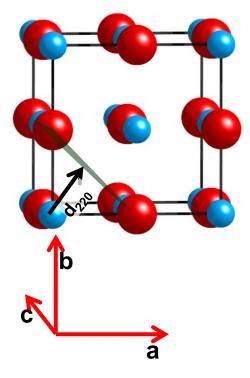
Fundamentals of Rietveld Refinement I. XRD Pattern Calculation and Refinement Parameters

An Introduction to Rietveld Refinement using PANalytical X'Pert HighScore Plus v3.0e

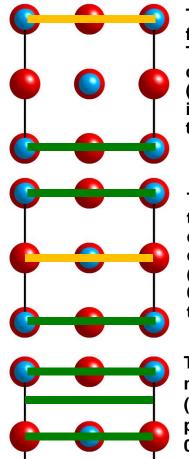
Scott A Speakman, Ph.D. MIT Center for Materials Science and Engineering speakman@mit.edu

prism.mit.edu/xray

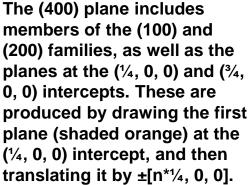

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Outline

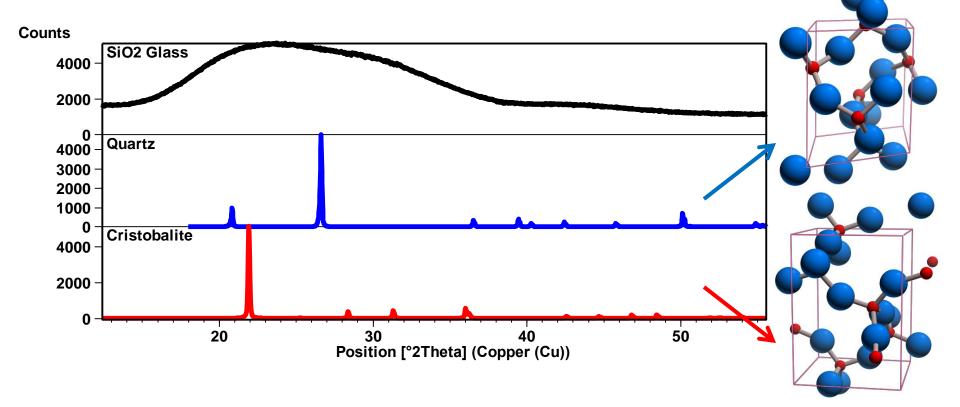
- Calculating a Diffraction Pattern from a Crystal Structure
- Using HighScore Plus to Simulate a Diffraction Pattern
- Manually Refining a Model to Match Experimental Data


A Brief Re-introduction to Miller Indices

- The Miller indices (hkl) define the reciprocal axial intercepts of a plane of atoms with the unit cell
 - The (hkl) plane of atoms intercepts the unit cell at $\frac{a}{h}$, $\frac{b}{k}$, and $\frac{c}{l}$
 - The (220) plane drawn to the right intercepts the unit cell at ½*a, ½*b, and does not intercept the c-axis.
 - When a plane is parallel to an axis, it is assumed to intercept at ∞; therefore its reciprocal is 0
- The vector d_{hkl} is drawn from the origin of the unit cell to intersect the crystallographic plane (hkl) at a 90° angle.
 - The direction of d_{hkl} is the crystallographic direction.
 - The crystallographic direction is expressed using [] brackets, such as [220]


A given (hkl) refers to a family of atomic planes, not a single atomic plane

- The Miller indices are determined by using the plane of atoms that is closest to the origin without passing through it.
- The other members of the family of atoms are determined by translating the (hkl) plane of atoms by d_{hkl}
- A family of planes will always have one member that passes through the origin
- Some planes of atoms may belong to more than one family (as illustrated to the right)



The (100) plane includes two faces of the cubic unit cell. These are produced by drawing the first plane (shaded orange) at the (1,0,0) intercept, and then translating it by [-100].

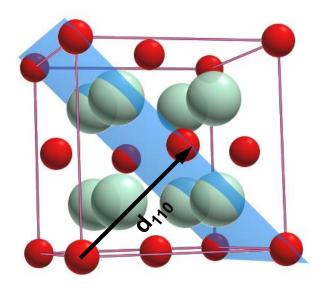
The (200) plane also includes two faces of the cubic unit cell. These are produced by drawing the first plane (shaded orange) at the ($\frac{1}{2}$, 0, 0) intercept, and then translating it by ±[$\frac{1}{2}$, 0, 0].

The position and intensity of peaks in a diffraction pattern are determined by the crystal structure

- These three phases of SiO₂ are chemically identical.
- Differences in the atomic structure are reflected in the X-ray scattering patterns.

The diffraction peak position is a product of the atomic bond distances in the crystal

Bragg's Law: $\lambda = 2d_{hkl}\sin\theta$


- Bragg's law calculates the angle where constructive interference from X-rays scattered by parallel planes of atoms will produce a diffraction peak.
 - In most diffractometers, the X-ray wavelength λ is fixed.
 - Consequently, a family of planes produces a diffraction peak only at a specific angle 2θ .
 - The lattice parameters of the unit cell are used to calculate d_{hkl}

d_{hkl} is a function of the size and shape of the unit cell

 $d *_{hkl}^{2} = h^{2}a *^{2} + k^{2}b *^{2} + l^{2}c *^{2} + 2hka * b * \cos \gamma + 2hla * c * \cos \beta + 2klb * c * \cos \alpha$

- $\mathbf{d}_{\mathbf{hkl}}^*$ is the reciprocal of $\mathbf{d}_{\mathbf{hkl}}$: $d^{*^2}_{hkl} = \frac{1}{d_{hkl}^2}$
- d_{hkl} is calculated based on the reciprocal space units of the lattice parameters
- the diffraction peak position is a product of the average atomic distances in the crystal
- anything that changes the average bond distances (temperature, pressure, etc.) will change d_{hkl} and therefore change the diffraction peak positions

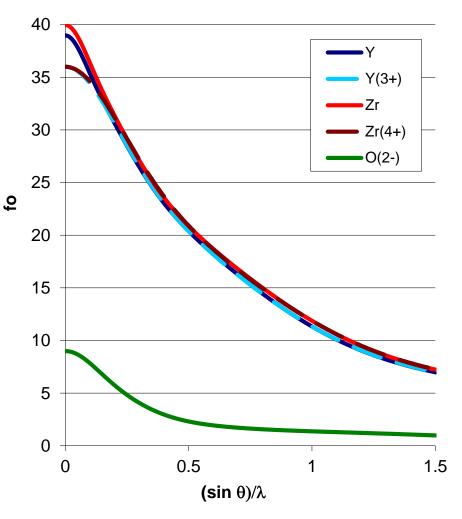
$$a^* = \frac{bc \sin \alpha}{abc}$$
$$\cos \alpha^* = \frac{\cos \beta \cos \gamma - \cos \alpha}{\sin \beta \sin \gamma}$$

The amplitude of light scattered by a crystal is determined by the arrangement of atoms in the diffracting planes

$$I_{hkl} \propto |F_{hkl}|^2$$
$$F_{hkl} = \sum_{j=1}^m N_j f_j \exp\left[2\pi i \left(hx_j + ky_j + lz_j\right)\right]$$

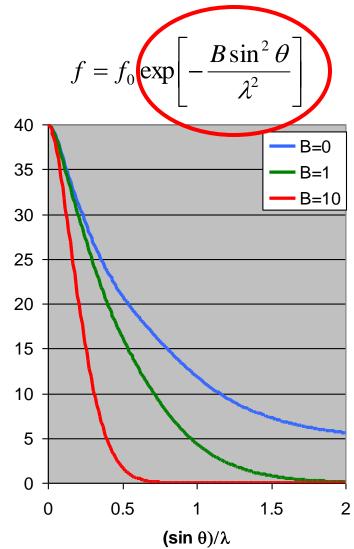
- The structure factor, F_{khl} , quantifies the amplitude of light scattered by a crystal
 - The patterns of atoms in the unit cell scatters strongly in some directions and weakly in others owing to interference of the wavelets scattered by the atoms
- F_{hkl} sums the result of scattering from all of the atoms in the unit cell to form a diffraction peak from the (hkl) planes of atoms
- The amplitude of scattered light is determined by:
 - where the atoms are on the atomic planes
 - this is expressed by the fractional coordinates x_i y_i z_i
 - what atoms are on the atomic planes
 - the scattering factor f_i quantifies the relative efficiency of scattering at any angle by the group of electrons in each atom
 - N_i is the fraction of every equivalent position that is occupied by atom j

The scattering factor, f, quantifies the efficiency of scattering from a group of electrons in an atom


$$F_{hkl} = \sum_{j=1}^{m} N_{j} f_{j} \exp\left[2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right]$$

- X-rays are electromagnetic radiation that interact with an electron, which reradiates the X-ray as a spherical wave
- The number of electrons around an atom defines how strongly it will scatter the incident X-ray beam
 - the initial strength of the atomic scattering factor is equal to the number of electrons around the atom
- The scattering factor, f, is a product of several terms describing the interaction of the X-ray with the electrons around an atom

$$\left|f\right|^{2} = \left(f_{0} \exp\left[\frac{-B\sin^{2}\theta}{\lambda^{2}}\right] + \Delta f'\right)^{2} + \left(\Delta f''\right)^{2}$$


The atomic scattering factor f₀ can be found using tables or equations determined experimentally or from quantum mechanical approximations

- f₀ at 0° is equal to the number of electrons around the atom
 - Y and Zr are similar, but slightly different, at 0°
 - Zr and Zr⁴⁺ are slightly different at 0°
 - Y^{3+} and Zr^{4+} are identical at 0°
- the variation with (sin θ)/λ depends on size of atom
 - larger atoms drop off quicker
 - at higher angles, the difference between Y³⁺ and Zr⁴⁺ is more readily discerned
 - at higher angles, the difference between different oxidation states (eg Zr and Zr⁴⁺) is less prominent

Thermal motion of the atom changes the scattering factor

- the efficiency of scattering by an atom is reduced because the atom and its electrons are not stationary
 - the atom is vibrating about its equilibrium lattice site
 - the amount of vibration is quantified by the Debye-Waller temperature factor: $B=8\pi^2U^2$
 - U² is the mean-square amplitude of the vibration
 - this is for isotropic vibration: sometimes
 B is broken down into six Bij anistropic
 terms if the amplitude of vibration is not
 the same in all directions.
 - aka temperature factor, displacement factor, thermal displacement parameter

Anomalous scattering of X-rays with energies near the absorption edge of the atom changes the scattering factor

$$\left|f\right|^{2} = \left(f_{0} \exp\left[\frac{-B\sin^{2}\theta}{\lambda^{2}}\right] + \Delta f'\right)^{2} + (\Delta f'')^{2}$$

- scattering factor has a real and imaginary term
- these terms only matter when the energy of the incident X-ray approaches the ionization energy of atom
 - when the wavelength of the incident X-ray is near the absorption edge of the atom
- anomalous scattering describes how some photons with energy approaching the ionization energy will be scattered out of phase with the majority of photons

With a crystal structure to solve Bragg's Law and F_{hkl} , you can calculate the diffraction pattern from an ideal crystal

- Ideal powder diffraction patterns can be simulated if you know ...
 - space group symmetry
 - unit cell dimensions
 - atom types
 - relative coordinates of atoms in unit cell
 - atomic site occupancies
 - atomic thermal displacement parameters
- ... for each and every phase in the sample

Where to Get Crystal Structures

- publications
- Commercial Databases
 - ICDD PDF4+ Inorganic
 - Inorganic Crystal Structure Database (ICSD)
 - Linus Pauling File (LPF)
 - this is included in ICDD PDF4+ Inorganic
 - NIST Structural Database (metals, alloys, intermetallics)
 - CCDC Cambridge Structure Database (CSD) (organic materials)
 - Available online http://beta-www.ccdc.cam.ac.uk/pages/Home.aspx
 - MIT Site license available for download from IS&T website
- Free Online Databases
 - Crystallography Open Database http://www.crystallography.net/
 - ICSD- 4% available as demo at http://icsd.ill.eu/icsd/index.html
 - Mincryst http://database.iem.ac.ru/mincryst/index.php
 - American Mineralogist http://www.minsocam.org/MSA/Crystal_Database.html
 - WebMineral http://www.webmineral.com/
 - Protein Data Bank http://www.rcsb.org/pdb/home/home.do
 - Nucleic Acid Database http://ndbserver.rutgers.edu/
 - Database of Zeolite Structures http://www.iza-structure.org/databases/

A Crystal Structure

- ZrO₂
- Space Group Fm-3m (225)
- Lattice Parameter a=5.11

site occupancy factor, sof, is equivalent to N in the F_{hkl} equation

Atom	Wyckoff Site	х	У	Z	B _{iso}	sof
Zr	4a	0	0	0	1.14	1
0	8c	0.25	0.25	0.25	2.4	1

Wyckoff Site notation is a shortcut to indicate if the type of site that the atoms occupies in the crystal

Atom	Wyckoff Site	Х	У	Z	B _{iso}	sof
Zr	4a	0	0	0	1.14	1
0	8c	0.25	0.25	0.25	2.4	1

- each letter in the Wyckoff notation specifies a site that sits on a different combination of symmetry elements
 - The Wyckoff site indicates if x, y or z are can change or if they must be fixed to preserve the symmetry of the crystal
 - An element on the 4a site in the Fm-3m space group can only occupy 0,0,0
 - Moving the element to a different position would change the surroundings of the site and would represent a change in the interaction between that atom and its neighbors
 - An element on the 32f site in the Fm-3m space group will occupy x,x,x (indicating that the x, y, and z positions must be the same number)
- the number in the Wyckoff notation indicates the number of atoms put into the unit cell if the atom is on that site
 - 4a- an atom on the a site will populate the unit cell with 4 atoms
 - 8c- an atom on the c site will populate the unit cell with 8 atoms
 - Wyckoff notation gives you a quick way to check if stoichiometry is correctly preserved when you create a crystal structure
 - you can deduce z, the number of molecules per unit cell, from the Wyckoff notation (z=4 for ZrO_2)

Retrieve information about space groups using the Symmetry Explorer in HighScore Plus

- To use the Symmetry Explorer
 - select the menu Tools > Symmetry Explorer
 - In the left pane, select the Space Group you would like to examine
- The entries in the Symmetry Explorer contain information similar to what you would find in the International Tables of Cyrstallography
- The <u>Special Positions</u> tab will show the Wyckoff sites for that space group

pace group Name	Space group No.	Crystal System	•	General Data	Symmetry Equivaler	t Positions	Special Position
- ⊳ I432	211	Cubic		Short Herman	nn-Mauguin Symbol	F M -3 M	
— 🐤 P 43 3 2	212	Cubic			-Mauguin symbol	Fm-3m	
— 🍫 P 41 3 2	213	Cubic		Space group	name Hall	-F_4_2_3	
— 🧼 I 41 3 2	214	Cubic		ICSD symbol		Fm3-m	
🍫 P -4 3 M	215	Cubic		Schoenflies s	ymbol	Oh^5	
🍫 F -43M	216	Cubic		Crystal syste	em	Cubic	
— ⊳ І-43М	217	Cubic		Point group		m-3m	
🍫 P -4 3 N	218	Cubic		Laue group		m-3m	
- 🍫 F -43C	219	Cubic		Centrosymme	etric		v
- ⊳ I -43D	220	Cubic		Bravais type		All face ce	entered (F)
🔶 РМ-ЗМ	221	Cubic		Monoclinic ax	cis		
E 🊫 PN-3N	222	Cubic		Monoclinic ce	Il choice		
- 🊫 PM-3N	223	Cubic		Monoclinic se			
E 🚫 PN-3M	224	Cubic		Reflection co		h+k, h+l,	k+l = 2n
- 🚫 F M - 3 M	225	Cubic		Reflection co		None	
- 🚫 FM-3C	226	Cubic		Reflection co		k = 2n	
т 🚫 FD-3М	227	Cubic		Reflection co		None	
FD-3C	228	Cubic		Reflection co		h+l = 2n	
🧄 ІМ-ЗМ	229	Cubic		Reflection co		h = 2n	
- 🖌 IA-3D	230	Cubic		Reflection co		None	
+ 📄 Non standa				Reflection co	nditions 001 Inditions h-h0	None	
			-	Reflection co	nditions n-nu	None	

Space group Name	Space group No.	Crystal System	•	Ger	eral Data	Syr	mmetry Equivalen	t Positions	Special Position	ons
- 🍫 I 4 3 2	211	L Cubic		No.	Multiplicit	ty I	Wyckoff Letter	Coordina	tes	
🍫 P 43 3 2	212	2 Cubic			1	192 I		x, y, z		
— 🍫 P 41 3 2	213	Cubic			2	96 I	k	x, x, z		
— 🍫 I 41 3 2	214	Cubic		;	3	96 j	i	0, y, z		
— 🀤 P -4 3 M	215	i Cubic			4	48 i		+1/2, y	, у	
🅪 F -4 3 M	216	i Cubic			5	48 ł		0, y, y		
—陵 І-43М	217	⁷ Cubic			5	48 9	-	x, +1/4		
- 🌍 P -4 3 N	218	Cubic			7 3	32 f 24 e		x, x, x		
- 🍫 F -43C	219	Cubic			3	24 6		x, 0, 0 0, +1/4		
🍫 I -43D	220	Cubic		1		80			, +1/+ 1/4, +1/4	
— ⊳ РМ-ЗМ	221	Cubic		1		41			1/2, +1/2	
🗄 🌍 PN-3N	222	2 Cubic		1	2	4 8	a	0, 0, 0		
🔶 PM-3N	223	Cubic								
🕀 🂊 PN-3M	224	Cubic								
	225	6 Cubic								
- 🌍 FM-3C	226	Cubic								
🗄 🌍 FD-3M	227	⁷ Cubic								
🗄 🌎 FD-3C	228	Cubic								
🔶 ІМ-ЗМ	229	Cubic								
- 🍫 IA-3D	230	Cubic								
🗄 📋 Non standa										
			-	4						

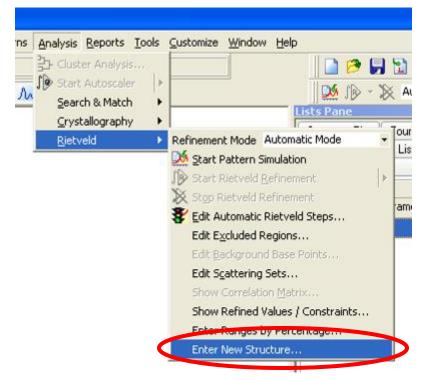
The Site Occupancy Factor, sof, indicates what fraction of a site is occupied by a specific atom

$$F_{hkl} = \sum_{j=1}^{m} N_{j} f_{j} \exp\left[2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right]$$

Atom	Wyckoff Site	Х	У	Z	B _{iso}	sof
Zr	4a	0	0	0	1.14	1
0	8c	0.25	0.25	0.25	2.4	1

- The sof is N in the structure factor equation
- sof = 1, every equivalent position for xyz is occupied by that atom
- sof < 1, some of the sites are vacant
- two atoms occupying the same site will each have a fractional sof
- remember that the observed XRD pattern is an average of hundreds or thousands of unit cells that make a crystallite

How to manually enter a crystal structure and calculate an ideal X-ray powder diffraction pattern using HighScore Plus


For pattern calculations and Rietveld refinement in HSP, the "Structures" desktop is recommended

- Desktops can be changed in the menu:
 – View > Desktops
- All slides in this tutorial were created with HSP in the "Structures" desktop

<u>E</u> dit	<u>V</u> iew	Treat <u>m</u> ent Refe	rence <u>P</u> atterns	<u>A</u> naly	sis	<u>R</u> eports	<u>T</u> ools	<u>C</u> ustomize	<u>W</u> indo
°2Th.]		Bring Object Inspect	or to Front F	11	Cou	ints:] 🗧 🗋 🍺	
<u>A</u> [1]		Lock Pane Positions			- C				
		Panes Default Setting]						
		Reset all Toolbars							
	× .	Document Tabs							
	× .	Additional Graphics I	Pane						
	× .	L <u>i</u> sts Pane							
	~	S <u>c</u> an List Pane							
	~	P <u>e</u> ak List Pane							
Ī	~	Patte <u>r</u> n List Pane							
Ī	~	A <u>n</u> chor Scan Data Pa	ne						
Ī	~	Object Inspector Pan	e						
	~	Quantification Pane							
Ī	~	Refinement Control I	Pane						
	~	Structure Plot Pane							
Ī	~	Fourier Map Pane							
Ī	~	Distances and Angles	s Pane						
		Williamson-Hall Plot							
		Candidates Dendrog	ram						
		<u>V</u> iew Tabset							
		Desktop		•		Desktop	Name	Structures	
		<u>T</u> oolbars		•	2	Save Des	ktop		
		C <u>u</u> rsor Mode		•	×	Delete D	esktop	•	
		Display <u>M</u> ode		•		<none></none>			
		Main Grap <u>h</u> ics		•		Line Pro	file Ana	lysis	
		A <u>d</u> ditional Graphics		•		My Phas	eID		
1	6	Set Manual Ranges				Phase, fe	ew butto	ons	
C	1	Zoom Previ <u>o</u> us				Phase, n	o butto	ns	
		<u>Z</u> oom Out	Ctrl	+F		Phase-ID)		
1	6 7	Maximize Main Grap	hics			Profile F	itting		
-						Rietveld	Analysi	s	
]			1			Rietveld,	few bu	ttons	
			 Lock Pane Positions Panes Default Setting Reset all Toolbars Document Tabs Additional Graphics Lists Pane Sgan List Pane Pgak List Pane Pgak List Pane Pattern List Pane Pattern List Pane Object Inspector Pan Quantification Pane Structure Plot Pane Fourier Map Pane Distances and Angles Williamson-Hall Plot Candidates Dendrog Yiew Tabset Desktop Ioolbars Cursor Mode Display Mode Main Graphics Xoom Previgus Zoom Out Magimize Main Grap 	↓ ock Pane Positions Panes Default Setting Reset all Toolbars ✓ Document Tabs ✓ Additional Graphics Pane ✓ Lists Pane ✓ Pak List Pane ✓ Pattern List Pane ✓ Pattern List Pane ✓ Object Inspector Pane ✓ Quantification Pane ✓ Øutimication Pane ✓ Object Inspector Pane ✓ Quantification Pane ✓ Structure Plot Pane ✓ Distances and Angles Pane Williamson-Hall Plot Candidates Dendrogram View Tabset Desktop Joolbars Cursor Mode Display Mode Main Graphics ✓ Zoom Previgus Zoom Out Ctrl Imagimize Main Graphics	 Lock Pane Positions Panes Default Setting Reset all Toolbars Document Tabs Additional Graphics Pane Ljsts Pane Sçan List Pane Pgak List Pane Pgak List Pane Pattern List Pane Anchor Scan Data Pane Object Inspector Pane Quantification Pane Structure Plot Pane Structure Plot Pane Fourier Map Pane Distances and Angles Pane Williamson-Hall Plot Candidates Dendrogram Yiew Tabset Desktop Ioolbars Cursor Mode Display Mode Main Graphics Zoom Ortevigus Zoom Out Ctrl+F Magimize Main Graphics 	 Lock Pane Positions Panes Default Setting Reset all Toolbars Document Tabs Additional Graphics Pane Lists Pane Sgan List Pane Pattern List Pane Pattern List Pane Anchor Scan Data Pane Object Inspector Pane Quantification Pane Refinement Control Pane Structure Plot Pane Fourier Map Pane Distances and Angles Pane Williamson-Hall Plot Candidates Dendrogram Yiew Tabset Desktop Lock Pane Quartification Pane Structure Plot Pane Structure Plot Pane Fourier Map Pane Distances and Angles Pane Williamson-Hall Plot Candidates Dendrogram Yiew Tabset Desktop Main Graphics Additional Graphics Zoom Out Ctrl+F Magimize Main Graphics 	Lock Pane Positions Panes Default Setting Reset all Toolbars Document Tabs Additional Graphics Pane Sgan List Pane Sgan List Pane Pattern List Pane Pattern List Pane Pattern List Pane Agchor Scan Data Pane Quantification Pane Quantification Pane Structure Plot Pane Fourier Map Pane Distances and Angles Pane Williamson-Hall Plot Candidates Dendrogram Yiew Tabset Desktop Joolbars Cursor Mode Display Mode Main Graphics Additional Graphics Cursor Mout Ctrl+F Magimize Main Graphics	↓ Lock Pane Positions Panes Default Setting Reset all Toolbars ♦ Document Tabs ♦ Additional Graphics Pane ♥ Lists Pane ♥ Sgan List Pane ♥ Pattern List Pane ♥ Pattern List Pane ♥ Pattern List Pane ♥ Distances and Angles Pane ♥ Distances and Angles Pane ♥ Distances and Angles Pane ♥ Williamson-Hall Plot Candidates Dendrogram Yiew Tabset Desktop ■ Display Mode Main Graphics ▲ dditional Graphics ♥ Zoom Out ♥ Profile Fitting Rietveld Analysis ♥ Reiter Main Graphics	Lock Pane Positions Panes Default Setting Reset all Toolbars Document Tabs Additional Graphics Pane Lists Pane Sgan List Pane Pgak List Pane Pgak List Pane Pgak List Pane Object Inspector Pane Outrification Pane Quantification Pane Quantification Pane Object Inspector Pane Quantification Pane Porrier Map Pane Distances and Angles Pane Williamson-Hall Plot Candidates Dendrogram View Tabset Desktop Display Mode Main Graphics Additional Graphics Additional Graphics Yew Tabset Desktop Display Mode Main Graphics Yew Tabset Desktop Name Structures Save Desktop Display Mode Main Graphics Yew Tabset Desktop Name Set Manual Ranges Yew Tabset Phase, few buttons Phase, few buttons Phase, few buttons Phase, few buttons Phase, few buttons

With this crystal structure information, we can build a crystal in HSP

- Start X'Pert HighScore Plus
- Create a New Document File>New
- Analysis>Rietveld>Enter New Structure

Step 1: Enter Title

- Follow the entry form from top to bottom, via the numbered steps
- The Title can be any name that you want
- In this example, we are creating an entry for Zirconia

	Emer Structure
	Step 1 : Enter Title
Y	Title:
	Step 2 : Enter Space Group
	Space Group:
	Step 3 : Enter Unit Cell
	<u>a</u> [Å]: 0.0000 🖨 <u>b</u> [Å]: 0.0000 🖨 ⊆ [Å]: 0.0000 🖨
	algha (*): 0.00 🖨 b <u>e</u> ta (*): 0.00 🖨 gamma (*): 0.00 🖨
	Step 4 : Enter Atoms
	Element Name Wyckoff x y z sof Biso
	1.00000
	Add new Atom Delete selected Atom Clear Atom List OK Cancel

Step 2: Enter Space Group

- To enter the space group:
 - you can just enter number into the space group field
 - Each space group has a unique number (1 thru 230)
 - You can use the drop-down menu to select a space group
 - You can open the symmetry explorer by clicking on the ... button
- HSP will assume the standard origin and setting unless you use the Symmetry Explorer to select otherwise
- In this example, type 225 for the Fm-3m space group

🛣 Enter Struc	ture		
Step 1 : Enter	Title		
Title	Zirconia		
Step 2 : Enter	Space Group	/	
<u>S</u> pace Group:	↓	•	
Step 3 : Enter			
<u>a (</u> Å):	P121 P112	<u>c</u> [Å]: 0.0000 🕻	
al <u>p</u> ha (*):	P211 P1211 P1121	gamma (°): 0.00 🖁	

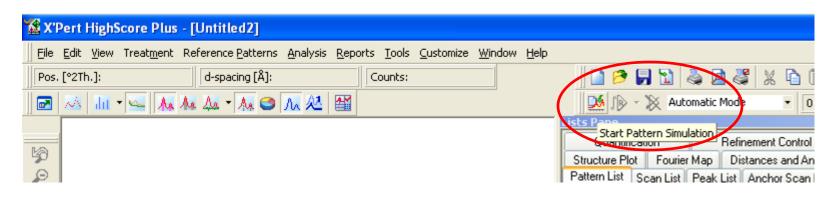
The symmetry explorer allows you to choose the space group and a specific origin, and to see information about the symmetry elements and special positions

ymmetry Explorer						
Space group Name	Space group Crystal System	^	General Data	Symmetry Equiv	alent Positions	Special Positions
🗄 💊 FD-3	203 Cubic		Short Herman	nn-Mauguin Symb	ol E M -3 M	
- 💊 IM-3	204 Cubic			-Mauguin symbol		
- 😪 PA-3	205 Cubic		Space group		-F_4_2_3	
- 😪 IA-3	206 Cubic		ICSD symbol		Fm3-m	
🔶 P432	207 Cubic		Schoenflies s		0h^5	
- 🧇 P 42 3 2	208 Cubic		Crystal syster		Cubic	
- 🧇 F 4 3 2	209 Cubic				m-3m	
- 😪 F 41 3 2	210 Cubic		Point group			
432	211 Cubic		Laue group	1.'-	m-3m	V
P 43 3 2	212 Cubic		Centrosymme	etric	A.B. (
- 🔶 P 41 3 2	213 Cubic		Bravais type		All face cente	ed (F)
- l 41 3 2	214 Cubic		Monoclinic a			
- 🔶 P-43M	215 Cubic		Monoclinic c			
F-43M	216 Cubic		Monoclinic se	-		
I-43M	217 Cubic		Reflection co		h+k, h+l, k+l	= 2n
- 🔶 P-43N	218 Cubic		Reflection co	onditions hk0	None	
	219 Cubic		Reflection co	onditions Okl	k = 2n	
💊 I-43D 🥥 PM-3M	220 Cubic		Reflection co	onditions h0l	None	
PN-3M	221 Cubic 222 Cubic		Reflection co	onditions hhl	h+l = 2n	
PM-3N	222 Cubic 223 Cubic		Reflection co	onditions h00	h = 2n	
PN-3M	223 Cubic 224 Cubic		Reflection co	onditions 0k0	None	
- () (a) FM-3M	224 Cubic 225 Cubic		Reflection co	onditions 00I	None	
- FM -3C	226 Cubic		Reflection co	onditions h-h0	None	
FD-3M	220 Cubic	=	Reflection co	onditions hhh	None	
FD-3C	228 Cubic	=	Internal numb	ber		2250
👗 ім-зм	229 Cubic		Number of er	ntries in ICSD		139
× 14 00	220 Cubic	~				

Step 3: Enter Unit Cell Lattice Parameters

- lattice parameters are automatically constrained by the space group that you chose
 - For example, in a cubic space group: a=b=c, $\alpha=\beta=\gamma=90$
- In this example, a=5.11

	Step 2 : Enter Space Group —					-
	Space Group: Fm - 3 m		▼			
6	Step 3 : Enter Unit Cell ———					_
	≥(Å): 5.1100 🕃	<u>b</u> [Å]:	5.1100 🚔	<u>c</u> [Å]:	5.1100 🚔	
	al <u>p</u> ha (*): 90.00 🌪	b <u>e</u> ta (*):	90.00 🌪 ga	ımma (*):	90.00 🚔	
	Step 4 : Enter Atoms					_
	Element Name Wyckoff x	V.	z	sof	Biso	Τ


Step 4: Enter Atom Information

No. Element Name Wyckoff x y z sof Biso											
1.14		1		0	0	0	4a	Zr	Zr	1	
2.4		1		0.25	0.25	0.25	8c	0	0	2	Þ
		1	ОК	0.25			8c ected Ator				

- You can type the element symbol or select from a drop-down menu
 - The element can be an atom or ion (select oxidation state)
 - the use of oxidation states in modifying the scattering factor for an atom is set in *Customize>Program Settings,* in the <u>Rietveld</u> tab
 - by default it is set to "Ignore Oxidation States"
- The name is the element by default, but it can be changed to anything you like (useful if you have the same element on multiple sites)
- Enter the atom positions, sof, and Biso
 - If you enter the Wyckoff site, constrained x, y, and z positions are automatically entered
 - if you enter xyz, the Wyckoff site is automatically assigned
- When finished, click **OK** to create that crystal structure!

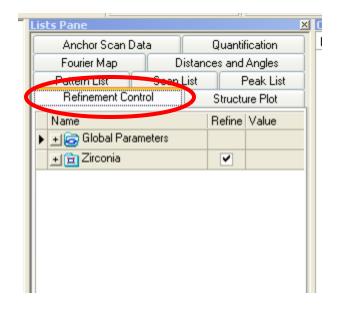
We can now simulate the ideal X-Ray powder diffraction pattern in HSP

- We have entered in all of the information necessary to simulate an X-ray diffraction pattern
- Click on the 'Start Pattern Simulation' button to produce the theoretical diffraction pattern

The pattern simulation parameters can be changed in Program Settings

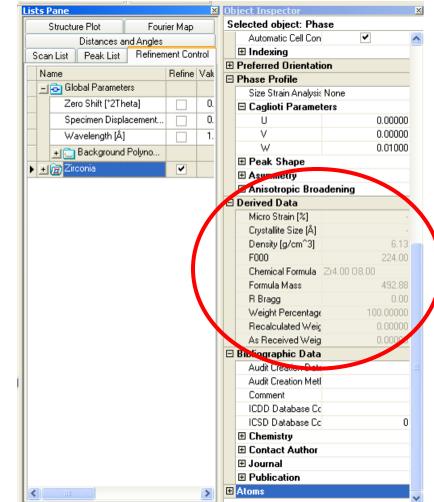
P	rogram Se	ttings						X
1	Simulation	Graphics	General	Reference Patterns	Automatic Processing	Rietveld		
	<u>S</u> tart [*2T	h.]:			5.000			
	E <u>n</u> d (*2Th.):			7	5.000			
	Step s <u>i</u> ze	[*2Th.]:			0.020			
	<u>M</u> ax. Cou	nts [cts]:		2	20000			
	<u>B</u> ackgr. C	iounts (cts):			600			
	S <u>h</u> ape parameter:			0.600				
	<u>E</u> WHM [*:	2Th.]:			0.100			
	<u>C</u> onv. fac	torTip Widt	h to FWHN	4: 1.20	00000			
	Phase to re	ference pal	tern conve	ersion				
	Minimum 3	angle (*2Tł	n.]:		0.000			
	Ma <u>x</u> imum	angle (*2T	h.]:	9	0.000			
							<u>R</u> eset to De	fault
	Reset	All to <u>D</u> efau	ılt				ОК	Cancel

- To change settings go to Customize> Program Settings
- In <u>Simulation</u> tab, you can change the parameters for the simulated scan
 - Default range for simulation is 5 to 70 °2theta
 - change start and end angles to 25 and 90 °2theta
 - click **OK** to enter change and close window
- click 'Start Pattern Simulation' again

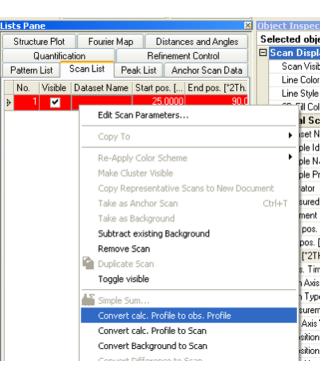

The wavelength of radiation used in the simulation can be changed in Document Settings

Document Settings					
Graphics Display Gra	phics Colors Profile Fitting Document Wavelength Legends & Grids				
Anode <u>m</u> aterial:	Copper (Cu)				
K-Alpha <u>1</u> (Å):	1.540598				
K-Alpha <u>2</u> [Å]:	1.544426				
K-A2 / K-A1 rati <u>o</u> :	0.500000				
<u>K</u> -Alpha [Å]:	1.541874				
K- <u>B</u> eta [Å]:	1.392250				
Monochromatic radiation					
<u>R</u> eset All to Default	Save to Normal Template OK Cancel Apply				

- To change settings go to Customize> Document Settings
- In <u>Document Wavelength</u> tab, you can change the Xray source used
 - there is an "Other" option if you used a noncharacteristic wavelength, such as at a synchrotron
- click 'Start Pattern Simulation' again


Parameters for the crystal structure and the simulation can be accessed in the <u>Refinement Control</u> list

- the parameters for the pattern simulation are shown in the <u>Refinement Control</u> List
- The values for global parameters and each individual crystal structure entered into the simulation are listed in a nested tree format
- You can trim the number of tabs in the Lists Pane in the View menu


The Object Inspector shows additional details for any object you select in other windows

- If you click on the phase name (eg Zirconia) in <u>Refinement Control</u> list, you will be able to see additional information about that phase in the Object Inspector
 - This includes information such as calculated density, chemical formula, and formula mass
 - You can use these to check that you created the crystal structure correctly
 - You can change details such as the phase name and color of simulated diffraction pattern

We want to keep this pattern as a reference during the next exercises

- Go to <u>Scan List</u> in the Lists Pane
- Right Click on the current scan that is shown in the list (which is the simulated pattern)
- Select "Convert calc. Profile to obs. Profile"
- Now the original simulation will remain in the Main Graphics View and we can compare it to new simulations

We can change parameters for the crystal structure and observe how they change the diffraction pattern

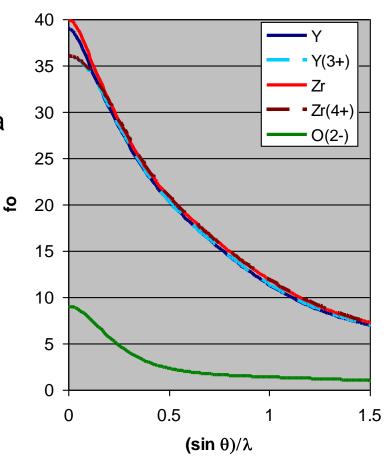
- The unit cell lattice parameters determine where the diffraction peaks are observed
- the peak intensity is determined by
 - what atoms are in the crystal and their positions xyz
 - the site occupancy of the atom
 - the relative scattering strength of the atom, scattering factor, which is a product of the number of electrons around the atom
 - the thermal parameter of the atom
- This is not just useful for these tutorial purposes, but also for anticipating what your real data might look like and for evaluating limits of detection

To change values for the simulation

- In the <u>Refinement Control</u>,
 - expand the Zirconia entry
 - Expand the Unit Cell entry
 - Change the Unit Cell value
 - After typing, you must press 'Enter' key to register the change
 - if you try recalculating the simulation without pressing enter, you may lose the changed value
- recalculate the diffraction pattern by clicking on "Start Pattern Simulation" button again
- change the lattice parameter and recalculate the pattern several times to get a feel for the relationship

ists Pane					2
Structure Plot Fourier Map			Distances and Angles		
Pattern List Scan List Pe			k List 🔋 Anchor Scan Data		
Quantification			Refinement Control		
Name			Refine Value		Constr.
🛨 🔂 Globa	+ 🔂 Global Parameters				
🖃 🖹 Zircoi	nia		•		
Scale	e factor			0.000100	None
Prefe	Preferred Orientation			1.000000	None
Bove	B overall			0.000000	None
Extine	Extinction			0.000000	None
Flat F	Flat Plate Absorption Co			0.000000	None
Poros	Porosity			0.000000	None
Roughness				0.000000	None
🔄 📑 Unit Cell					
a	(Å)			5.11 🔶	None
Ь	[Å]			5.110000	None
с	[Å]			5.110000	None
al	pha [*]			90.000000	None
be	eta [*]			90.000000	None
ga	amma (*)			90.000000	None
+ 😡 At	tomic coordina	ites			
+ 🍙 Pr	ofile Paramete	ers			

To change atom parameters


Lists Pane						
Structure Plot Fourier Map				Distances and Angles		
				List Anchor Scan Data		
Quantification			Refinement Control			
Name	Name			Refine Value		Constr.
+ 0	Global	Parameters				
二臣	- 🛅 Zirconia			~		
	Scale	factor			0.000100	None
	Prefer	red Orientatio	n		1.000000	None
	B overall				0.000000	None
	Extinction				0.000000	None
	Flat Plate Absorption Co				0.000000	None
	Porosity				0.000000	None
	Roughness				0.000000	None
	_ 🔂 Unit Cell					
	a [/	å,]			5.500000	None
	Ь (/	å,]			5.500000	None
	c [/	å,]			5.500000	None
	alp	ha [*]			90.000000	None
	bel	ta [*]			90.000000	None
	ga	mma [*]			90.000000	None
	Ato	omic coordina	tes			
+	🚖 Pro	onie Maramete	irs			

Q	viz till	spector				×
Selected object: Atomic Coordinates						
	Elem	Oni	Marrie	Cito Sour	Wyckoff	Multiplicity
Þ	Zr	0	Zr	Diffraction	4a	4
	Y	0	Y	Diffraction	8c	8

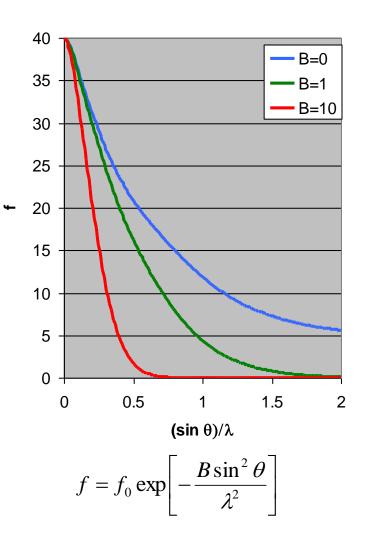
- click on Atomic Coordinates in the <u>Refinement Control</u> List
- The atomic information appears in the Object Inspector
- Expand the **Object Inspector** window so that you can see more clearly
- You know that you are working with the atoms because the **Object Inspector** pane says "Selected Object: Atomic Coordinates"

Change the Site Occupancies (sof) for the atoms

- Changing the occupancy of Zr has a big effect
 - change the SOF of Zr to 0.5 and recalculate the pattern
- Changing the occupancy of O has a small effect
 - reset the SOF of Zr to 1.0 and change the SOF of O to 0.5, then recalculate the pattern
- Remember, the atomic scattering factor, f₀, is equal to the number of electrons around the atom
 - Zr atoms scatter much more strongly than O, so the XRD diffraction pattern is more sensitive to the Zr atoms

We can predict the change in peak intensities when we dope the sample

Selected object: Atomic Coordinates														
	Elem	Oxi	Δ	Name	Site Sour	Wy	М	x	у	z	XYZ Constra	sof	Biso	
	Zr		0	Zr	Diffraction	4a	4	0.0000	0.0000	0.0000	None	0.8	1.1400	Ī
	0		0	0	Diffraction	8c	8	0.2500	0.2500	0.2500	None	1.0000	2.4000	1
•	Y		0	Y	Diffraction	4a	4	0.0000	0.0000	0.0000	None	0.2	1.14	1


- replace 20% Zr with Y
 - right click on the Object Inspector and select "add new atom"
 - To create the new atom, type "Y" for the Element
 - tab over to Wyckoff Site and type "4a" and enter
 - this automatically places the atom at 0,0,0
 - make the sof 0.2
 - make the Biso 1.14
 - make the sof for the Zr atom 0.8
 - This means that the 4a site is occupied by 80% Zr and 20%Y
 - recalculate the simulation
 - little change in intensity
- replace 20% Zr with Ce
 - change the atom type of Y to Ce and recalculate the simulation
- how could we quantify amount of Y doping in YSZ?

In substitutional doping, peak intensities and/or peak positions may change

- In a substitutionally doped material:
 - peak intensities will change depending on the difference between the number of electrons (and therefore scattering factor f) between the original and dopant ion
 - Peak positions will change depending on the difference between the size of the original and dopant ion
 - A difference in ionic radii will produce a change in the average interatomic distances and therefore a change in the unit cell lattice parameter
 - This change cannot be *predicted* by Rietveld modeling; it requires empirical calibration or advanced ab-initio computer simulation.
- Y is significantly larger than Zr
 - The ionic radius for Y is 1.019
 - The ionic radius for Zr is 0.84
 - The relationship between Y content and lattice parameter in YSZ has been empirically determined from known standards
 - The amount of Y in YSZ can be determined by calculating the lattice parameter of the unknown specimen

The thermal parameter, Biso, changes how scattering efficiency changes with as a function of (sin θ)/ λ

- change thermal parameter for Zr
 - reset the SOF of Zr to 1 and the SOF of the other 4a atom (Ce or Y) to 0
 - the diffraction pattern will be representative of ZrO₂ with no doping
 - change Biso and recalculate the diffraction pattern
 - change from 1.14 to 2.3
 - change to 5
 - change to 0.1

These simulations do not necessarily represent the data that your diffractometer will produce

- There are more factors that contribute to the diffraction pattern that you collect with an instrument
- Some factors are calculated from fundamental equations
 - The simulations automatically account for:
 - multiplicity
 - K α 2 radiation
 - Lorentz polarization factor
- Some factors are approximated using empirical formulas
 - The diffraction peak width and shape is a product of the diffractometer optics, sample preparation, and the specimen microstructure
 - Diffraction peak widths and shapes in these simulations have been calculated using default parameters in an empirical formula
 - Some software attempts to model the instrument contribution to peak width and shape using "Fundamental Parameters". This is not yet implemented in HighScore Plus.

Other Things that effect intensity $I_{\kappa}=SM_{\kappa}L_{\kappa}|F_{\kappa}|^{2}P_{\kappa}A_{\kappa}E_{\kappa}$

- S is an arbitrary scale factor
 - used to adjust the relative contribution of individual phases to the overall diffraction pattern
- M is the multiplicity of the reflection
 - accounts for the fact that some observed diffraction peaks are acutally the product of multiple equivalent planes diffracting at the same position 2theta (for example, (001) (100) (010) etc in cubic)
 - automatically calculated based on the crystal structure
- L is the Lorentz polarization factor
- P is the modification of intensity due to preferred orientation
- A is absorption correction
- E is extinction correction
- F is structure factor, which is the amplitude of scattered light due to the crystal structure (already discussed)

The Lorentz polarization factor corrects for several effects

- The Lorentz factor
 - Different planes remain in the diffracting condition over a different angular range
 - high angle planes remain in the diffracting position longer, increasing their apparent intensity
 - 1/sin²θcosθ relationship for Bragg-Brentano
 - varies with geometry of the diffractometer
- Polarization
 - Scattering of light by the atom polarizes the X-rays
 - this causes the scattered intensity to vary as $1+\cos^2(2\theta)/2$
- Monochromator Polarization
 - The monochromator uses diffraction from a crystal to remove unwanted wavelengths of radiation.
 - This diffraction will also polarize the X-ray beam, causing intensity to vary as $\cos^2(2\theta)$
 - POL is the correction factor for the monochromator
 - the correct POL value can be found in HSP Help
 - go to the Help Index, type in POL, and the first option describes the Lorentz polarization factor

 $Lp = \frac{1 + POL\cos^2 2\theta}{\sin^2 \theta \cos \theta}$

Monochromator	POL
K-beta Filter	1
Cu diffracted beam graphite (point detector)	0.8
Cu X'Celerator	1.25
Cr diffracted beam (point detector)	0.588


Setting the Polarization Correction Coefficient, POL, for your simulation

- in the <u>Refinement Control</u> list, click on Global Parameters
- The Global Parameters will show up in the Object Inspector
- In the "General Properties" expansion of the Object Inspector, you can set the Polarization Correction Coefficient (POL)

Lists Pane		×	Object Inspector					
Structure Plot	Fourier Map		Selected object: Global Parameters					
Distances and An		🗆 Background						
	finement Co	ntrol	Method Polynomial					
Name	Refine	Make	Use Extended Background Term					
	herine	value	Flat Background 0.0000000					
▶ <u>→</u> Global Parameters			Coefficients					
- 🖹 Zirconia	✓		Coefficient 1 0.0000000					
Scale factor		0.0	Coefficient 2 0.000000					
Preferred Orientation		1.0	Coefficient 3 0.000000					
B overall		0.0	Coefficient 4 0.000000					
Extinction		0.0	1/X Background 0.0000000					
Flat Plate Absorption C		0.0	Agreement Indices					
Porosity		0.0	R expected 0.00000					
			R profile 0.00000					
Roughness		0.0	Weighted R profile 0.00000					
🖃 👪 Unit Cell			D-statistics 0.00000					
a [Å]		5.1	Weighted D-statistics 0.00000					
ь [Å]		5.1	Goodness of Fit 0.00000					
c [Å]		5.1	General Properties					
alpha (*)		90.0	Sample Geometry Flat Plate Geom Automatic Cell Constraints					
beta [*]		90.0						
gamma (*)		90.0	Specimen Displacement [mm] 0.00000 Zere Skilt [2Thicka] 9.00000					
🔄 🛁 🚋 Atomic coordinates			Polarisation Correction Coefficien 1.00000					
+ Zr			Linear Absorption Coefficient [14] 0.00000					
+1 0			Use Brindley Microabsorption Cor					
			Befinement					
			Hermement U standard					
+ 🖹 Profile Parameters								

Modeling Preferred Orientation

- The default calculation assumes that there are an equal number of crystallites contributing to every diffraction peak
 - the orientation of the crystallites is random and there are a statistically relevant number of grains
- preferred crystallographic orientation produces a non-random distribution in the orientation of the crystallites
 - the observed diffraction peak intensities will vary systematically

The March distribution function empirically models the preferred orientation effect

• The March distribution function is a model for fitting preferred orientation of cylinder or needle shaped crystals.

$$P_{k} = \left(r^{2} \cos^{2} \alpha_{k} + r^{-1} \sin^{2} \alpha_{k}\right)^{-\frac{3}{2}}$$

α_k is the angle between the preferred orientation vector and the normal to the planes generating the diffracted peak
 r is a refinable parameter in the Rietveld method

- There are other models for Preferred Orientation, such as spherical harmonics
 - The spherical harmonics model will be added in HighScore Plus v4

Modeling Preferred Orientation in HSP

- In the <u>Refinement Control</u> list, click on the phase that has preferred orientation
- In the Object Inspector, expand the Preferred Orientation settings
 - set the h,k, and I directions to represent the [hkl] of the preferred orientation

U Parameter(s) varieu	Constrai	nu(s)					
Lists Pane			1	bject Inspector	×		
Structure Plot Fourier Map	Distance	stances and Angles Selected object: Phase					
Scan List Peak List	Refinen	nent Control	1	Assumed Crystal (Cubic 🔼		
Name	Refine Value			Crystal System Automatic Cell Co	Cubic		
+ Global Parameters	Tichine	Yalac					
				Indexing			
🕨 🖃 🔂 Zirconia	~		E	Preferred Oriental	ion		
Scale factor		0.000100	1	Direction h	0.00		
Preferred Orientation		1.00000		Direction k	0.00		
B overall		0.000000		Direction I	1.00		
Extinction		0.000000	N	Parameter (March	1.00000		
			Ē	Rhase Profile			
Flat Plate Absorptio		0.000000	200	Size Strain Analys Man			
Porosity		0.000000		🗉 Caglioti Parame	eters		
Roughness		0.000000		U	0.00000		
+ 🔂 Unit Cell				V	0.00000		
+ 😡 Atomic coordinat				W	0.01000		
+ A Profile Parameters				🗄 Peak Shape			
				Asymmetry			
				🖽 Anisotropic Bro	adenina		

- set the Preferred Orientation parameter
 - this parameter is found in the Object Inspector as "Parameter (March/Dollase)"
 - this parameter is also found in the <u>Refinement Control</u> List as "Preferred Orientation"
 - 1 means the orientation of [hkl] is completely random
 - <1 means that the [hkl] direction is the preferred orientation of the crystallites
 - >1 means that the [hkl] direction is preferentially avoided
- recalculate the simulation to observe the change in peak intensities

Modeling Preferred Orientation in HSP

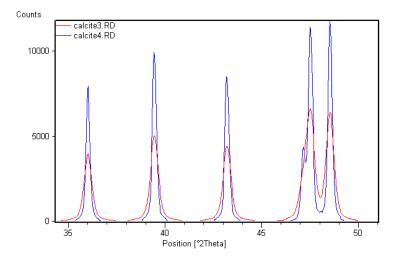
- For high symmetry phases, you should enable the "Summed March/Dollase function"
- In the <u>Refinement Control</u> list, click on Global Parameters
- In the Object Inspector, scroll to the Refinement settings
- Check the option "Use summed March/Dollase function"

ts Pane				<u> </u>	Object Inspector						
Fourier Map Distances and Angles					Selected object: Global Settings						
Pattern List	List	Peak List		Background	\$	4					
Anchor Scan Data Quantification			uantifica	tion	Method	Polynomial					
					Use Extended Background Terms						
Refinement C	ontrol	S	tructure	Plot	Flat Background	0					
Name		In	Refine	Value	Variables	*					
E-🔁 Global \	/ariables				Agreement Indices	*	i.				
					General Properties	*	i.				
			Re ^g ament								
					Use summed March/Dollase Function						
					Cle Eunction	Pseudo V	-				
					Profile Base Width	4					
					Intensity Limit	0					
					Max. No. of Least-Squares Cycles	20					
					Job Type	X-rays					
					Max. Angle for Rietveld Asymmetry	80					
					Profile Fitting	\$	1				
					Profile Fit Settings	\$	i I				
					Max. No of Profile Fit Cycles	20					

Additional Intensity Factors

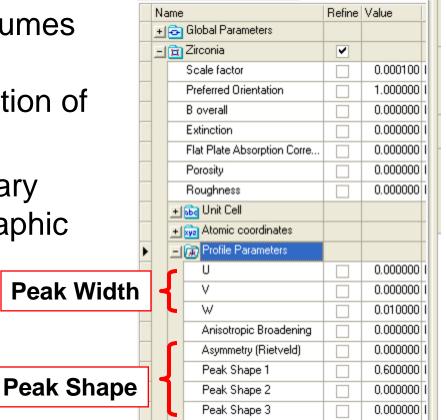
- Absorption Correction
 - accounts for the transmission and absorption of the X-rays through the irradiated volume of the sample.
 - depends on sample geometry: flat plate or cylindrical
 - depends on the mass absorption coefficient of the sample
 - significant for cylindrical or transmission samples with a high sample absorption
 - significant for a flat plate sample with a low sample absorption
- Extinction Correction
 - Secondary diffraction of scattered X-rays in a large perfect crystal can decrease the observed intensity of the most intense peaks
 - scattering by uppermost grains limits the penetration depth of a majority of Xrays, causing a smaller irradiated volume
 - want "ideally imperfect" crystals- grains with enough mosaicity to limit extinction
 - better to reduce extinction by grinding the powder to a finer size
- These two corrections are rarely used. Caution is advised. Always check to make sure that the correction values are physically meaningful.

We now know how to calculate the diffraction peak intensity, but there a couple of more factors involved in simulating real diffraction data


• The intensity, Y_{ic} , of each individual data point *i* is calculated using the equation: k^2

$$Y_{ic} = Y_{ib} + \sum_{k=k1}^{k2} G_{ik} I_k$$

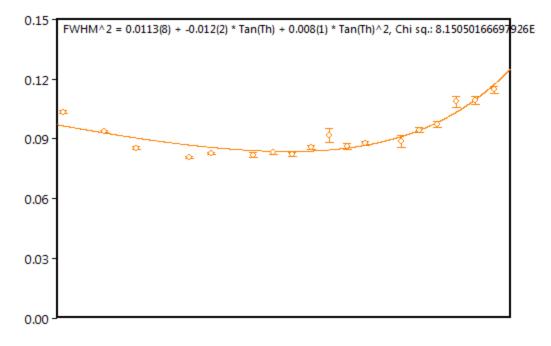
- We already know how to calculate I_{κ} , the intensity of the Bragg diffraction peak k: $I_{\kappa}=SM_{\kappa}L_{\kappa}|F_{\kappa}|^{2}P_{\kappa}A_{\kappa}E_{\kappa}$
- Y_{ib} is the intensity of the background at point *i* in the pattern
- k1 k2 are the reflections contributing to data point *i* in the pattern
 - sometimes multiple Bragg diffraction peaks overlap, resulting in multiple contributions to the observed intensity at a single data point
- G_{ik} is the peak profile function
 - this describes how the intensity of the diffraction peak is distributed over a range of 2theta rather than at a single point
 - this profile is due to instrument broadening, sample broadening, etc


Diffraction peaks have profiles that must be empirically modeled

- The intensity equation I_k predicts that diffraction peak intensity occurs at a single point 2theta– but in reality the diffraction peak intensity is spread out over a range of 2theta
 - The total area of the diffraction peak profile is the predicted intensity I_k
- Diffractometers contribute a characteristic broadening and shape to the diffraction peak based on their optics and geometry
 - each separate combination of divergence slit apertures, Soller slits, beta filter or monochromators, and detectors will have their own characteristic instrument profile
- Sample attributes also contribute to the diffraction peak shape and width
 - mass absorption coefficient (sample transparency)
 - sample thickness
 - crystallite size
 - microstrain
 - defect concentration

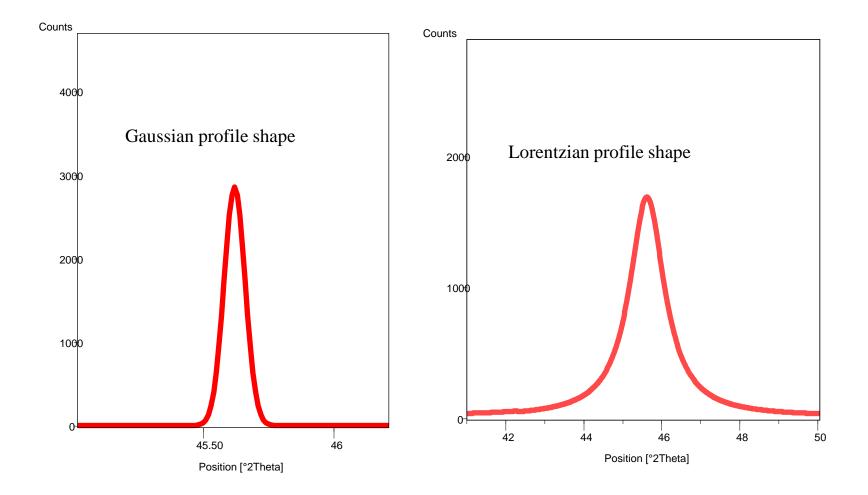
Profile Parameters

- Rietveld refinement assumes that peak profiles vary systematically as a function of 2theta
- Peak profile may also vary according to crystallographic direction [hkl]

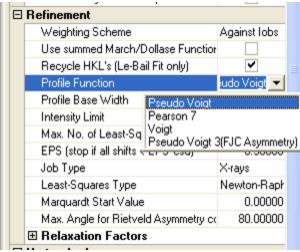


The Cagliotti equation describes how peak width varies with 2theta $H_{k} = \left(U \tan^{2} \theta + V \tan \theta + W\right)^{1/2}$

- H_k is the Cagliotti function where U, V and W are refinable parameters
- HSP treats the Cagliotti equation as a convolution between instrument and sample broadening functions
- The change in U and W between an instrument profile standard (eg NIST 640c) and your sample can indicate the amount of nanocrystallite size and microstrain broadening


The systematic variation of peak width with 2theta

FWHM Left [°2Th.]


- For a standard Bragg-Brentano diffractometer
 - U and W will be positive
 - V will be negative
- This trend may vary for data collected with parallel beam, GIXD, and capillary geometries

Diffraction Peaks from laboratory diffractometers are a mixture of Gaussian and Lorentzian profiles

Several different functions can be used to describe the mixing of Gaussian and Lorentzian contributions

- The profile function is set in the Object Inspector for Global Parameters (found in Refinement Control list)
 - the same profile function is used for all phases in a single pattern
 - Pseudo Voigt and Pearson VII are the most commonly used
 - Pseudo Voigt
 - Pseudo Voigt with FJC Asymmetry correction
 - Pearson VII
 - Voigt

The Pseudo Voigt equation uses up to 3 parameters to describe Gaussian and Lorentzian components

$$G_{jk} = \gamma \frac{2}{H_k \pi} \left[1 + 4X_{jk}^2 \right]^{-1} + (1 - \gamma) \frac{C_1^{1/2}}{H_k \pi^{1/2}} \exp\left[-C_1 X_{jk}^2 \right]$$
$$\gamma = \gamma_1 + \gamma_2 2\theta + \gamma_3 (2\theta)^2$$

- The parameters γ_1 , γ_2 , and γ_3 are the refinable shape parameters, listed as Peak Shape 1, Peak Shape 2, and Peak Shape 3 in the <u>Refinement Control</u> list
 - Usually Peak Shape 1 is the only one used
- H_k is the Cagliotti peak width function
- C₁ is 4 ln 2

•
$$X_{kj}$$
 is $X_{jk} = \frac{(2\theta_i - 2\theta_k)}{H_k}$

Background can be empirically fit with an equation, manually fit, or evaluated with a blank sample

- refinement of a polynomial function
- refinement using a type I or II Chebyshev polynomial function
- By amorphous sinc function
- linear interpolation between base points
- independent data collection run without the sample in place
 - It is difficult to use this technique effectively- it requires careful evaluation of the validity of the background fit

Ц	.ists Par	ie							<u>×</u>	a i	Ubject Inspector		X
	Patte	rn List 🔰 Scan I	List	Pea	k List	Anchor 9	ican Data	Quantific	ation		Selected object: Global Parameter	\$	
ľ	Refir	nement Control	Stru	cture Pl	ot Fr	ourier Map	Dist	ances and Ar	ngles		🗆 Background		
l	Name			Refine			Maximum	Minimum	Use Mi.	1	Method	Polynomia	•
l				nenne	value	Consu	Maximum	MINIMUM	Ose MI.		Use Extended Background Terms	Polynomial	~
l	▶⊐७	Global Parameters									Flat Background	Use available background	t i i i i i i i i i i i i i i i i i i i
l		Zero Shift [*2Theta]]		0.000000	None	0.000000	0.000000			Coefficients	Basepoints Chebyshev I	=
l		Specimen Displace	ment		0.000000	None	0.000000	0.000000			Coefficient 1	Chebyshev II	
l		Wavelength [Å]		\Box	1.789010	None	0.000000	0.000000			Coefficient 2	Shifted Chebyshev I	_
l		🛅 Background Pol	lvno								Coefficient 3	Shifted Chebyshev II	
l	\vdash \vdash	Flat background			0.000000	Mono	0.000000	0.000000			Coefficient 4		0.0000000
L]								1/X Background		0.0000000
l		Coefficient 1			0.000000	None	0.000000	0.000000			Agreement Indices		
l		Coefficient 2			0.000000	None	0.000000	0.000000			R expected		0.00000
l		Coefficient 3			0.000000	None	0.000000	0.000000			R profile		0.00000
L		Coefficient 4			0.000000	None	0.000000	0.000000			Weighted R profile		0.00000
	-	1/X Background	d		0.000000		0.000000	0.000000			D-statistics		0.00000
I		T/A background	u		0.000000	None	0.000000	0.000000			Videobard D. Materia		0.00000

Systematic error in diffraction peak positions can also be calculated

- The systematic error functions are found in Global Parameters
- They apply to all phases in the sample
 - zero shift
 - specimen displacement

гащ		Anchui scari Data		
	Quantification Het	inement Control		
Na	ame	Refine	Value	
▶ =	🕞 Global Parameters			
	Zero Shift [*2Theta]		0.000000	
	Specimen Displacement		0.000000	
	Wavelength [Å]		1.540598	
	🛨 🚞 Background Polyno			

The Parameters of a Pattern Simulation

- Global parameters affect the entire sample rather than individual phases
 - Background function
 - Zero Shift
 - Specimen Displacement
 - POL (Lorentz polarization factor)
 - Sample Geometry
 - selecting the Profile Function
- Other parameters are set individually for each phase
 - scale factor
 - preferred orientation (March-Dollase function)
 - unit cell
 - atomic parameters are for each atom in the phase
 - position, SOF, thermal parameter
 - Peak Profile parameters
 - Cagliotti peak width function parameters U,V, and W
 - Profile shape parameters
 - peak asymmetry profile
 - anisotropic broadening function

What is Physically Meaningful?

D

Wel (1975)

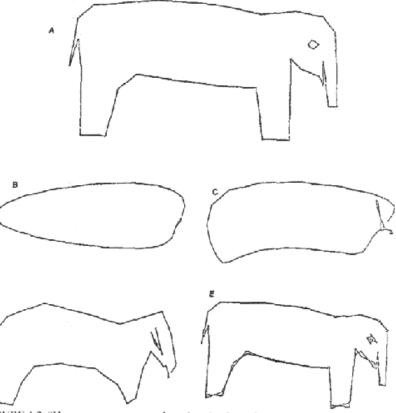


FIGURE 1.2. "How many parameters does does it take to fit an elephant?" was answered by Wel (1975). He started with an idealized drawing (A) defined by 36 points and used least squares Fourier sine series fits of the form $x(t) = \alpha_0 + \sum \alpha_i \sin(it\pi/36)$ and $y(t) = \beta_0 + \sum \beta_i \sin(it\pi/36)$ for i = 1, ..., N. He examined fits for K = 5, 10, 20, and 30 (shown in B–E) and stopped with the fit of a 30 term model. He concluded that the 30-term model "may not satisfy the third-grade art teacher, but would carry most chemical engineers into preliminary design."