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Preface

Fundamentals of Statistical Signal Processing: Practical Algorithm Development is
the third volume in a series of textbooks by the same name. Previous volumes
described the underlying theory of estimation and detection algorithms. In con-
trast, the current volume addresses the practice of converting this theory into soft-
ware algorithms that may be implemented on a digital computer. In describing
the methodology and techniques, it will not be assumed that the reader has stud-
ied the first two volumes, but of course, he/she is certainly encouraged to do so.
Instead, the descriptions will focus on the general concepts using a minimum of
mathematics but will be amply illustrated using MATLAB implementations. It is
envisioned that the current book will appeal to engineers and scientists in industry
and academia who would like to solve statistical signal processing problems through
design of well-performing and implementable algorithms for real systems. These sys-
tems are typically encountered in many signal processing disciplines, including but
not limited to communications, radar, sonar, biomedical, speech, optical, and image
processing. Additionally, due to the emphasis on actual working algorithms, the
material should be of use to the myriad of researchers in statistical signal processing
who wish to obtain an overview of the state of the practical art. Those new to the
field who are concerned with sorting the wheat from the chaff in the ever-exploding
arsenal of signal processing algorithms will also benefit from the exposition.

The overall goal for this book is to allow the reader to develop his/her intu-
ition and subsequent expertise into the practice of statistical signal processing. To
accomplish this goal we have endeavored to

1. Describe the methodology, including mathematical modeling, computer simula-
tion, and performance evaluation, used to develop algorithms.

2. Allow the reader to assimilate the important concepts by practicing with the
tools typically available. These include useful analytical results and MATLAB
implementations for design, evaluation, and testing.

3. Highlight the approaches and specific algorithms that work in practice, i.e., those
that have stood the test of time.

4. Illustrate application areas by describing and solving real-world problems.
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5. Introduce the reader to some extensions required in practice.

6. Translate a mathematical algorithm into MATLAB code and verify the integrity
of the solution.

Pedagogically speaking, we believe that the strong reliance on MATLAB exam-
ples will aid in understanding the workings and subtleties of the various algorithms.
The reader will then learn by doing. In the same vein, numerous analytical exercises
have been embedded into the text for student practice. The full solutions are con-
tained in the appendices of each chapter. MATLAB exercises are also given, with
abbreviated solutions listed in the appendix of each chapter, and the full solutions,
including executable MATLAB code, contained on the enclosed CD. At the end of
many of the chapters is a section called “Lessons Learned”. These conclusions are
important observations that are intended to provide insight into the inner workings
of the algorithms and rules of thumb that are routinely employed. These lessons
learned are often critical to the development of successful algorithms. Most of the
topics chosen for inclusion have been drawn from Fundamentals of Statistical Sig-
nal Processing: Estimation Theory, 1993, and Fundamentals of Statistical Signal
Processing: Detection Theory, 1998, but we have also added much material from
Modern Spectral Estimation: Theory and Application, 1988 (all books published by
Prentice Hall), since the latter book contains many of the techniques required for
data simulation and analysis. Finally, it is hoped that the current book will be use-
ful for self-study. Although this volume can be used without MATLAB as a practice
tool, much of the understanding that comes from that experience would be lost.

The background assumed for the reader is a knowledge of calculus, basic linear
systems, including some digital signal processing, probability and introductory ran-
dom processes, and some linear and matrix algebra. As previously mentioned, we
have attempted to describe the techniques without heavy reliance upon mathemat-
ics and this background material. However, in the end the algorithms are by their
nature mathematical and so it must be that this goal can only partially be attained.

The author would like to acknowledge the contributions of the many people
who over the years have provided stimulating discussions of teaching and research
problems and opportunities to apply the results of that research. Thanks are due
to my colleagues L. Jackson, R. Kumaresan, L. Pakula, and P. Swaszek of the
University of Rhode Island. A debt of gratitude is owed to all my current and former
graduate students. They have contributed to the final manuscript through many
hours of pedagogical and research discussions as well as by their specific comments
and questions. In particular, Quan Ding and Naresh Vankayalapati have contributed
specific comments and helped with the exercise solutions. Additionally, William
Knight has provided valuable feedback on the manuscript. The author is indebted
to the many agencies and program managers who have sponsored his research. These
managers include Jon Davis, Darren Emge, James Kelly, Muralidhar Rangaswamy,
Jon Sjogren, and Peter Zulch. The agencies include the Naval Undersea Warfare
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Center, the Naval Air Warfare Center, the Air Force Office of Scientific Research, the
Office of Naval Research, the Air Force Research Labs, and the Edgewood Chemical
and Biological Center. The practical experience that the author has acquired from
the numerous industrial firms for which he has consulted is also greatly appreciated.
As always, the author welcomes comments and corrections, which can be sent to
kay@ele.uri.edu.

—Steven M. Kay
University of Rhode Island

Kingston, RI
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Chapter 1

Introduction

1.1 Motivation and Purpose

Over the last forty years there has been a virtual explosion of ideas, approaches, tech-
niques, and applications of digital signal processing (DSP) to commercial products
and military systems. The primary journal devoted to digital signal processing, the
IEEE Transactions on Acoustics, Speech, and Signal Processing, which was founded
in 1974, was originally published bimonthly with each issue consisting of about 100
pages. Today the IEEE Transactions on Signal Processing, which is devoted solely
to signal processing, is published monthly with a content of about 500 pages, re-
flecting a tenfold increase in papers. This does not even account for the other more
specialized journals that have been spawned, such as the IEEE Transactions on Au-
dio, Speech, and Language Processing, the IEEE Transactions on Image Processing,
and others. The algorithm designer, who must choose and implement an approach,
is now faced with a bewildering cornucopia of possible algorithms. Even surveying
the open literature to glean a promising approach can be an overwhelming task. As
a result, it is now more important than ever for the algorithm designer to have a
tried and trusted arsenal at his/her disposal. These approaches may not solve the
current problem in its entirety, but will at least provide a good starting point for
algorithm development.

In addition to accumulating a suite of trusted algorithms, it is critical that we
understand why they work as well as when they are likely to fail. DSP algorithms
and more specifically statistical signal processing algorithms, being highly mathe-
matical and stochastic in nature, do not yield their secrets easily. But as the designer
begins to implement these algorithms and observe their behavior, his/her intuition
grows along with chances for successful future algorithm choices. This intuition
may only be gained through experience. We are fortunate today that it is not nec-
essary to implement an algorithm in hardware to assess its performance. Software
implementations are readily available and allow relatively painless assessments of
performance. A popular and very versatile software language is MATLAB, and it
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is this vehicle that we will use to implement our proposed algorithms and examine
their performance. Its use allows us to “play” with the proposed algorithm as well
as to provide us with a “first-cut” implementation in software. In fact, a MATLAB
implementation frequently leads to an implementation on a DSP chip or on some
specialized digital hardware. For these reasons we will rely heavily on MATLAB
throughout this textbook.

The material contained herein are algorithms for statistical signal processing. On
the other hand, for the processing of signals whose mathematical form is completely
known and that are not subject to excessive noise, many standard techniques exist
and have been found to be quite reliable. As examples, these typically include
algorithms for the design of digital filters or for the computation of the discrete-
time Fourier transform, i.e., the fast Fourier transform (FFT). Many excellent books
describe these algorithms and their implementations [Ingle and Proakis 2007, Lyons
2009]. In contrast, our purpose is to describe algorithms that can be used to analyze
and extract information from random data. For example, the specification that a
signal whose Fourier spectrum is lowpass in nature should be filtered by a digital
lowpass filter prior to further processing, naturally requires the design of a digital
filter with a prescribed cutoff frequency. A slightly different specification might be
to filter a bandpass signal whose center frequency is unknown. In the first case,
the specification is complete. In the second case, it remains to determine how to
center the filter so as to pass the signal but hopefully remove much of the noise. The
former calls for deterministic signal processing while the latter requires estimation
of the center frequency, preferably on-line, so that if the signal center frequency
changes, our algorithm will still be able to provide the appropriately centered filter.
When there is uncertainty in the signal characteristics, only a statistical approach
is appropriate.

Algorithms for the analysis of random data are highly problem specific. This is
to say that each real-world signal processing problem, although generically related to
many others, is unique and requires a specialized approach. Because of the seemingly
endless development of new electronic systems and devices, it is not possible to use
“off-the-shelf” algorithms. However, all is not lost! There exist a suite of “core”
algorithms that appear at the heart of most practical signal processing systems. It
is our intention to describe and implement in MATLAB these approaches in this
book. A general discussion of these algorithms is given next.

1.2 Core Algorithms

For signal processing problems requiring the detection of a signal and estimation of
its parameters, there exist some statistically sound and consequently, well accepted
approaches. As examples, we mention the matched filter for detection, the maximum
likelihood estimator and its frequent implementation, the least squares estimator, for
parameter estimation. It is these well accepted approaches that we intend to focus
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on. Hopefully, with exposure to the techniques that work in practice, the signal
processing algorithm designer will at least have a good starting point from which
to proceed to an actual design. Many of the core approaches, in addition to more
advanced but possibly not proven-in-practice techniques, have been described in
detail in the first two volumes of Fundamentals of Statistical Signal Processing [Kay
1993, Kay 1998] and in Modern Spectral Estimation: Theory and Application [Kay
1988]. The latter book on spectral analysis is important for modeling of random
signals and provides many useful algorithms for computer generation of these signals.
The reader is encouraged to refer to these books for a fuller understanding of the
theoretical underpinnings of these approaches. In this volume we

1. Describe the important algorithms used in practice,

2. Describe the assumptions required for their successful operation, and

3. Describe their performance and their limitations in practice.

This book is an attempt to accomplish these goals without having had the exposure
to the books referenced above.

1.3 Easy, Hard, and Impossible Problems

Since our goal is to describe statistical signal processing algorithms that are widely
used in practice, we may ask how these algorithms have attained this place of great
honor. The reasons are two-fold. The first is that they “work” and the second is
that they can be conveniently implemented in digital software/hardware. For an
algorithm to “work”, it must meet the specifications of the system. For example, it
might be that a specification calls for a parameter to be estimated. The performance
of the estimator should be a relative error of no more than 2.5%, as an example.
Hence, whether an algorithm “works” or not depends upon what is expected of the
algorithm. If the specifications are unreasonable, then a proposed approach or any
approach may not work. It is therefore important to assess the feasibility of meeting
the performance requirements. For the latter example, a commonly used method for
feasible parameter estimation accuracy is the Cramer-Rao lower bound (see Section
8.2.1). It provides a lower bound on the variance of an unbiased estimator (i.e.,
one that on the average yields the correct result). If the specifications cannot be
met in theory, then there is no point in proceeding with a design. Maybe we should
require more accurate sensors, if this is a possibility, and/or more data. Given a
signal model and a noise model (we will discuss this further in Chapters 3–6), signal
processing is capable of providing implementable algorithms that extract all the
available information. This information, we hope, is sufficient to yield the desired
performance. However, it cannot do the impossible, although we may ask it to do
so! As an example, suppose we wish to estimate the value A of a constant discrete-
time signal s[n], also referred to as a DC level signal (presumably a continuous-time
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signal that has been sampled by an analog-to-digital (A/D) convertor). The signal
is given as

s[n] = A n = 0, 1, . . . , N − 1

and is embedded in white Gaussian noise (WGN) w[n] with power σ2 (see Section
4.3). The observed data is then given by x[n] = A+w[n] for n = 0, 1, . . . , N −1 and
from this data we wish to determine A as accurately as possible. It is well known
that the optimal way to do this is to employ the estimator given by the sample mean

ÂN =
1

N

N−1∑

n=0

x[n].

(The “hat” will always denote an estimator.) Suppose that A = 10 and that our
specifications require for N = 20 and σ2 = 1 that the estimate should fall within the
interval [A−0.25, A+0.25], which for this choice of parameter would be [9.75, 10.25],
a maximum relative error of 2.5%. A MATLAB computer simulation is shown in
Figure 1.1, in which the estimate ÂN is plotted versus the data record length N .1

(We have connected the points (Â1, Â2, . . .) in the figure by straight lines to make
the viewing easier.) Since our specification was for N = 20, the results seem to
indicate that it has been met, with the estimate falling between the dashed lines at
9.75 and 10.25 at N = 20.
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Figure 1.1: Estimate of DC level A versus data record length N .

1The MATLAB program used to produce the figure is listed at the top of the figure. These
programs may be obtained from the author upon request.
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However, this good performance may just be fortuitous in that if we repeat
the experiment, whereby a different set of WGN samples w[n] are generated, then
we might obtain very different results. In Figure 1.2 the results of five different
experiments, corresponding to five different WGN realizations, are shown. (Each
realization of N = 100 noise samples will be different.)

Now the specification is not met for N = 20 data points and only appears to be
met for more than about N = 40 points. In fact, if we require that the estimate
fall within the dashed lines for N = 20 and for 95.5% “of the time”, then it can be
shown that the variance var(ÂN ) of the estimator must satisfy

2
√

var(ÂN ) ≤ 0.25

or equivalently

var(ÂN ) ≤ 1

64
.

But the Cramer-Rao lower bound says that all (unbiased) estimators must have

var(ÂN ) ≥ σ2

N
(1.1)

which for σ2 = 1 and N = 20 produces a lower bound of 1/20, and so this speci-
fication is impossible to meet. We will see later that the estimator ÂN , called the
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Figure 1.2: Five different realizations of the DC level estimator.
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sample mean estimator, does indeed attain the bound and so its variance is given
by equality in (1.1). Therefore, to meet the specification we would require

σ2

N
=

1

64

which is to say that N must be at least 64 data samples for a noise power of
σ2 = 1. As a side note, the reader should heed the implicit lesson seen in Figures
1.1 and 1.2. Since the results depend upon the particular noise sequence generated,
it is imperative that the experiment be repeated many times. No conclusions can be
drawn from only a few realizations, and in fact, in Figure 1.2 many more realizations
should be added.

Exercise 1.1 – Necessity of multiple realizations for performance
analysis

a. Run the MATLAB program FSSP3exer1 1.m for 100 noise realizations and for
N = 64. Do about 95 of the estimates fall within the specified interval
[9.75, 10.25]?

b. If the accuracy specification is increased to 1% maximum relative error, what
should var(ÂN ) be? How long does the data record length N need to be
to attain this? Finally, modify the code in FSSP3exer1 1.m to simulate the
performance for this larger value of N . How many estimates meet the specifi-
cation?

•
Some signal processing problems appear in many different fields. For example, it

is of interest to be able to accurately determine the frequency of a sinusoidal signal
when the signal is embedded in noise. A mathematically optimal approach is to use
a periodogram, which is a type of spectral estimator, and pick the location of the
maximum value as the estimate (see Algorithm 9.3). This works well in practice
and has found widespread acceptance for numerous applications. Additionally, even
if the underlying assumptions that need to be made to claim optimality are violated
somewhat, the performance does not degrade radically. This is an example of a
robust algorithm. In practice, robustness can be a critically important property of
an algorithm. Few real-world data sets conform to a set of underlying theoretical
assumptions. These assumptions are usually made for mathematical tractability so
as to allow the derivation of an optimal approach. We might term the design of
a frequency estimator of a single sinusoid as an easy problem, since the solution
that performs well and is easily implemented (via an FFT) is the periodogram. Of
course, to justify its use, the underlying assumption that we have a single sinusoid
embedded in WGN, cannot be totally ignored. If other sinusoids or interfering
signals are present and/or if the noise is highly correlated, then this approach may
not perform as advertised. Specifically, if a second sinusoid is close in frequency to
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the one of interest, then the frequency estimator can be severely biased, producing
an inaccurate estimate. An example of this is given in Figure 1.3. In Figure 1.3a
the periodogram of a single sinusoid with an amplitude of one at a frequency of 0.2
is shown. The maximum is seen to occur at the correct location in frequency. In
Figure 1.3b the periodogram is shown for the sum of two sinusoids, the desired one
at a frequency of 0.2 combined with an interfering sinusoid at a frequency of 0.22,
also with an amplitude of one. It is seen that the peak is now biased away from the
desired frequency of 0.2. To account for this possibility we must alter our thinking
and acknowledge the potential for one or more interfering sinusoidal signals. This
additional complication then leads to a hard problem [Kay 1988]. There may not be a
good solution, especially if the frequencies of the interfering sinusoids are unknown.
As the reader has no doubt surmised, properly designed algorithms work well (and
some can be said to be optimal in performance) when the assumptions under which
they were designed are satisfied. It is therefore critical that we be able to verify
that these assumptions hold in practice. To prepare ourselves for disappointing
performance results we need to assess not only the good properties of the algorithm
but also it limitations.

It is often the case that a seemingly difficult or hard problem will yield to an
easier one if viewed appropriately. It is well known that the linear signal model (see
Sections 3.5 and 3.6.4 for a description) leads to optimally performing and easily
implementable algorithms. In the real world not all signals can be said to conform
to this model. Knowing, however, of the desirable properties of the linear model, it
behooves us to try and transform our nonlinear model into a linear one. Continu-
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(a) One real sinusoid at f0 = 0.2
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(b) Two real sinusoids at f0 = 0.2 and f0 = 0.22

Figure 1.3: Periodogram of a sinusoidal signal and also a sinusoidal signal plus an
interfering signal.
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ing with the sinusoidal signal example, we have its mathematical representation in
discrete-time as

s[n] = A cos(2πf0n+ φ) n = 0, 1, . . . , N − 1 (1.2)

where A is an unknown amplitude with A > 0, f0 is a known frequency with
0 < f0 < 1/2, and φ is an unknown phase with −π ≤ φ < π. We might wish
to estimate the unknown amplitude and unknown phase. As it stands, however,
the signal is nonlinear in the phase (since A cos(2πf0n+ φ1 + φ2) %= A cos(2πf0n+
φ1)+A cos(2πf0n+φ2)), and this will complicate the development of any estimation
algorithm. To convert this problem into a more manageable one, we could use the
trigonometric identity cos(C +D) = cos(C) cos(D)− sin(C) sin(D) to yield

s[n] = A cos(φ) cos(2πf0n)−A sin(φ) sin(2πf0n)

and then let α1 = A cos(φ) and α2 = −A sin(φ) (which is just a type of polar to
Cartesian coordinate transformation) to produce

s[n] = α1 cos(2πf0n) + α2 sin(2πf0n). (1.3)

The signal is now linear in the unknown transformed parameters α1,α2. We have
transformed the original hard problem into a relatively easy one, and furthermore,
into one whose solution is well known. It can be shown that a good estimator of
amplitude and phase based on the observed data set {x[0], x[1], . . . , x[N−1]}, which
consists of the sinusoidal signal plus noise, is (see Section 3.5.4 and Algorithm 9.2)

Â =
2

N

∣∣∣∣∣

N−1∑

n=0

x[n] exp(−j2πf0n)

∣∣∣∣∣

φ̂ = arctan

(
−
∑N−1

n=0 x[n] sin 2πf0n∑N−1
n=0 x[n] cos 2πf0n

)
. (1.4)

But to do so we had to have been familiar with the easy problem (the linear signal
model) and then been able to choose the appropriate transformation. In practice,
knowledge of easy problems for which we have already known solutions is indispens-
able. This book contains many of these well known solutions.

In the real world most of the signal processing problems are hard (if they were
not, then someone would have already solved them!). But knowing the solutions to
simpler problems and building upon the intuition that familiarity with these prob-
lems brings, can lead to good solutions for more difficult problems. For example,
in (1.3) we might not know the frequency f0. How could we then estimate the fre-
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quency in addition to the amplitude and phase? It can be shown that the magnitude
of the discrete-time Fourier transform of a time truncated sinusoid, i.e., of (1.2), is

|S(f)| =

∣∣∣∣∣

N−1∑

n=0

s[n] exp(−j2πfn)

∣∣∣∣∣ (1.5)

≈ NA

2

∣∣∣∣
sin[Nπ(f − f0)]

N sin[π(f − f0)]

∣∣∣∣ (1.6)

as long as f0 is not very close to 0 or 1/2. You are asked to verify this in the next
exercise (the solution is contained in Appendix 1A).

Exercise 1.2 – Derivation of discrete-time Fourier transform of truncated
sinusoid
Verify the expression given in (1.6). To do so first break the real sinusoid given in
(1.2) into its two complex conjugate components exp(j2πf0n) and exp(−j2πf0n),
insert these into (1.5) and then use the complex geometric series result

∣∣∣∣∣

N−1∑

n=0

zn

∣∣∣∣∣ =
∣∣∣∣
1− zN

1− z

∣∣∣∣ =

∣∣∣∣∣
z−N/2 − zN/2

z−1/2 − z1/2

∣∣∣∣∣

where the first equality is true for all complex z and the second equality is only
true for |z| = 1, where | · | denotes the complex magnitude. Finally, discard the
negative frequency contribution, which is negligible if we are evaluating the Fourier
transform for f > 0 (and f0 is not near 0 or 1/2).

•
A plot of |S(f)| is shown in Figure 1.4 for A = 1, N = 20, and f0 = 0.2. This
suggests that we might be able to estimate the frequency by using the peak location
in frequency as our estimator, and in fact forms the basis for the periodogram
estimator previously mentioned and illustrated in Figure 1.3a. Although the effect of
noise has not been included in our discussion, it does indeed turn out that even when
noise is present, the estimator performs well (see Algorithm 9.3). This result is also
intuitively clear in that for large data records, i.e., as N → ∞, the Fourier transform
becomes a Dirac impulse, and so should “stand out” above any noise background.
The need for a good sense of intuition cannot be overemphasized. It prevents us
from pursuing algorithmic approaches that result in dead ends and it explains why
a good algorithm works well, apart from the mathematical justification—if there is
one. How does one obtain this intuition? Answer: Practice, practice, practice!

1.4 Increasing Your Odds for Success—Enhance Your
Intuition

To build up our intuition we must learn by doing. Fortunately, there are many
software packages and hardware development kits that can provide us with adequate
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Figure 1.4: Magnitude of discrete-time Fourier transform of time truncated sinusoid.

practice. Since our aim is to design the algorithms in software, our discussion will
be limited to this implementation. We have found the MathWorks software package
MATLAB to be particularly well-suited to the types of signal processing problems
encountered in practice. Therefore, throughout the book MATLAB will be our
primary vehicle for developing and testing statistical signal processing algorithms.
We have even used MATLAB to generate the textbook figures (the program used
is always listed at the top of the graph and may be obtained from the author upon
request) and to solve some of the exercises. The code for the exercise solutions as
well as programs that implement the algorithms to be described and to perform
various useful functions are provided on the enclosed CD.

Implementation of an algorithm in MATLAB is a testament to the understanding
of the basic operation of the algorithm. Furthermore, testing the algorithm on
controlled data sets generated within MATLAB, i.e., ones for which the signal and
noise characteristics are known, is essential in verifying the efficacy of the algorithm.
In observing the output of the MATLAB-coded algorithms, and comparing the
output with the expected one, a strong sense of intuition can be attained. Finally,
we can at times employ the same code used to assess the theoretical algorithm
performance using a computer simulation to process actual field data, although
usually not in a real-time operational sense. In all these cases, practice is essential
in developing one’s intuition. There will be ample opportunity to partake of this
valuable tool for understanding in completing the exercises scattered throughout
the book.
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1.5 Application Areas

The statistical signal processing algorithms to be described find application in many
fields. Some of these are:

1. Communications - transmission and reception of digital information [Proakis and
Salehi 2007]

2. Radar and sonar - target detection, localization, and tracking [Richards 2005,
Burdic 1984]

3. Biomedicine - heart arrhythmia detection, brain computer interfaces [Sörnmo
and Laguna 2005, Sanei and Chambers 2007]

4. Image processing - medical diagnostic imaging, data compression [Gonzalez and
Woods 2008]

5. Speech processing - speech recognition and synthesis [Rabiner and Schafer 2007]

6. Radio navigation - global positioning systems [Pany 2010].

This is but a small sampling of applications with many more being added every
day. At first glance it may seem strange that these somewhat diverse fields employ
nearly the same statistical signal processing algorithms. This was not always so.
This confluence of approaches is mainly due to the use of the modern digital com-
puter for implementation of signal processing. Whether the signal is electrical, as
in radar, acoustic, as in sonar and speech, or optical, as in imaging, it ultimately
is reduced to a set of numbers to be input and stored within a digital computer.
The transformation from a physical signal, say speech, to a set of numbers is ac-
complished via a transducer, say a microphone, followed by an A/D convertor to
produce a set of bytes to be read and stored for further processing within a digital
computer. The only difference from a signal processing perspective is the character
of the signal. It can be lowpass, having most of its energy at low frequencies, as in
speech, or bandpass, having its energy within a given band, as in a radar signal. It
can be one-dimensional in nature, as in an acoustic signal, or two-dimensional, as in
an image. The sampling rate of the A/D convertor will therefore need to be tailored
to the signal under consideration and will result in different amounts of data to pro-
cess. However, remarkably similar, if not identical, algorithms are used to process
these widely disparate types of signals. Matched filters are used in sonar, where
the signal spectrum has frequencies in the KHz range, but also in radar, where the
signal spectrum has higher frequencies, usually in the GHz range. FFTs are used
for one-dimensional signals such as speech, but also the two-dimensional version of
the FFT is used for image analysis. As a result, it is not unusual to design signal
processing algorithms based solely on a mathematical description of the signal and
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noise without reference to their origins. This would of course ignore any prior knowl-
edge of the real-world constraints that the signal and noise must obey, and so any
subsequent algorithm developed may have the potential for improved performance
by imposing these constraints. Knowing, for example, that a signal evolved from a
reflection from a moving target allows the radar designer to put a constraint on the
Doppler frequency shift due to the constraint on maximum target speed.

1.6 Notes to the Reader

1.6.1 Types of Signals Considered

In describing the algorithms we will assume that the physical signal is a real, lowpass
signal that has been sampled at an appropriate rate (at least twice the highest
frequency, i.e., at least the Nyquist rate). For applications such as radar and sonar
that process bandpass signals, it is customary to use complex demodulation, followed
by sampling of the in phase and quadrature signals. This leads to a complex signal
representation, which is slightly more complicated. The required extensions are
described in Chapter 12. Also, because the signals are discrete-time in nature,
having been sampled by some device and stored in a digital computer, we will always
assume the received data has the form x[n], which is a sequence of real numbers
indexed by the integer n. Typically, we will use the index set n = 0, 1, . . . , N − 1 if
the data record consists of N successive time samples. Note that we have referred
to the samples as being indexed by time. However, the n index could equally well
represent spatial samples such as would be obtained from N sensors equally spaced
along a line with the spatial samples having been obtained by sampling all the sensor
outputs at a given and fixed time.

1.6.2 Book Features and Notation

The MATLAB version used throughout the textbook is 7.8 (R2009A). Toolboxes
are not required to run the MATLAB code, and where subprograms are called for,
they are provided. A brief introduction to MATLAB is contained in Appendix B. A
description of the code for all programs contained on the CD is given in Appendix
C. In addition, a readme.txt file contained on the CD describes its contents. The
“typewriter” font, such as used in run simulation.m, indicates MATLAB program
names and code.

Throughout the book there are exercises to provide the reader some practice in
simple analytical manipulations and MATLAB algorithmic implementations. The
solutions to the analytical exercises are contained in the corresponding chapter ap-
pendix. The MATLAB exercise solutions are only summarized, with more complete
solutions found on the CD. Note the solutions were obtained using MATLAB version
R2009A, and so future versions of MATLAB may produce slightly different results.
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The reader is strongly encouraged to try the exercises as they form an important
pathway to understanding the material.

At the end of each chapter there is a section entitled “Lessons Learned”. These
are important results, many of which have become “rules of thumb”, and thus,
should be committed to memory. For some applications they may form the basis
on which an algorithm is either explored for its efficacy or otherwise rejected as not
being suitable for the problem at hand.

The mathematical notation for all common symbols is summarized in Appendix
A. The distinction between a continuous-time waveform and a discrete-time wave-
form or sequence is made through the symbolism x(t) for continuous-time and x[n]
for discrete-time. Plots of discrete-time data such as x[n], however, may appear
continuous in time, the points having been connected by straight lines for easier
viewing. An example of this is given in Figure 1.1. All vectors and matrices are
boldface, with all vectors being column vectors. When a random variable needs to
be contrasted with its value, we will use a capital letter, say X, to denote the ran-
dom variable, and a lower case letter, say x, to denote its value. All other symbolism
is defined within the context of the discussion. Also, the reader will frequently be
warned of potential “pitfalls”. Common misconceptions leading to design errors
will be noted and described. The pitfall or caution symbol shown below should be
heeded!!

1.7 Lessons Learned

The lessons listed next will be a major recurring theme of our discussions. We will
have much more to say about these lessons as we examine algorithms and their
performance throughout the book.

• Assess the feasibility of the algorithm requirements as the first step in the
design. Typically, the Cramer-Rao lower bound is used for estimation, and
the probability of detection of the Neyman-Pearson likelihood ratio test is used
for detection. For classification, the maximum a posteriori (MAP) classifier is
used. In all cases, the probability density functions must be known.

• Reassess the goals and/or require more accurate data if the specifications are
not attainable.

• Signal processing cannot do the impossible—there must be a reasonable signal-
to-noise ratio for it to succeed.

• In determining the performance of an algorithm via computer simulation, re-
peat the experiment many times, say 1000 or more. Make sure that your
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performance metric is statistical in nature, i.e., variance for an estimator, prob-
ability of detection for a detector, probability of error for a classifier. Keep
increasing the number of experiments until the evaluation of these metrics
produces consistent results.

• Make sure that the algorithm is tested under varying operational conditions
to assess robustness, also called sensitivity.

• Verify that the underlying algorithm assumptions hold in practice by analyzing
real-world data.

• Try to transform the problem into a simpler one, for example, the linear signal
model.

• Test the algorithm first in MATLAB by using controlled data sets generated
within MATLAB. The results should agree with theoretical predictions, if
available. The performance obtained under MATLAB controlled conditions
should be an upper bound on that for field data.

• Before proposing an algorithm, scour the open literature for similar signal
processing problems in other fields and the methods employed.
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Appendix 1A Solutions to Exercises

To obtain the results described below initialize the random number generators to
rand(’state’,0) and randn(’state’,0) at the beginning of any code. These com-
mands are for the uniform and Gaussian random number generators, respectively.

1.1 For part a, run the code with randn(’state’,0) at the start of the program to
intialize the random number generator. You should observe 92 estimates that
meet the specifications, i.e., lie within the interval [9.75, 10.25]. For part b,

we now require 2
√

var(ÂN ) ≤ 0.1 so that from the CRLB var(ÂN ) = σ2/N =

1/400 and thus, we require that N = 400. Modifying the program and running
it, produces 95 estimates that meet the specification, i.e., lie within the interval
[9.9, 10.1].

1.2

S(f) =
N−1∑

n=0

s[n] exp(−j2πfn)

=
N−1∑

n=0

A cos(2πf0n+ φ) exp(−j2πfn)

=
N−1∑

n=0

[
A

2
exp(j2πf0n+ φ) +

A

2
exp(−j2πf0n− φ)

]
exp(−j2πfn)

=
A

2
exp(jφ)

N−1∑

n=0

exp[−j2π(f − f0)n] (1A.1)

+
A

2
exp(−jφ)

N−1∑

n=0

exp[−j2π(f + f0)n]. (1A.2)

Now let z = exp[−j2π(f − f0)] and note that |z| = 1. Dropping the second
sum we have

S(f) =
A

2
exp(jφ)

N−1∑

n=0

zn =
A

2
exp(jφ)

1 − zN

1− z

and taking its complex magnitude

|S(f)| =
A

2

∣∣∣∣
1− zN

1− z

∣∣∣∣

=
A

2

∣∣∣∣∣
zN/2(z−N/2 − zN/2)

z1/2(z−1/2 − z1/2)

∣∣∣∣∣

=
A

2

∣∣∣∣∣
z−N/2 − zN/2

z−1/2 − z1/2

∣∣∣∣∣ .
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Next letting α = −2π(f − f0), we have z = exp(jα) and

|S(f)| =
A

2

∣∣∣∣
exp[−jα(N/2)] − exp[jα(N/2)]

exp[−jα(1/2)] − exp[jα(1/2)]

∣∣∣∣

=
A

2

∣∣∣∣
sin(Nα/2)

sin(α/2)

∣∣∣∣ .

Since α/2 = −π(f − f0) we have finally that

|S(f)| = A

2

∣∣∣∣
sin[Nπ(f − f0)]

sin[π(f − f0)]

∣∣∣∣ =
NA

2

∣∣∣∣
sin[Nπ(f − f0)]

N sin[π(f − f0)]

∣∣∣∣ .

Note that this is approximate since we have neglected the second term in the
sum, i.e., the term given by (1A.2). Since this term is the mirror image of the
positive frequency term (the one we retained) and is centered about f = f0,
its contribution will be small as long as it does not “interfere” with the pos-
itive frequency term. This will be the case if f0 is not near 0 or 1/2. This
is illustrated in Figure 1A.1 in which we have plotted the magnitude of the
terms (1A.1) (positive frequency component) and (1A.2) (negative frequency

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12
FSSP3fig1_5.m

f

|S
(f
)|

Figure 1A.1: Magnitude of discrete-time Fourier transform of frequency compo-
nents with f0 = 0.2 and N = 20. The heavier line indicates the Fourier trans-
form magnitude of the positive frequency component given by (1A.1) while the
lighter line is that for the negative frequency component given by (1A.2). Signifi-
cant interactions between the two components occur when 0 < f0 < 1/N = 0.05 or
0.45 = 1/2− 1/N < f0 < 1/2.
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component) for the entire frequency band −0.5 ≤ f ≤ 0.5. The signal param-
eters are N = 20, A = 1, φ = 0, and f0 = 0.2. It is seen that there is little
interference in this case.
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Index

Abbreviations, 457
ACS, see Autocorrelation
Adaptive noise canceler, 308
Algorithms, see Algorithm implementations

folder on CD
detection, 315, 423
estimation, 274, 405
fixed vs. adaptive, 129, 151
software development, 210
spectral estimation, 343, 443

All-pole modeling, 56, 96
Amplitude estimation/detection, 274,

326
AR, see Autoregressive
Array processing, 345
Arrival time estimation/detection, 281, 332
Asymptotics

autocorrelation variance, 205
detection, 321, 323
Gaussian PDF, 120
performance, 204
variance, 30

Autocorrelation
definition

complex, 375
real, 117

detection, 220,
see detection demo.m

estimation of, 165, 375,
see autocorrelation est.m

estimation of frequency, 415
matrix, 302

Autoregressive
definition

complex, 375, 408
real, 94, 98

examples, 91, 95, 101, see ARpsd.m

frequency response, 121
generation of data, see ARgendata.m,

see ARgendata complex.m

model order estimation, 355,
see AR est model.m

parameter estimation, 100, 351,
see AR par est cov.m,
see Burg.m, 354

PDF model estimation, 171, 438
PSD model estimation, 100,

see ARpsd model.m, 348
time-varying, 104

Averaged periodogram, 343,
see PSD est avper.m

Bandpass signal, 367
Bandwidth, mean squared, 282
Beamforming, 285
Bearing estimation, 284, 382
Bias, 193
Bias-variance tradeoff, 342
Burg method, 353,

see also PSD est AR Burg.m

Cautions
Always do a computer simulation

first, 44
Always use a computer simulation

first to determine performance, 190
An upper bound is hard (actually impossi-

ble) to beat, 44
Assuming WGN, 409
Bayesian versus classical estimator

performance comparisons, 244
Be careful of definitions, 371
Computing the MLE via a grid

search, 259
If in doubt, increase the data record length,

N , 162
Linear filtering alters the PDF of an IID

nonGaussian random
process, 111

Performance metrics and
assumptions for detection and
classification, 248

The siren call of linearization, 76
There is no “free lunch”, 209
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Using multiple approaches lends
credibility, 159

What do we mean by mean?, 153
You can never be sure!, 160

Central limit theorem, 78
Classification, 38, 254
Clipper, 317
Clutter in radar, 94
Colored Gaussian noise, 94
Comb filter, 300, 434
Communication systems, 199, 248, 324
Complex demodulation, 35, 368
Complex envelope, 35, 369
Complex Gaussian random variable, 373
Confidence intervals

definition, 179
kurtosis, 181
mean, 162
PDF, 170
PSD, 175, 344
variance, 163

Correlator, running, 281,
see also Estimator-correlator,
see also Replica-correlator

Covariance
definition

complex, 374
real, 164

estimation of, 164
Covariance matrix

definition
complex, 374
real, 119

estimation of, 166
Covariance method, 350,

see also PSD est ARcov.m

Cramer-Rao lower bound
DC level in WGN, 7
definition, 237
description, 5
Inverse cumulative distribution func-

tion, 111
use as sanity check, 202

CRLB, see Cramer-Rao lower bound

Data windowing, 342
DC level in noise, 5
Deflection coefficient, 40
Delay time estimation, 281
Detection curves, 197, see also Receiver

operating characteristics

Doppler effect, 33, 49, 279, 406
Dynamical signal model, 105

EEF, see Exponentially embedded family
Electrocardiogram (ECG), 56, 152, 305, 444
Electroencephlogram (EEG), 30
Energy detector, 324,

see also ED threshold.m, 431
Energy-to-noise ratio, 32, 282
ENR, see Energy-to-noise ratio
Estimator-correlator, 322
Estimators, 274, see Table 9.1
Excitation noise (AR), 97
Exponential signals

definition, 63
examples, 133

Exponentially embedded family, 140, 358

False alarm probability, 32, 194
Fast Fourier transform, 4, 344, 361, 412
FFT, see Fast Fourier transform
Finite impulse response filter, 155, 306, 444
FIR, see Finite impulse response filter
FM signal, 64
Frequency response, 118
Fundamental frequency, 426

Gaussian random process, 119
Generalized likelihood ratio test

definition, 260
examples, see Algorithms, detection

Generalized matched filter, 319
Geomagnetic noise, 423
GLRT, see Generalized likelihood ratio test
Grid search, 76, 137

Harmonic frequency, 426
Hermitian form, 374
Histogram, 168, see pdf hist est.m

IID, see Independent and identically distributed
Image signal processing, 315, 322
Impulse response, 118
In-phase signal, 35, 370
Independent and identically distributed

Definition, 92
Detection, 317
MATLAB, see Gauss mixture.m,

see Laplacian gendata.m
Noise, 109

Interference suppression, 30, 113, 299, 305
Inverse filter, 354
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Kurtosis
asymptotic variance, 181, 204
confidence interval, 181
definition, 157

Least squares estimator, see also Linear model
complex, 378
covariance method, 353
line signal, 68
real, 252

Levinson algorithm, 101, 354
Light detection and ranging (LIDAR),

281
Likelihood ratio test, see Neyman-

Pearson detection/criterion
Limiter, 317, 432
Line arrays, 285, 382
Linear FM signal, 65
Linear model, Bayesian

definition
complex, 379
real, 81

examples, 114
parameter estimation, 252

Linear model, classical
classification, 254
definition

complex, 378
real, 71

detection, 253
examples, 10, 69, 72, 426
parameter estimation, 252

Linear predictive coding, 27
Linear shift invariant system, 98, 118
Local stationarity, 103, 356

MAP, see Maximum a posteriori decision rule
Matched filter, 316, 319, 451
MATLAB, 3, see also matlabexample.m, 14,

461
MATLAB subprograms, 467
Matrix

autocorrelation, 119
eigenanalysis, 297
hermitian, see Covariance matrix,

definition, complex
positive definite, see Covariance matrix,

definition, real
projection, 155
pseudoinverse, 297
Toeplitz, 119

Maximum a posteriori decision rule
definition, 250
upper bound, 203

Maximum likelihood decision rule, 248
Maximum likelihood estimator

definition, 258
insight into, 263
practical utility, 240

Mean
Definition, 162, 165
Estimation of, 162, 165

Mean square error (classical), 193
Minimum distance classifier, 43
Minimum mean square error estimator, Bayesian

definition, 242
insight into, 265
linear model, 252

Minimum probability of error, 42, 191
Minimum variance spectral estimator,

346, see PSD est mvse.m, 450
Minimum variance unbiased estimator

definition, 237
theorem, 240

ML, see Maximum likelihood decision
rule

MLE, see Maximum likelihood estimator
MMSE estimator, see Minimum mean

square error estimator
Model order estimation

AR PDF, 176,
see pdf AR est order.m

AR PSD, 355,
see also AR est order.m

exponential signal, 140
polynomial signal, 141

Models
identifiability, 62, 137
linear/nonlinear, 61, 74, 137
necessity of good, 236
noise, 90, see Table 4.1
signal, 32, 57, see Table 3.1, 74,

see Table 3.2
Moments, 163
Monte Carlo method

need for, 192
performance evaluation

probability of detection, 197
probability of error, 200
ROC, 195

MSE, see Mean square error
Multipath, see Rayleigh fading,

see Rician fading
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MVSE, see Minimum Variance spectral
estimator

MVU, see Minimum variance unbiased estimator

Neyman-Pearson detection/criterion
definition, 244
theorem, 246
upper bound, 203, 221

NonGaussian noise
models, 90, 109, 112
test of, 157

Nonparametric estimation, 171, 340
Nonstationary random process, 102
Normal PDF, see Probability density

functions
Notational conventions, 15, 457
NP, see Neyman-Pearson

detection/criterion

Orthogonality, 427
Outliers, see Spikes

Partial correlation, 354
Partially linear model, 61, 426
Pattern recognition, see Classification
PDF, see Probability density functions
Performance metrics, 191
Period estimation, 300
Periodic signals, 66, 72, 426
Periodogram

detector, 330
frequency estimation, 206, 446
PDF, asymptotic PDF, 120
real-data application, 449
resolution, 9, 342, 361
spatial, 285
spectral estimator, 174,

see PSD est avper.m
Poles, 121, 297, 355, 408,

see pole plot PSD.m
Polynomial signal, 66
Posterior PDF, 242
Power spectral density

approximation of, 100
definition, 117, 173
estimator, center frequency, 289
estimator, power, 288
models, 96, 121

Prewhitening, 321, 354
Principal components, 296
Prior PDF, 243
Prior probability, see Probabilities

Probabilities
detection, 191
error, 191
false alarm, 191, 247
Monte Carlo evaluation, 195, 197,

200
prior, 248
right-tail probability, 40, see Q.m

Probability density functions
chi-squared (central), 175,

see chirpr2.m
chi-squared (noncentral), 329,

see chirpr2.m
complex Gaussian, 373
definition, 167
estimation of, 79, 156, 168, 171,

see pdf AR est.m,
see pdf hist est.m

Gaussian, 80, 93, 119, 166, see Q.m, see
Qinv.m

Gaussian mixture, 112,
see Gaussmix gendata.m

Laplacian, 109, 430,
see Laplacian gendata.m

Normal, see Gaussian
Rayleigh, 80
Rician, 81
Von Mises, 57

PSD, see Power spectral density

Q function
definition, 40
MATLAB subprogram, see Q.m

QRS complex, 444
Quadrature signal, 35, 370

Radar signal processing, 279, 320, 406
Random process

autoregressive, 94
complex, 374
Gaussian, 89, 102, 119
General concepts, 117
nonstationary, 91, 102, 150
random walk, 106

Random signals
center frequency, estimation, 289
definition, 77
examples, 242, 253
power, estimation, 288
signal samples, estimation, 302

Random variable complex, see Probability den-
sity functions, complex
Gaussian
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Rao test, 432
Rayleigh fading, 80, 113
Receiver operating characteristics,

see also roccurve.m
definition, 194
examples, 41, 435
Monte Carlo evaluation of, 195

Reflection coefficient, 354
Replica-correlator, 315, 317
Resolution, 341, 359
Reverberation, in sonar, 94
Rician fading, 81
Right-tail probability, see Probabilities
Road maps

algorithm design, 24
noise modeling, 150
signal modeling, 131

Robustness (sensitivity), 8, 30, 45, 59, 206,
318, 413, 436

ROC, see Receiver operating characteristics

Sample mean estimator, 6
Sign detector, 318, 435
Signal averager, 299
Signal design, 282
Signal-to-noise ratio, 277, 287, 376
Sinusoidal signal,

see also sinusoid gen.m
amplitude/phase, estimation, 75, 276
detection, 328, 330
frequency, estimation, 279
model, 57, 62
multiple sinusoids, parameter

estimation, 292, 296
random, 77, 80
spatial, 285
spectrum, 12

Sliding window power estimator, 103
Snapshot, 286
SNR, see Signal-to-noise ratio
Sonar signal processing, 279, 284, 320
Spatial frequency, 285

Spectrogram, 356
Speech modeling, 89, 276
Spikes, 112, 318, 424
Standardized random variable, 158
Surveillance systems, 284, 328
System function, 98

Tapped delay line, 56
Target echo modeling, 78
TDL, see Tapped delay line
Toeplitz, see Matrix, Toeplitz

Ultrasound, 31
Uniformly most powerful invariant test, 327, 329

Variance
definition, 163, 372
estimation of, 163
nonstationary, 102, 105

Vibrational analysis, 133, 343

WGN, see White Gaussian noise
White Gaussian noise

definition
complex, 375, 408, see cwgn.m
real, 6, 93, see WGNgendata.m

from continous-time, 36
power, estimation, 286

Wide sense stationary, 117, 119, 375
Wiener filter, 303, 324
Wiener process, see Random process, random

walk
Wiener-Khintchine theorem, 117
Window closing, 345
Wrap-around effect, 421
WSS, see Wide sense stationary

Yule-Walker equations, 100, 349,
see YWsolve.m

Zero padding, 361
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