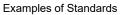


Why Test?

- · Research and Development
- · Selection of Raw Materials Process Development
- Product Testing
 - Compliance testing
 End use performance

 - Lot to lot comparison
 Defect detection
 Advertising
- Note: The expense of testing is not at all costly when compared to the cost of returned merchandise and dissatisfied customers!


Sources of Test Methods

In HouseASTMAATCC

- ISO
- Professional Organizations
- Federal Standards
 Others

Testing of Industrial & Technical Textiles vs. Traditional Textiles

- Performance properties such as strength, durability, and thermal resistance are more important for industrial textiles, and minimum requirements for these properties are generally higher than for apparel and household textiles.
- ٠ In general, tests for comfort and aesthetics are not as important for industrial textiles.
- Product specifications for industrial textiles may be based more on performance than on construction and appearance. .
- For a given property to be measured, the same standard test procedures and equipment are used for both industrial and traditional textiles! ٠

Standard Test Methods
 Specify procedure, apparatus, and conditions of tests.

- Standard Definitions or Nomenclature
 Establish uniformly accepted meanings for
 terms.
- Performance Specifications
 Means of judging product acceptability.

Typical Format of a Test Standard May Include:

- Introduction/Scope/Summary
- References and Terminology Apparatus and Materials
- Sampling and Preparation of Test
- Specimens
- Conditioning
- Procedure
- Calculations and Reporting
- Precision and Bias Statement

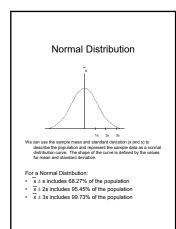
ASTM D 4847: Standard Performance Specificat for Woven Awning and Canopy Fabrics			
Characteristic	Minimum Requirements	Test Method	
Breaking Strength (load) Yam Slippage (1/4 in.) Tear Strength	150 lbf, min 15 lbf 10 lbf	ASTM D5034 ASTM D434* ASTM D1424	
Dimensional Change	3% max	AATCC 135	
Colorfastness -Burnt Gas Fumes-	2 cycles Class 4 (a)	AATCC 23	
-Laundering Shade change after	1 cycle Class 4 (a)	AATCC 61	
-Crocking Dry Wet	Class 4 (b) Class 3	AATCC 8, 116	
-Light (160 AATCC	SFU) Class 4 (a)	AATCC 16	
-Ozone - 1 cvole	Class 4 (a)	AATCC 129	

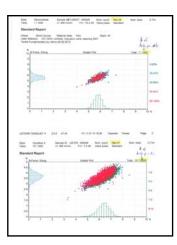
Characteristic	Minimum Requirements	Test Metho
Water Resistance		AATCC 35
-2 ft	30 s shower	
-2 🛱	2 min rain	
-3 ft	5 min storm	
Water Repellency		AATCC 22
Smooth Fabrics:		
Original	90 min	
After laundering	70 min	
Rough Fabrics:		
Original	80 min	
After laundering	70 min	
Flammability	pass	No Std. given
Notes:		
(a) AATCC Gray Scale	for Color Change	
(b) AATCC Chromatic		

Basic Statistical Applications to Testing

Obtaining Useful Results

- A test method is useful if it gives reproducible results which correlate with the parameter of interest to the user.
- Inter-laboratory correlation is important.
- Test results are characterized by their accuracy (mean value) and their precision (standard deviation)


Accuracy vs. Precision Accurate, but not precise: . : . . *. + Actual or Standard Value; * Observed Values Precise, but not accurate: ::: + + Actual or Standard Value; * Observed Values


Calculation of Variance and Standard Deviation $\mathbf{s}^2 = [\Sigma \ (\mathbf{x} - \overline{\mathbf{x}})^2]/(\mathbf{n} - 1)$ where x = individual data values x = mean value n = number of observations

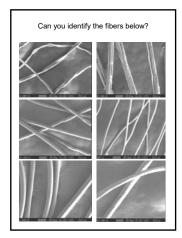
Sources of Experimental Error

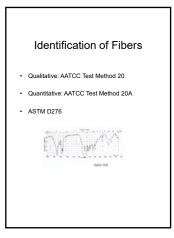
Systematic (Determinate) - Can Be Detected and Corrected Improper Calibration Wrong Test Method Instrument Malfunction Calculation Errors Operator Technique

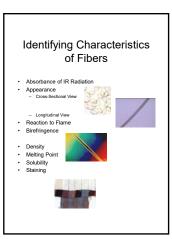
- Random (Indeterminate) Cannot Be Eliminated
 - Judgement in Reading Scales
 Instrumental Noise

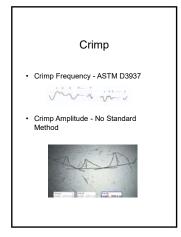
Examples of Statistical Analysis of Data Sets

These analyses are based on calculations using the mean, standard deviation, and number of observations in a data set. A distribution similar to the normal distribution, called the t-distribution, is also utilized.

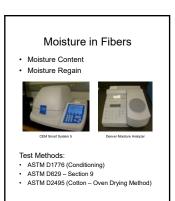

- Confidence Interval
 An expression stating that the true mean value for
 a population, µ, is likely to lie within a certain range
 centered around the sample mean, x.

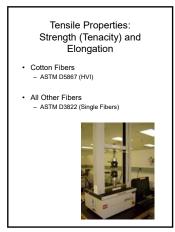

 Comparison of Means
 A calculation to determine if the mean values for 2
 data sets are significantly different.

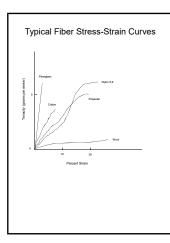

Fiber Properties and . Test Methods

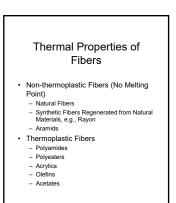

Examples of Fiber Performance Properties

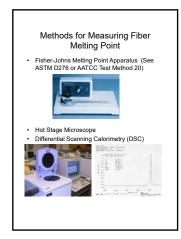
- Appearance and Identification (shape, birefringence) Color Crimp Fineness (linear density) Luster Moisture regain Solubilly and chemical resistance Specific gravity Tensile properties (strength, elongation, modulus) Thermal properties (Tre Tru) and flammability · · · · ·



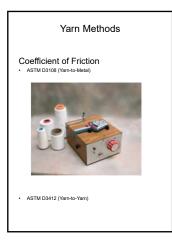








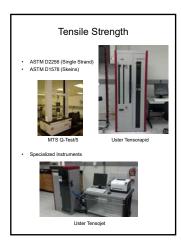




Yarn Performance Properties

- Coefficient of Friction
 Count
 Evenness
 Hairiness
 Tensile Strength and Elongation
 Twist

Yarn Count


- Indirect Hanks per pound Cotton System: 1 Hank = 840 yd. Worsted System: 1 Hank = 560 yd. Direct
- W Direct Direct
 Denier: grams per 9000 meters
 Tex: grams per 1000 meters
 Decitex: grams per 10,000 meters

Yarn Count Methods

- ASTM D1059 Short Lengths
 ASTM D1907 Skeins
- Example Calculations of Yam Count for a measured length of 1.000 m and mass of 0.0186 g:
- $\begin{array}{l} \text{Cotton Count:} \\ (\underline{1.000\ m}) \times & (\underline{453.6\ q}) \\ (\underline{0.0186\ g}) \times & (\underline{10036\ vd}) \times & (\underline{1.0036\ vd}) \\ (\underline{10036\ vd}) \times & (\underline{11\ hanks}) \\ (\underline{840\ vd}) = 31.7\ (hanks/b) \\ \end{array}$
- Denier: (0.0186 g/1.000 m) x 9000 = 167 (g/9000 m)

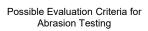
Uster Tester 5 (UT5)

Twist – Measured for	Ring Spun Yarns
ASTM D1422 (Untwist-Retwist f ASTM D1423 (Direct Counting) Notes: Twist reported in turns par ich (fig) Twist material and a strain par ich (fig) Twist factor = turns par on x (tex) ¹⁰	rr single spun yarns)
Types of Spun Yam: Ring Spun (18c) Open End Spun (18c) Ar Jet Spun (18c)	

Fabric Properties and Test Methods

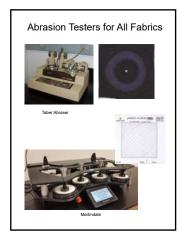
Important Fabric Properties

- Fabric Construction
 Fabric Appearance
 Abrasion Resistance
 Snagging and Pilling Resistance
 Dimensional Stability
 Wrinkle Recovery and Smoothness
 Color Measurement and Evaluation
 Colordsatness
 Hand
 Fabric Performance
 Comfort

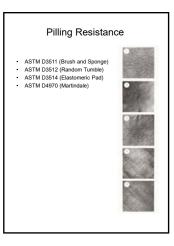

 - Fabric Performance Comfort Flammability and Thermal Resistance Permeability (Air and Liquid) Soil Release Strength and Extensibility

Construction Test Methods ASTM D3776 - Fabric Weight ASTM D1777 – Fabric Thickness ASTM D3775 – Warp and Filling Count ASTM D1059 - Yarn Number · ASTM D3882 - Bow and Skew Bow Skev AATCC Test Method 179 – Skewness after Home Laundering ASTM D8007 – Wale and Course Count (Weft Knits) •

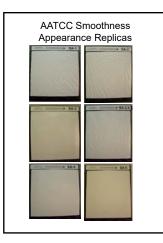
Abrasion Test Methods


- For Woven Fabrics: ASTM D3885 (Flexing and Abrasion) ASTM D4157 (Oscillatory Cylinder)

- For Woven or Knitted Fabrics: ASTM D3884 (Rotary Platform) ASTM D3886 (Inflated Diaphragm) ASTM D4158 (Unflorm Abrasion) ASTM D4966 (Martindal) ASTC 03 (Accelerotor) AATCC 219/120 (Frosting)



- Appearance (holes or broken yarns)
 Color Change
 Rupture of Specimen
 Strength Change
 Weight Change



Color in Textiles

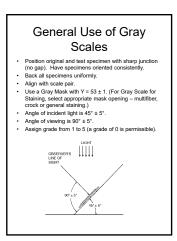
Color Matching
 Instrumental Assess

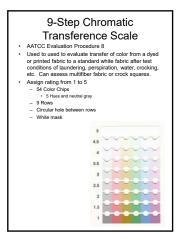
- Instrumental Assessment
 Visual Assessment
- Colorfastness Testing

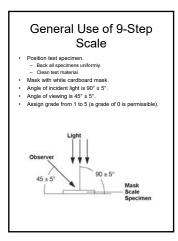
 AATCC Definition of Colorfastness: "the resistance of a material to change in any of its color characteristics, to transfer of its colorar(is) to adjacent materials, or toth, as a result of the exposure of the material to any environment than might be encountered during the processing, testing, storage, or use of the material."

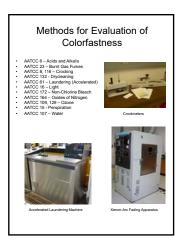
Reference: Technical Manual of the American Association of Textile Chemists and Colorists

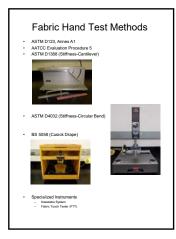
Instrumental Measurement of Color

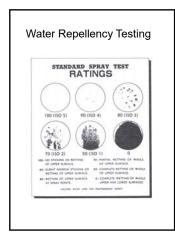

- Standards
 AATCC Evaluation Procedure 6 (Instrumental Color Massurement)
 AATCC Evaluation Procedure 7 (Change in Color)
 AATCC 110 (Whiteness)
 ASTM EValuation Procedure for Color Difference Measurement:
 Measure reference specimen
 Measure reference specimen
 Calculate color difference
 Report
 Equipment used
 Illuminant
 CBever angle 1984 10° or 1931 2°
 Sample presentation

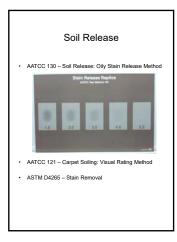

Standard Procedures for Visual Assessment of Colorfastness


- AATCC Evaluation Procedure 1 (Gray Scale for Color Change)
- AATCC Evaluation Procedure 2 (Gray Scale for Staining)
- AATCC Evaluation Procedure 8 (9-Step Chromatic Transference Scale)

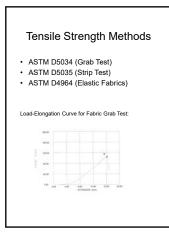

Gray Scale for Color Change AATCC Evaluation Procedure 1
 Used to assess fadrag in original sample after exposure to test conditions of laundering, light, perspiration, heat, water, ozone, etc.
 Assign rating from 1 to 5
 Grade 5
 No obtange in original sample
 2 reference of the part 9 to 22
 Grade 3,32,1
 Parate with Grade 5 chip
 Counter with Grade 5 chip
 Counter for Grades
 Hulf-step Grades
 Intermediates between the whole step pairs







Flammability


- ASTM D4391 Definitions and Terminology
- ASTM D4723 Index of Test Methods (numerous methods) Examples:
 ASTM D2863 (Limiting Oxygen Index) ASTM D6413 (Textle Materials-Vertical Test) CPSC 16 CFR 1610 (Waring Apparel-45" test) CPSC 16 CFR 1632 (Mattresses)

