Fundamentals of Condensed Matter Physics

Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, *Fundamentals of Condensed Matter Physics* is a much-needed textbook for graduate students.

The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure and many-body interactions as a starting point to understanding many properties of condensed matter systems – electronic, structural, vibrational, thermal, optical, transport, magnetic, and superconducting – and the methods used to calculate them.

Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features over 246 illustrations, 9 tables and 100 homework problems, as well as numerous worked examples, for students to test their understanding.

Marvin L. Cohen is University Professor of Physics at the University of California at Berkeley and Senior Faculty Scientist at the Lawrence Berkeley National Laboratory. His research covers a broad spectrum of subjects in theoretical condensed matter physics. He is an elected member of the National Academy of Sciences, the American Academy of Arts & Sciences, and the American Philosophical Society. He has received numerous awards, including the US National Medal of Science, the Buckley Prize and the Lilienfeld Prize of the American Physical Society, the von Hippel Award of the Materials Research Society, and the Dickson Prize in Science. He has received honorary degrees from the University of Montreal, the Hong Kong University of Science & Technology, and the Weizmann Institute of Science. He is a former President of the American Physical Society.

Steven G. Louie is Professor of Physics at the University of California at Berkeley and Senior Faculty Scientist at the Lawrence Berkeley National Laboratory. His research spans a broad spectrum of topics in theoretical condensed matter physics and nanoscience. He is an elected member of the National Academy of Sciences, the American Academy of Arts & Sciences, and an academician of the Academia Sinica of the Republic of China (Taiwan). He has won numerous awards and prizes for his work, including the Rahman Prize and the Davisson–Germer Prize of the American Physical Society, the Materials Theory Award of the Materials Research Society, and the Sustained Outstanding Research in Solid State Physics Award of the US Department of Energy. He and Cohen shared the Foresight Institute Richard P. Feynman Prize in Nanotechnology (Theory).

Fundamentals of Condensed Matter Physics

MARVIN L. COHEN University of California, Berkeley

STEVEN G. LOUIE University of California, Berkeley

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521513319

© Cambridge University Press & Assessment 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2016 Reprinted 2017

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Names: Cohen, Marvin L., author. | Louie, Steven G., 1949– author. Title: Fundamentals of condensed matter physics / Marvin L. Cohen and Steven G. Louie, Department of Physics, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory. Description: Cambridge, United Kingdom : Cambridge University Press, 2016. | 2016 | Includes bibliographical references and index. Identifiers: LCCN 2016003013 | ISBN 9780521513319 (hardback) | ISBN 0521513316 (hardback) Subjects: LCSH: Condensed matter.

Classification: LCC QC173.454.C64 2016 | DDC 530.4/1-dc23 LC record available at http://lccn.loc.gov/2016003013

ISBN 978-0-521-51331-9 Hardback

Additional resources for this publication at www.cambridge.org/cohenlouie

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Suzy and Jane

Preface

Contents

		Part I Basic concepts: electrons and phonons			
1	Concept of a solid: qualitative introduction and overview				
	1.1	Classification of solids	3		
	1.2	A first model of a solid: interacting atoms	4		
	1.3	A second model: elementary excitations	6		
	1.4	Elementary excitations associated with solids and liquids	7		
	1.5	External probes	8		
	1.6	Dispersion curves	9		
	1.7	Graphical representation of elementary excitations			
		and probe particles	13		
	1.8	Interactions among particles	13		
2	Elect	20			
	2.1	General Hamiltonian	20		
	2.2	The Born–Oppenheimer adiabatic approximation	21		
	2.3	The mean-field approximation	22		
	2.4	The periodic potential approximation	22		
	2.5	Translational symmetry, periodicity, and lattices	23		
3	Elect	31			
	3.1	Free electron model	31		
	3.2	Symmetries and energy bands	33		
	3.3	Nearly-free electron model	39		
	3.4	Tight-binding model	43		
	3.5	Electron (or hole) velocity in a band and the <i>f</i> -sum rule	48		
	3.6	Periodic boundary conditions and summing over band			
		states	52		
	3.7	Energy bands for materials	55		
4	Latti	ce vibrations and phonons	63		
	4.1	Lattice vibrations	63		
	4.2	Second quantization and phonons	71		

vii

page xi

viii		Contents		
	4.3	Response functions: heat capacity	77	
	4.4	Density of states	79	
	4.5	Critical points and van Hove singularities	84	
	Part I Pi	roblems	91	
		Part II Electron interactions, dynamics, and responses		
	5 Elec	tron dynamics in crystals	101	
	5.1	Effective Hamiltonian and Wannier functions	101	
	5.2	Electron dynamics in the effective Hamiltonian approach	103	
	5.3	1 2	107	
	5.4		108	
	5.5	Effective mass tensor	113	
	5.6	Equations of motion, Berry phase, and Berry curvature	114	
		ny-electron interactions: the homogeneous interacting electron gas		
	and	beyond	119	
	6.1			
		model	121	
	6.2	6 6	123	
	6.3		126	
	6.4		130	
	6.5	8(,)	132	
	6.6	6	135	
	6.7	The exchange-correlation energy	136	
	7 Den	sity functional theory (DFT)	141	
	7.1	The ground state and density functional formalism	142	
	7.2	1	144	
	7.3	1 I J J	150	
	7.4	Some applications of DFT to electronic, structural, vibrational,		
		and related ground-state properties	152	
	8 The	dielectric function for solids	159	
	8.1	Linear response theory	159	
	8.2		163	
	8.3	The RPA dielectric function within DFT	164	
	8.4	The homogeneous electron gas	166	
	8.5		169	
	8.6	Some other properties of the dielectric function	173	
	Part II P	Problems	178	

ix	Contents	
	Part III Optical and transport phenomena	
	9 Electronic transitions and optical properties of solids	185
	9.1 Response functions	185
	9.2 The Drude model for metals	189
	9.3 The transverse dielectric function	192
	9.4 Interband optical transitions in semiconductors and insulators	196
	9.5 Electron-hole interaction and exciton effects	201
	10 Electron-phonon interactions	220
	10.1 The rigid-ion model	220
	10.2 Electron-phonon matrix elements for metals, insulators,	
	and semiconductors	224
	10.3 Polarons	229
	11 Dynamics of crystal electrons in a magnetic field	235
	11.1 Free electrons in a uniform magnetic field and Landau levels	235
	11.2 Crystal electrons in a static B -field	237
	11.3 Effective mass and real-space orbits	239
	11.4 Quantum oscillations: periodicity in $1/B$ and the de Haas–van	
	Alphen effect in metals	241
	12 Fundamentals of transport phenomena in solids	248
	12.1 Elementary treatment of magnetoresistance and the Hall effect	248
	12.2 The integer quantum Hall effect	257
	12.3 The Boltzmann equation formalism and transport in real materials	264
	12.4 Electrical and thermal transport with the linearized	
	Boltzmann equation	271
	Part III Problems	278
	Part IV Many-body effects, superconductivity, magnetism, and lower-dimensional systems	
	13 Using many-body techniques	287
	13.1 General formalism	287
	13.2 Interacting Green's functions	291
	13.3 Feynman diagrams and many-body perturbation theory techniques	298
	14 Superconductivity	305
	14.1 Brief discussion of the experimental background	305
	14.2 Theories of superconductivity	311
	14.3 Superconducting quasiparticle tunneling	349

x	Contents	
		250
	14.4 Spectroscopies of superconductors	356
	14.5 More general solutions of the BCS gap equation	360
	14.6 Field theoretical methods and BCS theory	368
	15 Magnetism	372
	15.1 Background	372
	15.2 Diamagnetism	372
	15.3 Paramagnetism	374
	15.4 Ferromagnetism and antiferromagnetism	377
	15.5 Magnetism in metals	386
	15.6 Magnetic impurities and local correlation effects	389
	16 Reduced-dimensional systems and nanostructures	393
	16.1 Density of states and optical properties	393
	16.2 Ballistic transport and quantization of conductance	399
	16.3 The Landauer formula	404
	16.4 Weak coupling and the Coulomb blockade	406
	16.5 Graphene, carbon nanotubes, and graphene nanostructures	409
	16.6 Other quasi-2D materials	421
	Part IV Problems	424
	References	434
	Index	440

Preface

The field of condensed matter physics is the largest branch of physics worldwide and probably the most diverse. Undergraduate courses in this area are ubiquitous and most research universities offer graduate courses. Over the past 50 years, the undergraduate course has been open to physicists, chemists, materials scientists, engineers, and, to a smaller extent, biologists. The graduate course slowly evolved in many institutions from a course for theorists to one that welcomed students interested in a career in experimental condensed matter physics and materials research. In recent years, the proportion of chemists, materials scientists, engineers, and researchers in nanoscience has increase significantly in graduate courses in condensed matter physics.

There are numerous undergraduate texts. The prime example is Introduction to Solid State Physics (ISSP) authored by C. Kittel. At the graduate level, no single text has emerged as the canonical choice. N. Ashcroft and N. D. Mermin's book Solid State Physics is sometimes chosen since it contains advanced topics going beyond Kittel's ISSP, although Ashcroft & Mermin is often used as an undergraduate text. J. Ziman's Principles of the Theory of Solids is at roughly the same level as Ashcroft & Mermin, with excellent physical examples and discussions of concepts. C. Kittel's Quantum Theory of Solids, which was written for the graduate course at the University of California, Berkeley, at a time when students taking the course were predominantly theorists, is somewhat limited in scope and generally considered difficult by graduate students not intent on a career in theoretical condensed matter physics. Other texts, such as those by J. Callaway, O. Madelung, M. Marder, and J. Patterson and B. Bailey, are considered to be at the right level and suitable. Many others are in the recommended, but not required, category and are useful when specific subjects are considered. Examples include those authored by E. Kaxiras, R. Martin, M. Balkanski and R. Wallis, P. Yu and M. Cardona, and M. Cohen and J. Chelikowsky for electronic and optical properties of solids; M. Tinkham, P. de Gennes, and R. Schrieffer for superconductivity; G. Mahan for many-particle physics; and P. Chailken and T. Lubensky for phase transitions and soft matter systems. There are also many other excellent texts on specific subjects in this field.

The present text, *Fundamentals of Condensed Matter Physics*, is intended to cover the "mainstream" subjects in this field at the graduate level. It is probably impossible to produce a book that fills the complete bill for a course, as J. D. Jackson's E&M text has done for electricity and magnetism, because the range of topics is so broad. To cover the whole field would require many volumes. Hence the intent here is to write a text that covers the central topics on a level that will prepare a student to enter research, and that can serve as a higher-level source to sit alongside undergraduate texts for researchers in this field.

xii

Preface

This text is based on lectures given as part of the condensed matter physics graduate course at Berkeley since 1965. The course, called Physics 240A and B, is a two-semester (or three-quarter) course covering 90 hours of lectures. In addition, there is a weekly discussion section for going over problem sets. Over the decades, this course was taught by one of the authors, either Marvin L. Cohen or Steven G. Louie, with guest lecturers from time to time. Student evaluations of the course have been high. The class size has typically been 20–30 students plus auditors. Of the more than one thousand students who took this course, a fair number have taken academic positions and have reported back that they have used their course notes successfully to teach similar courses in various departments including physics, chemistry, materials science, and engineering.

The book is divided into four main parts. Part I is devoted to the development of basic concepts. It begins with an introduction to the modern conceptual models of a solid from the points of view of (i) interacting atoms and (ii) elementary excitations, and then develops a thorough grounding on the basic elements needed to understand many of the properties of solids and the methods used to calculate them. Part II concerns the fundamentals of electron interactions, electron dynamics, and response functions, that control and exhibit the properties of and phenomena in condensed matter. Parts III and IV focus on the different properties and phenomena that are central to modern condensed matter and materials research. These include vibrational, thermal, optical, and transport properties, superconductivity, magnetism, and lower-dimensional systems, with emphasis on developing a physical understanding of real material systems. A range of theoretical techniques is developed as needed. The mathematical level varies, as does the degree of detail, in a manner similar to what one would experience in the world of research. Topics and techniques, such as band structure methods, pseudopotentials, density functional theory, effective Hamiltonians, electron dynamics, dielectric functions, electron-electron and electron-hole interactions, Berry's phase, Boltzmann transport theory, optical response, cooperative phenomena, many-body Green's functions, and diagrammatic and quasiparticle approaches, are explored and motivated by "real problems" associated with understanding and calculating material properties. Experimental techniques are described but not in detail.

Because of the breadth of the field and the limitation to one volume, some subjects are not treated in depth and others are left out completely. However, the success of the course at Berkeley, and hopefully this text, is that it takes a student through the concepts and techniques for many central areas of condensed matter physics, and establishes the level needed to start current research. Hence, the intent is to take students with a good knowledge of graduate quantum mechanics and undergraduate condensed matter physics to a level where they can do cutting-edge research. The book is suitable for a one-semester course (covering most of Parts I and II and some selected topics in Parts III and IV) or a two-semester course (covering essentially all of Parts I–IV with the option of omitting some topics as desired by the instructor).

This book would not have been possible without help from many people. We would especially like to thank Ms. Katherine de Raadt for her help with editorial matters and for producing the manuscript. We would like to acknowledge Cheol-Hwan Park for some of his class notes from the Berkeley course, David Penn for suggestions and critical readings

xiii

Preface

of part of the text, Felipe Jornada and Sangkook Choi for producing most of the figures and for useful suggestions, and Meng Wu for his contributions in producing the problem sections. We profited from helpful corrections of the various chapters of the text by Gabriel Antonius, Brad Barker, Ting Cao, Sinisa Coh, Zhenglu Li, Jamal Mustafa, Chin-Shen Ong, Diana Qiu, Liang Tan, and Derek Vigil-Fowler. Finally, we thank Simon Capelin of Cambridge University Press for his guidance and patience.

> Marvin L. Cohen Steven G. Louie Berkeley, CA, USA Spring, 2016