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1.1 Introduction

The mechanical behavior of the Earth’s crust is often modeled as that of a porous,
fluid-saturated medium. Crustal rocks, as are many other solids, are porous and
fluid saturated down to at least 10 km depth. Because they are made of minerals and
open pores, they show an internal structure. Classical continuum mechanics de-
scribe such a medium as an idealized continuum model where all defined mechani-
cal quantities are averaged over spatial and temporal scales that are large compared
with those of the microscale process, but small compared with those of the investi-
gated phenomenon. We follow this type of approach in this chapter’s presentation
of the classical macroscopic theories of porous rock deformation. Such a separation
of scales is a necessary condition for developing a macroscopic formulation.

A complementary point of view is that of mixture theory. In that approach,
solids with empty pore spaces can be treated relatively easily because all the com-
ponents have the same motion when the solid is deformed. However, if the porous
solid is filled with liquid, the solid and liquid constituents have different motion,
and so the description of the mechanical behavior is more difficult. Interactions are
taking place between the constituents. A convenient way to approximately solve
that problem is to idealize the saturated rock as a mixture of two components that
would fill the total space shaped by the porous solid. This is the model of mixture
theory where each component occupies the total volume of space simultaneously
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2 Chapter 1 Fundamentals of Poromechanics

with the others. The assumptions of the theory of mixtures are not completely
valid for fluid-saturated rocks, because the solid and fluid phases are not miscible
phases. This theory yields, however, a possible framework for the macroscopic
treatment of liquid-saturated porous solids. An additional assumption is that only
the fluid phase is allowed to leave the total space defined by the porous body. The
pores are assumed to be statistically distributed and the porosity value fixes the
ratio of the pore volume to the total porous body volume. Introducing the above
assumptions means that the microscale should be taken into consideration. For
that reason, the microscopic approach is developed in this chapter along with the
classical macroscopic theory. Although this is unusual, we believe that it gives a
better insight into rock behavior.

This chapter examines the most important mechanical types of behavior that
can be observed for porous crustal rocks: small reversible deformation (poroelas-
ticity), large irreversible deformation (poroplasticity), and rupture. Some comple-
mentary results on each of these are given in other chapters when appropriate.
Dynamic effects are clearly out of the scope of this book, which focuses on quasi-
static behavior.

1.2 Poroelasticity

Poroelasticity theory accounts reasonably well for small deformations of a fluid-
saturated porous solid. It is an extension of elasticity theory to the precise situation
we are interested in: that of a porous rock submitted to a small reversible strain. Re-
versibility is a major assumption because it allows us to develop the theory within
the framework of classical thermodynamics. The extension to the theory of elastic
behavior of a solid medium is that the fluid phase is taken into account, and this
implies that two additional parameters are required to describe the thermodynamic
state of the fluid: its pressure and its volume (or mass). Two possible descriptions
are very useful:t he drained description, where the fluid pressure is the appropriate
thermodynamic variable, and the undrained description, where the mass content
is the appropriate thermodynamic variable. The fluid is viscous and compress-
ible. The isothermal theory of poroelasticity was first presented by Biot (1941,
1955, 1956, 1957, 1972), and later reformulated by Rice and Cleary (1976) and
Coussy (1991). Nonisothermal effects were later considered by Palciauskas and
Domenico (1982) and McTigue (1986). Nonlinear poroelasticity was introduced
by Biot (1973). Different reviews of poroelastic theory have been published by
Detournay and Cheng (1993), Zimmerman (2000), Rudnicki (2002). Wang (2000)
has presented a monograph on the theory of linear poroelasticity with applications
to geomechanics and hydrogeology.

1.2.1 Linear Isothermal Poroelasticity
We follow here the classical sign convention of elasticity: compressive stresses
are considered to be negative for the solid rock but fluid pressure is positive. We
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consider the linear quasi-static isothermal theory, and assume that the rock at a
macroscopic scale can be viewed as isotropic and homogeneous. Let P be the
mean pressure, P = −1/3σkk , where σij is a component of the stress tensor,
defined as the measure of total force per unit area of an element of porous rock.
Let p be the fluid pore pressure, which is the equilibrium fluid pressure inside
the connected and saturated pores: p can be understood as the pressure on an
imagined fluid reservoir that would equilibrate an element of rock to which it is
connected from either giving off or receiving fluid from the reservoir. We assume
that all pores are connected. In addition, let m be the fluid mass content per unit
volume in the reference state. Fluid mass density ρ is defined locally as the mass
density of fluid in the equilibrating reservoir. The apparent fluid volume fraction
is v = m/ρ. Because we are considering a saturated rock, v0 = �0, where �0
is the initial porosity of a given porous rock volume V0. In the deformed state,
however, the volume V0 is transformed into V so that v − v0 is not identical to
� − �0 because � = Vp/V , where Vp is the pore volume in the rock volume
V : v = Vp/V0 = �(V/V0). In general the fluid is compressible and its density
depends on p: ρ = ρ(p). Only isothermal deformations are considered in this
section. Linear poroelasticity is not restricted to fluids of low compressibility. The
drained description is convenient to deal with highly compressible fluids. Two types
of deformation will be considered: drained deformation refers to deformations
at constant fluid pore pressure p, undrained deformation refers to deformations
at constant fluid mass content m. Strain refers to the relative displacement of
solid points in the solid phase. The components of the strain tensor are εij =
1/2(∂jui + ∂iuj ), where ui is the displacement vector component. Stress, strain,
and fluid pressure will be defined as small perturbations with respect to a given
equilibrium state, so that body forces are ignored. The rock has an apparent elastic
bulk modulus for drained conditions K

1

K
= − 1

V

(
∂V

∂P

)
p

. (1.1)

Effective Stress Concept

The concept of effective stress is of great importance to poroelasticity. As an
introductory step, let us consider first the case of effective pressure. The effective
pressure Pe is defined by

Pe = P − bp, (1.2)

where b is the Biot coefficient, which will be computed as follows. The elastic
deformation of a rock sample submitted to both an isotropic pressure P and a pore
pressurep can be obtained by superimposing two states of equilibrium (Figure 1.1).
The first one corresponds to a pressure P −p applied to the external surface of the
rock and a zero fluid pressure within the pores. The second one is that of the same
rock sample submitted to a pressure p on both the external surface of the rock
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(P–p) p
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ε1 � � (P  �  p ) /K

ε  � ε1 � ε2 � � (P  �  bp ) /K

ε2 � �P /Ks

(b)

(c)

Figure 1.1 � A porous rock submitted to an isotropic pressure P on its external surface
and a pore pressure p (c). This stress state is obtained by superimposing (a) a pressure
(P− p) on the external surface and a zero pressure in the pores and (b) a pressure p on the
external surface and in the pores.

and the internal surfaces of the pores. In this last case, the pores can be ignored
for the overall rock deformation because they are at the same pressure as the solid
phase. The rock, including the pores, is in a homogeneous isotropic stress state
and "looks" as if it had no pores. Let us then introduce Ks , the bulk modulus of
the solid phase. Because we assumed that the rock is homogeneous, that all pores
are connected, and that the solid and fluid phases are chemically inert, a single
modulusKs is sufficient to account for the solid-phase behavior. The modulusKs
is defined by

1

Ks
= − 1

V

(
∂V

∂p

)
(P−p)

. (1.3)
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Because of the above assumptions, this modulus is identical to another modulus
noted sometimes as K ′′

s or K� and defined as

1

K ′′
s

= − 1

Vp

(
∂Vp

∂p

)
(P−p)

. (1.4)

The elastic volumic strain εkk is noted ε. Its value in this second case is

ε2 = − p

Ks
, (1.5)

whereas in the first case

ε1 = −P − p
K

. (1.6)

Because of the linearity, we can superimpose both strains to get the overall volumic
strain of the rock submitted to both an isotropic pressure P and a pore pressure p:

ε = −P − p
K

− p

Ks
= − 1

K
(P − bp), (1.7)

where the Biot coefficient is found to be

b =
(
∂P

∂p

)
ε

= 1− K

Ks
. (1.8)

SinceK ≤ Ks , the Biot parameter is a nondimensional parameter such that b ≤ 1.
The volumic strain is that which would be observed in a nonporous rock of bulk
modulus K submitted to effective pressure Pe = P − bp. Effective stresses are
defined by a straightforward extension of the above relation

(σij )
eff = σij + bpδij . (1.9)

Only normal stresses are involved because shear stresses (off diagonal stresses)
remain unaffected by the pore pressure. For soft material, K � Ks , and the
Terzaghi effective stress is recovered since b = 1 (von Terzaghi and Frölich,
1936).

Micromechanical Approach to Poroelastic Behavior

The reader not familiar with the micro–macro averaging techniques and/or not
interested in the microscopic approach may skip this section. Some insight into
the previous results can be gained from looking at porous rock starting from a
microscopic description and relating macroscopic quantities to microscopic ones.
This type of approach has been followed by some authors by assuming specific
pore geometrical shapes (Zimmerman, 1991; Zimmerman 2000). Using such as-
sumptions make it possible to derive macroscopic poroelastic parameters from the
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values of the constituents’ properties (i.e., elastic moduli of the solid and fluid
phases, porosity, aspect ratios of pores). Effective medium theory (EMT) is an
efficient tool for this type of calculation. Let us investigate, without any specific
geometrical assumption, how to take advantage of this complementary point of
view. The micromechanical approach relies on the assumption that there exists
a representative elementary volume (REV) � (Figure 1.2). At the macroscopic
scale, the latter is an infinitesimal part of a macroscopic structure. Its characteris-
tic size is therefore small with respect to that of the structure. From a macroscopic
point of view, the REV appears as the superposition of a solid skeleton particle
and of a fluid particle, both located at the same macroscopic point. At each point,
we have defined the macroscopic quantities ui , displacement vector components,
εij , strain tensor components, and σij , stress tensor components. In contrast, the
microscopic scale reveals the geometry of the microstructure. At the microscopic
scale, the solid and the fluid phases in the REV appear as two geometrically distinct
domains. This means that the position vector of a material point lies either in the
fluid phase or in the solid phase. As for the experimental approach, the microme-
chanical one aims at determining the macroscopic behavior. However, instead of
applying the loading to a sample in a laboratory experiment, the micromechanical
approach defines a boundary value problem on the REV considered as a mechan-
ical structure, the latter playing the role of the sample in a theoretical experiment.
Then, if the mechanical behavior of the constituents is known, the macroscopic
behavior can be theoretically determined from the solution of this boundary value
problem. Let usi , eij , and sij respectively denote the displacement vector, strain
tensor, and stress tensor components induced in the solid phase by the mechanical
loading applied to the REV. Exactly as for a sample in a laboratory experiment,
the size of the REV must be large with respect to that of the heterogeneities (solid
grain or pore). This is a required condition to get a representative response of the

REV

(a) Macroscale

(b) Microscale

Figure 1.2 � Representative elementary volume (REV). Macroscopic description—any
point of the porous rock corresponds to an average over an REV centered on this point (a).
Microscopic description—within the REV, the microstructure can be described, showing
pores, cracks, etc. (b).
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REV. The application of this methodology first requires defining how the boundary
conditions on the REV are related to the macroscopic quantities, namely, the stress
tensor σij , strain tensor εij , and the pore pressure p. We consider in the following
the general case of an anisotropic rock.

We adopt a nonsymmetric point of view that considers the REV as an open
system that always comprises the same solid material, while exchanging fluid mass
through its boundary. We shall define at any time the location of the boundary of
the REV as a function of the macroscopic strain tensor εij . The macroscopic fluid
and skeleton particles will then correspond to the fluid and solid materials within
this closed boundary. As stated before, the skeleton particle, although subjected
to strain, will remain constituted of the same solid. In contrast, the mass of the
macroscopic fluid particle will be a function of time. In addition, to be able to
determine the location of the fluid–solid interface inside the REV, we shall define
a micromechanical problem on the boundary of the solid part of the REV. The
solution of the latter will provide us at any time with the boundaries of both the
solid and fluid domains.

Let us consider the REV in its reference state, in which it occupies the volume
�0. Its boundary ∂�0 comprises the solid–solid interface S0

ss as well as the fluid–
fluid interface S0

ff
. Now, let � denote the volume occupied by the REV at time t .

The boundary ∂� is defined as the image of ∂�0 by a homogeneous transformation
associated with the strain tensor εij :

S0
ff : ui = εij xj (a)

S0
ss : ui = εij xj (b)

(1.10)

This condition holds on S0
ff

as well as on S0
ss . However, as we shall see, its physical

meaning is not the same on the two parts of ∂�0.
The solid–fluid interface Ssf is subjected to the pressure p existing in the fluid:

Ssf : sij nj = −p ni (1.11)

The local momentum balance equation in both the solid and fluid domains is

sij,j = 0 (1.12)

The case of a nonlinear elastic solid material has been considered by De Buhan et
al. (1998) and Dormieux et al. (2002). For simplicity, it is assumed here that the
solid phase has a linear elastic behavior, characterized in the general anisotropic
case by the elastic moduli Csijkl :

sij = Csijklelk. (1.13)

Equations (1.12) and (1.13), together with (1.10b) and (1.11), define a well-posed
micromechanical problem on the solid domain �0

s .
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At any time, the total macroscopic stress σij is defined as the average of the
microscopic stress < sij >:

σij =< sij >= 1

�

∫
�

sij d�. (1.14)

From the local momentum balance equation (1.12), one obtains the identity
(xksij ),j = sik . Integration of the latter over �0 reveals that the macroscopic
stress can be alternatively derived from the value of the microscopic stress on the
REV boundary:

σij =< sij >= 1

| �0 |
∫
�0
(χj sij ),l d� = 1

| �0 |
∫
∂�0

χj sij nl dS. (1.15)

The microscopic stress is uniform within the fluid phase, where we have

sij = −p δij . (1.16)

Hence, the macroscopic total stress tensor σij is

σij = (1−�)σ sij −�pδij , (1.17)

where σ sij denotes the average of the microscopic stress field over the solid domain:

σ sij =
1

�s

∫
�s

sij d�. (1.18)

Because of the linearity of the micromechanical problem in equations (1.10b)
through (1.13), the solution, i.e., the microscopic stress field sij in �s and the
microscopic displacement ui , linearly depends on the two macroscopic loading
parameters, namely, the macroscopic strain tensor εij and the pore pressure p.
According to equations (1.17) and (1.18), this property also holds for σij . The
most general linear macroscopic stress–strain relation thus is

σij = Cijklεlk − bijp (1.19)

or alternatively
εij = Sijklσlk + βijp. (1.20)

Sijkl is the compliance tensor of the porous rock under drained conditions, and
Cijkl is the drained elastic stiffness tensor. In the isotropic case, bij reduces to b δij ,
where the scalar b is the Biot coefficient. In the general anisotropic case, the Biot
coefficient indeed becomes a symmetric second-order tensor (see also the section
on anisotropic poroelasticity).

Equation (1.19) introduces the effective stress tensor σ effij , which proves to
control the macroscopic strain according to σ effij = Cijklεlk .
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We have seen that the solid domain �s is always made up of the same mi-
croscopic particles. As far as the fluid is concerned, the external boundary Sff
of the fluid domain �f at time t appears, according to equation (1.10a), as the
image of S0

ff . However, as opposed to the solid, this boundary condition is not
of mechanical nature, insofar as it does not represent the actual displacement of
the fluid phase. Indeed, the real transformation of the fluid is not relevant in this
study in which the REV is regarded as an open system. Hence, equation (1.10a) is
only a geometrical condition that aims at specifying the external boundary of the
fluid particle constituting the REV at time t . Together with equation (1.10a), the
determination of the current location of Ssf , which is gained through the resolution
of the micromechanical problem in equations (1.10b) through (1.13), completely
characterizes this fluid particle.

We have previously defined the normalized fluid volume v as the ratio of the
fluid volume in the REV over the volume of the REV in the reference state, i.e.,
�0. The variation v − v0 is equal to the normalized flux of the displacement ui
through the boundary S0

ff ∪ S0
sf :

v − v0 = 1

�0

(∫
S0
ff

xj εij ni dS +
∫
S0
sf

uini dS

)
. (1.21)

Again, we use the fact that the solution (ui, sij ) of equations (1.10b) through (1.13)
linearly depends on εij and p. Equation (1.21) shows that this property also holds
for v − v0, which thus can be put in the form

v − v0 = b′ij εij +
p

M
. (1.22)

The displacement ui is a priori only defined in the solid domain �0
s , as well as on

the boundary of �0. Nevertheless, it is possible to extend the displacement to the
fluid domain �0

f
so as to satisfy the boundary condition of equation (1.10a) and

the continuity through S0
sf

. Such an extension is of course nonunique. However,
an integration by parts on the fluid domain �0

f is

∫
�0
f

∂ui

∂xj
d� =

∫
∂�0

f

uinj dS =
∫
S0
ff

nj εikxk dS +
∫
S0
sf

uinj dS. (1.23)

We note that the right side in equation (1.23) is completely determined by the
value of ui on the fluid–solid interface, which in turn only depends on εij and p.
This means that the average strain over the fluid is unique, i.e., does not depend
on the considered extension of the displacement to the fluid domain. Besides, for
any extension complying with the above conditions, one obtains

∫
�0

∂ui

∂xj
d� =

∫
∂�0

uinj dS =
∫
∂�0

nj εikxk dS = εij | �0 | . (1.24)
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In other words, the average strain <eij> over the whole REV is equal to the
macroscopic strain tensor:

εij = <eij>. (1.25)

Let us now consider the mechanical energy dws provided to the solid phase in
the REV during an incremental loading (dεij , dp). Denoting the corresponding
incremental displacement by dui ,

dws =
∫
S0
ss

duisij nj dS −
∫
S0
sf

p duini dS, (1.26)

where ni denotes the unit normal-oriented outward with respect to the solid. With
the same reasoning as in equation (1.21), the increment dv of the normalized pore
volume is the (normalized) flux of dui through the boundary of the fluid:

dv = 1

| �0 |

(∫
S0
sf

duini dS +
∫
S0
ff

duini dS

)
, (1.27)

where ni now denotes the unit normal-oriented outward with respect to the fluid.
Taking into account the normal orientation in the first integral of equation (1.27),
which is the reverse of that in the second integral of equation (1.26), equations
(1.26) and (1.27) yield

dws = | �0 | p dv +
∫
S0
ss

duisij nj dS − p
∫
S0
ff

duini dS. (1.28)

Taking equations (1.10) and (1.11) into account, we observe that equation (1.28)
also is

dws = | �0 | p dv +
∫
∂�0

duisij nj dS

= | �0 | p dv + dεik
∫
∂�0

xksij nj dS (1.29)

Using equation (1.15) in equation (1.29) finally yields

dws = | �0 | (p dv + σij dεij ) . (1.30)

Neglecting any dissipative phenomenon, the mechanical work ws supplied to the
solid is stored in the form of elastic energy and, under isothermal conditions,
can be identified to the free energy of the solid domain. In the framework of this
micromechanical approach, ws appears as a function of the macroscopic loading
parameters εij and p. Following Deudé et al. (2002), it is therefore convenient to
introduce the potential energy of the solid phase w∗s = ws − pv | �0 |, which
satisfies

dw∗s = | �0 | (−v dp + σij dεij ) (1.31)
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The parameterw∗s proves to be a potential for the poroelastic constitutive behavior,
with the state variables εij and p:

v = − 1

| �0 |
∂w∗s
∂p

σij = 1

| �0 |
∂w∗s
∂εij

. (1.32)

This property shows that the tensors bij in equation (1.19) and b′ij in equation
(1.22) are equal:

bij = −∂σij
∂p

= ∂v

∂εij
= b′ij . (1.33)

Drained and Undrained Descriptions

We return in the following to the macroscopic approach in the isotropic case. As
stated above, the existence of a fluid phase in the connected porous space of the
rock implies that two distinct descriptions have to be considered: the drained and
undrained descriptions, associated repectively with the choice of either p or m
as thermodynamic variable. Stress–strain relations in the drained description are
identical to that of classical elasticity for nonporous solids, provided that effective
pressure is substituted for the usual pressure. These relations can be summarized
by the following expressions:

ε = −Pe
K

εij =
(
σij
)
e

2µ
, i �= j (1.34)

or equivalently

σij =
(
K − 2µ

3

)
εδij + 2µεij − bpδij . (1.35)

Another alternative form is

Eεij = (1+ ν)(σij + bpδij )− ν(σkk + 3bp)δij , (1.36)

where E is the Young modulus and ν the Poisson ratio. The above relations are
to be understood as linear and isotropic relations between strains, stresses σij ,
and fluid pressure p. Such strains can be realized through a two-step deformation
process: a deformation due to applying σij at constant zero fluid pressure, then a
deformation due to applying fluid pressure p at constant σij . Note that the theory
involves at that point three elastic constants: K (drained bulk modulus), µ (shear
modulus), and b (Biot coefficient). The shear strains are unaffected by the presence
of a fluid because σeffij = σij (i �= j). The existence of a fluid phase modifies the
mechanical behavior of the rock only in the case of normal stresses. Because of the
assumption of linearity,K andµ are considered to be independent of fluid pressure.
In the undrained description, fluid pore pressure p is no longer an independent
variable. The appropriate thermodynamic variable is the fluid mass content per unit
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reference volumem. It is then convenient to define an undrained bulk modulusKu
so that the stress–strain relations in the undrained description can be written as

ε = − P

Ku
εij = σij

2µ
, i �= j (1.37)

or equivalently

σij =
(
Ku − 2µ

3

)
εδij + 2µεij . (1.38)

Again, because the shear strains are unaffected by the existence of a fluid phase,
the shear modulus is the same as in the drained case. It appears then that linear
isothermal poroelastic theory involves four constantsK ,Ku,µ, and b. The preced-
ing relations are to be understood as linear relations expressing strains as functions
of a single set of variables, the stresses σij . Although the above formulation is fre-
quently used, it lacks the symmetry that one would expect compared with equation
(1.35), where two sets of variables appear. The second variable should be in this
case the mass content m so that a more symmetric and complete equation would
express εij as functions of σij and m, exactly as equation (1.35) expresses εij as
functions of σij and p. The fluid mass variation effect (following a first deforma-
tion step due to applying σij at constant m) is not examined here but can easily
be derived, as will be subsequently shown. Equations (1.37) and (1.38) are thus
incomplete, but their complete form, including the mass variation effect, will be
given later.

Fluid Pressure Variation in the Undrained Regime

In the undrained regime, i.e., deformation taking place at constantm, the fluid pres-
sure varies. How can we calculate its variation? Using the stress–strain relations
of equations (1.7) and (1.37) allows us to derive the expression for fluid pressure
in the undrained regime:

pu = − (Ku −K)ε
b

= +BP, (1.39)

where B is the Skempton coefficient:

B =
(
∂p

∂P

)
m

= (Ku −K)
bKu

. (1.40)

B is the ratio of the pore pressure change (in the undrained regime) to the mean
pressure change. Using the expression for b, one gets alsoB = [(1−K/Ku)/(1−
K/Ks)], which shows that B is a nondimensional parameter that varies between
0 (if K → Ku, highly compressible fluid case) and 1 (K → 0, very porous and
compressible matrix case, or if Ks → Kf ,Ku → Ks).
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Fluid Mass Variation in the Drained Regime

Exactly as we have derived the relation giving the variation of pressure for an
undrained deformation, we can derive the appropriate expression for the variation
of mass in the case of drained deformation. In the case of drained deformation, m
varies. How can m − m0 be expressed in terms of the volumic strain ε and fluid
pressurep? The answer is obtained by using the general Maxwell thermodynamics
relations. Let us(εij , v) be the internal energy of the solid phase per unit volume
of porous rock. The internal energy us is the sum of several terms and will not be
given explicitly at this point since we have chosen to derive the constitutive relations
by starting from the linear stress–strain relations (an equivalent derivation would
start from a quadratic expression for us). Obviously, for v = 0, the elastic part
of us is the usual elastic energy us(εij , 0) = u0

s + 1/2(K − 2µ/3)ε2 + µεij εij .
Introducing the first strain tensor invariant I1 = ε and the second strain tensor
invariant I2 = ε22ε33 + ε33ε11 + ε11ε22 − (ε12)

2 − (ε23)
2 − (ε31)

2, one can also
write us(εij , 0) = u0

s +1/2(K+4µ/3)I 2
1 −2µI2. Let us introduce the free energy

per unit volume ϕs(εij , p) = us−pv. For an infinitesimal isothermal deformation,

dϕs = σij dεij − v dp. (1.41)

But the fact that dϕs is a total differential implies that
(
∂σij

∂p

)
εij

= −
(
∂v

∂εij

)
p

= − 1

ρ0

(
∂m

∂εij

)
p

. (1.42)

The previously established relations in equation (1.35) for stress–strain relations
imply (

∂σij

∂p

)
εij

= −bδij . (1.43)

Combining the above results and recalling that we are within the framework of a
linear theory, one can express m−m0 as

m−m0 = bρ0ε + p

M ′ , (1.44)

where the constantM ′ is determined by the conditionm = m0 when the deforma-
tion is undrained and p = BP . M ′ is a Biot-Willis storage coefficient. Note that
M ′ differs from the previous coefficientM by a quantity v0/Kf . Thus

m−m0 = bρ0ε + b2ρ0
p

(Ku −K) =
bρ0

BK
(p − BP), (1.45)

which is the desired relation. Equation (1.45) shows that b, defined in equation
(1.8), is also given by

b =
(
∂P

∂p

)
ε

= 1

ρ0

(
∂m

∂ε

)
p

. (1.46)
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Equation (1.46) is a Maxwell relation corresponding to the thermodynamic
potential hs(ε, p) such that dhs = Pdε + (m/ρ0)dp. It expresses the equality
of the second mixed derivatives of hs . Extracting from equation (1.45) p as a
function of m and P and utilizing equation (1.34) yields

ε = − P

Ku
+ B (m−m0)

ρ0
, (1.47)

which is the complete form of equation (1.37) when a two-step deformation is
considered: a deformation due to applied stresses at constantm, and a deformation
due to mass variation at constant stresses. Equation (1.47) shows that B, defined
by equation (1.40), is also given by

B =
(
∂p

∂P

)
m

= ρ0

(
∂ε

∂m

)
P

. (1.48)

Equation (1.48) is a Maxwell relation corresponding to the thermodynamic poten-
tial gs(P,m/ρ0), such that dgs = ε dP + p(dm/ρ0). It expresses the equality of
the second mixed derivatives of gs .

The apparent fluid volume fraction variation v− v0 can easily be derived from
the previous result with the use of m − m0 = ρ0(v − v0) + v0(ρ − ρ0), where
the variation of ρ is ρ − ρ0 = ρ0(p/Kf ), introducing the fluid bulk modulusKf .
Because the rock is fluid saturated, v0 = �0 and

v − v0 = bε +
(

b2

(Ku −K) −
�0

Kf

)
p. (1.49)

Biot-Gassmann Equation

Equation (1.49) allows us to derive a general relation between both moduliK and
Ku (Biot-Gassmann equation). A simple way to derive this relation is to consider
the particular case where p = P . In such a situation, each point in the solid
part of the rock is submitted to the same isotropic pressure P . Because of the
homogeneous state of pressure in the porous saturated rock, the fluid phase could
be replaced by the solid phase without any modification of the stress state. The
medium behaves exactly as if it was composed of a single phase of bulk modulus
Ks , so that P = p = −Ksε. Moreover, (v − v0)/v0 = ε and v0 = �0 = �,
because the porosity remains constant in this case (homogeneous deformation).
Equation (1.49) can then be written as

v − v0 = �0ε = bε +
(

b2

(Ku −K) −
�0

Kf

)
(−Ksε). (1.50)

This provides the Biot-Gassmann equation

Ku = K + b2

�0
Kf

+ (b−�0)
Ks

(1.51)
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or

1

K
− 1

Ku
=

(
1
K
− 1
Ks

)2

1
K
− 1
Ks
+�0

(
1
Kf

− 1
Ks

) . (1.52)

As intuitively expected, when the fluid cannot flow out of the rock, the rock
is stiffer, so that Ku > K . The Biot-Gassmann equation is a general relation
between both the drained and undrained bulk moduli, which involves the bulk
moduli of both the solid and fluid phases Ks and Kf together with porosity �0.
The Biot coefficient in equation (1.52) is expressed itself in terms of K and Ks
from equation (1.8). Some extreme cases from equation (1.52) are of special in-
terest. First, a very porous rock is expected to have a Biot coefficient b close to
1, since in that case, K � Ks . Consequently, 1/Ku ≈ �/Kf + (1 − �)/Ks in
that case. This is the harmonic average result. A second case of interest is that
of a moderate-porosity rock saturated with a highly compressible fluid (a gas)
such that Kf ≈ 0. Then Ku ≈ K . A strong variation is thus predicted for the
undrained bulk modulus (and hence P-wave velocity) in the same rock when sat-
uration switches from gas to liquid, a result of great importance in oil and gas
exploration.

Fluid Diffusion at Macroscopic Scale

Both the drained and undrained deformation regimes refer to the deformation of
a small volume in the medium. The considered volume is small in the previously
defined sense: small compared with the macroscopic scale and yet large with
respect to the microscopic scale. The fluid pressure is assumed here to vary at
the macroscopic scale. Recall the expression of Darcy’s law in the case where, as
previously, p represents the perturbation of hydraulic pressure from hydrostatic
equilibrium state:

qi = −k
η
∂ip, (1.53)

where qi is the ith component of the filtration velocity, k the rock permeability
(assumed to be isotropic here), and η the fluid viscosity. Let us point out that the
filtration velocity is not the local true fluid velocity within the pores. Darcy’s law
means that fluid flow will take place at the macroscopic scale as a consequence
of fluid pressure gradient. This raises the following questions: what is the time
constant for such a flow, and can we derive it from what we know? The mass
conservation equation implies that

∂tm+ ∂iρqi = 0 (1.54)

Equations (1.53) and (1.54), together with equations (1.35) and (1.45) and the
static mechanical equilibrium equation

∂jσij = 0, (1.55)
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constitute the appropriate set to derive the fluid mass diffusion equation in the case
of a linear and isotropic elastic behavior of the skeleton. As explained previously,
stress, strain, and fluid pressure are defined as small perturbations from an equi-
librium state so that the volumetric forces can be set to zero. Combining equations
(1.55) and (1.35) yields

∂jσij = 0 =
(
K + µ

3

)
∂ikuk + µ∇2ui − b ∂ip, (1.56)

where ∇2 is the Laplacian operator. Taking the divergence of the above equation
yields (

K + 4µ

3

)
∇2∂kuk = b∇2p. (1.57)

Combining equations (1.53) and (1.54), and assuming that the fluid compressibility
is reasonably small, gives

∂tm = ρ k
η
∇2p. (1.58)

The approximation in the above relation is that the term ∂kρ∂kp is negligible com-
pared with ρ∇2p. A relation between m, p, and ∂kuk can be obtained using the
Laplacian of equation (1.45):

∇2m = bρ
(
∇2∂kuk + b ∇2p

(Ku −K)
)
. (1.59)

Together with equation (1.57), the last equation gives

(
K + 4µ

3

)
(Ku −K)∇2m = b2ρ

(
Ku + 4µ

3

)
∇2p, (1.60)

and so from equation (1.58), the diffusion equation is found to be

∂tm = c ∇2m, (1.61)

where c is the hydraulic diffusivity. It follows from the above calculation that c is
given by

c = B

b
Ku
k

η

(K + 4µ
3 )

(Ku + 4µ
3 )
. (1.62)

Assuming both B and b to be of the order of unity, η=10−3 Pa·s (water at room
conditions), k=10−15m2 (1 mDarcy), Ku=20 GPa, and with the approximation
that (K + 4µ/3)/(Ku + 4µ/3) is close to 1, one obtains c≈ 2.10−2m2s−1. The
solutions of the diffusion equation are such that the time constant τ for fluid to
diffuse over a distance L is τ ≈ L2/c . Fluid diffusion is a slow process since
τ ≈ 150 years for L= 10 km. It is of interest to note that, although the equation
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governing the fluid-mass evolution is a diffusion equation, the equation governing
the fluid pressure is in general more complicated. Use of equations (1.45) and
(1.58) leads to

ρ
k

η
∇2p = bρ ∂tε + b2 ρ

(Ku −K) ∂tp, (1.63)

which contains the term bρ ∂tε in addition to the diffusion equation terms.

Fluid Flow at Microscopic Scale

As a macroscopic theory, poroelastic theory considers the rock as an idealized
continuous medium. As discussed previously, this can be reconciled with a mi-
croscopic approach if all defined mechanical quantities are averaged over spatial
and temporal scales large compared with those of the microscopic process, which
are thus in general ignored. We come back in this subsection to the microscopic
point of view because there are some important microscopic processes that can-
not be ignored. Up to now, we have assumed that fluid pressure p is constant
everywhere within the REV. This key assumption of poroelasticity is violated in a
particular case that is important. The microscopic process involved is the so-called
squirt-flow mechanism (Dvorkin et al., 1994). The variable stresses caused by the
propagation of an elastic wave in a porous saturated rock induce pore pressure
gradients on the scale of individual pores. Equant pores are stiff and flat pores
are compliant. A high compressive stress at the microscopic pore scale will expel
fluid from compliant pores (where fluid pressure is high) toward stiff pores (where
it remains low). This process takes place at the pore scale and dissipates energy.
At high frequencies (for instance, ultrasonic frequencies in laboratory), the elastic
wave period is so short that the fluid has no time to move. The medium behaves
then as a two-phase medium, the solid and fluid phases being both immobile. This
situation corresponds to a variable fluid pressure from pore to pore. It cannot be
handled by using poroelasticity. EMT is the appropriate tool in that case to derive
the values of the "high frequency" effective elastic moduli (Guéguen and Palci-
auskas, 1994; Le Ravalec and Guéguen, 1994) Khf and µhf . EMT allows one
to express these moduli in terms of the solid- and fluid-phase moduli, the poros-
ity �0, and the pore shape parameters (such as the pore aspect ratio A, which is
defined as the ratio of the crack aperture to the crack length). What is meant by
high frequency remains to be specified. The characteristic angular frequency ωc is
given by

ωc = A3K

η
. (1.64)

At frequencies ω 
 ωc, the fluid has no time to move. For ω � ωc, lo-
cal fluid flow takes place at the microscopic pore scale (squirt flow). Typically,
if K = 20 GPa, η = 10−3 Pa·s, and A ≈ 10−3 (A is the crack aspect ratio),
ωc ≈ 20 kHz. As a result, dispersion of elastic waves is expected. High veloc-
ity values are predicted at ω 
 ωc, and low velocity values at ω � ωc. This
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km
/s

Log Frequency (Log Hz)

Figure 1.3 � Compressional and shear wave velocity versus frequency for a dry and
glycerine-saturated sandstone.Velocities are measured at 22◦C and 63◦C, effective pressure
is 17 MPa (Upper Fox Hills sandstone, from Batzle, 2001).

is confirmed by laboratory results (Batzle et al., 2001) for both the frequency
dependence and the viscosity dependence of ωc (Figure 1.3). Combining linear
poroelasticity and EMT makes it possible to predict the high- and low-frequency
velocities (Le Ravalec and Guéguen, 1996). At high frequencies, the bulk and
shear moduli Khf and µhf are obtained from a micro model using EMT only. At
low frequencies, the bulk and shear moduli Klf and µlf are obtained from the
Biot-Gassmann equation (1.51), because the low-frequency moduli are identical
to the undrained moduli: at low frequencies, an isobaric state is reached at the
scale of the REV, the scale at which p is defined. Equation (1.51) provides the
theoretical bulk modulus value if K,µ,Kf ,Ks , and �0 are known. The values
of the drained moduli K and µ can be derived independently from EMT: they
correspond to the effective moduli of a solid medium with empty pores. This re-
sults from the linearity assumption, implying that fluid pressure dependence ofK
and µ is neglected. Consequently, K and µ depend on Ks , �0, and pore shape
parameters (such as the pore aspect ratio A). The EMT calculation giving these
moduli is exactly similar to that giving Khf and µhf , the only difference being
that in the former case pores are considered to be empty whereas in the latter they
are considered to be fluid saturated. Although we do not consider in this chapter
the dynamic poroelastic theory, the preceding remarks allow us to conclude that
high and low elastic-wave velocities are different. This means that ultrasonic mea-
surements in the megahertz range in the laboratory should not be used to interpret
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seismological data recorded in the hertz range. Dynamic poroelasticity is out of
the scope of this book. It takes into account the inertia effects, which become
important in a frequency range that is much higher than the critical value ωc.

1.2.2 Linear Nonisothermal Poroelasticity
Nonisothermal porous media are encountered in numerous cases. Nuclear waste
disposal is an important example for low-porosity rocks. Oil recovery in deep
rock reservoirs and frictional heating in fault zones are two other very differ-
ent examples of interest. The extension of the previous theoretical framework to
nonisothermal deformation is straightforward (Palciauskas and Domenico, 1982;
McTigue, 1986). It requires the introduction of the thermal expansivities of the
fluid, bulk and pore volumes, and modified constitutive relations.

Drained Deformation: Constitutive Relations and Fluid MassVariation

Let T0 be a reference temperature, and consider a possible temperature change
T − T0. This will result in a thermal expansion of the rock, so that an additional
deformation has to be accounted for. This is expressed by the following equation,
which has to be used instead of equation (1.34) for drained deformation:

ε = −Pe
K
+ αb(T − T0), (1.65)

where αb is the bulk drained thermal expansivity of the porous rock:

αb = 1

V

(
∂V

∂T

)
P,p

. (1.66)

In the drained regime, equation (1.45), which expresses the fluid mass variation in
the isothermal case, is to be modified as follows:

m−m0 =
(
bρ0

BK

)
(p − BP)+m0 αm (T − T0), (1.67)

where the thermal expansion coefficient αm, which reflects changes in the fluid
mass content at constant mean pressure P and fluid pressure p, is defined as

αm = 1

m

(
∂m

∂T

)
P,p

. (1.68)

Given that m = ρ�, and using equation (1.68), it follows that

αm = 1

ρ

(
∂ρ

∂T

)
P,p

+ 1

�

(
∂�

∂T

)
P,p

= α� − αf , (1.69)
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where αf = −1/ρ (∂ρ/∂T )P,p is the fluid thermal expansivity and α� =
1/� (∂�/∂T )P,p is the pore thermal expansivity. For water at room pressure
and temperatures below 80◦C, αf ≈ 5.10−4C−1 so that in general α� � αf and
αm is negative: when temperature increases, the fluid mass decreases. Substituting
equation (1.65) in equation (1.67), it is possible to express the fluid mass variation
in terms of ε, p, and T :

m−m0 = −bρ0ε + bρ0p

BKu
+ (� αm − b αb)ρ0(T − T0). (1.70)

From this last equation, the temperature dependence of the fluid mass is, at constant
ε and p, (

∂m

∂T

)
ε,p

= (� αm − b αb) ρ0 (T − T0). (1.71)

The sign of this coefficient is in general negative.

Undrained Deformation: Constitutive Relations
and Fluid Pressure Variation

In the undrained regime, equation (1.37) is modified to account for thermal expan-
sion as follows:

ε = − P

Ku
+ αu (T − T0), (1.72)

where αu is the bulk undrained thermal expansivity of the porous rock. In the
undrained regime, fluid mass is constant, so that from equation (1.67)

m−m0 =
(
bρ0

BK

)
(p − BP)+m0 αm (T − T0) = 0. (1.73)

Equivalently, equation (1.73) can be written as a generalization of the Skempton
coefficient definition:

pu = B[P −K�0

b
αm(T − T0)]. (1.74)

This allows us to calculate how fluid pressure varies when temperature increases
at constant pressure P :

(
∂p

∂T

)
m,P

= −αm �0 K
B

b
. (1.75)

As discussed previously, αm is in general negative so that the fluid pressure in-
creases with temperature: (∂p/∂T )m,P ≥ 0. The value of this coefficient was
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calculated to be 0.7 × 105Pa · C−1 by Le Ravalec and Guéguen (1994) for a
granitic rock with αm = −46 × 10−5 C−1,�0 = 0.18 × 10−2,K = 27 GPa,
B = 0.9, b = 0.3. Using equation (1.70) allows us similarly to calculate how
fluid pressure varies when temperature increases at constant bulk volume:

(
∂p

∂T

)
ε,P

= (b αb −� αm) KuB
b
. (1.76)

Again, fluid pressure increases with temperature since (∂p/∂T )ε,P > 0. Using the
same reference values as above, with αb = 5×10−5C−1,Ku = 38 GPa, one gets
(∂p/∂T )ε,P = 12.8 × 105 Pa · C−1. These results show that a significant fluid
pressure increase is to be expected in a low permeability rock if thermal heating is
assumed to take place in the undrained regime. A possible case where this could
apply is the underground storage of nuclear waste in a granitic rock.

Drained and Undrained Thermal Expansion Coefficients

Several thermal expansion coefficients have been introduced in the previous sec-
tions. The porous rock has two thermal expansion coefficients, αb and αu. A sim-
ple relation between both can be derived as follows. From equations (1.65) and
(1.72), considering the undrained regime where pu is given by equation (1.74),

ε = −P − bpu
K

+ αb(T − T0) = − P

Ku
+ αu(T − T0). (1.77)

Together with equation (1.74), equation (1.77) leads to

αu = αb − Bαm�. (1.78)

Given that in most cases αm is negative, in general it is the case that αu > αb.

1.2.3 Nonlinear Poroelasticity
It may happen that, in some cases, a porous rock exhibits a materially nonlinear
behavior in the elastic domain. In the following we consider only isothermal con-
ditions. This type of behavior can be accounted for from both the microscopic and
macroscopic points of view.At the microscopic level, the origin of nonlinearity can
be specified and analyzed as shown later. At the macroscopic level, the elastic free
energy has to be expressed to a higher order in terms of strains (or stresses). This is
similar to what is done in the case of nonlinear elasticity for nonporous rocks and
minerals: third-order or even fourth-order terms are retained in the development of
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the free energy, depending on their relative importance with respect to the quadratic
term of linear elasticity.

Experimental Characterization of Nonlinearity

The nonlinear character of the rock response can be investigated by performing
drained isotropic compressive tests. The macroscopic stress applied to the sample
has the form σij = −Pδij , and the pore pressure is maintained at the constant
value p. The confining pressure P , initially identical to the pore pressure p, is
gradually increased (Figure1.4). The evolution of the volumetric strain in terms of
the confining pressure reveals some aspects of the nonlinear response. Following

Kt

P

P0 P'0

(P0'-P0)

Kt

P'

Figure 1.4 � Tangent modulus. Two sets of experiments at different pore fluid pressures.
In terms of the effective (Terzaghi) pressure P′, both sets are identical.
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Boutéca et al. (1994), the nonlinear response is quantified in terms of a drained
tangent bulk modulus defined as

1

Kt
= − 1

V

(
∂V

∂P

)
p

. (1.79)

Experimental results show thatKt is an increasing function ofP . It is also a function
of p. For some rocks, the following observations were made. Considering two
different values of the pore pressure, the corresponding curves Kt(P ) are shifted
from each other along the axis of confining pressure by a quantity precisely equal
to the difference in pore pressure (Figure1.4), (see also Zimmerman (1991)). For
such rocks,Kt is a function of P and p through P ′ = P −p, which is commonly
referred to as the Terzaghi effective pressure.

Microscopic Origin of Nonlinearity

For granular rocks such as sandstones, it has been argued that the nonlinearity could
be attributed to the contact between two elastic grains, which is classically modeled
as a Hertzian contact. A second possible origin of the nonlinearity is the presence
of microcracks in the solid phase. Indeed, let us recall that, in general, the porous
space comprises a set of cracks and a network of connected pores. In rocks such as
sandstones, the contribution of cracks to the total porosity is in general negligible.
However, the effect of cracks on the overall reponse can be significant. In both
cases, Hertzian contacts or cracks, we can expect that the mechanical response
will exhibit path dependence. Therefore in general, the deformation history must
be explicitly known. This will be true at least for any stress state with a shear
component. The case of isotropic compression could possibly exhibit no path
dependence and correspond to a truly nonlinear elastic behavior. We shall consider
in the following the special case in which the nonlinear macroscopic behavior is
due to the closure of cracks induced by the confining (isotropic) pressure. This
process is assumed to be nonlinear and elastic. Following these assumptions, the
asymptotic regime of theKt(P ) plot is related to the fact that all cracks are closed
at sufficiently large confining pressures (Figure1.4). The asymptotic value of Kt
is identical to that of the bulk modulus of the crack-free porous rock. Although the
evolution of cracks is an important factor, that of pores is not because their shapes
and volumes remain almost constant. Pores are supposed to be connected to each
other and to be fluid saturated at pressure p. To clarify the issue of the connection
between pores and cracks, a simple experiment can be made. The pore pressure
and the confining pressure are maintained at identical values and are increased
simultaneously from the initial values p = 0 and P = 0 to p = P . Then the
volumetric strain and the fluid pressure variation are related by δV/V = −δp/Ks ,
where Ks is the apparent tangent modulus. If cracks are all connected to pores,
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the solid phase undergoes a hydrostatic loading. Then stresses and strains are
uniform and Ks is the bulk modulus of the solid phase. This result agrees with
the measurements of Boutéca et al. (1994) on two different sandstones, showing
a Ks value close to 35 GPa that was insensitive to p in the range from p = 0
to 100 MPa.

Macroscopic Constitutive Response

We examine nonlinear poroelasticity within the framework of the Biot (1973)
semilinear theory of fluid-saturated porous solids. As before, the rock is assumed
to be a homogeneous isotropic solid, saturated with a viscous compressible fluid.
What are the stress–strain relations and what is the fluid mass expression in the
nonlinear case? To answer that question, we extend in the following the previous
relations obtained in the linear case.

Exactly as we introduced a stress decomposition to define an effective stress
in equation (1.9), let us assume that the elastic deformation of a rock sample sub-
mitted to a stress −Pδij on its external surface and a fluid pressure p within the
pores can be obtained by superimposing two states of equilibrium (Figure1.5).
Isotropic compression is the only case examined here, for reasons previously
discussed.

The first stress state corresponds to a stress−(P −p)δij applied to the external
surface of the rock and a zero fluid pressure within the pores. The second one is
that of the same rock sample submitted to a pressure p on both the external surface
of the rock and the internal surfaces of the pores.

The concept of semilinearity stipulates that the strains due to the first state, ε1,
involve nonlinear modifications of local geometries, such as crack closure, that
affect the global nonlinear response of the matrix. We examine in the following
how these assumptions modify the mechanical response, primarily the stress–
strain relations. For reasons explained in the previous section, only the case of

= +p 0 p

σij (σij + pδij) – pδij

Figure 1.5 � Stress decomposition for Biot semilinear model. The decomposition gener-
alizes that described by Figure 1.1: the stress state is obtained by superimposing: (1) a stress
σij + pδij on the external surface and a zero pressure in the pores, and (2) a compressive
stress−pδij on the external surface and in the pores.
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isotropic compression is investigated. Then the strains due to the second state, ε2,
are assumed to be linear in p. This implies

ε2 = − p

Ks
. (1.80)

The concept of semilinearity assumes that the total strain is obtained by superim-
posing both strains ε1 and ε2. Experimentally, as shown in Figure1.6, this assump-
tion is excellent in many cases. We have

ε = ε1 − p

Ks
. (1.81)

The strain ε1 is the nonlinear part of the total strain, and it does not involve the
fluid pore pressure within the rock because it corresponds to a stress applied only
on the external rock surface (Figure1.5). In that case the rock is "drained" under a
constant (zero) fluid pressure and its elastic nonlinear behavior can be described
by a free energy f such that

P1 = (P − p) = − ∂f
∂ε1

, (1.82)

where f refers to the "drained rock" at zero fluid pressure and is

f = f2 + f3, (1.83)

where f2 is the usual quadratic term. At constant temperature and for a drained
rock,

f2 = f0 + 1

2

(
K + 4µ

3

)
I 2

1 − 2µ I2, (1.84)

where I1 and I2 are respectively the first and second strain invariants introduced
earlier to calculate the fluid mass variation in equation (1.45). Then equations
(1.82), (1.83), and (1.84) lead directly to the following stress–strain relation in the
drained regime:

P = −Kε + bp − ∂f3

∂ε1
, (1.85)

where the Biot coefficient is as before b = 1 − (K/Ks). The first two terms of
equation (1.85) are of course those previously found in the case of linear elasticity.
The third-order term depends on f3 and is a new term to the nonlinearity. It is
a function of I1, I2, and the third strain invariant I3. Because the rock is homo-
geneous and isotropic, f3 is necessarily a function of only the strain invariants.
Three combinations of the three strain invariants (I 3

1 , I1I2, I3) can result in a cubic
expression so that the third-order term normally leads to the introduction of three
additional elastic constants. However, in the simple case of isotropic compression,
I2 = I 2

1 /3 and I3 = (I1/3)3, so that only one additional constant is needed. Then
one can write

f3 = d

3
I 3

1 . (1.86)
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Figure 1.6 � (a)Volumetric strain as a function of the isotropic loading (pressure applied
on the external rock surface) at two given pore pressure levels (1 MPa and 51 MPa): a
nonlinear behavior is clearly evidenced. (b) Volumetric strain for a loading path where
the pressure applied on the external surface and the pore pressure are identical: a linear
behavior is clearly evidenced, in agreement with the semilinear theory. (After Boutéca
et al., 1994.)

Note that, at this level of analysis, nothing can be stated about d. Only from a
microscopic analysis, for instance, with a specific model of elastic crack closure,
would it be possible to specify d. Equations (1.81), (1.82), and (1.86) allow us to
derive the complete stress–strain relations. Calculating the derivative of f3 with
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respect to the volumetric strain (which is equal to I1), we get

∂f3

∂I1
= d I 2

1 . (1.87)

The final stress–strain relation is

P = −Kε + bp − d(ε + p

Ks
)2. (1.88)

Let us now consider also the relation giving the fluid mass variation. In the drained
regime, there is a fluid mass variation that can be obtained using the same method
as in previous sections, adding the fluid mass variations of both stress states. For
the second stress state, the strain is linear in fluid pressure, and

(m−m0)2 = ρ0 (v − v0)+ v0 (ρ − ρ0), (1.89)

where the variation of v in that case is (v− v0)/v0 = ε = −p/Ks (homogeneous
deformation, constant porosity). Because the rock is fluid saturated, v0 = �0.
Moreover, (ρ − ρ0)/ρ0 = p/Kf . Therefore

(m−m0)2

ρ0
= p �0

(
1

Kf
− 1

Ks

)
. (1.90)

For the first stress state, recall that the pore fluid pressure is constant (zero), so that
the fluid mass variation results only from the porosity change. From v = Vp/V0
and Vp = V − Vs , where Vp is the pore volume and Vs is the volume of solid
phase in a rock volume V (V0 is the initial value of V ), one can derive (v− v0)1=
(m − m0)1/ρ0 = ε − (1 − �0)εs . The strain εs is defined as the volumic strain
in the solid phase. Introducing σs , the sum of the three diagonal components of
the stress tensor in the solid phase, εs = σs/3Ks . Because the first stress state
corresponds to an externally applied stress on a rock of porosity �0 and zero
fluid pressure, σs is related to P by a simple relation: −P = (1 − �0)σs/3. This
leads to

(m−m0)1

ρ0
= ε + P

Ks
. (1.91)

Adding equations (1.90) and (1.91) and deriving P from equation (1.88), one gets

(m−m0)

ρ0
= b ε + p

(
�0

Kf
+ (b −�0)

Ks

)
− d

Ks

(
ε + p

Ks

)2

. (1.92)

This shows that in the nonlinear case the Biot coefficient is modified by an
additional term. The constitutive relations derived for the nonlinear case contain
implicitly an effective pressure. The effective pressure law has not been given,
however, and its exact value depends on the d value. In turn, the d value can only
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be derived from a specific microscopic model. Using equation (1.79), it is easy to
derive

Kt = K + 2d(ε + p Ks). (1.93)

This shows that the tangent modulus differs between two experiments at different
p values, p1 and p2, by the quantity 2d(p2 −p1)Ks . This means that the constant
d can be measured directly from Kt − ε plots for different p values.

1.2.4 Anisotropic Linear Poroelasticity
Most rocks are anisotropic, although their anisotropy remains small in most cases.
Constitutive equations for anisotropic poroelastic rocks have been studied by
Brown and Korringa (1974), Carroll (1979), Thompson and Willis (1991), and
Lehner (1997). Two main origins of rock anisotropy are the preferred orientation
of grains and the alignment of cracks. The extension of poroelastic theory to the
general anisotropic case can be viewed as an extension of anisotropic elasticity
to porous media, similar to the extension of isotropic elasticity presented in the
preceding sections.

Constitutive Relations

Linear stress–strain relations that generalize equation (1.35) can be written as

σij = Cijkl εkl − bij p, (1.94)

where Cijkl is the drained elastic stiffnesses tensor. This fourth-order tensor fol-
lows the same symmetry rules as the usual elastic stiffnesses tensor. It can be
represented by a 6×6 matrix using Voigt notation. The same is true for its inverse,
the drained compliances tensor Sijkl . The second-order tensor bij generalizes the
Biot coefficient b. The quantity

σ
eff
ij = σij + bij p (1.95)

is an appropriate generalization of the Biot-Willis effective stress, and the exis-
tence of an effective stress principle in that case is a necessary consequence of
linearization alone. A second linear relation provides a generalization of equation
(1.49):

v − v0 = bij εij + p

M
. (1.96)

Because
(
∂σij /∂p

)
εij

= − (∂v/∂εij )p is still applicable, the same tensor bij
appears in both equations (1.94) and (1.96) and is symmetric. Similar results
can be derived for the undrained deformation regime, generalizing equation
(1.47):

εij = (Sijkl)u σkl + Bij (m−m0)

ρ0
, (1.97)



7th January 2004 11:52 Elsevier/MFS mfs

1.2 Poroelasticity 29

where (Sijkl)u is the fourth-order tensor of undrained compliances, and Bij is a
second-order tensor that is equivalent to the Skempton coefficient in the isotropic
case. The symmetry rules for the drained stiffnesses and compliances tensors are
also applicable to the undrained ones. Moreover, Bij is symmetric, as is bij .

Anisotropic Extension of Biot-Gassmann Equation

The Biot-Gassmann equation (1.51) or (1.52) provides a useful relation between
both bulk moduli, drained and undrained, in terms of the solid-phase bulk modulus
Ks , the fluid-phase bulk modulus Kf and the rock porosity �. This relation is
independent of the pore shape geometry. As previously discussed, combining this
relation with additional assumptions relative to pore shape geometry and using
EMT allows calculation of the high- and low-frequency moduli. Extending this
calculation to the anisotropic case provides similarly some interesting results on
high- and low-frequency elastic stiffnesses or compliances. Brown and Korringa
(1974) extended the Biot-Gassmann equation to anisotropic media. We give in the
following their result in the case where the solid part of the rock is homogeneous
(microscopic homogeneity). This is the same assumption we previously followed
for isotropic rocks. As they have shown, if this condition is not met, a slightly more
complex relation is found. Let us introduce the compliances tensor of the solid part
of the rock (Sijkl)s . The desired relation can be derived from first principles by
considering an undrained regime and applying a stress change δσij . Again this
process can be described in two stages. Let us define δp, the pore pressure change
resulting from the application of δσij in an undrained regime. Then we first apply
on the external rock surface δ(σij )1 = δσij + δpδij , in a drained regime (at
constant pore pressure). In a second stage, we apply a stress δ(σij )2 = −δpδij on
the external surface and a pore fluid pressure δp within the pores (Figure 1.7). The
overall strain variation (Sijkl)uδσkl is the sum of the two strains obtained in the two
stages. The strain associated with the first stage is (δεij )1 = Sijkl(δσkl + δpδkl)
and that associated with the second stage is (δεij )2 = −(Sijkk)sδp. This provides
the relation

[
(Sijkl)u − Sijkl

]
δσkl =

[
Sijkk − (Sijkk)s

]
δp. (1.98)

A second relation between δσij and δp can be obtained by requiring that the amount
of fluid is conserved:

δVp = − δp
Kf

Vp =
(
∂Vp

∂σij

)
p

(δσij )1 +
(
∂Vp

∂p

)
(P−p)

δp, (1.99)

where Vp is the pore volume in the rock volume V and� = Vp/V . The last term
in equation (1.99) represents the pore volume variation at constant differential
pressure, i.e., for an identical pressure variation applied to both the external rock
surface and the internal pore surfaces. As we have seen earlier in this chapter,
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Initial State Final State

Intermediate State

(1)

Drained Deformation

(2)

Isotropic Compression
of Solid Phase

Undrained Deformation

(1):  (δσij)1 = δσij + δpδij

(2):  (δσij)2 = – δpδij

and

and

(δp)1 = 0

(δp)2 = δp

Figure 1.7 � Undrained deformation of a sample submitted to an external stress vari-
ation δσij and a pore pressure variation δp in two steps corresponding to: (1) a drained
deformation, and (2) an isotropic compression of the solid phase.

1/K� = −1/Vp
(
∂Vp/∂p

)
(P−p), with K� = Ks , because of the assumption of

homogeneity of the solid phase. Then

δp

Kf
= − 1

Vp

(
∂Vp

∂σij

)
p

(
δσij

)
1 +

1

Ks
δp. (1.100)

Defining S′ij = (1/Vp)
(
∂Vp/∂σij

)
p

and substituting the δ(σij )1 value, one gets

−S′ij δσij = δp
(

1

Kf
− 1

Ks
+ S′kk

)
. (1.101)

Then combining equations (1.98) and (1.101), we obtain the relation

Sijkl − (Sijkl)u =
[
Sijmm − (Sijnn)s

]
S′kl
(

1

Kf
− 1

Ks
+ S′pp

)−1

. (1.102)

To express S′kl in terms of other known quantities, we use first the Maxwell relation
associated with the potential �, such that d� = −εij dσij − (Vp/V0)dp. This
implies (∂εij /∂p)σij = (1/V0)(∂Vp/∂σij )p or, substituting the definition of S′

ij
,

(∂εij /∂p)σij =�0 S
′
ij . Finally, the quantity (∂εij /∂p)σij is obtained by considering
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Initial State Final State

Isotropic Compression of the

Solid Phase

Intermediate State

(1) (2)

Drained Deformation Pore Fluid Pressure Variation

(1): (δσij)1 = – δp δkl

(2): (δσij)2 = 0

and   (δp)1 = 0

and   (δp)2 = δp

Figure 1.8 � Isotropic compression of the solid phase in two steps corresponding to:
(1) a drained deformation, and (2) a fluid pressure variation at constant external stress.

an incremental deformation δεij at constant differential stress (Figure 1.8): δεij =
(Sijkl)sδσkl in these conditions, with δσkl=−δp δkl . This incremental deformation
can also be written as the superposition of a deformation at constant stress and a
deformation at constant pore pressure:

δεij =
(
∂εij

∂p

)
σij

δp +
(
∂εij

∂σkl

)
p

δσkl = (�0 S
′
ij − Sijkk)δp.

These relations provide the result

Sijmm − (Sijnn)s = �0 S
′
ij . (1.103)

Substituting this result into equation (1.102), we arrive at the final relation equiv-
alent to the Biot-Gassmann equation in the anisotropic case:

Sijkl − (Sijkl)u =
[
Sijmm − (Sijnn)s

] [
Sklpp − (Sklqq)s

]
1
K
− 1
Ks
+�0(

1
Kf

− 1
Ks
)

. (1.104)

Equation (1.104) is the Brown-Korringa equation.
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1.3 Poroplasticity

Although poroelasticity theory provides a nice and powerful basis to deal with
deformations in porous saturated rocks, it is restricted to describing small,
reversible strains. Many geological situations correspond to irreversible strains
and consequently cannot be handled by poroelasticity theory. Poroplasticity is an
extension of plasticity to porous saturated rocks and is an appropriate tool to deal
with such situations. The following presentation, however, is restricted to small
strains. It can be extended to large strains by introducing a multiplicative decom-
position of the plastic and elastic parts.

1.3.1 Fundamental Relations of Poroplasticity
Because an irreversible deformation has to be accounted for, two types of relations
are required, as in classical plasticity. The first one is the yield function that defines
the conditions for plastic behavior, and the second one concerns the flow and
hardening rules that apply during plastic deformation.

Elastic and Plastic Components of Strain and Pore Volume Change

The mechanical loading defined by the stress σij and the fluid pressure p induce
a strain εij and an apparent fluid volume fraction change v − v0, which can, in
general, be split into a reversible part (elastic), and an irreversible part (plastic).
More precisely, it is assumed that it is possible to unload the REV, that is, to return
to the initial stress (σij )0 and fluid pressure p0 through a purely reversible process.
As in the section on poroelasticity, both (σij )0 and p0 are given a value of 0. The
REV is then said to be in the unloaded state. With respect to the initial state, the
unloaded state is characterized by a strain εpij and an apparent fluid volume fraction
change vp − v0 = δvp.

Elastic reloading from the unloaded state restores the stress σij and the pore
pressure p. It induces the elastic components of strain εeij and the apparent pore
volume fraction change δve = v − vp. This can be expressed as

εij = εpij + εeij v − vo = δve + δvp. (1.105)

Let us point out that unloading and reloading between the unloaded state and the
final state are reversible processes. This implies that the relationships between
σij , p, on one hand, and εeij , δv

e, on the other, are identical to those derived in the
poroelastic case (see previous discussion on linear anisotropic poroelasticity):

σij = Cijkl εekl − bijp δve = bij εeij +
p

M
. (1.106)



7th January 2004 11:52 Elsevier/MFS mfs

1.3 Poroplasticity 33

Micromechanical Approach of Poroplastic Behavior

The connection between macroscopic formulations and the micromechanisms of
deformations in the case of plastic deformation has been investigated by Rice in
a series of papers (Rice, 1971, 1975, 1977). Rice has shown how the microstruc-
tural rearrangements within the REV can be related to the macroscopic plastic
deformation. In particular, in the case of a porous saturated rock, a specific ques-
tion is: how do the increments of fluid pore pressure enter constitutive relations?
For an elastic response, the section on poroelasticity provides the answer. For a
plastic response, the special case of fissured rocks is of great interest. Then, fol-
lowing a similar analysis to that presented for nonlinear poroelasticity, we can
decompose any stress state into an isotropic compression of the solid phase, and
an additional stress applied to the external rock surface. Assuming a linear elas-
tic behavior for the first stress state, the plastic increment of deformation follows
the classical Terzaghi effective stress principle for fissured rocks if we assume
that all inelasticity arises by the processes of frictional slippage at solid–solid
contacts of isolated asperities or from further stable cracking from crack tips
(Rice, 1977).

Yield Function

When is an evolution of the REV of plastic (respectively elastic) nature? The
yield function aims at answering that question. The micromechanical point of
view provides a guideline for the mathematical formulation of this concept. Let
us assume that the solid phase is perfectly elastoplastic. The microscopic yield
function is denoted as Fm. It is a function of the six microscopic stresses sij . The
elastic domain in the space of stresses is defined by the condition Fm(sij ) < 0.
In other words, plastic strains may occur only if the microscopic stress state is on
the boundary of the elastic domain defined by Fm(sij ) < 0. Positive values of Fm
are not physically admissible. More precisely, for an infinitesimal stress increment
dsij , two possibilities exist. Either

Fm < 0 or [Fm = 0 and dFm < 0] ⇒ elastic evolution (1.107)

or
Fm = 0 and dFm = 0 ⇒ plastic evolution. (1.108)

Let us now consider the REV. If every solid particle inside is strictly experiencing
an elastic deformation (i.e., Fm < 0), then the REV evolution is elastic. This can
be stated mathematically by introducing the following function of the microscopic
stress field over the REV:

F = max Fm(sij ). (1.109)

According to this definition, the condition F < 0 implies that every solid particle
inside the REV is strictly in the elastic domain. If F = 0, there is a region of the
solid phase where the microscopic stress state lies on the boundary of the elastic
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domain (i.e., Fm = 0). The condition dF < 0 implies that all the solid’s particles
return in the elastic domain (i.e., Fm = 0 and dFm < 0). If dF = 0, the conditions
Fm = 0 and dFm = 0 may be satisfied in part of the solid phase. In this case,
the REV evolution is plastic. The conclusions of the previous discussion can be
summarized as follows:

F < 0 or [F = 0 and dF < 0] ⇒ elastic evolution (1.110)

or

F = 0 and dF = 0 ⇒ plastic evolution. (1.111)

F is the macroscopic yield function. From its definition, F is a function of the
microscopic stress field at the considered time. From a physical point of view, the
variation of the residual stress at the microscale that is induced by any plastic pro-
cess is responsible for the evolution of the elastic domain. This effect is classically
referred to as "hardening." A finite set of variables q(1), q(2), ... q(n) is introduced.
The parameters q(i) are referred to as hardening parameters. Their choice should be
such that the effect of the residual stress on the macroscopic criterion is described
sufficiently well. Eventually, the simplified formulation of the macroscopic yield
criterion takes the form

F = F(σij , p, q(i)). (1.112)

Flow and Hardening Rules

Using equations (1.110), (1.111), and (1.112), it is possible to determine whether
the REV evolution is elastic or plastic. The answer depends on the macroscopic
stress and pore pressure σij , p, as well as on the hardening parameter q (we assume
for simplification that there is only one such parameter). When the initial state is
on the boundary of the macroscopic elastic domain (F = 0), any infinitesimal
increment of the parameters leads to

dF = ∂F

∂σij
dσij + ∂F

∂p
dp + ∂F

∂q
dq. (1.113)

The determination of dq is the purpose of the hardening rule. In the case of
a plastic evolution, the incremental loading induces an incremental microscopic
plastic strain depij , which in turn is responsible for the increment dq. What is the
incremental macroscopic strain? We know from equation (1.106) the increments
dεe

ij
and dve. The plastic increments dεpij and dvp are given by the flow rule. We

know that εpij , v
p, and q are ultimately functions of epij . The microscopic approach

does not specify the hardening and flow rules, but it points to the fact that they
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are strongly related. This explains why, at the macroscopic scale, the classical
assumption is to choose a similar rule for both flow and hardening:

dεij = Hεij dλ

dvp = Hv dλ

dq = Hqdλ, (1.114)

where dλ is a positive scalar referred to as plastic multiplier:

dλ > 0 if F = 0 and dF = 0 dλ = 0 if F < 0 or dF < 0.
(1.115)

The flow and hardening rules are thus prescribed by a new set of functions, H .
This set, however, prescribes only the direction of the increment (dεpij , dv

p, dq).
The parameter dλ is left undetermined. By using equations (1.113) and (1.114)
we get

dF = ∂F

∂σij
dσij + ∂F

∂p
dp + ∂F

∂q
Hq dλ. (1.116)

For any plastic evolution, the condition [dλ > 0 and dF = 0] implies
that

dλ =
(
∂F
∂σij
dσij + ∂F

∂p
dp
)

− ∂F
∂q
Hq

. (1.117)

Defining
→�F= (∂F/∂σij , ∂F/∂p) and

→
δL= (dσij , dp), withH = −(∂F/∂q)Hq ,

we get

dλ = 1

H (
→�F · →δL). (1.118)

This expression is the ratio of a scalar product and a characteristic hardening
parameter. The scalar product is between the unit outward normal- oriented to the
elastic domain (defined by F = 0) and the incremental load.

Let us consider a positive hardening, a situation where H > 0. Then in the
case of plastic evolution, dλ > 0, and from equation (1.118),

→�F ·→δL > 0. We have
also (∂F/∂q)dq < 0. Because in that case, the hardening effect contributes to
a negative increment of dF , as seen from equation (1.116), any plastic process
induces an increase of the elastic domain. In contrast, if

→�F ·→δL < 0, then dF < 0,
since H > 0 and dλ ≥ 0. Then equation (1.115) yields dλ = 0. This means that
the evolution is elastic. Hence, if the (σij , p) state lies on the boundary of the

elastic domain (F = 0), the sign of
→�F ·→δL controls the nature of the evolution
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induced by an incremental loading. These conclusions lead to a new formulation
of the hardening and flow rules.

(
→�F · →δL) < 0 �⇒ dε

p
ij = 0

dvp = 0

dq = 0

(
→�F · →δL) > 0 �⇒ dε

p
ij = Hεij dλ.

dvp = Hv dλ

dq = Hq dλ. (1.119)

In some cases, it may be possible to define a plastic potential g such that Hε
ij
=

∂g/σij .The flow rule is said to be associated when the vector (Hε
ij
, Hv) is collinear

to
→�F , which represents the normal to the yield surfaceF = 0 in the (σij , p) space.

In such a situation, it is possible to set Hεij and Hv equal to the derivatives of F
with respect to σij and p, respectively:

Hεij =
∂F

∂σij
Hv = ∂F

∂p
. (1.120)

This means that F = g. The plastic potential is identical to the yield function.

1.3.2 An Example of Hydromechanical Coupling
in Poroplasticity: Cam-Clay Model

Initially introduced to model the constitutive behavior of normally consolidated
clays, the Cam-Clay model has inspired numerous constitutive models devoted
to various soils and rocks. Soils change in volume when plastically sheared, and
rocks can also exhibit this type of behavior in crustal conditions. This phenomenon
of dilatancy, will be examined in detail in other chapters. Let us simply emphasize
at this point that it is the main reason for the difference between the drained and
undrained deformation regimes of porous rocks and soils. In the drained case, the
fluid mass content can change freely, whereas it cannot in the undrained one. If the
rock is compacting during a plastic undrained deformation, the pore fluid pressure
will rise, whereas the reverse is true for dilating rock. Although the Cam-Clay
model is more appropriate for clayey rocks, it will be shown in Chapter 2 that
it provides as well a useful framework to analyze the behavior of silicate porous
rocks such as sandstones.

General Features

The model is described in terms of the Terzaghi effective pressure P ′ = P − p
and the equivalent deviatoric stress Q = (3J2)

1/2, where the second invariant of
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the deviatoric stress tensor J2 = 1/2(σ dij σ
d
ij ) and σdij = σij +Pδij . As regards the

reversible components of strain, the incremental elastic volumetric strain dεeii in
the classical Cam-Clay model is related to the increment of the Terzaghi effective
pressure dP ′ according to a nonlinear state equation of the form

dεeii =
dP ′

K(P ′)
, (1.121)

where K(P ′) = −keP ′. The solid phase is assumed to be plastically incompress-
ible. The yield criterion depends on the effective stress invariants because only
the isotropic case is considered. The elastic domain in the (σij , p) space can be
represented in the P ′-Q plane as bounded by an ellipse of equation

F(σij , p, Pc) = G(P ′,Q, Pc)

= 1

2
[(P ′ − Pc/2)2 + (Q/M)2 − (Pc/2)2]. (1.122)

The elastic domain is located in the compressive effective stress field, i.e.,
P ′ > 0 (Figure 1.9). Pc is usually referred to as the "consolidation pressure" and
constitutes the hardening parameter of the Cam-Clay model. It corresponds to the
abscissa of the point where the ellipse intersects the P ′-axis. The maximum QM
value on the elliptic boundary is obtained for P ′ = Pc/2, where QM = MPc/2.
Indeed, M being a constant, the Pc value controls the size of the elastic domain.
During an isotropic compression,Q = 0, so that Pc represents the elastic limit in
that case. Then the evolution is elastic up to P ′ = Pc.

Q

P'

Pc/2

MPc/2

Q = MP

Figure 1.9 � Cam-Clay model: the ellipse defines the elastic domain in the P ′-Q plane.
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The flow rule of the Cam-Clay model is associated:

dε
p
ij =

∂F

∂σij
dλ dvp = ∂F

∂p
dλ. (1.123)

Moreover,
∂F

∂σij
= ∂G

∂P ′
∂P ′

∂σij
+ ∂G

∂Q

∂Q

∂σij

∂F

∂p
= − ∂G

∂P ′
. (1.124)

Combining these last equations, we get

∂F

∂σ11
= −1

3
(P ′ − Pc/2)+ 3

2

σd11

M2 (1.125)

and similar equations by permutation for ∂F/∂σ22 and ∂F/∂σ33. It follows
then that

(dεdij )
p = 3

2M2 σ
d
ij dλ, (1.126)

where (dεdij )
p is the incremental deviatoric plastic strain. The volumetric plastic

strain is
dε
p
ii = −(P ′ − Pc/2) dλ. (1.127)

This shows that the plastic domain (the elliptical boundary on Figure 1.9) can be
split in two parts. For P ′ > Pc/2, dεpii < 0 and there is a volume decrease during
plastic deformation, it is a compaction regime. For P ′ < Pc/2, dεpii > 0 and there
is a volume increase during plastic deformation, it is a dilatancy regime. The limit
P ′ = Pc/2 corresponds to the critical state, where there is no volume variation.

To model the hardening phenomenon, we have to define how the hardening
parameter q = Pc is modified by a given plastic evolution. Experimental data
suggest relating the consolidation pressure Pc to the plastic volumic εpii by an
exponential law:

Pc = P 0
c exp(−kpεpii) for Pc > P

0
c , (1.128)

where P 0
c is the initial elastic limit under isotropic compression. Combining equa-

tions (1.121), (1.127), and (1.128) for the case of an isotropic compression yields

dεii = −1

k

dP ′

P ′
, (1.129)

where 1/k = 1/ke + 1/kp, because in that case Pc = P ′. Thus the plot of the
total volumetric strain εii versus log P ′ is a straight line with a slope−1/k. Let us
point out that ke represents the slope of an elastic unloading path in the εii-logP ′
plane.

A very important assumption of the Cam-Clay model is that equation (1.128)
remains valid under nonisotropic loadings. This implies that the effect of the
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deviatoric plastic strain on the hardening phenomenon is believed to be negligible.
In other words, it is assumed that hardening is controlled by plastic densification.
We can now reformulate the hardening rule as follows:

dPc = −kpPc dεpii
= −kpPctr ∂F

∂σij
dλ ⇒ Hq = HPc = −kpPctr ∂F

∂σij
. (1.130)

Finally, the hardening modulus H is determined from equation (1.130)
together with equation (1.125):

H = kp

2
P ′Pc

(
P ′ − Pc

2

)
. (1.131)

Recalling that P ′ > 0, the positive hardening condition H > 0 requires that
P ′ > Pc/2. This corresponds to effective stress states located on the right side
of the ellipse. In this domain, equation (1.127) indicates as previously discussed
a strictly compacting plastic behavior, dεpii < 0, associated with a positive hard-
ening, dPc > 0. In contrast, if P ′ = Pc/2, that is, if the stress state is located at
the intersection between the straight line Q = MP ′ and the ellipse, the tensor
∂F/∂σij is purely deviatoric so that the hardening modulus H = 0. We can expect
that this critical stress state corresponds to a localization of the deformation, as dis-
cussed in Chapter 5. This statement can be illustrated with a particular experiment:
consider an isotropic stress state such as P ′ = P 0

c ,Q = 0, and let the deviatoric
stress Q steadily increase while P ′ is kept constant. From equations (1.118) and
(1.131), using (1.127), it follows that

dε
p
ii = − 2QdQ

kpP ′PcM2 . (1.132)

Equation (1.132) can be integrated by using equation (1.128), to find

Pc = P 0
c +

Q2

M2P ′
. (1.133)

Equation (1.133) describes the positive hardening induced by the deviatoric load-
ing. The hardening is the consequence of the compaction, and the plastic volumetric
strain is

ε
p
ii = − 1

kp
log(1+ ζ 2

M2 ), (1.134)

where ζ = Q
P ′ . Let us introduce the scalar increment of deviatoric strain

defined as

(dεd)p =
[
(dεdij )

p(dεdij )
p
]1/2

. (1.135)
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From equation (1.126), we obtain

(dεd)p = 2
√

6

kpM4

ζ 2dζ

1− ( ζM )4
. (1.136)

Then, by integration,

(εd)p =
√

3/2

kp

[M+ ζ
M− ζ − 2 arctan

ζ

M
]
. (1.137)

This last expression confirms that large plastic deviatoric strains develop when
the stress ratio ζ becomes close to M, i.e., when the stress state is close to the
intersection between the ellipse and the straight line Q = MP ′. Note that the
deviatoric strain becomes infinite whereas the volumetric strain remains finite.
The straight lineQ = MP ′ is often referred to as the critical-state line.

The Undrained Shear Test

For simplicity, let us assume that the fluid phase is incompressible. Let us as-
sume also that the solid phase is both elastically and plastically incompressible.
With these simplifications, any undrained test corresponds to a total macroscopic
volumetric strain equal to 0. Let the equivalent shear stressQ increase, while keep-
ing constant the total mean stress P . In the initial state, the stress state is purely
isotropic,Q = 0, and is located on the yield surface, P ′0 = P 0

c . As previously, we
investigate the domain of positive hardening. In that domain, we know that any
plastic evolution is a compaction. Consequently, a dilatant elastic volumic strain
must balance the plastic strain:

dεeii = − 1

ke

dP ′

P ′
= −dεpii ≥ 0. (1.138)

Thus, the compacting plastic behavior induces a decrease of the effective stress
P ′ = P − p. Because P is kept constant, this means that the loading induces an
increase of pore pressure p. More precisely, equations (1.128) and (1.138) lead to

dPc

Pc
= −k

p

ke

dP ′

P ′
⇒ Pc

P 0
c

=
(
P ′

P ′0

)−kp/ke
. (1.139)

Equation (1.139) indicates that hardening (dPc > 0) is associated with a decrease
of P ′. Using as before ζ = Q/P ′, equation (1.122) provides the equation of the
effective stress path in the P ′-Q plane:

P ′

P ′0
= 1(

1+ ζ 2

M2

)� , (1.140)
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where � = [1 + (kp/ke)]−1. Again we can note that the increase of shear stress
Q induces a decrease of the effective pressure P ′, and thus an increase of pore
pressurep. The maximum value of ζ = Q/P ′ is equal to M, for whichP ′ = Pc/2
and H = 0. As in the drained shear test, this state can be interpreted as a failure
through large deviatoric strains. The corresponding failure shear stress Qfund is
usually referred to as the undrained shear strength and can be readily derived from
equation (1.140):

Q
f
und = MP ′0

2�
. (1.141)

This result shows that the undrained shear strength depends linearly on the con-
solidation pressure P 0

c = P ′0.

1.4 Rupture

In the low-pressure and low-temperature conditions of the upper crust, rock fail-
ure occurs when stresses are increased above a certain limit. Poroplastic models
in general do not account for this type of behavior. On the other hand, poroelas-
ticity is appropriate for analyzing small reversible deformations, but irreversible
deformations have to be analyzed either through phenomenological constitutive
laws (for example, poroplasticity) or rupture theory. Models described in previous
sections are rooted in classical continuum mechanics, although this is an idealized
view because porous rocks are made of minerals and pores (very flat pores are
called cracks). Rock failure corresponds to the development of a major disconti-
nuity. At small scales, such discontinuities exist: these are cracks. Rock failure is
in general the result of crack propagation. When crack size is comparable to grain
size or lower, it is usually described as a microcrack. We do not examine here
the various possible origins of microcracks, because we are interested only in the
consequences of their presence. Cracks of different sizes can be observed on rock
samples in the laboratory or outcrops in the field. From microcracks to macro-
scopic fractures, joints, and fault zones, a broad range of scales exists (Scholz,
1990; Davy, 1993; Main, 1996). Rock failure can also be addressed from the point
of view of bifurcation theory. This will be presented extensively in Chapter 5.
Bifurcation theory accounts for the existence of a strain discontinuity. Such an
approach is very relevant to deal with strain localization.

1.4.1 Linear Fracture Mechanics
For many years, the concept of a characteristic stress beyond which any brittle
solid fails has been used by engineers. Although this is an attractive model, it
became suspect when it was realized that it could not explain the failures of large
structures such as ships or planes. The identification of the fracture mechanisms
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and the development of a sound theory based on first principles resulted from
Griffith’s ideas and experiments.

Stress Concentration and Energy Balance

Although most of the situations we are interested in correspond to compressive
stresses, we first examine the response of rocks to tensile stresses. It is well known
that rocks, as do other brittle solids, exhibit a tensile strength that is much lower than
their compressive strength. The breakthrough in understanding tensile strength of
solids is owed to Griffith (1920). The starting point is to recognize that cracks are
the elementary defects responsible for failure in brittle solids. Assuming the solid
to be elastic, Griffith’s model contains two basic ideas that have proved to be very
fruitful.

The first one points to the importance of stress concentrations induced by crack
tips in an elastic medium (Figure 1.10). A simple, well-known, and important
example of stress concentration in geophysics is that concerning a cylindrical
borehole. In that case, the stress amplification (ratio of local tensile stress at the
borehole boundary relative to tensile stress at great distance σ ) factor is only 3.
In the case of an elliptical crack, the amplification factor is (1 + 2

√
c/r), where

Figure 1.10 � Stresses trajectories around a crack tip.
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c is the crack radius and r the radius of curvature at the crack tip. Obviously, if
r approaches atomic spacing values and c is on the order of 10 µm to 1 mm,
the amplification factor gets very high. This provides a nice mechanism to explain
why cracks are potentially dangerous and can propagate even if the far-field tensile
stress is moderate.

Crack propagation requires some energy. Griffith’s second idea explains where
this energy comes from. This is the energy-balance concept (Lawn, 1993): the rock
containing a crack and the loading device are considered as a single reversible
thermodynamic system. Following Engelder (1993), this system can be represented
schematically as done in Figure 1.11. The total energy of the system is the addition
of a mechanical energy and a surface energy. This last term results simply from
the existence of two surfaces, which are the crack faces. Creating two crack faces
of area S in an intact solid corresponds to a cost in energy of 2γ S, where γ is the
thermodynamic surface energy per unit area. For the situation described in Figure
1.11, and with 2c as the crack length, the surface energy per unit length of fracture
front can be written as

US = 4cγ. (1.142)

The total energy of the system is the sum of US and a mechanical energy UM ,
which is given by

UM = UE −W, (1.143)

whereUE is the elastic potential energy stored in the rock and−W is the potential
energy of the loading device, expressed as the negative of the work associated with
any displacement of the loading points. Because the applied load is constant, we
can use the general resultW = 2UE , so that the total mechanical energy is

UM = −UE. (1.144)

–W

US

UE

Figure 1.11 � Reversible thermodynamic system relative to the Griffith energy balance
concept: rock containing a crack and the loading device.
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In the present case, the elastic energy for an elliptical crack is, per unit of crack
front (Lawn, 1993),

UE = π (1− ν
2)

E
σ 2c2, (1.145)

where ν is the rock’s Poisson ratio, E is the Young modulus, and σ the far-field
tensile stress. Although we do not derive here the exact result given previously, a
simple way to understand it is to consider a rock sample submitted to a tensile stress
σ . In the case of an intact rock, the elastic energy per unit volume would be σ 2/2E.
For a cracked rock, and for a unit length perpendicular to the plane of Figure 1.11,
the area where the crack strongly affects the stress field is on the order of πc2. This
implies that UE ∼ πc2(σ 2/2E). If we consider a virtual crack extension dc, the
mechanical energy will decrease as the crack extends. This provides the driving
force for crack propagation. However, the surface-energy term will increase and
this will oppose crack propagation. The basic idea Griffith had was to look for the
minimum energy situation:

dU

dc
= 4γ − 2π

(1− ν2)

E

2

c = 0. (1.146)

According to Griffith’s theory, a crack would extend or retract reversibly, depending
on the sign of dU/dc.

The above result can be expressed in terms of stress. Let us call σc the critical
stress for which a crack of length 2c becomes unstable. Then

σc =
√

2γE

πc(1− ν2)
. (1.147)

For instance, if c = 1 mm, E = 1011 Pa, ν = 0.25, and γ = 1 J·m2, we get
σc = 8 MPa. The largest cracks are the most dangerous ones. Griffith’s result
shows clearly why the idea of a critical stress, viewed as a material property, is
wrong. The σc value depends not only on material properties such as E and ν, but
also on microstructural parameters such as c.

Fracture Propagation Modes

Generalizing Griffith’s approach, linear elastic fracture mechanics provides a gen-
eral basis to analyze crack stability in various cases. From a geometrical point of
view, there are three basic fracture propagation modes. The previous situation cor-
responds to mode I (Figure 1.12). In that case, it can be shown (Sih and Liebowitz,
1968) that, for a stationary crack, the form of solution is

σij = KI√
r
fij (θ)+ T δi1δj1 + Aij (θ)

√
r + Bij (θ)r + .... (1.148)
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θθ
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rθ

σ

Figure 1.12 � Mode I. The boundary conditions are such that in the far field σ22 = σ∞,
and at the crack boundaries σ2j = 0. (a) The polar coordinates of any point near the crack
tip are (r, θ). In polar coordinates, the stresses are σrr , σθθ , σrθ (b).

KI is called the "stress intensity factor," and fij (θ) is normalized so that the
parameter f22(0)=1/

√
2π . The two-dimensional solution can be compared with that

of Griffith (1920), and this leads to the result

KI = σ∞√πc. (1.149)

Near the crack tip, the stress becomes very large: σ22(θ = 0) = KI/
√

2πr + ....
The displacement discontinuity is

�u2 = u2 |θ=π − u2 |θ=−π = 4(1− ν)
µ

KI
√
r ′/2π. (1.150)

The three modes of crack tip response are presented in Figure 1.13. For θ = 0,
close to the crack tip, the relevant stresses for each mode can be written as

σ22 = KI√
2πr

σ21 = KII√
2πr

σ23 = KIII√
2πr

. (1.151)
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1

2

3

(a)

(b) ∆u

r

r'

σ22

σ21σ23

I

∆u2

II

∆u1

III

∆u3

Figure 1.13 � (a) The three fracture propagation modes. I, tensile; II, in-plane shear; III,
antiplane shear. (b) Dominant stress (on prolongation of crack plane) and crack displace-
ment discontinuity for the three modes. Mode I: σ22,�u2; Mode II: σ21,�u1; Mode III:
σ23,�u3.

The three displacement discontinuities are

�u2 = 4(1− ν)
µ

√
r ′
2π
KI

�u1 = 4(1− ν)
µ

√
r ′
2π
KII

�u3 = 4(1− ν)
µ

√
r ′
2π

KIII

(1− ν) . (1.152)

The detailed solutions can be found in Lawn (1993). Let us note that theK factors
depend on only the outerboundary conditions, i.e., on the applied loading and
sample geometry. The stress field exhibits a singularity at the crack tip. This means
that one should not use the previous solutions at very small r values. Obviously, the
near-field solution should not be used either at large r values because higher-order
terms have to be taken into account in that case.

Because the solid is linear elastic, the principle of superposition applies, and
for a mixed mode, K terms from superposed loadings are additive.



7th January 2004 11:52 Elsevier/MFS mfs

1.4 Rupture 47

Mechanical Energy Release Rate

We assume as previously that a crack is present in a linear elastic rock. If P
is the force (per unit thickness) applied to the rock and U the work-conjugate
displacement (Figure 1.14), then for a constant c, PdU = dUE , where UE is
the elastic strain energy for a unit thickness. If c is not constant, the elementary
variation of elastic strain energy is

dUE = PdU − Gdc, (1.153)

From the previous relation, we can define the mechanical energy release rate (per
unit crack area) G as

G = −
(
∂UE

∂c

)
U
= −

(
∂(UE − PU)

∂c

)
P
. (1.154)

To find G, let us consider a crack propagation by an increment δ as shown in Figure
1.14 for mode I. Before propagation, the crack tip is located at A. There exists a
stress field ahead of A, which is known from fracture mechanics. For instance, at
point M, σ22 = σ22(δ−β, 0) since at M, r = δ−β and θ = 0. But the displacement

P

c

UE

(a) (b)

x2

A A'

A'

x1 = c

x1 = c

x1  = c + δ

M

β

M

u2

σ22  (M) = σ22(δ−β, 0)

u′(Μ) = MM' = u′ (β, π)

π

Figure 1.14 � (a) A half crack in an elastic rock submitted to a tensile force per unit
thickness P . (b) Propagation of a crack (mode I) in its plane. The crack propagates from A
to A′. When the crack tip is at A, the tensile stress at M is σ22 = σ22(δ − β, 0). When the
crack tip is at M′, σ ′22 = 0, andMM ′ = u′ = u′(β, π).
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u2 = 0 at M. After propagation from A to A′, the stress σ ′22 is relaxed on the crack
boundary so that at M ′, σ ′22 = 0, and u′2 = u′2(β, π). Because the behavior
is that of a linear elastic body, the released elastic energy for a propagation δ is
�UE = −GI δ = 2

∫ δ
0 1/2 (sigma22u

′
2 dβ). Since both σ22 and u′2 are known,

the mechanical energy release is derived from the preceding relation:

GI = K2
I

E
(1.155)

for plane stress conditions. Similar results are obtained for modes II and III:

GII = K2
II

E
GIII = K2

III (1+ ν)
E

. (1.156)

Let us point out that G terms from superposed loadings in different modes are
additive.

Griffith’s result can be obtained from the equilibrium condition

PdU = dUE + 2γ dc. (1.157)

From equation (1.153), this implies

G = Gc = 2γ. (1.158)

This allows extension of Griffith’s result into a more general analysis of stability. In
any mode, cracks are stable up to the limit given by the previous relation. Because
there is a direct link between K and G values, it is possible to write the stability
criteria in terms of either K=Kc or G=Gc.

Crack Paths

Although fracture mechanics appears to be a powerful tool to deal with crack
stability conditions, there is an additional complexity that we have not mentioned.
The preceding criteria give us the conditions at which cracks become unstable and
therefore start to propagate. They do not provide, however, any indication about
the direction in which they will propagate. Assuming that any crack propagates in
its original plane is a simple, but wrong, assumption. The reason for that is related
to the symmetry of the crack tip stress field. Obviously, only mode I produces a
symmetric stress field (with respect to the axis Ox2 in Figure 1.14). It follows
that, in mode I, the tensile stress σθθ at the crack tip is maximum in the plane
x2 = 0. In that case, and only in that case, the crack propagates in its own plane.
For modes II and III, the lack of symmetry with respect to the plane x2 = 0
implies that the tensile stress σθθ at the crack tip is not maximum in that plane. As
a consequence, crack propagation takes place in a new plane, rotated with respect
to the initial plane. The crack looks for the plane of maximum tensile stress. For
a more complete analysis, the reader is referred to Lawn (1993).



7th January 2004 11:52 Elsevier/MFS mfs

1.4 Rupture 49

1.4.2 Failure Criteria for Porous Rocks
In the earth’s crust, there is always a component of compressive stress field. For
that reason, the linear elastic fracture mechanics framework is not sufficient to
deal with failure of porous rocks in situ. Indeed, Griffith’s analysis provides a
nice way to understand the initiation of crack and fracture propagation in silicate
rocks. Unless the rock is submitted to pure mode I, however, the results of the
previous section imply that any crack is likely to stop after some propagation. This
is because, in a mixed mode, any crack leaves its original plane, turns into a wing
crack, and then becomes stable again.

Micromechanical Approach

On a small scale, the failure of a silicate rock sample submitted to a partly compres-
sive stress field is the result of microcracks propagation and coalescence. Paterson
(1978) has summarized the various physical models that have been used. Some
physical insight into the behavior of a population of stressed cracks can be obtained
by looking at crack–crack interactions as suggested by Kachanov (1993).

Let us consider a single, traction-free crack in an isotropic, linear elastic solid,
uniformly loaded on its boundary. This situation is equivalent to that of the same
solid with traction applied to the crack faces and a free solid boundary, with a
difference that is a homogeneous stress state. Indeed, the second situation (traction
applied to the crack faces, solid boundary free) can be obtained by adding to the
first one (traction-free crack, solid boundary loaded) an appropriate and identical
load on both the external solid boundary and the internal crack face (Figure 1.15).
The homogeneous stress state corresponding to this last situation would exist if no
crack was present.

We will concentrate in the following on situations where crack faces are
loaded. The stress and displacement fields generated by a loaded crack in a lin-
ear elastic solid can be represented by a superposition of the fields produced by
modes I, II, and III. The solutions are summarized by Kachanov (1993), who
pointed to an interesting feature of the mode I field in the two-dimensional case

Loaded Crack
Traction-Free Solid

(a) Traction-Free Crack
      Loaded Solid

+

(b) Homogeneous Compression
      in the Solid

Figure 1.15 � Loaded crack in an unloaded solid. This situation is equivalent to the
superimposition of (a) an unloaded crack in a loaded solid, (b) an identical load applied on
both the external surface and the internal crack faces (as if there was no crack).
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σ22

Shield Zone

Crack

Amplification Zone

Figure 1.16 � Stress field σ22 in the case of mode I. Note the existence of a shield zone
above and below the crack and that of an amplification zone at the crack tips.

(Figure 1.16): there exists in that case a region of compressive stress that is rather
large above and below the crack, whereas a small tensile region is present at the
crack tips. This has important consequences for crack interactions when a popula-
tion of cracks is considered. If a second crack is placed approximatively above a
first one, there will be a shielding effect. If it is lined up with the first one, an ampli-
fication effect is expected. Since all rocks contain many cracks, such interactions
have to be accounted for.

An interesting series of experiments was conducted by Hallam and Ashby
(1990), which simulated with sheets of poly-methyl-methacrylate the development
of wing cracks and their interactions. Figure 1.17 shows two situations that differ
by the initial crack’s relative position. These pictures show clearly that, when
crack centers are in positions such that their interaction is amplified, coalescence
of cracks leads to a macroscopic fracture. Kachanov (1982) has shown that wing
crack propagation, together with crack roughness, can account for the dilatancy
obs/erved before failure.

Macroscopic Criteria of Failure

Schematically, the mechanical behavior of a porous rock beyond its elastic limit, in
a compressive stress field, can be analyzed as a two-step process.The first one corre-
sponds to the limited crack propagation described in the previous section. This pro-
cess will be investigated further in Chapter 4. The second one is macroscopic fail-
ure.As a result of macroscopic brittle failure, the rock loses its mechanical strength,
and a macroscopic discontinuity develops. Because KI,II,III = KcI,II,III or
GI,II,III = GcI,II,III is valid only for determining the onset of individual crack
propagation, linear elastic fracture mechanics does not provide any macroscopic
failure criteria (except in mode I). Indeed, the preceding analysis applies to both
porous and nonporous rocks. Brittle failure is attained at a peak of deviatoric stress
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(a)

(b)

Figure 1.17 � (a) A sequence of wing crack propagation and crack interactions, under
progressively higher compressive stresses (mixed mode). Note that the crack centers are
located in the shield zone defined in Figure 1.16. Cracks do not coalesce. (From Hallam
and Ashby, 1990). (b) A similar sequence in the case where the crack centers are located in
the amplification zone defined in Figure 1.16. Cracks coalesce, and a macroscopic fracture
is formed, which contains a coarse gouge. (From Hallam and Ashby, 1990).

at small strains. The peak stress increases with confining pressure, and the post-
peak deformation exhibits strain softening. Difference between porous and non-
porous rocks are observed when considering the brittle–plastic transition (Wong et
al., 1997). Cataclastic flow is an intermediate step in the brittle plastic transition.
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In low-porosity rocks, dilatancy takes place and the yield stress shows a positive
pressure dependence. In moderate- to high-porosity rocks, compaction takes place
and the yield stress decreases with increasing effective pressure. Chapter 2 exam-
ines this complex behavior for compaction; Chapter 5 describes and analyzes the
localization process.
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