Fundamentals to Biostatistics

Prof. Chandan Chakraborty
Associate Professor
School of Medical Science \& Technology
IIT Kharagpur
development of new statistical theory \& inference

> Areas of application of Biostatistics: Environmental Health, Genetics, Pharmaceutical research, Nutrition, Epidemiology and Health surveys etc

Some Statistical Tools for Medical Data Analysis

- Data collection and Variables under study
- Descriptive Statistics \& Sampling Distribution

Statistical Inference - Estimation, Hypothesis Testing, Conf. Interval

- Association

Continuous: Correlation and Regression
Categorical: Chi-square test

- Multivariate Analysis

PCA, Clustering Techniques, Discriminantion \& Classification

- Time Series Analysis
AR, MA, ARMA, ARIMA

Population vs. Sample Parameter vs. Statistics

Variable

$>$ Definition: characteristic of interest in a study that has different values for different individuals.
$>$ Two types of variable
१००० Continuous: values form continuum
$\square \square \square \square$ Discrete: assume discrete set of values
> Examples
Continuous: blood pressure
$\square \square \square \square$ Discrete: case/control, drug/placebo

Univariate Data

- Measurements on a single variable X
- Consider a continuous (numerical) variable
- Summarizing X
- Numerically
- Center
- Spread
- Graphically
- Boxplot
- Histogram

Measures of center: Mean

- The mean value of a variable is obtained by computing the total of the values divided by the number of values
- Appropriate for distributions that are fairly symmetrical
- It is sensitive to presence of outliers, since all values contribute equally

Measures of center: Median

- The median value of a variable is the number having 50% (half) of the values smaller than it (and the other half bigger)
- It is NOT sensitive to presence of outliers, since it 'ignores' almost all of the data values
- The median is thus usually a more appropriate summary for skewed distributions

Measures of spread: SD

- The standard deviation (SD) of a variable is the square root of the average* of squared deviations from the mean (*for uninteresting technical reasons, instead of dividing by the number of values n, you usually divide by $n-1$)
- The $S D$ is an appropriate measure of spread when center is measured with the mean

Quantiles

- The $p^{\text {th }}$ quantile is the number that has the proportion p of the data values smaller than it

Measures of spread: IQR

- The $25^{\text {th }}\left(Q_{1}\right), 50^{\text {th }}$ (median), and $75^{\text {th }}\left(Q_{3}\right)$ percentiles divide the data into 4 equal parts; these special percentiles are called quartiles
- The interquartile range (IQR) of a variable is the distance between Q_{1} and Q_{3} :

$$
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

- The $I Q R$ is one way to measure spread when center is measured with the median

Five-number summary and boxplot

- An overall summary of the distribution of variable values is given by the five values:

Min, Q_{1}, Median, Q_{3}, and Max

- A boxplot provides a visual summary of this fivenumber summary
- Display boxplots side-by-side to compare distributions of different data sets

Boxplot

Histogram

- A histogram is a special kind of bar plot
- It allows you to visualize the distribution of values for a numerical variable
- When drawn with a density scale:
- the AREA (NOT height) of each bar is the proportion of observations in the interval
- the TOTAL AREA is 100% (or 1)

Bivariate Data

- Bivariate data are just what they sound like - data with measurements on two variables; let's call them X and Y
- Here, we are looking at two continuous variables
- Want to explore the relationship between the two variables

Scatter plot

- We can graphically summarize a bivariate data set with a scatter plot (also sometimes called a scatter diagram)
- Plots values of one variable on the horizontal axis and values of the other on the vertical axis
- Can be used to see how values of 2 variables tend to move with each other (i.e. how the variables are associated)

Scatter plot: positive association

Scatter plot: negative association

Scatter plot: real data example

Correlation Coefficient

- r is a unitless quantity
- $-1 \leq r \leq 1$
- r is a measure of LINEAR ASSOCIATION
- When $r=0$, the points are not LINEARLY ASSOCIATED - this does NOT mean there is NO ASSOCIATION

Breast cancer example

> Study on whether age at first child birth is an important risk factor for breast cancer (BC)

AC	$\geqslant 30$	$\leqslant 29$	Total
case	689 (21.2%)	2537	3220
control	1498 (14.6%)	8747	10245
Totel	2181	11284	19465

(Mackahon, B. et al 1970
Rosner, B. 1896, ps46)

Blood Pressure Example

$>$ How does taking Oral Conceptive (OC) affect Blood Pressure (BP) in women
> paired samples

	Systolic blood pressure Baseline (Not Subject i using OC)	-year (Using OC)	Difference
1	115	128	13
2	112	115	3
3	107	106	-1
4	119	128	9
5	115	122	7
6	138	145	7
7	126	132	6
8	105	109	4
9	104	102	-2
10	115	117	2
(Rosner, B. 1995, p253)			

Birthweight Example

> Determine the effectiveness of drug A on preventing premature birth.
> Independent samples.

	Birthweight	
Patient \#	Treatment	Control
1	6.9	6.4
2	7.6	6.7
3	7.3	5.4
4	7.6	8.2
5	6.8	5.3
6	7.2	6.6
7	8	5.8
8	5.5	5.7
9	5.8	6.2
10	7.3	7.1
11	8.2	7
12	6.9	6.9
13	6.8	5.6
14	5.7	4.2
15	8.6	6.8

Histogram and Distribution (Blood pressure)

Histogram and Distribution (Birthweight)

Normal distribution

$>N(\mu, \sigma):$ mean μ, standard deviation σ
$>N(0,1)$: Standard normal
$>$ Standardization: $\mathrm{X} \rightarrow \mathrm{Z}=(\mathrm{X}-\mu) / \sigma$

Binomial distribution

> Two possible outcome for each trial:
(1) "success" and (0) "failure" Pr(success) $=p$

- Example: each women with breast cancer had first birth either before age 30 or after.
$>n$ independent trials, $X=\#$ of successes $\sim B(n, p)$
- Example: number of cases whose age at first birth 430

$$
\begin{gathered}
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
\mu_{\mathrm{X}}=n p, \quad \sigma_{X}^{2}=n p(1-p)
\end{gathered}
$$

Characteristics of population distribution (parameters)

> Center/location

- Population mean μ, or "expected value", "average"
- Population median M, or "middle number"
> Spread
- Range $R=\max -\min$
- Variance σ^{2}, average squared distance of each value from the mean
- Standard deviation σ
$>$ Coefficient of Variation (CV): μ / σ
- Useful for comparing variability of several different samples with different means
> Proportion p for Binomial distribution

Sample statistics

> Center/location

- Sample mean \bar{x}
- Sample median M
> Spread
- Sample range $R=\max$ - \min
- Sample standard deviation $s=\sqrt{s^{2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
- Sample variance s^{2}
> Birthweight example

Birthweight	n	Mean \bar{x}	5	Minimim	Median	Maximum
Treatment	15	7.08	0.899	5.5	7.2	8.6
Control	15	6.26	0.961	4.2	6.4	8.2

> Sample proportion $\hat{p}=x / n$

Sampling distribution for statistics

> Sampling variability for statistics,

- Standard error of sample mean $S E(\bar{x})=s / \sqrt{n}$
$>$ If $\mathrm{x} \sim N(\mu, \sigma)$, then $\bar{x} \sim N(\mu, \sigma / \sqrt{ } \mathrm{n})$

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \quad \frac{\bar{x}-\mu}{s / \sqrt{n}} \sim t_{\phi-n-1}
$$

$>$ Central Limit Theorem: if n is large enough, \bar{x} is approximately normally distributed

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \quad \frac{\bar{x}-\mu}{s / \sqrt{n}} \dot{\sim} t_{d f=n-1}
$$

$>$ Binomial, \hat{p} is approximately normally distributed

$$
\hat{p} \dot{\sim} N\left(p, \sqrt{\left.\frac{p(1-p)}{n}\right)}\right.
$$

Birthweight example

$>X_{1}=$ birthweight for treatment group
$>$ Population distribution

$$
X_{1} \sim N(7.08,0.90), n=15
$$

> sampling distribution

$$
\bar{X}_{1} \sim N(7.08,0.90 / \sqrt{15})=N(7.08,0.23)
$$

Statistical Inference

> Point estimation

- Estimate parameter θ by $\hat{\theta}$, e.g., estimate O by \bar{x}
$>$ Interval estimation: Confidence intervals (CI)
- An interval of plausible values of the parameter θ with a specific confidence level 1 - α; e.g., $95 \% \mathrm{Cl}$
- $\hat{\theta} \pm$ margin of error $=\hat{\theta} \pm c_{1-\alpha} S E(\hat{\theta})$
> Hypothesis testing (HT);
- Testing hypotheses about parameter θ

Hypothesis Testing

$>$ null $\left(\mathrm{H}_{0}\right)$ and alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$

- Two-sided: $H_{0}: \theta=\theta_{0}$ versus $H_{a}: \theta \neq \theta_{0}$
- One-sided: $H_{0}: \theta=\theta_{0}$ versus $H_{a}: \theta<\theta_{0}$
- One-sided: $H_{0}: \theta=\theta_{0}$ versus $H_{a}: \theta>\theta_{0}$
$>$ Test statistics
$>$ p-value
$>$ Compare p-value with significance level α
- p-value < α, reject H_{0}
- p-value $\geqslant a$, do not reject H_{0}
> conclusion

Mean:
$\overline{\mathrm{X}}$
estimates
U
Standard deviation:

S estimates
O
Proportion:
p
estimates
$-\pi$
from entire population

Estimation of parameters

Population

Point estimate Interval estimate

Sampling Distribution

Standard Error

S

Quantitative Variable SE $($ Mean $)=\sqrt{\sqrt{n}}$

Qualitative Variable $S E(p)=\sqrt{\frac{p(1-p)}{n}}$

Confidence Interval

Confidence Interval

Interpretation of
 CI

Probabilistic

Practical

In repeated sampling 100(1α) \% of all intervals around sample means will in the long run include μ

We are $100(1-\alpha) \%$ confident that the single computed Cl contains μ

Example (Sample size 23)

An epidemiologist studied the blood glucose level of a random sample of 100 patients. The mean was 170 , with a SD of 10.

$$
\mu=\overline{\mathbf{X}} \pm \mathbf{Z} \times \mathbf{S E}
$$

$S E=10 / 10=1$
Then CI:

$$
\mu=170 \pm 1.96 \times 1 \quad 168.04 \leq \mu \leq 171.96
$$

In a survey of 140 asthmatics, 35\%

 had allergy to house dust. Construct the $95 \% \mathrm{Cl}$ for the population proportion.$$
\pi=\mathbf{p} \pm \mathbf{Z} \sqrt{\frac{\mathbf{P}(1-\mathbf{p})}{\mathbf{n}}} \mathrm{SE}=\sqrt{\frac{0.35(1-}{0.335)}}=0.04
$$

$0.35-1.96 \times 0.04 \leq \pi \geq 0.35+1.96 \times$ 0.04

$$
\begin{gathered}
0.27 \leq \pi \geq 0.43 \\
27 \% \leq \pi \geq 43 \%
\end{gathered}
$$

Hypothesis testing

A statistical method that uses sample data to evaluate a hypothesis about a population parameter. It is intended to help researchers differentiate between real and random patterns in the data.

Null \& Alternative Hypotheses

- H_{0} Null Hypothesis states the Assumption to be tested e.g. SBP of participants $=120 \quad\left(\mathrm{H}_{0}: \mu=120\right)$.
- H_{1} Alternative Hypothesis is the opposite of the null hypothesis (SBP of participants $\neq 120$ ($\mathrm{H}_{1}: \mu \neq 120$). It may or may not be accepted and it is the hypothesis that is believed to be true by the researcher

Level of Significance, α

- Defines unlikely values of sample statistic if null hypothesis is true. Called rejection region of sampling distribution
- Typical values are 0.01, 0.05
- Selected by the Researcher at the Start
- Provides the Critical Value(s) of the Test
准米楼

Result Possibilities

H_{0} : Innocent

Factors Increasing Type II Error

- True Value of Population Parameter
- Increases When Difference Between Hypothesized Parameter \& True Value Decreases
- Significance Level α
- Increases When α Decreases
- Population Standard Deviation o
- Increases When σ Increases
- Sample Size n
- Increases When n Decreases

p Value Test

- Probability of Obtaining a Test Statistic More Extreme (\leq or \geq) than Actual Sample Value Given H_{0} Is True
- Called Observed Level of Significance
- Used to Make Rejection Decision
- If p value $\geq \alpha$, Do Not Reject H_{0}
- If \boldsymbol{p} value $<\alpha$, Reject H_{0}

Hypothesis Testing: Steps

Test the Assumption that the true mean SBP of participants is 120 mmHg .

State H_{0}

$$
H_{0}: \mu=120
$$

State H_{1}
$H_{1}: \mu \neq 120$
Choose α
$\alpha=0.05$
Choose n
$\mathrm{n}=100$
Choose Test: Z, t, X^{2} Test (or p Value)

Hypothesis Testing: Steps

Compute Test Statistic (or compute P value, Search for Critical Value

Make Statistical Decision rule
Express Decision

One sample-mean Test

- Assumptions
- Population is normally distributed
- t test statistic

$$
t=\frac{\text { sample mean }- \text { null value }}{\text { standard error }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}
$$

Example Normal Body Temperature

What is normal body temperature? Is it actually $37.6^{\circ} \mathrm{C}$ (on average)?

State the null and alternative hypotheses

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu=37.6^{\circ} \mathrm{C} \\
& \mathrm{H}_{\mathrm{a}}: \mu \neq 37.6^{\circ} \mathrm{C}
\end{aligned}
$$

Example Normal Body Temp (cont)

Data: random sample of $n=18$ normal body temps

37.2	36.8	38.0	37.6	37.2	36.8	37.4	38.7	37.2
36.4	36.6	37.4	37.0	38.2	37.6	36.1	36.2	37.5

Summarize data with a test statistic

Variable	n	Mean	SD	SE	\mathbf{t}	P
Temperature	18	37.22	0.68	0.161	2.38	0.029

$$
t=\frac{\text { samplemean }- \text { nullvalue }}{\text { standarderror }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}
$$

STUDENT'S t DISTRIBUTION TABLE

Degrees of freedom	Probability (p value)		
	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 1}$
$\mathbf{1}$	$\mathbf{6 . 3 1 4}$	$\mathbf{1 2 . 7 0 6}$	$\mathbf{6 3 . 6 5 7}$
	$\mathbf{2 . 0 1 5}$	$\mathbf{2 . 5 7 1}$	$\mathbf{4 . 0 3 2}$
$\mathbf{1 0}$	$\mathbf{1 . 8 1 3}$	$\mathbf{2 . 2 2 8}$	$\mathbf{3 . 1 6 9}$
$\mathbf{1 7}$	$\mathbf{1 7 4 1}$	$\mathbf{2 . 1 1 0}$	$\mathbf{2 . 8 9 8}$
20	$\mathbf{1 . 7 2 5}$	$\mathbf{2 . 0 8 6}$	$\mathbf{2 . 8 4 5}$
24	$\mathbf{1 . 7 1 1}$	$\mathbf{2 . 0 6 4}$	$\mathbf{2 . 7 9 7}$
25	$\mathbf{1 . 7 0 8}$	$\mathbf{2 . 0 6 0}$	$\mathbf{2 . 7 8 7}$
∞	1.645	1.960	2.576

Example Normal Body Temp (cont)

Find the p-value
Df $=\mathrm{n}-1=18-1=17$
From SPSS: p-value $=0.029$
From t Table: p-value is between 0.05 and 0.01 .

Area to left of $t=-2.11$ equals area to right of $t=+2.11$.

The value $t=2.38$ is between column headings $2.110 \& 2.898$ in table, and for $\mathrm{df}=17$, the p values are 0.05 and 0.01 .

Example Normal Body Temp (cont)

Decide whether or not the result is statistically significant based on the p -
varing $\alpha=0.05$ as the level of significance criterion, the results are statistically significant because 0.029 is less than 0.05. In other words, we can reject the null hypothesis.

Report the Conclusion

We can conclude, based on these data, that the mean temperature in the human population does not equal 37.6.

One-sample test for proportion

- Involves categorical variables
- Fraction or \% of nonulation in a category
- Sample proportion (p)
- Test is called Z test

$$
p=\frac{X}{n}=\frac{\text { number of successes }}{\text { sample size }}
$$ where:

- Z is computed value
- π is proportion in population
(null hypothesis value)

Critical Values: 1.96 at $\alpha=0.05$
2.58 at $\alpha=0.01$

Example

- In a survey of diabetics in a large city, it was found that 100 out of 400 have diabetic foot. Can we conclude that 20 percent of diabetics in the sampled population have diabetic foot.
- Test at the $\alpha=0.05$ significance level.

Solution

$H_{0}: T=0.20$

$$
H_{1}: \pi \neq 0.20
$$

Critical Value: 1.96

Decision:

We have sufficient evidence to reject the Ho value of 20%
We conclude that in the population of diabetic the proportion who have diabetic foot does not equal 0.20

Paired t-test: blood pressure

$>\mu_{1}$: mean BP at baseline (no OC)
$>\mu_{2}$: mean BP at 1-year (with OC)
$>\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq 0$

Paired t-test: blood pressure

$>$ Assume H_{0} is true, $\quad T=\frac{\bar{d}-0}{\operatorname{SE(d)}}=\frac{\bar{d}}{s_{d} / \sqrt{n}}=\frac{\bar{d}}{4.566 / \sqrt{10}} \dot{\sim} t_{q-0}$
> p -value: the chance of observing something as extreme or more extreme than what we observed, $t=4.8 / 1.444=3.32$.
p-value
$=2 \mathrm{P}(\mathrm{T}<-3.32)$
$=2$ * 0.0045
$=0.009<a$
$=0.05$
Significant!
Reject H_{0}.

CI: blood pressure

> Approximately,

$$
\frac{\bar{d}-\mu_{d}}{s_{d} / \sqrt{n}} \dot{\sim} t_{9}, \text { where } \mu_{d}=\mu_{1}-\mu_{2}
$$

> 95\% confidence interval for $\mu_{\mathrm{d}},\left(t_{\mathrm{dfF}=9,0.975}=2.262\right)$

$$
\begin{aligned}
& \bar{d} \pm t_{d f=9,1-\alpha / 2} \frac{s_{d}}{\sqrt{n}}=4.8 \pm 2.262(1.444) \\
& =4.8 \pm 3.27=(1.53,8.07)
\end{aligned}
$$

Two-sample t-test: birthweight

$>\mu_{1}$: mean baby weight of treatment group
$>\mu_{2}$: mean baby weight of control group
$>\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \mu_{1}-\mu_{2}>0$

Two-sample t-test: birthweight

> Equal variance for the two groups
> Pooled standard

$$
T=\frac{\bar{x}_{1}-\bar{x}_{2}-\mu_{1}-\mu_{2}}{s_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \stackrel{\text { Vader } H_{6}}{=} \frac{\bar{x}_{1}-\bar{x}_{2}}{s_{\text {ppooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2}
$$ deviation $s_{\text {pooled }}$ from s_{1} and S_{2}

$>\mathrm{t}=2.41, \mathrm{df}=28$,
> p-value $=0.011<$ 0.05
> Reject H_{0} at 5% level

CI: birthweight

$>95 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}$
> Estimated difference \pm Margin of Error

$$
\begin{aligned}
& \bar{x}_{1}=7.08, \bar{x}_{2}=6.26, s_{1}=0.899, s_{2}=0.961 \\
& s_{\text {pooled }}=\sqrt{\left[\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}\right] /\left(n_{1}+n_{2}-2\right)}=0.93 \\
& S E\left(\bar{x}_{1}-\bar{x}_{2}\right)=s_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \\
& \bar{x}_{1}-\bar{x}_{2} \pm t_{d f=28,0.975} s_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \\
& =0.82 \pm 2.04841 * 0.3397766=(0.0124,0.516)
\end{aligned}
$$

Two-sample proportion Z-test

$>p_{1}$: proportion of case women whose age at first birth $\geqslant 30$
$>p_{2}$: proportion of case women whose age at first birth $\leqslant 29$
$>\mathrm{H}_{0}: p_{1}-p_{2}=0$ vs. $\mathrm{H}_{\mathrm{a}}: p_{1}-p_{2} \neq 0$

$$
\begin{aligned}
& z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(1 / n_{1}+1 / n_{2}\right)}} \approx N(0,1) \\
& \hat{p}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}, \text { need } n_{1} \hat{p}(1-\hat{p}) \geq 5 \text { and } n_{2} \hat{p}(1-\hat{p}) \geq 5
\end{aligned}
$$

Breast cancer example

Ag	$\geqslant 30$	$\leqslant 29$	Total
Yes (case)	683 $\left(\mathrm{p}_{1}^{1}=21.2 \%\right)$	2537	$n_{1}=3220$
No (control)	1498 $\left(\mathrm{p}_{2}^{1}=14.6 \%\right)$	8747	$\mathrm{n}_{2}=10245$
Total	2181	11284	13465

$>z=8.9$
> p-value $=2 \mathrm{P}(Z>8.9)=2^{*}[1-;$; $\Phi(8.9)] \approx 0<0.01$
$>$ Reject H_{0} at 1% significance level

ANOVA

> Analysis of Variance: comparing the mean of more than two distributions/groups
> Example: relationship between bronchial reactivity to SO_{2} grouped by lung function among 22 asthmatic patients

- Group $A\left(F^{\prime} V_{1} / F V C \leqslant 74 \%\right)$
- Group E $\left(75 \% \leqslant\right.$ FEV $_{1} /$ FVC $\left.\leqslant 84 \%\right)$
- Group C (FEV ${ }_{1} /$ FVC $\geqslant 85 \%$)
> Question: is there significant difference in mean bronchial reactivity among the 3 groups

Plot of data

One-way ANOVA

$>\mathrm{y}=\mu+\alpha_{i}+\varepsilon_{i j}$

- μ : overall effect, underlying mean of all groups taken together
- $a_{i}: i=1,2,3$, group effect, difference between the mean of ith group and the overall mean
- $\varepsilon_{i j}$: random error about the mean $\mu+a_{j}$ for subject j in group $/$
$>$ ANOVA table
> F-test for overall comparison of group means
- $H_{0}: \alpha_{1}=\alpha_{2}=\alpha_{3}$ vs. H_{a} : not all equal

ANOVA table

One-way ANOVA: Bronchial Reactivity versus Group

Source	DF	SS	MS	P	P
Group	2	503.5	251.8	4.99	0.018
Error	19	958.8	50.5		
Total	21	1462.4			
$\mathrm{~S}=7.104$	$\mathrm{R}-\mathrm{Sq}=34.438$	$\mathrm{R}-\mathrm{Sq}(\mathrm{adj})=27.538$			

Association

$>$ Two quantitative variables

- Scatter plot
- Measure of linear association
- Correlation $r(-1 \leqslant r \leqslant 1)$
- regression
> Two categorical variable
- Contingency table
- Measure of association odds ratio, relative risk, absolute risk
- Chi-squared test for association

Degree of correlation

Strong Poitive

Weak Posidive

Strong Negative

Mederate Negative

Weak Negative

Obstetrics example

> $\mathrm{X}=$ Estriol level (mg/24hr) and $\mathrm{Y}=$ Birthweight ($\mathrm{g} / 100$)
$>r=0.610$, moderate positive, linear association

Regression: Obstetrics example

Regression Analysis: Birthweight versus Estriol

Breast cancer example

	age ≥ 30	age $\leqslant 29$	Total
case	$n_{11}=683$	$n_{12}=2537$	$n_{1}=3220$
control	$n_{21}=1498$	$n_{22}=8747$	$n_{2}=10245$
Total	$n_{1}=2181$	$n_{2}=11284$	$n_{n}=13465$

$>$ Odds ratio $=\left(n_{11} / n_{12}\right) /\left(n_{21} / n_{22}\right)=n_{11} n_{22} / n_{12} n_{21}$

$$
=1.57
$$

> Chi-square test, measure discrepancy between expected cell counts under independence and obseved cell counts

$$
x^{2}=\frac{\left(O_{11}-E_{11}\right)^{2}}{E_{11}}+\frac{\left(O_{12}-E_{12}\right)^{2}}{E_{12}}+\frac{\left(O_{21}-E_{21}\right)^{2}}{E_{21}}+\frac{\left(O_{2 n}-E_{n 7}\right)^{2}}{E_{2 n}}=78.37
$$

Chi-square test

$>\mathrm{H}_{0}$: independent vs.
H_{a} : associated
$>\mathrm{df}=(\text { nrow- } 1)^{*}($ ncol-1 $)=1$
> p -value ≈ 0
$>$ Reject H_{0}

Chi-square distribution $\mathrm{df}=1$

PROBABILITY THEORY

- Axioms of Probability Theory, Conditional Probability
© Discrete and continuous random variables
$\stackrel{y}{\wedge}$ Probability mass / density / distribution function
$\stackrel{\wedge}{\wedge}$ Cumulative mass / density / distribution function
$\left.{ }^{4}\right)$ Expected value (average)
(4) Variance and standard deviation
© Pairs of random variables
${ }^{4}$) Joint probability, Joint distribution
${ }^{4}$) Statistical independence
(4) Expectation for two variables
(5) Covariance / covariance matrix
(7) Correlation / correlation coefficient

AXIOMS OF PROBABILITY THEORY

2 The set of all possible outcomes of an experiment is the sample space, denoted Ω. An event \mathbf{A} is a (set of) possible outcomes of the experiment, and corresponds to a subset of Ω.
© A probability law / measure is a function $\boldsymbol{P}(\mathbf{A})$ with the $\operatorname{argument} \mathbf{A}$, that assigns a value to \mathbf{A} based on the expected proportion of number of times that event \mathbf{A} is actually likely to happen.

- The probability function $P(\mathrm{~A})$ must satisfy the following:
(1) $0 \leq P\left(\mathrm{~A}_{\mathrm{i}}\right) \leq 1$
\& $P(\Omega)=\sum P\left(\mathrm{~A}_{\mathrm{i}}\right)=1$
\& if $\mathbf{A}_{\mathbf{i}} \cap \mathbf{A}_{\mathbf{j}}=\phi$, then $P\left(\mathbf{A}_{\mathbf{i}} \bigcup \mathbf{A}_{\mathbf{j}}\right)=P\left(\mathbf{A}_{\mathbf{i}}\right)+P\left(\mathbf{A}_{\mathbf{j}}\right)$
otherwise $P\left(\mathbf{A}_{\mathbf{i}} \bigcup \mathbf{A}_{\mathbf{j}}\right)=P\left(\mathbf{A}_{\mathbf{i}}\right)+P\left(\mathbf{A}_{\mathbf{j}}\right)-P\left(\mathbf{A}_{\mathbf{i}} \bigcap \mathbf{A}_{\mathbf{j}}\right)$

IMPORTANT THEOREMS OF PROBABILITY

$\Rightarrow \quad P\left(A^{C}\right)=1-P(A)$
จ $\quad A_{i} \subset A_{j} \Rightarrow P\left(A_{i}\right)<P\left(A_{j}\right)$

- $P(\phi)=0$
$P(A) \leq 1$
o

$$
\text { If }\left\{A_{i} \cap A_{j}=\phi, \forall i, j\right\} \Rightarrow P\left(\bigcup_{k=1}^{N} A_{k}\right)=\sum_{k=1}^{N} P\left(A_{k}\right)
$$

RANDOM VARIABLES

- A random variable X is a function that maps every possible event in the space Ω of a random experiment to a real number.
(4) For the fish example, if $\mathbf{X}=$ the next fish selected from the pile, we have $\mathrm{X}(\mathrm{Salmon})=1$, $\mathrm{X}($ Trout $)=2, \mathrm{X}($ Sword $)=3, \mathrm{X}($ Catfish $)=4$ and $\mathrm{X}($ Seabass $)=5$.
$\stackrel{H}{4}$ We can also assign probabilities to these events $\mathrm{P}(\mathrm{X}=1)=1 / 8, \mathrm{P}(\mathrm{X}=2)=1 / 8, \mathrm{P}(\mathrm{X}=3)=1 / 8$, $\mathrm{P}(\mathrm{X}=4)=3 / 8$, and $\mathrm{P}(\mathrm{X}=5)=2 / 8$.

(4) Random variables can discrete, e.g., the number of heads in three consecutive coin tosses, or continuous, the weight of a class member.

4. Note that, random variable is just like an ordinary variable, whose value may change based on its argument, except, now, this value is random, not deterministic.

ProbABILITY AND Cumulative Mass Functions

- A probability mass (distribution) function is a function that tells us the probability of x, an observation of X , assuming a specific value. This function also satisfies the axioms of the probability

$$
P(X=x)>0, \quad \sum_{x \in X} P(x)=1
$$

- The cumulative mass (distribution) function indicates the probability of X assuming a value less then or equal to x :

$$
F(x)=P(X \leq x)=\sum_{u \leq x} P(u)
$$

Probability and Cumulative Density Functions

- For continuous random variables, the probability (pdf) and cumulative density function ($c d f$) replace the mass functions
$\stackrel{y}{\Perp}$ In continuous domain, $\operatorname{pdf} p(x)$ - if exists - is the derivative of the $\operatorname{cdf} f(x)$.

$$
p(x)=\frac{d f(x)}{d(x)}
$$

$\stackrel{4}{5}$ In fact, even in discrete domain the pmf can also be defined similarly

$P(x)=\frac{\Delta F(x)}{\Delta x}$

PDF \& CDF

© Unlike the pmf in discrete case, in continuous domain, the points on the pdf do not represent the probabilities, as the probability of any single value on the continuous axis is zero, rather, the pdf represent densities.
© For example, $\mathrm{P}($ weight $=175.24654163546546874876454687987652354354385424148454257654)=0$

- The area under the pdf curve between any two abscissas gives the probability that the value lie between those two points:

Weights of NJ residents (lbs)

EXPECTED VALUE

- The expected value, or average, of a random variable X, whose possible values are $\left\{x_{1}, \ldots, x_{\mathrm{m}}\right\}$ with respective probabilities p_{l}, \ldots, p_{m}, is given as

$$
E(x)=\mu=\sum_{x \in X} x \cdot P(x)=\sum_{i=1}^{m} x_{i} \cdot p_{i}
$$

- In general, the expected value of a stochastic (random) function $f(x)$ is given as

$$
E(f(x))=\sum_{x \in X} f(x) \cdot P(x)
$$

- It is a linear function, and it can be used to compute moments of a random variable

$$
E\left(x^{k}\right)=\sum_{x \in X} x^{k} \cdot P(x)=\sum_{i=1}^{m}\left(x_{i}\right)^{k} \cdot p_{i}
$$

- A special, mean subtracted, form of the second moment is the variance, the average dispersion of the data from the mean

$$
\operatorname{Var}[x]=\sigma^{2}=E\left((x-\mu)^{2}\right)=\sum_{x \in X}(x-\mu)^{2} \cdot P(x)
$$

Mean \& Variance in CONTINUOUS DOMAIN

The expected value, or average, of a continuous random variable X, whose pdf is given by $p(x)$ is computed as

$$
E(x)=\mu=\int_{-\infty}^{\infty} x \cdot p(x) \cdot d x
$$

The variance is then computed as the mean-removed $2^{\text {nd }}$ moment:

$$
\operatorname{Var}[x]=\sigma^{2}=E\left((x-\mu)^{2}\right)=\int_{x=-\infty}^{\infty}(x-\mu)^{2} \cdot p(x) \cdot d x
$$

- The standard deviation is simply the positive square root of the variance. The $\mathrm{k}^{\text {th }}$ moment in general is obtained as

$$
E\left(x^{k}\right)=\int_{x=-\infty}^{\infty} x^{k} \cdot p(x) \cdot d x
$$

- As usual, the mean represents the center of mass of the density, and the variance represent the average dispersion of the density around the mean.

PAIRS OF
 RANDOM VARIABLES

- If we have two random variables, X and Y, assuming values from the sets $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{l}, \ldots, y_{n}\right\}$, we can define a joint probability for each pair of values:

$$
p_{i j}=P\left(x=x_{i} ; y=y_{j}\right)
$$

© Joint probability also need to satisfy the axioms of the probability theory

$$
P(x, y)>0 \quad \text { and } \quad \sum_{x \in X} \sum_{y \in Y} P(x, y)=1
$$

- Everything that relate to X, or Y - individually or together - can be obtained from the $\mathrm{P}(\mathrm{x}, \mathrm{y})$. In particular, the individual pmfs, called the marginal distribution functions can be obtained as

$$
P_{x}(x)=\sum_{y \in Y} P(x, y) \quad P_{y}(y)=\sum_{x \in X} P(x, y)
$$

STATISTICAL INDEPENDENCE

© Random variables X and Y are said to be statistically independent, if and only if

$$
P(x, y)=P_{x}(x) \cdot P_{y}(y)
$$

n) That is, if the outcome of one event does not effect the outcome of the other, they are statistically independent. For example, the outcome of two individual dice are independent, as one does not affect the other.

- Expected values, moments and variances of joint distributions can be computed similar to single variable cases:

$$
\begin{aligned}
& \mu_{x}=\sum_{x} \sum_{y} x \cdot P(x, y) \quad \mu_{y}=\sum_{x} \sum_{y} y \cdot P(x, y) \\
& \sigma_{x}^{2}=E\left[\left(x-\mu_{x}\right)^{2}\right]=\sum_{x} \sum_{y}\left(x-\mu_{x}\right)^{2} \cdot P(x, y) \\
& \sigma_{y}^{2}=E\left[\left(y-\mu_{y}\right)^{2}\right]=\sum_{x} \sum_{y}\left(y-\mu_{y}\right)^{2} \cdot P(x, y)
\end{aligned}
$$

CO-VARIANCE

- A cross-moment can also be defined as the covariance

$$
\sigma_{x y}^{2}=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]=\sum_{x} \sum_{y}\left(x-\mu_{x}\right) \cdot\left(x-\mu_{x}\right) \cdot P(x, y)
$$

m Covariance defines how the variables vary together as a pair - are they both increasing together, does one increase when the other decrease, etc.
$\left.{ }^{4}\right)$ Note that we can also define $\sigma_{\mathrm{xx}}=\sigma_{\mathrm{x}}^{2}, \sigma_{\mathrm{yy}}=\sigma_{\mathrm{y}}^{2}$, and $\sigma_{\mathrm{xy}}=\sigma_{\mathrm{yx}}$, all which can be represented with a single matrix, the covariance matrix, denoted by \sum

$$
\Sigma=\left[\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right]
$$

${ }^{\wedge}$) If X and Y are statistically independent $\rightarrow \sigma_{\mathrm{xy}}=0$
(4) If $\sigma_{\mathrm{xy}}=0 \rightarrow$ then the variables are said to be uncorrelated
$\stackrel{y}{4}$ Note that statistical independence is a stronger property then correlation:

CORRELATION COEFFICIENT

$$
\rho=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}} \quad-1 \leq \rho \leq 1
$$

${ }^{\wedge}$ If $\rho=1$, then the variables are identical, they move together,
$\stackrel{4}{\wedge}$ If $\rho=-1$, then the variables are negatively correlated, one decreases as the other increases at the same rate
$\stackrel{y}{4}$ If $\rho=0 \rightarrow$ the variables are uncorrelated. The variation of one, has no effect on the other.
²) For all practical purposes, if $|\rho|<0.05$, the variables are considered to be uncorrelated.

CORRELATION

$\Sigma_{x y}=\left[\begin{array}{cc}1.073 & -0.026 \\ -0.0264 & 0.9673\end{array}\right] \quad \Sigma_{x z}=\left[\begin{array}{cc}1.073 & 2.1476 \\ 2.1476 & 4.2951\end{array}\right]$
$\rho_{x y}=-0.0259$

CONDITIONAL Probability

- If two variables are statistically dependent, knowing the value of one may allow us to better estimate the other:
(2) The conditional probability of $X=x$ given the $\underline{Y=y}$ has been observed is given as

$$
P(X=x \mid Y=y)=\frac{P(X=x \cap Y=y)}{P(Y=y)}=\frac{P(x, y)}{P(y)} \square P(x, y)=P(x \mid y) P(y)
$$

-The fact that $\mathrm{Y}=\mathrm{y}$ has been observed has two main consequences:

- The sample space effectively becomes the space of Y
- The event $X=x$, effectively becomes $X \cap Y$, that is $P(y)$ renormalizes the probability of events that occur jointly with Y

Law of Total Probability

ϑ Let $B_{l, \ldots} B_{N}$ be N mutually exclusive events, whose union gives the sample space Ω. Hence the events B constitute a partition of Ω
ϑ Now consider an event A, a subset of Ω. This event can be represented as

$$
\mathrm{A}=\mathrm{A} \cap \Omega=\mathrm{A} \cap\left(\mathrm{~B}_{1} \cup \mathrm{~B}_{2} \cup \ldots \cup \mathrm{~B}_{N}\right)=\left(\mathrm{A} \cap \mathrm{~B}_{1}\right) \cup\left(\mathrm{A} \cap \mathrm{~B}_{2}\right) \cup \ldots\left(\mathrm{A} \cap \mathrm{~B}_{\mathrm{N}}\right)
$$

- Since the B_{i} are mutually exclusive

$$
\begin{aligned}
& P(A)=P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\ldots+P\left(A \cap B_{N}\right) \\
& P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+\ldots+P\left(A \mid B_{N}\right) P\left(B_{N}\right)=\sum_{k=1}^{N} P\left(A \mid B_{k}\right) P\left(B_{k}\right)
\end{aligned}
$$

BAYES RULE

- We now pose the following question: Given that the event A has occurred. What is the probability that any single one of the event B 's occur?

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \cap B_{j}\right)}{P(A)}=\frac{P\left(A \mid B_{j}\right) \cdot P\left(B_{j}\right)}{\sum_{k=1}^{N} P\left(A \mid B_{k}\right) \cdot P\left(B_{k}\right)}
$$

Rev. Thomas Bayes,
(1702-1761)
This is known as the Bayes rule

Example

3. It is known that 1% of population suffers from a particular disease. A blood test has a 97% chance to identify the disease for a diseased individual, by also has a 6\% chance of falsely indicating that a healthy person has a disease.
a. What is the probability that a random person has a positive blood test.
b. If a blood test is positive, what's the probability that the person has the disease?
c. If a blood test is negative, what's the probability that the person does not have the disease?

- A is the event that a person has a disease. $P(A)=$ $0.01 ; P\left(A^{\prime}\right)=0.99$.
- B is the event that the test result is positive.
$-\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.97 ; \mathrm{P}\left(\mathrm{B}^{\prime} \mid \mathrm{A}\right)=0.03$;
- $P\left(B \mid A^{\prime}\right)=0.06 ; P\left(B^{\prime} \mid A^{\prime}\right)=0.94 ;$
- (a) $P(B)=P(A) P(B \mid A)+P\left(A^{\prime}\right) P\left(B \mid A^{\prime}\right)=0.01^{*} 0.97$ +0.99 * $0.06=0.0691$
- (b) $P(A \mid B)=P(B \mid A)^{*} P(A) / P(B)=0.97^{*} 0.01 / 0.0691=$ 0.1403
- (c) $P\left(A^{\prime} \mid B^{\prime}\right)=P\left(B^{\prime} \mid A^{\prime}\right) P\left(A^{\prime}\right) / P\left(B^{\prime}\right)=P\left(B^{\prime} \mid A^{\prime}\right) P\left(A^{\prime}\right) /(1-$ $P(B))=0.94^{*} 0.99 /(1-.0691)=0.9997$

GAUSSIAN DISTRIBUTION

Э By far the most important and most commonly observed (cont.) probability distribution

Normal Distributions

- Gaussian distribution

$$
p(x)=N\left(\mu_{x}, \sigma_{x}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} e^{-\left(x-\mu_{x}\right)^{2} / 2 \sigma_{x}^{2}}
$$

- Mean

$$
E(x)=\mu_{x}
$$

- Variance

$$
E\left[\left(x-\mu_{x}\right)^{2}\right]=\sigma_{x}^{2}
$$

- Central Limit Theorem says sums of random variables tend toward a Normal distribution.
- Mahalanobis Distance:

$$
r=\frac{x-\mu_{x}}{\sigma_{x}}
$$

MULTIVARIATE GAUSSIAN DISTRIBUTION

(y) In d-dimensional space, the Gaussian pdf is:

$$
\begin{gathered}
p(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}\left[(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right]} \\
p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})
\end{gathered}
$$

- Gaussian distributions are very popular since
- The parameters (μ, Σ) are sufficient to uniquely characterize the normal distribution
- If the $\mathbf{x}_{\mathbf{i}}$'s are mutually uncorrelated ($\sigma_{\mathrm{ik}}=0$), then they are also independent
- The covariance matrix becomes a diagonal matrix, with the individual variances in the main diagonal

- Central Limit Theorem
- The marginal and conditional densities are also Gaussian
- Any linear transformation of any N jointly Gaussian rv's results in N rv's that are also Gaussian
- For $\mathrm{X}=\left[\begin{array}{llll}\mathrm{X}_{1} & \mathrm{X}_{2} & \ldots & \mathrm{X}_{N}\end{array}\right]^{\top}$ jointly Gaussian, and A an $\mathrm{N} \times \mathrm{N}$ invertible matrix, then $Y=A X$ is also jointly Gaussian

$$
p_{Y}(y)=\frac{p_{X}\left(A^{-1} y\right)}{|A|}
$$

Multivariate Normal Density

- x is a vector of d Gaussian variables

$$
\begin{aligned}
& p(x)=N(\mu, \Sigma)=\frac{1}{2 \pi^{d / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} \\
& \mu=E[x]=\int_{-\infty}^{\infty} x p(x) d x \\
& \Sigma=E\left[(x-\mu)(x-\mu)^{T}\right]=\int_{-\infty}^{\infty}(x-\mu)(x-\mu)^{T} p(x) d x
\end{aligned}
$$

- Mahalanobis Distance

$$
r^{2}=(x-\mu)^{T} \sum^{-1}(x-\mu)
$$

- All conditionals and marginals are also Gaussian

Multivariate Gaussian DISTRIBUTION

- Multivariate normal density function
- Mahalanobis distance
© Whitening Transform

Bayesian Decision Making

Classification problem in probabilistic terms

Create models for how features are distributed for objects of different classes

We will use probability calculus to make classification decisions

Lets Look at Just One Feature

- Each object can be associated with multiple features
- We will look at the case of just one feature for
 now

We are going to define two key concepts....

The First Key Concept

Features for each class drawn from class-conditional probability distributions (CCPD)

Our first goal will be to model these distributions

The Second Key Concept

We model prior probabilities to quantify the expected a priori chance of seeing a class

P(Class2) \& P(Class1)

But How Do We Classify?

- So we have priors defining the a priori probability of a class
P(Class1), P(Class2)
- We also have models for the probability of a feature given each class
P(X|Class1), P(X|Class2)

But we want the probability of the class given a feature How do we get $\mathrm{P}(\mathrm{Class} 1 \mid \mathrm{X})$?

Bayes Decision Rule

If we observe an object with feature X, how do decide if the object is from Class 1?

The Bayes Decision Rule is simply choose Class1 if:

$$
P(\text { Class } 1 \mid X)>P(\text { Class } 2 \mid X)
$$

This is the same number on both sides!

Discriminant Function

We can create a convenient representation of the Bayes Decision Rule

$$
P(X \mid \text { Class } 1) P(\text { Class } 1)>P(X \mid \text { Class } 2) P(\text { Class } 2)
$$

$$
\frac{P(X \mid \text { Class } 1) P(\text { Class } 1)}{P(X \mid \text { Class } 2) P(\text { Class } 2)}>1
$$

$$
G(X)=\log \frac{P(X \mid \text { Class } 1)}{P(X \mid \text { Class } 2)} \frac{P(\text { Class } 1)}{P(\text { Class } 2)}>0
$$

If $G(X)>0$, we classify as Class 1

We have defined the two components, class-conditional distributions and priors

$$
P(X \mid C l a s s 1), P(X \mid C l a s s 2) \quad P(C l a s s 1), P(\text { Class } 2)
$$

We have used Bayes Rule to create a discriminant function for classification from these components

$$
\begin{aligned}
& G(X)=\log \frac{P(X \mid \text { Class } 1)}{P(X \mid \text { Class } 2)} \frac{P(\text { Class } 1)}{P(\text { Class } 2)}>0 \\
& \begin{array}{c}
\text { Given a new feature, } \mathrm{X} \text {, we plug } \\
\text { it into this equation... }
\end{array} \\
& \ldots \text { and if } \mathrm{G}(\mathrm{X})>0 \text { we classify as Class } 1
\end{aligned}
$$

Getting $\mathrm{P}(\mathrm{X} \mid$ Class $)$ from Training Set

One Simple Approach

Divide X values into bins
And then we simply count frequencies

Class conditional from Univariate Normal Distribution

$$
p(x)=N\left(\mu_{x}, \sigma_{x}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} e^{-\left(x-\mu_{x}\right)^{2} / 2 \sigma_{x}^{2}}
$$

Mean :

$$
E(x)=\mu_{x}
$$

Variance :

$$
E\left[\left(x-\mu_{x}\right)^{2}\right]=\sigma_{x}^{2}
$$

Mahalanobis Distance :

$$
r=\frac{x-\mu_{x}}{\sigma_{x}}
$$

We Are Just About There....

We have created the class-conditional distributions and priors

$$
\mathrm{P}(\mathrm{X} \mid \text { Class1), } \mathrm{P}(\mathrm{X} \mid \text { Class2) } \quad \mathrm{P}(\text { Class1), } \mathrm{P}(\text { Class2 })
$$

And we are ready to plug these into our discriminant function

$$
G(X)=\log \frac{P(X \mid \text { Class } 1)}{P(X \mid \text { Class } 2)} \frac{P(\text { Class } 1)}{P(\text { Class } 2)}>0
$$

But there is one more little complication.....

Multidimensional feature space ?

So $P(X /$ Class $)$ become $P(X 1, X 2, X 3, \ldots, X 8 /$ Class $)$
and our discriminant function becomes

$$
G(X)=\log \frac{P\left(X_{1}, X_{2}, \ldots, X_{7} \mid \text { Class } 1\right)}{P\left(X_{1}, X_{2}, \ldots, X_{7} \mid \text { Class } 2\right)} \frac{P(\text { Class } 1)}{P(\text { Class } 2)}>0
$$

${ }^{4}$ In d-dimensional space, the Gaussian pdf is:

$$
\begin{gathered}
p(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}\left[(\mathbf{x}-\mu)^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)\right]} \\
p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})
\end{gathered}
$$

Naïve Bayes Classifier

We are going to make the following assumption:
All features are independent given the class

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{n} \mid \text { Class }\right) & =P\left(X_{1} \mid \text { Class }\right) P\left(X_{2} \mid \text { Class }\right) \ldots P\left(X_{n} \mid \text { Class }\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid \text { Class }\right)
\end{aligned}
$$

We can thus estimate individual distributions for each feature and just multiply them together!

Naïve Bayes Discriminant Function

Thus, with the Naïve Bayes assumption, we can now rewrite, this:

$$
G\left(X_{1}, \ldots, X_{7}\right)=\log \frac{P\left(X_{1}, X_{2}, \ldots, X_{7} \mid \text { Class } 1\right)}{P\left(X_{1}, X_{2}, \ldots, X_{7} \mid \text { Class } 2\right)} \frac{P(\text { Class } 1)}{P(\text { Class } 2)}>0
$$

As this:

$$
G\left(X_{1}, \ldots, X_{7}\right)=\log \frac{\prod P\left(X_{i} \mid \text { Class } 1\right)}{\prod P\left(X_{i} \mid \text { Class } 2\right)} \frac{P(\text { Class } 1)}{P(\text { Class } 2)}>0
$$

Classifying Parasitic RBC

Plug these and priors into the discriminant function

$$
G\left(X_{1}, \ldots, X_{7}\right)=\log \frac{\prod P\left(X_{i} \mid \text { Mito }\right)}{\prod P\left(X_{i} \mid \sim \text { Mito }\right)} \frac{P(\text { Mito })}{P(\sim \text { Mito })}>0
$$

IF G>0, we predict that the parasite is from class Malaria

How Good is the Classifier?

The Rule
We must test our classifier on a different set
from the training set: the labeled test set
The Task
We will classify each object in the test set and count the number of each type of error

Binary Classification Errors

	True (Mito)	False (~Mito)
Predicted True	TP	FP
Predicted False	FN	TN

$$
\text { Sensitivity }=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN}) \quad \text { Specificity }=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})
$$

- Sensitivity
- Fraction of all Class1 (True) that we correctly predicted at Class 1
- How good are we at finding what we are looking for
- Specificity
- Fraction of all Class 2 (False) called Class 2
- How many of the Class 2 do we filter out of our Class 1 predictions

Thank you

