
CHAPTER 6
Truss Analysis using Stiffness Method

Objectives

• เขา้ใจวธิีของ stiffness method

• ใชว้ธิี stiffness method กบั Truss, BM & Frame จะพดูถึงในบท
หนา้

Fundamentals of  the stiffness method

• The stiffness method:

• Is a disp method of  analysis

• Can be used to analyse both statically determinate and 
indeterminate structures

• Yields the disp & forces directly

• It is generally much easier to formulate the necessary 
matrices for the computer using the stiffness method

Fundamentals of  the stiffness method

• Application of  the stiffness method requires subdividing 
the structure into a series of  discrete finite elements & 
identifying their end points as nodes

• For truss analysis, the finite elements are represented by 
each of  the members that compose the truss & the nodes 
represent the joints

• The force-disp properties of  each element are determined 
& then related to one another using the force eqm eqn
written at the nodes

Fundamentals of  the stiffness method

• These relationships for the entire structure are then 
grouped together into the structure stiffness matrix, K

• The unknown disp of  the nodes can then be determined for 
any given loading on the structure

• When these disp are known, the external & internal forces 
in the structure can be calculated using the force-disp
relations for each member



Member stiffness matrix
• To establish the stiffness matrix for a single truss 

member using local x’ and y’ coordinates as 
shown When a +ve disp dN is imposed on the near 
end of  the member while the far end is held pinned

• The forces developed at the ends of  the members 
are:
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Member stiffness matrix
• Likewise, a +ve disp dF at the far end, keeping the 

near end pinned and results in member forces

• By superposition, the resultant 
forces caused by both disp are
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Member stiffness matrix
• These load-disp eqn may be written in matrix form as:

• This matrix, k’ is called  the member stiffness matrix
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Displacement & Force Transformation 
matrices

• Since a truss is composed of  many members, we 
will develop a method for transforming the 
member forces q and disp d defined in local 
coordinates to global coordinates

• Global coordinates convention: +ve x to the right 
and +ve y upward

• x and y as shown



Displacement & Force Transformation 
matrices

• matrix analysis as follows

• These will be identified as 

• For e.g. consider member NF of  the truss as 
shown

• The coordinates of  N & F 
are (xN, yN ) and (xF, yF )
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Displacement & Force Transformation 
matrices
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Displacement & Force Transformation 
matrices

• Disp Transformation matrix
• In global coordinates each end of  the member 

can have 2 degrees of  freedom or independent 
disp; namely joint N has DNx and DNy

• Joint F has DFx and DFy

Displacement & Force Transformation 
matrices

• Disp Transformation matrix
• When the far end is held pinned & the near end 

is given a global disp, the corresponding disp
along member is DNxcosx

• A disp Dny will cause the member to be 
displaced DNycosy along the x’ axis

yFxFF

yNxNN

yx

yx

DDd

DDd





coscos

coscos







Displacement & Force Transformation 
matrices

• Disp Transformation matrix
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Displacement & Force Transformation 
matrices

• Force Transformation matrix

• If  qF is applied to the bar, 
the global force components at F are:

• Using
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Displacement & Force Transformation 
matrices

• Force Transformation matrix
• In matrix form
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Displacement & Force Transformation 
matrices

• Force Transformation matrix
• In this case, TT transforms the 2 local forces q 

acting at the ends of  the member into 4 global 
force components Q

• This force transformation matrix is the 
transpose of  the disp transformation matrix



Member global stiffness matrix

• We can determine the member’s forces q in terms 
of  the global disp D at its end points

• Substitution yields the final result:
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Member global stiffness matrix

• Performing the matrix operation yields:
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Truss stiffness matrix

• Once all the member stiffness matrices are formed in the 
global coordinates, it becomes necessary to assemble 
them in the proper order so that the stiffness matrix K for 
the entire truss can be found

• This is done by designating the rows & columns of  the 
matrix by the 4 code numbers used to identify the 2 global 
degrees of  freedom that can occur at each end of  the 
member

• The structure stiffness matrix will then have an order that 
will be equal to the highest code number assigned to the 
truss since this rep the total no. of  degree of  freedom for 
the structure

• This method of  assembling the member matrices to form 
the structure stiffness matrix will now be demonstrated by 
numerical e.g.

• This process is somewhat tedious when performed by hand 
but is rather easy to program on computer

Example 1

Determine the structure stiffness matrix for the 2 
member truss as shown. AE is constant.



Example 1 cont’d

Member 1

Dividing each element by L = 3m, we have:
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Example 1 cont’d

Member 2

Dividing each element by L = 5 m, we have:
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Example 1 cont’d

• This matrix has an order of  6x6 since there are 6 
designated degrees of  freedom for the truss.

Application of  the stiffness method 
for truss analysis

• The global force components Q acting on the truss 
can then be related to its global displacements D 
using 

• This eqn is referred to as the structure stiffness 
eqn

KDQ 



Application of  the stiffness method 
for truss analysis

• Expanding yields

• Often Dk = 0 since the supports are not displaced

• Thus becomes 
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Application of  the stiffness method 
for truss analysis

• Since the elements in the partitioned matrix K11
represent the total resistance at a truss joint to a 
unit disp in either the x or y direction, then the 
above eqn symbolizes the collection of  all the 
force eqm eqn applied to the joints where the 
external loads are zero or have a known value Qk

• Solving for Du, we have:
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Application of  the stiffness method 
for truss analysis

• With Dk =0 yields

• The member forces can be determined

• Since with qN = -qF for eqm,

uu DKQ 21

0 01 1
0 01 1

Nx

x y NyN

x y FxF

Fy

D
Dq AE
Dq L
D

 
 

 
                     
  

  1 1
1 1

Nx

Ny
F x y x y

Fx

Fy

D
DAEq
DL
D

   

 
               
  

Example 2

Determine the force in each member of  the 2-
member truss as shown. AE is constant.



Example 2 cont’d

The origin of  x,y and the numbering of  the joints & 
members are shown.

By inspection, it is seen that the known external 
disp are D3=D4=D5=D6=0

Also, the known external loads are Q1=0, Q2=-2kN.

Hence,
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Example 2 cont’d

Q = KD for the truss we have

We can now identify K11 and thereby determine Du

By matrix multiplication,

Example 2 cont’d

By inspection one would expect a rightward and 
downward disp to occur at joint 2 as indicated by 
the +ve & -ve signs of  the answers.

Using these results,

Example 2 cont’d

Expanding & solving for the reactions

The force in each member can be found.

Using the data for x and y in example 14.1, we 
have:
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Nodal Coordinates

• A truss can be supported by a roller placed on a 
incline

• When this occurs, the constraint of  zero deflection 
at the support (node) cannot be directly defined 
using a single horizontal & vertical global 
coordinate system

• Consider the truss

• The condition of  zero disp
at node 1 is defined only 
along the y” axis

Nodal Coordinates

• Because the roller can displace along the x” axis this node 
will have disp components along both global coordinates 
axes x & y

• To solve this problem, so that it can easily be incorporated 
into a computer analysis, we will use a set of  nodal 
coordinates x”, y” located at the inclined support

• These axes are oriented such that the reactions & support 
disp are along each of  the coordinate axes

• To determine the global stiffness eqn for the truss, it 
becomes necessary to develop force & disp transformation 
matrices for each of  the connecting members at this 
support so that the results can be summed within the same 
global x, y coordinate system

Nodal Coordinates

• Consider truss member 1 having a global 
coordinate system x, y at the near node and a 
nodal coordinate system x”, y” at the far node

Nodal Coordinates

• When disp D occur so that they have components 
along each of  these axes as shown



Nodal Coordinates

• This eqn can be written in matrix form as
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Nodal Coordinates

• This can be expressed as:

• The disp & force transformation matrices in the 
above eqn are used to develop the member 
stiffness matrix for this situation

• We have
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Nodal Coordinates

• Performing the matrix operation yields:

• This stiffness matrix is used for each member that 
is connected to an inclined roller support

• The process of  assembling the matrices to form 
the structure stiffness matrix follows the standard 
procedure

Example 3

Determine the support reactions for the truss as 
shown.



Example 3 cont’d

Determine the support reactions for the truss as 
shown.

The stiffness matrices for members 1 and 2 must be 
developed.

Member 1,

707.0 ,707.0  ,0  ,1 ""  yxyx 

Example 3 cont’d

Member 2,

707.0 ,707.0  ,1  ,0 ""  yxyx 

Example 3 cont’d

Member 3,

6.0  ,8.0  yx 

Example 3 cont’d

To determine the structure stiffness matrix, we 
have:



Example 3 cont’d

Carrying out the matrix multiplication of  the upper 
partitioned matrices, the three unknown disp D are 
determined from solving the resulting simultaneous 
eqn.

The unknown reactions Q are obtained from the 
multiplication of  the lower partitioned matrices.


