is not a VC class, for each

k > 1. Classification rules that have infinite VC dimension are not necessarily useless. For example,

there is empirical evidence that 3NN and 5NN are good rules in small-sample cases. In addition, the

Cover-Hart Theorem says that the asymptotic kNN error rate is around the Bayes error. However,

the worst-case scenario if VC = 1 is indeed quite bad, as discussed in Section 8.2.5.

Classification Trees

A binary tree with a depth of k levels of splitting nodes has at most 2k�1 splitting nodes and at most

2k leaves. Therefore, for a classification tree with data-independent splits (that is, fixed-partition

tree classifiers), we have that

S(C, n) =

8
<

:
2n, n  2k

22
k
, n > 2k

(8.28)

and it follows that VC = 2k. The shatter coe�cients and VC dimension thus grow very fast (expo-

nentially) with the number of levels. The case is di↵erent for data-dependent decision trees (e.g.,

CART and BSP). If stopping or pruning criteria are not strict enough, one may have VC = 1 in

those cases.

Non-Linear SVMs

It is easy to see that the shatter coe�cients and VC dimension correspond to those of linear classi-

fication in the transformed high-dimensional space. More precisely, if the minimal space where the

kernel can be written as a dot product is m, then VC = m + 1. For example, for the polynomial

kernel

K(x, y) = (xT y)p = (x1y1 + · · ·+ xdyd)
p (8.29)

we have m =
�
d+p�1

p

�
, i.e., the number of distinct powers of xiyi in the expansion of K(x, y), so

VC=
�
d+p�1

p

�
+1. For certain kernels, such as the Gaussian kernel,

K(x, y) = exp(�|x� y|2/�2) (8.30)

the minimal space is infinitely dimensional, so VC = 1.

196 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

Neural Networks

For the class Ck of neural networks with k neurons in one hidden layer, and arbitrary sigmoids, it

can be shown that

VCk � 2

�
k

2

⌫
d (8.31)

where bxc is the largest integer  x. If k is even, this simplifies to VC � kd. For threshold sigmoids,

VCk < 1. In fact,

S(Ck, n)  (ne)� and VCk  2 � ln2(e�) (8.32)

where � = kd+2k+1 is the number of weights. The threshold sigmoid achieves the smallest possible

VC dimension among all sigmoids. In fact, there are sigmoids for which VCk = 1 for k � 2.

Histogram Rules

For a histogram rule with a finite number of partitions b, it is easy to see that the the shatter

coe�cients are given by

S(C, n) =

8
<

:
2n, n < b,

2b, n � b.
(8.33)

Therefore, the VC dimension is VC = b.

8.2.4 Vapnik-Chervonenkis Theorem

The celebrated Vapnik-Chervonenkis theorem extends Theorem 8.1 to arbitrary C by using the

shatter coe�cients S(C, n) instead of |C| as metrics of the size of C. See Appendix A6 for a proof.

Theorem 8.2. (Vapnik-Chervonenkis theorem.) Regardless of the distribution of (X,Y),

P

sup
 2C

|"̂[]� "[]| > ⌧

!
 8S(C, n)e�n⌧

2
/32, for all ⌧ > 0 . (8.34)

If VC is finite, we can use the inequality (8.25) to write the bound in terms of VC :

P

sup
 2C

|"̂[]� "[]| > ⌧

!
 8(n+ 1)VCe�n⌧

2
/32, for all ⌧ > 0 . (8.35)

Therefore, if VC is finite, the term e�n⌧
2
/32 dominates, and the bound decreases exponentially fast

as n ! 1. As in the previous section, the designed classifier n is a member of C, therefore the

bound in (8.35) applies:

P (|"̂[n]� "[n]| > ⌧)  8(n+ 1)VCe�n⌧
2
/32, for all ⌧ > 0 . (8.36)

8.2. VAPNIK-CHERVONENKIS THEORY 197

This is equation (7.12) in Chapter 7. In addition, applying Lemma A.1 to (8.36) leads to

E [|"̂[n]� "[n]|]  8

r
VC ln(n+ 1) + 4

2n
. (8.37)

Hence, E[|"̂[] � "[]|] is O(
p
VC lnn/n), from which we conclude that if n � VC , then E["̂[]] is

close to E["[]]. It also means that, for VC < 1, the resubstitution estimator is asymptotically

unbiased as n ! 1.

8.2.5 No-Free-Lunch Theorems

As was the case in Section 3.4, in a distribution-free scenario, one can pick a feature-label distribution

that makes classification performance very poor. Here, we are concerned with the ratio VC/n between

complexity and sample size. Good classification performance demands that n � VC (a well-known

rule of thumb is n > 20VC), at least in the worst case, as is demonstrated by two well-known No

Free-Lunch Theorems, stated here without proof.

Theorem 8.3. Let C be a space of classifiers with VC < 1 and let ⌦ be the set of all r.v.’s (X,Y)

corresponding to "C = 0. Then

sup
(X,Y)2⌦

E["n,C] �
VC � 1

2en

✓
1�

1

n

◆
(8.38)

for n � VC � 1.

The previous theorem states that over all distributions that are separable by a classifier in C (e.g.,

all linearly-separable distributions in the of a linear classification rule), the worst-case performance

can still be far from zero unless n � VC .

If, on the other hand, VC = 1, then one cannot make n � VC , and a worst-case bound can be

found that is independent of n (this means that there exists a situation where the classification

error cannot be reduced no matter how large n may be). This is shown by the following theorem.

Theorem 8.4. If VC = 1, then for every � > 0, and every classification rule associated with C,

there is a feature-label distribution for (X,Y) with "C = 0 but

E["n,C] >
1

2e
� �, for all n > 1 . (8.39)

The previous theorem shows that, even if infinite-VC classification rules, such as kNN, are not

necessarily bad in practice, the worst-case performance of these rules can be indeed bad.

198 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

8.3 Model Selection Methods

The model selection problem can be formalized as follows. Assume that n,k uses training data Sn

to pick a classifier n,k in a corresponding space of classifiers Ck, for k = 1, . . . , N . Here we assume

a finite number of choices N , for simplicity. This assumption is not too restrictive, since the choice

is often between a small number of di↵erent classification rules, and any continuous free parameters

can be discretized into a finite grid (the selection process is then usually called a grid search). The

goal of model selection is to pick a classifier n = n,kn 2 Ckn that has the smallest classification

error among all the candidates. The selected classification rule is then n,kn . In the next few section

we investigate model selection approaches that can be used in practice to solve this problem.

8.3.1 Validation Error Minimization

In this approach, the selected classifier n is the one that produces the smallest error count on a

independent sample Sm = {(X1, Y1), . . . , (Xm, Ym)}, known as the validation set. In other words,

 n = argmin
 n,k

"̂[n,k] = argmin
 n,k

1

m

mX

i=1

|Yi � n,k(Xi)| (8.40)

However, we really would like to select the classifier ⇤
n that achieves the smallest true classification

error:

 ⇤
n = argmin

 n,k

"[n,k] = argmin
 n,k

E[|Y � n,k(X)] (8.41)

We will see below that we can bound the di↵erence between the true error "[n] of the sample-based

classifier and the true error "[⇤
n] of the best classifier (which is all we care about). First, note that

"[n]� "[⇤
n] = "[n]� "̂[n] + "̂[n]�min

k

"[n,k]

= "[n]� "̂[n] + min
k

"̂[n,k]�min
k

"[n,k]

 "[n]� "̂[n] + max
k

|"̂[n,k]� "[n,k]|  2max
k

|"̂[n,k]� "[n,k]|

(8.42)

where we used the facts that "[⇤
n] = mink "[n,k] and "̂[n] = mink "̂[n,k], as well the properties of

minimum and maximum:

mink ak �mink bk  maxk(ak � bk)  maxk |ak � bk| . (8.43)

Now, as in Theorem 8.1,

P

✓
max
k

|"̂[n,k]� "[n,k] > ⌧

◆
 2Ne�2m⌧

2
, for all ⌧ > 0 . (8.44)

8.3. MODEL SELECTION METHODS 199

Combining this with (8.42) proves the following result.

Theorem 8.5. If a validation set with m points is used to select a classifier among N choices, the

di↵erence in true error between the selected classifier n and the best classifier ⇤
n satisfies

P ("[n]� "[⇤
n] > ⌧)  2Ne�m⌧

2
/2, for all ⌧ > 0 . (8.45)

This result proves that as the size of the validation set increases to infinity, we are certain to make the

right selection. The bound is tighter the larger m is compared to N . This agrees with the intuitive

observation that it is easier to select among few choices than many choices. For example, an overly

fine parameter grid search should be avoided and a rougher grid preferred if the classification error

is not too sensitive to the choice of the parameter (a rougher grid also has obvious computational

advantages).

Notice that "̂[n] is not an unbiased estimator of "[n], and it does not have the other nice properties

of the test-set error estimator either (but see Exercise 8.2), since the validation set is not independent

of n (it is being used to select n). Indeed, "̂[n] is likely to be optimistically-biased as an estimator

of "[]. This situation is sometimes referred to as “training on the test data” and is one of the major

sources of error and misunderstanding in supervised learning. As long as this is acknowledged, use

of a validation set is a perfectly valid model selection method (and indeed very good one, if m is

large compared to N).

In order to have an unbiased estimator of "[n], a test set that is independent of both the training

and validation sets is required. This leads to a training-validation-testing three-way strategy to split

the data. The classifiers are designed on the training data under di↵erent models, the validation data

is used to select the best model, and the testing data is used at the end to assess the performance

of the selected classifier. For example, this strategy can be used to select the number of epochs for

training a Neural Network by backpropagation (see Chapter 6). For computational savings, training

may be stopped (i.e., the number of training epochs selected) once the validation error reaches its

first local minimum, rather than the global minimum. The test set must not be used to make this

decision, or else the test-set error estimator is not unbiased.

8.3.2 Training Error Minimization

The approach described in the previous section is often unrealistic, for the same reasons given

previously regarding test-set error estimation (Chapter 7): in scientific applications, it is often the

case that data is scarce, and splitting the data into training and validation sets (let alone reserving

another piece of the data for testing) becomes impractical because one needs to use all the available

data for training. In this case, one may consider choosing a data-e�cient error estimator "̂n (i.e., one

200 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

that uses the training data to estimate the classification error) and pick a classifier that produces

the smallest error estimate. In other words,

 n = argmin
 n,k

"̂n[n,k] . (8.46)

As before, let ⇤
n be the classifier that achieves the smallest true classification error:

 ⇤
n = argmin

 n,k

"[n,k] . (8.47)

The inequality (8.42) still holds:

"[n]� "[⇤
n]  2max

k

|"̂n[n,k]� "[n,k]| . (8.48)

The right-hand side bound is small, and good model selection performance is guaranteed, if the error

estimator "̂n can estimate the error uniformly well over the set of classifiers { n,k | k = 1, . . . , N}.

However, few theoretical performance guarantees exist regarding maxk |"̂n[n,k] � "[n,k]|. It is

common to use cross validation to pick the value of a free parameter in a grid search, due to its small

bias. However, small bias does not guarantee that maxk |"̂n[n,k] � "[n,k]| is small. Nevertheless,

the cross-validation grid search often works in practice, if the sample size is not too small.

8.3.3 Structural Risk Minimization

The Structural Risk Minimization (SRM) (SRM) principle is a model selection method that tries to

balance a small empirical error against the complexity of the classification rule. Assuming VC < 1,

let us start by rewriting the bound in (8.35), doing away with the supremum and the absolute value:

P ("[]� "̂[] > ⌧)  8(n+ 1)VCe�n⌧
2
/32, for all ⌧ > 0 , (8.49)

which holds for any 2 C. Let ⇠ be the right-hand side, where 0  ⇠  1. Solving for ⌧ gives:

⌧(⇠) =

s
32

n


VC ln(n+ 1)� ln

✓
⇠

8

◆�
. (8.50)

For a given ⇠, we thus have

P ("[]� "̂[] > ⌧(⇠))  ⇠) P ("[]� "̂[]  ⌧(⇠)) � 1� ⇠ . (8.51)

In other word, the inequality

"[]  "̂[] + ⌧(⇠) (8.52)

8.4. BIBLIOGRAPHICAL NOTES 201

holds with probability at least 1 � ⇠. But since this holds for any 2 C, it in particular holds

for = n,C , a designed classifier in C trained on Sn. Therefore, we can say that the following

inequality holds with probability at least 1� ⇠:

"[n,C]  "̂[n,C] +

s
32

n


VC ln(n+ 1)� ln

✓
⇠

8

◆�
. (8.53)

The second term on the right-hand side of (8.53) is the so-called VC confidence and functions as a

complexity penalty term. While the actual form of the VC confidence may vary according to the

derivation, it always depends only on VC and n, for a given ⇠. In addition, it always becomes small

if n � VC , and large otherwise.

Now, consider a nested sequence {Ck} of classifier spaces associated with classification rules n,k,

for k = 1, . . . , N . Our goal is to pick a classification rule such that the classification error "[n,Ck] is

minimal. From (8.53), this can be done by picking a ⇠ su�ciently close to 1 (say, ⇠ = 0.95, for 95%

confidence), computing the sum of empirical error and VC confidence

"̂[n,Ck] +

s
32

n


VCk ln(n+ 1)� ln

✓
⇠

8

◆�
(8.54)

for each k = 1, . . . , N , and then picking the k⇤ such that this is minimal. Therefore, we want

to minimize "̂n,Ck to achieve a good fit to the data, but will penalize large VC compared to n.

See Figure 8.6 for an illustration of the SRM method. We can see that, as the VC dimension of

the classification rule increases with respect to the sample size, the empirical error decreases, but

this is counter-balanced by an increasing complexity penalty term. The optimal model achieves a

compromise between good fit to the data and small complexity.

8.4 Bibliographical Notes

The VC theorem is an extension of the Glivenko-Cantelli theorem and is part of the theory of

empirical processes. An excellent reference on this topic is Pollard [1984]. See also Devroye et al.

[1996], Vapnik [1998], and Castro [2020]. The proofs of results about shatter coe�cients and VC

dimension of linear, CART, and neural-network classification rules in Section 8.2.3 can be found in

Devroye et al. [1996].

The no-free lunch Theorem 8.4 is Theorem 14.3 in Devroye et al. [1996], while the bound (8.21) is

proved in Theorem 13.2 of Devroye et al. [1996]. The n > 20VC rule of thumb appears in Vapnik

[1998].

202 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

Figure 8.6: Structural Risk Minimization model selection method. As VC/n increases, the empirical

error decreases but the complexity penalty term increases. The optimal model achieves a compromise

between good fit to the data and small complexity.

The minimum description length (MDL) principle is an information-theoretical model selection

method proposed in Rissanen [1989], which closely resembles the SRM method. It is based on

minimizing the sum of the bits necessary to encode the designed classifier and the number of bits

necessary to encode the empirical error. Therefore, it attempts to maximize the fit to the data while

penalizing complex classification rules. A plot similar to Figure 8.6 would apply to MDL as well.

8.5 Exercises

8.1. Provide the missing details in Example 8.2.

8.2. Using the same notation as in Section 8.3.1, prove that

E["[n]� "[⇤
n]]  2

r
1 + ln 2N

2m
. (8.55)

In other words, the deviation in performance is O(
p
lnN/m), and hence it vanishes as the

ratio of the validation set size m over the number of choices N grows.

Hint: Use Theorem 8.5 and Lemma A.1.

8.3. Prove (8.44).

8.5. EXERCISES 203

8.4. Using the same notation as in Section 8.3.1, prove that

P (|"̂[n]� "[n]| > ⌧)  2Ne�2m⌧
2
, for all ⌧ > 0 . (8.56)

Hence, even though "̂[n] is generally optimistically biased, it is around "[n] with high prob-

ability if m is large (with respect to N). Now use Lemma A.1 to obtain an inequality for the

expected absolute di↵erence in errors.

Hint: To prove (8.56), obtain a suitable inequality and follow a derivation similar to the one

to establish Theorem 8.5.

8.5. Suppose that a classification rule picks a classifier in a space C by minimizing the error on the

training data set Sn. This is case, for example, of the the (discrete and continuous) histogram

classifier and neural networks with weights picked to minimize the empirical error. Assuming

that VC < 1, prove that the design error (8.3) for this classification rule is controlled as

E [�n,C]  16

r
VC ln(n+ 1) + 4

2n
. (8.57)

Therefore, the expected design error is guaranteed to be small if n � VC . This method of

classifier design has been championed by Vapnik under the name empirical risk minimization

(ERM).

Hint: First derive an equation similar to (8.48) for infinite C (replace min and max by inf and

sup, respectively). Then apply the VC theorem and Lemma A.1.

8.6. Consider the class C of all quadratic classifiers in R2, that is, classifiers of the form

 (x) =

8
<

:
1, xTAx+ bTx+ c > 0

0, otherwise.

where A is a 2⇥ 2 matrix, b 2 R2, and c 2 R.

(a) Show that this class has finite VC dimension, by finding a bound on VC .

Hint: Use the fact that the class of classifiers in Rd of the form

 (x) =

8
<

:
1,

P
r

i=1
ai�i(x) > 0

0, otherwise.

where only the ai are variable, and �i : Rd
! R are fixed functions of x, has VC dimension

at most r. For example, this is clearly satisfied (with equality) for linear classifiers in R2,

in which case r = 3, with �1(x) = x1, �2(x) = x2, and �3(x) = 1.

(b) Suppose that a quadratic classifier is designed by picking the parameters A, b and c

that minimize the training error. Use the result from part (a) to show that, if the

204 CHAPTER 8. MODEL SELECTION FOR CLASSIFICATION

class-conditional densities are known to be 2-D Gaussians, with arbitrary means and

covariance matrices, this classification rule is a strongly consistent rule, that is, "n ! "⇤

with probability 1 as n ! 1.

8.7. In the figure below, assume that the classifier depicted on the left was designed by LDA, while

the one on the right was designed by a nonlinear SVM with polynomial kernel K(x, y) =

(xT y)2. Based on the principle of Structural Risk Minimization, explain which classifier you

would pick. Assume a confidence 1� ⇠ = 0.95.

Figure 8.7: Diagram for Problem 8.7

8.8. Consider two one-dimensional classification rules� 1 and� 2. These rules produce classifiers

with decision regions consisting of one and two intervals, respectively.

(a) Determine the VC dimension of� 1 and� 2.

(b) For given training data Sn, with n = 10, it is observed that the classifiers produced by

�1 and� 2 get 6 out of 10 and 9 out of 10 correct classifications, respectively. Based on

the principle of Structural Risk Minimization, which classification rule you would pick?

Assume a confidence level 1� ⇠ = 0.95, and use ln(11) = 2.4 and ln(0.05/8) = �5.

Chapter 9

Dimensionality Reduction

“The feature which presents itself most forcibly to the

untrained inquirer may not be that which is considered most

fundamental by the experienced man of science; for the success

of any physical investigation depends on the judicious selection

of what is to be observed as of primary importance.”

–James Clerk Maxwell, Scientific Papers, 1831–1879.

It was seen in Chapter 2 that the Bayes error can only decrease, or stay the same, as more features

are added. This seems to indicate that as many measurements as possible should be used in a classi-

fication problem. However, the expected error of a classification rule will often decrease at first and

then increase after a certain point as more features are added; this is a famous counterintuitive fact,

known as the peaking phenomenon, which was already mentioned in Chapter 1. Furthermore, peak-

ing tends to occur earlier, i.e., the optimal dimensionality is smaller, under smaller sample sizes and

more complex classification rules. Therefore, in order to improve classification accuracy, dimension-

ality reduction is necessary. This is especially true in applications where measurements are abun-

dant, such as in high-resolution digital audio/image processing, high-throughput genomic/proteomic

data, and long historical time-series data (e.g., weather, epidemiological, and stock pricing data).

In addition to improving accuracy, other reasons to apply feature selection include the reduction

of computational load (both in terms of execution time and data storage), improving the scientific

interpretability of the designed classifiers, and visualizing the data in a two or three-dimensional

space. In this chapter, we examine in detail well-known supervised and unsupervised dimensionality

reduction techniques, including feature extraction, filter and wrapper feature selection, Principal

Component Analysis (PCA), Multidimensional Scaling (MDS), and the Factor Analysis model.

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_

205

9

https://doi.org/10.1007/978-3-030-27656-0_9
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_9&domain=pdf

206 CHAPTER 9. DIMENSIONALITY REDUCTION

9.1 Feature Extraction for Classification

The dimensionality reduction problem can be formalized as follows. Given the original vector of

measurements X 2 Rp, dimensionality reduction finds a transformation T : Rp
! Rd, where d < p,

such that the new feature vector is X0 = T (X) 2 Rd. For example, in digital image processing, the

vector X typically contains all pixel values in an image, while X0 is a much smaller vector containing

key descriptive image features (e.g., the orientation and shape of image regions). Following the

terminology used in image processing, we call this process feature extraction.

The transformed feature vector X0 should maximize a class-separability criterion J(X0, Y) so as

to minimize loss of discriminatory information. The following are examples of common class-

separability criteria.

• The Bayes error:

J(X0, Y) = 1� "⇤(X0, Y) = 1� E[min{⌘(X0), 1� ⌘(X0)}] . (9.1)

• F-errors:

J(X0, Y) = 1� dF (X
0, Y) = 1� E[F (⌘(X0))] . (9.2)

This includes the asymptotic nearest-neighbor error "NN , the Matsushita error ⇢, and the

conditional entropy H(Y | X0), all defined in Section 2.6.2.

• The Mahalanobis distance:

J(X0, Y) =
q
(µ1 � µ0)T⌃�1(µ1 � µ0) . (9.3)

where µ0, µ1, and⌃are the class means and the pooled sample covariance matrix, respectively.

• Given a classification rule n, the designed classification error:

J(X0, Y) = 1� "n(X
0, Y) = 1� E[|Y � n(X

0, Sn)|] . (9.4)

• Fisher’s discriminant: Here X0 = T (X) = wTX and w is chosen to maximize

J(X0, Y) =
wtSBw

wtSWw
, (9.5)

where

SB = (µ̂0 � µ̂1)(µ̂0 � µ̂1)
T (9.6)

is the between-class scatter matrix and

SW = (n� 2)⌃̂ =
nX

i=1

[(Xi � µ̂0)(Xi � µ̂0)
T IYi=0 + (Xi � µ̂1)(Xi � µ̂1)

T IYi=1] (9.7)

9.2. FEATURE SELECTION 207

is the within-class scatter matrix. It can be shown (see Exercise 9.3) that w⇤ = ⌃�1

W
(µ̂1 � µ̂0)

maximizes (9.5). Notice that w⇤ is colinear with the parameter an of the LDA classifier in

in (4.15). Hence, with the appropriate choice of threshold, Fisher’s discriminant leads to the

LDA classification rule.

With the exception of Fisher’s discriminant, all of the criteria listed above require knowledge of the

feature-label distribution p(X0, Y). In practice, they must be estimated from data. For example, the

criterion in (9.4) can be approximated using any of the error estimation rules discussed in Chapter 7.

A feature extraction transformation X0 = T (X) is said to be lossless for the assumed class-

separability criterion if J(X0, Y) = J(X, Y). For example, if J is any F -error, which includes

the Bayes error, it follows from Theorem 2.3 that T is lossless if it is invertible. Lossless feature

extraction is considered further in Exercise 9.4.

In practice, obtaining an optimal feature extraction transformation is a di�cult problem, given the

extreme generality allowed in the transformation T . In image processing, the classical approach is

to fashion T manually (e.g., compute various geometrical properties of segmented image regions).

With the advent of convolutional neural networks (see Section 6.2.2), it has become possible to train

the feature extraction process from data and select T automatically (see Python Assignment 6.12).

9.2 Feature Selection

The simplest way to reduce dimensionality is to discard features that are redundant or less in-

formative about the label. This can be seen as a special case of feature extraction, where the

transformation T is restricted to an orthogonal projection. Therefore, by definition, feature selec-

tion is sub-optimal with respect to feature extraction. However, in many scientific applications,

interpretability of the resulting classifier is crucial, and complicated feature transformations are un-

desirable. For example, in genomics it is necessary to know the identity of genes in a small gene set

that are predictive of a disease or condition, whereas a complicated black-box function of all genes in

the starting high-dimensional space is undesirable, due to ethical and scientific considerations, even

if it is more predictive. (We will see in Section 9.3 that PCA o↵ers a compromise between these two

extremes, by restricting the feature extraction transformation to be linear.) In the next few subsec-

tions, we will discuss various feature selection algorithms based on exhaustive and greedy searches.

We will also examine the relationship between feature selection and classification complexity and

error estimation.

208 CHAPTER 9. DIMENSIONALITY REDUCTION

9.2.1 Exhaustive Search

Let A ⇢ {1, . . . , p} be a subset of indices and define XA be set of features indexed by A. For

example, if A = {1, p} then XA = {X1, Xp} is a 2-dimensional feature vector containing the first

and last features in the original feature vector X 2 Rp. Let J(A) = J(XA, Y) be a class-separability

criterion given A. The exhaustive feature selection problem is to find A⇤ such that

A⇤ = arg max
|A|=d

J(A) . (9.8)

Since this is a finite optimization problem, the optimal solution is guaranteed to be reached in a

finite time by exhaustive search: compute J(A) for all possible subsets A ⇢ {1, . . . , p} of size d and

pick the maximum.

If the classification error criterion (9.4) is used as the class-separability metric and the classification

rule n used in the criterion is the same classification rule used to train the final classifier on

the selected feature set, then one is using the classification error (or, in practice, an estimate of

it) directly to search the best feature set. This approach is called wrapper feature selection. All

other cases are called filter feature selection. For example, using the Bayes error (or its estimate)

as the class-separability criterion is a filter feature selection approach. Roughly speaking, filter

feature selection is “independent” of the classification rule used to train the final classifier, while

wrapper feature selection is not. Wrapper feature selection can fit the data better than filter feature

selection due to “matching” the search to the final desired classifier. For the same reason, it can

lead to selection bias and overfitting in small-sample cases, when filter feature selection would be

more appropriate. (As elsewhere in the book, “small sample” means a small number of training

points in comparison to the dimensionality or complexity of the problem)

Example 9.1. (Maximum Mutual-Information Feature Selection.) Suppose that the conditional

entropy in (2.70) is used to define the class-separability criterion:

J(A) = 1�H(Y | XA) (9.9)

Then the optimization problem in (9.8) can be written as:

A⇤ = arg max
|A|=d

1�H(Y | XA) = arg max
|A|=d

[H(Y)�H(Y | XA)]

= arg max
|A|=d

I(XA;Y) .
(9.10)

where H(Y) = �
P

1

y=0
P (Y = y) ln2 P (Y = y) is the entropy of the binary variable Y , which is a

constant, and I(XA;Y) = H(Y)�H(Y | XA) is the mutual information between XA and Y . This

is a filter feature selection approach. In practice, the mutual information must be estimated from

training data. ⇧

9.2. FEATURE SELECTION 209

Clearly, the number of subsets to be evaluated in an exhaustive search is:

m =

✓
p

d

◆
=

p!

d!(p� d)!
. (9.11)

The complexity of exhaustive feature selection is thus O(pd). The complexity of problem increases

very quickly with increasing p and d. For example, with modest numbers p = 100 and d = 10, the

total number of feature sets to be evaluated is greater than 1013.

A famous result, known as the Cover-Van Campenhout Theorem, shows that any ordering, with

respect to class separability, of the feature vectors of size d out of p features can occur. A proof of

this result is based on constructing a simple discrete distribution with the required properties (see

the Bibliographical Notes for more details).

Theorem 9.1. (Cover-Van Campenhout Theorem.) Let A1, A2, . . . A2p be any ordering of all pos-

sible subsets of {1, . . . , p}, satisfying only the constraint Ai ⇢ Aj if i < j (hence, A1 = ; and

A2p = {1, . . . , p}). Let "⇤(A) = "⇤(XA, Y) for short. There is a distribution of (X,Y) such that

"⇤(A1) > "⇤(A2) > · · · > "⇤(A2p) . (9.12)

The Cover-Van Campenhout theorem establishes that, in the absence of any knowledge about the

feature-label distribution, the exponential complexity of exhaustive search cannot be avoided. The

constraint Ai ⇢ Aj if i < j is necessary due to the monotonicity of the Bayes error. However, for

feature sets of the same size, no restriction exists.

9.2.2 Univariate Greedy Search

In this and the next section, we consider several feature selection algorithms that are “greedy” in

the sense that they attempt to find good feature sets without an exhaustive search. These methods

are necessarily sub-optimal unless one has information about the feature-label distribution. Here,

we will assume that no such information is available.

The simplest way to find feature sets quickly is to consider the features individually. For example,

the following are heuristics used in practice to select features:

• Retain features that are highly variable across all classes; discard features that are nearly

constant.

• Retain one feature from each cluster of mutually correlated features; avoid correlated features.

• Retain features that are strongly correlated with the label; discard “noisy features,” i.e.,

features that are weakly correlated with label.

210 CHAPTER 9. DIMENSIONALITY REDUCTION

Notice that a feature may have high variance, be uncorrelated with all other features, but still be a

noisy feature. Likewise, a feature may be highly correlated with the target but be redundant due

to being correlated with other features as well.

In the best individual features approach, after perhaps “filtering” the set of all features using the

previous heuristics, one applies a univariate class-separability criterion J(Xi, Y) to each individual

original feature Xi, and picks the d features with largest J . For example, a very popular method

uses the absolute value of the test statistic of a two-sample t-test

J(Xi, Y) =
|µ̂i,0 � µ̂i,1|r
�̂
2
i,0

n0
+

�̂
2
i,1

n1

(9.13)

for ranking the features, where µ̂i,j and �̂2
i,j

are the sample means and variances (equivalently, the

p-value of the test can be used).

Univariate criteria are very simple to check and often work well, but they can also fail spectacularly,

due to considering the features one at a time and ignoring multivariate e↵ects among sets of features.

A dramatic demonstration of this fact is provided by Toussaint’s Counter-Example.

Theorem 9.2. (Toussaint’s Counter-Example.) Let d = 3. There is a distribution of (X, Y) such

that X1, X2 and X3 are conditionally-independent given Y and

"⇤(X1) < "⇤(X2) < "⇤(X3) , (9.14)

but such that

"⇤(X1, X2) > "⇤(X1, X3) > "⇤(X2, X3) . (9.15)

Therefore, the best 2 individual features form the worst 2-feature set, and the worst 2 individual

features form the best 2-feature set. Furthermore, the best 2-feature set does not contain the best

individual feature.

Proof. A distribution concentrated on the vertices of the unit cube [0, 1]3 in R3, with P (Y = 0) =

P (Y = 1) = 0.5, and

P (X1 = 1 | Y = 0) = 0.1 P (X1 = 1 | Y = 1) = 0.9

P (X2 = 1 | Y = 0) = 0.05 P (X2 = 1 | Y = 1) = 0.8

P (X3 = 1 | Y = 0) = 0.01 P (X3 = 1 | Y = 1) = 0.71

(9.16)

and such that X1, X2, X3 are independent given Y , has the required property. ⇧

This result is striking because all the features are uncorrelated (in fact, independent) and still there

are strong multivariate e↵ects that swamp the univariate ones.

9.2. FEATURE SELECTION 211

A di↵erent example in this class of phenomena is provided by the XOR problem (do not confuse

this with the XOR data set in previous chapters).

Example 9.2. (XOR problem.) Consider two independent and identically distributed binary fea-

tures X1, X2 2 {0, 1} such that P (X1 = 0) = P (X1 = 1) = 1/2, and let Y = X1 �X2, where “�”

denotes the logical XOR operation. Since Y is a function of (X1, X2), we have "⇤(X1, X2) = 0. How-

ever, ⌘(X1) = P (Y = 1 | X1) ⌘ 1/2, so that "⇤(X1) = 1/2. Clearly, "⇤(X2) = 1/2 also. Therefore,

X1 and X2 are completely unpredictive of Y by themselves, but together they completely predict Y .

⇧

9.2.3 Multivariate Greedy Search

Multivariate greedy feature selection algorithm attempt to address the issues that plague univariate

methods by evaluating feature vectors, rather than univariate features, while at the same time avoid-

ing exhaustively searching the entire space of feature sets. Sequential methods generally outperform

best individual feature selection (except in acute small-sample cases).

We consider here only sequential multivariate greedy search methods, where features are added or

removed sequentially to the desired feature vector, until a stopping criterion is met. Sequential

methods can be divided into bottom-up searches, where the length of the feature vector increases

over time, and top-down searches, where it decreases.

Sequential Forward Search

Sequential Forward Search (SFS) is an algorithm that adds one feature at a time to the working

feature set.

• Let X(0) = ;.

• Given the current feature set X(k), the criterion J(X(k)[Xi, Y) is evaluated for each Xi 62 X(k)

and the X⇤
i
that maximizes this is added to the feature set: X(k+1) = X(k) [X⇤

i
.

• Stop if k = d or if no improvement is possible.

Alternatively, the initial feature vector X(0) might consist of a small vector (d = 2 or d = 3 are

common) selected by exhaustive search among the initial p features. SFS is simple and fast but has

a finite horizon problem: once a feature is added, it is “frozen” in place, i.e. it can never be removed

from the working feature set.

212 CHAPTER 9. DIMENSIONALITY REDUCTION

Sequential Backward Search

Sequential Backward Search (SBS) is the top-down version of SFS.

• Let X(0) = X.

• Given the current feature set X(k), the criterion J(X(k)\Xi, Y) is evaluated for each Xi 2 X(k)

and the X⇤
i
that minimizes the drop

J(X(k), Y)� J(X(k) \Xi, Y)

is removed from the feature set: X(k+1) = X(k) \X
⇤
i
.

• Stop at k = d.

As in the case of SFS, this method has a finite-horizon problem: once a feature is removed, it can

never be added back. It has the additional disadvantage that feature sets of high dimensionality have

to be considered in the initial steps of the algorithm — if the criterion J involves the classification

error (e.g. wrapper feature selection), this would make SBS impractical for large p.

Generalized Sequential Search

This is a generalization of sequential search, where at each stage, all combinations Zj of a small

number r of features (values r = 2 and r = 3 are common) not in the current feature set X(k) are

considered.

• In Generalized Sequential Forward Search (GSFS), the group Z⇤
j
that maximizes J(X(k) [

Zj , Y) is added to the current feature set: X(k+1) = X(k) [Z⇤
j
. This is a bottom-up approach.

• In Generalized Sequential Backward Search (GSBS), the group Z⇤
j
that minimizes the drop

J(X(k), Y)�J(X(k) \Zj , Y) is removed from the current feature set: X(k+1) = X(k) \Z
⇤
j
. This

is a top-down approach.

GSFS and GSBS are more accurate than regular SFS and SBS, at the expense of more computation.

However, they still have the same disadvantages: a finite-horizon problem and high-dimensional

feature vector evaluation in the case of GSBS.

9.2. FEATURE SELECTION 213

Plus-l Take-r Search

This is an approach that solves the finite-horizon problem of the previous sequential search methods,

at the expense of even more computation. Starting from an initial feature set, l features are added

to the current feature set using SFS and then r features are removed using SBS, and the process

is repeated until a stopping criterion is satisfied. This allows back-tracking, i.e., any feature can be

added or removed from the working feature set as often as necessary. If l > r this is a bottom-up

search, while if r > l this is a top-down search.

Floating Search

This method can be considered a development of the Plus-l Take-r Search method, where the values

of l and r are allowed to vary, i.e., “float,” at di↵erent stages of the feature selection process. The

advantage of floating search is that one is allowed to backtrack in an “optimal” sense.

Sequential floating forward search (SFFS) is the bottom-up version, while sequential floating back-

ward search (SFBS) is the top-down algorithm. The following procedure is a common instance the

SFFS algorithm:

1. Let X(0) = ; and find X(1) and X(2) by SFS.

2. At stage k, select the feature Xi 62 X(k) that maximizes J(X(k) [Xi, Y) and let Z(k+1) =

X(k) [X⇤
i

3. Find the feature Xj 2 Z(k+1) that minimizes the drop J(Z(k+1), Y) � J(Z(k+1) \ Xj , Y). If

X⇤
i
= X⇤

j
then let X(k+1) = Z(k+1), increment k and go back to step 2.

4. Otherwise keep decrementing k and removing samples from Z(k) to form samples Z(k�1) while

J(Z(k), Y) > J(X(k), Y) or until k = 2. Let X(k) = Z(k), increment k and go back to step 2.

5. Stop if k = d or if no improvement is possible.

9.2.4 Feature Selection and Classification Complexity

Feature selection can be understood as a form of regularization, or constraint, on a classification rule,

with the purpose of decreasing classification complexity and improving the classification accuracy.

First, notice that the composition of feature selection and classifier design defines a classification

rule D
n on the original high-dimensional feature space: if d

n denotes the classifier designed by d
n

on the smaller space, then the classifier designed by D
n on the larger space is given by D

n (X) =

214 CHAPTER 9. DIMENSIONALITY REDUCTION

(a) (b) (c)

Figure 9.1: Constraint introduced by feature selection on a linear classification rule. (a) uncon-

strained classifier. (b) and (c) classifiers constrained by feature selection.

 d
n(X

0) = d
n(Tn(X)), where Tn is a data-dependent. Since T is an orthogonal projection, the

decision boundary produced by D
n is an extension at right angles of the one produced by d

n. If the

decision boundary in the lower-dimensional space is a hyperplane, then it is still a hyperplane in the

higher-dimensional space, but a hyperplane that is not allowed to be oriented along any direction,

but must be orthogonal to the lower-dimensional space. See Figure 9.1 for an illustration. Therefore,

feature selection corresponds to a constraint on the classification rule in the high-dimensional space,

which can improve classification accuracy (in this case, due to the peaking phenomenon).

9.2.5 Feature Selection and Error Estimation

In this section, we consider when an error estimator can be computed in the reduced feature space

selected by feature selection, and when it should be computed in the original space. This is a topic

that has important practical consequences, as we discuss below.

Consider an error estimator "̂Dn = ⌅n(D
n , S

D
n , ⇠), where D

n is obtained from the combination of

the feature selection transformation Tn and the classification rule d
n in the smaller feature space.

It is key to distinguish "̂Dn from the error estimator "̂dn = ⌅n(d
n, S

d
n, ⇠) obtained by replacing D

n

by d
n and SD

n by Sd
n = {(Tn(X1), Y1), . . . , (Tn(Xn), Yn)}. We say that the error estimation rule⌅ n

is reducible if "̂dn = "̂Dn . For example, the resubstitution error estimation rule is reducible. This can

be seen in Figure 9.1(b): the resubstitution error estimate is 0.25 whether one computes it in the

original 2D feature space, or projects the data down to the selected variable and then computes it.

The test-set error estimation rule is also reducible, if one projects the test sample to the same feature

space selected in the feature selection step.

9.2. FEATURE SELECTION 215

On the other hand, cross-validation is not a reducible error estimation rule. Consider leave-one-out:

the estimator "̂ l,Dn is computed by leaving out a point, applying the feature selection rule to the

deleted sample, then applying d
n in the reduced feature space, testing it on the deleted sample point

(after projecting it into the reduced feature space), repeating the process n times, and computing the

average error rate. This requires application of the feature selection process anew at each iteration,

for a total of n times. This process, called by some authors external cross-validation, ensures that

(7.26) is satisfied: E["̂ l,Dn] = E["D
n�1

]. On the other hand, if feature selection is applied once at the

beginning of the process and then leave-one-out proceeds in the reduced feature space while ignoring

the original data, then one obtains an estimator "̂ l,dn that not only di↵ers from "̂ l,Dn , but also does

not satisfy any version of (7.26): neither E["̂ l,dn] = E["D
n�1

] nor E["̂ l,dn] = E["d
n�1

], in general. While

the fact that the former identity does not hold is intuitively clear, the case of the latter identity is

more subtle. This is also the identity that is mistakenly assumed to hold, usually. The reason it

does not hold is that the feature selection process biases the reduced sample Sd
n, making it have a

di↵erent sampling distribution than data independently generated in the reduced feature space. In

fact, "̂ l,dn can be substantially optimistically biased. This phenomenon is called selection bias. As

in the case of cross-validation, the bootstrap is not reducible. In the presence of feature selection,

bootstrap resampling must be applied to the original data rather than the reduced data.

Bolstered error estimation may or may not be reducible. For simplicity, we focus here on bolstered

resubstitution. First notice that the integrals necessary to find the bolstered error estimate in (7.39)

in the original feature space RD can be equivalently carried out in the reduced space Rd, if the

kernel densities are comprised of independent components, in such a way that

f},D

i
(x) = f},d

i
(x)f},D�d

i
(x) , for x 2 RD, i = 1, . . . , n , (9.17)

where f},D

i
(x), f},d

i
(x), and f},D�d

i
(x) denote the densities in the original, reduced, and di↵erence

feature spaces, respectively. One example would be Gaussian kernel densities with spherical or

diagonal covariance matrices (see Section 7.7). For a given set of kernel densities satisfying (9.17),

"̂ br,Dn =
1

n

nX

i=1

✓
Iyi=0

Z

A1

f},d

i
(x�Xi)f

},D�d

i
(x�Xi) dx

+ Iyi=1

Z

A0

f},d

i
(x�Xi)f

},D�d

i
(x�Xi) dx

◆

=
1

n

nX

i=1

Iyi=0

Z

A
d
1

f},d

i
(x�Xi) dx

Z

RD�d
f},D�d

i
(x�Xi) dx

+ Iyi=1

Z

A
d
0

f},d

i
(x�Xi) dx

Z

RD�d
f},D�d

i
(x�Xi) dx

!

=
1

n

nX

i=1

Iyi=0

Z

A
d
1

f},d

i
(x�Xi) dx+ Iyi=1

Z

A
d
0

f},d

i
(x�Xi) dx

!
.

(9.18)

216 CHAPTER 9. DIMENSIONALITY REDUCTION

While being an important computation-saving device, this identity does not imply that bolstered

resubstitution is always reducible whenever (9.17) is satisfied. Reducibility will also depend on the

way that the kernel densities are adjusted to the sample data. The use of spheric kernel densities

with variance determined by (7.48) results in a bolstered resubstitution estimation rule that is

not reducible, even if the kernel densities are Gaussian. This is clear, since both the mean distance

estimate and dimensional constant change between the original and reduced feature spaces, rendering

"̂ br,dn 6= "̂ br,Dn , in general. On the other hand, the “Naive Bayes” method of fitting diagonal kernel

densities in (7.51) yields a reducible bolstered resubstitution error estimation rule, if the kernel

densities are Gaussian. This is clear because (9.17) and (9.18) hold for diagonal kernels, and the

“Naive Bayes” method produces the same kernel variances in both the original and reduced feature

spaces, so that "̂ br,dn = "̂ br,Dn .

9.3 Principal Component Analysis (PCA)

PCA is an extremely popular dimensionality reduction method, which is based on the previously-

mentioned heuristic according to which low-variance features should be avoided. In PCA, a feature

decorrelation step, known as the Karhunen-Loéve (KL) Transform, is applied first, after which the

first d individual (transformed) features with the largest variance are retained.

PCA is classified as feature extraction, not feature selection, due to the extra step of feature decor-

relation. However, since the KL Transform is linear, interpretability is not completely sacrificed in

PCA: it is possible to express each selected feature as a linear combination of the original features.

In this sense, PCA can be seen as a compromise between feature selection and the full generality of

feature extraction. Additionally, the coe�cients in the linear combination (which are arranged into

a loading matrix) convey information about the relative importance of the original features.

The main issue with PCA for classification is that it is unsupervised, i.e., the dependence of Y on

X is not considered. Even though supervised PCA-like algorithms exist (see the Bibliographical

Notes), we will consider here only the traditional unsupervised version.

Consider a random vector X 2 Rp with mean µX and covariance matrix⌃ X. By virtue of being

symmetric and positive semi-definite,⌃ X has a set of p orthonormal eigenvectors u1, . . . ,up, with

associated nonnegative eigenvalues �1 � �2 � · · · � �p � 0 (see Sections A1.7 and A2). Consider

the linear (a�ne) transformation given by

Z = UT (X� µX) (9.19)

where U = [u1 . . .up] is the matrix of eigenvectors. This is a rotation in the space Rp (preceded by

9.3. PRINCIPAL COMPONENT ANALYSIS (PCA) 217

Figure 9.2: Karhunen-Loève Transform with p = 2. The data is uncorrelated in the rotated axis

system u1 ⇥ u2.

a translation to remove the mean), known as the (discrete) Karhunen-Loève Transform. Clearly,

E[Z] = E
⇥
UT (X� µ)

⇤
= UT (E[X]� µX) = 0 (9.20)

and
⌃Z = E[ZZT] = E

⇥
UT (X� µX)(X� µX)TU

⇤

= UTE
⇥
(X� µX)(X� µX)T

⇤
U = UT⌃XU = ⇤ ,

(9.21)

where⇤is the diagonal matrix of eigenvalues �1, . . . ,�p. With Z = (Z1, . . . , Zp), the aforementioned

derivation proves that

E[Zi] = 0 , for i = 1, . . . , p ,

E[ZiZj] = 0 , for i, j = 1, . . . , p, i 6= j ,

E[Z2

i] = Var(Zi) = �i , for i = 1, . . . , p ,

(9.22)

that is, the Zi are zero-mean, uncorrelated random variables, with variance equal to the eigenvalues

of⌃ X. Since the eigenvalues were ordered in decreasing magnitude, Z1 has the largest variance

�1, and and the eigenvector u1 points to the direction of maximal variation; Z1 is called the first

principal component (PC). The second PC Z2 has the next largest variance �2, followed by the third

PC Z3, and so on. Though we do not prove it here, u2 points in the direction of largest variance

perpendicular to u1, u3 points in the direction of largest variance perpendicular to the space spanned

by u1 and u2, and so on. The KL transformation is illustrated in Figure 9.2 in the case p = 2.

The PCA feature extraction transform X0 = T (X) consists of applying the KL transform and then

keeping the first d principal components: X0 = (Z1, . . . , Zd). In other words,

X0 = W T (X� µX) (9.23)

218 CHAPTER 9. DIMENSIONALITY REDUCTION

(a) (b)

Figure 9.3: PCA transform for dimensionality reduction from p = 2 to d = 1 features. In (a), the

first principal component Z1 alone contains most of the discrimination information. But in (b), the

discrimination information is contained in the second principal component Z2, and PCA fails.

where W = [u1 · · ·ud] is a rank-d matrix (therefore PCA is not in general invertible, and lossy with

respect to the Bayes error criterion). The matrix W is called theloading matrix. Assuming µX

for simplicity (and without loss of generality), we can see that Zi = uT

i
X, for i = 1, . . . , d. Since

||ui|| = 1, this is a weighted linear combination. The larger (in magnitude) a value in ui is, the

larger the relative importance of the corresponding feature is in the PC Zi; this will be illustrated

in Example 9.3 below.

In practice, the PCA transform is estimated using sample data Sn = {X1, . . . ,Xn}, where the mean

µX and the covariance matrix⌃ X are replaced by their sample versions. When n is small relative

to p, the sample covariance matrix is a poor estimator of the true covariance matrix. For example,

it is known that the small (resp. large) eigenvalues of the sample covariance matrix are biased low

(resp. high) with respect to the eigenvalues of the true covariance matrix; if n is small, this bias

could be substantial.

As mentioned previously, the main issue with PCA for classification is that it is unsupervised, that is,

it does not consider the label information (this could also turn into an advantage, in case unlabeled

data is abundant). PCA is based on the heuristic that the discriminatory information is usually

contained in the directions of largest variance. The issue is illustrated in Figure 9.3, where the same

data as in Figure 9.2, with two di↵erent class labelings. Suppose that, in this artificial example,

it is desired to perform dimensionality reduction from p = 2 to d = 1 features. The situation in

Figure 9.3(a) is the most common in practice, and in this case the discriminatory information is

preserved in Z1. However, if the less common situation in Figure 9.3(b) occurs, then PCA fails: the

discriminatory information is in the discarded feature Z2, while Z1 is a noise feature.

9.3. PRINCIPAL COMPONENT ANALYSIS (PCA) 219

Figure 9.4: Least-squares interpretation of the PCA transform, for dimensionality reduction from

p = 2 to d = 1 features. The average sum of squares is the sum of the lengths of all dashed lines

divided by the number of points, which is minimum for the line corresponding to the first PC.

Finally, an alternative equivalent interpretation of (sample-based) PCA is that it produces the

subspace that minimizes the least-squares distance with respect to the original data. More precisely,

it can be shown that the PCA transform is the linear projection T : Rd
! Rp that minimizes the

average sum of squares

J =
1

n

nX

i=1

||Xi � T (Xi)||
2 (9.24)

In fact, it can be shown that the least square-error achieved is J⇤ =
P

d

i=p+1
�i (the sum of discarded

eigenvalues). Figure 9.4 shows an example in the case of dimensionality reduction from p = 2 to

d = 1 features. We can see that the direction of the first PC is the line of best fit to the data and

that the average sum of squares J , which is the sum of the lengths of all dashed lines divided by the

number of points, is minimum in this case. Notice that with only two components, J is the sample

variance in the direction of the second PC, that is �2.

Example 9.3. This example applies PCA to the soft magnetic alloy data set (see Section A8.5). In

this data set, the features consist of atomic composition percentages and the annealing temperature

for the material samples, while the response variable is their magnetic coercivity in A/m. After

discarding all features (columns) that do not have at least 5% nonzero values and then discarding

all entries (rows) that do not have a recorded coercivity value (i.e., discarding NaNs), one is left with

a data matrix consisting of 12 features measured on 741 material samples. In order to attenuate

systematic trends in the data, a small amount of zero-mean Gaussian noise is added to the measure-

ments (with all resulting negative values clamped to zero). Then the data were normalized to have

zero mean and unit variance in all features; this is recommended as PCA is sensitive to the scale of

220 CHAPTER 9. DIMENSIONALITY REDUCTION

di↵erent features; here, the atomic composition and annealing temperatures are in di↵erent scales

(0-100 scale for the former, and Kelvin scale for the latter). In addition, most of the alloys have large

Fe and Si composition percentages. Without normalization, Fe, Si, and the annealing temperature

would unduly dominate the analysis. Figures 9.5 (a–c) display the data set projected on all pairwise

combinations of the first 3 PCs. In order to investigate the association between the PC features and

the coercivity, the latter is categorized into three classes: “low” (coercivity  2 A/M), “medium” (2

A/M < coercivity < 8 A/M), and “high” (coercivity � 8 A/M), which are coded using red, green,

and blue, respectively. We can see that most of the discriminatory information in the coercivity

indeed seems to lie along the first PC. See Python Assignment 9.8. ⇧

9.4 Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS), like PCA, is an unsupervised dimensionality reduction technique.

The main idea behind MDS is to reduce dimensionality by finding points in the reduced spaceRd that

best approximate pairwise dissimilarities, e.g., the Euclidean distance or 1� the correlation, between

points in the original space Rp. This is a nonlinear feature extraction so it can achieve greater

compression than PCA. However, its complexity and lack of interpretability of the transformed

features means that it is used almost exclusively as a data exploration tool: It allows the general

structure of the high-dimensional data to be directly visualized in a space of dimensions d = 2 or

d = 3.

Let dij be the pairwise dissimilarities between points xi and xj in the original data set. A dissimi-

larity may or may not be a true distance metric. In general, it is a nonnegative metric that should

be equal to zero if xi = xj and become larger as the points become dissimilar. Popular examples

of pairwise dissimilarity metrics include the Euclidean distance and (one minus) the correlation

coe�cient between the vectors xi and xj .

Now let �ij be the pairwise dissimilarities between the transformed points x0
i
= T (xi) and x0

j
= T (xj).

MDS seeks a configuration of points x0
i
in the reduced space that minimizes the stress:

S =

sP
i,j
(�ij � dij)2P

i,j
d2
ij

. (9.25)

Small values of stress indicates, in principle, a more faithful representation of the structure of the

data in the original high-dimensional space. Values of stress less than 10% are considered excellent,

and between 10%-15% are acceptable.

The MDS solution can be computed by starting with a randomly selected initial configuration of

points and then minimizing the stress using gradient descent. However, the stress function is quite

9.4. MULTIDIMENSIONAL SCALING (MDS) 221

Figure 9.5: PCA example using the soft magnetic alloy data set. The plots of all pairwise combina-

tions of the first 3 PCs show that most of the discriminatory information in the coercivity seems to

lie along the first PC (plots generated by c09 PCA.py).

complex and the number of variables is n ⇥ d, which makes gradient descent intractable if n and

d are large. An alternative procedure, known as SMACOF (Scaling by MAjorizing a COmplicated

Function), proceeds by finding an easy-to-minimize function that is equal to the stress at the current

solution but larger everywhere else, and then letting the next solution be equal to the the minimum

value of the majorating function (this is similar to the Expectation-Maximization algorithm to

maximize the likelihood function; see Section 10.2.1). The process is stopped until there is no

222 CHAPTER 9. DIMENSIONALITY REDUCTION

further improvement or a maximum number of iterations is achieved. The procedure needs to be

repeated over a number of initial random configurations to avoid getting trapped in local minima.

Notice that the output of the MDS algorithm are the transformed points x0
i
in the reduced space,

not the feature transformation T . In fact, the input to the MDS algorithm could be simply the

matrix of dissimilarities dij without reference to the original points; this problem is also known as

classical scaling. For example, the input could be a matrix of pairwise distances between major U.S.

cities and the output could be a two-dimensional map of the country (in this case, there would de

no dimensionality reduction). Since the stress is invariant to rigid transformations, the map could

be produced in unusual orientations (e.g. it could be upside-down).

The fact that the MDS transformation is not explicitly computed makes it hard to be used in feature

extraction. For example, if a test point needs to be added, the process has to be repeated from

scratch with the entire data (but the previous computed solution can be used as the new initial

solution, speeding up execution somewhat).

Example 9.4. Here we use the dengue fever prognosis data set (see Section A8.2), already men-

tioned in Chapter 1. We apply MDS to the data matrix of 1981 gene expression measurements in

peripheral blood mononuclear cells (PBMC) of dengue fever (DF), dengue hemorrhagic fever (DHF)

and febrile nondengue (ND) patients, as classified by a clinician, and reduce the data to only two

dimensions. Figure 9.6 displays the results using the correlation and Euclidean distance dissimilarity

metrics. Both plots show the same general fact that the DHF patients are clustered tight, while

the ND patients are more disparate, in agreement with the nonspecificity of this group. The DF

patients appear to be divided into two groups, one that is similar to the DHF group and another

that is similar to the ND group, illustrating the fact that there is a continuous spectrum from ND to

DHF going through DF. These facts seem to be a bit more clear in the plot using correlation, which

also achieves a smaller stress. If MDS to d = 3 instead of d = 2 was performed, we could expect the

stresses to be smaller and the representations to be more accurate. See Python Assignment 9.9. ⇧

9.5 Factor Analysis

Suppose that one inverts the point of view of PCA and considers the following generative model for

the data:

X = WZ+ µ , (9.26)

where Z is the vector of principal components, and W = [u1 · · ·up] is the loading matrix, as before.

This inversion is only possible, of course, if no principal components are discarded and W is full

rank. Now consider a general rank-d, d⇥ p matrix C, called the factor loading matrix. Using C in

9.5. FACTOR ANALYSIS 223

Euclidean Dissimilarity Correlation Dissimilarity

Figure 9.6: MDS example using the Dengue Fever gene-expression data set based on Euclidean and

correlation dissimilarity metrics (plots generated by c09 MDS.py).

place of W incurs an error (e.g., see the dashed lines in Figure 9.4) and (9.26) needs to be modified

by adding an error term:

X = CZ+ µ+ " . (9.27)

In the Factor Analysismodel, the generative model in (9.27) is treated probabilistically: Z is assumed

to be a zero-mean, uncorrelated Gaussian random vector, Z ⇠ N (0, Ip), called the vector of factors,

and " ⇠ N (0,) is a zero-mean Gaussian error term with arbitrary covariance structure. Clearly,

the generative model is Gaussian, with

X ⇠ N (µ, CCT +) (9.28)

This is a latent-variable model, since the observed dataX are represented in terms of hidden variables

Z. See Figure 9.7 for an illustration.

In practice, the parameters C, µ, and need to be estimated from data, usually via maximum-

likelihood estimation. The special case where = �2Id is known as probabilistic PCA. In the limit

case where � ! 0, Probabilistic PCA reduces to classical PCA. The ML estimator of the parameters

of the probabilistic PCA model can be obtained in closed form. A main interest in probabilistic

PCA resides in applying the Expectation-Maximization (EM) algorithm (see Section 10.2.1) in the

solution of the ML problem. Even though the solution obtained is approximate, it avoids the

diagonalization the covariance matrix required by the closed-form solution, which is computational

224 CHAPTER 9. DIMENSIONALITY REDUCTION

Figure 9.7: Factor Analysis model. The observed data is generated as a liner combination of latent

factors plus noise. In general, the data mean must be added as well (Here the data is assumed to

be zero mean for convenience).

intractable in high-dimensional spaces. In the limit when � ! 0, this EM algorithm computes the

solution of classical PCA. (See the Bibliographical Notes for more details.)

9.6 Bibliographical Notes

The papers in Jain and Zongker [1997]; Kohavi and John [1997]; Kudo and Sklansky [2000] are

well-known references on feature selection.

Fisher’s discriminant can be generalized to c > 2 classes, in which case it extracts a feature vector

of dimensionality c� 1; see Section 3.8.3 of Duda et al. [2001] for the details.

Theorem 9.1 is due to Cover and van Campenhout [1977]. This is Theorem 32.1 in Devroye et al.

[1996], where a proof is given based on a simple discrete distribution with the required proper-

ties. Interestingly, the proof given by Cover and van Campenhout [1977] is based on multivariate

Gaussians instead, which shows that Gaussianity is not a su�cient constraint to avoid exponential

complexity in feature selection.

Branch-and-bound algorithms [Narendra and Fukunaga, 1977; Hamamoto et al., 1990] attempt to

circumvent the exponential complexity of exhaustive feature selection by using monotonicity or

other properties of the class-separability criterion J(A). For example, the Bayes error is monotone

in the sense that A ✓ B) J(B)  J(A). Branch-and-bound algorithms attempt to exploit this

to cut the searches along monotone chains in the space of feature vectors. In some cases, this can

9.6. BIBLIOGRAPHICAL NOTES 225

find the optimal feature vector in polynomial time. However, this does not violate the Cover-Van

Campenhout Theorem, since the worst-case performance of branch-and-bound algorithms is still

exponential. With additional constraints on the distributions, Nilsson et al. [2007] claim to find the

optimal feature set, with the Bayes error as class-separability criterion, in polynomial time

Theorem 9.2 (Toussaint’s Counter-Example) and its proof appear in Toussaint [1971]. It improves

on an earlier example due to Elasho↵et al. [1967], which has the same set-up, but shows only

"⇤(X1, X2) > "⇤(X1, X3). Cover [1974] goes a step further in and gives an example where X1 and

X2 are conditionally independent given Y , "⇤(X1) < "⇤(X2), but "(X1) > "(X2, X 0
2
), where X 0

2
is an

independent realization of X2; i.e., the best individual feature is worse than repeated measurements

of the worst feature.

It seems that the terminology “wrapper” and “filter” feature selection was introduced by John et al.

[1994]. This reference also discusses strongly and weakly relevant features. The XOR problem

example is an example of intrinsically multivariate prediction, discussed in Martins et al. [2008].

Sima et al. [2005a] showed, in an empirical study, that in small-sample cases, simple SFS feature

selection can be as accurate as the much more complex SFFS algorithm, depending on the properties

of the error estimator used in the wrapper search; i.e., superior error estimation compensates for

less computational e↵ort in the search.

The selection bias of cross-validation was demonstrated in Ambroise and McLachlan [2002]. A useful

model for generating synthetic data to investigate feature selection performance was published in

Hua et al. [2009].

The mathematical properties of the PCA transform and several of its variants are covered in detail in

Webb [2002]. Maximum-likelihood estimation of the parameters in Factor Analysis and Probabilistic

PCA, including its EM implementation, is covered in detail in Bishop [2006]. As mentioned in the

text, this generates an EM algorithm for computing the solution of classical PCA as well, which

avoids diagonalization of the covariance matrix; this algorithm can be viewed as iteratively adjusting

the reduced PCA space to the data until the least-squares fit solution is obtained (as can be seen

in Figure 9.4).

The general Karhunen-Loève Transform refers to the expansion of a continuous-parameter stochas-

tic process into a sum of orthogonal functions multiplied by an uncorrelated sequence of random

variables [Stark and Woods, 1986]. The discrete HL transform used in the PCA transform is the

specialization of that for finite-dimensional random vectors.

The MDS discussed in the text is also called metric MDS. In non-metric MDS, instead of trying to

match the dissimilarities in the original and transformed space, one tries to simply to match their

rankings. This would be appropriate in case the magnitudes of the dissimilarities are not important

226 CHAPTER 9. DIMENSIONALITY REDUCTION

but only their relative rankings. The SMACOF algorithm for computation of the MDS transform can

be applied to both metric and nonmetric MDS. See an excellent review of the SMACOF algorithm

in Groenen et al. [2016]. See also De Leeuw and Mair [2009].

9.7 Exercises

9.1. Let X 2 Rd be a feature set of size d. An additional feature X0 2 R is a redundant or

“noisy” feature if there is no improvement in discrimination upon joining X0 to X, i.e., if

"⇤(X, Y) = "⇤(X0, Y), where X0 = (X, X0) 2 Rd+1. Show that a su�cient condition for this

undesirable situation is that X0 be independent of (X, Y).

9.2. Consider the standard Gaussian model in Rp, where the classes are equally likely and the

class-conditional densities are spherical unit-variance Gaussians (i.e.,⌃ i = I, for i = 0, 1).

The model is specified by the class means µ1 = �a and µ0 = ��a, where � > 0 is a separation

parameter and a = (a1, . . . , ap) is a parameter vector. Without loss of generality, assume that

||a|| = 1.

(a) Find the optimal classifier and the optimal error in the original feature space Rp.

(b) Find the Bayes error for a subset X0 = (Xi1 , . . . , Xid) of the original p features in terms

of the corresponding coe�cients a0 = (ai1 , . . . , aid).

(c) If the criterion for feature selection is the Bayes error, how would you select the vector

X0 to obtain the optimal feature set of size d?

9.3. Given data Sn = {(x1, y1), . . . , (xn, yn)}, Fisher’s discriminant seeks the direction vector

w 2 Rd such that the projected data S̃n = {(wTx1, y1), . . . , (wTxn, yn)} is maximally sep-

arated, in the sense that the criterion

J(w) =
|m1 �m0|

2

s2
0
+ s2

1

(9.29)

is maximized, where m0 and m1 are the class-specific sample means of the projected data and

s0 =
nX

i=1

(wTxi �m0)
2Iyi=0 and s1 =

nX

i=1

(wTxi �m1)
2Iyi=1 (9.30)

measure the scatter of the data around m0 and m1, respectively. This is a linear dimensionality

reduction transformation like PCA. But unlike PCA, it takes the labels into account, so it is

supervised. Hence, when reducing dimensionality to p = 1 features, Fisher’s discriminant is

preferable to PCA.

9.7. EXERCISES 227

(a) Show that J(w) in (9.29) can be written as in (9.5).

(b) By using direct di↵erentiation, show that the solution w⇤ must satisfy the so-called

generalized eigenvalue problem:

SBw = �SWw (9.31)

for some � > 0, where SB and SW are defined in (9.6) and (9.7).

Hint: use the vectorial di↵erentiation formula (wTAw)0 = 2Aw.

(c) Assuming that SW is nonsingular, then S�1

W
SBw = �w, i.e., w⇤ is an eigenvector of

matrix S�1

W
SB. Show that w⇤ = ⌃̂W

�1

(µ̂1 � µ̂0) is the eigenvector being sought and the

solution. Furthermore, � = J(w⇤) is the largest eigenvalue of S�1

W
SB (indeed, it is its

only nonzero eigenvalue).

Hint: Use the expansion SB = vvT , where v = µ̂0� µ̂1. Matrix SB is a rank-one matrix,

and thus so is S�1

W
SB. (See Section A2 for a review of basic matrix theory.)

9.4. A feature extraction transformation is lossless if the class-separability criterion is unchanged:

J(X0, Y) = J(X, Y). Assume that J is the Bayes error.

(a) Show that T (X) = ⌘(X) is a lossless transformation T : Rp
! [0, 1].

(b) Show that a transformation T : Rp
! Rd is lossless if there is a (Borel-measurable)

function G : Rd
! R such that

⌘(X) = G(T (X)) with probability 1, (9.32)

i.e., the posterior-probability function depends onX only through T (X). The transformed

feature X0 = T (X) is called a su�cient statistic in this case. An example of su�cient

statistic was seen in Example 2.2.

(c) Use the result in item (b) to find a lossless univariate feature if ⌘(X) = e�c||X||, for some

unknown c > 0. This shows that lossless feature extraction can achieved with only partial

knowledge about the distribution of the problem.

(d) Find a lossless feature vector of size d = 2 if ⌘(X1, X2, X3) = H(X1X2, X2X3), for a fixed

but unknown function H : R3
! R2.

(e) Find a lossless feature vector of size d = 2 if

p(X | Y = 0) = k0 ln(1 + ||X + b0||)

p(X | Y = 1) = k1 ln(1 + ||X � b1||)
(9.33)

are equally-likely class-conditional densities, where k0, k1 > 0 are unknown.

9.5. Verify that the distribution specified in the proof of Toussaint’s Counter-Example (see Theo-

rem 9.2) indeed has the required property.

228 CHAPTER 9. DIMENSIONALITY REDUCTION

9.6. Obtain, by inspection, the first and second PCs Z1 and Z2 as a function ofX = (X1, X2, X3, X4)

and the percentage of variance explained by Z1 and Z2 in the following cases.

(a)

µX =

2

66664

1

2

�1

3

3

77775
and⌃ X =

2

66664

1 0 0 0

0 3 0 0

0 0 5 0

0 0 0 2

3

77775
.

(b)

µX =

2

66664

1

�1

2

3

3

77775
and⌃ X =

2

66664

2 0 0 0

0 4 0 0

0 0 3 0

0 0 0 1

3

77775
.

9.8 Python Assignments

9.7. This computer project applies wrapper feature selection to the Breast Cancer Prognosis gene-

expression data (see Section A8.3) in order to find gene-expression signatures for good progno-

sis, and estimate their accuracy using testing data. The criterion for the search will be simply

the resubstitution error estimate of the classifier designed on each feature set. Divide the

available data into 60% training data and 40% testing data. Using the training data, find the

• top 2 genes using exhaustive search,

• top 3–5 genes using sequential forward search (starting from the feature set in the previous

item),

corresponding to the following classification rules:

• LDA, p = 0.75,

• Linear SVM, C = 10,

• Nonlinear SVM with RBF kernel, C = 10 and gamma set to ‘auto’,

• NN with 5 neurons in one hidden layer with logistic nonlinearities and the lbfgs solver.

Also find these classifiers using all genes (no feature selection). If at any step of feature

selection, two candidate feature sets have the same minimum apparent error, pick the one with

the smallest indices (in “dictionary order”). Generate a 20⇥3 table containing in each row one

of the 20 classifiers, and in the columns the genes found in each case and the resubstitution

and test-set errors of the selected feature set. How do you compare the di↵erent classification

rules? How do you compare the resubstitution and test-set error estimates obtained?

9.8. PYTHON ASSIGNMENTS 229

9.8. This assignment concerns the application of PCA to the soft magnetic alloy data set (see

Section A8.5).

(a) Reproduce the plots in Figure 9.5 by running c09 PCA.py.

(b) Plot the percentage of variance explained by each PC as a function of PC number. This

is called the scree plot. Now plot the cumulative percentage of variance explained by

the PCs as a function of PC number. How many PCs are needed to explain 95% of the

variance?

Coding hint: use the attribute explained variance ratio and the cusum() method.

(c) Print the loading matrix W (this is the matrix of eigenvectors, ordered by PC number

from left to right). The absolute value of the coe�cients indicate the relative importance

of each original variable (row of W) in the corresponding PC (column of W).

(d) Identify which two features contribute the most to the discriminating first PC and plot

the data using these top two features. What can you conclude about the e↵ect of these

two features on the coercivity? This is an application of PCA to feature selection.

9.9. This assignment applies MDS to the dengue fever prognosis data set (see Section A8.2).

(a) Reproduce the plots in Figure 9.6 by running c09 PCA.py.

Coding hint: As of version 0.21.3 of sklearn, the MDS class returns an unnormalized stress

value, which is not very useful. In order to compute the normalized stress in (9.25), the

following “hack” is needed: add the line

stress = np.sqrt(stress / ((disparities.ravel() ** 2).sum() / 2))

before the return statement of function smacof single() in the mds.py file (in a

local installation of the anaconda distribution, this file is in a directory similar to

$HOME/opt/anaconda3/lib/python3.7/site-packages/sklearn/manifold/).

(b) What happens if the data are normalized to have zero mean and unit variance in all

features, as was done in Example 9.3, prior to computation of the MDS? Based on these

results, is it recommended to apply normalization in the MDS case? Contrast this with

the PCA case.

(c) Obtain and plot the 3D MDS plots for both the correlation and the Euclidean dissimi-

larities. What do you observe about the stress values, as compared to the values for the

2D MDS.

(d) Obtain plots of the data set projected on the first and second PCs (applying normaliza-

tion). Are the classes as well separated as in the MDS plots? If not, how do you explain

this?

Chapter 10

Clustering

“The first step in wisdom is to know the things

themselves; this notion consists in having a true

idea of the objects; objects are distinguished and

known by classifying them methodically and

giving them appropriate names.”

–Carl Linnaeus, Systema Naturae, 1735.

In some situations, training data are available without labeling. This could be because of the expense

of labeling the data, or the unavailability of reliable labels, or because the data are perceived to

come from a single group. This is the domain of unsupervised learning. In Chapter 9, we reviewed

unsupervised dimensionality reduction techniques (PCA and MDS). Our interest in the current

chapter is on unsupervised learning to identify the structure of the underlying data distribution in

the original feature space. These techniques can be used to find subgroups (clusters) in the data

and build hierarchical data representations. If label information is available, clustering can be used

to detect previously unknown classes. In this chapter we review the basic non-hierarchical cluster-

ing algorithm, namely, the K-Means Algorithm, followed by Gaussian-Mixture Modeling (GMM),

which can be seen as a probabilistic version of K-Means. Then we consider hierarchical clustering

algorithms and, finally, we describe the Self-Organizing Map (SOM) clustering algorithm.

10.1 K-Means Algorithm

Given data Sn = {X1, . . . ,Xn}, the objective of the K-Means algorithm is to find K cluster centers

µ1, . . . ,µK (K is given) and, for each point Xi, find an assignment to one of the K clusters.

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_

231

10

https://doi.org/10.1007/978-3-030-27656-0_10
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_10&domain=pdf

232 CHAPTER 10. CLUSTERING

Cluster assignment is made by means of vectors r1, . . . , rn where each ri is a vector of size K using

a “one-hot” encoding scheme:

ri = (0, 0, · · · , 1, · · · , 0, 0)T , for i = 1, . . . , n , (10.1)

where ri(k) = 1 if and only if Xi belongs to cluster k, for k = 1, . . . ,K. (Each point can belong to

only one cluster.) For example, with K = 3 and n = 4, we might have r1 = (1, 0, 0), r2 = (0, 0, 1),

r3 = (1, 0, 0), r4 = (0, 1, 0), in which case X1,X3 are assigned to cluster 1, X2 is assigned to cluster

3, while X4 is assigned to cluster 2.

The K-means algorithm seeks the vectors {µi}
n

i=1
and {ri}Kk=1

that minimize a score based on the

normalized sum of distances of all points to their corresponding centers:

J =
1

n

nX

i=1

KX

k=1

ri(k)||Xi � µk||
2 . (10.2)

The solution can be obtained iteratively with two optimizations at each step:

1. Holding the current values {µk}
K

k=1
fixed, find the values {ri}ni=1

that minimize the score J

(“E-Step”).

2. Holding the current values {ri}ni=1
fixed, find the values {µk}

K

k=1
that minimize the score J

(“M-Step”).

The nomenclature “E-step” and “M-step” is due to an analogy with the EM (“Expectation-Maximization”)

algorithm for Gaussian mixtures, to be discussed in the next section.

In the “E-step,” with the current values {µk}
K

k=1
fixed, the values {ri}ni=1

that minimize J can be

found by inspection:

ri(k) =

8
<

:
1, if k = argminj=1,...,K ||Xi � µj ||

2,

0 otherwise.
(10.3)

for i = 1, . . . , n. In other words, we simply assign each point to the closest cluster mean.

In the “M-step,” with the current values {ri}ni=1
fixed, the values {µk}

K

k=1
that minimize J can be

found by simple di↵erentiation:

@J

@µk

= 2
nX

i=1

ri(k)||Xi � µk|| = 0 , (10.4)

which gives

µk =

P
n

i=1
ri(k)XiP

n

i=1
ri(k)

, (10.5)

10.1. K-MEANS ALGORITHM 233

for k = 1, . . . ,K. In other words, we simply assign to µk the mean value of all training points

assigned to cluster k in the previous “E-Step.” The E and M steps should be repeated until there

is no significant change in the score J . The detailed procedure is summarized below.

Algorithm 1 K-Means.

1: Initialize K, ⌧ > 0 and {µ(0)
k }

K
k=1.

2: repeat

3: E-Step: Update cluster assignments:

r(m+1)
i (k) =

8
<

:
1, if k = argminj=1,...,K ||Xi � µ(m)

j ||
2,

0 otherwise.
, for i = 1, . . . , n .

4: M-Step: Update cluster centers:

µ(m+1)
k =

Pn
i=1 r

(m+1)
i (k)Xi

Pn
i=1 r

(m+1)
i (k)

, for k = 1, . . . ,K.

5: Calculate score:

J (m+1) =
1

n

nX

i=1

KX

k=1

r(m+1)
i (k)||Xi � µ(m+1)

k ||
2 .

6: until |J (m+1)
� J (m)

| < ⌧ .

Example 10.1. We apply the K-means algorithm to the soft magnetic alloy data set (see Exam-

ple 9.3 and Section A8.5). To enable visualization of the results, we consider only the iron (Fe) and

Boron (B) atomic features, which were determined to be important in the analysis in Example 9.3,

and take only the first 250 of the 741 points in the data set. The algorithm stops when the abso-

lute di↵erence between consecutive values of J is smaller than 0.005. In this case, the algorithm

stopped after six iterations. We can see the presence of two clusters, which mostly correspond to

high and low magnetic coercivity. Figure 10.1 displays the initial configuration and the results after

the E-step of each iteration. ⇧

One of the issues with the K-means algorithm is the presence of multiple minima in the score function

J . In order to guarantee that a good solution is found, the simplest method is to run the algorithm

multiple times with random initialization of the centers and select the solution with the minimum

score. This is sometimes called the random restart method. As an illustration, Figure 10.2 displays

several solutions achieved with K = 3 on the same data set in Example 10.1, after a fixed number

of 10 iterations and multiple random restarts (In Example 10.1, the solution obtained for the case

K = 2 is already the best one). We can see that the score J can vary considerably, showing the

need for multiple random restarts. Notice also that the same solution can appear multiple times

with di↵erent labelings.

234 CHAPTER 10. CLUSTERING

Initial Configuration Score J

k = 1 k = 2 k = 3

k = 4 k = 5 k = 6

Figure 10.1: K-Means example using the Iron (Fe) and Boron (B) features of the soft magnetic alloy

data set. The top left plot displays the original data and initial means (located at the center of the

circles). The top right plot displays the value of the score J after the E-step of each iteration. The

plots below display the results after the E-step of each iteration; the algorithm converges after 6

iterations (plots generated by c10 Kmeans.py).

We have avoided the issue of the choice of the number of clusters K until now. In practice, this is

a di�cult problem, not unlike choosing the number of features to keep in feature selection or the

number of principal components to use in PCA. One cannot simply vary K and choose the one that

gives the least score J because, just as in feature selection, large K compared to sample size n creates

overfitting and an artificially small J , so that the plot of J against the K is in general monotonically

decreasing. Hence, one needs to look for a small score J while at the same time penalizing for

10.1. K-MEANS ALGORITHM 235

J = 8.2932 J = 8.6386 J = 8.1818

J = 8.2235 J = 8.1818 J = 8.6436

Figure 10.2: K-Means solutions for K = 3 clusters for di↵erent random initializations of the

centers with J score achieved after 10 iterations, using the same data set as in Example 10.1.

Notice that two of the solutions are the same, but with di↵erent labelings (plots generated by

c10 Kmeans rndstart.py).

large K. In practice, a criterion that is often used is to select a value K⇤ corresponding to the first

occurrent of a sharp “elbow” (a large drop followed by stable values) in the plot of J against K.

For other criteria, see the Bibliographical Notes.

Before ending our discussion of the K-means algorithm, we mention a popular variant of it, known

as fuzzy c-means. This is a fuzzy version of the K-means algorithm, where each point is not assigned

to a single cluster, but has instead a fuzzy degree of membership to each cluster. More precisely, each

vector ri can assume nonnegative values such that
P

K

k=1
ri(k) = 1, where the value 0  ri(k)  1

gives the degree of membership of point Xi to cluster k. The algorithm seeks vectors {µi}
n

i=1
and

{ri}Kk=1
that minimize the score

J =
nX

i=1

KX

k=1

ri(k)
s
||Xi � µk||

2 (10.6)

where s � 1 is a parameter that controls the “fuzziness” of the resulting clusters. Solutions can be

obtained by a similar process as the usual K-means algorithm, with E and M steps.

236 CHAPTER 10. CLUSTERING

10.2 Gaussian Mixture Modeling

The K-means algorithm makes no assumption about the distribution of the data. A di↵erent

model-based approach to clustering is to assume a particular parametric shape for the distribution

and estimate the parameters from the data (this is similar to the Parametric Classification Rules in

Chapter 4). The appropriate assumption for clustering is a mixture of probability densities. We will

consider in this section the important particular case of the Gaussian Mixture Model (GMM), using

the Expectation-Maximization algorithm to obtain maximum-likelihood estimates of the parameters.

The GMM for the overall data distribution is:

p(x) =
KX

k=1

⇡k N (x | µk,⌃k) , (10.7)

whereK is the desired number of clusters and ⇡1, . . . ,⇡K are nonnegative numbers, with
P

K

i=1
⇡k = 1,

called the mixing parameters. The mixing parameter ⇡k is simply the a-priori probability that a

given random point X belongs to cluster Ck:

⇡k = P (X 2 Ck) , (10.8)

for k = 1, . . . ,K. Bayes’ theorem allows one to compute the a-posteriori probabilities of cluster

membership given the data:

�k(x) = P (X 2 Ck | X = x)

=
p(X = x | X 2 Ck)P (X 2 Ck)P
K

k=1
p(X = x | X 2 Ck)P (X 2 Ck)

=
⇡kN (x | µk,⌃k)P
K

k=1
⇡kN (x | µk,⌃k)

,
(10.9)

for k = 1, . . . ,K. The key quantity �k(x) > 0 gives the cluster membership of point x in cluster k

(also known in the literature as the “cluster responsibility”). Note that
P

K

k=1
�k(x) = 1, for all

x 2 Rd. Hence, the cluster memberships are nonnegative and add up to one, i.e., they are in

fact probabilities. Indeed, notice the similarity with the posterior probabilities ⌘k(x) = P (Y =

k | X = x) in classification. Just as in classification, “hard” cluster membership can be obtained

by assigning a point x to the cluster k with the largest “soft” cluster membership �k(x). Thus,

traditional clustering can be performed by estimating the cluster memberships {�k(Xn)}ni=1
, for

k = 1, . . . ,K.

To obtain the cluster memberships for the observed data, we need to find estimates of the parameters

{⇡k,µk,⌃k}
K

i=1
. Given independence of the data points, the likelihood function can be written as

p(Sn | {⇡k,µk,⌃k}
K

i=1) =
nY

i=1

p(Xi | {⇡k,µk,⌃k}
K

i=1) =
nY

i=1

KX

k=1

⇡k N (Xi | µk,⌃k)

!
. (10.10)

10.2. GAUSSIAN MIXTURE MODELING 237

Therefore, the log-likelihood function is given by:

ln p(Sn |{⇡k,µk,⌃k}
K

i=1) =
nX

i=1

ln

KX

k=1

⇡k N (Xi |µk,⌃k)

!
, (10.11)

and the maximum-likelihood parameter estimates are determined by:

{⇡̂k, µ̂k, ⌃̂k}
K

i=1 = arg max
{⇡k,µk,⌃k}Ki=1

nX

i=1

ln

KX

k=1

⇡k N (Xi |µk,⌃k)

!
. (10.12)

In the case of a single Gaussian (K = 1), this maximization can be accomplished in closed form,

resulting in the usual sample means and sample covariance matrix estimators (⇡1 = 1 and there

are no mixing parameters to estimate). However, for K � 2, no analytical expressions for the

maximizing parameters are known, and maximization must proceed numerically. The reason is the

presence of the inner summation in (10.11), which prevents us from applying the log to the Gaussian

densities directly. In the next section we examine a well-known numerical approach to solve this

hard maximum-likelihood problem.

10.2.1 Expectation-Maximization Approach

One possibility to maximize the log-likelihood (10.11) is to apply a gradient-descent algorithm. Here

we describe a di↵erent hill-climbing approach, known as the Expectation-Maximization Algorithm,

which implements maximum-likelihood estimation in models with “hidden” variables. The EM

algorithm is an iterative algorithm, which is guaranteed to converge to a local maximum of the

likelihood function (a proof of convergence of the EM algorithm is given in Section A7). As we will

see below, the M-step of the EM algorithm allows us one to “interchange” log and the inner sum in

(10.11), rendering optimization in closed-form possible (for the M step).

First we state the EM procedure in the general case and then specialize it to GMM. Let X denote the

observed training data, and let Z denote hidden variables that are not directly observable, but on

which X depends. Also let ✓ 2 ⇥be a vector of model parameters. Maximum likelihood estimation

attempts to find the value of ✓ that maximizes the log-likelihood function L(✓) = ln p✓(X). The

justification behind the EM algorithm is that the maximization of this incomplete log-likelihood

L(✓) is di�cult; however, the maximization of the complete log-likelihood ln p✓(Z,X) would be easy

(perhaps even yielding a closed-form solution), if only we knew the value of Z. For simplicity, we

will assume that Z is discrete (this will be the case in GMM).

Since the hidden variable Z, and thus the complete likelihood p✓(Z,X), are not directly available,

the EM algorithm prescribes considering instead the function

Q(✓,✓(m)) = E✓(m) [ln p✓(Z,X) | X] =
X

Z

ln p✓(Z,X) p✓(m)(Z | X) (10.13)

238 CHAPTER 10. CLUSTERING

where ✓(m) is the current estimate of ✓. The score in (10.13) is the expected value of p✓(Z,X) with

respect to the conditional distribution of Z given X at the current estimated value ✓(m). Hence, the

unknown hidden variable Z is “averaged out” by the expectation. It is shown in Section A7 that

maximization of (10.13) with respect to ✓,

✓(m+1) = argmax
✓

Q(✓,✓(m)) , (10.14)

necessarily improves the log-likelihood, i.e., L(✓(m+1)) > L(✓(m)), unless one is already at a local

maximum of L(✓), in which case L(✓(m+1)) = L(✓(m)). The EM algorithm corresponds to make

an initial guess ✓ = ✓(0) and then iterating between the steps of computing (10.13) at the current

value of the estimate ✓(m) (known as the “E-step”) and the maximization (10.14) to obtain the next

estimate ✓(m+1). The procedure is summarized below.

Algorithm 2 Expectation-Maximization (EM).

1: Initialize ✓(0) and ⌧ > 0.

2: repeat

3: E-Step: Compute the Q score:

Q(✓,✓(m)) = E✓(m) [ln p✓(Z,X) | X] =
X

Z

ln p✓(Z,X) p✓(m)(Z | X) .

4: M-Step: Update the parameters:

✓(m+1) = argmax
✓

Q(✓,✓(m)) .

5: Calculate the log-likelihood:

L(✓(m+1)) = ln p✓(m+1)(X) .

6: until |L(✓(m+1))� L(✓(m))| < ⌧ .

We describe next how to carry out the estimation of parameters of the Gaussian-Mixture model using

the EM methodology. Let ✓ = {⇡k,µk,⌃k}
K

i=1
be the parameter vector, and let X = {X1, . . . ,Xn}

be the observed data, which is assumed to be independent and identically distributed as in (10.7).

The hidden variables Z = {Z1, . . . ,Zn} here indicate the “true” cluster memberships:

Zi = (0, 0, · · · , 1, · · · , 0, 0) , for i = 1, . . . , n , (10.15)

such that Zi(k) = 1 if Xi belongs to cluster k, for k = 1, . . . ,K (each point can belong to only one

cluster). Comparing this to (10.1), we observe that this is the same one-hot encoding scheme used

in the K-means algorithm.

10.2. GAUSSIAN MIXTURE MODELING 239

The incomplete log-likelihood function is given by (10.11),

L(✓) = ln p✓(X) =
nX

i=1

ln

KX

k=1

⇡k N (Xi | µk,⌃k)

!
. (10.16)

As mentioned previously, due to the presence of the summation, the log does not apply directly

to the Gaussian densities, making the maximization of L(✓) nontrivial. However, the complete

log-likelihood is given by

ln p✓(Z,X) = ln

0

@
nY

i=1

KY

k=1

Zi(k)Y

k

N (Xi | µk,⌃k)
Zi(k)

1

A =
nX

i=1

KX

k=1

Zi(k) ln (⇡k N (Xi | µk,⌃k)).

(10.17)

Part of the “magic” of EM in this case is to allow the interchange of log and summation in (10.17)

in comparison with (10.16). The Q function in (10.13) is computed as follows (E-step):

Q(✓,✓(m)) = E✓(m)

"
nX

i=1

KX

k=1

Zi(k) ln (⇡k N (Xi | µk,⌃k))

����X
#

=
nX

i=1

KX

k=1

E✓(m) [Zi(k) | X] ln (⇡k N (Xi | µk,⌃k)) ,

(10.18)

where
E✓(m) [Zi(k) | X] = E✓(m) [Zi(k) | Xi] = P✓(m) [Zi(k) = 1 | Xi]

= �(m)

k
(Xi) =

⇡(m)

k
N (Xi | µ

(m)

k
,⌃(m)

k
)

P
K

k=1
⇡(m)

k
N (Xi | µ

(m)

k
,⌃(m)

k
)
,

(10.19)

i.e., the cluster membership of point Xi in cluster k under the current value of the parameter

vector ✓(m), for k = 1, . . . ,K and i = 1, . . . , n. Substituting this into (10.18) and recalling that

✓ = {⇡k,µk,⌃k}
K

i=1
leads to:

Q({⇡k,µk,⌃k}
K

i=1, {⇡
(m)

k
,µ(m)

k
,⌃(m)

k
}
K

i=1) =
nX

i=1

KX

k=1

�(m)

k
(Xi) ln (⇡k N (Xi | µk,⌃k)) . (10.20)

The M-step prescribes that

{⇡(m+1)

k
,µ(m+1)

k
,⌃(m+1)

k
}
K

i=1 = argmax
{⇡k,µk,⌃k}Ki=1

Q({⇡k,µk,⌃k}
K

i=1, {⇡
(m)

k
,µ(m)

k
,⌃(m)

k
}
K

i=1). (10.21)

This maximization is straightforward. By di↵erentiation with respect to µk and⌃ �1

k
, we have

@Q(✓,✓(m))

@µk

=
nX

i=1

�(m)

k
(Xi)⌃

�1

k
(Xi � µk) = 0 ,

@Q(✓,✓(m))

@⌃�1

k

= �
1

2

nX

i=1

�(m)

k
(Xi)(⌃k � (Xi � µk)(Xi � µk)

T) = 0 ,

(10.22)

240 CHAPTER 10. CLUSTERING

for k = 1, . . . ,K. Solving this system of equations we obtain

µ(m+1)

k
=

P
n

i=1
�(m)

k
(Xi)Xi

P
n

i=1
�(m)

k
(Xi)

,

⌃(m+1)

k
=

P
n

i=1
�(m)

k
(Xi)(Xi � µ̂(m+1)

k
)(Xi � µ̂(m+1)

k
)T

P
n

i=1
�(m)

k
(Xi)

,

(10.23)

for k = 1, . . . ,K. It can be verified that this stationary point is indeed a maximum point. As for

maximization with respect to ⇡k, we introduce a Lagrange multiplier � for the constraint
P

K

k=1
⇡k =

1 and therefore look for a stationary point ofQ(✓,✓(m))+�(
P

K

k=1
⇡k�1). Di↵erentiating with respect

to ⇡k gives:

@Q(✓,✓(m))

@⇡k
=

nX

i=1

�(m)

k
(Xi)

⇡k
+ � = 0 (10.24)

for k = 1, . . . ,K. Multiplying each of these K equations on both sides by ⇡k (we are assuming

throughout that none of the ⇡k are zero) and adding them together leads to

nX

i=1

KX

k=1

�(m)

k
(Xi) + �

KX

k=1

⇡k = 0) � = �n , (10.25)

where we used that fact that
P

K

k=1
�(m)

k
(Xi) and

P
K

k=1
⇡k are both equal to 1. Substituting � = �n

back into (10.24) and solving that equation leads to

⇡(m+1)

k
=

1

n

nX

i=1

�(m)

k
(Xi) . (10.26)

for k = 1, . . . ,K. This process is repeated until the the log-likelihood L(✓) does not change signifi-

cantly. At this point, hard clustering assignments can be made, if so desired by assigning point Xi

to the cluster k where it has the largest cluster membership. Notice that alternative hard clustering

assignments can be made. For example, the algorithm may refuse to assign a point to any cluster

unless the largest cluster membership exceeds a prespecified threshold. The entire EM procedure is

summarized below.

10.2. GAUSSIAN MIXTURE MODELING 241

Algorithm 3 Clustering using EM and the Gaussian Mixture Model.

1: Initialize K, ⌧ > 0, {⇡(0)
k , µ(0)

k , and⌃ (0)
k }

K
i=1.

2: repeat

3: E-Step: Update cluster memberships:

�(m)
k (Xi) =

⇡(m)
k N (Xi | µ

(m)
k ,⌃(m)

k)
PK

k=1 ⇡
(m)
k N (Xi | µ

(m)
k ,⌃(m)

k)
.

4: M-Step: Re-estimate model parameters:

µ(m+1)
k =

Pn
i=1 �

(m)
k (Xi)Xi

Pn
i=1 �

(m)
k (Xi)

,

⌃(m+1)
k =

Pn
i=1 �

(m)
k (Xi)(Xi � µ̂(m+1)

k)(Xi � µ̂(m+1)
k)T

Pn
i=1 �

(m)
k (Xi)

,

⇡(m+1)
k =

1

n

nX

i=1

�(m)
k (Xi) .

5: Calculate log-likelihood:

L({⇡(m+1)
k ,µ(m+1)

k ,⌃(m+1)
k }

K
i=1) =

nX

i=1

ln

KX

k=1

⇡(m+1)
k N (Xi | µ

(m+1)
k ,⌃(m+1)

k)

!
.

6: until |L({⇡(m+1)
k ,µ(m+1)

k ,⌃(m+1)
k }

K
i=1)� L({⇡(m)

k ,µ(m)
k ,⌃(m)

k }
K
i=1)| < ⌧ .

Example 10.2. We apply the EM algorithm for GMM to the soft magnetic alloy data set, used

in Example 10.1, with K = 2. Figure 10.3 displays the initial configuration, a plot of the log-

likelihood after the E-step of each iteration against iteration number, and a uniform sampling of the

results after the E-step of each iteration. The data points are colored by a quadratic Beziér curve

interpolation of green, red, and blue, where red indicated intermediate values of cluster membership.

Each Gaussian is represented by its 0.5, 1, and 1.5-standard-deviation contours of constant density.

We can see that uncertainty in the clustering, represented by the presence of red points, decreases

at later stages of the fitting procedure. In this example, the absolute di↵erence between consecutive

values of L is required to be less than 5⇥ 10�8 to terminate the algorithm. This very small value is

needed in order to avoid premature termination in the flat stretch of the log-likelihood function. ⇧

An issue with maximum-likelihood estimation, in general, is overfitting. In the case of GMM, it

is possible to generate artificially large values of the log-likelihood if one of the Gaussian densities

“collapses” to one of the data points. To see this, assume that one of the Gaussian means µj

coincides with training point X1. Then this point contributes a term to the log-likelihood of the

242 CHAPTER 10. CLUSTERING

Initial Configuration Log-likelihood

m = 1 m = 8 m = 15

m = 22 m = 29 m = 36

Figure 10.3: Gaussian mixture modeling example using the Iron (Fe) and Boron (B) features of

the soft magnetic alloy data set. The top left plot displays the original data and initial Gaussians.

The top right plot displays the value of the log-likelihood after the E-step of each iteration. The

plots below display the results after the E-step of each iteration. The data points are colored by a

quadratic Beziér curve interpolation of green, red, and blue, where red indicated intermediate values

of cluster membership. The Gaussian are represented by their 0.5, 1, and 1.5-standard-deviation

contours of constant density (plots generated by c10 GMM.py).

form

N (X1 |µj = X1,⌃j) =
1

(2⇡)d/2|⌃j |
1/2

. (10.27)

By letting |⌃̂j | ! 0, one can increase L without bound. In order to avoid that, a sophisticated

10.3. HIERARCHICAL CLUSTERING 243

implementation of the GMM algorithm checks whether any of the cluster covariances is collapsing

to one of the data points and if so, reinitializes the mean and covariance means of that cluster.

10.2.2 Relationship to K-Means

We saw in Example 10.2 that convergence is more complicated and slower than in the case of the

K-means algorithm. This is partly because the K-means algorithm needs to estimate only the

cluster centers, whereas there are many more parameters to be estimated in GMM fitting.

In fact, K-means can be seen as a limiting case of GMM clustering. The relationship is revealed

by considering the case where⌃ k = �2I (spherical covariance matrices). In this case, the cluster

memberships for Xi become:

�k(Xi) =
⇡k exp(�||x� µk||

2/2�2)
P

K

k=1
⇡k exp(�||x� µk||

2/2�2)
, (10.28)

for k = 1, . . . ,K. Let µj be the mean vector closest to Xi. Then it is easy to see that, if one lets

� ! 0, then �j(Xi) ! 1, while all other memberships go to zero. In other words, �k(Xi) ! ri(k),

and cluster assignment is done as in the K-means algorithm. This shows that K-means tends to

look for spherical clusters, while GMM has the added flexibility of being able to detect elongated

elliptical clusters.

Finally, just as in the case of the K-means algorithm, the choice of the number K of Gaussians is

a di�cult model selection question. Increasing K introduces overfitting and artificially large values

of the log-likelihood. Looking for an “elbow” in the plot of the log-likelihood against K is often a

simple and e↵ective solution.

10.3 Hierarchical Clustering

The previous clustering methods produce a fixed assignment of data points to clusters. In addition,

as we discussed at the end of the previous section, they tend to look for spherical or elliptical clusters.

In this section, we discuss hierarchical clustering, which removes both restrictions. Here, di↵erent

clustering results are obtained by adopting an iterative process of cluster creation. In addition, the

shape of the clusters obtained is in principle arbitrary. The process could be

• Agglomerative (Bottom-up): start with each point in a separate cluster and iteratively

merge clusters.

• Divisive (Top-down): start with all the data in a single cluster and iteratively split clusters.

244 CHAPTER 10. CLUSTERING

Here we will focus on agglomerative hierarchical clustering, which is the most common form of

hierarchical clustering. Given two clusters Ci and Cj (these are just disjoint, nonempty sets of data

points), agglomerative hierarchical clustering is based on a pairwise dissimilarity metric d(Ci, Cj).

The algorithm starts with n singleton clusters corresponding to each of the data points, and merges

into a new cluster the two clusters (in this case, points) that are the most similar, i.e., the two

clusters that minimize the given pairwise dissimilarity metric. Next, among the current clusters, the

two most similar ones are merged into a new cluster. The process is repeated until there is a single

cluster containing all data, after n� 1 merging steps. The result of this process is usually presented

as a dendrogram, which is an acyclic tree where each node represents a merge, the leaf nodes are

the individual data points, and the root node is the cluster containing all data.

Typically, the dendrogram is plotted in such a way that the height of each node is equal to the

dissimilarity between the children clusters. The cophenetic distance between two data points is

defined as the height of their lowest common parent node. Cutting the dendrogram at a given

height produces a traditional assignment of points to clusters. Cutting a di↵erent heights produces

di↵erent, nested clusterings. See Figure 10.4 for an illustration.

Naturally, di↵erent dendrograms are produced by di↵erent pairwise cluster dissimilarity metrics.

Let d(x,x0) be a distance metric, e.g., the Euclidean distance or 1� the correlation, between points

x,x0
2 Rd. The most common pairwise cluster dissimilarity metrics used in hierarchical clustering

are:

• Single-Linkage Dissimilarity:

ds(Ci, Cj) = min{d(X,X0) | X 2 Ci,X
0
2 Cj} . (10.29)

• Complete-Linkage Dissimilarity:

ds(Ci, Cj) = max{d(X,X0) | X 2 Ci,X
0
2 Cj} . (10.30)

• Average-Linkage Dissimilarity:

dc(Ci, Cj) =
1

|Ci||Cj |

X

X2Ci

X

X02Cj

d(X,X0) . (10.31)

Comparing the dissimilarities above, we observe that single-linkage is a form of nearest-neighbor

metric, which therefore tends to produce long elongated clusters, as we will see below. This phe-

nomenon is known as chaining. Complete linkage on the other hand is a maximum-distance criterion,

which tends to produce round, compact clusters, as in the case of K-means and GMM clustering.

Average linkage has an intermediate behavior between these two extremes.

10.3. HIERARCHICAL CLUSTERING 245

Figure 10.4: Agglomerative hierarchical clustering. Top: Original data set and two nested clus-

terings. Bottom: Dendrogram; the nested clusterings displayed at the top are obtained by cut-

ting the dendrogram at the heights indicated by the horizontal dashed lines (plots generated by

c10 hclust.py).

Given the sequence of clusters produced in the hierarchical clustering process, and the pairwise

cluster dissimilarities between them, a dendrogram can be produced. Notice that the algorithm

does not really need the original data to construct a dendrogram, but only the matrix of pairwise

distances d(X,X0) between all pairs of data points.

Example 10.3. Here we continue Example 9.4 by applying hierarchical clustering to the dengue

fever prognosis data set. Figure 10.5 displays the dendrograms produced by the single-linkage,

complete-linkage, and average-linkage pairwise dissimilarity metrics based on the correlation distance

between data points. The dissimilarities read on the vertical axis are therefore between 0 and 1,

with largest number for complete linkage and smallest numbers for single linkage. A hard clustering

assignment is obtained by cutting the dendrograms at 85% of the maximum height, which is displayed

as a horizontal dashed line. The obtained clusters are painted with distinct colors. Chaining is

246 CHAPTER 10. CLUSTERING

clearly seen in the single-linkage result, which obtains a single large cluster (and an outlier singleton

cluster). The complete-linkage result, by comparison produces two clearly defined clusters. The

average-linkage result is intermediary between the two. If we compare this to the 2D MDS plot

using the correlation distance in Figure 9.6, we can see that they are essentially in agreement. The

left cluster contains all the DHF cases, plus 4 of the DF cases, and only two of the ND cases. One

of the ND cases, case 199, is only loosely associated with the cluster (as are two of the DHF cases,

125 and 128). The right cluster contains exclusively DF and ND cases, and no DHF cases. This is

in agreement with the MDS plot and the observation made in Example 9.4 that the DF cases are

divided into 2 groups, one of which is very similar to the DHF group in terms of gene expression,

reflecting the di�culty of labeling these diseases reliably, as they are on a spectrum. ⇧

As a final remark, notice that the dendrograms produces a visualization of the structure of the data

in the original high-dimensional space, so in this sense they are similar to dimensionality reduction

methods used to visualize data in 2D or 3D space, such as PCA and MDS. A common mistake

however is to consider that two data points are close in the original space if they are next to each

other in the dendrogram. For instance, the DF 331 and ND 251 cases appear next to each other

in the average-linkage dendrogram in Figure 10.5, but they are in fact quite dissimilar, as their

cophenetic distance is around 0.25, which is nearly 80% of the maximum in the data set (this is

confirmed by the location of these data points in the correlation-metric MDS plot of Figure 9.6).

10.4 Self-Organizing Maps (SOM)

Self-organizing maps (SOM) is a popular alternative to the clustering algorithms discussed previ-

ously. SOM iteratively adapts grid of nodes to the data. The grid is typically two-dimensional and

rectangular, but this is not necessary. At first the nodes of the grid are arbitrarily positioned in the

feature space. Then a data point is selected at random, and the grid node closest to that point is

made to move a certain distance towards it, followed by smaller moves towards it by the neighboring

nodes in the grid. This process is repeated for a large number of iterations (20,000-50,000) until

the grid adapts itself to the data. The data points closest to each node then define the clusters.

The achieved clustering maintains the general structure of the initial grid. See Figure 10.6 for an

illustration. SOM becomes useful as a dimensionality reduction tool when the dimensionality of the

data is larger than that of the map.

We give next a more precise description of the SOM algorithm. Let u1, . . . ,uN be the SOM grid

nodes, and let D(ui,uj) denote the distance between any two nodes ui and uj . Let fk(ui) 2 Rd be

the position to which node ui is mapped in step k. (The initial map f0 is chosen arbitrarily.) Let

X(k) be a randomly-selected data point in step k, and let u(k) be the grid node that maps closest to

10.4. SELF-ORGANIZING MAPS (SOM) 247

Single-Linkage Complete-Linkage

Average-Linkage

Figure 10.5: Hierarchical clustering applied to the Dengue Fever prognosis data set. Dendrograms

produced by the single-linkage, complete-linkage, and average-linkage pairwise dissimilarity metrics

and the correlation distance between data points. A hard clustering assignment is obtained by

cutting the dendrograms at 85% of the maximum height, which is displayed as a horizontal dashed

line. The obtained clusters are indicated by distinct colors. Chaining is clearly seen in the single-

linkage result, while complete linkage produces two clearly defined clusters. The average-linkage

result is intermediary between the two (plots generated by c10 DF hclust.py).

X(k), that is, such that ||fk(u(k))�X(k)
|| is minimum. Then the mapped grid is adjusted by moving

points as follows:

fk+1(ui) = fk(ui) + �(D(ui,u
(k)), k)||fk(ui)�X(k)

|| , (10.32)

248 CHAPTER 10. CLUSTERING

Figure 10.6: Self-organizing map with a 2 ⇥ 3 grid. The grid iteratively adjust itself to the data,

and the clusters are defined as the set of points closest to each node.

for i = 1, . . . , N , where the learning rate � is a decreasing function of both parameters. In other

words, the point ui is moved towards X(k) less when D(ui,u(k)) is large or at later iterations.

A SOM can be seen as a neural network, where the grid nodes u1, . . . ,uN are the neurons, with

weights equal to the coordinates of the mapped points fk(u1), . . . , fk(uN), where each neuron is

constrained to respond similarly to its neighbors. The process of adjusting the mapped points in

(10.32) is akin to network training. This neural network is called a Kohonen network.

10.5 Bibliographical Notes

Well-known book-length treatments of clustering are provided by Jain et al. [1988] and Kaufman

and Rousseeuw [1990]. See also Chapter 10 of Webb [2002] and Section 10.3 of James et al. [2013].

Clustering is also known as vector quantization in the information theory field, where it is used

to achieve data compression (each cluster center providing a prototype for the entire cluster). See

Section 10.5.3 of Webb [2002] for more details. The K-means algorithm was published in Lloyd

[1982], although it had been in use, by Lloyd and others, long before that. The EM algorithm was

originally introduced in Dempster et al. [1977]. See Chapter 3 of McLachlan and Krishnan [1997]

for an excellent review of its theoretical properties.

The idea of hierarchical clustering can be said to go back, in modern times, to the work of Linneaus

on the taxonomy of nature [Linnaeus, 1758]. The idea of agglomerative hierarchical clustering

10.6. EXERCISES 249

using pairwise dissimilarities was proposed in Ward Jr [1963]. Modern phylogeny trees used to

classify living species are examples of hierarchical clustering dendrograms; in the metagenomics

field of Bioinformatics, phylogeny trees are used to organize unknown microbial species, with the

dendrogram leaves being called into operational taxonomic units (OTUs) [Tanaseichuk et al., 2013].

Picking the number of clusters is a di�cult model selection problem in clustering. Two methods used

to do that are the silhouette [Kaufman and Rousseeuw, 1990] and CLEST [Dudoit and Fridlyand,

2002] algorithms. In Zollanvari et al. [2009b], it was found that when the data is bimodal (two true

clusters) then both the silhouette and CLEST give the correct answer, but for larger numbers of

true clusters, CLEST performs better.

For more on the Self-Organizing Map (SOM) algorithm, see Tamayo et al. [1999]. Another applica-

tion of the SOM algorithm to Bioinformatics appears in Zollanvari et al. [2009b].

Unlike in classification and regression, defining clustering error quantitatively is an unsettled prob-

lem. This topic has been generally called the cluster validity in the literature, and it is typically

treated in ad-hoc fashion. In Dougherty and Brun [2004], the problem of cluster validity was ad-

dressed rigorously using the theory of random labeled point processes, which allows the definition

of optimal clustering operators, as well as training and testing of clustering algorithms.

10.6 Exercises

10.1. For the data set below, find all possible solutions of the K-means algorithm (using di↵erent

starting points) for K = 2 and K = 4. What if K = 3?

Hint: look for center positions that are invariant to the E and M steps.

Figure 10.7: Diagram for Problem 10.1

250 CHAPTER 10. CLUSTERING

10.2. Show that the M-step equations for estimating the parameters of the Gaussian-Mixture model

(see Algorithm 3) can be obtained via the following informal optimization process. Assuming

that the cluster memberships {�k(Xi)}ni=1
are known and fixed:

(a) Find the values {µk}
K

k=1
that maximize the log-likelihood L, and plug in current estimates

of other quantities.

Hint: use di↵erentiation.

(b) Using the mean estimates in the previous step, find the values {⌃k}
K

k=1
that maximize

the log-likelihood L, and plug in current estimates of ⇡k.

Hint: use di↵erentiation.

(c) Find the values {⇡k}Kk=1
that maximize the log-likelihood L.

Hint: This necessitates a slightly more complex optimization process than in the previous

two steps, involving Lagrange multipliers, due to the constraints ⇡k � 0 and
P

k
⇡k = 1.

The E-step corresponds simply to updating the cluster membership estimates given the esti-

mates {⇡k,µk,⌃k}
K

i=1
obtained in the M-step.

10.3. Derive the E and M steps of the GMM algorithm under the the constraint that the covariance

matrices must be

(a) Equal to each other.

(b) Spherical but not equal to each other.

(c) Spherical and equal to each other.

10.4. Compute manually the dendrograms corresponding to single-linkage, complete-linkage, and

average-linkage pairwise cluster dissimilarity metrics for the data below. What do you observe

in the comparison among the dendrograms?

Figure 10.8: Diagram for Problem 10.4

10.5. Ward’s Method. Consider a hierarchical clustering method based on a pairwise dissimilarity

metric d(Ci, Cj) defined recursively as follows. If both clusters are singletons, then

d({Xi}, {Xj}) = ||Xi �Xj ||
2 , (10.33)

10.7. PYTHON ASSIGNMENTS 251

that is, the squared Euclidean distance. Otherwise, if Ci was previously obtained by merging

two clusters Ci1 and Ci2, define

d(Ci, Cj) =
|Ci1|+ |Cj |

|Ci|+ |Cj |
d(Ci1, Cj) +

|Ci2|+ |Cj |

|Ci|+ |Cj |
d(Ci2, Cj)�

|Cj |

|Ci|+ |Cj |
d(Ci1, Ci2) , (10.34)

where |C| denotes the number of points in cluster C. Show that this is a minimum variance

criterion, which, at each iteration of the agglomerative process, increases the within-variance

of the clusters by the least amount possible.

10.6. Lance-Williams Algorithms are a broad class of hierarchical clustering algorithms, which are

based on a pairwise dissimilarity metric d(Ci, Cj) that can be defined recursively as follows.

The distances d({Xi}, {Xj}) between all pairs of points are given as input. At a later stage

of the computation, assume that Ci was previously obtained by merging two clusters Ci1 and

Ci2 and define

d(Ci, Cj) = ↵i1 d(Ci1, Cj)+↵i2 d(Ci2, Cj)+� d(Ci1, Ci2)+�|d(Ci1, Cj)�d(Ci2, Cj)| , (10.35)

where ↵i1, ↵i2, �, and � are parameters that may depend on the cluster sizes. Show that

single-linkage, complete-linkage, average-linkage and Ward’s hierarchical clustering methods

are in the family of Lance-Williams algorithms, by giving the values of d({Xi}, {Xj}) and the

parameters ↵i1, ↵i2, �, and �.

10.7 Python Assignments

10.7. This assignment concerns the application of K-means clustering to the soft magnetic alloy

data set.

(a) Reproduce all the plots in Figure 10.1 by running c10 Kmeans.py. What happens if

random initialization of centers is used? Can it a↵ect the results and how?

Note: scikit-learn has a class cluster.Kmeans. However, it is not straightforward to

expose the solutions after the E-step of each iteration, as in Figure 10.1. Hence, the

K-means algorithm is coded from scratch in c10 Kmeans.py.

(b) Color code each point according to “low” coercivity ( 2 A/M), “medium” coercivity

(between 2 A/M and 8 A/M), and “high” coercivity (� 8 A/M), using red, green, and

blue, respectively. Are the two clusters associated with the coercivity values, and how?

(c) Reproduce the plots in Figure 10.2. Now try it with K = 4, 5, 6. What do you observe?

252 CHAPTER 10. CLUSTERING

10.8. This assignment concerns the application of Gaussian mixture modeling clustering to the soft

magnetic alloy data set.

(a) Reproduce all the plots in Figure 10.3 by running c10 GMM.py. What happens if random

initialization of the Gaussians is used? Can it a↵ect the results and how?

Note: Once again, scikit-learn has a class mixture.GMM, but coding the GMM algorithm

directly from scratch is not di�cult, and a↵ords full control of the results.

(b) Extend the result to K = 3, 4, 5, 6. What do you observe?

(c) Modify the code to use spherical and equal covariance matrices. Can you obtain results

that are close to the K-means results if the variances are small?

10.9. Apply hierarchical clustering to to the dengue fever prognosis data set.

(a) Reproduce the plots in Figure 10.5 by running c10 DF hclust.py. What happens if Ward

linkage is used? (See Exercise 10.5.)

(b) Repeat part (a) using the Euclidean distance instead of the correlation. Compare with

the previous results, as well as the 2D MDS plots in Example 9.4.

10.10. Apply hierarchical clustering to the soft magnetic alloy data set.

(a) Deterministically sample the data set by taking rows 0, 12, 24, . . . , 132. Construct den-

drograms for single, average, and complete linkage for the Fe and Si features using the

Euclidean distance. Label the leaves of the dendrograms with “low” (coercivity < 2

A/M), “medium” (2 A/M  coercivity  8 A/M), and “high” (coercivity > 8 A/M).

(b) Cut the dendrograms at 85%, 70% and 60% of the total height and obtain hard clusterings.

What can you infer from this?

Chapter 11

Regression

“The most probable value of the unknown quantities will be

that in which the sum of the squares of the di↵erences between

the actually observed and the computed values multiplied by

numbers that measure the degree of precision is a minimum.”

–Carl Friedrich Gauss, Theoria Motus Corporum Coelestium in

Sectionibus Conicis Solem Ambientium, 1809.

In regression, the objective is to predict the value of a target Y 2 R given a feature vector X 2 Rd,

using sample data and/or information about the distribution of the random vector (X, Y). The

major di↵erence with respect to classification is that in regression, the target Y is a numerical

quantity, rather than a discrete label coding for di↵erent categories. This apparently small di↵erence,

however, makes regression quite di↵erent than classification, both in theory and in practice. For

example, the classification error no longer applies, and there is no single gold standard performance

criterion. Nevertheless, there are enough similarities that much of the material on classification

covered in Chapters 2-9 could be retraced for regression. This is done in the present chapter,

although we have room here to cover only the most relevant topics. The chapter begins with a

discussion of optimal regression, and then examines general properties of sample-based regression.

Next, we discuss regression algorithms: parametric, nonparametric, and function-approximation

regression. We cover in some detail parametric linear least-squares estimation, which is a very

classical and useful tool in regression analysis. The section on nonparametric regression focuses

mainly on Gaussian-process regression, a topic that recently has become quite popular and useful in

many di↵erent areas. The chapter also discusses regression error estimation and variable selection.

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0_

253

11

https://doi.org/10.1007/978-3-030-27656-0_11
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27656-0_11&domain=pdf

254 CHAPTER 11. REGRESSION

11.1 Optimal Regression

In what follows, we assume that (X, Y) is a jointly distributed continuous random vector in Rd+1,

so that the feature-target distribution PX,Y is determined by a density function p(x, y) on Rd+1.

In some regression contexts, especially in classical statistics, X is not random (e.g., a univariate X

could be the months of the year). We focus instead on the case where X is random, which is the

most common case in supervised learning. The following simple result proves to be important in

what follows.

Theorem 11.1. If E[|Y |] < 1, there is a function f : Rd
! R and a random variable " such that

Y = f(X) + " , (11.1)

where E[" | X] = 0.

Proof. Let f(x) = E[Y | X = x], for x 2 Rd, and let " = Y � E[Y | X]. Then Y = f(X) + ", and

E[" | X] = E[Y � E[Y | X] | X] = E[Y | X]� E[Y | X] = 0 . (11.2)

as required. The integrability condition E[|Y |] < 1 guarantees that E[Y | X] is well defined. ⇧

The previous result states that Y can be decomposed into a deterministic function f of X and a

zero-mean additive noise term ". If " is independent of (X, Y), the model is called homoskedastic,

otherwise, it is said to be heteroskedastic.

Example 11.1. Let X be uniformly distributed in the interval [0, 2⇡], f(X) = sin(X), and " | X =

x ⇠ N (0,�2(x)), where

�(x) = A(2⇡x� x2) , x 2 [0, 2⇡], (11.3)

for A > 0. This is a heteroskedastic model, as the noise variance �2 is a function of x. Indeed, it

is easy to check that �2 is zero at the extremes of the interval x = 0 and x = 2⇡, and maximal at

the midpoint x = ⇡. Samples from the model (11.1) for A = 0.02 (low noise) and A = 0.1 (high

noise), with n = 120 points each, are displayed in Figure 11.1. Also displayed are f and 1-standard-

deviation bands. We can see that f is a very good predictor of Y if the noise amplitude A is small,

but not quite if A is large. ⇧

We saw in the previous example that f was a good predictor of Y as long as the noise variance was

not too large. We now examine this issue formally. The conditional regression error of a predictor

f at a point x is given by:

L[f](x) = E[`(Y, f(X)) | X = x] =

Z
`(y, f(x))p(y | x)dy , x 2 Rd , (11.4)

11.1. OPTIMAL REGRESSION 255

Low noise High noise

Figure 11.1: Regression example with noisy sinusoidal data. We observe that the function f is a

very good predictor of Y if the noise intensity is small, but not if it is large (plots generated by

c11 sine.py).

where ` : R ⇥ R ! R is an appropriate loss function, examples of which are the quadratic loss

`(y, f(x)) = (y � f(x))2, the absolute loss `(y, f(x)) = |y � f(x)|, and the Minkowski loss

`(y, f(x)) = |y � f(x)|q, for q > 0.

In order to obtain a criterion that is independent of a specific value of X, the loss function must be

averaged over both X and Y . Accordingly, the (unconditional) regression error of f is defined as:

L[f] =

Z Z
`(y, f(x)) p(x, y) dx dy = E[L[f](X)] . (11.5)

An optimal regression function f⇤ for a given loss function satisfies

f⇤ = argmin
f2F

L[f] , (11.6)

where F is the set of all (Borel-measurable) functions on Rd. The optimal regression error is

L⇤ = L[f⇤].

The most common loss function in regression is the quadratic loss. However, proponents of the

absolute loss point to the fact that it is more immune to outliers than the quadratic loss. The

Minkowski loss is actually a family of functions, which includes the previous two as special cases.

In this chapter, we will focus on the quadratic loss. But it is clear that, unlike in the case of

classification where the classification error is the gold standard, there is no universally accepted

optimality criterion in regression.

The next result, which can be seen as a counterpart of Theorem 2.1, is a fundamental theorem not

only in the theory of regression, but also in signal processing generally.

256 CHAPTER 11. REGRESSION

Theorem 11.2. If E[|Y |] < 1,

f⇤(x) = E[Y | X = x] , x 2 Rd . (11.7)

is an optimal regression function for the quadratic loss.

Proof. We have to show that L[f⇤]  L[f], with the quadratic loss, for any f 2 F . For any x 2 Rd,

L[f](x)� L[f⇤](x) =

Z
((y � f(x))2 � (y � f⇤(x))2) p(y | x) dy

=

Z
((y � f⇤(x) + f⇤(x)� f(x))2 � (y � f⇤(x))2) p(y | x) dy

= (f⇤(x)� f(x))2 � 2(f⇤(x)� f(x))

Z
(y � f⇤(x)) p(y | x) dy

| {z }
=0= (f⇤(x)� f(x))2 � 0 ,

(11.8)

with equality only if f(x) = f⇤(x). Integrating (11.8) over X proves the claim. The integrability

condition E[|Y |] < 1 guarantees that E[Y | X] is well defined. ⇧

With the quadratic loss, L[f] is also known as the mean square error (MSE) of f , and the conditional

mean f⇤ is called a minimum mean-square error (MMSE) regression function. There is not a unique

MMSE regression function, since the value of f⇤ can be changed over a set of probability zero without

changing the value of L[f⇤]. It can similarly be shown that the conditional median is an optimal

regression function for the absolute loss, called a minimum absolute di↵erence (MAD) regression

function, whereas the conditional mode is an optimal regression function for the Minkowski loss with

q ! 0, also known as a maximum-a-posteriori (MAP) regression function.

The proof of Theorem 11.2 also shows that, just as a Bayesian classifier, an MMSE regression

function minimizes L[f](x) at each point x 2 Rd, in addition to minimizing L[f]. From (11.4),

(11.9), and Thm 11.1, the optimal value at each value of x 2 Rd is

L⇤(x) = L[f⇤](x) =

Z
|y � E[Y | X = x]|2p(y | x)dy = Var(Y | X = x)

= Var(f(X) + " | X = x) = Var(" | X = x) .

(11.9)

This is a lower bound on the performance of all regression functions at each given value x 2 Rd.

The optimal regression error is then

L⇤ = L[f⇤] = E[L⇤(X)] = E[Var(Y | X)] = E[Var(" | X)] , (11.10)

which gives a lower bound on the overall performance of all regression functions. In the homoskedas-

tic case, things get significantly simplified. For all x 2 Rd,

L⇤ = L⇤(x) = Var(") = �2 (homoskedastic case). (11.11)

11.2. SAMPLE-BASED REGRESSION 257

Notice also that f⇤ is precisely the function f in the decomposition of Theorem 11.1.

Example 11.2. Continuing Example 11.1 in the light of the previous discussion, we realize that an

MMSE regression function in this problem is f⇤(x) = sin(x), for x 2 [0, 2⇡], with

L⇤(x) = Var(" | X = x) = A(2⇡x� x2) , x 2 [0, 2⇡] . (11.12)

In particular, L⇤(0) = L⇤(2⇡) = 0, so that the problem is deterministic at the extremes of the

interval, while L⇤(x) is maximal, and the prediction problem most di�cult, at the center of the

interval x = ⇡. To obtain a performance metric that is independent of x, we compute

L⇤ = E[L⇤(X)] = A(2⇡E[X]� E[X2]) =
2⇡2A

3
, (11.13)

where we used the facts that E[X] = ⇡ and E[X2] = 4

3
⇡2 for the uniform random variable X on

the interval [0, 2⇡]. We observe that L⇤, and the overall di�culty of prediction, increases (linearly)

with the noise amplitude A. This confirms what was observed in Figure 11.1. ⇧

Finally, notice that the error of any regression function f 2 F can be decomposed as follows:

L[f] = E[(Y � f(X))2] = E[E[(Y � f(X))2 | X]] = E[E[(f⇤(X) + "� f(X))2 | X]]

= E[(f⇤(X)� f(X))2]| {z }
reducible error

+ E[E["2 | X]]| {z }
L⇤

+ 2E[E[" | X]| {z }
=0

(f⇤(X)� f(X))]

= L⇤ + L[f]

(11.14)

The reducible error L[f] = E[(f⇤(X)� f(X))2] is the excess error over the optimal regression; it is

zero if and only if f(X) = f⇤(X) with probability one. Notice that this derivation does not require

homoskedasticity.

11.2 Sample-Based Regression

In practice, the joint feature-target distribution PX,Y is not know, or is only partially known, so

that an optimal regression function f⇤ is not available, and an estimate fn must be estimated from

sample data Sn. The sample-based MSE of fn is

Ln = L[fn] = E[(Y � fn(X))2 | Sn] (11.15)

Since the data are random, fn is random, and so is Ln. Taking expectation produces the data-

independent expected MSE E[Ln].

258 CHAPTER 11. REGRESSION

From (11.14), it follows that

E[Ln] = L⇤ + E[L[fn]]

= L⇤ + E[(f⇤(X)� fn(X))2]

= L⇤ + E[(f⇤(X)� fn(X))]2 + Var(f⇤(X)� fn(X))

= L⇤ + Bias(fn)
2 + Variance(fn)

(11.16)

where the identity E[Z2] = E[Z]2 +Var(Z) was used. The “bias” term has to do with how far fn is

from the optimal regression f⇤ on average; it is zero if E[fn(X)] = f⇤(X) over a region of probability

one. The “variance” term measures the sensitivity of fn is to the data; it is small if fn changes little

with di↵erent data, while it is large if small perturbation in the data create large changes in fn.

From (11.14), we see that both bias and variance should be made as small as possible. However,

small variance usually is associated with large bias, and vice-versa; hence, the bias-variance trade-

o↵. The terminology is borrowed from parameter estimation in classical statistics, where there is a

trade-o↵between bias and variance.

Example 11.3. We illustrate the bias-variance trade-o↵by applying least-squares polynomial re-

gression (this regression algorithm will be described in detail in the next Section) to the data in

Figure 11.1(b). The trade-o↵can be seen in the series of regression results using increasing poly-

nomial order in Figure 11.2. The optimal regression is displayed for reference. At very low order

(0 and 1), we can see that there is underfitting, with large bias. At very high order (24), there

is obvious overfitting and a large variance. The best result seems to be achieved by a polynomial

of order 3. The low optimal order reflects the simplicity of the sinusoidal data, despite the large

variance of the noise. ⇧

11.3 Parametric Regression

Parametric regression is the counterpart of parametric classification, which was discussed in Chap-

ter 4. In parametric regression, the general model in Theorem 11.1 takes the form:

Y = f(X;✓) + " , (11.17)

where ✓ 2 ⇥ ✓ Rm is a parameter vector. It is desirable, but not necessary, for the optimal

regression f⇤ to be a member of the family {f(X;✓) | ✓ 2 ⇥}.

Parametric regression seeks a sample-based estimate ✓̂n such that the plug-in sample-based regres-

sion fn(x) = f(x; ✓̂n) has small regression error. The classical solution to this problem is contained

in the quote by Gauss, in the epigraph to this chapter, which marks the origin of the least-squares re-

gression approach (see the Bibliographical Notes). Given sample data Sn = {(X1, Y1), . . . , (Xn, Yn)},

11.3. PARAMETRIC REGRESSION 259

order = 0 order = 1

order = 3 order = 6

order = 12 order = 24

Figure 11.2: Bias-Variance trade-o↵in regression. The plots display the results of applying least-

squares polynomial regression to the data of Figure 11.1(b), for increasing polynomial order. The

optimal regression is displayed as well. As the order of the polynomial order increases, the bias

decreases, but the variance increases. The best result appears to be obtained with a polynomial of

order 3 (plots generated by c11 poly.py).

260 CHAPTER 11. REGRESSION

the least-squares estimator for parametric regression is given by

✓̂
LS

n = argmin
✓2⇥

nX

i=1

(Yi � f(Xi;✓))
2 (11.18)

The quantity being minimized is known as the residual sum of squares (RSS).

In the next section, we describe the application of the least-squares approach to the most common

form of parametric regression, namely, the linear regression model.

11.3.1 Linear Regression

The basic form of the linear regression model, also known as multivariate linear regression in statis-

tics, (11.17) takes the form:

Y = a0 + a1X1 + · · ·+ adXd + " , (11.19)

with X = (X1, . . . , Xd) 2 Rd and ✓ = (a0, a1, . . . , ad) 2 Rd+1.

The name linear regression is somewhat misleading, since the previous model can be immediately

extended to the basis-function linear regression model:

Y = ✓0�0(X) + ✓1�1(X) + · · ·+ ✓k�M (X) + "

= �(X)T✓ + " ,
(11.20)

where �i : Rd
! R are basis functions and � = (�1, . . . ,�M). Here M +1 is the order of the model

and ✓ = (✓0, ✓1, . . . , ✓M) 2 RM+1. Notice that M 6= d, in general. The basis functions are quite

general and do not need to be linear. The key point is that the model is still linear in the parameters.

The standard linear model in (11.19) is of course a special case, with �0(X) = 1, �1(X) = X1, . . . ,

�(X) = Xd, and ✓i = ai, for i = 1, . . . , d.

An important example of basis-function linear regression is polynomial regression, already encoun-

tered in Example 11.3. In the univariate case, it takes the form:

Y = a0 + a1X + a2X
2 + · · ·+ akX

k + " . (11.21)

Here the basis functions are �0(X) = 1, �1(X) = X, �2(X) = X2, . . . , �k(X) = Xk, and ✓i = ai,

for i = 1, . . . , k.

Next, we describe the application of least-squares parameter estimation to linear regression. Given

11.3. PARAMETRIC REGRESSION 261

the training data Sn = {(X1, Y1), . . . , (Xn, Yn)}, write one equation for each data point:

Y1 = ✓0�0(X1) + ✓1�1(X1) + · · · + ✓k�k(X1) + "1 ,

Y2 = ✓0�0(X2) + ✓1�1(X2) + · · · + ✓k�d(X2) + "2 ,

...

Yn = ✓0�0(Xn) + ✓1�1(Xn) + · · · + ✓k�k(Xn) + "n ,

(11.22)

where we assume that n > k. This can be written in matrix form as

Yn⇥1 = Hn⇥k(X1, . . . ,Xn)✓k⇥1 + "n⇥1 , (11.23)

where Y = (Y1, . . . , Yn), ✓ = (✓1, . . . , ✓k), " = ("1, . . . , "n), and

H(X1, . . . ,Xn) =

2

664

�0(X1) · · · �k(X1)
...

. . .
...

�0(Xn) · · · �k(Xn)

3

775 . (11.24)

For simplicity, we shall omit the dependency on (X1, . . . ,Xn) and write H in the sequel.

From (11.17) and (11.20), we gather that f(X;✓) = �(X)T✓. With f(X) = (f(X1), . . . , f(Xn)), we

can write f(X) = H✓̂. The least-squares estimator in (11.18) can be written as

✓̂
LS

n = argmin
✓2⇥

||Y � f(X)||2

= argmin
✓2⇥

(Y �H✓̂)T (Y �H✓̂) .
(11.25)

Assuming thatH has full column rank (n > k is usually su�cient for that) so thatHTH is invertible,

the solution is unique and given by (see Exercise 11.3):

✓̂
LS

n = HLY = (HTH)�1HTY (11.26)

where HL = (HTH)�1HT is the left-inverse of full-rank matrix H. The least-squares regression

function at point x 2 Rd is the plug-in estimate fLS(x) = �(x)T ✓̂
LS

.

A simple, but important, case that illustrates the general approach is that of univariate linear

regression model:

Y = ✓0 + ✓1X + " , (11.27)

where ✓0 and ✓1 are the intercept and slope, respectively. Given data Sn = {(X1, Y1), . . . , (Xn, Yn)},

we can write (11.23) as 2

64
Y1

· · ·

Yn

3

75 =

2

64
1 X1

· · · · · ·

1 Xn

3

75

"
✓0

✓1

#
+

2

64
"1

· · ·

"n

3

75 (11.28)

262 CHAPTER 11. REGRESSION

Figure 11.3: Linear regression example using the stacking fault energy (SFE) data set. We observe

that SFE tends to increase with an increasing Nickel (Ni) content, but it decreases if the steel alloy

contains more Iron (Fe) (plots generated by c11 SFE.py).

As can be verified by applying (11.26), the least-squares estimators of ✓0 and ✓1 are

✓̂LS0,n = Y � ✓̂LS1,n X ,

✓̂LS1,n =

P
n

i=1
(Xi �X)(Yi � Y)
P

n

i=1
(Xi �X)2

,
(11.29)

where X = 1

n

P
n

i=1
Xi and Y = 1

n

P
n

i=1
Yi. Notice that ✓̂LS

1,n
= SXY /SXX , the ratio of the sample

estimates of Cov(X,Y) and Var(X), respectively. The optimal regression line is given by fLS(x) =

✓̂LS
0,n

+ ✓̂LS
1,n

x, for x 2 R.

Example 11.4. We apply least-squares linear regression to the stacking fault energy (SFE) data set

(see Section A8.4), already used in Chapters 1 and 4 in a classification context. Here no quantization

is applied on the SFE response. After preprocessing the data set, we obtain a data matrix containing

123 sample points and 7 features. Figure 11.3 displays the least-squares regression of the SFE

response on the Fe and Ni atomic features, separately. From these plots, we may conclude that the

stacking fault energy of the steel tends to decrease with a higher Iron (Fe) content, while the behavior

is the opposite in the case of Nickel (Ni). This agrees with what was observed in Example 1.2. ⇧

11.3.2 Gauss-Markov Theorem

Least-squares regression is a purely deterministic procedure, as the error vector " in (11.23) repre-

sents simply a deviation and has no statistical properties. As a result, the least-squares method has

nothing to say about the uncertainty of the fitted model.

11.3. PARAMETRIC REGRESSION 263

However, if the noise " is considered a random vector, then the model becomes stochastic, and one

can talk about the statistical properties of the estimator ✓̂. In this section, we state and prove the

Gauss-Markov Theorem, a classical result (with one of the most impressive names in mathemat-

ics) that shows that, under minimal distributional assumptions, the least-squares estimator in the

previous section is unbiased and minimum-variance estimator over the class of all linear estimators.

First, given the model (11.23), repeated here for convenience,

Yn⇥1 = Hn⇥k ✓k⇥1 + "n⇥1 , (11.30)

where H is a function of X1, . . . ,Xn, as before. We define a linear estimator as ✓̂ = BY, where B is

a k⇥n matrix. The estimator is unbiased if E[✓̂] = ✓. In addition, it is minimum-variance unbiased

if Trace(E[(✓̂ � ✓)(✓̂ � ✓)T]) is minimum among all estimators ✓̂ under consideration. Notice that

E[(✓̂ � ✓)(✓̂ � ✓)T] is the covariance matrix of the unbiased estimator ✓̂, so that its trace is the

sum of the variances of the individual estimators ✓̂i, for i = 1, . . . , k. An estimator that is linear,

unbiased, and minimum variance is known as a best linear unbiased estimator (BLUE).

Theorem 11.3. (Gauss-Markov Theorem) If E["] = 0 and E[""T] = �2In (zero-mean uncorrelated

noise), then the least-squares estimator

✓̂
LS

= (HTH)�1HTY , (11.31)

is best linear unbiased.

Proof. The least-squares estimator is clearly linear, with ✓̂
LS

= B0Y, where B0 = HTH�1HT .

Next we show that ✓̂
LS

is unbiased. First note that

✓̂
LS

= (HTH)�1HTY = (HTH)�1HT (H✓ + ")

= (HTH)�1(HTH)✓ + (HTH)�1HT"

= ✓ +B0"

(11.32)

Hence, E[✓̂
LS

] = E[✓ + B0"] = ✓, given the assumption that E["] = 0. Now consider an linear

estimator ✓̂ = BY. If this estimator is to be unbiased, then the expectation

E[✓̂] = E[BY] = E[B(H✓ + ")] = BH✓ (11.33)

must equal ✓, so a linear estimator ✓ = BY is unbiased if and only BH = I. Next note that,

following the same derivation as in (11.32), we have ✓̂ � ✓ = B". Hence, the covariance matrix of

the unbiased estimator ✓̂ = BY is

E[(✓̂ � ✓)(✓̂ � ✓)T] = E[B""TBT] = BE[""T]BT = �2BBT , (11.34)

264 CHAPTER 11. REGRESSION

from the assumption that E[""T] = �2I. Using the fact that BH = I, by unbiasedness, and the

definition of B0, it is easy to verify that:

B0B
T

0 = B0B
T = B0B

T = (HTH)�1 . (11.35)

Hence, we can write

BBT = BBT + 2B0B
T

0 �B0B
T
�BBT

0

= B0B
T

0 + (B �B0)(B �B0)
T .

(11.36)

Using now the fact that Trace(AAT) � 0 with equality only if A ⌘ 0, we obtain Trace(BBT) �

Trace(B0BT

0
), with equality only if B = B0, proving the claim. ⇧

The Gauss-Markov Theorem makes minimal distributional assumptions, namely, that the noise " is

zero-mean and uncorrelated (there is even an essentially distribution-free version where " is allowed

to be correlated, see Exercise 11.5). If one is willing to assume further that the noise " is Gaussian,

then we will be able to show next that the least-squares estimator is not only BLUE, but also the

maximum-likelihood solution to the model.

Assume that " ⇠ N (0,�2In) (zero-mean, uncorrelated, Gaussian noise). Then, the conditional

distribution of Y given X1, . . . ,Xn is:

Y = H✓ + " ⇠ N (H✓,�2In) (11.37)

With fixed � and Ŷi = (H✓)i, for i = 1, . . . , n, we can write the conditional likelihood function for

this model as

L(✓) = p(Y | ✓,X1, . . . ,Xn) =
nY

i=1

1
p
2⇡�

exp

�
(Yi � Ŷi)2

2�2

!
, (11.38)

which leads to the log-likelihood

lnL(✓) = const �

nX

i=1

(Yi � Ŷi)2

2�2
. (11.39)

For fixed �, maximizing this log-likelihood is equivalent to minimizing the sum of squares
P

n

i=1
(Yi�

Ŷi)2, and the MLE and least-squares estimators are the same.

To find the MLE of �, one needs to maximize the likelihood

L(�2) = p(Y | �2, ✓̂
LS

,X1, . . . ,Xn) =
nY

i=1

1
p
2⇡�

exp

�
(Yi � Ŷ LS

i
)2

2�2

!
, (11.40)

where Ŷ LS

i
= (H✓̂

LS

)i, for i = 1, . . . , n, are the values predicted by the least-squares (and MLE)

regression. It can be shown that (11.40) is maximized at

�̂2MLE =
1

n

nX

i=1

(Yi � Ŷ LS

i)2 (11.41)

11.3. PARAMETRIC REGRESSION 265

The right hand side is just the normalized RSS. Therefore, to obtain an MLE estimate of the noise

variance, one need only divide the RSS by the number of data points.

Even though ✓LS is unbiased (as shown by the Gauss-Markov Theorem), the MLE estimator �̂2
MLE

is not: it can be shown that, for a linear model with k parameters,

E[�̂2MLE] =
n� k

n
�2 (11.42)

(however, this is still asymptotically unbiased, which is a property of all MLEs). To obtain an

unbiased estimator, it is common in practice to use:

�̂2unbiased =
n

n� k
�̂2MLE =

1

n� k

nX

i=1

(Yi � Ŷi)
2 =

RSS

n� k
. (11.43)

For example, for regression with a line, one would estimate the error variance by RSS/(n�2). Unless

n is quite small, the estimators (11.41) and (11.43) yield very similar values.

Example 11.5. Continuing Example 11.4, the previous results state that an unbiased estimates of

the noise variances are 21162.86/(211� 2) = 101.26 17865.18/(211� 2) = 85.48 for regressing SFE

on Fe and Ni, respectively. This would correspond to standard deviations of roughly of 10.06 and

9.25, respectively. ⇧

11.3.3 Penalized Least Squares

In some cases, it is desirable to introduce constraints on the coe�cients of parametric regression

models in order to avoid overfitting. This is called penalized least squares or ridge regression.

In ridge regression, one adds a penalty term to the least-squares criterion,

✓̂
RIDGE

n = argmin
✓2⇥

||Y �H✓||2 + �||✓||2 (11.44)

where � > 0 is a tunable parameter. The penalty term �||✓||2 forces the parameter vector to have

small magnitude. In statistics, this process is called shrinkage. The solution to the minimization

problem in (11.44) is given by (see Exercise 11.3):

✓̂
RIDGE

n = (HTH + �I)�1HTY (11.45)

Notice that this adds � > 0 to each eigenvalue of HTH, making this matrix better conditioned and

the solution more stable. Of course, the case � = 0 reduces to ordinary least-squares regression.

The larger � is, the closer to zero the regression coe�cients are forced to be. However, they do not

quite become zero. In Section 11.7.3, we discuss alternative penalized least squares techniques that

can drive the regression coe�cients to zero, producing a sparse solution.

266 CHAPTER 11. REGRESSION

order = 6 order = 12

Figure 11.4: Ridge regression example. Polynomials of degree 6 and 12 are fitted to the data of

Figure 11.1(b). Larger values of � produce “flatter” curves, corresponding to the shrinkage of the

polynomial coe�cients to zero. The optimal regression is displayed as a dashed blue curve (plots

generated by c11 poly ridge.py).

Example 11.6. Figure 11.4 displays the ridge regression curves obtained by fitting polynomials of

degree 6 and 12 to the data in Figure 11.1(b), for three di↵erent values of �, including � = 0 (no

regularization), for comparison purposes. The optimal regression is also displayed for reference. We

can observe that larger values of � produce “flatter” curves, corresponding to the shrinkage of the

polynomial coe�cients to zero. ⇧

11.4 Nonparametric Regression

Let us recall the general model for regression, introduced in Theorem 11.1:

Y = f(X) + " . (11.46)

As as done in Chapter 5 for classification, we can change the inference perspective by attempting

to estimate the function f directly, rather than relying on a parametric model and plugging in

parameter estimates. Alternatively, one may want to try the estimate the optimal MMSE regression

f⇤(x) = E[Y | X = x]. In either case, the idea is to apply smoothing to the training data, as

was the case in nonparametric classification. In this Section we consider two widely methods for

nonparametric regression: one very classical, based on kernel smoothing, and the other a more

modern approach using Bayesian inference and Gaussian processes.

11.4. NONPARAMETRIC REGRESSION 267

11.4.1 Kernel Regression

As defined in Section 5.4, a kernel is a nonnegative function K : Rd
! R, and a radial-basis function

(RBF) kernel is a monotonically decreasing function of ||x||. Several examples of kernels were given

in that section.

Given data Sn = {(X1, Y1), . . . , (Xn, Yn)}, consider the following kernel estimates of the joint density

p(x, y) and the marginal density p(x):

pn(x, y) =
1

n

nX

i=1

Kh(x�Xi)Kh(y � Yi) ,

pn(x) =
1

n

nX

i=1

Kh(x�Xi) ,

(11.47)

where h is the kernel bandwidth. (It may be illustrative to compare pn(x, y) to the estimate p⇧n(x, y)

in (7.37), for the case Y 2 {0, 1}.) By defining pn(y | x) = pn(x, y)/pn(x), one can define a

nonparametric estimator of the optimal MMSE regression f⇤(x) = E[Y | X = x]:

fn(x) = En[Y | X = x] =

Z
ypn(y | x)dy =

Z
y
pn(x, y

pn(x)
dy

=

Z
y

P
n

i=1
Kh(x�Xi)Kh(y � Yi)P

n

i=1
Kh(x�Xi)

dy

=

P
n

i=1
Kh(x�Xi)

R
yKh(y � Yi)dyP

n

i=1
Kh(x�Xi)

=

P
n

i=1
Kh(x�Xi)YiP

n

i=1
Kh(x�Xi)

(11.48)

where
R
yKh(y� Yi)dy = Yi follows from the RBF assumption. This estimator is also known as the

Nadaraya-Watson kernel regression estimator.

11.4.2 Gaussian Process Regression

The Gaussian process approach to nonparametric regression performs Bayesian inference directly on

the space of functions f using a Gaussian stochastic process prior. Although derived in a completely

di↵erent way, Gaussian process regression is a kernel approach, which is related to the Nadaraya-

Watson kernel regression estimator of the previous section (see Exercise 11.8).

A stochastic process is an ensemble of real-valued random functions {f(x, ⇠);x 2 Rd, ⇠ 2 S}, where

S is a sample space in a probability space (S,F , P). For each fixed ⇠ 2 S, f(x, ⇠) is an ordinary

function of x, called a sample function of the process. Likewise, for each fixed x 2 Rd, f(x, ⇠)

268 CHAPTER 11. REGRESSION

is a random variable. A stochastic process is completely characterized by the distributions of the

random vectors f = [f(x1), . . . , f(xk)] for all finite sets of points x1, . . . ,xk 2 Rd, k � 1. If all such

random vectors have multivariate Gaussian distributions, then the stochastic process is a Gaussian

process. Due to the nature of the multivariate Gaussian distribution, a Gaussian stochastic process

depends only on the mean function

m(x) = E[f(x)] , x 2 Rd, (11.49)

and the covariance function of Gaussian process or kernel

k(x,x0) = E[f(x)f(x0)]�m(x)m(x0) , x,x0
2 Rd. (11.50)

We may thus denote a GP by f(x) ⇠ GP(m(x), k(x,x0).

A stochastic process is called stationary if the distribution of f = [f(x1), . . . , f(xk)] is the same as

that of fu = [f(x1+u), . . . , f(xk+u)], for all u 2 Rd and finite sets of points x1, . . . ,xk 2 Rd, k � 1.

That is, the finite distributions of the process are all translation-invariant. The covariance function of

a stationary process can only be a function of x0
�x0 (see Exercise 11.6). By analogy, a a covariance

function is called stationary if it is a function only of x � x0. Notice that having a stationary

covariance function does not make a stochastic process stationary (it is only a necessary condition).

The variance function v(x) = k(x,x) is the variance of each random variable f(x), for x 2 Rd. If

the covariance function is stationary, then the variance function is constant: v(x) = �2
k
= k(x,x),

for any x 2 Rd. Finally, a stationary covariance function is isotropic if it is a function only of

||x� x0
||. By using the general fact that k(x,x0) = k(x0,x) we can see that, in the univariate case,

a stationary covariance function is automatically isotropic.

Two important examples of isotropic stationary covariance functions are the squared exponential or

“Gaussian”

kSE(x,x
0) = �2

k
exp

✓
�
||x� x||2

2`2

◆
, (11.51)

and the absolute exponential

kAE(x,x
0) = �2

k
exp

✓
�
||x� x0

||

`

◆
, (11.52)

where in both cases, ` is the process length-scale. In the univariate case, the absolute exponential is

the double-exponential covariance function k(⌧) = �2
k
exp(�|⌧ |/`), with ⌧ = x� x0, hence the name

“absolute exponential.” The Gaussian and absolute exponential kernels can be seen as extremes in

a family of isotropic stationary Matérn covariance functions:

k⌫MAT(x,x
0) = �2

k

21�⌫

�(⌫)

 p
2⌫ ||x� x0

||

`

!
⌫

K⌫

 p
2⌫ ||x� x0

||

`

!
, (11.53)

11.4. NONPARAMETRIC REGRESSION 269

Figure 11.5: Univariate kernels used in Gaussian Process regression (plots generated by

c11 GPkern.py).

where ⌫ > 0 is the order of the kernel, andK⌫ is the incomplete Bessel function of the second kind. It

is possible to show that ⌫ = 1/2 leads to the absolute exponential kernel, while ⌫ � 1 approximates

very closely the Gaussian kernel (in fact, it converges to the Gaussian kernel as ⌫ ! 1). Two other

cases of interest in Gaussian process regression, for which (11.53) takes a simple form, are the case

⌫ = 3/2:

k⌫=3/2

MAT
(x,x0) = �2

k

1 +

p
3 ||x� x0

||

`

!
exp

�

p
3 ||x� x0

||

`

!
(11.54)

and ⌫ = 5/2:

k⌫=5/2

MAT
(x,x0) = �2

k

1 +

p
5 ||x� x0

||

`
+

5 ||x� x0
||
2

3`2

!
exp

�

p
5 ||x� x0

||

`

!
. (11.55)

These covariance functions are plotted in Figure 11.5, in the univariate case.

Example 11.7. Sample functions of zero-mean, unit variance Gaussian processes for the squared

exponential, Matérn (⌫ = 3/2), and absolute exponential kernels, with �2
k
= 1 and di↵erent length-

scales `, are displayed in Figure 11.6. We can observe that the length scale ` controls the horizontal

scale of the sample functions (the variance �2
k
controls the vertical scale). More importantly, we

can see that the covariance function determines the smoothness of the sample functions, with the

Gaussian kernel producing smooth functions and the absolute exponential kernel producing rough

ones, while the Matérn kernel produces an intermediate result. ⇧

The reason for the di↵erent smoothness properties produced by the di↵erent kernels in Figure 11.6

can actually be seen in the plot of the covariance functions in Figure 11.5. First, we observe in

that plot that the Gaussian kernel produces the largest correlation at all distances x� x0, while the

270 CHAPTER 11. REGRESSION

Squared Exponential, ` = 0.25 Squared Exponential, ` = 1 Squared Exponential, ` = 4

Matérn, ⌫ = 1.5, ` = 0.25 Matérn, ⌫ = 1.5, ` = 1 Matérn, ⌫ = 1.5, ` = 4

Absolute Exponential, ` = 0.25 Absolute Exponential, ` = 1 Absolute Exponential, ` = 4

Figure 11.6: Sample functions from unit-variance, zero-mean Gaussian processes. The constant

mean and variance functions are also displayed (plots generated by c11 GPsamp.py).

absolute exponential kernel produces the smallest, and the di↵erence is more accentuated at short

distances. If neighboring values f(x) and f(x0) are more correlated, then the sample functions are

more likely to be smooth. Second, though this is a sophisticated point that would get us too far

afield to describe precisely (see the Bibliographical Notes), the average (in the mean-square sense)

continuity and di↵erentiability of a general stochastic process has to do with the continuity and

di↵erentiability of the covariance function k(x,x0) at the values x = x0. For a stationary kernel,

this means continuity and di↵erentiability at the origin x�x0 = 0. The Gaussian kernel is infinitely

11.4. NONPARAMETRIC REGRESSION 271

di↵erentiable at the origin, and as a consequence the associated process is infinitely di↵erentiable

everywhere in the mean-square sense, leading to very smooth sample functions. On the other hand,

the absolute exponential kernel is not di↵erentiable at all at the origin, so that the associated process

is not mean-square di↵erentiable anywhere, leading to very rough sample functions. It can be shown

that a stochastic process with the Matérn covariance function of order ⌫ is mean-square di↵erentiable

d⌫e � 1 times, producing an intermediate behavior; e.g. the Gaussian processes with ⌫ = 3/2 and

⌫ = 5/2 are once and twice di↵erentiable, respectively, in the mean-square sense.

In practice, sample functions from a Gaussian process, such as the ones displayed in Figure 11.6 are

simulated by picking a uniformly-spaced finite set of testing points

X⇤ = (x⇤
1, . . . ,x

⇤
m) , (11.56)

drawing a sample f⇤ = (f(x⇤
1
), . . . , f(x⇤

m)) from the multivariate Gaussian distribution

f⇤ ⇠ N (m(X⇤),K(X⇤, X⇤)) , (11.57)

where

m(X⇤) = (m(x⇤
1), . . . ,m(x⇤

m))T , (11.58)

and

K(X⇤, X⇤) =

2

66664

k(x⇤
1
,x⇤

1
) k(x⇤

1
,x⇤

2
) · · · k(x⇤

1
,x⇤

m)

k(x⇤
2
,x⇤

1
) k(x⇤

2
,x⇤

2
) · · · k(x⇤

2
,x⇤

m)
...

...
. . .

...

k(x⇤
m,x⇤

1
) k(x⇤

m,x⇤
2
) · · · k(x⇤

m,x⇤
m)

3

77775
. (11.59)

and then applying linear interpolation (connecting the dots with lines). The underlying point is

that, although in Gaussian process regression we are talking about a stochastic process defined on

Euclidean space Rd, in practice we deal only with a finite number of multivariate Gaussian random

vectors.

The previous discussion about simulation segues naturally into the real objective of Gaussian process

regression, which is to use training observations to predict the value of the unknown function f

at a given arbitrary set of test points. Consider a set of training points X = (x1, . . . ,xn) and

corresponding set of responses Y = f + ", where f = (f(x1), . . . , f(xn)) and " = ("1, . . . , "n). We

will consider here only the homoskedastic zero-mean Gaussian noise case, where " ⇠ N (0,�2I) and

N is independent of X. (One should be careful not to confuse the kernel variance �2
k
with the

noise variance �2.) Given testing points X⇤ = (x⇤
1
, . . . ,x⇤

m), we would like to predict the value of

f⇤ = (f(x⇤
1
), . . . , f(x⇤

m)) in a way that is consistent with the training data. The Bayesian paradigm

is to determine the posterior distribution, i.e., the conditional distribution of the vector f⇤ given

Y, and then make inferences on that — in this context, the prior distribution of f⇤ is described by

(11.57)–(11.59). For Gaussian processes, this conditional distribution is Gaussian and can be written

272 CHAPTER 11. REGRESSION

in closed form, as follows. If X and X0 are jointly distributed Gaussian vectors, with multivariate

distribution "
X

X0

#
⇠ N

 "
µX

µ0
X

#
,

"
A C

CT B

#!
, (11.60)

then X | X0 has a multivariate Gaussian distribution, given by

X | X0
⇠ N

�
µX + CB�1(X0

� µX0), A� CB�1CT
�
. (11.61)

Now, the joint distribution of the vectors Y and f(X⇤) is multivariate Gaussian:

"
f⇤

Y

#
⇠ N

0,

"
K(X⇤, X⇤) K(X⇤, X)

K(X⇤, X)T K(X,X) + �2I

#!
(11.62)

where K(X⇤, X⇤) is given by (11.59),

K(X⇤, X) =

2

66664

k(x⇤
1
,x1) k(x⇤

1
,x2) · · · k(x⇤

1
,xn)

k(x⇤
2
,x1) k(x⇤

2
,x2) · · · k(x⇤

2
,xn)

...
...

. . .
...

k(x⇤
m,x1) k(x⇤

m,x2) · · · k(x⇤
m,xn)

3

77775
, (11.63)

and

K(X,X) =

2

66664

k(x1,x1) k(x1,x2) · · · k(x1,xn)

k(x2,x1) k(x2,x2) · · · k(x2,xn)
...

...
. . .

...

k(xn,x1) k(xn,x2) · · · k(xn,xn)

3

77775
. (11.64)

Applying (11.61), we gather that the posterior distribution is

f⇤ | Y ⇠ N (f̄⇤,Var(f⇤)) , (11.65)

with posterior mean vector and posterior covariance matrix given by

f̄⇤ = K(X⇤, X)[K(X,X)�1 + �2In]
�1Y

Var(f⇤) = K(X⇤, X⇤)�K(X⇤, X)[K(X,X) + �2I]�1K(X,X⇤)
(11.66)

Clearly, even if the prior Gaussian process is zero mean and has a stationary covariance function,

this is no longer the case, in general, for the posterior Gaussian process.

In Gaussian process regression, we estimate the value of f⇤ at the test points by the conditional

mean f̄⇤, and the conditional regression error at each test point by the corresponding element in

the diagonal of Var(f⇤). Notice that, in practice, �2 is rarely known, so the value used in (11.66)

becomes a parameter �2p to be selected. This is all that is required for estimating the value of the

unknown f at the given set of test points. However, if desired, an estimate of the entire function f

11.4. NONPARAMETRIC REGRESSION 273

can be obtained by interpolating the conditional mean values (and the conditional variance values)

over a dense set of test points. In the univariate case, this can be done by joining the estimated

values with lines, as was done when simulating sample functions from the prior in Figure 11.6. In

a multivariate setting, more advanced interpolation methods are required.

Example 11.8. We apply Gaussian process regression to the first 10 points of the data in Fig-

ure 11.1(b). Figure 11.7 displays the results of fitting a GP using the squared exponential, Matérn

(⌫ = 3/2), and absolute exponential kernels, under di↵erent length scales (same values as in Exam-

ple 11.7). In all cases, �2
k
= 0.3 and �2p = 0.1. The training data is represented by red circles, while

the estimated regression is represented by a black solid curve, which is obtained by linear interpola-

tion of the posterior mean f̄⇤ over a dense test point mesh. The optimal regression is displayed for

reference. A one standard-deviation confidence band is displayed, the boundaries of which are ob-

tained by linear interpolation of f̄⇤ ±
p

Var(f⇤) over the test point mesh. We observe that ` = 0.25

undersmooths the data, while ` = 4 oversmooths it, with ` = 1 producing the best results. As

expected, the confidence bands tend to be tighter near the training points and wider over intervals

without data, particularly if there is not enough smoothing. The best result is achieved by RBF

kernel with the intermediate length scale, ` = 1, in which case the GP regression line follows the

optimal sinusoid even in areas without data. The regression produced by the other kernels are too

jagged and not appropriate for this problem, where the optimal regression is smooth. It is illustrative

to compare these results, obtained using only 10 points, to those obtained in Figures 11.2 and 11.4. ⇧

In the previous example, the parameters �2
k
, `, and �2p were set in ad-hoc fashion. The problem of how

to select these parameters in a principled way is a model selection question (see Section 11.8). Next,

we describe a popular model selection method for GP regression, which seeks the parameter values

that maximize the so-called marginal likelihood. The latter is Bayesian terminology for the condi-

tional distribution p(Y | X,✓), where ✓ = (�2p,�
2

k
, `) is the vector of hyperparameters. In general,

obtaining the marginal likelihood requires a complex computation, but in the case of the Gaussian

process model, it can be obtained immediately from (11.62): p(Y | X,✓) = N (0,K(X,X) + �2I).

The log-likelihood is thus given by:

ln p(Y | X,✓) = �
1

2
YT (K(X,X) + �2I)�1y �

1

2
ln |K(X,X) + �2I|�

n

2
ln 2⇡ . (11.67)

The various terms in the right-hand side of (11.67) have model selection interpretations: the first one

represents the empirical fit to the data, the second one is a complexity penalty term, while the last

term is a normalization constant. Numerical maximization of (11.67) by gradient descent produces

the required value of the hyperparameters (with the usual caveat about the need for multiple random

restarts to deal with local maxima).

274 CHAPTER 11. REGRESSION

Squared Exponential, ` = 0.25 Squared Exponential, ` = 1 Squared Exponential, ` = 4

Matérn, ⌫ = 1.5, ` = 0.25 Matérn, ⌫ = 1.5, ` = 1 Matérn, ⌫ = 1.5, ` = 4

Absolute Exponential, ` = 0.25 Absolute Exponential, ` = 1 Absolute Exponential, ` = 4

Figure 11.7: Gaussian process regression example. In all cases, �2
k
= 0.3 and �2p = 0.1. The training

data is represented by red circles, the estimated regression is represented by a black solid curve, and

a one standard-deviation confidence band is displayed as well. The optimal regression is displayed

as a dashed blue curve. Smoothness of the regression line decreases from the Gaussian kernel at

the top to the exponential kernel at the bottom. The confidence bands are tighter around the

training points and wider away from them. The best result is achieved by the RBF kernel with the

intermediate length scale, ` = 1, when the GP regression line follows the optimal sinusoid even in

areas where the training data set is very sparse (plots generated by c11 GPfit.py).

11.5. FUNCTION-APPROXIMATION REGRESSION 275

Squared Exponential Matérn, ⌫ = 1.5 Absolute Exponential

Figure 11.8: Gaussian process regression results for the same data and kernels in Figure 11.7, but

using hyperparameter values selected by maximization of the marginal likelihood (plots generated

by c11 GPfitML.py).

Example 11.9. Maximization of the marginal likelihood for the same data and kernels used in Ex-

ample 11.8 produces the following values: �2
k
= 0.63, ` = 1.39,�2p = 0.53 for the squared exponential

kernel, �2
k
= 0.65, ` = 1.51,�2p = 0.53 for the Matérm kernel, and �2

k
= 0.74, ` = 1.45,�2p = 0.45 for

the absolute exponential kernel. The corresponding regression results are displayed in Figure 11.8.

We observe that the estimated length scale values are all very close to the intermediate length scale

` = 1, in Example 11.8, and therefore the plots in Figure 11.8 resemble those in the middle column

of Figure 11.7. The results achieved by the squared exponential and Matérn kernel are very similar,

but not identical. ⇧

11.5 Function-Approximation Regression

Most of the classification rules discussed in Chapter 6 can be easily adapted to regression. For

example, by simply removing the output threshold nonlinearity, one gets a neural network regressor.

The error criterion can be the square di↵erence between network output and the training point

response, and training proceeds as before.

In the case of CART, the modification is also very simple. Node splitting proceeds as before, but

this time each node is assigned the average response of the training points inside it. The best

splits selected for each node are those that minimize the RSS between the average response and the

training responses in the children nodes. As in the case of classification, overfitting is quite common,

which may be avoided by the use of regularization techniques, such as stopped splitting or pruning.

Random forest regression can be obtained by perturbing the data and averaging the results, as in

the case of classification. Perturbation may be applied to both X and Y .

276 CHAPTER 11. REGRESSION

depth = 1 depth = 2

depth = 3 depth = 4

Figure 11.9: CART Regression example. Underfitting occurs at small depths, while overfitting is

visible at large depths. The optimal regression is displayed as a dashed blue curve (plots generated

by c11 CART.py).

Example 11.10. We apply CART regression to to the first 10 points of the data in Figure 11.1(b).

A simple regularization method is applied, which consists of limiting the maximum depth of the

tree. Figure 11.9 displays the results, for maximum depths from 1 to 4. The optimal regression

is displayed for reference. We can see clear underfitting at small depths and overfitting at large

depths. ⇧

The extension of SVMs to regression is less straightforward. We briefly describe the idea next. The

same idea of margin reappears, but now the points are supposed to be within a margin around the

regression line. Slack variables are associated to outliers that break the margin criterion. As in the

case of classification, only support vectors (margin and outlier vectors) determine regression curve.

Nonlinear regression can be achieved by using the kernel trick, as before.

11.6. ERROR ESTIMATION 277

11.6 Error Estimation

A theory of regression error estimation, similar to the one for classification in Chapter 7, can be

developed. Here we only outline the main aspects of regression error estimation.

Given a test sample Sm = {(Xt

i
, Y t

i
); i = 1, . . . ,m}, which is not used in training the regression

function fn, we can define a test-set MSE estimator by

L̂n,m =
1

m

mX

i=1

(Y t

i � fn(X
t

i))
2 . (11.68)

Clearly, this test-set error estimator is unbiased in the sense that

E[L̂n,m | Sn] = Ln . (11.69)

from which it follows that E[L̂n,m] = E[Ln]. From (11.69) and the Law of Large Numbers (see The-

orem A.12) we also have that, given the training data Sn, L̂n,m ! Ln with probability 1 as m ! 1,

regardless of the feature-label distribution.

As before, satisfactory performance of the test-set estimator depends on having both n and m

su�ciently large. If that is not the case, then MSE estimation must proceed on the training data

Sn only. The resubstitution estimator is

L̂n =
1

n

nX

i=1

(Yi � fn(Xi)
2 . (11.70)

This is simply the (normalized) RSS of the previous sections. As in the case of classification, the

RSS tends to be optimistically biased, and more so for more “flexible” algorithms. Another issue

is that, unlike in the case of classification, the RSS is not bounded in the interval [0, 1]. A popular

alternative is the R2 statistic, which is always between 0 and 1. First, define the following estimator

of Y without using X:

Ȳ =
1

n

nX

i=1

Yi . (11.71)

The RSS of this estimator is

TSS =
nX

i=1

(Yi � Ȳ)2, (11.72)

where TSS stands for total sum of squares. The R2 statistic is the relative improvement in RSS by

using X to predict Y over no using it:

R2 =
TSS� RSS

TSS
= 1�

RSS

TSS
. (11.73)

This is also called, in some contexts, the coe�cient of determination.

278 CHAPTER 11. REGRESSION

Resampling estimators of the MSE, such as cross-validation and bootstrap, can also be easily defined.

As in the case of classification, subsamples of the training data are used to fit the regression, and

the remaining data are used to form a test error. The process is repeated several times and the

results are averaged.

11.7 Variable Selection

Just as in the case of classification, dimensionality reduction (see Chapter 9) is needed for improving

prediction accuracy and reducing computational costs. Here we focus on variable (feature) selection

as the most common form of dimensionality reduction in regression There are three main ways

to perform variable selection in regression: wrapper search, statistical testing of coe�cients, and

sparsification methods.

11.7.1 Wrapper Search

Wrapper search algorithms in regression are entirely analogous to their classification counterparts.

First some empirical criterion is defined, e.g., the resubstitution estimate (RSS) or the R2 score,

both defined in the previous section (In fact, minimizing the RSS is equivalent to maximizing R2, as

can be easily checked). The best feature of a given a size, according to the selected criterion, can be

searched for exhaustively or greedily. In the latter case, sequential forward/backward and floating

searches can be employed, just as in the case of classification.

However, if one does not know the optimal number of features, which is usually the case, and tries

to perform wrapper selection to find it, one will usually end up with an overfit model with all

variables. This is because the R2 score will typically only increase if more variables are added. The

most common way to avoid this issue is to employ the adjusted R2 statistic:

AdjustedR2 = 1�
RSS/(n� d� 1)

TSS/(n� 1)
(11.74)

This will penalize models with too many variables. Notice that this is not unlike structural risk min-

imization and other complexity penalization methods mentioned in Chapter 8. Another penalized

criterion for regression is Mallows’ Cp. In the case of a least-squares regression, this is given by

Cp =
RSS

n
+

2d

n
�̂2 . (11.75)

where �̂2 is the MLE variance estimator in (11.41).

11.8. MODEL SELECTION 279

11.7.2 Statistical Testing

Statistical testing of regression coe�cients is the standard approach in classical statistics. For

example, in the generalized linear model of (11.20), one can test the hypothesis that each coe�cient

✓i is nonzero, for i = 1, . . . , k, and discard those for which the null hypothesis cannot be rejected.

Stepwise search algorithms, including backward elimination, are common. This approach has some

issues in complex models with many parameters, due to the issue of multiple testing. Statistical

testing provides a counterpart to filter selection in classification.

11.7.3 LASSO and Elastic Net

Sparsification methods in parametric regression seek to shrink the model coe�cients to zero, gen-

erating sparse feature vectors that contain a small number of nonzero elements. Recall that ridge

regression for parametric models, discussed in Section 11.3.3, performs shrinkage, but the coe�cients

will usually not decrease all the way to zero. If one replaces the L2 norm in (11.44) by the L1 norm,

on obtains the LASSO (Least Absolute Shrinkage and Selection Operator) estimator:

✓̂
LASSO

n = argmin
✓2⇥

||Y �H✓||2 + �||✓||1 (11.76)

where ||✓̂||1 = |✓̂1| + · · · + |✓̂k| is the L1 norm of ✓̂. LASSO, unlike ridge regression, can drive

coe�cient values to zero.

Elastic Net is another kind of penalized least-squares estimator, which combines both L1 and L2

penalty terms

✓̂
ENet

n = argmin
✓2⇥

||Y �H✓||2 + �1||✓̂||1 + �2||✓̂||
2 , (11.77)

where �1,�2 > 0, and thus produces a result that is intermediate between ridge regression and

LASSO.

11.8 Model Selection

Just as in classification, one is often faced with selecting the values of free parameters in regression

algorithms. Examples include the order of polynomial regression, the parameter � in ridge regression,

the bandwidth in kernel regression, and the kernel hyperparameters in Gaussian process regression,

as well as the dimensionality (number of variables) in the model.

The simplest approach is to perform a grid search minimizing the residual sum of the squares of the

regression, i.e., the empirical error on the training data. As in the case of minimizing the empirical

280 CHAPTER 11. REGRESSION

error in classification, this approach will work if the ratio of complexity to sample size is small,

where complexity includes the number of parameters, the flexibility of the regression model, and

the dimensionality of the problem. Otherwise, overfitting and poor performance on future data are

likely to occur.

If the ratio complexity to sample size is not favorable, some sort of complexity penalization must be

considered. This topic was already discussed in Section 11.7.1, where minimization of the adjusted

R2 score and Mallow’s Cp were proposed for choosing the number of variables for dimensionality

reduction (which is also a model selection problem). Additional complexity penalization methods

include minimizing the Akaike information criterion (AIC):

AIC =
1

n�̂2
(RSS + 2d�̂2) (11.78)

and the Bayesian information criterion (BIC):

BIC =
1

n�̂2
(RSS + ln(n)d�̂2) (11.79)

where �̂2 is the MLE variance estimator in (11.41) and d is the number of parameters in the linear

model (11.20), which coincides with the number of variables in the multivariate linear regression

model (11.19). Notice that in the cases considered here, AIC and Mallow’s Cp are linearly related.

There is a theory of Structural Risk Minimization for regression. Consider a nested sequence {Sk}

of spaces of real-valued functions associated with di↵erent regression algorithms, for k = 1, . . . , N .

Furthermore, assume that te VC dimensions VSk are finite for k = 1, . . . , N . SRM proceeds by

selecting the class (algorithm) Sk⇤ with the smallest value of the regression error bound

MSESk 
RSSSk

n

1�

s
VSk

n

✓
1� ln

VSk

n

◆
+

lnn

2n

!�1

(11.80)

where the bound is set to zero if negative. (Contrast this with the SRM procedure for classification

in Section 8.3.3). Notice that the ratio between VC dimension and sample size features prominently,

as was the case in classification. A small ratio helps make the bound in (11.80) smaller and is thus

favored. The problem of estimating the VC dimension of a set of real-valued functions can be

challenging, just as it is in the case of a set of indicator functions in classification. However, for the

general linear model in (11.20), the VC dimension is finite and equal to M + 1.

Finally, as in classification, looking for the first local minimum RSS on a validation set and mini-

mizing the cross-validated RSS are also used in model selection for regression.

11.9. BIBLIOGRAPHICAL NOTES 281

11.9 Bibliographical Notes

The invention of both regression and the least-squares method (and some might say, statistical

inference) is credited to Gauss — although Legendre published it first — who developed it in

order to predict the position of planetary bodies with great accuracy on a nightly basis, using only

incomplete and noisy observations [Stigler, 1981]. Before Gauss, Kepler had developed his Laws

of Planetary Motion using an empirical ad-hoc approach, while Newton was able to establish all

of Kepler’s laws of planetary motions mechanistically, using only his Law of Universal Gravitation.

Gauss appears to have been the first to notice, at the beginning of the 19th century, the limitation

in these models: they were inaccurate, due to the influence of unobserved variables, and did not

deal in a principled way with the irreducible uncertainty introduced by noise in the measurements.

Much of the literature on regression, especially in statistics, focuses on the multivariate linear

regression model of (11.19). The classical statistics view of regression is summarized in Chapters

11 and 12 of Casella and Berger [2002]. The derivations of (11.41) and (11.42) for regression with a

line can be found in Section 11.3 of the latter reference.

For a detailed discussion of the bias-variance decomposition in regression, see James et al. [2013].

Figure 11.2 is similar to Figure 1.4 in Bishop [2006].

Our proof of the Gauss-Markov Theorem follows that in Section 6.6 of Stark and Woods [1986].

The RSS is the empirical quadratic-loss error on the training data, and hence least-squares estimation

is an empirical risk minimization (ERM) approach, similar to the ERM approach to classification,

discussed in Exercise 8.5.

Excellent references on stochastic processes from an Engineering perspective are Jazwinski [2007]

and Stark and Woods [1986]. In these references, mean-square continuity and di↵erentiability of

stochastic processes, and their relationship to the covariance function, are described in very read-

able fashion. It important to note that stochastic continuity and di↵erentiability, while providing

a general indication of smoothness, cannot guarantee that the sample functions are continuous

and di↵erentiable in all cases. A classic counter-example is a↵orded by discrete-valued stochastic

processes with exponentially-distributed transition times between the values — e.g., any continuous-

time Markov Chain, such as the Poisson process [Ross, 1995]. Such processes are continuous with

probability one and in the mean-square sense at each point, but none of their sample functions

is continuous at all points. What stochastic continuity and di↵erentiability guarantee, roughly, is

that are no “fixed” points at which the sample functions are discontinuous or nondi↵erentiable with

positive probability. Thus the discontinuities of a Poisson process are “spread out” finely.

282 CHAPTER 11. REGRESSION

The standard reference on Gaussian Process regression is Rasmussen and Williams [2006]. Our

discussion of that topic is based mostly on that reference, being also informed by Section 6.4 of

Bishop. Despite the recent surge of interest, GP regression is an old subject. For instance. in the

geostatistics literature, Gaussian process regression is known as Kriging [Cressie, 1991; Stein, 2012].

In the latter reference, Stein argues that the extreme smoothness of the sample functions produced

by the squared-exponential kernel is unrealistic in natural processes, which lends support to the use

of the Matérn kernel of appropriate order (usually ⌫ = 3/2 or ⌫ = 5/2, as larger values tend to

produce results very similar to the squared-exponential kernel).

For a detailed account of the SVM algorithm for regression, see Section 7.2.1 of Bishop [2006].

The LASSO and the Elastic Net were introduced in Tibshirani [1996] and Zou and Hastie [2005],

respectively.

Mallow’s Cp method appeared in Mallows [1973]. There is some variance in the literature about

the definitions of Mallow’s CP, AIC, and BIC; the definitions adopted here are the ones in James

et al. [2013].

The VC theory for regression, including the VC dimension of functions and complexity penalization,

is covered in detail in Vapnik [1998]. For a readable review of the model selection problem in

regression, including the VC theory, see Cherkassky and Ma [2003]. The theory of structural risk

minimization (SRM) for regression, including the derivation of (11.80), is found in Cherkassky et al.

[1999].

11.10 Exercises

11.1. Suppose that the optimal regression is sought in a subset of functions G, which does not

necessarily contain the optimal quadratic-loss regression f⇤(x) = E[Y | X = x]:

f⇤
G = argmin

f2G
L[f] = argmin

f2G

Z
(y � f(x))2p(x, y) dxdy . (11.81)

Show that f⇤
G

minimizes the reducible error in (11.14), i.e., the L2 distance to f⇤ among all

functions f 2 G, that is,

f⇤
G = argmin

f2G
E[(f⇤(X)� f(X))2] . (11.82)

Hint: follow steps similar to those in the proof of Theorem 11.2.

11.2. Let (X,Y) be jointly Gaussian with E[X] = µX , Var(X) = �2
X
, E[Y] = µY , Var(Y) = �2

Y
.

Also let ⇢ be the correlation coe�cient between X and Y .

11.10. EXERCISES 283

(a) Show that the optimal MMSE regression is a line f⇤(x) = ✓0 + ✓1x, with parameters

✓0 = µY � ✓1µX and ✓1 = ⇢
�Y
�X

. (11.83)

(b) Show that the conditional and unconditional optimal regression errors are

L⇤(x) = L⇤ = �2Y (1� ⇢2) (11.84)

regardless of the value of x.

(c) Show that least-squares regression is consistent in this case, in the sense that ✓̂LS
0,n

! ✓0

and ✓̂LS
1,n

! ✓1 in probability as n ! 1.

(d) Plot the optimal regression line for the case �x = �y, µx = 0, fixed µy and a few values

of ⇢. What do you observe as the correlation ⇢ changes? What happens for the case

⇢ = 0?

11.3. For the general linear model (11.23), with invertible HTH:

(a) Show that the least-squares estimator for the general linear model is unique and given

by (11.26).

Hint: Di↵erentiate the quadratic function (11.25) and set the derivative to zero. Use the

vectorial di↵erentiation formulas:

@

@u
aTu = a and

@

@u
uY Au = 2Au. (11.85)

(b) Show that the ridge estimator for the general linear model is unique and given by (11.45)

Hint: Modify the derivation in the previous item.

11.4. (Regression with a line through the origin.) Given data Sn = {(X1, Y1), . . . , (Xn, Yn)}, derive

the least-squares estimator of the slope in the univariate model

Y = ✓X + " . (11.86)

Hint: Follow similar steps as in the derivation of (11.29).

11.5. (Gauss-Markov Theorem for correlated noise.) Consider the linear model Y = H✓+", where

H is full rank. Extend Theorem 11.3 by showing that if E["] = 0 and E[""T] = K, where K

is a symmetric positive-definite matrix, then the estimator

✓̂ = (HTK�1H)�1HTK�1Y (11.87)

is best linear unbiased.

284 CHAPTER 11. REGRESSION

11.6. Show that if a stochastic process is stationary, then its mean function m(x) is constant and its

covariance function k(x,x0) is only a function of x� x0. A process with only these properties

is called wide-sense stationary.

11.7. In Gaussian process regression, if the responses can be assumed to be noiseless, i.e., Y = f =

(f(x1), . . . , f(xn)), the inference is based on the conditional distribution f⇤ | f . Derive the

posterior mean and variance functions for this case. What happens if the test data is equal to

the training data, i.e., X⇤ = X?

11.8. Verify that the Nadaraya-Watson kernel regression estimator in (11.48) can be written as a

finite linear combination of kernels:

fn(x) =
nX

i=1

an,iKh(x�Xi) , (11.88)

where the coe�cients an,i are a function of the training data Sn = {(X1, Y1), . . . , (Xn, Yn)}.

Now show that the GP regression estimator in (11.66) evaluated at a single test point x can

be written similarly:

f̄⇤(x) =
nX

i=1

bn,ik(x,Xi) . (11.89)

Obtain an expression for bn,i in terms of k(·, ·), �2p, and the training data Sn.

11.9. Show that Akaike’s Information Criterion for regression can be written as:

AIC =
1 + d/n

1� d/n
RSS. (11.90)

In this form, the AIC is also known as the final prediction error (FPE) [Akaike, 1970]

11.11 Python Assignments

11.10. Regarding the regression functions in Figures 11.2, 11.4, 11.7, 11.8, and 11.9.

(a) Rank the regression functions according normalized RSS. What do you observe?

(b) Use numerical integration to rank the regression functions according to reducible error

L[f] = E[(f⇤(X)� f(X))2]. What do you observe?

(c) The reducible error for the polynomial regressions in Figures 11.2 and 11.4 can be com-

puted analytically in terms of the regression coe�cients. Compare the numerical and

analytical results for these regression functions.

Hint: run the python code for each figure to obtain the regression functions.

11.11. PYTHON ASSIGNMENTS 285

11.11. Apply linear regression to the stacking fault energy (SFE) data set.

(a) Modify c11 SFE.py to fit a univariate linear regression model (with intercept) separately

to each of the seven variables remaining after preprocessing (two of these were already

done in Example 11.4. List the fitted coe�cients, the normalized RSS, and the R2 statistic

for each model. Which one of the seven variables is the best predictor of SFE, according

to R2? Plot the SFE response against each of the seven variables, with regression lines

superimposed. How do you interpret these results?

(b) Perform multivariate linear regression with a wrapper search (for 1 to 5 variables) using

the R2 statistic as the search criterion. List the normalized RSS, the R2 statistic, and

the adjusted R2 statistic for each model. Which would be the most predictive model

according to adjusted R2? How do you compare these results with those of item (a)?

11.12. Apply penalized least-squares multivariate linear regression to the SFE data set.

(a) Apply ridge regression to the entire data matrix, with regularization parameter � =

50, 30, 15, 7, 3, 1, 0.30, 0.10, 0.03, 0.01. Do not apply any normalization or scaling to the

data. List the regression coe�cients for each value of �.

(b) The “coe�cient path” plot displays the values of each coe�cient in a penalized least-

squares multivariate linear regression as a function of the regularization parameter. Ob-

tain the coe�cient path plots for ridge regression and for the LASSO. Verify that the

LASSO produces sparse solutions while ridge regression does not. Which atomic features

produce the last two nonzero coe�cients in the LASSO coe�cient path? Does this agree

with the results in Assignment 11.11?

(c) With � = 50, the LASSO should produce an empty model (all coe�cients equal to zero,

and the intercept equal to the mean SFE), while with � = 30, the lasso should produce

a model with only one predictor. Plot the SFE response against this predictor with

LASSO-regressed line and the corresponding ordinary regressed line superimposed. How

do you interpret these results?

11.13. Apply Gaussian process regression to the SFE data set.

(a) Plot the posterior mean function with a one standard deviation confidence band, as in

Figures 11.7 and 11.8, for the squared exponential, Matérn (⌫ = 1.5), and absolute

exponential kernels, with hyperparameters obtained by maximization of the conditional

likelihood.

(b) Obtain the RSS and the best value of the conditional likelihood in each case, and compare

the results.

286 CHAPTER 11. REGRESSION

11.14. Ordinary least-squares regression minimizes the sum of the squared vertical distances of each

point (xi, yi) to their vertical projection (x0
i
, y0

i
) on the regression line. This assignment concerns

the regression line that minimizes the sum of the squared distances of each point to their

horizontal and orthogonal projections (x00
i
, y00

i
) and (x̄i, ȳi), as in the figure below.

(a) Using (11.29) only (no new derivation is necessary), determine the ✓0 and ✓1 parameters

that minimize the sum of squared distances to the horizontal projections.

Hint: Reason about the roles of X and Y .

(b) Apply this “horizontal least-squares” regression to the SFE data in Problem 11.10. Plot

the results of regressing SFE on each of the seven filtered atomic features and record the

residual sums of squares in each case. What do you observe?

(c) Determine the ✓0 and ✓1 parameters that minimize the sum of squared distances to the

orthogonal projections.

Hint: Determine each orthogonal distance as a function of xi, yi, ✓0 and ✓1 using basic

geometry. Find the value of ✓0 by comparison to the ordinary regression case, then find

✓1 using univariate optimization.

(d) Apply this “orthogonal least-squares” regression to the data in Figure 11.3. Plot the

results of regressing SFE on each of the seven filtered atomic features and record the

residual sums of squares in each case. What do you observe?

(e) It can be shown that the orthogonal regression line always lies between the vertical and

horizontal ones. Confirm this by plotting all three regression lines in the same plot for

each of the seven atomic features of the filtered stacking fault energy data set.

Appendix

A1 Probability Theory

The modern formulation of probability theory is due to Kolmogorov [1933]. In that 60-page mono-

graph, Kolmogorov introduced the notion of probability spaces, the axiomatic definition of probabil-

ity, the modern definition of random variables, and more. For an excellent review of Kolmogorov’s

fundamental contribution, see Nualart [2004]. In this Appendix, we review concepts of probability

theory at the graduate level, including many concepts that are needed in the book. The language

of measure theory is used, although measure-theoretical concepts are only needed in the book in

the starred additional topics sections. For excellent book-length treatments of probability theory,

the reader is referred to Billingsley [1995], Chung [1974], Loève [1977], Cramér [1999], and Rosen-

thal [2006], while a thorough elementary non-measure-theoretical introduction is provided by Ross

[1994].

A1.1 Sample Space and Events

A sample space S is the set of all outcomes of an experiment. A �-algebra is a collection F of subsets

of S that is closed under complementation, (countable) intersection, and (countable) union. Each

set E in F is called an event. Hence, complementation of events are events, and (countable) unions

and intersections of events are events.

Event E is said to occur if it contains the outcome of the experiment. Whenever E ✓ F for two

events E and F , the occurrence of E implies the occurrence of F . The complement event Ec is an

event, which occurs i↵(if and only if) E does not occur. The union E [F is an event, which occurs

i↵ E, F , or both E and F occur. On the other hand, the intersection E \ F is also an event, which

occurs i↵both E and F occur. Finally, if E \F = ; (the latter is called the impossible event), then

E or F may occur but not both.

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0

287

https://doi.org/10.1007/978-3-030-27656-0

288 APPENDIX A. APPENDIX

For example, if the experiment consists of flipping two coins, then

S = {(H,H), (H,T), (T,H), (T, T)} . (A.1)

In this case, the �-algebra contains all subsets of S (any subset of S is an event); e.g., event E that

the first coin lands tails is: E = {(T,H), (T, T)}. Its complement Ec is the event that the first coin

lands heads: Ec = {(H,H), (H,T)}. The union of these two events is the entire sample space S:

one or the other must occur. The intersection is the impossible event: the coin cannot land both

heads and tails on the first flip.

If on the other hand, the experiment consists in measuring the lifetime of a lightbulb, then

S = {t 2 R | t � 0} . (A.2)

Here, for reasons that will be described later, it is not desirable to consider all possible subsets in S

as events. Instead, we consider the smallest �-algebra that contains all intervals in S; this is called

the Borel �-algebra in S, and the events in it are called Borel sets; e.g., the event that the lightbulb

will fail at or earlier than t time units is the Borel set E = [0, t]. The entire sample space is the

countable union
S1

t=1
Et, where {Et; t = 1, 2, . . .} is called an increasing sequence of events. Borel

sets can be quite complicated (e.g., the famous Cantor set is a Borel set). There are sets of real

numbers that are not Borel sets, but these are quite exotic and of no real interest. Generalizing,

the Borel �-algebra B
d of Rd is the smallest �-algebra of subsets of Rd that contains all rectangular

volumes in Rd. If d = 1, we write B
1 = B.

Limiting events are defined as follows. Given any sequence {En;n = 1, 2, . . .} of events, the lim sup

is defined as:

lim sup
n!1

En =
1\

n=1

1[

i=n

Ei . (A.3)

We can see that lim supn!1En occurs i↵ En occurs for an infinite number of n, that is, En occurs

infinitely often. This event is also denoted by [En i.o.]. On the other hand, the lim inf is defined as:

lim inf
n!1

En =
1[

n=1

1\

i=n

Ei . (A.4)

We can see that lim infn!1En occurs i↵ En occurs for all but a finite number of n, that is, En

eventually occurs for all n. Clearly, lim infn!1En ✓ lim supn!1En. If the two limiting events

coincide, then we define

lim
n!1

En = lim inf
n!1

En = lim sup
n!1

En . (A.5)

Notice that, if E1 ✓ E2 ✓ . . . (an increasing sequence), then

lim
n!1

En =
1[

n=1

En , (A.6)

A1. PROBABILITY THEORY 289

whereas, if E1 ◆ E2 ◆ . . . (a decreasing sequence), then

lim
n!1

En =
1\

n=1

En . (A.7)

A measurable space (S,F) is a pair consisting of a set S and a �-algebra defined on it. For example,

(Rd,Bd) is the standard Borel-measurable space. A measurable function between two measurable

spaces (S,F) and (T,G) is defined to be a mapping f : S ! T such that for every E 2 G, the

pre-image

f�1(E) = {x 2 S | f(x) 2 E} (A.8)

belongs to F . A function f : Rd
! Rk is said to be Borel-measurable if it is a measurable function

between (Rd,Bd) and (Rk,Bk). A Borel-measurable function is a very general function. For our

purposes, it can be considered to be an arbitrary function. In this book, all functions (including

classifiers and regressions) are assumed to be Borel-measurable.

A1.2 Probability Measure

A measure on (S,F) is a real-valued function µ defined on each E 2 F such that

A1. 0  µ(E)  1 ,

A2. µ(;) = 0 ,

A3. Given any sequence {En;n = 1, 2, . . .} in F such that Ei \ Ej = ; for all i 6= j,

µ

 1[

i=1

Ei

!
=

1X

i=1

µ(Ei) (�-additivity) . (A.9)

The triple (S,F , µ) is called a measure space. A probability measure P is a measure such that

P (S) = 1. A probability space is a triple (S,F , P), consisting of a sample space S, a �-algebra F

containing all the events of interest, and a probability measure P . A probability space is a model for

a stochastic experiment; the properties of the latter are completely determined once a probability

space is specified.

Lebesgue measure on (Rd,Bd) is a measure � that agrees with the usual definition of length of

intervals in R, �([a, b]) = b � a, area of rectangles in R2, �([a, b] ⇥ [c, d]) = (b � a)(d � c), and

so on for higher-dimensional spaces, and uniquely extends it to complicated (Borel) sets. Notice

that �({x}) = 0, for all x 2 Rd, since a point has no spatial extension (it follows that it makes

no di↵erence whether intervals and rectangles are open, closed, or half-open). By �-additivity,

290 APPENDIX A. APPENDIX

any countable subset of Rd has Lebesgue measure zero, and there are uncountable sets that have

Lebesgue measure zero as well (e.g., the Cantor set in R). Sets of Lebesgue measure zero are very

sparse; any property that holds in Rd outside of such a set is said to hold almost everywhere (a.e.).

The measure space (Rd,Bd,�) provides the standard setting for mathematical analysis.

Lebesgue measure restricted to ([0, 1],B0), where B0 is the �-algebra containing all Borel subsets

of [0, 1], is a probability measure, since �([0, 1]) = 1. The probability space ([0, 1],B0.�) provides

a model for the familiar uniform distribution on [0, 1]. A famous impossibility theorem states that

there does not exist a probability measure defined on ([0, 1], 2[0,1]), where 2[0,1] denotes the �-algebra

of all subsets of [0, 1], such that P ({x}) = 0 for all x 2 [0, 1] [Billingsley, 1995, p. 46]. Therefore, �

cannot be extended to all subsets of [0, 1]. This shows the need to restrict attention to the �-algebra

of Borel sets, where a unique extension of � exists. (Lebesgue measure can be uniquely extended to

even more general sets, but this is not of interest here.)

The following properties of a probability measure are straightforward consequences of axioms A1–A3

plus the requirement that P (S) = 1:

P1. P (Ec) = 1� P (E).

P2. If E ✓ F then P (E)  P (F).

P3. P (E [F) = P (E) + P (F)� P (E \ F).

P4. (Union Bound) For any sequence of events E1, E2, . . .

P

 1[

n=1

En

!


1X

n=1

P (En) . (A.10)

P5. (Continuity from below.) If {En;n = 1, 2, . . .} is an increasing sequence of events, then

P (En) " P

 1[

n=1

En

!
(A.11)

P6. (Continuity from above.) If {En;n = 1, 2, . . .} is an decreasing sequence of events, then

P (En) # P

 1\

n=1

En

!
(A.12)

Using P5 and P6 above, it is easy to show that

P
⇣
lim inf
n!1

En

⌘
 lim inf

n!1
P (En)  lim sup

n!1
P (En)  P

✓
lim sup
n!1

En

◆
. (A.13)

A1. PROBABILITY THEORY 291

From this, the general continuity of probability measure property follows: for any sequence of events

{En;n = 1, 2, . . .},

P
⇣
lim
n!1

En

⌘
= lim

n!1
P (En) . (A.14)

In some cases, it can be easy to determine the probability of limsup and liminf events. For ex-

ample, it follows from (A.13) that mere convergence of P (En) to 1 or 0 as n ! 1 implies that

P (lim supn!1En) = 1 and P (lim infn!1En) = 0, respectively. In the general case, it may not

be simple to determine the value of these probabilities. The Borel-Cantelli Lemmas give su�-

cient conditions for the probability of limsup to be 0 and 1 (through the identity P (lim inf En) =

1� P (lim supEc), corresponding results on the probability of liminf can be derived).

Theorem A.1. (First Borel-Cantelli Lemma.) For any sequence of events E1, E2, . . .
1X

n=1

P (En) < 1) P ([En i.o.]) = 0 . (A.15)

Proof. Continuity of probability measure and the union bound allow one to write

P ([En i.o.]) = P

 1\

n=1

1[

i=n

Ei

!
= P

lim
n!1

1[

i=n

Ei

!
= lim

n!1
P

 1[

i=n

Ei

!
 lim

n!1

1X

i=n

P (Ei) . (A.16)

But if
P1

n=1
P (En) < 1 then the last limit must be zero, proving the claim. ⇧

The converse to the First Lemma holds if the events are independent.

Theorem A.2. (Second Borel-Cantelli Lemma.) For an independent sequence of events E1, E2, . . .,
1X

n=1

P (En) = 1) P ([En i.o.]) = 1 (A.17)

Proof. By continuity of probability measure,

P ([En i.o.]) = P

 1\

n=1

1[

i=n

Ei

!
= P

lim
n!1

1[

i=n

Ei

!
= lim

n!1
P

 1[

i=n

Ei

!
= 1� lim

n!1
P

 1\

i=n

Ec

i

!
,

(A.18)

where the last equality follows from DeMorgan’s Law. Now, by independence,

P

 1\

i=n

Ec

i

!
=

1Y

i=n

P (Ec

i) =
1Y

i=n

(1� P (Ei)) (A.19)

From the inequality 1� x  e�x we obtain

P

 1\

i=n

Ec

i

!


1Y

i=1

exp(�P (Ei)) = exp

�

1X

i=n

P (Ei)

!
= 0 (A.20)

since, by assumption,
P1

i=n
P (Ei) = 1, for all n. From (A.18) and (A.20), P ([En i.o.]) = 1, as

required. ⇧

292 APPENDIX A. APPENDIX

A1.3 Conditional Probability and Independence

Given that an event F has occurred, for E to occur, E \ F has to occur. In addition, the sample

space gets restricted to those outcomes in F , so a normalization factor P (F) has to be introduced.

Therefore, assuming that P (F) > 0,

P (E | F) =
P (E \ F)

P (F)
. (A.21)

For simplicity, it is usual to write P (E \F) = P (E,F) to indicate the joint probability of E and F .

From (A.21), one then obtains

P (E,F) = P (E | F)P (F) , (A.22)

which is known as the multiplication rule. One can also condition on multiple events:

P (E | F1, F2, . . . , Fn) =
P (E \ F1 \ F2 \ . . . \ Fn)

P (F1 \ F2 \ . . . \ Fn)
. (A.23)

This allows one to generalize the multiplication rule thus:

P (E1, E2, . . . , En) = P (En | E1, . . . , En�1)P (En�1 | E1, . . . , En�2) · · ·P (E2 | E1)P (E1) . (A.24)

The Law of Total Probability is a consequence of axioms of probability and the multiplication rule:

P (E) = P (E,F) + P (E,F c) = P (E | F)P (F) + P (E | F c)(1� P (F)) . (A.25)

This property allows one to compute a hard unconditional probability in terms of easier conditional

ones. It can be extended to multiple conditioning events via

P (E) =
nX

i=1

P (E,Fi) =
nX

i=1

P (E | Fi)P (Fi) , (A.26)

for pairwise disjoint Fi such that
S
Fi ◆ E.

One of the most useful results of probability theory is Bayes Theorem:

P (E | F) =
P (F | E)P (E)

P (F)
=

P (F | E)P (E)

P (F | E)P (E) + P (F | Ec)(1� P (E)))
(A.27)

Bayes Theorem can be interpreted as a way to (1) “invert” the probability P (F | E) to obtain

the probability P (E | F); or (2) “update” the “prior” probability P (E) to obtain the “posterior”

probability P (E | F).

Events E and F are independent if the occurrence of one does not carry information as to the

occurrence of the other. That is, assuming that all events have nonzero probability,

P (E | F) = P (E) and P (F | E) = P (F). (A.28)

A1. PROBABILITY THEORY 293

Figure A.1: A real-valued random variable.

It is easy to see that this is equivalent to the condition

P (E,F) = P (E)P (F) . (A.29)

If E and F are independent, so are the pairs (E,F c), (Ec,F), and (Ec,F c). However, E being

independent of F and G does not imply that E is independent of F \G. Furthermore, three events

E, F , G are independent if P (E,F,G) = P (E)P (F)P (G) and each pair of events is independent.

This can be extended to independence of any number of events, by requiring that the joint probability

factor and that all subsets of events be independent.

Finally, we remark that P (·|F) is a probability measure, so that it satisfies all properties mentioned

previously. In particular, it is possible to define the notion of conditional independence of events.

A1.4 Random Variables

A random variable can be thought of roughly as a “random number.” Formally, a random variable

X defined on a probability space (S,F , P) is a measurable function X between (S,F) and (R,B)

(see Section A1.1 for the required definitions). Thus, a random variable X assigns to each outcome

! 2 S a real number X(!) — see Figure A.1 for an illustration.

By using properties of the inverse set function, it is easy to see that the set function

PX(B) = P (X 2 B) = P (X�1(B)) , for B 2 B , (A.30)

is a probability measure on (R,B), called the distribution or law of X. (Note that PX is well defined,

since X is assumed measurable, and thus X�1(B) is an event in F , for each B 2 B.) If PX = PY

then X and Y are identically distributed. This does not mean they are identical: take X and Y to

be uniform over [0, 1] with Y = 1 � X. In this case, PX = PY but P (X = Y) = 0. On the other

hand, if P (X = Y) = 1, then X and Y are identically distributed.

294 APPENDIX A. APPENDIX

An alternative characterization of a random variable X is provided by the cumulative distribution

function (CDF) FX : R ! [0, 1], defined by

FX(x) = PX((�1, x]) = P (X  x), x 2 R. (A.31)

It can be seen that the CDF has the following properties:

F1. FX is non-decreasing: x1  x2) F (x1)  F (x2).

F2. limx!�1 FX(x) = 0 and limx!+1 FX(x) = 1.

F3. FX is right-continuous: lim
x!x

+
0
FX(x) = FX(x0).

The following remarkable theorem states that the information in the set function PX is equivalent

to the information in the point function FX ; for a proof, see [Rosenthal, 2006, Prop. 6.0.2].

Theorem A.3. Let X and Y be two random variables (possibly defined on two di↵erent probability

spaces). Then PX = PY if and only if FX = FY .

Furthermore, it can be shown that given a probability measure PX on (R,B), there is a random

variable X defined on some probability space that has PX for its distribution; and equivalently,

given any function FX satisfying properties F1-F3 above, there is an X that has FX as its CDF

[Billingsley, 1995, Thm 14.1].

If X1, . . . , Xn are jointly-distributed random variables (i.e., defined on the same probability space)

then they are said to be independent if

P ({X1 2 B1} \ . . . \ {Xn 2 Bn}) = PX1(B1) · · ·PXn(Bn) , (A.32)

for any Borel sets B1, . . . , Bn. Equivalently, they are independent if

P ({X1  x1} \ . . . \ {Xn  xn}) = FX1(x1) · · ·FXn(xn) , (A.33)

for any points x1, . . . xn 2 R. If in addition PX1 = · · · = PXn , or equivalently, FX1 = · · · = FXn ,

then X1, . . . , Xn are independent and identically distributed (i.i.d.) random variables.

Discrete Random Variables

If the distribution of a random variable X is concentrated on a countable number of points x1, x2, . . .,

i.e., PX({x1, x2, . . .}) = 1, then X is said to be a discrete random variable. For example, let X be

the numerical outcome of the roll of a six-sided. Then PX is concentrated on the set {1, 2, 3, 4, 5, 6}.

A1. PROBABILITY THEORY 295

Figure A.2: The CDF and PMF of a uniform discrete random variable.

The CDF FX for this example can be seen in Figure A.2. As seen in this plot, FX is a “staircase”

function, with “jumps” located at the points masses in PX . This is a general fact for any discrete

random variable X.

A discrete random variable X can thus be completely specified by the location and size of the jumps

in FX (since that specifies FX). In other words, a discrete random variable X is specified by its

probability mass function (PMF), defined by

pX(xk) = P (X = xk) = FX(xk)� FX(xk�) , (A.34)

at all points xk 2 R such that PX({xk}) > 0. See Figure A.2 for the PMF in the previous die-rolling

example.

Clearly, discrete random variables X1, . . . , Xn are independent if

P ({X1 = xk1} \ . . . \ {Xn = xkn}) , = pX1(xk1) · · · pXn(xkn) (A.35)

at all sets of points where the corresponding PMFs are defined.

Useful discrete random variables include the already mentioned uniform r.v. over a finite set of

numbers K with PMF

pX(xk) =
1

|K|
, k 2 K , (A.36)

the Bernoulli with parameter 0 < p < 1, with PMF

pX(0) = 1� p ,

pX(1) = p ,
(A.37)

the Binomial with parameters n 2 {1, 2, . . .} and 0 < p < 1, such that

pX(xk) =

✓
n

k

◆
pk(1� p)n�k, k = 0, 1, . . . , n , (A.38)

296 APPENDIX A. APPENDIX

the Poisson with parameter � > 0, such that

pX(xk) = e��
�k

k!
, k = 0, 1, . . . (A.39)

and the Geometric with parameter 0 < p < 1 such that

pX(xk) = (1� p)k�1p , k = 1, 2, . . . (A.40)

A binomial r.v. with parameters n and p has the distribution of a a sum of n i.i.d. Bernoulli r.v.s

with parameter p.

Continuous Random Variables

The transition from discrete to continuous random variables is nontrivial. A continuous random

variable X should have the following two smoothness properties:

C1. FX is continuous, i.e., it contains no jumps; i.e., P (X = x) = 0 for all x 2 R.

C2. There is a nonnegative function pX such that

P (a  X  b) = FX(b)� FX(a) =

Z
b

a

pX(x) dx , (A.41)

for a, b 2 R, with a  b. In particular,
R1
�1 pX(x) dx = 1.

It follows from the properties of the integral that C2 implies C1. However, it is one of the surprising

facts of probability theory that C1 does not imply C2: there are continuous CDFs that do not

satisfy C2. The counterexamples are admittedly exotic. For instance, the Cantor function is a

continuous increasing function defined on the interval [0, 1], which has derivative equal to zero on

the complement of the Cantor set, i.e., almost everywhere, but grows continuously from 0 to 1. The

Cantor function is constant almost everywhere, but manages to grow continuously, without jumps.

Such functions are called singular (or “devil staircases” in the popular literature). The Cantor

function (suitably extended outside the interval [0, 1]) defines a continuous CDF that cannot satisfy

C2. Such exotic examples can be ruled out if one requires the CDF to have a smoothness property

known as absolute continuity (which is more stringent than simple continuity). In fact, it can be

shown that absolute continuity of FX is equivalent to C2. It is also equivalent to the requirement

that P (X 2 B) = 0 for any Borel set B of measure zero, not simply on isolated points, as in C1, or

countable set of points. It can indeed be shown that any CDF can be decomposed uniquely into a

sum of a discrete, singular, and absolute continuous components.1

1
For proofs and more details, the reader is referred to Sections 31 and 32 of Billingsley [1995] and Chapter 1 of

Chung [1974]. The construction of the Cantor function is described in Chapter 7 of Schroeder [2009].

A1. PROBABILITY THEORY 297

Figure A.3: The CDF and PDF of a uniform continuous random variable.

The definition of a continuous random variable X requires FX to be absolutely continuous, not

simply continuous, in which case C2 is satisfied, and pX is called a probability density function

(PDF). (Perhaps it would be more appropriate to call these absolutely continuous random variables,

but the terminology “continuous random variable” is entrenched.) See Figure A.3 for an illustration

of the CDF and PDF of a uniform continuous random variable. The CDF of a continuous random

variable does not have to be di↵erentiable everywhere (in this example, it fails to be di↵erentiable at

a and b). But where it is di↵erentiable, dFX(x)/dx = pX(x) (the density can take arbitrary values

where FX is not di↵erentiable, and this happens at most over a set of Lebesgue measure zero).

Useful continuous random variables include the already mentioned uniform r.v. over the interval

[a, b], with density

pX(x) =
1

b� a
, a < x < b , (A.42)

the univariate Gaussian r.v. with parameters µ and � > 0, such that

pX(x) =
1

p

2⇡�2
exp

✓
�
(x� µ)2

2�2

◆
, x 2 R , (A.43)

the exponential r.v. with parameter � > 0, such that

pX(x) = �e��x , x � 0 (A.44)

the gamma r.v. with parameters �, t > 0, such that

pX(x) =
�e��x(�x)t�1

�(t)
, x � 0 , (A.45)

where�(t) =
R1
0

e�uut�1du, and the beta r.v. with parameters a, b > 0, such that:

pX(x) =
1

B(a, b)
xa�1(1� x)b�1, 0 < x < 1 , (A.46)

where B(a, b) =�(a + b)/�(a)�(b). Among these, the Gaussian is the only one defined over the

entire real line; the exponential and gamma are defined over the nonnegative real numbers, while

the uniform and beta have bounded support. In fact, the uniform r.v. over [0, 1] is just a beta with

a = b = 1, while an exponential r.v. is a gamma with t = 1.

298 APPENDIX A. APPENDIX

General Random Variables

There are random variables that are neither continuous nor discrete. Of course, an example of that is

a↵orded by a mixture of a discrete random variable and a continuous random variable. The CDF of

such a mixed random variable has jumps, but it is not a staircase function. However, there are more

general random variables that are not mixtures of this kind; e.g., the random variable corresponding

to the Cantor CDF.

A1.5 Joint and Conditional Distributions

The joint CDF of two jointly-distributed random variablesX and Y is a function FXY : R⇥R ! [0, 1]

defined by

FXY (x, y) = P ({X  x} \ {Y  y}) = P (X  x, Y  y), x, y 2 R . (A.47)

This is the probability of the “lower-left quadrant” with corner at (x, y). Note that FXY (x,1) =

FX(x) and FXY (1, y) = FY (y). These are called the marginal CDFs.

If X and Y are jointly-distributed continuous random variables, then we define the joint density

pXY (x, y) =
@2FXY (x, y)

@x@y
x, y 2 R , (A.48)

at all points where the derivative is defined. The joint density function pXY (x, y) integrates to 1

over R2. The marginal densities are given by

pX(x) =

Z 1

�1
pXY (x, y) dy , x 2 R ,

pY (y) =

Z 1

�1
pXY (x, y) dx , y 2 R ,

(A.49)

The random variables X and Y are independent if pXY (x, y) = pX(x)pY (y), for all x, y 2 R. It can

be shown that if X and Y are independent and Z = X + Y then

pZ(z) =

Z 1

�1
pX(x)pY (z � x) dx , z 2 R , (A.50)

with a similar expression in the discrete case for the corresponding PMFs. The above integral is

known as the convolution integral.

If pY (y) > 0, the conditional density of X given Y = y is defined by:

pX|Y (x | y) =
pXY (x, y)

pY (y)
, x 2 R . (A.51)

A1. PROBABILITY THEORY 299

For an event E, the conditional probability P (E | Y = y) needs care if Y is a continuous random

variable, as P (Y = y) = 0. But as long as pY (y) > 0, this probability can be defined (the details

are outside of the scope of this review):

P (E | Y = y) =

Z

E

pX|Y (x | y) dx . (A.52)

The “Law of Total Probability” for random variables is a generalization of (A.26):

P (E) =

Z 1

�1
P (E | Y = y) pY (y) dy . (A.53)

The concepts of joint PMF, marginal PMFs, and conditional PMF can defined in a similar way. For

conciseness, this is omitted in this review.

A1.6 Expectation

The expectation of a random variable has several important interpretations: 1) its average value

(weighted by the probabilities); 2) a summary of its distribution (sometimes referred to as a “location

parameter”); 3) a prediction of its future value. The latter meaning is the most important one for

pattern recognition and machine learning.

Expectation can be formalized by using the notion of integration, which we briefly review next. For

a measure space (S,F , µ) and a Borel-measurable function f : S ! R, one defines the integral
Z
f dµ =

Z
f(!)µ(d!) (A.54)

as a number in R [{�1 ,1}, as follows. First, if f = IA is the indicator of a set A 2 F , thenR
f dµ = µ(A), i.e., integrating a constant “1” over a set produces just the measure of that set.

Next, if f =
P

n

i=1
xiIAi , where the xi 2 R and the Ai are measurable sets that partition S, then

Z
f dµ =

nX

i=1

xiµ(Ai) . (A.55)

Such a function f is called simple, as it takes on a finite number of values x1, . . . , xn, with f�1({xi}) =

Ai, for i = 1, . . . , n. Next, for general nonnegative function f , one defines its integral as
Z
f dµ = sup

⇢Z
g dµ

�� g : S ! R is simple and g  f

�
. (A.56)

Finally, for general f , define nonnegative functions f+(!) = f(!)If(!)>0 and f�(!) = �f(!)If(!)0.

Clearly, f = f+
� f�, so the integral of f is defined as

Z
f dµ =

Z
f+ dµ �

Z
f� dµ , (A.57)

300 APPENDIX A. APPENDIX

provided that at least one of
R
f+ dµ and

R
f� dµ is finite. If both are finite, then �1 <

R
f dµ < 1,

and f is said to be integrable with respect to measure µ. Since |f | = f+ + f�, f is integrable if and

only if
R
|f | dµ < 1. If

R
f+ dµ =

R
f� dµ = 1, then the integral of f is not defined at all.

The integral ignores everything that happens over sets of measure zero: if f = g outside a set

of measure zero, then
R
f dµ =

R
g dµ. Hence, if f = 0 a.e., then

R
f dµ = 0, and the integral of

nonnegative f is positive if and only if f > 0 over a set of nonzero measure.

The integral of f over a set A 2 F is defined as
R
A
f dµ =

R
IAf dµ, if it exists. If f is nonnegative,

then ⌫(A) =
R
A
f dµ defines a measure on (S,F), and f is called a density of ⌫ with respect to µ

(densities are unique up to sets of µ-measure zero). It is clear that ⌫(A) = 0 whenever µ(A) = 0;

any measure ⌫ with this property is said to be absolutely continuous with respect to µ (this is a

generalization of the previous definition, as we comment below). The following theorem can be

proved by showing that it holds for indicators, simple functions, and then nonnegative functions

through (A.56).

Theorem A.4. If g : S ! R is integrable and f : S ! R is a density of ⌫ with respect to µ, then
Z

g(!) ⌫(d!) =

Z
g(!)f(!)µ(d!) . (A.58)

The general integral has all the properties with which one if familiar in Calculus, such as linearity:

it can be shown that if f and g are integrable and a and b are constants, then
Z
(af + bg) dµ = a

Z
f dµ + b

Z
g dµ . (A.59)

If the measure space is (R,B,�) then the integral of a function f : R ! R,
Z
f d �=

Z
f(x)�(dx) (A.60)

is the Lebesgue integral of f , if it exists. It can be shown that the Lebesgue integral coincides with the

usual Riemann integral, whenever the latter exists. But the full generality of the Lebesgue integral is

needed to integrate complicated functions, or functions over complicated sets. The classical example

is provided by the function f : R ! R defined as f(x) = 1 if x is rational, and f(x) = 0, otherwise.

Notice that f = IQ, the indicator of the set of rationals Q. This function is extremely irregular

(discontinuous and nondi↵erentiable at every point) and not Riemann-integrable. However, f is

measurable and Lebesgue-integrable, with
R
f(x)�(dx) = �(Q) = 0. All integrals mentioned before

in this Appendix, including (A.41), should be considered to be Lebesgue integrals.

Now, given a random variable X defined on a probability space (S,F , P), the expectation E[X] is

simply the integral of X over S according to the probability measure P :

E[X] =

Z
X dP =

Z
X(!)P (d!) , (A.61)

A1. PROBABILITY THEORY 301

if it exists. So expectation is an integral, and all definitions and properties mentioned previously in

this section apply; e.g., we get the familiar formulas E[IE] = P (E), for an event E, and

E[aX + bY] = aE[X] + b[Y] , (A.62)

for jointly-distributed integrable random variables X and Y and constants a and b, as in (A.59).

This extends to any finite number of random variables, by induction. One of the most important

results of probability theory is stated next, without proof.

Theorem A.5. (Change of Variable Theorem.) If g : R ! R is a measurable function, then

E[g(X)] =

Z

S

g(X(!))P (d!) =

Z 1

�1
g(x)PX(dx) , (A.63)

where PX is the distribution of X, defined in (A.30).

Hence, expectations can be computed by integration over the real line. The previous theory is

entirely general, and applies equally well to continuous, discrete, and more general random variables.

If X is continuous, then it satisfies (A.41), where the integral should be interpreted as Lebesgue

integral over the interval [a, b]. It can be shown then that pX is a density for the distribution PX

with respect to Lebesgue measure. Combining Theorems A.4 and A.5 produces the familiar formula:

E[g(X)] =

Z 1

�1
g(x) pX(x) dx , (A.64)

where the integral is the Lebesgue integral, which reduces to the ordinary integral if the integrand

is Riemann-integrable. If g(x) = x, one gets the usual definition E[X] =
R
x pX(x) dx.

On the other hand, if X is discrete, then PX is concentrated on a countable number of points

x1, x2, . . ., and Thm A.5 produces

E[g(X)] =
1X

k=1

g(xk) pX(xk) , (A.65)

if the sum is well-defined. If g(x) = x, we get the familiar formula E[X] =
P1

k=1
xk pX(xk).

From now on we assume that random variables are integrable. If f : R ! R is Borel-measurable

and concave (i.e., f lies at or above a line joining any of its points) then Jensen’s Inequality is:

E[f(X)]  f(E[X]) . (A.66)

It can be shown that X and Y are independent if and only if E[f(X)g(Y)] = E[f(X)]E[g(Y)] for

all Borel-measurable functions f, g : R ! R. If this condition is satisfied for at least f(X) = X and

302 APPENDIX A. APPENDIX

g(Y) = Y , that is, if E[XY] = E[X]E[Y], then X and Y are said to be uncorrelated. Of course,

independence implies uncorrelatedness. The converse is only true in special cases; e.g. jointly

Gaussian random variables.

Holder’s Inequality states that, for 1 < r < 1 and 1/r + 1/s = 1,

E[|XY |]  E[|X|
r]1/rE[|Y |

s]1/s. (A.67)

The special case r = s = 2 results in the Cauchy-Schwarz Inequality:

E[|XY |] 
p
E[X2]E[Y 2] . (A.68)

The expectation of a random variable X is a↵ected by its probability tails, given by FX(a) = P (X 

a) and 1 � FX(a) = P (X � a). If the probability tails on both sides fail to vanish su�ciently fast

(X has “fat tails”), then X will not be integrable and E[X] is undefined. The standard example

is the Cauchy random variable, with density pX(x) = [⇡(1 + x2)]�1. For a nonnegative random

variable X, there is only one probability tail, the upper tail P (X > a), and there is a simple formula

relating E[X] to it:

E[X] =

Z 1

0

P (X > x) dx . (A.69)

A small E[X] constrain the upper tail to be thin. This is guaranteed by Markov’s inequality: if X

is a nonnegative random variable,

P (X � a) 
E[X]

a
, for all a > 0 . (A.70)

Finally, a particular result that if of interest to our purposes relates an exponentially-vanishing

upper tail of a nonnegative random variable to a bound on its expectation.

Lemma A.1. If X is a non-negative random variable such that P (X > t)  ce�at
2
, for all t > 0

and given a, c > 0, we have

E[X] 

r
1 + ln c

a
. (A.71)

Proof. Note that P (X2 > t) = P (X >
p
t)  ce�at. From (A.69) we get:

E[X2] =

Z 1

0

P (X2 > t) dt =

Z
u

0

P (X2 > t) dt+

Z 1

u

P (X2 > t) dt

 u+

Z 1

u

ce�at dt = u+
c

a
e�au .

(A.72)

By direct di↵erentiation, it is easy to verify that the upper bound on the right hand side is minimized

at u = (ln c)/a. Substituting this value back into the bound leads to E[X2]  (1 + ln c)/a. The

result then follows from the fact that E[X] 
p
E[X2]. ⇧

A1. PROBABILITY THEORY 303

If the second moment exists, the variance Var(X) of a random variable X is a nonnegative quantity

defined by:

Var(X) = E[(X � E[X])2] = E[X2]� (E[X])2. (A.73)

The variance of a random variable can be interpreted as: 1) its “spread” around the mean; 2) a

second summary of its distribution (the “scale parameter”); 3) the uncertainty in the prediction of

its future value by its expectation.

The following property follows directly from the definition:

Var(aX + c) = a2Var(X) . (A.74)

A small variance constrains the random variable to be close to its mean with high probability. This

follows from Chebyshev’s Inequality:

P (|X � E[X]| � ⌧) 
Var(X)

⌧2
, for all ⌧ > 0 . (A.75)

Chebyshev’s inequality follows directly from the application of Markov’s Inequality (A.70) to the

random variable |X � E[X]|2 with a = ⌧2.

Expectation has the linearity property, so that, given any pair of jointly distributed random variables

X and Y , it is always true that E[X + Y] = E[X] + E[Y] (provided that all expectations exist).

However, it is not always true that Var(X + Y) = Var(X) + Var(Y). In order to investigate this

issue, it is necessary to introduce the covariance between X and Y :

Cov(X,Y) = E[(X � E[X])(Y � E[Y])] = E[XY]� E[X]E[Y] . (A.76)

If Cov(X,Y) > 0 then X and Y are positively correlated; otherwise, they are negatively correlated.

Clearly, X and Y are uncorrelated if and only if Cov(X,Y) = 0. Clearly, Cov(X,X) = Var(X). In

addition, Cov(
P

n

i=1
Xi,

P
m

j=1
Yj) =

P
n

i=1

P
m

j=1
Cov(Xi, Yj).

Now, it follows directly from the definition of variance that

Var(X1 +X2) = Var(X1) + Var(X2) + 2Cov(X1, X2) . (A.77)

This can be extended to any number of random variables by induction:

Var

nX

i=1

Xi

!
=

nX

i=1

Var(Xi) + 2
X

i<j

Cov(Xi, Xj) . (A.78)

Hence, the variance is distributive over sums if all variables are pairwise uncorrelated. o It follows di-

rectly from the Cauchy-Schwarz Inequality (A.68) that |Cov(X,Y)| 
p
Var(X)Var(Y). Therefore,

the covariance can be normalized to be in the interval [�1, 1] thus:

⇢(X,Y) =
Cov(X,Y)p
Var(X)Var(Y)

, (A.79)

304 APPENDIX A. APPENDIX

with �1  ⇢(X,Y)  1. This is called the correlation coe�cient between X and Y . The closer |⇢|

is to 1, the tighter is the relationship between X and Y . The limiting case where ⇢(X,Y) = ±1

occurs if and only if Y = a± bX, i.e., X and Y are perfectly related to each other through a linear

(a�ne) relationship. For this reason, ⇢(X,Y) is sometimes called the linear correlation coe�cient

between X and Y ; it does not respond to nonlinear relationships.

Conditional expectation allows the prediction of the value of a random variable given the observed

value of the other, i.e., prediction given data, while conditional variance yields the uncertainty of

that prediction.

If X and Y are jointly continuous random variables and the conditional density pX|Y (x | y) is well

defined for Y = y, then the conditional expectation of X given Y = y is:

E[X | Y = y] =

Z 1

�1
x pX|Y (x | y) dx (A.80)

with a similar definition for discrete random variables using conditional PMFs.

The conditional variance of X given Y = y is defined using conditional expectation as:

Var(X | Y = y) = E[(X � E[X | Y = y])2 | Y = y] = E[X2
| Y = y]� (E[X | Y = y])2 . (A.81)

Most of the properties of expectation and variance apply without modification to conditional ex-

pectations and conditional variances, respectively. For example, E[
P

n

i=1
Xi | Y = y] =

P
n

i=1
E[Xi |

Y = y] and Var(aX + c | Y = y) = a2Var(X | Y = y).

Now, both E[X | Y = y] and Var(X | Y = y) are deterministic quantities for each value of Y = y

(just as the ordinary expectation and variance are). But if the specific value Y = y is not specified

and allowed to vary, then we can look at E[X | Y] and Var(X | Y) as functions of the random

variable Y , and therefore, random variables themselves. The reasons why these are valid random

variables are nontrivial and beyond the scope of this review.

One can show that the expectation of the random variable E[X | Y] is precisely E[X]:

E[E[X | Y]] = E[X] . (A.82)

An equivalent statement is:

E[X] =

Z 1

�1
E[X | Y = y] p(y) dy , (A.83)

with a similar expression in the discrete case. Paraphrasing the Law of Total Probability (A.26),

the previous equation might be called the Law of Total Expectation.

On the other hand, it is not the case that Var(X) = E[Var(X | Y)]. The answer is slightly more

complicated:

Var(X) = E[Var(X | Y)] + Var(E[X | Y]) . (A.84)

A1. PROBABILITY THEORY 305

This is known as the Conditional Variance Formula. It is an “analysis of variance” formula, as it

breaks down the total variance of X into a “within-rows” component and an “across-rows” compo-

nent. One might call this the Law of Total Variance. This formula plays a key role in Chapter 7.

Now, suppose one is interested in predicting the value of a random variable Y using a predictor Ŷ .

One would like Ŷ to be optimal according to some criterion. The criterion most widely used is the

mean-square error:

MSE = E[(Y � Ŷ)2] . (A.85)

It can be shown easily that the minimum mean-square error (MMSE) estimator is simply the mean:

Ŷ ⇤ = E[Y]. This is a constant estimator, since no data are available. Clearly, the MSE of Ŷ ⇤ is

simply the variance of Y . Therefore, the best one can do in the absence of any extra information is

to predict the mean E[Y], with an uncertainty equal to the variance Var(Y).

If Var(Y) is very small, i.e., if there were very small uncertainty in Y to begin with, then E[Y] could

actually be an acceptable estimator. In practice, this is rarely the case. Therefore, observations

on an auxiliary random variable X (i.e., data) are sought to improve prediction. Naturally, it is

known (or hoped) that X and Y are not independent, otherwise no improvement over the constant

estimator is possible. One defines the conditional MSE of a data-dependent estimator Ŷ = h(X) as

MSE (X) = E[(Y � h(X))2 | X] . (A.86)

By taking expectation over X, one obtains the unconditional MSE: E[(Y �h(X))2]. The conditional

MSE is often the most important one in practice, since it concerns the particular data at hand,

while the unconditional MSE is data-independent and used to compare the performance of di↵erent

predictors. Regardless, the MMSE estimator in both cases is the conditional mean h⇤(X) = E[Y | X],

as shown in Chapter 11. This is one of the most important results in supervised learning. The

posterior-probability function ⌘(x) = E[Y | X = x] is the optimal regression of Y on X. This is not

in general the optimal estimator if Y is discrete; e.g., in the case of classification. This is because

⌘(X) may not be in the range of values taken by Y , so it does not define a valid estimator. It is

shown in Chapter 2 that one needs to threshold ⌘(x) at 1/2 to obtain the optimal estimator (optimal

classifier) in the case Y 2 {0, 1}.

A1.7 Vector Random Variables

The previous theory can be extended to vector random variables, or random vectors, defined on

a probability space (S,F , P). A random vector is a Borel-measurable function X : S ! Rd,

with a probability distribution PX defined on (Rd,Bd). The components of the random vector

X = (X1, . . . , Xd) are jointly-distributed random variables Xi on (S,F , P), for i = 1, . . . , d.

306 APPENDIX A. APPENDIX

The expected value of X is the vector of expected values of the components, if they exist:

E[X] =

2

64
E[X1]

· · ·

E[Xd]

3

75 . (A.87)

The second moments of a random vector are contained in the d⇥ d covariance matrix:

⌃ = E[(X� µ)(X� µ)T] , (A.88)

where⌃ ii = Var(Xi) and⌃ ij = Cov(Xi, Xj), for i, j = 1, . . . , d, and the expectation of the matrix is

defined as the matrix of the expected values of its components, assuming they exist. The covariance

matrix is real symmetric and thus diagonalizable:

⌃ = UDUT , (A.89)

where U is the orthogonal matrix of eigenvectors and D is the diagonal matrix of eigenvalues (a

review of basic matrix theory facts is given in Section A2). All eigenvalues are nonnegative (⌃is

positive semi-definite). In fact, except for “degenerate” cases, all eigenvalues are positive, and so⌃

is invertible (⌃is said to be positive definite in this case).

It is easy to check that the random vector

Y = ⌃� 1
2 (X� µ) = D� 1

2UT (X� µ) (A.90)

has zero mean and covariance matrix Id (so that all components of Y are zero-mean, unit-variance,

and uncorrelated). This is called whitening or the Mahalanobis transformation.

Given n independent and identically-distributed (i.i.d.) sample observations X1, . . . ,Xn of the ran-

dom vector X, then the maximum-likelihood estimator of µ = E[X], known as the sample mean, is

µ̂ =
1

n

nX

i=1

Xi . (A.91)

It can be shown that this estimator is unbiased (that is, E[µ̂] = µ) and consistent (that is, µ̂

converges in probability to µ as n ! 1; see Section A1.8 and Theorem A.12). On the other hand,

the sample covariance estimator is given by:

⌃̂ =
1

n� 1

nX

i=1

(Xi � µ̂)(Xi � µ̂)T . (A.92)

This is an unbiased and consistent estimator of⌃.

A1. PROBABILITY THEORY 307

The multivariate Gaussian distribution is probably the most important probability distribution in

Engineering and Science. The random vector X has a multivariate Gaussian distribution with mean

µ and covariance matrix⌃(assuming⌃invertible) if its density is given by

p(x) =
1p

(2⇡)d det(⌃)
exp

✓
�
1

2
(x� µ)T⌃�1(x� µ)

◆
. (A.93)

We write X ⇠ Nd(µ,⌃).

The multivariate Gaussian has ellipsoidal contours of constant density of the form

(x� µ)T⌃�1(x� µ) = c2, c > 0 . (A.94)

The axes of the ellipsoids are given by the eigenvectors of⌃and the length of the axes are pro-

portional to its eigenvalues. In the case⌃= �2Id, where Id denotes the d ⇥ d identity matrix, the

contours are spherical with center at µ. This can be seen by substituting⌃= �2Id in (A.94), which

leads to the following equation for the contours:

||x� µ||2 = r2, r > 0 , (A.95)

If d = 1, one gets the univariate Gaussian distribution X ⇠ N (µ,� 2). With µ = 0 and � = 1, the

CDF of X is given by

P (X  x) = � (x) =

Z
x

�1

1

2⇡
e�

u2

2 du . (A.96)

It is clear that the function�(·) satisfies the property�(�x) = 1� �(x).

The following are useful properties of a multivariate Gaussian random vector X ⇠ N (µ,⌃):

G1. The density of each component Xi is univariate gaussian N (µi,⌃ii).

G2. The components of X are independent if and only if they are uncorrelated, i.e.,⌃is a diagonal

matrix.

G3. The whitening transformationY = ⌃� 1
2 (X�µ) produces a multivariate gaussianY ⇠ N (0, Ip)

(so that all components of Y are zero-mean, unit-variance, and uncorrelated Gaussian random

variables).

G4. In general, if A is a nonsingular p ⇥ p matrix and c is a p-vector, then Y = AX + c ⇠

Np(Aµ+ c,A⌃AT).

G5. The random vectors AX and BX are independent i↵ A⌃BT = 0.

G6. If Y and X are jointly multivariate Gaussian, then the distribution of Y given X is again

multivariate Gaussian.

G7. The best MMSE predictor E[Y | X] is a linear function of X.

308 APPENDIX A. APPENDIX

A1.8 Convergence of Random Sequences

It is often necessary in pattern recognition and machine learning to investigate the long-term behav-

ior of random sequences, such as the sequence of true or estimated classification error rates indexed

by sample size. In this section and the next, we review basic results about convergence of random

sequences. We consider only the case of real-valued random variables, but nearly all the definitions

and results can be directly extended to random vectors, with the appropriate modifications.

A random sequence {Xn; n = 1, 2, . . .} is a sequence of random variables. The standard modes of

convergence for random sequences are:

1. “Sure” convergence: Xn ! X surely if for all outcomes ! 2 S in the sample space one has

limn!1Xn(!) = X(!).

2. Almost-sure (a.s.) convergence or convergence with probability 1: Xn

a.s.
�! X if pointwise con-

verge fails only for an event of probability zero, i.e.:

P
⇣n
! 2 S

�� lim
n!1

Xn(!) = X(!)
o⌘

= 1 . (A.97)

3. Lp-convergence: Xn ! X in Lp, for p > 0, also denoted by Xn

L
p

�! X, if E[|Xn|
p] < 1 for

n = 1, 2, . . ., E[|X|
p] < 1, and:

lim
n!1

E[|Xn �X|
p] = 0 . (A.98)

The special case of L2 convergence is also called mean-square (m.s.) convergence.

4. Convergence in probability: Xn ! X in probability, also denoted by Xn

P
�! X, if the “proba-

bility of error” converges to zero:

lim
n!1

P (|Xn �X| > ⌧) = 0 , for all ⌧ > 0 . (A.99)

5. Convergence in Distribution : Xn ! X in distribution, also denoted by Xn

D
�! X, if the

corresponding CDFs converge:

lim
n!1

FXn(a) = FX(a) , (A.100)

at all points a 2 R where FX is continuous.

We state, without proof, the relationships among the various modes of convergence:

sure) almost-sure

Lp

)
) probability) distribution . (A.101)

A1. PROBABILITY THEORY 309

Hence, sure convergence is the strongest mode of convergence and convergence in distribution is

the weakest. However, sure convergence is unnecessarily demanding, and almost-sure convergence

is the strongest mode of convergence employed. On the other hand, convergence is distribution is

really convergence of CDFs, and does not have all the properties one expects from convergence. For

example, it can be shown that convergence Xn to X and Yn to Y in distribution does not imply in

general that Xn+Yn converges to X+Y in distribution, whereas this would be true for convergence

almost surely, in Lp, and in probability [Chung, 1974].

To show consistency of parametric classification rules (see Chapters 3 and 4), an essential fact about

convergence with probability 1 and in probability is that, similarly to ordinary convergence, they

are preserved by application of continuous functions. The following result is stated without proof.

Theorem A.6. (Continuous Mapping Theorem.) If f : R ! R is continuous a.e. with respect

to X, i.e. P (X 2 C) = 1, where C is the set of points of continuity of f , then

(i) Xn

a.s.
�! X implies that f(Xn)

a.s.
�! f(X).

(ii) Xn

P
�! X implies that f(Xn)

P
�! f(X).

(iii) Xn

D
�! X implies that f(Xn)

D
�! f(X).

A special case of interest is X = c, i.e., the distribution of X is a point mass at c. In this case, the

continuous mapping theorem requires f to be merely continuous at c.

The following classical result is stated here without proof.

Theorem A.7. (Dominated Convergence Theorem.) If there is an integrable random variable Y ,

i.e., E[|Y |] < 1, with P (|Xn|  Y) = 1, for n = 1, 2, . . ., then Xn

P
�! X implies that E[Xn] ! E[X].

The next result provides a common way to show strong consistency (e.g., see Chapter 7). It is a

consequence of the First Borel-Cantelli Lemma, and it indicates that converge with probability 1 is

in a sense a “fast” form of convergence in probability.

Theorem A.8. If, for all ⌧ > 0, P (|Xn �X| > ⌧) ! 0 fast enough to obtain

1X

n=1

P (|Xn �X| > ⌧) < 1 , (A.102)

then Xn

a.s.
�! X.

Proof. First notice that a sample sequence Xn(!) fails to converge to X(!) if and only if there is a

⌧ > 0 such that |Xn(!)) �X(!)| > ⌧ infinitely often as n ! 1. Hence, Xn ! X a.s. if and only

310 APPENDIX A. APPENDIX

if P (|Xn � X| > ⌧) i.o.) = 0, for all ⌧ > 0. The result then follows from the First Borel-Cantelli

Lemma (see Thm. A.1). ⇧

The previous result implies that convergence in probability can produce convergence with probabil-

ity 1 along a subsequence, obtained by “downsampling” the original sequence, as shown next.

Theorem A.9. If Xn

P
�! X, then there is an increasing sequence of indices nk such that Xnk

a.s.
�! X.

Proof. Since P (|Xn �X| > ⌧) ! 0, for all ⌧ > 0, we can pick an increasing sequence of indices nk

such that P (|Xnk �X| > 1/k)  2�k. Given any ⌧ > 0, pick k⌧ such that 1/k⌧ < ⌧ . We have

1X

k=k⌧

P (|Xnk �X| > ⌧) 
1X

k=k⌧

P (|Xnk �X| > 1/k) 
1X

k=k⌧

2�k < 1 , (A.103)

so that Xnk

a.s.
�! X by Theorem A.8. ⇧

The previous theorem provides a criterion to disprove convergence Xn ! X in probability: it is

enough to show that there is no subsequence that converges to X with probability 1. This criterion

is used in Chapter 4 (see Example 4.4).

Notice also that if Xn is monotone and P (|Xn � X| > ⌧) ! 0, then P (|Xn � X| > ⌧) i.o.) = 0.

Hence, if Xn is monotone, Xn ! X in probability if and only if Xn ! X with probability 1 (see

the proof of Thm. A.8).

Stronger relations among the modes of convergence hold in special cases. In particular, we prove

below that Lp convergence and convergence in probability are equivalent if the random sequence

{Xn; n = 1, 2, . . .} is uniformly bounded, i.e., if there exists a finite K > 0, which does not depend

on n, such that

|Xn|  K ,with probability 1, for all n = 1, 2, . . . (A.104)

meaning that P (|Xn| < K) = 1, for all n = 1, 2, . . . The classification error rate sequence {"n; n =

1, 2, . . .} is an example of uniformly bounded random sequence, with K = 1, therefore this is an

important topic for our purposes. We have the following theorem.

Theorem A.10. Let {Xn; n = 1, 2, . . .} be a uniformly bounded random sequence. The following

statements are equivalent.

(1) Xn

L
p

�! X, for some p > 0.

(2) Xn

L
q

�! X, for all q > 0.

(3) Xn

P
�! X.

A1. PROBABILITY THEORY 311

Proof. First note that we can assume without loss of generality that X = 0, since Xn ! X if and

only if Xn � X ! 0, and Xn � X is also uniformly bounded, with E[|Xn � X|
p] < 1. Showing

that (1) , (2) requires showing that Xn ! 0 in Lp, for some p > 0 implies that Xn ! 0 in Lq, for

all q > 0. First observe that E[|Xn|
q]  E[Kq] = Kq < 1, for all q > 0. If q > p, the result is

immediate. Let 0 < q < p. With X = Xq
n, Y = 1 and r = p/q, Holder’s Inequality (A.67) yields

E[|Xn|
q]  E[|Xn|

p]q/p . (A.105)

Hence, if E[|Xn|
p] ! 0, then E[|Xn|

q] ! 0, proving the assertion. To show that (2) , (3), first we

show the direct implication by writing Markov’s Inequality (A.70) with X = |Xn|
p and a = ⌧p:

P (|Xn| � ⌧) 
E[|Xn|

p]

⌧p
, for all ⌧ > 0 . (A.106)

The right-hand side goes to 0 by hypothesis, and thus so does the left-hand side, which is equivalent

to (A.99) with X = 0. To show the reverse implication, write

E[|Xn|
p] = E[|Xn|

pI|Xn|<⌧] + E[|Xn|
pI|Xn|�⌧]  ⌧p +KpP (|Xn| � ⌧) . (A.107)

By assumption, P (|Xn| � ⌧) ! 0, for all ⌧ > 0, so that limE[|Xn|
p]  ⌧p. Since ⌧ > 0 is arbitrary,

this establishes the desired result. ⇧

The previous theorem implies that, for uniformly bounded random sequences, the relationships

among the modes of convergence become:

sure) almost-sure)

(
Lp

probability

)
) distribution (A.108)

As a simple corollary of Theorem A.10, we have the following useful result, which is also a corollary

of Theorem A.7.

Theorem A.11. (Bounded Convergence Theorem.) If {Xn; n = 1, 2, . . .} is a uniformly bounded

random sequence and Xn

P
�! X, then E[Xn] ! E[X].

Proof. From the previous theorem, Xn

L
1

�! X, i.e., E[|Xn�X|] ! 0. But |E[Xn�X]|  E[|Xn�X|],

hence |E[Xn �X]| ! 0 and E[Xn �X] ! 0. ⇧

Example A.1. To illustrate these concepts, consider a sequence of independent binary random

variables X1, X2, . . . that take on values in {0, 1} such that

P ({Xn = 1}) =
1

n
, n = 1, 2, . . . (A.109)

312 APPENDIX A. APPENDIX

Then Xn

P
�! 0, since P (Xn > ⌧) ! 0, for every ⌧ > 0. By Theorem A.10, Xn

L
p

�! 0 as well. However,

Xn does not converge to 0 with probability 1. Indeed,

1X

n=1

P ({Xn = 1}) =
1X

n=1

P ({Xn = 0}) = 1 , (A.110)

and it follows from the 2nd Borel-Cantelli lemma that

P ([{Xn = 1} i.o.]) = P ([{Xn = 0} i.o.]) = 1, (A.111)

so that Xn does not converge with probability 1. However, if convergence of the probabilities to

zero is faster, e.g.

P ({Xn = 1}) =
1

n2
, n = 1, 2, . . . (A.112)

then
P1

n=1
P ({Xn = 1}) < 1 and Theorem A.8 ensures that Xn converges to 0 with probability 1.

⇧

In the previous example, note that, with P (Xn = 1) = 1/n, the probability of observing a 1 becomes

infinitesimally small as n ! 1, so the sequence consists, for all practice purposes, of all zeros for

large enough n. Convergence in probability and in Lp of Xn to 0 agrees with this fact, but the

lack of convergence with probability 1 does not. This is an indication that almost-sure convergence

may be too stringent a criterion to be useful in practice, and convergence in probability and in Lp

(assuming boundedness) may be enough. For example, this is the case in most signal processing

applications, where L2 is the criterion of choice. More generally, Engineering applications usually

concern average performance and rates of failure.

A1.9 Asymptotic Theorems

The classical asymptotic theorems in probability theory are the Law of Large Numbers and the

Central Limit Theorem, the proofs of which can be found, for example, in Chung [1974].

Theorem A.12. (Law of Large Numbers.) Given an i.i.d. random sequence {Xn; n = 1, 2, . . .}

with common finite mean µ,
1

n

nX

i=1

Xi

a.s.
�! µ . (A.113)

Theorem A.13. (Central Limit Theorem.) Given an i.i.d. random sequence {Xn; n = 1, 2, . . .}

with common finite mean µ and common finite variance �2,

1

�
p
n

nX

i=1

Xi � nµ

!
D
�! N (0, 1) . (A.114)

A2. BASIC MATRIX THEORY 313

The previous asymptotic theorems concern the behavior of a sum of n random variables as n ap-

proach infinity. It is also useful to have an idea of how partial sums di↵er from expected values

for finite n. This issue is addressed by the so-called concentration inequalities, the most famous of

which is Hoe↵ding’s inequality, derived in Hoe↵ding [1963].

Theorem A.14. (Hoe↵ding’s Inequality.) Given independent (not necessarily identically-distributed)

random variables W1, . . . ,Wn such that P (a  Wi  b) = 1, for i = 1, . . . , n, the sum Zn =
P

n

i=1
Wi

satisfies

P (|Zn � E[Zn]| � ⌧)  2e
� 2⌧2

n(a�b)2 , for all ⌧ > 0 . (A.115)

A2 Basic Matrix Theory

The material in this section is a summary of concepts and results from main matrix theory that are

useful in the text. For an in-depth treatment, see Horn and Johnson [1990].

We assume that the reader is familiar with the concepts of vector, matrix, matrix product, transpose,

determinant, and matrix inverse. We say that a set of vectors {x1, . . . ,xn} is linearly dependent if

the equation

a1x1 + · · ·+ anxn = 0 (A.116)

is satisfied for coe�cients a1, . . . , an that are not all zero. In other words, some of the vectors can

be written as a linear combination of other vectors. If a set of vectors is not linearly dependent,

then it is said to be linearly independent.

The rank of a matrix Am⇥n is the largest number of columns of A that form a linearly independent

set. This must be equal to the maximum number of rows that form a linearly independent set (row

rank = column rank). A square matrix An⇥n is nonsingular if the inverse A�1 exists, or equivalently,

the determinant |A| is nonzero. The following are useful facts:

• rank(A) = rank(AT) = rank(AAT) = rank(ATA), where AT denotes matrix transpose.

• rank(Am⇥n)  min{m,n}. If equality is achieved, A is said to be full-rank.

• An⇥n is nonsingular if and only if rank(A) = n, i.e., A is full-rank. By the definition of rank,

this means that the system of equations Ax = 0 has a unique solution x = 0..

• If Bm⇥m is nonsingular then rank(BAm⇥n) = rank(A) (multiplication by a nonsingular matrix

preserves rank).

• rank(Am⇥n) = rank(Bm⇥n) if and only if there are nonsingular matrices Xm⇥m and Yn⇥n such

that B = XAY .

314 APPENDIX A. APPENDIX

• If rank(Am⇥n) = k, then there is a nonsingular matrix Bk⇥k and matrices Xm⇥k and Yk⇥n

such that A = XBY .

• As a corollary from the previous fact, Am⇥n is a rank-1 matrix if A is a product of two vectors,

A = xyT , where the lengths of x and y are m and n, respectively.

An eigenvalue � of a square matrix An⇥n is a solution of the equation

Ax = �x , x 6= 0 , (A.117)

in which case x is an eigenvector of A associated with �. Complex � and x are allowed. The

following are useful facts:

• The eigenvalues of A and AT are the same.

• If A is real symmetric, then all its eigenvalues are real.

• Since A is singular if and only if Ax = 0 with nonzero x, we conclude that A is singular if and

only if it has a zero eigenvalue.

From (A.117), � is an eigenvalue if and only if (A��In)x = 0 with nonzero x. From previous facts,

we conclude that A��In is singular, that is, |A��In| = 0. But p(�) = |A��In| is a polynomial of

degree n, which thus has exactly n roots (allowing for multiplicity), so we have proved the following

useful fact.

Theorem A.15. Any square matrix An⇥n has exactly n (possibly complex) eigenvalues {�1, . . . ,�n},

which are the roots of the characteristic polynomial p(�) = |A� �In|.

If A is a diagonal matrix, then the eigenvalues are clearly the elements in its diagonal, so that

Trace(A) =
P

n

i=1
�i and |A| =

Q
n

i=1
�i. It is a remarkable fact that it is still true that Trace(A) =

P
n

i=1
�i and |A| =

Q
n

i=1
�i for any, not necessarily diagonal, square matrix A.

Matrix Bn⇥n is similar to matrix An⇥n if there is a nonsingular matrix Sn⇥n such that

B = S�1AS . (A.118)

It is easy to show that if A and B are similar, they have the same characteristic polynomial, and

therefore the same set of eigenvalues (however, having the same set of eigenvalues is not su�cient

for similarity).

Matrix A is said to be diagonalizable if it is similar to a diagonal matrix D. Since similarity preserves

the characteristic polynomial, the eigenvalues of A are equal to the elements in the diagonal of D.

The following theorem is not di�cult to prove.

A3. BASIC LAGRANGE-MULTIPLIER OPTIMIZATION 315

Theorem A.16. A matrix An⇥n is diagonalizable if and only if it has a set of n linearly independent

eigenvectors.

A real-valued matrix Un⇥n is said to be orthogonal if UTU = UUT = In, i.e., U�1 = UT . Clearly,

this happens if and only if the columns (and rows) of U are a set of unit-norm orthogonal vectors

in Rn. Matrix An⇥n is said to be orthogonally diagonalizable if it is diagonalizable by an orthogonal

matrix Un⇥n, i.e., A = UTDU , where D is diagonal. Since

The following theorem, stated without proof, is one of the most important results in matrix theory.

Theorem A.17. (Spectral Theorem.) If A is real symmetric, then it is orthogonally diagonalizable.

Therefore, of A is real symmetric, we can write A = UT⇤U and⇤= UAUT , where � is a diagonal

matrix containing the n eigenvalues of A on its diagonal. Furthermore, UA = ⇤U , and thus the

i � the column of U is the eigenvector of A associated with the eigenvalue in the i-the position of

the diagonal of⇤, for i = 1, . . . , n.

A real symmetric matrix An⇥n is said to be positive definite if

xTAx > 0 , for all x 6= 0 . (A.119)

If the condition is relaxed to xTAx � 0, then A is said to be positive semi definite. As we mentioned

in the text, a covariance matrix is always at least positive semi-definite.

The following theorem is not di�cult to prove.

Theorem A.18. A real symmetric matrix A is positive definite if and only if all its eigenvalues are

positive. It is positive semidefinite if and only if all eigenvalues are nonnegative.

In particular, a positive definite matrix A is nonsingular. Another useful fact is that A is positive

definite if and only if there is a nonsingular matrix C such that A = CCT .

A3 Basic Lagrange-Multiplier Optimization

In this section we review results from Lagrange Multiplier theory that are needed in Section 6.1.1.

For simplicity, we consider only minimization with inequality constraints, which is the case of the

linear SVM optimization problems (6.6) and (6.20). Our presentation follows largely Chapter 5 of

Boyd and Vandenberghe [2004], with some elements from Chapters 5 and 6 of Bertsekas [1995].

316 APPENDIX A. APPENDIX

Consider the general (not necessarily convex) optimization problem:

min f(x)

s.t. gi(x)  0 , i = 1, . . . , n .
(A.120)

where all functions are defined on Rd.

The primal Lagrangian functional is defined as

LP (x,�) = f(x) +
nX

i=1

�igi(x) , (A.121)

where �i is the Lagrange multiplier associated with constraint gi(x)  0 and � = (�1, . . . ,�n).

The dual Lagrangian functional is defined as:

LD(�) = inf
x2Rd

LP (x,�) = inf
x2Rd

f(x) +

nX

i=1

�igi(x)

!
. (A.122)

Using the properties of infimum, we have

LD(↵�1 + (1� ↵)�2) = inf
x2Rd

f(x) +

nX

i=1

(↵�1,i + (1� ↵)�2,i)gi(x)

!

= inf
x2Rd

↵

f(x) +

nX

i=1

�1,igi(x)

!
+ (1� ↵)

f(x) +

nX

i=1

�2,igi(x)

!!

� ↵ inf
x2Rd

f(x) +

nX

i=1

�1,igi(x)

!
+ (1� ↵) inf

x2Rd

f(x) +

nX

i=1

�2,igi(x)

!

= ↵LD(�1) + (1� ↵)LD(�2) ,

(A.123)

for all �1,�2 2 Rn and 0  ↵  1. The dual Lagrangian functional LD(�) is therefore a concave

function. Furthermore, for all x 2 F , where F is the feasible region of (A.120), and � � 0,

LP (x,�) = f(x) +
nX

i=1

�igi(x)  f(x) , (A.124)

since gi(x)  0, for i = 1, . . . , n. It follows that

LD(�) = inf
x2Rd

LP (x,�)  inf
x2F

f(x) = f(x⇤) , for all � � 0 , (A.125)

showing that LD(�) is a lower bound on f(x⇤), whenever � � 0.

The natural next step is to maximize this lower bound. This leads to the dual optimization problem:

max LD(�)

s.t. � � 0 .
(A.126)

A3. BASIC LAGRANGE-MULTIPLIER OPTIMIZATION 317

Since the cost LD(�) is concave (as shown previously) and the feasible region is a convex set, this is

a convex optimization problem, for which there are e�cient solution methods. This is true whether

or not the original problem (A.120) is convex.

If �⇤ is a solution of (A.126), then it follows from (A.125) that LD(�
⇤)  f(x⇤), which is known as

the weak duality property. If equality is achieved,

LD(�
⇤) = f(x⇤) , (A.127)

then the problem is said to satisfy the strong duality property. This property is not always satisfied,

but there are several sets of conditions, called constraint qualifications, that ensure strong duality.

For convex optimization problems with a�ne constraints, such as the linear SVM optimization

problems (6.6) and (6.20), a simple constraint qualification condition, known as Slater’s condition,

guarantees strong duality as long as the feasible region is nonempty.

The point (w̄, z̄), where w̄ 2 W and z̄ 2 Z, is a saddle point of a function h defined on W ⇥ Z if

h(ȳ, z̄) = inf
w2W

h(w, z̄) and h(ȳ, z̄) = sup
z2Z

h(w̄, z) . (A.128)

Under strong duality,

f(x⇤) = LD(�
⇤) = inf

x2Rd
LP (x,�

⇤) = inf
x2Rd

f(x) +

nX

i=1

�⇤i gi(x)

!

 LP (x
⇤,�⇤) = f(x⇤) +

nX

i=1

�⇤i gi(x
⇤)  f(x⇤) .

(A.129)

The first inequality follows from the definition of inf, whereas the second inequality follows from

the facts that �⇤
i
� 0 and gi(x⇤)  0, for i = 1, . . . , n. It follows from (A.129) that both inequalities

hold with equality. In particular,

LP (x
⇤,�⇤) = inf

x2Rd
LP (x,�

⇤) . (A.130)

On the other hand, it is always true that

sup
��0

LP (x
⇤,�) = sup

��0

f(x⇤) +

nX

i=1

�⇤i gi(x
⇤)

!
= f(x⇤) , (A.131)

because gi(x⇤)  0, for i = 1, . . . , n, so that f(x⇤) maximizes LP (x⇤,�) at � = 0. With the extra

condition of strong duality, we have from (A.129) that f(x⇤) = LP (x⇤,�⇤), so we obtain

LP (x
⇤,�⇤) = sup

��0

LP (x
⇤,�) . (A.132)

318 APPENDIX A. APPENDIX

It follows from (A.130) and (A.132) that strong duality implies that (x⇤,�⇤) is a saddle point of Lp(x,�).

It follows immediately from the general relations

f(x⇤) = sup
��0

LP (x
⇤,�) and LD(�

⇤) = inf
x2Rd

LP (x,�
⇤) (A.133)

that the converse is true: if (x⇤,�⇤) is a saddle point of Lp(x,�) then strong duality holds.

An optimal point (x⇤,�⇤), under strong duality, simultaneously minimizes LP (x,�) with respect

to x and maximizes LP (x,�) with respect to �. In particular, an optimal point (x⇤,�⇤) satisfies

x⇤ = arg min
x2Rd

LP (x,�
⇤) . (A.134)

Since this is an unconstrained minimization problem, necessary conditions for unconstrained min-

ima apply. In particular, assuming that f and gi are di↵erentiable, for i = 1, . . . , n, the general

stationarity condition must be satisfied:

rxLP (x
⇤,�⇤) = rxf(x

⇤) +
nX

i=1

�⇤irxgi(x
⇤) = 0 . (A.135)

Another consequence of (A.129) is

f(x⇤) = f(x⇤) +
nX

i=1

�⇤i gi(x
⇤))

nX

i=1

�⇤i gi(x
⇤) = 0 , (A.136)

from which the following important complementary slackness conditions follow:

�⇤i gi(x
⇤) = 0 , i = 1, . . . , n . (A.137)

This means that if a constraint is inactive at the optimum, i.e., gi(x⇤) < 0, then the corresponding

optimal Lagrange multiplier �⇤
i
must be zero. Conversely, �⇤

i
> 0 implies that gi(x⇤) = 0, i.e., the

corresponding constraint is active (tight) at the optimum.

We can summarize all the previous results in the following classical theorem.

Theorem A.19. (Karush-Kuhn-Tucker Conditions). Let x⇤ be a solution of the original optimiza-

tion problem in (A.120), and let �⇤ be a solution of the dual optimization problem in (A.126) such

that strong duality is satisfied. Assume further that f and gi are di↵erentiable, for i = 1, . . . , n.

Then the following conditions must be satisfied:

rxLP (x
⇤,�⇤) = rxf(x

⇤) +
nX

i=1

�⇤irxgi(x
⇤) = 0 , (stationarity)

gi(x
⇤)  0 , i = 1, . . . , n , (primal feasibility)

�⇤i � 0 , i = 1, . . . , n , (dual feasibility)

�⇤i gi(x
⇤) = 0 , i = 1, . . . , n . (complementary slackness)

(A.138)

Furthermore, it can be shown that if the original optimization problem in (A.120) is convex with

a�ne constraints, then the KKT conditions are also su�cient for optimality.

A4. PROOF OF THE COVER-HART THEOREM 319

A4 Proof of the Cover-Hart Theorem

In this section we present proofs of Thm 5.1 and 5.3. The proof of Thm 5.1 follows the general

structure of the original proof in Cover and Hart [1967], with some di↵erences. This proof assumes

existence and continuity almost everywhere of the class-conditional densities. In Stone [1977] a more

general proof is given, which does not assume existence of densities (see also Chapter 5 of Devroye

et al. [1996]).

Proof of Theorem 5.1

First, one has to show that the nearest neighbor X(1)

n of a test point X converges to X as n ! 1.

The existence of densities makes this simple to show. First note that, for any ⌧ > 0,

P (||X(1)

n �X|| > ⌧) = P (||Xi �X|| > ⌧ ; i = 1, . . . , n) = (1� P (||X1 �X|| < ⌧))n . (A.139)

If we can show that P (||X1�X|| < ⌧) > 0, then it follows from (A.139) that P (||X(1)

n �X|| > ⌧) ! 0,

so that X(1)

n ! X in probability. Since X1 and X are independent and identically distributed with

density pX, X1 �X has a density pX1�X, given by the classical convolution formula:

pX1�X(x) =

Z

Rd
pX(x+ u) pX(u) du . (A.140)

From this, we have pX1�X(0) =
R
Rd p2X(x) du > 0. It follows, by continuity of the integral, that

pX1�X must be nonzero in a neighborhood of 0, i.e., P (||X1 �X|| < ⌧) > 0, as was to be shown.

Now, let Y 0
n denote the label of the nearest neighbor X(1)

n . Consider the conditional error rate

P (n(X) 6= Y | X,X1, . . . ,Xn) = P (Y 0
n 6= Y | X,X(1)

n)

= P (Y = 1, Y 0
n = 0 | X,X(1)

n) + P (Y = 0, Y 0
n = 1 | X,X(1)

n)

= P (Y = 1 | X)P (Y 0
n = 0 | X(1)

n) + P (Y = 0 | X)P (Y 0
n = 1 | X(1)

n)

= ⌘(X)(1� ⌘(X(1)

n)) + (1� ⌘(X))⌘(X(1)

n)

(A.141)

where independence of (X(1)

n , Y 0
n) and (X, Y) was used. We now use the assumption that the class-

conditional densities exist and are continuous a.e., which implies that ⌘ is continuous a.e. We

had established previously that X(1)

n ! X in probability. By the Continuous Mapping Theorem

(see Theorem A.6), ⌘(X(1)

n) ! ⌘(X) in probability and

P (n(X) 6= Y | X,X1, . . . ,Xn) ! 2⌘(X)(1� ⌘(X)) in probability. (A.142)

Since all random variables are bounded in the interval [0, 1], we can apply the Bounded Convergence

Theorem (see Thm. A.11) to obtain

E["n] = E[P (n(X) 6= Y | X,X1, . . . ,Xn)] ! E[2⌘(X)(1� ⌘(X)] , (A.143)

320 APPENDIX A. APPENDIX

proving the first part of the theorem.

For the second part, let r(X) = min{⌘(X), 1�⌘(X)} and note that ⌘(X)(1�⌘(X)) = r(X)(1�r(X)).

It follows that

"NN = E[2⌘(X)(1� ⌘(X))] = E[2r(X)(1� r(X))]

= 2E[r(X)]E[(1� r(X))] + 2Cov(r(X), 1� r(X))

= 2"⇤(1� "⇤)� 2Var(r(X))  2"⇤(1� "⇤)  2"⇤,

(A.144)

as required.

Proof of Theorem 5.3

The proof of (5.13) and (5.14) follows the same structure as in the case k = 1. As before, the

first step is to show that the ith-nearest neighbor X(i)

n of X, for i = 1, . . . , k, converges to X in

probability as n ! 1. This is so because, for every ⌧ > 0,

P (||X(i)

n �X|| > ⌧) = P (||Xj �X|| > ⌧ ; j = k, . . . , n) = (1� P (||X1 �X|| < ⌧))n�k�1
! 0 ,

(A.145)

since P (||X1 �X|| < ⌧) > 0, as shown in the previous proof. Next, let the label of the ithe-nearest

neighbor X(i)

n of X by Y (i)

n , and consider the conditional error rate

P (n(X) 6= Y | X,X1, . . . ,Xn)

= P (Y = 1,
P

k

i=1
Y (i)

n < k

2
| X,X(1)

n , . . . ,X(k)

n) + P (Y = 0,
P

k

i=1
Y (i)

n > k

2
| X,X(1)

n , . . . ,X(k)

n)

= P (Y = 1 | X)P (
P

k

i=1
Y (i)

n < k

2
| X(1)

n , . . . ,X(k)

n)

+ P (Y = 0 | X)P (
P

k

i=1
Y (i)

n > k

2
| X(1)

n , . . . ,X(k)

n)

= ⌘(X)
P(k�1)/2

i=0
P (
P

k

j=1
Y (j)

n = i | X(1)

n , . . . ,X(k)

n)

+ (1� ⌘(X))
P

k

i=(k+1)/2
P (
P

k

j=1
Y (j)

n = i | X(1)

n , . . . ,X(k)

n) ,
(A.146)

where

P (
P

k

j=1
Y (j)

n = i | X(1)

n , . . . ,X(k)

n) =
X

m1,...,mk2{0,1}
m1+···+mk=i

kY

j=1

P (Y (j)

n = mj | X
(j)

n)

=
X

m1,...,mk2{0,1}
m1+···+mk=i

kY

j=1

⌘(X(j)

n)mj (1� ⌘(X(j)

n))1�mj .

(A.147)

Using the previously established fact that X(j)

n ! X in probability, for i = 1, . . . , k, it follows

from the assumption of continuity of the distributions a.e. and the Continuous Mapping Theorem

A5. PROOF OF STONE’S THEOREM 321

(see Theorem A.6) that

P (
P

k

j=1
Y (j)

n = i | X(1)

n , . . . ,X(k)

n)
P
�!

X

m1,...,mk2{0,1}
m1+···+mk=i

kY

j=1

⌘(X)mj (1� ⌘(X))1�mj

=

✓
k

i

◆
⌘(X)i(1� ⌘(X))k�i

(A.148)

and

P (n(X) 6= Y | X,X1, . . . ,Xn)
P
�!

P(k�1)/2

i=0
⌘(X)i+1(1� ⌘(X))k�i

+
P

k

i=(k+1)/2
⌘(X)i(1� ⌘(X))k+1�i .

(A.149)

Since all random variables are bounded in the interval [0, 1], we can apply the Bounded Convergence

Theorem (see Thm. A.11) to obtain

E["n] = E[P (n(X) 6= Y | X,X1, . . . ,Xn)]

! E
hP(k�1)/2

i=0
⌘(X)i+1(1� ⌘(X))k�i +

P
k

i=(k+1)/2
⌘(X)i(1� ⌘(X))k+1�i

i
,

(A.150)

establishing (5.13) and (5.14).

For the second part, as before, we let r(X) = min{⌘(X), 1� ⌘(X)} and note that ⌘(X)(1� ⌘(X)) =

r(X)(1 � r(X)). By symmetry, it is easy to see that ↵k(⌘(X)) = ↵k(r(X)). We seek an inequality

↵k(r(X))  akr(X), so that

"kNN = E[↵k(⌘(X))] = E[↵k(r(X))]  akE[r(X)] = ak"
⇤ , (A.151)

where ak > 1 is as small as possible. But as can be seen in Figure 5.8, ak corresponds to the slope

of the tangent line to ↵k(p), in the range p 2 [0, 1
2
], through the origin, so it must satisfy (5.21).

A5 Proof of Stone’s Theorem

In this section, we present a proof of Thm 5.4, which essentially follows the proof given by Devroye

et al. [1996]. The original proof in Stone [1977] is more general, relaxing the nonnegativity and

normalization assumptions (5.2) on the weights, while also showing that, under (5.2), the conditions

on the weights given in the theorem are both necessary and su�cient for universal consistency.

Proof of Theorem 5.4

It follows from Lemma 5.1, and the comment following it, that it is su�cient to show that

E|(⌘n(X)� ⌘(X))2] ! 0, as n ! 1. Introduce the smoothed posterior-probability function

⌘̃n(x) =
nX

i=1

Wn,i(x)⌘(Xi) . (A.152)

322 APPENDIX A. APPENDIX

This is not a true estimator, since it is a function of ⌘(x). However, it allows one to break the

problem down into two manageable parts:

E[(⌘n(X)� ⌘(X))2] = E[(⌘n(X)� ⌘̃n(X) + ⌘̃n(X)� ⌘(X))2]

 2E[(⌘n(X)� ⌘̃n(X))2] + 2E[(⌘̃n(X)� ⌘(X))2] ,
(A.153)

where the inequality follows from the fact that (a+ b)2  2(a2 + b2). The rest of the proof consists

in showing that E[(⌘n(X)� ⌘̃n(X))2] ! 0, and then showing that E[(⌘̃n(X)� ⌘(X))2] ! 0.

For the first part, notice that

E[(⌘n(X)� ⌘̃n(X))2] = E

2

4

nX

i=1

Wni(X)(Yi � ⌘(Xi)

!2
3

5

=
nX

i=1

nX

j=1

E [Wni(X)Wnj(X)(Yi � ⌘(Xi)(Yj � ⌘(Xj)]

=
nX

i=1

nX

j=1

E [E [Wni(X)Wnj(X)(Yi � ⌘(Xi)(Yj � ⌘(Xj) | X,X1, . . . ,Xn]]

(A.154)

Now, given X,X1, . . . ,Xn, Wni(X) and Wnj(X) are constants, and Yi � ⌘(Xi) and Yj � ⌘(Xj) are

zero-mean random variables. Furthermore, Yi � ⌘(Xi) and Yj � ⌘(Xj) are independent if i 6= j.

Therefore, E [Wni(X)Wnj(X)(Yi � ⌘(Xi)(Yj � ⌘(Xj) | X,X1, . . . ,Xn] = 0, for i 6= j, and we obtain

E[(⌘n(X)� ⌘̃n(X))2] =
nX

i=1

E
⇥
W 2

ni(X)(Yi � ⌘(Xi)
2]
⇤

 E

"
nX

i=1

W 2

ni(X)

#
 E

"
max

i=1,...,n

Wn,i(x)
nX

i=1

Wni(X)

#
= E


max

i=1,...,n

Wn,i(x)

�
! 0,

(A.155)

by condition (ii) of Stone’s Theorem and the Bounded Convergence Theorem A.11.

The second part is more technical. First, given ⌧ > 0, find a function ⌘⇤ such that 0  ⌘⇤(x)  1, ⌘⇤

is PX-square-integrable, continuous, and has compact support, and E[(⌘⇤(X) � ⌘(X))2] < ⌧ . Such

a function exists, because ⌘(x) is PX-integrable (see Section 2.6.3), and therefore square-integrable,

since ⌘2(x)  ⌘(x), and the set of continuous function with compact support is dense in the set of

A6. PROOF OF THE VAPNIK-CHERVONENKIS THEOREM 323

square-integrable functions. Now, write

E[(⌘̃n(X)� ⌘(X))2] = E

2

4

nX

i=1

Wni(X)(⌘(Xi)� ⌘(X))

!2
3

5  E

"
nX

i=1

Wni(X)(⌘(Xi)� ⌘(X))2
#

= E

"
nX

i=1

Wni(X) ((⌘(Xi)� ⌘⇤(Xi)) + (⌘⇤(Xi)� ⌘⇤(X)) + (⌘⇤(X)� ⌘(X)))2
#

 3E

"
nX

i=1

Wni(X)
�
(⌘(Xi)� ⌘⇤(Xi))

2 + (⌘⇤(Xi)� ⌘⇤(X))2 + (⌘⇤(X)� ⌘(X))2
�
#

 3E

"
nX

i=1

Wni(X)(⌘(Xi)�⌘
⇤(Xi))

2

#
+ 3E

"
nX

i=1

Wni(X)(⌘⇤(Xi)�⌘
⇤(X))2

#
+ 3E

⇥
(⌘⇤(X)�⌘(X))2

⇤

= I + II + III ,
(A.156)

where the first inequality follows from Jensen’s Inequality, while the second inequality follows from

the fact that (a+ b+ c)2  3(a2+ b2+ c2). Now, by construction of ⌘⇤ and condition (iii) of Stone’s

Theorem, it follows that I < 3⌧ and III < 3c⌧ . To bound II, notice that ⌘⇤, being continuous on

a compact support, is also uniformly continuous. Hence, given ⌧ > 0, there is a � > 0 such that

||x0
� x|| < � implies that |⌘⇤(x0)� ⌘⇤(x)| < ⌧ , for all x0,x 2 Rd. Hence,

II  3E

"
nX

i=1

Wn,i(X)I||Xi�X||>�

#
+ 3E

"
nX

i=1

Wn,i(X)⌧

#
= 3E

"
nX

i=1

Wn,i(X)I||Xi�X||>�

#
+ 3⌧ ,

(A.157)

where we used the fact that |⌘⇤(x0) � ⌘⇤(x)|  1. Using condition (i) of Stone’s Theorem and the

Bounded Convergence Theorem A.11, it follows that lim supn!1 II  3⌧ . Putting all together,

lim sup
n!1

E[(⌘̃n(X)� ⌘(X))2]  3⌧ + 3c⌧ + 3⌧ = 3(c+ 2)⌧ . (A.158)

Since ⌧ is arbitrary, it follows that E[(⌘̃n(X)� ⌘(X))2] ! 0 and the proof is complete.

A6 Proof of the Vapnik-Chervonenkis Theorem

In this section, we present a proof of Thm 8.2. Our proof combines elements of the proofs given

by Pollard [1984] and Devroye et al. [1996], who credit Dudley [1978]. See also Castro [2020]. We

prove a general version of the result and then specialize it to the classification case.

Consider a probability space (Rp,Bp, ⌫), and n i.i.d. random variables Z1, . . . , Zn ⇠ ⌫. (For a review

of probability theory, see Section A1.) Note that each Zi is in fact a random vector, but we do not

employ the usual boldface type here, so as not to encumber the notation. An empirical measure is

324 APPENDIX A. APPENDIX

a random measure on (Rp,BP) that is a function of Z1, . . . , Zn. The standard empirical measure ⌫n

puts mass 1/n over each Zi, so that

⌫n(A) =
1

n

nX

i=1

IZi2A , (A.159)

for A 2 B
p. By the Law of Large Numbers (LLN), ⌫n(A)

a.s.
�! ⌫(A), as n ! 1, for any fixed A. In the

VC theorem, one is interested instead in a uniform version of the LLN: supA2A |⌫n(A)� ⌫(A)|
a.s.
�! 0,

for a suitably provided family of sets A ⇢ B
p. General conditions to ensure the measurability of

supA2A |⌫n(A)� ⌫(A)| and of various other quantities in the proofs are discussed in Pollard [1984];

such will be assumed tacitly below.

Define a second (signed) empirical measure ⌫̃n, which puts mass 1/n or �1/n randomly over each

Zi, i.e.,

⌫̃n(A) =
1

n

nX

i=1

�iIZi2A (A.160)

for A 2 A, where �1, . . . ,�n are i.i.d. random variables with P (�1 = 1) = P (�1 = �1) = 1/2,

independently of Z1, . . . , Zn.

It turns out that the VC theorem, much as Theorem 8.1, can be proved by a direct application of

the Union Bound (A.10) and Hoe↵ding’s Inequality (8.8), with the addition of the next key lemma.

Lemma A.2. (Symmetrization Lemma). Regardless of the measure ⌫,

P

✓
sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
 4P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

◆
, for all ⌧ > 0 and n � 2⌧�2 . (A.161)

Proof. Consider a second sample Z 0
1
, . . . , Z 0

n ⇠ ⌫, independent of Z1, . . . , Zn and the signs �1, . . . ,�n.

In the first part of the proof, one seeks to relate the tail probability of supA2A |⌫n(A) � ⌫(A)|

in (A.161) to a tail probability of supA2A |⌫ 0n(A)� ⌫n(A)|, where

⌫ 0n(A) =
1

n

nX

i=1

IZ0
i2A , (A.162)

for A 2 A, and, in the second part, relate that to the tail probability of supA2A |⌫̃n(A)| in (A.161).

Notice that, whenever supA2A |⌫n(A) � ⌫(A)| > ⌧ , there is an A⇤
2 A, which is a function of

Z1, . . . , Zn, such that |⌫n(A⇤)� ⌫(A⇤)| > ⌧ , with probability 1. In other words,

P

✓
|⌫n(A

⇤)� ⌫(A⇤)| > ⌧

���� sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
= 1 , (A.163)

which in turn implies that

P (|⌫n(A
⇤)� ⌫(A⇤)| > ⌧) � P

✓
sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
. (A.164)

A6. PROOF OF THE VAPNIK-CHERVONENKIS THEOREM 325

Now, conditioned on Z1, . . . , Zn, A⇤ is fixed (nonrandom). Notice that E[⌫ 0n(A
⇤) | Z1, . . . , Zn] =

⌫(A⇤) and Var(⌫ 0n(A
⇤) | Z1, . . . , Zn) = ⌫(A⇤)(1 � ⌫(A⇤

⇤))/n. Hence, we can apply Chebyshev’s

Inequality (A.75) to get:

P

✓
|⌫ 0n(A

⇤)� ⌫(A⇤)| <
⌧

2

���� Z1, . . . , Zn

◆
� 1�

4⌫(A⇤)(1� ⌫(A⇤))

n⌧2
� 1�

1

n⌧2
�

1

2
, (A.165)

for n � 2⌧�2. Now,

P

✓
sup
A2A

|⌫ 0n(A)� ⌫n(A)| >
⌧

2

���� Z1, . . . , Zn

◆
� P

✓
|⌫ 0n(A

⇤)� ⌫n(A
⇤)| >

⌧

2

���� Z1, . . . , Zn

◆

� I|⌫n(A⇤)�⌫(A⇤)|>⌧ P

✓
|⌫ 0n(A

⇤)� ⌫(A⇤)| <
⌧

2

���� Z1, . . . , Zn

◆
�

1

2
I|⌫n(A⇤)�⌫(A⇤)|>⌧ .

(A.166)

where the second inequality follows from the fact that |a � c| > ⌧ and |b � c| < ⌧ /2 imply that

|a� b| > ⌧ /2. Integrating (A.166) on both sides with respect to Z1, . . . , Zn and using (A.164) yields

P

✓
sup
A2A

|⌫ 0n(A)� ⌫n(A)| >
⌧

2

◆
�

1

2
P

✓
sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
, (A.167)

which completes the first part of the proof. Next, define

⌫̃ 0n(A) =
1

n

nX

i=1

�iIZ0
i2A (A.168)

for A 2 A. The key observation at this point is that supA2A |⌫ 0n(A)�⌫n(A)| has the same distribution

as supA2A |⌫̃ 0n(A)� ⌫̃n(A)|, which can be seen by conditioning on �1, . . . ,�n. Hence,

P

✓
sup
A2A

|⌫ 0n(A)� ⌫n(A)| >
⌧

2

◆
= P

✓
sup
A2A

|⌫̃ 0n(A)� ⌫̃n(A)| >
⌧

2

◆

 P

✓⇢
sup
A2A

|⌫̃ 0n(A)| >
⌧

4

�[⇢
sup
A2A

|⌫̃n(A)| >
⌧

4

�◆

 P

✓
sup
A2A

|⌫̃ 0n(A)| >
⌧

4

◆
+ P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

◆
= 2P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

◆
,

(A.169)

where the first inequality follows from the fact that |a� b| > ⌧ /2 implies that |a| > ⌧ /4 or |b| > ⌧ /4,

while the second inequality is an application of the Union Bound (A.10). Combining (A.167) and

(A.169) proves the lemma. ⇧

Equipped with the Symmetrization Lemma, the proof of the following theorem is fairly simple, but

also quite instructive.

Theorem A.20. (General Vapnik-Chervonenkis Theorem.) Regardless of the measure ⌫,

P

✓
sup
A2A

|⌫n(A)� ⌫(A)| > ⌧

◆
 8S(A, n)e�n⌧

2
/32, for all ⌧ > 0 . (A.170)

where S(A, n) is the nth shatter coe�cient of A, defined in (8.14).

326 APPENDIX A. APPENDIX

Proof. For fixed Z1 = z1, . . . , Zn = zn, consider the binary vector (Izi2A, . . . , Izi2A), as A ranges

over A. There are of course a maximum of 2n distinct values that this vector can take on. But, for

a given A, this number may be smaller than 2n. Indeed, this is the number NA(z1, . . . , zn), defined

in (8.13) — by definition, this number must be smaller than the shatter coe�cient S(A, n), for

any choice of z1, . . . , zn. Notice that ⌫̃n(A), conditioned on Z1 = z1, . . . , Zn = zn, is still a random

variable, through the random signs �1, . . . ,�n. Since this random variable is a function of the vector

(Izi2A, . . . , Izi2A), the number of values it can take as A ranges over A is also bounded by S(A, n).

Therefore, supA2A |⌫̃n(A)| turns out to be a maximum of at most S(A, n) values, so that one can

employ the Union Bound (A.10) as follows:

P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

���� Z1, . . . , Zn

◆
= P

[

A2A

n
|⌫̃n(A)| >

⌧

4

o ���� Z1, . . . , Zn

!



X

A2A
P

✓
|⌫̃n(A)| >

⌧

4

���� Z1, . . . , Zn

◆
 S(A, n) sup

A2A
P

✓
|⌫̃n(A)| >

⌧

4

���� Z1, . . . , Zn

◆
,

(A.171)

with the understanding that the union, sum, and suprema are finite. Now we apply Hoe↵ding’s

Inequality (Theorem A.14) to bound the probability P

✓
|⌫̃n(A)| >

⌧

4

���� Z1, . . . , Zn

◆
. Conditioned on

Z1 = z1, . . . , Zn = zn, ⌫̃n(A) =
P

n

i=1
�iIA(zi 2 A) is a sum of independent zero-mean random

variables, which are bounded in the interval [�1, 1] (they are not identically-distributed, but this is

not necessary for application of Theorem A.14). Hoe↵ding’s Inequality then yields:

P

✓
|⌫̃n(A)| >

⌧

4

���� Z1, . . . , Zn

◆
 2e�n⌧

2
/32 , for all ⌧ > 0 . (A.172)

Applying (A.171) and integrating on both sides with respect to Z1, . . . , Zn yields

P

✓
sup
A2A

|⌫̃n(A)| >
⌧

4

◆
 2S(A, n)e�n⌧

2
/32 , for all ⌧ > 0 . (A.173)

Now, if n < 2⌧�2, the inequality in (A.170) is trivial. If n � 2⌧�2, we can apply Lemma A.2 and

get the desired result. ⇧

If S(A, n) grows polynomially with n (this is the case if the VC dimension of A is finite), then, by

an application of Theorem A.8, (A.170) yields the uniform LLN: supA2A |⌫n(A)� ⌫(A)|
a.s.
�! 0.

Specializing Theorem A.20 to the classification case yields the required proof.

Proof of Theorem 8.2

Consider the probability space (Rd+1,Bd+1, PX,Y), where PX,Y is the joint feature-label probability

measure constructed in Section 2.6.3. Let the i.i.d. training data be Sn = {(X1, Y1), . . . , (Xn, Yn)}.

Given a family of classifiers C, apply Theorem A.20 with ⌫ = PX,Y , Zi = (Xi, Yi) ⇠ PX,Y , for

i = 1, . . . , n, and ÃC containing all set of the kind

Ã = { (X) 6= Y } = { (X) = 1, Y = 0} [{ (X) = 0, Y = 1} , (A.174)

A7. PROOF OF CONVERGENCE OF THE EM ALGORITHM 327

for each 2 C (the sets Ã are Borel since classifiers are measurable functions). Then ⌫(Ã) =

"[], ⌫n(Ã) = "̂[], and sup
Ã 2ÃC

|⌫n(Ã) � ⌫(Ã)| = sup 2C |"̂[] � "[]|. It remains to show

that S(ÃC , n) = S(AC , n), where AC = {A | 2 C}, and A is defined in (8.23). First note

that there is a one-to-one correspondence between ÃC and AC , since, for each 2 C, we have

Ã = A ⇥ {0}[Ac

⇥ {1}. Given a set of points {x1, . . . , xn}, if k points are picked by A , then k

points can be picked by Ã in the set {(x1, 1), . . . , (xn, 1)}; hence S(AC , n)  S(ÃC , n). On the other

hand, given a set of points {(x1, 0), . . . , (xn0 , 0), (xn0+1, 1), . . . , (xn0+n1 , 1)}, suppose that Ã picks

out the subset {(x1, 0), . . . , (xl, 0), (xn0+1, 1), . . . , (xn0+m, 1)} (the sets can be unambiguously written

this way, since order does not matter). Then A picks out the subset {(x1, . . . , xl, xn0+m+1, xn0+n1},

among the set of points {x1, . . . , xn0+n1}, and the two subsets determine each other uniquely, so

S(ÃC , n)  S(AC , n) Thus, S(ÃC , n) = S(AC , n). (Thus, the VC dimensions also agree: VÃC
= VAC .)

A7 Proof of Convergence of the EM Algorithm

Here we present a proof of convergence of the general Expectation-Maximization algorithm to a

local maximum of the log-likelihood function.

Let X, Z, ✓ 2 ⇥be the observed data, the hidden variables, and the vector of model, respectively.

meters. The EM method relies on a clever application of Jensen’s inequality to obtain the following

lower bound on the “incomplete” log-likelihood L(✓) = ln p✓(X):

B(✓) =
X

Z

q(Z) ln
p✓(Z,X)

q(Z)
 ln

X

Z

q(Z)
p✓(Z,X)

q(Z)
= ln

X

Z

p✓(Z,X) = L(✓) , (A.175)

for all ✓ 2 ✓, where q(Z) is an arbitrary probability distribution to be specified shortly. The

inequality follows directly from concavity of the logarithm function and Jensen’s inequality.

One would like to maximize the lower bound function B(✓) so that it touches L(✓), at a value

✓ = ✓(m). We show by inspection that the choice q(Z;✓(m)) = p✓(m)(Z | X) accomplishes this.

First we replace this choice of q(Z) in (A.175) to obtain:

B(✓,✓(m)) =
X

Z

p✓(m)(Z | X) ln
p✓(Z,X)

p✓(m)(Z | X)
. (A.176)

Now we verify that indeed this lower bound touches the log-likelihood at ✓ = ✓(m):

B(✓(m),✓(m)) =
X

Z

p✓(m)(Z | X) ln
p✓(m)(Z,X)

p✓(m)(Z | X)
=
X

Z

p✓(m)(Z | X) ln p✓(m)(X)

= ln p✓(m)(X)
X

Z

p✓(m)(Z | X) = L(✓(m)) .

(A.177)

328 APPENDIX A. APPENDIX

The main idea behind EM is that choosing a value of ✓ = ✓(m+1) that increases B(✓,✓(m)) over its

previous value B(✓(m),✓(m)) will also increase L(✓) over its previous value L(✓(m)). This can be

proved as follows:

B(✓(m+1),✓(m)) � B(✓(m),✓(m)) =
X

Z

p✓(m)(Z | X) ln
p✓(m+1)(Z,X)

p✓(m)(Z,X)

=
X

Z

p✓(m)(Z | X) ln
p✓(m+1)(Z | X)

p✓(m)(Z | X)
+
X

Z

p✓(m)(Z | X) ln
p✓(n+1)(X)

p✓(m)(X)

= �D(p✓(m)(Z | X) || p✓(m+1)(Z | X)) + L(✓(m+1))� L(✓(m)) ,

(A.178)

where D(p || q) is the Kullback-Leibler distance between two probability mass functions. The KL

distance is always nonnegative [Kullback, 1968], with equality if and only if p = q with probability 1.

We conclude that

B(✓(m+1),✓(m))�B(✓(m),✓(m))  L(✓(m+1))� L(✓(m)) , (A.179)

and that setting

✓(m+1) = argmax
✓2✓

B(✓,✓(m)) , (A.180)

will increase the log-likelihood L(✓), unless one is already at a local maximum of L(✓).2 This fact

is graphically represented in Figure A.4. This proves the eventual convergence of the EM procedure

to a local maximum of L(✓). Now,

B(✓,✓(m)) =
X

Z

p✓(m)(Z | X) ln p✓(Z,X) �

X

Z

p✓(m)(Z | X) ln p✓(m)(Z | X) . (A.181)

Since the second term in the previous equation does not depend on ✓, the maximization in (A.180)

can be accomplished by maximizing the first term only:

Q(✓,✓(m)) =
X

Z

ln p✓(Z,X) p✓(m)(Z | X) = E✓(m) [ln p✓(Z,X) | X] . (A.182)

The unknown hidden variable Z is “averaged out” by the expectation.

The resulting EM procedure consists of picking an initial guess ✓ = ✓(0) and iterating two steps:

• E-Step: Compute Q(✓,✓(m))

• M-Step: Find ✓(m+1) = argmax✓ Q(✓,✓(m))

for n = 0, 1, . . . until the improvement in the log-likelihood | lnL(✓(m+1))� lnL(✓(m))| falls below a

pre-specified positive value.

2
In fact, just selecting ✓(m+1)

such that B(✓(m+1)
,✓(m)

)�B(✓(m)
,✓(m)

) > 0 will do — this is called “Generalized

Expectation Maximization”

A8. DATA SETS USED IN THE BOOK 329

Figure A.4: The lower bound B(✓,✓(m)) touches the log-likelihood L(✓) at ✓ = ✓(m). Maximizing

B(✓,✓(m)) with respect to ✓ to obtain ✓(m+1) increases L(✓). Repeating the process leads to eventual

convergence to a local maximum of L(✓). (Adapted from Figure 1 of Minka [1998].)

.

A8 Data Sets Used in the Book

In this section we describe the synthetic and real data sets that are used throughout the book. The

real data sets can be downloaded from the book website.

A8.1 Synthetic Data

We employ a general multivariate Gaussian model to generate synthetic data, which consists of

blocked covariance matrices of the form

⌃d⇥d =

2

66664

⌃l1⇥l1 0 · · · 0

0 ⌃l2⇥l2 · · · 0
...

...
. . .

...

0 0 · · · ⌃lk⇥lk

3

77775
(A.183)

where l1 + · · · lk = d. The features are thus clustered into k independent groups. If k = d, then all

features are independent. The individual covariance matrices⌃ li⇥li could be arbitrary, but here we

will consider a simple parametric form

⌃li⇥li(�
2

i , ⇢i) = �2i

2

66664

1 ⇢i · · · ⇢i

⇢i 1 · · · ⇢i
...

...
. . .

...

⇢i ⇢i · · · 1

3

77775
(A.184)

330 APPENDIX A. APPENDIX

for i = 1, . . . , k, where �1 < ⇢i < 1. Hence, the features within each block have the same variance

�2
i
and are all correlated with the same correlation coe�cient ⇢i.

The class mean vectors µ0 and µ1 and prior probabilities c0 = P (Y = 0) and c1 = P (Y = 1) are

arbitrary. Heteroskedastic Gaussian models result from specifying the class-conditional covariance

matrices⌃ 0 and⌃ 1 separately. “Noisy features” can be obtained by matching mean components

across classes and matching corresponding singleton blocks in the covariance matrices. Each noisy

feature is an independent feature with the same mean and variance across the classes.

The python script app synth data.py generates sample data from this model.

A8.2 Dengue Fever Prognosis Data Set

This is gene-expression microarray data from a dengue fever diagnosis study performed in the

Northeast of Brazil. The primary purpose of the study was to be able to predict the ultimate

clinical outcome of dengue (whether the benign classical form or the dangerous hemorrhagic fever)

from gene expression profiles of peripheral blood mononuclear cells (PBMCs) of patients in the early

days of fever. The study is reported in Nascimento et al. [2009]. See also Example 1.1. The data

consist of 26 training points measured on 1981 genes and three class labels, corresponding to: 8

classical dengue fever (DF) patients, 10 dengue hemorrhagic fever (DHF) patients, and 8 febrile

non-dengue (ND) patients, as classified by an experienced clinician. This is a retrospective study,

meaning that the patients were tracked and their outcomes verified by a clinician, but their status

could not be determined clinically at the time the data was obtained, which was within one week

of the start of symptoms.

A8.3 Breast Cancer Prognosis Data Set

This is gene-expression microarray data from the breast cancer prognosis study conducted in the

Netherlands and reported in van de Vijver et al. [2002]. The data set consists of 295 training points

of dimensionality 70 and two class labels. The feature vectors are normalized gene-expression profiles

from cells harvested from 295 beast tumor samples in a retrospective study, meaning that patients

were tracked over the years and their outcomes recorded. Using this clinical information, the authors

labeled the tumor samples into two classes: the “good prognosis” group (label 1) were disease-free

for at least five years after first treatment, whereas the “bad prognosis” group developed distant

metastasis within the first five years. Of the 295 patients, 216 belong to the “good-prognosis” class,

whereas the remaining 79 belong to the “poor- prognosis” class.

A8. DATA SETS USED IN THE BOOK 331

A8.4 Stacking Fault Energy Data Set

This data set contains the experimentally recorded values of the stacking fault energy (SFE) in

austenitic stainless steel specimens with di↵erent chemical compositions; see Yonezawa et al. [2013].

The SFE is a microscopic property related to the resistance of austenitic steels. High-SFE steels

are less likely to fracture under strain and may be desirable in certain applications. The data set

contains 17 features corresponding to the atomic element content of 473 steel specimens and the

continuous-valued measured SFE for each.

A8.5 Soft Magnetic Alloy Data Set

This is a data set on Fe-based nanocrystalline soft magnetic alloys, which is part of on-going

work [Wang et al., 2020]. This data set records the atomic composition and processing parame-

ters along with several di↵erent electromagnetic properties for a large number of magnetic alloys.

We will be particularly interested in the magnetic coercivity as the property to be predicted. Larger

values of coercivity mean that the magnetized material has a wider hysteresis curve and can with-

stand larger magnetic external fields without losing its own magnetization. By contrast, small values

of coercivity mean that a material can lose its magnetization quickly. Large-coercivity materials are

therefore ideal to make permanent magnets, for example.

A8.6 Ultrahigh Carbon Steel Data Set

This is the Carnegie Mellon University Ultrahigh Carbon Steel (CMU-UHCS) dataset [Hecht et al.,

2017; DeCost et al., 2017]. This data set consists of 961 high-resolution 645 ⇥ 484 images of steel

samples subjected to a variety of heat treatments. The images are micrographs obtained by scanning

electron microscopy (SEM) at several di↵erent magnifications. There are a total of seven di↵erent

labels, corresponding to di↵erent phases of steel resulting from di↵erent thermal processing (num-

ber of images in parenthesis): spheroidite (374), carbide network (212), pearlite (124), pearlite +

spheroidite (107), spheroidite+Widmanstätten (81), martensite (36), and pearlite+Widmanstätten

(27). The main goal is to be able to predict the label of a new steel sample given its micrograph.

List of Symbols

X = (X1, . . . , Xd) 2 Rd feature vector

Y 2 {0, 1} target

ci = P (Y = i), i = 0, 1 class prior probabilities

PXY feature-target distribution

p(x) feature vector density (if it exists)

pi(x) = p(x | Y = i), i = 0, 1 class-conditional densities (if they exist)

⌘(x) = P (Y = 1 | X = x) posterior-probability function

 : Rd
! {0, 1} classifier

" = "[] = P ((X) 6= Y) classifier error rate

 ⇤, "⇤ Bayes classifier and Bayes error

"i = P ((X) = 1� i | Y = i), i = 0, 1 population-specific true error rates

Dn : Rd
! R sample-based discriminant

µi, i = 0, 1 class means

�2
i
, i = 0, 1 class variances

⌃i, i = 0, 1 class covariance matrices

�(x) = (1/2⇡)
R
x

�1 e�u
2
du cdf of a N(0, 1) Gaussian random variable

Sn = {(X1, Y1), . . . , (Xn, Yn)} sample training data

n, n0, n1 = n� n0 total and population-specific sample sizes

 n : Sn 7! n classification rule

 n : Rd
! {0, 1} classifier designed from training data

"n = "[n] = P (n(X) 6= Y | Sn) error rate of sample-based classifier

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0

333

https://doi.org/10.1007/978-3-030-27656-0

334 APPENDIX A. APPENDIX

✓, ✓̂ parameter vector and estimator

k(x,x0) kernel

�i, i = 1, . . . , d Lagrange multipliers

LP , LD primal and dual Lagrangians

C set of classification rules

VC , S(C, n) VC dimension and shatter coe�cients

pi, qi, Ui, Vi, i = 1, . . . , b population-specific bin probabilities and counts

⌅n : (n, Sn, ⇠) 7! "̂n error estimation rule

"̂n error estimator for mixture sample

Bias("̂n), Vardev("̂n), RMS("̂n) bias, deviation variance, root mean square error

Sm = {(Xt

i
, Y t

i
); i = 1, . . . ,m} independent test sample

"̂n,m test-set error estimator

"̂ rn resubstitution error estimator

"̂ cv(k)n k-fold cross-validation error estimator

"̂ ln leave-one-out error estimator

L[f] regression error of f

F �-algebra

B Borel �-algebra

µ,⌫ measures

� Lebesgue measure

Xn

a.s.
�! X almost-sure convergence (with probability 1) of Xn to X

Xn

L
p

�! X Lp convergence of Xn to X

Xn

P
�! X convergence of Xn to X in probability

Xn

D
�! X convergence of Xn to X in distribution

LIST i oOF SYMBOLS

Bibliography

Afsari, B., Braga-Neto, U., and Geman, D. (2014). Rank discriminants for predicting phenotypes

from rna expression. Annals of Applied Statistics, 8(3):1469–1491.

Aitchison, J. and Dunsmore, I. (1975). Statistical Predication Analysis. Cambridge University Press,

Cambridge, UK.

Alberts, B., Bray, D., Lewis, J., Ra↵, M., Roberts, K., and Watson, J. (2002). Molecular Biology of

the Cell. Garland, 4th edition.

Alvarez, S., Diaz-Uriarte, R., Osorio, A., Barroso, A., Melchor, L., Paz, M., Honrado, E., Rodriguez,

R., Urioste, M., Valle, L., Diez, O., Cigudosa, J., Dopazo, J., Esteller, M., and Benitez, J. (2005).

A predictor based on the somatic genomic changes of the brca1/brca2 breast cancer tumors

identifies the non-brca1/brca2 tumors with brca1 promoter hypermethylation. Clin Cancer Res,

11(3):1146–1153.

Ambroise, C. and McLachlan, G. (2002). Selection bias in gene extraction on the basis of microarray

gene expression data. Proc. Natl. Acad. Sci., 99(10):6562–6566.

Anderson, T. (1951). Classification by multivariate analysis. Psychometrika, 16:31–50.

Anderson, T. (1973). An asymptotic expansion of the distribution of the studentized classification

statistic W. The Annals of Statistics, 1:964–972.

Anderson, W. (1984). An Introduction to Multivariate Statistical Analysis. Wiley, New York, 2nd

edition.

Bartlett, P., Boucheron, S., and Lugosi, G. (2002). Model selection and error estimation. Machine

Learning, 48:85–113.

Bertsekas, D. (1995). Nonlinear Programming. Athena Scientific.

Billingsley, P. (1995). Probability and Measure. John Wiley, New York City, New York, third edition.

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer, New York.

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0

335

https://doi.org/10.1007/978-3-030-27656-0

336 BIBLIOGRAPHY

Boser, B., Guyon, M., and Vapnik, V. (1992). A training algorithm for optimal margin classifiers.

In Proceedings of the Workshop on Computational Learning Theory.

Bowker, A. (1961). A representation of hotelling’s t2 and anderson’s classification statistic w in

terms of simple statistics. In Solomon, H., editor, Studies in Item Analysis and Prediction, pages

285–292. Stanford University Press.

Bowker, A. and Sitgreaves, R. (1961). An asymptotic expansion for the distribution function of the

w-classification statistic. In Solomon, H., editor, Studies in Item Analysis and Prediction, pages

292–310. Stanford University Press.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Braga-Neto, U. (2007). Fads and fallacies in the name of small-sample microarray classification.

IEEE Signal Processing Magazine, 24(1):91–99.

Braga-Neto, U., Arslan, E., Banerjee, U., and Bahadorinejad, A. (2018). Bayesian classification of

genomic big data. In Sedjic, E. and Falk, T., editors, Signal Processing and Machine Learning for

Biomedical Big Data. Chapman and Hall/CRC Press.

Braga-Neto, U. and Dougherty, E. (2004). Bolstered error estimation. Pattern Recognition,

37(6):1267–1281.

Braga-Neto, U. and Dougherty, E. (2015). Error Estimation for Pattern Recognition. Wiley, New

York.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression Trees.

Wadsworth.

Bryson, A. and Ho, Y.-C. (1969). Applied Optimal Control: Optimization, Estimation, and Control.

Blaisdell Publishing Company.

Buduma, N. and Locascio, N. (2017). Fundamentals of deep learning: Designing next-generation

machine intelligence algorithms. O’Reilly Media, Inc.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining

and knowledge discovery, 2(2):121–167.

Casella, G. and Berger, R. (2002). Statistical Inference. Duxbury, Pacific Grove, CA, 2nd edition.

BIBLIOGRAPHY 337

Castro, R. (2020). Statistical Learning Theory Lecture Notes. Accessed: Jun 12, 2020.

https://www.win.tue.nl/⇠rmcastro/2DI70/files/2DI70 Lecture Notes.pdf.

Chapelle, O., Scholkopf, B., and Zien, A., editors (2010). Semi-Supervised Learning. MIT Press.

Cherkassky, V. and Ma, Y. (2003). Comparison of model selection for regression. Neural computation,

15(7):1691–1714.

Cherkassky, V., Shao, X., Mulier, F. M., and Vapnik, V. N. (1999). Model complexity control for

regression using vc generalization bounds. IEEE transactions on Neural Networks, 10(5):1075–

1089.

Chernick, M. (1999). Bootstrap Methods: A Practitioner’s Guide. John Wiley & Sons, New York.

Chung, K. L. (1974). A Course in Probability Theory, Second Edition. Academic Press, New York

City, New York.

Cover, T. (1969). Learning in pattern recognition. In Watanabe, S., editor, Methodologies of Pattern

Recognition, pages 111–132. Academic Press, New York, NY.

Cover, T. and Hart, P. (1967). Nearest-neighbor pattern classification. IEEE Trans. on Information

Theory, 13:21–27.

Cover, T. and van Campenhout, J. (1977). On the possible orderings in the measurement selection

problem. IEEE Trans. on Systems, Man, and Cybernetics, 7:657–661.

Cover, T. M. (1974). The best two independent measurements are not the two best. IEEE Trans-

actions on Systems, Man, and Cybernetics, SMC-4(1):116–117.

Cramér, H. (1999). Mathematical methods of statistics, volume 43. Princeton university press.

Cressie, N. (1991). Statistics for Spatial Data. John Wiley, New York City, New York.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314.

Dalton, L. and Dougherty, E. (2011a). Application of the bayesian mmse error estimator for clas-

sification error to gene-expression microarray data. IEEE Transactions on Signal Processing,

27(13):1822–1831.

Dalton, L. and Dougherty, E. (2011b). Bayesian minimum mean-square error estimation for classi-

fication error part I: Definition and the bayesian mmse error estimator for discrete classification.

IEEE Transactions on Signal Processing, 59(1):115–129.

https://www.win.tue.nl/~rmcastro/2DI70/files/2DI70_Lecture_Notes.pdf.

338 BIBLIOGRAPHY

Dalton, L. and Dougherty, E. (2011c). Bayesian minimum mean-square error estimation for clas-

sification error part II: Linear classification of gaussian models. IEEE Transactions on Signal

Processing, 59(1):130–144.

Dalton, L. and Dougherty, E. (2012a). Exact mse performance of the bayesian mmse estimator for

classification error part i: Representation. IEEE Transactions on Signal Processing, 60(5):2575–

2587.

Dalton, L. and Dougherty, E. (2012b). Exact mse performance of the bayesian mmse estimator for

classification error part ii: Performance analysis and applications. IEEE Transactions on Signal

Processing, 60(5):2588–2603.

Dalton, L. and Dougherty, E. (2013). Optimal classifiers with minimum expected error within a

bayesian framework – part I: Discrete and gaussian models. Pattern Recognition, 46(5):1301–1314.

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and roc curves. In

Proceedings of the 23rd international conference on Machine learning, pages 233–240.

De Leeuw, J. and Mair, P. (2009). Multidimensional scaling using majorization: Smacof in r. Journal

of Statistical Software, 31(3).

DeCost, B. L., Francis, T., and Holm, E. A. (2017). Exploring the microstructure manifold: image

texture representations applied to ultrahigh carbon steel microstructures. Acta Materialia, 133:30–

40.

Dempster, A. D., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the EM algorithm (with Discussion). Journal of the Royal Statistical Society, Series B,

39:1–38.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,

pages 248–255. Ieee.

Devroye, L., Gyorfi, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition.

Springer, New York.

Devroye, L. and Wagner, T. (1976). Nonparametric discrimination and density estimation. Technical

Report 183, Electronics Research Center, University of Texas, Austin, TX.

Dougherty, E. R. and Brun, M. (2004). A probabilistic theory of clustering. Pattern Recognition,

37(5):917–925.

Duda, R., Hart, P., and Stork, G. (2001). Pattern Classification. John Wiley & Sons, New York,

2nd edition.

BIBLIOGRAPHY 339

Dudley, R. M. (1978). Central limit theorems for empirical measures. The Annals of Probability,

pages 899–929.

Dudoit, S. and Fridlyand, J. (2002). A prediction-based resampling method for estimating the

number of clusters in a dataset. Genome biology, 3(7):research0036–1.

Dudoit, S., Fridlyand, J., and Speed, T. (2002). Comparison of discrimination methods for the clas-

sification of tumors using gene expression data. Journal of the American Statistical Association,

97(457):77–87.

Efron, B. (1979). Bootstrap methods: Another look at the jacknife. Annals of Statistics, 7:1–26.

Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation.

Journal of the American Statistical Association, 78(382):316–331.

Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: The .632+ bootstrap

method. Journal of the American Statistical Association, 92(438):548–560.

Elasho↵, J. D., Elasho↵, R., and COLDMAN, G. (1967). On the choice of variables in classification

problems with dichotomous variables. Biometrika, 54(3-4):668–670.

Esfahani, S. and Dougherty, E. (2014). E↵ect of separate sampling on classification accuracy. Bioin-

formatics, 30(2):242–250.

Evans, M., Hastings, N., and Peacock, B. (2000). Statistical Distributions. Wiley, New York, 3rd

edition.

Fei-Fei, L., Deng, J., Russakovski, O., Berg, A., and Li, K. (2010). ImageNet Summary and Statis-

tics. http://www.image-net.org/about-stats. Accessed: Jan 2, 2020.

Fisher, R. (1935). The fiducial argument in statistical inference. Ann. Eugen., 6:391–398.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugen., 7(2):179–

188.

Fix, E. and Hodges, J. (1951). Nonparametric discrimination: Consistency properties. Technical

Report 4, USAF School of Aviation Medicine, Randolph Field, TX. Project Number 21-49-004.

Foley, D. (1972). Considerations of sample and feature size. IEEE Transactions on Information

Theory, IT-18(5):618–626.

Freund, Y. (1990). Boosting a weak learning algorithm by majority. In Proc. Third Annual Workshop

on Computational Learning Theory, pages 202–216.

http://www.image-net.org/about-stats

340 BIBLIOGRAPHY

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition una↵ected by shift in position. Biological cybernetics, 36(4):193–202.

Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural networks.

Neural networks, 2(3):183–192.

Galton, F. (1886). Regression towards mediocrity in hereditary stature. The Journal of the Anthro-

pological Institute of Great Britain and Ireland, 15:246–263.

Geisser, S. (1964). Posterior odds for multivariate normal classification. Journal of the Royal

Statistical Society: Series B, 26(1):69–76.

Geman, D., d’Avignon, C., Naiman, D., Winslow, R., and Zeboulon, A. (2004). Gene expression

comparisons for class prediction in cancer studies. In Proceedings of the 36th Symposium on the

Interface: Computing Science and Statistics, Baltimore, MD.

Girosi, F. and Poggio, T. (1989). Representation properties of networks: Kolmogorov’s theorem is

irrelevant. Neural Computation, 1(4):465–469.

Glick, N. (1973). Sample-based multinomial classification. Biometrics, 29(2):241–256.

Glick, N. (1978). Additive estimators for probabilities of correct classification. Pattern Recognition,

10:211–222.

Groenen, P. J., van de Velden, M., et al. (2016). Multidimensional scaling by majorization: A

review. Journal of Statistical Software, 73(8):1–26.

Hamamoto, Y., Uchimura, S., Matsunra, Y., Kanaoka, T., and Tomita, S. (1990). Evaluation of the

branch and bound algorithm for feature selection. Pattern Recognition Letters, 11:453–456.

Hanczar, B., Hua, J., and Dougherty, E. (2007). Decorrelation of the true and estimated classifier

errors in high-dimensional settings. EURASIP Journal on Bioinformatics and Systems Biology,

2007. Article ID 38473, 12 pages.

Hand, D. (1986). Recent advances in error rate estimation. Pattern Recognition Letters, 4:335–346.

Harter, H. (1951). On the distribution of wald’s classification statistics. Ann. Math. Statist., 22:58–

67.

Hassan, M. (2018). VGG16 convolutional network for classification and detection.

https://neurohive.io/en/popular-networks/vgg16/. Accessed: Jan 1, 2020.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer.

https://neurohive.io/en/popular-networks/vgg16/

BIBLIOGRAPHY 341

Hecht, M. D., Picard, Y. N., and Webler, B. A. (2017). Coarsening of inter-and intra-granular

proeutectoid cementite in an initially pearlitic 2c-4cr ultrahigh carbon steel. Metallurgical and

Materials Transactions A, 48(5):2320–2335.

Hills, M. (1966). Allocation rules and their error rates. Journal of the Royal Statistical Society.

Series B (Methodological), 28(1):1–31.

Hirst, D. (1996). Error-rate estimation in multiple-group linear discriminant analysis. Technomet-

rics, 38(4):389–399.

Hoe↵ding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Association, 58:13–30.

Horn, R. and Johnson, C. (1990). Matrix Analysis. Cambridge University Press, New York, NY.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366.

Hua, J., Tembe, W., and Dougherty, E. (2009). Performance of feature-selection methods in the

classification of high-dimension data. Pattern Recognition, 42:409–424.

Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on

Information Theory, IT-14(1):55–63.

Izmirlian, G. (2004). Application of the random forest classification algorithm to a SELDI-TOF

proteomics study in the setting of a cancer prevention trial. Ann. NY. Acad. Sci., 1020:154–174.

Jain, A. and Zongker, D. (1997). Feature selection: Evaluation, application, and small sample

performance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(2):153–158.

Jain, A. K., Dubes, R. C., et al. (1988). Algorithms for clustering data, volume 6. Prentice hall

Englewood Cli↵s, NJ.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning,

volume 112. Springer.

Jazwinski, A. H. (2007). Stochastic processes and filtering theory. Courier Corporation.

Je↵reys, H. (1961). Theory of Probability. Oxford University Press, Oxford, UK, 3rd edition.

Jiang, X. and Braga-Neto, U. (2014). A naive-bayes approach to bolstered error estimation in

high-dimensional spaces. Proceedings of the IEEE International Workshop on Genomic Signal

Processing and Statistics (GENSIPS’2014), Atlanta, GA.

342 BIBLIOGRAPHY

John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant features and the subset selection problem.

In Machine Learning Proceedings 1994, pages 121–129. Elsevier.

John, S. (1961). Errors in discrimination. Ann. Math. Statist., 32:1125–1144.

Kaariainen, M. (2005). Generalization error bounds using unlabeled data. In Proceedings of

COLT’05.

Kaariainen, M. and Langford, J. (2005). A comparison of tight generalization bounds. In Proceedings

of the 22nd International Conference on Machine Learning. Bonn, Germany.

Kabe, D. (1963). Some results on the distribution of two random matrices used in classification

procedures. Ann. Math. Statist., 34:181–185.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data: an introduction to cluster

analysis, volume 344. John Wiley & Sons.

Kim, S., Dougherty, E., Barrera, J., Chen, Y., Bittner, M., and Trent, J. (2002). Strong feature sets

from small samples. Computational Biology, 9:127–146.

Knights, D., Costello, E. K., and Knight, R. (2011). Supervised classification of human microbiota.

FEMS microbiology reviews, 35(2):343–359.

Kohane, I., Kho, A., and Butte, A. (2003). Microarrays for an Integrative Genomics. MIT Press,

Cambridge, MA.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection. In Proc. of Fourteenth International Joint Conference on Artificial Intelligence (IJCAI),

pages 1137–1143, Montreal, CA.

Kohavi, R. and John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence,

97(1–2):273–324.

Kolmogorov, A. (1933). Grundbegri↵e der Wahrscheinlichkeitsrechnung. Springer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolu-

tional neural networks. In Advances in neural information processing systems, pages 1097–1105.

Kudo, M. and Sklansky, J. (2000). Comparison of algorithms that select features for pattern classi-

fiers. Pattern Recognition, 33:25–41.

Kullback, S. (1968). Information Theory and Statistics. Dover, New York.

Lachenbruch, P. (1965). Estimation of error rates in discriminant analysis. PhD thesis, University

of California at Los Angeles, Los Angeles, CA.

BIBLIOGRAPHY 343

Lachenbruch, P. and Mickey, M. (1968). Estimation of error rates in discriminant analysis. Techno-

metrics, 10:1–11.

LeCun, Y., Bottou, L., Bengio, Y., Ha↵ner, P., et al. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Linnaeus, C. (1758). Systema naturae. Impensis Laurentii Salvii, 10th edition.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory,

28(2):129–137.

Lockhart, D., Dong, H., Byrne, M., Follettie, M., Gallo, M., Chee, M., Mittmann, M., Wang, C.,

Kobayashi, M., Horton, H., and Brown, E. (1996). Expression monitoring by hybridization to

high-density oligonucleotide arrays. Nature Biotechnology, 14(13):1675–1680.

Loève, M. (1977). Probability Theory I. Springer.

Lorentz, G. G. (1976). The 13th problem of hilbert. In Proceedings of Symposia in Pure Mathematics,

volume 28, pages 419–430. American Mathematical Society.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks:

A view from the width. In Advances in neural information processing systems, pages 6231–6239.

Lugosi, G. and Pawlak, M. (1994). On the posterior-probability estimate of the error rate of non-

parametric classification rules. IEEE Transactions on Information Theory, 40(2):475–481.

Mallows, C. L. (1973). Some comments on c p. Technometrics, 15(4):661–675.

Marguerat, S. and Bahler, J. (2010). Rna-seq: from technology to biology. Cellular and molecular

life science, 67(4):569–579.

Martins, D., Braga-Neto, U., Hashimoto, R., Bittner, M., and Dougherty, E. (2008). Intrinsically

multivariate predictive genes. IEEE Journal of Selected Topics in Signal Processing, 2(3):424–439.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5:115–133.

McFarland, H. and Richards, D. (2001). Exact misclassification probabilities for plug-in normal

quadratic discriminant functions. i. the equal-means case. Journal of Multivariate Analysis, 77:21–

53.

McFarland, H. and Richards, D. (2002). Exact misclassification probabilities for plug-in normal

quadratic discriminant functions. ii. the heterogeneous case. Journal of Multivariate Analysis,

82:299–330.

344 BIBLIOGRAPHY

McLachlan, G. (1976). The bias of the apparent error in discriminant analysis. Biometrika,

63(2):239–244.

McLachlan, G. (1987). Error rate estimation in discriminant analysis: recent advances. In Gupta,

A., editor, Advances in Multivariate Analysis. D. Reidel, Dordrecht.

McLachlan, G. (1992). Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York.

McLachlan, G. and Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley-Interscience,

New York.

Minka, T. (1998). Expectation maximization as lower bound maximization. Tech-

nical report, Microsoft Research. Tutorial published on the web at http://www-

white.media.mit.edu/tpminka/papers/em.html.

Moran, M. (1975). On the expectation of errors of allocation associated with a linear discriminant

function. Biometrika, 62(1):141–148.

Murphy, K. (2012a). Machine Learning: A Probabilistic Perspective. MIT Press.

Murphy, K. P. (2012b). Machine learning: a probabilistic perspective. MIT press.

Narendra, P. and Fukunaga, K. (1977). A branch and bound algorithm for feature subset selection.

IEEE Trans. on Computers, 26(9):917–922.

Nascimento, E., Abath, F., Calzavara, C., Gomes, A., Acioli, B., Brito, C., Cordeiro, M., Silva,

A., Andrade, C. M. R., Gil, L., and Junior, U. B.-N. E. M. (2009). Gene expression profiling

during early acute febrile stage of dengue infection can predict the disease outcome. PLoS ONE,

4(11):e7892. doi:10.1371/journal.pone.0007892.

Nilsson, R., Peña, J. M., Björkegren, J., and Tegnér, J. (2007). Consistent feature selection for

pattern recognition in polynomial time. Journal of Machine Learning Research, 8(Mar):589–612.

Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

Nualart, D. (2004). Kolmogorov and probability theory. Arbor, 178(704):607–619.

Okamoto, M. (1963). An asymptotic expansion for the distribution of the linear discriminant func-

tion. Ann. Math. Statist., 34:1286–1301. Correction: Ann. Math. Statist., 39:1358–1359, 1968.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

Poor, V. and Looze, D. (1981). Minimax state estimation for linear stochastic systems with noise

uncertainty. IEEE Transactions on Automatic Control, AC-26(4):902–906.

http://www-white.media.mit.edu/tpminka/papers/em.html
http://www-white.media.mit.edu/tpminka/papers/em.html

BIBLIOGRAPHY 345

Rajan, K., editor (2013). Informatics for Materials Science and Engineering. Butterworth-

Heinemann, Waltham, MA.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning. MIT Press,

Cambridge, MA.

Raudys, S. (1972). On the amount of a priori information in designing the classification algorithm.

Technical Cybernetics, 4:168–174. in Russian.

Raudys, S. (1978). Comparison of the estimates of the probability of misclassification. In Proc. 4th

Int. Conf. Pattern Recognition, pages 280–282, Kyoto, Japan.

Raudys, S. and Jain, A. (1991). Small sample size e↵ects in statistical pattern recognition: Recom-

mendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(3):4–37.

Raudys, S. and Young, D. (2004). Results in statistical discriminant analysis: a review of the former

soviet union literature. Journal of Multivariate Analysis, 89:1–35.

Rissanen, J. (1989). Stochastic complexity in statistical inquiry. World Scientific.

Robert, C. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Computational

Implementation. Springer, 2nd edition.

Rogers, W. and Wagner, T. (1978). A finite sample distribution-free performance bound for local

discrimination rules. Annals of Statistics, 6:506–514.

Rosenblatt, F. (1957). The perceptron – a perceiving and recognizing automaton. Technical Report

85-460-1, Cornell Aeronautical Laboratory, Bu↵alo, NY.

Rosenthal, J. (2006). A First Look At Rigorous Probability Theory. World Scientific Publishing,

Singapore, 2nd edition.

Ross, S. (1994). A first course in probability. Macmillan, New York, 4th edition.

Ross, S. (1995). Stochastic Processes. Wiley, New York, 2nd edition.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations

by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive

Science.

Sayre, J. (1980). The distributions of the actual error rates in linear discriminant analysis. Journal

of the American Statistical Association, 75(369):201–205.

346 BIBLIOGRAPHY

Schafer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estima-

tion and implications for functional genomics. Statistical Applications in Genetics and Molecular

Biology, 4(1):32.

Schena, M., Shalon, D., Davis, R., and Brown, P. (1995). Quantitative monitoring of gene expression

patterns via a complementary DNA microarray. Science, 270:467–470.

Schiavo, R. and Hand, D. (2000). Ten more years of error rate research. International Statistical

Review, 68(3):295–310.

Schroeder, M. (2009). Fractals, chaos, power laws: Minutes from an infinite paradise. Dover.

Sima, C., Attoor, S., Braga-Neto, U., Lowey, J., Suh, E., and Dougherty, E. (2005a). Impact of

error estimation on feature-selection algorithms. Pattern Recognition, 38(12):2472–2482.

Sima, C., Braga-Neto, U., and Dougherty, E. (2005b). Bolstered error estimation provides superior

feature-set ranking for small samples. Bioinformatics, 21(7):1046–1054.

Sima, C. and Dougherty, E. (2006). Optimal convex error estimators for classification. Pattern

Recognition, 39(6):1763–1780.

Sima, C., Vu, T., Braga-Neto, U., and Dougherty, E. (2014). High-dimensional bolstered error

estimation. Bioinformatics, 27(21):3056–3064.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Sitgreaves, R. (1951). On the distribution of two random matrices used in classification procedures.

Ann. Math. Statist., 23:263–270.

Sitgreaves, R. (1961). Some results on the distribution of the W-classification. In Solomon, H.,

editor, Studies in Item Analysis and Prediction, pages 241–251. Stanford University Press.

Smith, C. (1947). Some examples of discrimination. Annals of Eugenics, 18:272–282.

Snapinn, S. and Knoke, J. (1985). An evaluation of smoothed classification error-rate estimators.

Technometrics, 27(2):199–206.

Snapinn, S. and Knoke, J. (1989). Estimation of error rates in discriminant analysis with selection

of variables. Biometrics, 45:289–299.

Stark, H. and Woods, J. W. (1986). Probability, random processes, and estimation theory for

engineers. Prentice-Hall, Inc.

BIBLIOGRAPHY 347

Stein, M. L. (2012). Interpolation of spatial data: some theory for kriging. Springer Science &

Business Media.

Stigler, S. M. (1981). Gauss and the invention of least squares. The Annals of Statistics, 9:465–474.

Stone, C. (1977). Consistent nonparametric regression. Annals of Statistics, 5:595–645.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the

Royal Statistical Society. Series B (Methodological), 36:111–147.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning. MIT press Cambridge.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and

Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: methods

and application to hematopoietic di↵erentiation. Proceedings of the National Academy of Sciences,

96(6):2907–2912.

Tan, A. C., Naiman, D. Q., Xu, L., Winslow, R. L., and Geman, D. (2005). Simple decision rules

for classifying human cancers from gene expression profiles. Bioinformatics, 21(20):3896–3904.

Tanaseichuk, O., Borneman, J., and Jiang, T. (2013). Phylogeny-based classification of microbial

communities. Bioinformatics, 30(4):449–456.

Teichroew, D. and Sitgreaves, R. (1961). Computation of an empirical sampling distribution for the

w-classification statistic. In Solomon, H., editor, Studies in Item Analysis and Prediction, pages

285–292. Stanford University Press.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002). Diagnosis of multiple cancer types

by shrunken centroids of gene expression. PNAS, 99:6567–6572.

Toussaint, G. (1971). Note on optimal selection of independent binary-valued features for pattern

recognition. IEEE Transactions on Information Theory, 17(5):618.

Toussaint, G. (1974). Bibliography on estimation of misclassification. IEEE Transactions on Infor-

mation Theory, IT-20(4):472–479.

Toussaint, G. and Donaldson, R. (1970). Algorithms for recognizing contour-traced hand-printed

characters. IEEE Transactions on Computers, 19:541–546.

Toussaint, G. and Sharpe, P. (1974). An e�cient method for estimating the probability of misclas-

sification applied to a problem in medical diagnosis. IEEE Transactions on Information Theory,

IT-20(4):472–479.

348 BIBLIOGRAPHY

Tutz, G. (1985). Smoothed additive estimators for non-error rates in multiple discriminant analysis.

Pattern Recognition, 18(2):151–159.

van de Vijver, M., He, Y., van’t Veer, L., Dai, H., Hart, A., Voskuil, D., Schreiber, G., Peterse,

J., Roberts, C., Marton, M., Parrish, M., Astma, D., Witteveen, A., Glas, A., Delahaye, L., van

der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E., Friend, S., and Bernards, R. (2002). A

gene-expression signature as a predictor of survival in breast cancer. The New England Journal

of Medicine, 347(25):1999–2009.

Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York.

Vitushkin, A. (1954). On hilberts thirteenth problem. Dokl. Akad. Nauk SSSR, 95(4):701–704.

Vu, T., Braga-Neto, U., and Dougherty, E. (2008). Preliminary study on bolstered error estimation

in high-dimensional spaces. In Proceedings of GENSIPS’2008 - IEEE International Workshop on

Genomic Signal Processing and Statistics. Phoenix, AZ.

Vu, T., Sima, C., Braga-Neto, U., and Dougherty, E. (2014). Unbiased bootstrap error estimation

for linear discrimination analysis. EURASIP Journal on Bioinformatics and Systems Biology,

2014:15.

Wald, A. (1944). On a statistical problem arising in the classification of an individual into one of

two groups. Ann. Math. Statist., 15:145–162.

Wang, Y., Tian, Y., Kirk, T., Laris, O., Ross Jr, J. H., Noebe, R. D., Keylin, V., and Arróyave,

R. (2020). Accelerated design of fe-based soft magnetic materials using machine learning and

stochastic optimization. Acta Materialia, 194:144–155.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the

American statistical association, 58(301):236–244.

Webb, A. (2002). Statistical Pattern Recognition. John Wiley & Sons, New York, 2nd edition.

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behaviorial

Sciences. PhD thesis, Harvard University, Cambridge, MA.

Wolpert, D. (2001). The supervised learning no-free-lunch theorems. In World Conference on Soft

Computing.

Wyman, F., Young, D., and Turner, D. (1990). A comparison of asymptotic error rate expansions

for the sample linear discriminant function. Pattern Recognition, 23(7):775–783.

Xiao, Y., Hua, J., and Dougherthy, E. (2007). Quantification of the impact of feature selection on

cross-validation error estimation precision. EURASIP J. Bioinformatics and Systems Biology.

BIBLIOGRAPHY 349

Xie, S. and Braga-Neto, U. M. (2019). On the bias of precision estimation under separate sampling.

Cancer informatics, 18:1–9.

Xu, Q., Hua, J., Braga-Neto, U., Xiong, Z., Suh, E., and Dougherty, E. (2006). Confidence intervals

for the true classification error conditioned on the estimated error. Technology in Cancer Research

and Treatment, 5(6):579–590.

Yonezawa, T., Suzuki, K., Ooki, S., and Hashimoto, A. (2013). The e↵ect of chemical composi-

tion and heat treatment conditions on stacking fault energy for fe-cr-ni austenitic stainless steel.

Metallurgical and Materials Transactions A, 44A:5884–5896.

Zhou, X. and Mao, K. (2006). The ties problem resulting from counting-based error estimators and

its impact on gene selection algorithms. Bioinformatics, 22:2507–2515.

Zollanvari, A., Braga-Neto, U., and Dougherty, E. (2009a). On the sampling distribution of resubsti-

tution and leave-one-out error estimators for linear classifiers. Pattern Recognition, 42(11):2705–

2723.

Zollanvari, A., Braga-Neto, U., and Dougherty, E. (2010). Joint sampling distribution between

actual and estimated classification errors for linear discriminant analysis. IEEE Transactions on

Information Theory, 56(2):784–804.

Zollanvari, A., Braga-Neto, U., and Dougherty, E. (2011). Analytic study of performance of error

estimators for linear discriminant analysis. IEEE Transactions on Signal Processing, 59(9):1–18.

Zollanvari, A., Braga-Neto, U., and Dougherty, E. (2012). Exact representation of the second-order

moments for resubstitution and leave-one-out error estimation for linear discriminant analysis in

the univariate heteroskedastic gaussian model. Pattern Recognition, 45(2):908–917.

Zollanvari, A., Cunningham, M. J., Braga-Neto, U., and Dougherty, E. R. (2009b). Analysis and

modeling of time-course gene-expression profiles from nanomaterial-exposed primary human epi-

dermal keratinocytes. BMC Bioinformatics, 10(11):S10.

Zollanvari, A. and Dougherty, E. (2014). Moments and root-mean-square error of the bayesian mmse

estimator of classification error in the gaussian model. Pattern Recognition, 47(6):2178–2192.

Zolman, J. (1993). Biostatistics: Experimental Design and Statistical Inference. Oxford University

Press, New York, NY.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of

the royal statistical society: series B (statistical methodology), 67(2):301–320.

Index

Akaike information criterion (AIC), 280

apparent error, 152

approximation error, 186

bagging, 61, 139

balanced sampling, 70

bandwidth, 90, 96

Bayes classifier, 20

Bayes decision rule, 37

Bayes error, 24

Bayes Theorem, 292

Bayesian information criterion (BIC), 280

best linear unbiased estimator (BLUE), 263

binary tree, 136

bolstered empirical distribution, 165

boosting, 63

bootstrap, 61, 63

balanced, 164

complete, 164

sample, 163

Borel �-algebra, 288, 290

Borel set, 16, 38, 288, 289, 294, 296

Borel-Cantelli Lemma

Second, 291

Borel-Cantelli Lemma First, 291

Borel-measurable function, 17, 26, 52, 227, 255,

289, 299, 301, 305

Borel-measurable space, 289

Bounded Convergence Theorem, 311

branch-and-bound algorithm, 224

categorical feature, 136

Central Limit Theorem, 312

Cherno↵error, 35

class-conditional densities, 12, 16

class-specific errors, 18

classification, 4

Classification and Regression Tree (CART), 137

classification error, 4, 18, 54, 206

classification rule

Bayesian parametric, 81

consistent, 6, 55

covariance plug-in, 71

cubic histogram, 91

discrete histogram, 53

ensemble, 60

histogram, 91

k-top scoring pair, 142

kernel, 95

nearest-centroid, 52

nearest-neighbor, 52, 93

parametric plug-in, 67

random, 61

smart, 64

strongly consistent, 55

super, 64

symmetric, 161

top-scoring median, 142

top-scoring-pair, 141

universally consistent, 6, 55

classifier, 4, 17

cluster membership, 236

cluster responsibility, 236

© Springer Nature Switzerland AG 2020

U. Braga-Neto, Fundamentals of Pattern Recognition and Machine Learning,

https://doi.org/10.1007/978-3-030-27656-0

351

https://doi.org/10.1007/978-3-030-27656-0

352 INDEX

cluster validity, 249

clustering, 5

CLEST criterion, 249

fuzzy c-means, 235

Gaussian mixture model (GMM), 236

hierarchical, 9, 243

agglomerative, 243

average-linkage, 244

chaining, 244

complete-linkage, 244

cophenetic distance, 244

dendrogram, 9, 244

divisive, 243

pairwise dissimilarity, 244

single-linkage, 244

K-means, 231

Lance-Williams algorithms, 251

silhouette criterion, 249

Ward’s Method, 250

coe�cient of determination, 277

complete log-likelihood, 237

complexity dilemma, 187

conditional entropy, 35

conditional error, 19

Conditional Variance Formula, 305

consistency, 6, 55

Continuous Mapping Theorem, 309

convolution, 130

covariance matrix, 306

Cover-Hart Theorem, 35, 98, 319

Cover-Van Campenhout Theorem, 209

cross-validation

complete k-fold, 160

external, 215

k-fold, 152

model selection, 200

near-unbiasedness property, 160

repeated k-fold, 160

RSS, 280

stratified, 160

curse of dimensionality, 5, 188

Cybenko’s Theorem, 134

data imputation, 11

data set

breast cancer prognosis, 228, 330

dengue fever prognosis, 222, 229, 245, 252,

330

soft magnetic alloy, 219, 229, 233, 241, 251,

252, 331

stacking fault energy, 88, 262, 285, 286, 331

ultrahigh carbon steel, 147, 331

decision boundary, 10, 17

decision hyperplane, 71

decision tree, 136

descendant node, 136

node, 136

pruning, 139

random forest, 139

root node, 136

splitting node, 136

stopped splitting, 139

stump, 139

design error, 186

deviation distribution, 153

Diagonal LDA, 71

dimensionality reduction, 7

DNA microarrays, 8

Dominated Convergence Theorem, 309

Elastic Net, 279

empirical error, 152

empirical feature-label distribution, 61, 159

empirical risk minimization, 203

error estimation, 7

error estimation rule, 151

holdout, 157

INDEX 353

k-fold cross-validation, 153

leave-one-out, 153

nonrandomized, 152, 161

randomized, 152

reducible, 214

resubstitution, 152, 159

test-set, 157

zero bootstrap, 163

error estimator, 152

0.632 bootstrap, 164

0.632+ bootstrap, 165

Bayesian, 174

bias, 154

bolstered, 165

bolstered leave-one-out, 171

bolstered resubstitution, 166

naive-Bayes, 170

consistent, 155

convex, 171

deviation variance, 154

internal variance, 155

optimistically biased, 154

pessimistically biased, 154

resubstitution, 10

root mean-square error, 154

semi-bolstered resubstitution, 171

smoothed resubstitution, 173

strongly consistent, 155

tail probabilities, 154

test-set, 10, 157

unbiased, 10, 154

universally consistent, 156

zero bootstrap, 164

Expectation-Maximization algorithm, 237

generalized, 328

expected error, 54

expected MSE, 257

experimental design, 7

exponential family, 44

F-error, 34, 101, 206

factor analysis, 223

factor loading matrix, 222

false negative, 18

false positive, 18

feature, 16

feature extraction, 206

feature map, 129

feature selection, 10, 207

best individual, 210

bottom-up, 211

exhaustive search, 208

filter, 8, 13, 88, 208

generalized sequential search, 212

greedy, 209

mutual information, 208

plus-l take-r, 213

sequential backward search, 212

sequential floating backward search (SFBS),

213

sequential floating forward search (SFFS), 213

sequential forward search, 211

top-down, 211

wrapper, 208

feature space, 10, 16

feature vector, 2

feature-label distribution, 15

feature-target distribution, 2

feed-forward mode, 127

Fisher’s discriminant, 83, 206, 226

Gauss-Markov Theorem, 263

for correlated noise, 283

Gaussian process, 268

covariance function, 268

absolute exponential, 268

Gaussian, 268

354 INDEX

Matérn, 268

squared exponential, 268

hyperparameters, 273

kernel, 268

length-scale, 268

marginal likelihood, 273

mean function, 268

regression, 267

testing points, 271

generalized linear classifier, 45

generative model, 222

grid search, 198

hard margin, 113

heteroskedastic model, 31, 254

Hoe↵ding’s Inequality, 313

homoskedastic model, 29, 254

Hughes Phenomenon, 5, 188

hyperplane decision boundary, 113

hyperquadrics, 31

impurity, 137

function, 137

incomplete log-likelihood , 237

interpretability, 10, 136

Iris data set, 13

isotropic covariance function, 268

Jensen’s Inequality, 301

Karhunen-Loève Transform, 217

Keras, 149

kernel

Cauchy, 95

cubic, 95

Epanechnikov, 95

Gaussian, 95

Hermite, 96

radial basis function, 95, 117

sinc, 96

spherical, 95

Triangle, 95

Kohonen network, 248

Kolmogorov-Arnold Theorem, 133

Kullback-Leibler distance, 328

label, 4

latent-variable model, 223

Law of Large Numbers, 312

Law of Total Expectation, 304

Law of Total Probability, 292

Learning with an unreliable teacher, 65

least absolute shrinkage and selection operator

(LASSO), 279

least concave majorant, 105

least-squares estimator, 260, 261

least-squares regression function, 261

Linear Discriminant Analysis, 70

Linear Discriminant Analysis (LDA), 10

loading matrix, 216, 218

logistic

classification rule, 75

curve, 76

loss, 37

0-1, 38

absolute di↵erence, 4

expected, 4, 37

function, 4, 255

misclassification, 4, 38

quadratic, 4, 5

lossless transformation, 207

Mahalanobis

distance, 29, 206

transformation, 306

Mallows’ Cp, 278

margin, 110

hyperplanes, 110

INDEX 355

vectors, 114

Matsushita error, 35

maximum-margin hyperplane, 110

mean-square

continuity, 270

di↵erentiability, 270

error, 5, 305

MMSE, 256, 305

Mercer’s Theorem, 116

minimax classifier, 33

minimax threshold, 71

minimum-variance unbiased estimator, 263

missing values, 11

mixture sampling, 61

model selection, 185

Multidimensional Scaling (MDS), 220

classical scaling, 222

non-metric, 225

multiple testing, 279

Naive-Bayes principle, 170, 178

Nearest-Mean Classifier, 29, 71

nearest-neighbor distance, 35

nearest-shrunken centroids, 63

Neocognitron, 142

neural network, 120

artificial bias units, 133

backpropagation

algorithm, 126, 142

batch, 126

equation, 128

mode, 128

online, 126

convolutional, 129, 142, 207

AlexNet, 142

filter, 129

striding, 131

VGG16, 131, 142

zero-padding, 129

deep, 135

depth-bound, 134

dropout, 132

empirical classification error score, 126

epoch, 127

layer

convolutional, 129

fully-connected, 131

hidden, 123

max-pooling, 131

mean absolute error score, 126

mean-square error score, 126

multilayer perceptron, 121

neuron, 120

activation, 120, 123

output, 120, 123

nonlinearities, 120

output layer, 123

rectifier linear unit (ReLU), 123

regression, 275

sigmoid, 122, 143

arctan, 122

Gaussian, 122

logistic, 122

threshold, 122, 196

softmax function, 131

weight, 121, 123

width-bound, 134

no-free-lunch theorem, 3, 59, 63, 197

noisy feature, 209

nonlinearly-separable data, 75

one-vs-one approach, 85, 148

Optimal Bayesian Classifier (OBC), 84

optimal discriminant, 23

optimistic bias, 10

outlier, 113

356 INDEX

overfitting, 6, 59, 208

pairwise dissimilarity, 220

pattern recognition rule, 177

peaking phenomenon, 5, 188, 205

perceptron algorithm, 110

pooled sample covariance matrix, 70

posterior distribution, 82

posterior probability, 17

posterior-probability function, 17, 305

precision, 40

prediction error, 4

prediction rule, 2

predictive densities, 82, 176

prevalence, 16, 71

Principal Component Analysis (PCA), 5, 216

prior distribution, 81

prior probabilities, 16

Quadratic Discriminant Analysis (QDA), 73

quantitative structure property relationship (QSPR),

11

R2 statistic, 277

adjusted, 278

random restart method, 233

random sequence, 308

convergence in Lp, 308

convergence in distribution, 308

convergence in probability, 308

convergence with probability 1, 308

uniformly bounded, 310

rank-based classification rules, 141

recall, 40

receiver operating characteristic curve (ROC), 32

regression, 5, 253

bias-variance trade-o↵, 258

CART, 276

conditional error, 254

empirical risk minimization (ERM), 281

error estimator

resubstitution, 277

test-set, 277

Gaussian process, 267

kernel, 267

kernel (Nadaraya-Watson), 267

least-squares, 258

penalized, 265

linear, 260

basis-function, 260

multivariate, 260

loss

absolute, 255

Minkowski, 255

quadratic, 255

maximum-a-posteriori (MAP), 256

minimum absolute di↵erence (MAD), 256

model selection, 279

neural network, 275

nonparametric, 266

optimal, 255, 305

parametric, 258

polynomial, 258, 260

random forest, 275

ridge, 265

Structural Risk Minimization (SRM), 280

SVM, 276

validation set, 280

variable selection, 278

VC dimension, 280

wrapper search, 278

regression error, 255

regression error estimation, 277

Regularized Discriminant Analysis (RDA), 78

reinforcement learning, 5

resampling, 61

residual sum of squares (RSS), 260

INDEX 357

risk, 37

conditional, 37

RNA-seq, 8

Rosenblatt’s Perceptron, 109, 121, 142

sample, 3

sample covariance matrix, 306

sample mean, 306

sample-based conditional error, 54

Scaling by MAjorizing a COmplicated Function

(SMACOF), 221

scissors plot, 6, 188

scree plot, 229

selection bias, 208, 215

Self-organizing map (SOM), 246

semi-supervised learning, 5

sensitivity, 18

separate sampling, 62

shatter coe�cient, 191

shrinkage, 71, 265

slack variables, 113

soft margin, 113

sparse feature vectors, 279

sparsification, 279

specificity, 18

stationary covariance function, 268

stationary process, 268

Stone’s Theorem, 102, 321

stress, 220

structural risk minimization, 160, 200

su�cient statistic, 28, 227

supervised learning, 1

support vector, 110, 112

Support Vector Machine (SVM), 110

surrogate classifiers, 161

t-test, 8, 210

target, 2

testing data, 10

total sum of squares, 277

Toussaint’s Counter-Example, 210

training data, 3, 51

training error, 152

training-validation-testing strategy, 199

transfer learning, 132

tree depth, 136

unconditional error, 54

underfitting, 113

uninformative prior, 82

Union Bound, 290

unsupervised learning, 1, 5, 231

validation set, 198

Vapnik-Chervonenkis

Theorem, 196, 323

theorem, 325

theory, 6, 189

variance function, 268

VC class, 195

VC confidence, 201

VC dimension, 156, 191

vector quantization, 248

weak learner, 60

weight decay, 132

whitening, 306, 307

wide-sense stationary process, 284

XOR

data set, 117, 119, 124, 136, 194, 211

problem, 211

zero-mean additive noise, 254

	Preface
	Contents
	Chapter 1 Introduction
	1.1 Pattern Recognition and Machine Learning
	1.2 Basic Mathematical Setting
	1.3 Prediction
	1.4 Prediction Error
	1.5 Supervised vs. Unsupervised Learning
	1.6 Complexity Trade-O.s
	1.7 The Design Cycle
	1.8 Application Examples
	1.8.1 Bioinformatics
	1.8.2 Materials Informatics

	1.9 Bibliographical Notes

	Chapter 2 Optimal Classification
	2.1 Classification without Features
	2.2 Classification with Features
	2.3 The Bayes Classifier
	2.4 The Bayes Error
	2.5 Gaussian Model
	2.5.1 Homoskedastic Case
	2.5.2 Heteroskedastic Case

	2.6 Additional Topics
	2.6.1 Minimax Classification
	2.6.2 F-errors
	2.6.3 Bayes Decision Theory
	*2.6.4 Rigorous Formulation of the Classification Problem

	2.7 Bibliographical Notes
	2.8 Exercises
	2.9 Python Assignments

	Chapter 3 Sample-Based Classification
	3.1 Classification Rules
	3.2 Classification Error Rates
	*3.3 Consistency
	3.4 No-Free-Lunch Theorems
	3.5 Additional Topics
	3.5.1 Ensemble Classification
	3.5.2 Mixture Sampling vs. Separate Sampling

	3.6 Bibliographical Notes
	3.7 Exercises
	3.8 Python Assignments

	Chapter 4 Parametric Classification
	4.1 Parametric Plug-in Rules
	4.2 Gaussian Discriminant Analysis
	4.2.1 Linear Discriminant Analysis
	4.2.2 Quadratic Discriminant Analysis

	4.3 Logistic Classification
	4.4 Additional Topics
	4.4.1 Regularized Discriminant Analysis
	*4.4.2 Consistency of Parametric Rules
	4.4.3 Bayesian Parametric Rules

	4.5 Bibliographical Notes
	4.6 Exercises
	4.7 Python Assignments

	Chapter 5 Nonparametric Classification
	5.1 Nonparametric Plug-in Rules
	5.2 Histogram Classification
	5.3 Nearest-Neighbor Classification
	5.4 Kernel Classification
	5.5 Cover-Hart Theorem
	*5.6 Stone’s Theorem
	5.7 Bibliographical Notes
	5.8 Exercises
	5.9 Python Assignments

	Chapter 6 Function-Approximation Classification
	6.1 Support Vector Machines
	6.1.1 Linear SVMs for Separable Data
	6.1.2 General Linear SVMs
	6.1.3 Nonlinear SVMs

	6.2 Neural Networks
	6.2.1 Backpropagation Training
	6.2.2 Convolutional Neural Networks
	*6.2.3 Universal Approximation Property of Neural Networks
	*6.2.4 Universal Consistency Theorems

	6.3 Decision Trees
	6.4 Rank-Based Classifiers
	6.5 Bibliographical Notes
	6.6 Exercises
	6.7 Python Assignments

	Chapter 7 Error Estimation for Classification
	7.1 Error Estimation Rules
	7.2 Error Estimation Performance
	7.2.1 Deviation Distribution
	7.2.2 Bias, Variance, RMS, and Tail Probabilities
	*7.2.3 Consistency

	7.3 Test-Set Error Estimation
	7.4 Resubstitution
	7.5 Cross-Validation
	7.6 Bootstrap
	7.7 Bolstered Error Estimation
	7.8 Additional Topics
	7.8.1 Convex Error Estimators
	7.8.2 Smoothed Error Estimators
	7.8.3 Bayesian Error Estimation

	7.9 Bibliographical Notes
	7.10 Exercises
	7.11 Python Assignments

	Chapter 8 Model Selection for Classification
	8.1 Classification Complexity
	8.2 Vapnik-Chervonenkis Theory
	*8.2.1 Finite Model Selection
	8.2.2 Shatter Coefficients and VC Dimension
	8.2.3 VC Parameters of a Few Classification Rules
	8.2.4 Vapnik-Chervonenkis Theorem
	8.2.5 No-Free-Lunch Theorems

	8.3 Model Selection Methods
	8.3.1 Validation Error Minimization
	8.3.2 Training Error Minimization
	8.3.3 Structural Risk Minimization

	8.4 Bibliographical Notes
	8.5 Exercises

	Chapter 9 Dimensionality Reduction
	9.1 Feature Extraction for Classification
	9.2 Feature Selection
	9.2.1 Exhaustive Search
	9.2.2 Univariate Greedy Search
	9.2.3 Multivariate Greedy Search
	9.2.4 Feature Selection and Classification Complexity
	9.2.5 Feature Selection and Error Estimation

	9.3 Principal Component Analysis (PCA)
	9.4 Multidimensional Scaling (MDS)
	9.5 Factor Analysis
	9.6 Bibliographical Notes
	9.7 Exercises
	9.8 Python Assignments

	Chapter 10 Clustering
	10.1 K-Means Algorithm
	10.2 Gaussian Mixture Modeling
	10.2.1 Expectation-Maximization Approach
	10.2.2 Relationship to
	Means

	10.3 Hierarchical Clustering
	10.4 Self-Organizing Maps (SOM)
	10.5 Bibliographical Notes
	10.6 Exercises
	10.7 Python Assignments

	Chapter 11 Regression
	11.1 Optimal Regression
	11.2 Sample-Based Regression
	11.3 Parametric Regression
	11.3.1 Linear Regression
	11.3.2 Gauss-Markov Theorem
	11.3.3 Penalized Least Squares

	11.4 Nonparametric Regression
	11.4.1 Kernel Regression
	11.4.2 Gaussian Process Regression

	11.5 Function-Approximation Regression
	11.6 Error Estimation
	11.7 Variable Selection
	11.7.1 Wrapper Search
	11.7.2 Statistical Testing
	11.7.3 LASSO and Elastic Net

	11.8 Model Selection
	11.9 Bibliographical Notes
	11.10 Exercises
	11.11 Python Assignments

	Appendix
	A1 Probability Theory
	A1.1 Sample Space and Events
	A1.2 Probability Measure
	A1.3 Conditional Probability and Independence
	A1.4 Random Variables
	A1.5 Joint and Conditional Distributions
	A1.6 Expectation
	A1.7 Vector Random Variables
	A1.8 Convergence of Random Sequences
	A1.9 Asymptotic Theorems

	A2 Basic Matrix Theory
	A3 Basic Lagrange-Multiplier Optimization
	A4 Proof of the Cover-Hart Theorem
	A5 Proof of Stone’s Theorem
	A6 Proof of the Vapnik-Chervonenkis Theorem
	A7 Proof of Convergence of the EM Algorithm
	A8 Data Sets Used in the Book
	A8.1 Synthetic Data
	A8.2 Dengue Fever Prognosis Data Set
	A8.3 Breast Cancer Prognosis Data Set
	A8.4 Stacking Fault Energy Data Set
	A8.5 Soft Magnetic Alloy Data Set
	A8.6 Ultrahigh Carbon Steel Data Set

	List of Symbols
	Bibliography
	Index

