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Preface to Structural
Dynamics—An Introduction to
Computer Methods∗

The topic of structural dynamics has undergone profound changes over the past two
decades. The reason is the availability of digital computers to carry out numerical
aspects of structural dynamics problem solving. Recently, the extensive use of the
fast Fourier transform has brought about even more extensive changes in structural
dynamics analysis, and has begun to make feasible the correlation of analysis with
structural dynamics testing. Although this book contains much of the material that
characterizes standard textbooks on mechanical vibrations, or structural dynamics, its
goal is to present the background needed by an engineer who will be using structural
dynamics computer programs or doing structural dynamics testing, or who will be taking
advanced courses in finite element analysis or structural dynamics.

Although the applications of structural dynamics in aerospace engineering, civil
engineering, engineering mechanics, and mechanical engineering are different, the prin-
ciples and solution techniques are basically the same. Therefore, this book places
emphasis on these principles and solution techniques, and illustrates them with numer-
ous examples and homework exercises from the various engineering disciplines.

Special features of this book include: an emphasis on mathematical modeling of
structures and experimental verification of mathematical models; an extensive intro-
duction to numerical techniques for computing natural frequencies and mode shapes
and for computing transient response; a systematic introduction to the use of finite ele-
ments in structural dynamics analysis; an application of complex frequency-response
representations for the response of single- and multiple-degree-of-freedom systems; a
thorough exposition of both the mode-displacement and mode-acceleration versions
of mode superposition for computing dynamic response; an introduction to practical
methods of component-mode synthesis for dynamic analysis; and the introduction of
an instructional matrix algebra and finite element computer code, ISMIS (Interactive
Structures and Matrix Interpretive System), for solving structural dynamics problems.

Although the emphasis of this book is on linear problems in structural dynamics,
techniques for solving a limited class of nonlinear structural dynamics problems are
also introduced. On the other hand, the topic of random vibrations is not discussed,
since a thorough treatment of the subject is definitely beyond the scope of the book,
and a cursory introduction would merely dilute the emphasis on numerical techniques
for structural dynamics analysis. However, instructors wishing to supplement the text

∗Copyright 1981, John Wiley & Sons, Inc.
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xii PREFACE TO STRUCTURAL DYNAMICS—AN INTRODUCTION TO COMPUTER METHODS

with material on random vibrations will find the information on complex frequency
response to be valuable as background for the study of random vibrations.

A primary aim of the book is to give students a thorough introduction to the numeri-
cal techniques underlying finite element computer codes. This is done primarily through
“hand” solutions and the coding of several subroutines in FORTRAN (or BASIC). Use
of the ISMIS computer program extends the problem-solving capability of the student
while avoiding the “black box” nature of production-type finite element codes. Although
the ISMIS computer program is employed in Chapters 14 and 17, its use is by no means
mandatory. The FORTRAN source code and a complete User’s Manual for ISMIS are
available for a very nominal fee and can be obtained by contacting the author directly
at The University of Texas at Austin (Austin, TX 78712).

Computer graphics is beginning to play an important role in structural dynamics,
for example, in computer simulations of vehicle collisions and animated displays of
structural mode shapes. One feature of this book is that all figures that portray functional
representations are direct computer-generated plots.

The text of this book has been used for a one-semester senior-level course in struc-
tural dynamics and a one-semester graduate-level course in computational methods in
structural dynamics. The undergraduate course typically covers the following material:
Chapters 1 through 6, Sections 9.1, 9.2, 10.1, 10.2, 11.1 through 11.4, and Chapter 12.
The graduate course reviews the topics above (i.e., it assumes that students have had
a prior course in mechanical vibrations or structural dynamics) and then covers the
remaining topics in the book as time permits. Both undergraduate and graduate courses
make use of the ISMIS computer program, while the graduate course also includes
several FORTRAN coding exercises.

Portions of this text have been used in a self-paced undergraduate course in struc-
tural dynamics. This led to the statements of objectives at the beginning of each chapter
and to the extensive use of example problems. Thus, the text should be especially
valuable to engineers pursuing a study of structural dynamics on a self-study basis.

I express appreciation to my students who used the notes that led to the present text.
Special thanks are due to Arne Berg, Mike Himes, and Rick McKenzie, who generated
most of the computer plots, and to Butch Miller and Rodney Rocha, who served as
proctors for the self-paced classes. Much of the content and “flavor” of the book is
a result of my industrial experience at the Boeing Company’s Commercial Airplane
Division, at Lockheed Palo Alto Research Laboratory, and at NASA Johnson Space
Center. I am indebted to the colleagues with whom I worked at these places.

I am grateful to Dr. Pol D. Spanos for reading Chapter 20 and making helpful com-
ments. Dean Richard Gallagher reviewed the manuscript and offered many suggestions
for changes, which have been incorporated into the text. This valuable service is greatly
appreciated.

This book might never have been completed had it not been for the patience and
accuracy of its typist, Mrs. Bettye Lofton, and to her I am most deeply indebted.

Finally, many of the hours spent in the writing of this book were hours that would
otherwise have been spent with Jane, Carole, and Karen, my family. My gratitude for
their sacrifices cannot be measured.

Roy R. Craig, Jr., Austin, TX



Preface to Fundamentals
of Structural Dynamics

Although there has been a title change to Fundamentals of Structural Dynamics, this
book is essentially the 2nd edition of Structural Dynamics—An Introduction to Com-
puter Methods, published in 1981 by the senior author. As a textbook and as a resource
book for practicing engineers, that edition had a phenomenal run of a quarter century.
Although this edition retains the emphasis placed in the first edition on the topics of
mathematical modeling, computer solution of structural dynamics problems, and the
relationship of finite element analysis and experimental structural dynamics, it takes
full advantage of the current state of the art in each of those topics. For example,
whereas the first edition employed ISMIS, a FORTRAN-based introductory matrix alge-
bra and finite element computer code, the present edition employs a Matlab-based
version of ISMIS and provides many additional structural dynamics solutions directly
in Matlab.

The new features of this edition are:

1. A coauthor, Dr. Andrew Kurdila, who has been responsible for Chapters 6, 15,
16, and 19 and Appendices D and E in this edition.

2. A greater emphasis on computer solutions, especially Matlab-based plots;
numerical algorithms in Chapters 6, 15, and 16; and digital signal-processing
techniques in Chapter 18.

3. A new section (Section 5.6) on system response by the Laplace transform method,
and a new appendix, Appendix C, on Laplace transforms.

4. An introduction, in Sections 10.4 and 10.5, to state-space solutions for complex
modes of damped systems.

5. Greatly expanded chapters on eigensolvers (Chapter 15), numerical algorithms
for calculating dynamic response (Chapters 6 and 16), and component-mode syn-
thesis (Chapter 17).

6. New chapters on experimental modal analysis (Chapter 18) and on smart struc-
tures (Chapter 19).

7. A revised grouping of topics that places vibration of continuous systems after
basic multiple-DOF topics, but before the major sections on computational meth-
ods and the advanced-topics chapters.

8. Many new or revised homework problems, including many to be solved on the
computer.

9. A supplement that contains many sample Matlab .m-files, the Matlab-based
ISMIS matrix structural analysis computer program, notes for an extensive short
course on finite element analysis and experimental modal analysis, and other
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xiv PREFACE TO FUNDAMENTALS OF STRUCTURAL DYNAMICS

study aids. This supplement, referred to throughout the book as the “book’s web-
site,” is available online from the Wiley Web site www.wiley.com/college/craig.

The senior author would like to acknowledge the outstanding wealth of knowledge
that has been shared with him by authors of papers presented at the many International
Modal Analysis Conferences (IMACs) that he has attended over the past quarter cen-
tury. Special appreciation is due to Prof. David L. Brown and his colleagues from the
University of Cincinnati; to numerous engineers from Structural Dynamics Research
Corporation, ATA Engineering, Inc., and Leuven Measurement Systems; and to the
late Dominick J. (Dick) DeMichele, the founder of IMAC. Professor Eric Becker, a
colleague of the senior author at The University of Texas at Austin, was responsible
for many features of the original ISMIS (Interactive Structures and Matrix Interpretive
System) FORTRAN code.

The authors would like to express appreciation to the following persons for their
major contributions to this edition:

Prof. Peter Avitabile: for permission to include on the book’s website his extensive
short course notes on finite element analysis and experimental modal analysis.

Mr. Charlie Pickrel: for providing Boeing GVT photos (Fig. 1.9a,b) and his journal
article on experimental modal analysis, the latter for inclusion on the book’s
website.

Dr. Matthew F. Kaplan: for permission to use substantial text and figures from his
Ph.D. dissertation as the basis for the new Section 17.8 on multilevel substruc-
turing.

Dr. Eric Blades: for conversion of the ISMIS FORTRAN code to form the Matlab
toolchest that is included on the book’s website.

Mr. Sean Regisford: for assistance with the finite element case studies in
Sections 15.6 and 16.5.

Mr. Garrett Moran: for assistance with solutions to new homework problems and
for generating Matlab plots duplicating the figures in the original Structural
Dynamics book.

Their respective chapters of this edition were typeset in LATEX by the authors.

Roy R. Craig, Jr., Austin, TX

Andrew J. Kurdila, Blacksburg, VA
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1

The Science and Art of Structural
Dynamics

What do a sport-utility vehicle traveling off-road, an airplane flying near a thunderstorm,
an offshore oil platform in rough seas, and an office tower during an earthquake all
have in common? One answer is that all of these are structures that are subjected to
dynamic loading, that is, to time-varying loading. The emphasis placed on the safety,
performance, and reliability of mechanical and civil structures such as these has led
to the need for extensive analysis and testing to determine their response to dynamic
loading. The structural dynamics techniques that are discussed in this book have even
been employed to study the dynamics of snow skis and violins.

Although the topic of this book, as indicated by its title, is structural dynamics,
some books with the word vibrations in their title discuss essentially the same subject
matter. Powerful computer programs are invariably used to implement the modeling,
analysis, and testing tasks that are discussed in this book, whether the application
is one in aerospace engineering, civil engineering, mechanical engineering, electrical
engineering, or even in sports or music.

1.1 INTRODUCTION TO STRUCTURAL DYNAMICS

This introductory chapter is entitled “The Science and Art of Structural Dynamics”
to emphasize at the outset that by studying the principles and mathematical formulas
discussed in this book you will begin to understand the science of structural dynamics
analysis. However, structural dynamicists must also master the art of creating mathe-
matical models of structures, and in many cases they must also perform dynamic tests.
The cover photo depicts an automobile that is undergoing such dynamic testing. Mod-
eling, analysis, and testing tasks all demand that skill and judgment be exercised in
order that useful results will be obtained; and all three of these tasks are discussed in
this book.

A dynamic load is one whose magnitude, direction, or point of application varies
with time. The resulting time-varying displacements and stresses constitute the dynamic
response. If the loading is a known function of time, the loading is said to be prescribed
loading, and the analysis of a given structural system to a prescribed loading is called
a deterministic analysis. If the time history of the loading is not known completely but
only in a statistical sense, the loading is said to be random. In this book we treat only
prescribed dynamic loading.

1



2 The Science and Art of Structural Dynamics

P P(t)

Distributed
inertia force

(a) (b)

Figure 1.1 Cantilever beam under (a) static loading and (b) dynamic loading.

A structural dynamics problem differs from the corresponding static problem in two
important respects. The first has been noted above: namely, the time-varying nature of
the excitation. Of equal importance in a structural dynamics problem, however, is the
role played by acceleration. Figure 1.1a shows a cantilever beam under static loading.
The deflection and internal stresses depend directly on the static load P . On the other
hand, Fig. 1.1b shows a similar cantilever beam subjected to a time-varying load P(t).
The acceleration of the beam gives rise to a distributed inertia force, as indicated in
the figure. If the inertia force contributes significantly to the deflection of the structure
and the internal stresses in the structure, a dynamical investigation is required.

Figure 1.2 shows the typical steps in a complete dynamical investigation. The three
major steps, which are outlined by dashed-line boxes, are: design, analysis, and testing.
The engineer is generally required to perform only one, or possibly two, of these steps.
For example, a civil engineer might be asked to perform a dynamical analysis of an
existing building and to confirm the analysis by performing specific dynamic testing of
the building. The results of the analysis and testing might lead to criteria for retrofitting
the building with additional bracing or damping to ensure safety against failure due to
specified earthquake excitation.[1.1,1.2] Automotive engineers perform extensive analysis
and vibration testing to determine the dynamical behavior of new car designs.[1.3,1.4]

Results of this analysis and testing frequently lead to design changes that will improve
the ride quality, economy, or safety of the vehicle.

In Section 1.2 we introduce the topic of mathematical models. In Section 1.3 we
introduce the prototype single-degree-of-freedom model and indicate how to analyze the
dynamic response of this model when it is subjected to certain simple inputs. Finally,
in Section 1.4 we indicate some of the types of vibration tests that are performed on
structures.

1.2 MODELING OF STRUCTURAL COMPONENTS AND SYSTEMS

Perhaps the most demanding step in any dynamical analysis is the creation of a mathe-
matical model of the structure. This process is illustrated by steps 2a and 2b of Fig. 1.2.
In step 2a you must contrive an idealized model of the structural system to be studied, a
model essentially like the real system (which may already exist or may merely be in the
design stages) but easier to analyze mathematically. This analytical model consists of:

1. A list of the simplifying assumptions made in reducing the real system to the
analytical model

2. Drawings that depict the analytical model (e.g., see Fig. 1.3)
3. A list of the design parameters (i.e., sizes, materials, etc.)
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v(x,t)

x

v(t)

v1(t)
v2(t)

v3(t)

(a)

(b)

(c)

Figure 1.3 Analytical models of a cantilever beam: (a) distributed-mass cantilever beam, a
continuous model (or distributed-parameter model); (b) one-degree-of-freedom model, a discrete-
parameter model; (c) three-degree-of-freedom model, a more refined discrete-parameter model.

Analytical models fall into two basic categories: continuous models and discrete-
parameter models. Figure 1.3a shows a continuous model of a cantilever beam. The
number of displacement quantities that must be considered to represent the effects
of all significant inertia forces is called the number of degrees of freedom (DOF) of
the system. Thus, a continuous model represents an infinite-DOF system. Techniques
for creating continuous models are discussed in Chapter 12. However, Fig. 1.3b and
c depict finite-DOF systems. The discrete-parameter models shown here are called
lumped-mass models because the mass of the system is assumed to be represented by a
small number of point masses, or particles. Techniques for creating discrete-parameter
models are discussed in Chapters 2, 8, and 14.

To create a useful analytical model, you must have clearly in mind the intended
use of the analytical model, that is, the types of behavior of the real system that the
model is supposed to represent faithfully. The complexity of the analytical model is
determined (1) by the types and detail of behavior that it must represent, (2) by the
computational analysis capability available (hardware and software), and (3) by the time
and expense allowable. For example, Fig. 1.4 shows four different analytical models
used in the 1960s to study the dynamical behavior of the Apollo Saturn V space vehicle,
the vehicle that was used in landing astronauts on the surface of the moon. The 30-DOF
beam-rod model was used for preliminary studies and to determine full-scale testing
requirements. The 300-DOF model on the right, on the other hand, was required to give
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30 DOF

Apollo
Satum V

space
vehicle

Beam-rod
model

Beam-rod
quarter-

shell
model

Quarter-
shell

model

Three-
dimensional

model

120 DOF 400 DOF 300 DOF

Figure 1.4 Analytical models of varying complexity used in studying the space vehicle dynam-
ics of the Apollo Saturn V. (From C. E. Green et al., Dynamic Testing for Shuttle Design
Verification, NASA, Washington, DC, 1972.)

a more accurate description of motion at the flight sensor locations. All of these Saturn V
analytical models are extremely small compared with the multimillion-DOF models that
can be analyzed now (see Section 17.8). However, supported by extensive dynamical
testing, these analytical models were sufficient to ensure successful accomplishment of
Apollo V ’s moon-landing mission. Simplicity of the analytical model is very desirable
as long as the model is adequate to represent the necessary behavior.

Once you have created an analytical model of the structure you wish to study, you
can apply physical laws (e.g., Newton’s Laws, stress–strain relationships) to obtain
the differential equation(s) of motion that describe, in mathematical language, the ana-
lytical model. A continuous model leads to partial differential equations, whereas a
discrete-parameter model leads to ordinary differential equations. The set of differential
equations of motion so derived is called a mathematical model of the structure. To obtain
a mathematical model, you will use methods studied in dynamics (e.g., Newton’s Laws,
Lagrange’s Equations) and in mechanics of deformable solids (e.g., strain–displacement
relations, stress–strain relations) and will combine these to obtain differential equations
describing the dynamical behavior of a deformable structure.
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In practice you will find that the entire process of creating first an analytical model
and then a mathematical model may be referred to simply as mathematical modeling.
In using a finite element computer program such as ABAQUS[1.5], ANSYS[1.6], MSC-
Nastran[1.7], OpenFEM[1.8], SAP2000[1.9], or another computer program to carry out a
structural dynamics analysis, your major modeling task will be to simplify the system
and provide input data on dimensions, material properties, loads, and so on. This is

(a)

(b)

Figure 1.5 (a) Actual bus body and frame structure; (b) finite element models of the body and
frame. (From D. Radaj et al., Finite Element Analysis: An Automobile Engineer’s Tool, Society
of Automotive Engineers, 1974. Used with permission of the Society of Automotive Engineers,
Inc. Copyright c© 1974 SAE.)
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where the “art” of structural dynamics comes into play. On the other hand, actual
creation and solution of the differential equations is done by the computer program.
Figure 1.5 shows a picture of an actual bus body and a computer-generated plot of the
idealized structure, that is, analytical model, which was input to a computer. Computer
graphics software (e.g., MSC-Patran[1.7]) has become an invaluable tool for use in
creating mathematical models of structures and in displaying the results of the analyses
that are performed by computers.

Once a mathematical model has been formulated, the next step in a dynamical
analysis is to solve the differential equation(s) to obtain the dynamical response that is
predicted. (Note: The terms dynamical response and vibration are used interchangeably.)
The two types of dynamical behavior that are of primary importance in structural
applications are free vibration and forced vibration (or forced response), the former
being the motion resulting from specified initial conditions, and the latter being the
motion resulting directly from specified inputs to the system from external sources.
Thus, you solve the differential equations of motion subject to specified initial conditions
and to specified inputs from external sources, and you obtain the resulting time histories
of the motion of the structure and stresses within the structure. This constitutes the
behavior predicted for the (real) structure, or the response.

The analysis phase of a dynamical investigation consists of the three steps
just described: defining the analytical model, deriving the corresponding mathemati-
cal model, and solving for the dynamical response. This book deals primarily with
the second and third steps in the analysis phase of a structural dynamics investigation.
Section 1.3 illustrates these steps for the simplest analytical model, a lumped-mass
single-DOF model. Section 1.4 provides a brief discussion of dynamical testing.

1.3 PROTOTYPE SPRING–MASS MODEL

Before proceeding with the details of how to model complex structures and analyze their
dynamical behavior, let us consider the simplest structure undergoing the simplest forms
of vibration. The structure must have an elastic component, which can store and release
potential energy; and it must have mass, which can store and release kinetic energy.
The simplest model, therefore, is the spring–mass oscillator, shown in Fig. 1.6a.

1.3.1 Simplifying Assumptions: Analytical Model

The simplifying assumptions that define this prototype analytical model are:

1. The mass is a point mass that is confined to move along one horizontal direction
on a frictionless plane. The displacement of the mass in the x direction from
the position where the spring is undeformed is designated by the displacement
variable u(t).

2. The mass is connected to a fixed base by an idealized massless, linear spring.
The fixed base serves as an inertial reference frame. Figure 1.6b shows the linear
relationship between the elongation (u positive) and contraction (u negative) of
the spring and the force fS(t) that the spring exerts on the mass. When the
spring is in tension, fS is positive; when the spring is in compression, fS is
negative.

3. A specified external force p(t) acts on the mass, as shown in Fig. 1.6a.
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x
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u

k
l

(b)

m
fS

u(t)

p(t)

(c)

Figure 1.6 (a) Spring–mass oscillator; (b) force–elongation behavior of a linear spring; (c)
free-body diagram of the spring–mass oscillator.

Since it takes only one variable [e.g., u(t)] to specify the instantaneous position of
the mass, this is called a single-degree-of-freedom (SDOF) system.

1.3.2 Mathematical Model: Equation of Motion

Newton’s Second Law To obtain a mathematical model describing the behavior of the
spring–mass oscillator, we start by drawing a free-body diagram of the mass (Fig. 1.6c)
and applying Newton’s Second Law,∑

Fx = max (1.1)

where m is the mass and ax is the acceleration of the mass, taken as positive in the
+x direction. Acceleration ax is given by the second derivative of the displacement,
that is, ax = ü(t); similarly, the velocity is given by u̇(t). By assuming that the mass
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is displaced u to the right of the position where the spring force is zero, we can say
that the spring will be in tension, so the spring force will act to the left on the mass,
as shown on the free-body diagram. Thus, Eq. 1.1 becomes

−fS + p(t) = mü (1.2)

Force–Displacement Relationship As indicated in Fig. 1.6b, there is assumed to be
a linear relationship between the force in the spring and its elongation u, so

fS = ku (1.3)

where k is the stiffness of the spring.
Equation of Motion Finally, by combining Eqs. 1.2 and 1.3 and rearranging to place
all u-terms on the left, we obtain the equation of motion for the prototype undamped
SDOF model:

mü+ ku = p(t) (1.4)

This equation of motion is a linear second-order ordinary differential equation. It is the
mathematical model of this simple SDOF system.

Having Eq. 1.4, the equation of motion that governs the motion of the SDOF
spring–mass oscillator in Fig. 1.6a, we now examine the dynamic response of this
prototype system. The response of the system is determined by its initial conditions,
that is, by the values of its displacement and velocity at time t = 0:

u(0) = u0 = initial displacement, u̇(0) = v0 = initial velocity (1.5)

and by p(t), the external force acting on the system. Here we consider two simple
examples of vibration of the spring–mass oscillator; a more general discussion of
SDOF systems follows in Chapters 3 through 7.

1.3.3 Free Vibration Example

The spring–mass oscillator is said to undergo free vibration if p(t) ≡ 0, but the mass
has nonzero initial displacement u0 and/or nonzero initial velocity v0. Therefore, the
equation of motion for free vibration is the homogeneous second-order differential
equation

mü+ ku = 0 (1.6)

The general solution of this well-known simple differential equation is

u = A1 cos ωnt +A2 sin ωnt (1.7)

where ωn is the undamped circular natural frequency, defined by

ωn =
√

k

m
(1.8)

The units of ωn are radians per second (rad/s).
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The constants A1 and A2 in Eq. 1.7 are chosen so that the two initial conditions,
Eqs. 1.5, will be satisfied. Thus, free vibration of an undamped spring–mass oscillator
is characterized by the time-dependent displacement

u(t) = u0 cos ωnt + v0

ωn

sin ωnt (1.9)

It is easy to show that this solution satisfies the differential equation, Eq. 1.6, and the
two initial conditions, Eqs. 1.5.

Figure 1.7 depicts the response of a spring–mass oscillator released from rest from
an initial displacement of u0. Thus, the motion depicted in Fig. 1.7 is given by

u(t) = u0 cos ωnt = u0 cos
2πt

Tn

(1.10)

From Eq. 1.10 and Fig. 1.7, free vibration of an undamped SDOF system consists of
harmonic (sinusoidal) motion that repeats itself with a period (in seconds) given by

Tn = 2π

ωn

(1.11)

as illustrated in Fig. 1.7. The amplitude of the vibration is defined as the maximum
displacement that is experienced by the mass. For the free vibration depicted in Fig. 1.7,
the amplitude is equal to the initial displacement u0.

Free vibration is discussed further in Chapter 3.

1.3.4 Forced Response Example

The spring–mass oscillator is said to undergo forced vibration if p(t) �= 0 in Eq. 1.4.
Solution of the differential equation of motion for this case, Eq. 1.4, requires both a
complementary solution uc and a particular solution up. Thus,

u(t) = uc(t)+ up(t) (1.12)

1.5

0 1 2 3 4 5 6 7 8 9 10

1

0.5

0

−0.5

−1

−1.5

Tn

t (sec)

u (in.)

Figure 1.7 Free vibration of a spring-mass oscillator with u0 = 1.0 in., v0 = 0, and Tn = 4.0 sec.
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As a simple illustration of forced vibration we consider ramp response, the response
of the spring–mass oscillator to the linearly varying ramp excitation force given by

p(t) = p0

t

t0

, t > 0 (1.13)

and illustrated in Fig. 1.8a. (The time t0 is the time at which the force reaches the
value p0.) The particular solution, like the excitation, varies linearly with time. The
complementary solution has the same form as given in Eq. 1.7, so the total response
has the form

u(t) = A1 cos ωnt + A2 sin ωnt + p0

k

t

t0

(1.14)

where the constants A1 and A2 must be selected so that the initial conditions u(0) and
u̇(0) will be satisfied.

Figure 1.8b depicts the response of a spring–mass oscillator that is initially at rest
at the origin, so the initial conditions are u(0) = u̇(0) = 0. The corresponding ramp
response is thus given by

u(t) = p0

k

(
t

t0

− 1

ωnt0

sin ωnt

)
(1.15)

t (sec)
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Figure 1.8 (a) Ramp excitation p(t) = p0(t/t0) for t > 0, with p0 = 2 lb, t0 = 10 sec; (b)
response of a spring–mass oscillator to ramp excitation. For (b), k = 1 lb/in. and Tn = 4 sec.
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Clearly evident in this example of forced response are two components: (1) a linearly
time-varying displacement (dashed curve), which is due directly to the linearly time-
varying ramp excitation, and (2) an induced oscillatory motion at the undamped natural
frequency ωn. Of course, this ramp response is only valid as long as the spring remains
within its linearly elastic range.

1.3.5 Conclusions

In this section we have taken a preliminary look at several characteristics that are
typical of the response of structures to nonzero initial conditions and/or to time-varying
excitation. We have especially noted the oscillatory nature of the response. In Chapters 3
through 7, we consider many additional examples of free and forced vibration of SDOF
systems, including systems with damping.

1.4 VIBRATION TESTING OF STRUCTURES

A primary purpose of dynamical testing is to confirm a mathematical model and, in
many instances, to obtain important information on loads, on damping, and on other
quantities that may be required in the dynamical analysis. In some instances these
tests are conducted on reduced-scale physical models: for example, wind tunnel tests
of airplane models. In other cases, when a full-scale structure (e.g., an automobile) is
available, the tests may be conducted on it.

Aerospace vehicles (i.e., airplanes, spacecraft, etc.) must be subjected to extensive
static and dynamic testing on the ground prior to actual flight of the vehicle. Figure 1.9a

shows a ground vibration test in progress on a Boeing 767 airplane. Note the electro-
dynamic shaker in place under each wingtip and the special soft support under the nose
landing gear.

Dynamical testing of physical models may be employed for determining qualita-
tively and quantitatively the dynamical behavior characteristics of a particular class of
structures. For example, Fig. 1.9b shows an aeroelastic model of a Boeing 777 airplane
undergoing ground vibration testing in preparation for testing in a wind tunnel to aid in
predicting the dynamics of the full-scale airplane in flight. Note the soft bungee-cord
distributed support of the model and the two electrodynamic shakers that are attached
by stingers to the engine nacelles. Figure 1.10 shows a fluid-filled cylindrical tank struc-
ture in place on a shake table in a university laboratory. The shake table is used to
simulate earthquake excitation at the base of the tank structure.

Chapter 18 provides an introduction to Experimental Modal Analysis, a very impor-
tant structural dynamics test procedure that is used extensively in the automotive and
aerospace industries and is also used to test buildings, bridges, and other civil structures.

1.5 SCOPE OF THE BOOK

Part I, encompassing Chapters 2 through 7, treats single-degree-of-freedom (SDOF)
systems. In Chapter 2 procedures are described for developing SDOF mathematical
models; both Newton’s Laws and the Principle of Virtual Displacements are employed.
The free vibration of undamped and damped systems is the topic of Chapter 3, and


