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Statistics

Math. Statistics
Applied Statistics

Biostatistics

collection, analysis, interpretation of data

development of 
new statistical 
theory & 
inference

application of the 
methods derived from 
math. statistics to 
subject specific areas 
like psychology, 
economics and public 
health 

statistical methods are applied to 
medical, health and biological data

Areas of application of Biostatistics: Environmental Health, Genetics, Pharmaceutical research, 
Nutrition, Epidemiology and Health surveys etc



Some Statistical Tools for Medical Data 
Analysis

 Data collection and Variables under study

 Descriptive Statistics & Sampling Distribution

Statistical Inference – Estimation, Hypothesis Testing, Conf. Interval

 Association

Continuous: Correlation and Regression

Categorical: Chi-square test

 Multivariate Analysis

PCA, Clustering Techniques, Discriminantion & Classification

 Time Series Analysis

AR, MA, ARMA, ARIMA



Population vs. Sample
Parameter vs. Statistics



Variable

 Definition: characteristic of interest in a study that has  different     
values for different individuals.

 Two types of variable
���� Continuous: values form continuum
���� Discrete: assume discrete set of values

 Examples
Continuous: blood pressure

���� Discrete: case/control, drug/placebo
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Univariate Data
• Measurements on a single variable X
• Consider a continuous (numerical) variable
• Summarizing X

– Numerically
• Center
• Spread

– Graphically
• Boxplot
• Histogram
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Measures of center:  Mean

• The mean value of a variable is obtained by 
computing the total of the values divided by the 
number of values

• Appropriate for distributions that are fairly symmetrical

• It is sensitive to presence of outliers, since all values 
contribute equally
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Measures of center:  Median
• The median value of a variable is the number 

having 50% (half) of the values smaller than it (and 
the other half bigger)

• It is NOT sensitive to presence of outliers, since it 
‘ignores’ almost all of the data values

• The median is thus usually a more appropriate 
summary for skewed distributions
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Measures of spread:  SD
• The standard deviation (SD) of a variable is the 

square root of the average* of squared deviations 
from the mean (*for uninteresting technical reasons, 
instead of dividing by the number of values n, you 
usually divide by n-1)

• The SD is an appropriate measure of spread when 
center is measured with the mean
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Quantiles

• The pth quantile is the number that has the proportion 
p of the data values smaller than it

30%

5.53 = 30th percentile
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Measures of spread:  IQR
• The 25th (Q1), 50th (median), and 75th (Q3) 

percentiles divide the data into 4 equal parts; these 
special percentiles are called quartiles

• The interquartile range (IQR) of a variable is the 
distance between Q1 and Q3:

IQR = Q3 – Q1

• The IQR is one way to measure spread when center 
is measured with the median
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Five-number summary and boxplot

• An overall summary of the distribution of variable 
values is given by the five values:

Min, Q1, Median, Q3, and Max

• A boxplot provides a visual summary of this five-
number summary

• Display boxplots side-by-side to compare 
distributions of different data sets
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Boxplot

median

Q3

Q1

suspected 
outliers

`whiskers
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Histogram

• A histogram is a special kind of bar plot

• It allows you to visualize the distribution of values for 
a numerical variable

• When drawn with a density scale:
– the AREA (NOT height) of each bar is the proportion of 

observations in the interval

– the TOTAL AREA is 100% (or 1)
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Bivariate Data

• Bivariate data are just what they sound 
like – data with measurements on two
variables; let’s call them X and Y

• Here, we are looking  at two continuous
variables

• Want to explore the relationship between 
the two variables
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Scatter plot
• We can graphically summarize a bivariate data set 

with a scatter plot (also sometimes called a scatter 
diagram)

• Plots values of one variable on the horizontal axis 
and values of the other on the vertical axis

• Can be used to see how values of 2 variables tend 
to move with each other (i.e. how the variables are 
associated)
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Scatter plot: positive association
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Scatter plot: negative association



19

Scatter plot: real data example
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Correlation Coefficient

• r is a unitless quantity
• -1  r  1
• r is a measure of LINEAR ASSOCIATION
• When r = 0, the points are not LINEARLY
ASSOCIATED – this does NOT mean there is NO 
ASSOCIATION



Breast cancer example

 Study on whether age at first child birth is an important risk 
factor for breast cancer (BC)



 How does taking Oral Conceptive (OC) affect Blood Pressure (BP) in women

 paired samples

Blood Pressure Example



Birthweight Example

����
 Determine the effectiveness of drug

A on preventing premature birth.
����
 Independent samples.























ParameterParameterStatisticStatistic

Mean:

Standard 
deviation:

Proportion:

s

X ____

____

____

estimates

estimates

estimates

from sample from entire 
population

p



Mean, , is 
unknown

Population Point estimate
I am 95% 

confident that 
 is between 

40 & 60

Mean   
X = 50

Sampl
e

Interval estimate



Parameter 

= Statistic ± Its Error



Sampling Distribution

X or PX or P X or P



Standard Error

SE (Mean) = 
S

n

SE (p) = 

p(1-p)

n

Quantitative Variable

Qualitative Variable



95% Samples

Confidence Interval

X
_

X - 1.96 SE X + 1.96 SE

 SESE Z-axis

1 - α
α/2α/2



95% Samples

Confidence Interval

SESE  p

p + 1.96 SEp - 1.96 SE

Z-axis

1 - α
α/2α/2



Interpretation of 
CI

Probabilistic Practical

We are 100(1-)% 
singleconfident that the 

computed CI contains 

In repeated sampling 100(1-
around all intervals)% of 

sample means will in the 
long run include 



Example (Sample size≥30)

An epidemiologist studied the blood 
glucose level of a random sample of 100 
patients. The mean was 170, with a SD of 
10. 

SE = 10/10 = 1

Then CI:

 = 170 + 1.96  1    168.04    171.96

95%

 = X + Z SE



In a survey of 140 asthmatics, 35% 
had allergy to house dust. Construct the 
95% CI for the population proportion.

 = p + Z 

0.35 – 1.96  0.04   ≥ 0.35 + 1.96 
0.04 

0.27   ≥ 0.43
27%   ≥ 43%

Example (Proportion)

In a survey of 140 asthmatics, 35% 
had allergy to house dust. Construct the 
95% CI for the population proportion.

 = p + Z 

0.35 – 1.96  0.04   ≥ 0.35 + 1.96 
0.04 

0.27   ≥ 0.43
27%   ≥ 43%

P(1-p)
n 140

0.35(1-
0.35)

= 0.04SE =



Hypothesis testing

A statistical method that uses
sample data to evaluate a
hypothesis about a population
parameter. It is intended to help
researchers differentiate
between real and random
patterns in the data.



• H0 Null Hypothesis states the 
Assumption to be tested e.g. SBP of 
participants = 120     (H0:  = 120).

• H1 Alternative Hypothesis is the 
opposite of the null hypothesis (SBP of 
participants ≠ 120 (H1:  ≠ 120). It may or 
may not be accepted and it is the 
hypothesis that is believed to be true 
by the researcher

Null & Alternative Hypotheses



• Defines unlikely values of sample
statistic if null hypothesis is true.
Called rejection region of sampling
distribution

• Typical values are 0.01, 0.05
• Selected by the Researcher at the

Start
• Provides the Critical Value(s) of the

Test

Level of Significance, a



Level of Significance, a and the Rejection 
Region

0

a
Critical          
Value(s)

Rejection 
Regions



H0: Innocent

Jury Trial Hypothesis Test

Actual Situation Actual Situation

Verdict Innocent Guilty Decision H 0 True H 0 False

Innocent Correct Error
Accept

H 0
1 - 

Type II
Error ( b )

Guilty Error Correct
H 0

Type I
Error

( )

Power
(1 - b )

Result Possibilities

False 
Negative

False 
Positive

Reject



• True Value of Population Parameter
– Increases When Difference Between 

Hypothesized Parameter & True Value 
Decreases

• Significance Level 
– Increases When  Decreases

• Population Standard Deviation 
– Increases When  Increases 

• Sample Size n
– Increases When n Decreases

Factors Increasing 
Type II Error



b

b 

b

n

β
b d



• Probability of Obtaining a Test 
Statistic More Extreme  or ) than 
Actual Sample Value Given H0 Is True 

• Called Observed Level of Significance
• Used to Make Rejection Decision

– If p value   Do Not Reject H0

– If p value < , Reject H0

p Value Test



State H0 H0 : m  = 120

State H1 H1 : m   120

Choose   = 0.05

Choose n n = 100

Choose Test: Z, t, X2 Test (or p Value)

Hypothesis Testing: Steps

Test the Assumption that the true mean SBP of 
participants is 120 mmHg.



Compute Test Statistic (or compute P value)

Search for Critical Value

Make Statistical Decision rule

Express Decision

Hypothesis Testing: Steps



• Assumptions
– Population is normally 

distributed

• t test statistic

One sample-mean Test

n
s

xt 0

error standard
 valuenullmean sample 








Example Normal Body Temperature 

What is normal body temperature? Is it 
actually  37.6oC (on average)?

State the null and alternative hypotheses

H0:  = 37.6oC

Ha:   37.6oC



Example Normal Body Temp (cont)
Data: random sample of n = 18 normal body 
temps
37.2 36.8 38.0 37.6 37.2 36.8 37.4 38.7 37.2
36.4 36.6 37.4 37.0 38.2 37.6 36.1 36.2 37.5

Variable n Mean SD SE  t P
Temperature 18 37.22 0.68 0.161 2.38 0.029

n
s

xt 0

error standard
 valuenullmean sample 






Summarize data with a test statistic



STUDENT’S t DISTRIBUTION TABLE
Degrees of 
freedom

Probability (p value) 
0.10 0.05 0.01

1 6.314 12.706 63.657
5 2.015 2.571 4.032
10 1.813 2.228 3.169
17 1.740 2.110 2.898
20 1.725 2.086 2.845
24 1.711 2.064 2.797
25 1.708 2.060 2.787
 1.645 1.960 2.576 



Example Normal Body Temp (cont) 

Find the p-value
Df = n – 1 = 18 – 1 = 17
From SPSS: p-value = 0.029

From t Table: p-value is 
between 0.05 and 0.01. 

Area to left of t = -2.11 equals 
area to right of t = +2.11. 

The value t = 2.38 is between 
column headings 2.110& 2.898 in 
table, and for df =17, the p-
values are 0.05 and 0.01.

-2.11 +2.11 t



Example Normal Body Temp (cont) 

Decide whether or not the result is 
statistically significant based on the p-
valueUsing a = 0.05 as the level of significance 
criterion, the results are statistically significant
because 0.029 is less than 0.05. In other words, 
we can reject the null hypothesis.

Report the Conclusion

We can conclude, based on these data, that the 
mean temperature in the human population 
does not equal 37.6.



• Involves categorical variables
• Fraction or % of population in a category
• Sample proportion (p)

One-sample test for proportion

sizesample
successesofnumber

n
Xp 

n

pZ
)1( 







 Test is called Z test 
where: 

 Z is computed value
 π is proportion in 
population  

(null hypothesis 
value) Critical Values:  1.96 at α=0.05

2.58 at α=0.01



Example

• In a survey of diabetics in a large city, it
was found that 100 out of 400 have diabetic
foot. Can we conclude that 20 percent of
diabetics in the sampled population have
diabetic foot.

• Test at the  =0.05 significance level.



Solution

Critical Value: 1.96

Decision:
We have sufficient evidence to reject the
Ho value of 20%
We conclude that in the population of
diabetic the proportion who have
diabetic foot does not equal 0.20

Z0

Reject Reject

.025.025

= 
2.50

Ho: π = 0.20

H1: π  0.20 Z =
0.25 – 0.20

0.20 (1- 0.20)
400

+1.96-1.96









































































Example 

3. It is known that 1% of population suffers from a 
particular disease. A blood test has a 97% chance to 
identify the disease for a diseased individual, by also 
has a 6% chance of falsely indicating that  a healthy 
person has a disease.  

a. What is the probability that a random person has a 
positive blood test.

b. If a blood test is positive, what’s the probability that 
the person has the disease?

c. If a blood test is negative, what’s the probability that 
the person  does not have the disease?



• A is the event that a person has a disease. P(A) = 
0.01; P(A’) = 0.99.

• B is the event that the test result is positive.
– P(B|A) = 0.97;  P(B’|A) = 0.03;
– P(B|A’) = 0.06; P(B’|A’) = 0.94;

• (a) P(B) = P(A) P(B|A) + P(A’)P(B|A’) = 0.01*0.97 
+0.99 * 0.06 = 0.0691

• (b) P(A|B)=P(B|A)*P(A)/P(B) = 0.97* 0.01/0.0691 = 
0.1403

• (c) P(A’|B’) = P(B’|A’)P(A’)/P(B’)= P(B’|A’)P(A’)/(1-
P(B))= 0.94*0.99/(1-.0691)=0.9997





Normal Distributions
• Gaussian distribution

• Mean

• Variance

• Central Limit Theorem says sums of random variables tend 
toward a Normal distribution.

• Mahalanobis Distance:
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xxr
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Multivariate Normal Density
• x is a vector of d Gaussian variables

• Mahalanobis Distance

• All conditionals and marginals are also Gaussian


















dxxpxxxxE

dxxxpxE

xTx
edNxp

TT )())((]))([(

)(][

)(1)(
2
1

2/1||2/2

1),()(










)()( 12    xxr T





104

Bayesian Decision Making

Classification problem in probabilistic terms

Create models for how features are 
distributed for objects of different classes

We will use probability calculus to make 
classification decisions
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X
Y

Lets Look at Just One Feature

• Each object can 
be associated 
with multiple 
features

• We will look at 
the case of just 
one feature for 
now

RBC

We are going to define two key concepts….
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The First Key Concept
Features for each class drawn from class-conditional probability distributions 

(CCPD)

P(X|Class1) P(X|Class2)

Our first goal will be to model these distributions

X
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The Second Key Concept
We model prior probabilities to quantify the expected a priori chance of seeing 

a class

P(Class2)   &   P(Class1)
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But How Do We Classify?

• So we have priors defining the a priori probability 
of a class

• We also have models for the probability of a 
feature given each class

But we want the probability of the class given a feature
How do we get P(Class1|X)?

P(Class1), P(Class2)

P(X|Class1), P(X|Class2)
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Bayes Rule

( | ) ( )( | )
( )

P Feature Class P ClassP Class Feature
P Feature



Prior

Likelihood

Posterior
Evidence

Belief before 
evidence

Evaluate
evidence

Belief after 
evidence

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418
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Bayes Decision Rule
If we observe an object with feature X, how do decide if the object is 

from Class 1? 

The Bayes Decision Rule is simply choose Class1 if:

( 1| ) ( 2 | )

( | 1) ( 1) ( | 2) ( 2)
(

( | 1) ( 1) ( | 2) (

) )

)

(

2

P Class X P Class X

P X Class P L P X Class

P X Class P Class P X

P L
P X P X

Class P Class





This is the same number on both sides!
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Discriminant Function
We can create a convenient representation of the 

Bayes Decision Rule

( | 1) ( 1) ( | 2) ( 2)

( | 1) ( 1) 1
( | 2) ( 2)

( | 1) ( 1)( ) log 0
( | 2) ( 2)

P X Class P Class P X Class P Class

P X Class P Class
P X Class P Class

P X Class P ClassG X
P X Class P Class





 

If G(X) > 0, we classify as Class 1
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Stepping back

( | ) ( )1 1( ) log 0
( | ) ( )2 2Cla

Class Class
ss Clas

P X PG X
P sX P

 

Given a new feature, X, we plug 
it into this equation…

…and if G(X)> 0 we classify as Class1

What do we have so far?

P(X|Class1), P(X|Class2)          P(Class1), P(Class2)

We have defined the two components, class-conditional distributions and 
priors

We have used Bayes Rule to create a discriminant function for 
classification from these components
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Getting P(X|Class) from Training Set
P(X|Class1)

One Simple Approach

Divide X values into bins

And then we simply count 
frequencies

<1 1-3 3-5 5-7 >7

2/13

0

7/13

3/13

1/13

There are 13 data 
points

X



Class conditional from Univariate Normal Distribution
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Variance :

Mahalanobis Distance :
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We Are Just About There….
We have created the class-conditional distributions and priors

( | ) ( )1 1( ) log 0
( | ) ( )2 2Cla

Class Class
ss Clas

P X PG X
P sX P

 

P(X|Class1), P(X|Class2)          P(Class1), P(Class2)

And we are ready to plug these into our discriminant function

But there is one more little complication…..
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Multidimensional feature space ?
So P(X|Class) become P(X1,X2,X3,…,X8|Class)

and our discriminant function becomes

1 2 7

1 2 7

( , ,..., | ) ( )( ) log 0
( , ,. 2.., | ) ( )

1 1
2Class

Class ClasP X X X
Cla

s
s

PG X
P X X sX P

 
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Naïve Bayes Classifier
We are going to make the following assumption:

All features are independent given the class

1 2 1 2

1

( , ,..., | ) ( | ) ( | )... ( | )

( | )

n n
n

i
i

P X X X Class P X Class P X Class P X Class

P X Class






We can thus estimate individual distributions for each
feature and just multiply them together!
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Naïve Bayes Discriminant Function

1 2 7
1 7

1 2 7

( , ,..., | ) ( )1( ,..., ) log 0
( , ,..., |

1
(2 2) )

P X X X PG X X
P X

Class
Class ClasX sX

ss
P

Cla
 

1 7

( | ) ( )( ,..., ) log 0
( | ) (2 2)

1 1i

i

P X PG X X
P X

Class
Class ClasP

Class
s

 


Thus, with the Naïve Bayes assumption, we can  now rewrite, this:

As this:
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Classifying Parasitic RBC

1 7

( | ) ( )( ,..., ) log 0
( | )~ )~(

i

i

Mito MitoP X PG X X
P Mito P oX Mit

 


Plug these and priors into the discriminant function

IF G>0, we predict that the parasite is from class Malaria 

Intensity 

Hu’s moments

Entropy

Fractal dimension

Homogeneity

Correlation

Chromatin dots

P(Xi|Malaria)

P(Xi|~Malaria)
Xi
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How Good is the Classifier?

The Rule
We must test our classifier on a different set 

from the training set: the labeled test set

The Task
We will classify each object in the test set 

and count the number of each type of error
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Binary Classification Errors

• Sensitivity
– Fraction of all Class1 (True) that we correctly predicted at Class 1
– How good are we at finding what we are looking for

• Specificity
– Fraction of all Class 2 (False) called Class 2
– How many of the Class 2 do we filter out of our Class 1 predictions

True (Mito) False (~Mito)

Predicted True TP FP
Predicted False FN TN

Sensitivity = TP/(TP+FN) Specificity = TN/(TN+FP)

In both cases, the higher the better



Thank you


