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Abstract

We apply to the concrete setup of a bank engaged into bilateral trade portfolios
the XVA conceptual framework of Albanese and Crépey (2016), whereby so-called
contra-liabilities and cost of capital need to be charged by a bank to its clients at
trade inceptions, on top of the fair valuation of counterparty credit risk, in order to
account for the incompleteness of this risk. Our funding cost for variation margin
(FVA) is defined asymmetrically since there is no benefit in holding excess capital
in the future. Capital is fungible as a source of funding for variation margin (but
not for initial margin), causing a material FVA reduction. We introduce specialist
initial margin lending schemes that drastically reduce the funding cost for initial
margin (MVA). By contrast with the other approaches in the literature, our capital
valuation adjustment (KVA) is not defined as the risk-neutral valuation of some
cash flows, but as a risk premium, i.e. the cost of remunerating shareholder capital
at risk at some hurdle rate.
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1 Introduction

Albanese and Crépey (2016) develop an XVA conceptual framework based on a capital
structure model acknowledging the impossibility for a bank to replicate jump-to-default
related cash flows. This approach results in a two-step XVA methodology.

First, the so-called contra-assets (CA) are valued as the expected counterparty
default losses and funding expenditures. These expected costs can be decomposed as
the sum between the fair valuation, dubbed CCR, of counterparty credit risk to the
bank as a whole, plus an add-on compensating bank shareholders for a wealth transfer,
corresponding to the so-called contra-liabilities (CL), triggered by the impossibility for
the bank to hedge its own jump-to-default risk.

Second, a KVA risk premium is computed as the cost of a sustainable remunera-
tion of the shareholder capital at risk earmarked to absorb the exceptional (beyond
expected) losses due to the impossibility for the bank to replicate counterparty jump-
to-default risk.

The all-inclusive XVA charge appears as

CA + KVA = CCR + CL + KVA, (1)

which is charged to clients on an incremental run-off basis at every new trade. CA
payments flow into a reserve capital (RC) account of the bank used for coping with
expected counterparty default losses and funding expenditures. KVA payments flow
into a risk margin (RM) account from which they are gradually released to shareholders
as a remuneration for their capital at risk.

In the present paper we apply this framework to the concrete setup of a bank en-
gaged in bilateral trade portfolios. The main contributions are concrete equations
for the corresponding CVA, FVA, MVA (see below) and KVA, rooted in the balance
sheet analysis of Albanese and Crépey (2016), the XVA algorithm and numerical re-
sults, including on a real life banking derivative portfolio.

1.1 Overview of the Paper

In the context of bilateral trading, the discounted expectation of losses due to the
default of counterparties or of the bank itself are respectively known as CVA (credit
valuation adjustment) and DVA (debt valuation adjustment). Counterparty credit
risk mitigants include variation margin (VM) tracking the mark-to-market of client
portfolios and initial margin (IM) set as a cushion against gap risk, i.e. the risk of
slippage between the portfolio and its variation margin during the liquidation period.
The cost of funding cash collateral for variation margin is known as funding valuation
adjustment (FVA), while the cost of funding segregated collateral posted as initial
margin is the margin valuation adjustment (MVA). Contra-liability counterparts of
the FVA and the MVA arise as the FDA (funding debt adjustment) and the MDA
(margin debt adjustment). A contra-liability component of the CVA, dubbed CVACL,
appears as the cost of an insurance subscribed by the bank in order to comply with a
regulatory unilateral CVA requirement.

1.2 Outline of the Paper

Section 2 provides an executive summary of the XVA methodology of Albanese and
Crépey (2016). Section 3 specifies all the cash flows involved in the case of bilateral
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trade portfolios. The ensuing XVA formulas, as well as the corresponding loss process
L required as input data in the KVA computations, are derived in Section 4. Sec-
tion 5 deals with the FVA reduction provided by the possibility for a bank to post
economic capital as variation margin. Section 6 introduces specialist initial margin
lending schemes that drastically reduce the funding cost for initial margin (MVA).
Section 7 contrasts the risk premium KVA approach of this paper with alternative
approaches in the literature. Section 8 shows how our XVA approach can be imple-
mented by means of nested Monte Carlo simulations. In Section 9 this is illustrated
numerically by two case studies. A list of the main acronyms used in the paper is
provided in Section A.

2 Conceptual XVA Framework

This section provides a brief recap of the XVA methodology that arises from Albanese
and Crépey (2016).

We consider a pricing stochastic basis (Ω,G,Q), with model filtration G = (Gt)t∈R+

and risk-neutral pricing measure Q, such that all the processes of interest are G adapted
and all the random times of interest are G stopping times. The corresponding expec-
tation and conditional expectation are denoted by E and Et. We denote by r a G
progressive OIS rate process, where OIS rate stands for overnight indexed swap rate,
which is together the best market proxy for a risk-free rate and the reference rate for

the remuneration of cash collateral. We write βt = e−
∫ t
0 rsds for the corresponding risk-

neutral discount factor. All cash flows are valued by their risk-free discounted (G,Q)
conditional expectation, assumed to exist. This ensures the internal consistency of
the valuation setup. We assume that the historical probability measure P required for
capital calculations coincides with the pricing measure Q, the discrepancy between P
and Q being left to model risk.

In order to focus on counterparty credit risk and XVA analysis, we assume through-
out the paper that the market risk of the bank is perfectly hedged by means of perfectly
collateralized back-to-back trades. Hence only the counterparty credit risk related cash
flows remain.

We assume that the reserve capital (RC) account of the bank is continuously reset
to its theoretical target CA level so that, much like with futures, the position of the
bank is reset to zero at all times, but it generates a trading loss-and-profit process L,
or loss process for brevity.

At least this holds until the default of the bank, modeled as a totally unpredictable
event calibrated to the bank CDS spread, which we view as the most reliable and
informative credit data regarding anticipations of markets participants about future
recapitalization, government intervention, etc.

Accounting for the bank default time τ , the time horizon of the model is τ̄ = τ ∧T,
where T is the final maturity of the portfolio. Technically, the contra-assets (CA)
process corresponds to the value of the counterparty credit risk related cash flows
posted by the bank prior its default time τ, whereas the contra-liabilities (CL) process
corresponds to the value of the counterparty credit risk related cash flows received by
the bank during its default resolution period starting at τ .

We denote by J = 1[0,τ) the survival indicator process of the bank. For any
left-limited process Y, we denote by ∆τY = Yτ − Yτ− the jump of Y at τ and by
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Y τ− = JY + (1− J)Yτ− the process Y stopped before time τ , so that

dYt = dY τ−
t + (−∆τY ) dJt, 0 ≤ t ≤ τ̄ . (2)

We denote by C and F the cumulative streams of counterparty credit and funding
cash flows related to the derivative portfolio of the bank. Hence counterparty de-
fault losses and funding expenditures contributing to CA correspond to Cτ− and Fτ−,
whereas (−∆τC) and (−∆τF) contribute to CL. Accordingly:

Lemma 5.1 and Theorem 5.1 in Albanese and Crépey (2016) (i) We have

CAt = Et
∫ τ̄

t
β−1
t βsdCτ−s + Et

∫ τ̄

t
β−1
t βsdFτ−s ,

CLt = Et
[
β−1
t βτ1{τ<T}(−∆τC)

]
+ Et

[
β−1
t βτ1{τ<T}(−∆τF)

]
,

CCRt = CAt − CLt = Et
∫ τ̄

t
β−1
t βsdCs.

(3)

(ii) The loss process L is a risk-neutral local martingale such that

βtdLt = d(βtCAt) + βt(dCτ−t + dFτ−t ), 0 ≤ t ≤ τ̄ , (4)

starting from some initial value L0 = z unknown but immaterial, as only the fluctua-
tions of L matter in the computations.

Since L fluctuates over time as of (4), economic capital EC = ECt(L) needs to
be earmarked by the bank in order to absorb exceptional losses (beyond the expected
level of the losses accounted for by reserve capital). Under the cost of capital pricing
approach of Albanese and Crépey (2016), derivative entry prices include, on top of the
valuation of the corresponding cash-flows, a KVA risk premium, devised as the cost of
a remuneration of shareholder capital at risk (SCR) at some hurdle rate h, i.e.

KVAt = hEt
∫ τ̄

t
e−

∫ s
t (ru+h)duECs(L)ds, t ∈ [0, τ̄ ], (5)

where ECs(L) is computed based on a 97.5% expected shortfall (ES) of
∫ s+1
s β−1

s βudLu
conditional on Gs∨{τ > (s+1)}, which we denote by ESt(L). The “+h” in the discount
factor in (5) reflects the fact that the KVA is loss-absorbing, hence part of EC, so that
shareholder capital at risk that needs to be remunerated reduces to SCR=EC−KVA.
As a further consequence, an increase of economic capital above ES may be required
in order to ensure the consistency condition KVA ≤ EC, i.e. EC − KVA = SCR ≥ 0.
This ends up in a fixed-point problem (5), where

ECt(L) = max(ESt(L),KVAt(L)), (6)

so that (5)-(6) result in a Lipschitz BSDE for the KVA process, shown to be well posed
in Albanese and Crépey (2016, Section 6).

All value and price processes are modeled as semimartingales in a càdlàg version.
We write x± = max(±x, 0) and

∫ b
a =

∫
(a,b] .
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3 Bilateral Trading Cash Flows

In this paper we assume that the bank is engaged in bilateral trading of a derivative
portfolio split into several netting sets corresponding to counterparties indexed by
i = 1, . . . , n, with default times τi and survival indicators J i = 1[0,τi). The bank is also
default prone, with default time τ and survival indicator J = 1[0,τ).

We suppose that all these default times are positive and admit a finite intensity.
In particular, defaults occur at any given G predictable stopping time with zero prob-
ability, so that such events can be ignored in all the computations.

3.1 Exposures at Defaults

Let MtMi
t be the mark-to-market of the i-th netting set, i.e. the trade additive risk-

neutral conditional expectation of future discounted promised cash flows, ignoring
counterparty credit risk and assuming risk-free funding. Let VMi

t denote the cor-
responding variation margin, counted positively when received by the bank. Hence

P it = MtMi
t −VMi

t (7)

is the net spot exposure of the bank to the i-th netting set. In addition to the variation
margin VMi

t that flows between them, the bank and the counterparty i post respective
initial margins PIMi and RIMi

t, respectively posted and received by the bank in some
segregated accounts. Finally, we denote by R and Ri the unsecured borrowing recovery
rate of the bank and of counterparty i.

In practice, there is a positive liquidation period, usually a few days, between the
default of a counterparty or the bank and the liquidation of their portfolio. The gap
risk of slippage of MtMi

t and of unpaid contractual cash flows during the liquidation
period is the motivation for the initial margins.

A positive liquidation period is explicitly introduced in Armenti and Crépey (2016)
and Crépey and Song (2016) (see also Brigo and Pallavicini (2014)) and involves in-
troducing the random variables

MtMi
τi+δt

+ δMtMi
τi+δt

−VMi
τi , (8)

where δt is the length of the liquidation period and δMtMi
τi+δt

is the accrued value of
all the cash flows owed by the counterparty of the bank during the liquidation period.

To alleviate the notation in this paper, we take the limit as δt→ 0 and approximate

MtMi
τi+δt

+ δMtMi
τi+δt

by M̂tM
i

τi , and therefore (8) by Qiτi = M̂tM
i

τi − VMi
τi , for a

suitable G-optional process M̂tM
i
. A related issue is wrong-way risk, i.e. the risk of

adverse dependence between the default exposures and the credit risk of the bank and
its counterparties. As illustrated in Crépey and Song (2016), this impact can also be
captured in the modelling of the Qiτi .

Lemma 3.1 The exposure of the bank to the default of each counterparty i = 1, . . . , n
is

Jτi−(1−Ri)(Qiτi − RIMi
τi)

+. (9)

The exposure of each counterparty i = 1, . . . , n to the default of the bank is

J iτ−(1−R)(Qiτ − PIMi
τ )−. (10)
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Proof. By symmetry, it is enough to prove (9). Let Ci = VMi + RIMi and

εi = (Qiτi − RIMi
τi)

+ = (M̂tM
i

τi − C
i
τi)

+.

When the counterparty i defaults:

• If εi = 0, meaning that M̂tM
i

τi ≤ C
i
τi , then:

– Either M̂tM
i

τi ≥ 0 and the ownership of an amount M̂tM
i

τi of collateral is
transferred to the bank,

– Or M̂tM
i

τi ≤ 0 and an amount (−M̂tM
i

τi) is paid by the bank to the liquida-
tor of the counterparty i, who keeps ownership of all its collateral.

In both cases, the bank gets M̂tM
i

τi ;

• Otherwise, i.e. if εi > 0, meaning that the overall collateral Ci of the counterparty
i does not cover the totality of its debt to the bank, then, at time τi, the ownership
of Ci is transferred in totality to the bank, which also recovers a fraction Ri of
εi.

Also accounting for the unwinding of the back-to-back hedge of the netting set i at the
time of liquidation of the counterparty i, the loss of the bank in case of default of the
counterparty i appears as (assuming τ ≥ τi)

M̂tM
i

τi − 1εi=0M̂tM
i

τi − 1εi>0(Ciτi +Riεi)

= 1εi>0(M̂tM
i

τi − C
i
τi −Riεi) = (1−Ri)εi.

As an immediate corollary to Lemma 3.1, denoting by δt a Dirac measure at time t:

Lemma 3.2 The cumulative stream of counterparty credit cash flows C satisfies, for
0 ≤ t ≤ τ̄ ,

dCt =
∑
i

(1−Ri)(Qiτi − RIMi
τi)

+δτi(dt)−
∑
i

J iτ−(1−R)(Qiτ − PIMi
τ )−δτ (dt)

dCτ−t =
∑
i

Jτi(1−Ri)(Qiτi − RIMi
τi)

+δτi(dt)

∆τC =
∑
i;τi=τ

(1−Ri)(Qiτi − RIMi
τi)

+δτi(dt)−
∑
i

J iτ−(1−R)(Qiτ − PIMi
τ )−δτ (dt).

(11)

3.2 Margining and Funding Schemes

Variation margin typically consists of cash that is re-hypothecable, meaning that re-
ceived variation margin can be reused for funding purposes, and is remunerated at OIS
by the receiving party. Initial margin typically consists of liquid assets deposited in a
segregated account, such as government bonds, which naturally pay coupons or other-
wise accrue in value. The poster of the collateral receives no compensation, except for
the natural accrual or coupons of its collateral.

The derivative portfolio strategy of the bank needs funding for raising variation
margin and initial margin that need to be posted as collateral. As happens in practice
in the current regulatory environment, the back-to-back market hedge of the derivative
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portfolio of the bank is assumed to be with other financial institutions and attracts
variation margin at zero threshold (i.e. is fully collateralized), so that the variation
margin posted by the bank on its back-to-back hedge is constantly equal to

∑
i J

iMtMi.
Hence, the bank posts

∑
i J

iMtMi as VM on the back-to-back hedge and receives∑
i J

iVMi as VM on client trades.
Moreover the bank can use reserve capital (and also economic capital, which will

be the topic of Sect. 5) as variation margin. Note that the marginal cost of capital for
using capital as a funding source for variation margin is nil, because when one posts
cash against variation margin, the valuation of the collateralized hedge is reset to zero
and the total capital amount does not change. If instead the bank were to post capital
as initial margin, the bank would record a “margin receivable” entry on its balance
sheet, which however cannot contribute to capital since this asset is too illiquid and
impossible to unwind without unwinding all underlying derivatives. Hence capital can
be used as VM, while IM must be borrowed entirely.

Under the continuous reset assumption of this paper, the amount RC of reserve
capital that can be used as VM coincides at all times with the theoretical CA value.
The cash held by the bank, whether borrowed or received as variation margin, is
deemed fungible across netting sets in a unique funding set. In conclusion,

(VM funding needs)t =
(∑

i

J itMtMi −
∑
i

J itVMi − CAt

)+
=
(∑

i

J itP
i
t − CAt

)+
(IM funding needs)t =

∑
i

J itPIMi
t.

(12)

We assume that the bank can invest at the OIS rate rt and obtain unsecured funding
at rate (rt+λt) for funding VM and (rt+ λ̄t) for funding IM, via two bonds of different
seniorities issued by the bank, with respective recoveries R and R̄. Given our standing
valuation setup, it must hold that

λ = (1−R)γ, λ̄ = (1− R̄)γ, (13)

where γ is the risk-neutral default intensity process of the bank. The reason why a
blended spread λ̄ < λ may arise for the funding of IM is the topic of Sect. 6.

The regulator says quite explicitly that the bank capital (reserve capital in par-
ticular) cannot be seen increasing as a consequence of the sole deterioration of the
bank credit, all else being equal (see Albanese and Andersen (2014, Section 3.1)). In
particular regulators decided that the CVA should be computed unilaterally as UCVA,
given in the present setup as (cf. (9))

UCVAt = Et
∑

t<τi<T

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+, 0 ≤ t ≤ τ̄ , (14)

as opposed to a first-to-default CVA with summation over t < τi ≤ τ̄ . We assume
that the bank, in order to comply with this regulatory requirement, buys insurance
from some risk-free third-party yielding an amount UCVAτ− at time τ in exchange of
a continuously paid insurance fee JtγtUCVAtdt. As we will see below, this implies that
an amount UCVAt sits in its RC account at any point in time (under our continuous
reset assumption RC=CA), in agreement with the regulatory prescription.

We denote by dµt = γtdt+ dJt the compensated jump-to-default martingale of the
bank.
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Lemma 3.3 The cumulative stream of funding cash flows F satisfies, for 0 ≤ t ≤ τ̄ ,

dFt =
(
(1−R)(

∑
i

J it−P
i
t− − CAt−)+ + (1− R̄)(

∑
i

J it−PIMi
t−) + UCVAt−

)
dµt

dFτ−t =
(∑

i

J itP
i
t − CAt

)+
λtdt+ (

∑
i

J itPIMi
t)λ̄tdt+ UCVAtγtdt

−∆τF = (1−R)
(∑

i

J iτ−P
i
τ− − CAτ−

)+
+ (1− R̄)(

∑
i

J iτ−PIMi
τ−) + UCVAτ−.

(15)

Proof. In view of the above description, we have

dFτ−t = (VM funding needs)tλtdt+ (IM funding needs)tλ̄tdt+ UCVAtγtdt

−∆τF = (1−R)(VM funding needs)τ− + (1− R̄)(IM funding needs)τ− + UCVAτ−,

i.e.

dFt = (VM funding needs)t−(λtdt+ (1−R)dJt)

+ (IM funding needs)t−(λ̄tdt+ (1− R̄)dJt) + UCVAt−(γtdt+ dJt).

Hence, given (13),

dFt =
(
(1−R)(VM funding needs)t−

+ (1− R̄)(IM funding needs)t− + UCVAt−
)
dµt.

In view of (12), this yields (15).

4 Bilateral Trading XVA Formulas and Loss Process

We work under the technical assumption that the martingales

Et
[
βτi1{τi<T}(1−Ri)(Q

i
τi − RIMi

τi)
+
]
, i = 1, . . . , n

do not jump at time τ . This is a mild regularity assumption intended to ensure that:

Lemma 4.1 For t ≤ τ̄ :

UCVAt = Et
[ ∑
{i; t<τi<τ̄}

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+ + β−1

t βτ1{t<τ<T}UCVAτ−

]
. (16)

Proof. Recalling the definition (14) of UCVA, we have, on {t ≤ τ} :

Et[βτ1{t<τ<T}UCVAτ−] = Et[βτ1{t<τ<T} lim
s↑↑τ

UCVAs]

= Et
[
βτ1{t<τ<T} lim

s↑↑τ
Es

∑
{i; s<τi<T}

β−1
s βτi(1−Ri)(Qiτi − RIMi

τi)
+
]

= Et
[
βτ1{t<τ<T}

∑
i

lim
s↑↑τ

(
J isβ

−1
s Es

[
βτi1{τi<T}(1−Ri)(Q

i
τi − RIMi

τi)
+
])]

= Et
[
βτ1{t<τ<T}

∑
i

J iτ−β
−1
τ Eτ−

[
βτi1{τi<T}(1−Ri)(Q

i
τi − RIMi

τi)
+
]]

= Et
[
1{t<τ<T}

∑
i

J iτ−Eτ
[
βτi1{τi<T}(1−Ri)(Q

i
τi − RIMi

τi)
+
]]

= Et
∑

{i; t<τ≤τi<T}

βτi(1−Ri)(Qiτi − RIMi
τi)

+,

8



where our technical assumption was used in the next-to-last equality. As a consequence,

Et
∑

{i; t<τi<τ̄}

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+ + Et

[
β−1
t βτ1{t<τ<T}UCVAτ−

]
= Et

∑
{i; t<τi<T}

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+ = UCVAt,

by definition (14) of UCVA.

Let

MVAt = Et
∫ τ̄

t
β−1
t βsλ̄s

∑
i

J isPIMi
sds, 0 ≤ t ≤ τ̄ . (17)

We denote by Lp the space of ·p-integrable processes over [0, τ̄ ], for any p ≥ 1.

Theorem 4.1 Assuming that r is bounded from below and that the processes r, λ,
UCVA, MVA and λ(

∑
i J

iP i −UCVA−MVA)+ are in L2:
(i) Contra-assets are given as

CA = UCVA + FVA + MVA, (18)

meant in the sense of the following backward stochastic differential equation (BSDE)
for the CA process:

CAt = Et
∑

{i; t<τi<T}

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+

︸ ︷︷ ︸
UCVAt

+Et
∫ τ̄

t
β−1
t βsλ̄s

∑
i

J isPIMi
sds︸ ︷︷ ︸

MVAt

+ Et
∫ τ̄

t
β−1
t βsλs

(∑
i

J isP
i
s − CAs

)+
ds︸ ︷︷ ︸

FVAt

, 0 ≤ t ≤ τ̄ .
(19)

This BSDE is well-posed in L2 and it therefore uniquely defines a square integrable
contra-assets value process CA.
(ii) Contra-liabilities are given as

CL = FTDDVA + CVACL + FDA + MDA, (20)

namely

CLt =
∑
i

Et
[
β−1
t βτi1{t<τ≤τi∧T}(1−R)(Qiτ − PIMi

τ )−
]

︸ ︷︷ ︸
FTDDVAt=

∑
i FTDDVAi

t

+ Et
∑

{i; τ≤τi<T}

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+

︸ ︷︷ ︸
CVACL

t

+ Et
[
β−1
t βτ1{τ<T}(1−R)

(∑
i

J iτ−P
i
τ− − CAτ−

)+]
︸ ︷︷ ︸

FDAt=FVAt

+ Et
[
β−1
t βτ1{τ<T}(1− R̄)

(∑
i

J iτ−PIMi
τ−

)+]
︸ ︷︷ ︸

MDAt=MVAt

, 0 ≤ t ≤ τ̄ .

(21)
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(iii) The value of counterparty credit risk to the bank as a whole is given by

CCRt =
∑
i

Et
[
β−1
t βτi1{t<τi≤τ̄}(1−Ri)(Q

i
τi − RIMi

τi)
+
]

︸ ︷︷ ︸
FTDCVAt=

∑
i FTDCVAi

t

−
∑
i

Et
[
β−1
t βτi1{t<τ≤τi∧T}(1−R)(Qiτ − PIMi

τ )−
]

︸ ︷︷ ︸
FTDDVAt=

∑
i FTDDVAi

t

, 0 ≤ t ≤ τ̄ ,
(22)

i.e. we have

CA = FTDCVA− FTDDVA︸ ︷︷ ︸
CCR

+ FTDDVA + CVACL + FDA + MDA︸ ︷︷ ︸
CL

,
(23)

where the different terms are detailed in (19), (21) and (22).

(iv) The loss process L satisfies the following forward SDE on [0, τ̄ ]:

L0 = z (the accrued trading loss of the bank at time 0) and, for t ∈ (0, τ̄ ],

dLt = dCAt +
∑
i

Jτi(1−Ri)(Qiτi − RIMi
τi)

+δτi(dt)

+
(
λt
(∑

i

J itP
i
t − CAt

)+
+ λ̄t

∑
i

J itPIMi
t + γtUCVAt − rtCAt

)
dt.

(24)

(v) The all-inclusive XVA add-on to the entry price for a new deal, which we call funds
transfer price (FTP), appears as

FTP = ∆UCVA + ∆FVA + ∆MVA︸ ︷︷ ︸
∆CA

+ ∆KVA︸ ︷︷ ︸
Risk premium

= ∆FTDCVA−∆FTDDVA︸ ︷︷ ︸
∆CCR

+ ∆FTDDVA + ∆CVACL + ∆FDA + ∆MDA︸ ︷︷ ︸
∆CL

+ ∆KVA︸ ︷︷ ︸
Risk premium

,

(25)

computed on an incremental run-off basis, where all the underlying XVA metrics as
well as the processes L to be used as input data in the economic capital and KVA
computations are defined as in parts (i) through (iv) relative to the portfolios with and
without the new deal.

Proof. (i) By the first line in (3) and Lemmas 3.2–3.3, the CA process satisfies, for
t ∈ [0, τ̄ ],

CAt = Et
∑

{i; t<τi<τ̄}

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+

+ Et
∫ τ̄

t
β−1
t βs

(
λs
(∑

i

J isP
i
s − CAs

)+
+ λ̄s(

∑
i

J isPIMi
s) + γsUCVAs

)
ds.

(26)
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By the martingale property of dµt = γdt+ dJt, this is equivalent to

CAt = Et
∑

{i; t<τi<τ̄}

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+ + Et

[
β−1
t βτ1{t<τ<T}UCVAτ−

]
+ Et

∫ τ̄

t
β−1
t βsλ̄s

(∑
i

J isPIMi
s

)
ds+ Et

∫ τ̄

t
β−1
t βsλs

(∑
i

J isP
i
s − CAs

)+
ds, 0 ≤ t ≤ τ̄ .

(27)

But Lemma 4.1 implies that the first line in (27) is UCVAt, so that (27) is equivalent
to the CA BSDE (19). Moreover, since (UCVA + MVA) is an exogenous process in L2,
the CA BSDE (19) in L2 is equivalent to defining a CA process through (18), for an
FVA process in L2 defined in the first place through the following BSDE:

βtFVAt = Et
∫ τ̄

t
βsλs

(∑
i

J isP
i
s −UCVAs −MVAs − FVAs

)+
ds, 0 ≤ t ≤ τ̄ . (28)

As a result, in order to prove (i), we need only to show that the FVA BSDE (28) is well-
posed in L2 under the assumptions of the theorem. Let Xt =

∑
i J

i
tP

i
t−UCVAt−MVAt.

In terms of the coefficient

gt(y) = λt

(
Xt − y

)+
− rty, y ∈ R, (29)

the FVA BSDE (28) is rewritten as

FVAt = Et
∫ τ̄

t
gs(FVAs)ds, 0 ≤ t ≤ τ̄ . (30)

For any real y, y′ ∈ R and t ∈ [0, τ̄ ], we have(
gt(y)− gt(y′)

)
(y − y′) = −rt(y − y′)2 + λt(y − y′)

((
Xt − y

)+ − (Xt − y′
)+)

≤ −rt(y − y′)2 ≤ C(y − y′)2,

for some constant C (having assumed r bounded from below and recalling λ ≥ 0),
so that the coefficient g satisfies the so-called monotonicity condition. Moreover, for
|y| ≤ ȳ, we have:

|g·(y)− g·(0)| = λ
(
X − y

)+ − ry − λX+ ≤ (λ+ |r|)ȳ.

Hence, assuming that r, λ and λ
(∑

i J
iP i − UCVA −MVA

)+
= λX+ are in L2, the

following integrability conditions hold:

sup
|y|≤ȳ

|g·(y)− g·(0)| ∈ L1, for any ȳ > 0, and g·(0) ∈ L2.

Therefore, by application of the general filtration BSDE results of Kruse and Popier
(2016, Sect. 5), the FVA BSDE (30) is well-posed in L2, where well-posedness includes
existence, uniqueness and comparison.
(ii) follows from the second line in (3) and Lemmas 3.2–3.3.
(iii) The third line in (3) and Lemmas 3.2–3.3 yield (22), detailed as (23).
(iv) follows from (4) and Lemmas 3.2–3.3.
(v) immediately follows from (i) through (iv) by application of the generic formula (1).
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Note that our back-to-back hedge setup results in a direct derivation of the CA BSDE,
as opposed to, in most of the previous XVA BSDE literature, a CA BSDE derived in
two steps, as the difference between a linear equation for the mark-to-market of the
portfolio ignoring counterparty risk and funding costs, minus the BSDE for the “risky
value” of the portfolio.

We emphasize that the formulas (3) and in turn Theorem 4.1(i)–(iv) are derived
from a pure valuation perspective on CA. In most other former XVA references in the
literature, XVA equations are based on hedging arguments. The reason is that previous
XVA works were not considering KVA yet. Under our approach, the KVA is the risk
premium for the market incompleteness related to the impossibility for the bank of
replicating counterparty default losses. Hence, for consistency, our KVA treatment
requires a pure valuation (as opposed to hedging) view on CA.

In Theorem 4.1, the CA process (similar comments apply to the FVA process) is
viewed as the solution to a BSDE through which it depends on all the other processes
in the equation, including itself. This might seem in contradiction with our standing
linear valuation rule or with the additive appearance of the “formula’ (3). The two
points of view are in fact equally valid. The reconciliation between the two comes
from the fact that CA is together the value process of contra-assets, by definition, and
the amount RC in the reserve capital account, under our continuous reset assumption
RC=CA. As RC is a deduction to the VM funding needs, which appear in the CA
equation, it follows that CA depends on itself. Hence we can see CA either from
a linear perspective, as conditional expectation of the future cash flows that it is
valuing, RC (i.e. CA itself) included, or as a solution to a BSDE. Of course technically
(mathematically and numerically) one needs to solve a BSDE.

The CA BSDE (19) is independent of the initial condition L0 = z, which therefore
does not affect CA, nor a KVA as of (5). Hence the value of the unknown constant z
is immaterial in all XVA computations.

Without the regularity assumption made at the beginning of Sect. 4, we would end
up with, instead of UCVAt in CAt in (19), the expression given by the right-hand side
in (16) .

4.1 Connection with Duffie and Huang (1996)’s Formula

The formula (22) for the valuation of counterparty credit risk is derived in Duffie and
Huang (1996) in the limit case of a perfect market (complete counterparty credit risk
market without trading restrictions). Theorem 4.1(iii) extends the validity of this
formula for the valuation (CCR) of counterparty credit risk from the point of view of
the bank of the whole in our incomplete market setup.

Formula (22) is symmetrical, i.e. consistent with the law of one price, in the sense
that each term (FTDCVAi − FTDDVAi) in (22) corresponds to the negative of the
analogous quantity considered from the point of view of the counterparty i. It only
involves the first-to-default CVAs and DVAs, where the counterparty default losses are
only considered until the first occurrence of a default of the bank or its counterparty in
the deal. This is consistent with the fact that later cash flows will, as first emphasised
in Duffie and Huang (1996), Bielecki and Rutkowski (2002) and Brigo and Capponi
(2008), not be paid in principle.

Since the presence of collateral has a direct reducing impact on FTDCVA/DVA,
this formula may give the impression that collateralization achieves a reduction in
counterparty credit risk at no cost to either the bank or the clients. However, in the
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present incomplete market setup, the value CCR from the point of view of the bank as a
whole ignores the misalignement of interest between the shareholders and the creditors
of a bank. Theorems 4.1(i) and (ii) give explicit decompositions of the respective cost of
counterparty credit risk to shareholders (CA) and of the wealth transfer (CL) triggered
from the shareholders to the creditors by the impossibility for the bank to hedge its
own jump-to-default exposure. Due to the latter and to the impossibility for the bank
to replicate counterparty default losses, these contra-liabilities (CL) as well as the cost
of capital (KVA) are material to shareholders and need to be reflected in entry prices
on top of the fair valuation (CCR) of counterparty credit risk (cf. (1)).

5 Using Economic Capital as Variation Margin

In this section we account for the FVA reduction provided by the possibility for a bank
to post economic capital, on top of reserve capital already included in the above, as
variation margin. Note that, in principle, uninvested capital of the bank could be used
for VM as well. But, since the amount of uninvested capital is not known and could
as well be zero in the future, capital is conservatively taken in FVA computations as
(RC+EC).

The quantity EC = ECt(L) corresponds to the amount of economic capital re-
quired by the loss process L (cf. (5)-(6) and Albanese and Crépey (2016, Theorem
6.1)). Accounting for the use of EC as VM, the VM funding needs are reduced from
(
∑

i J
iP i−CA)+to (

∑
i J

iP i−EC(L)−CA)+ in (12). Lemma 3.3 is still valid provided
one replaces (

∑
i J

iP i − CA)+ by (
∑

i J
iP i − EC(L)− CA)+ in (15).

As a consequence, instead of an exogenous CA value process as of (19) feeding the
dynamics (24) for L, we obtain the following FBSDE system, made of a forward SDE
for L coupled with a backward SDE for the CA value process:

L0 = z and, for t ∈ (0, τ̄ ],

dLt = dCAt +
∑
i

Jτi(1−Ri)(Qiτi − RIMi
τi)

+δτi(dt) (31)

+
(
λt
(∑

i

J itP
i
t − ECt(L)− CAt

)+
+ λ̄t

∑
i

J itPIMi
t + γtUCVAt − rtCAt

)
dt,

where

CAt = Et
∑

t<τi<T

β−1
t βτi(1−Ri)(Qiτi − RIMi

τi)
+

︸ ︷︷ ︸
UCVAt

+Et
∫ τ̄

t
β−1
t βsλ̄s

∑
i

J isPIMi
sds︸ ︷︷ ︸

MVAt

+ Et
∫ τ̄

t
β−1
t βsλs

(∑
i

J isP
i
s − ECs(L)− CAs

)+
ds︸ ︷︷ ︸

FVAt

, 0 ≤ t ≤ τ̄ .
(32)

However, the results of Crépey, Élie, and Sabbagh (2016) show that, accounting
for the use of economic capital as variation margin, Theorem 4.1 is still valid (at least
for λ bounded) provided one replaces (

∑
i J

iP i−CA)+ by (
∑

i J
iP i−EC(L)−CA)+

in all the formulas.
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6 Specialist Lending of Initial Margin

If IM is unsecurely funded by the bank, then λ̄ = λ. However, instead of an unsecured
IM funding scheme, one can consider a more efficient scheme where initial margin is
funded through a specialist lender that lends only IM and, in case of default of the
bank, receives back the portion of IM unused to cover losses.

Hence the exposure of the specialist lender to the default of the bank is (1 −
R)
∑

i J
i
τ

(
(Qiτ )−∧PIMi

τ

)
. Recalling the risk-neutral valuation condition λ = (1−R)γ in

(13), where γ is the risk-neutral default intensity of the bank, the ensuing instantaneous
IM funding charge for the bank is, for t ∈ [0, τ̄ ],

γt(1−R)
∑
i

J it
(
(Qit)

− ∧ PIMi
t

)
= λt

∑
i

J it
(
(Qit)

− ∧ PIMi
t

)
(assuming here for simplicity G predictable processes Qi and PIMi).

By identification with the general form λ̄t
∑

i J
i
tPIMi

t of IM costs in this paper, this
specialist lending scheme corresponds to

λ̄t =

∑
i J

i
t

(
(Qit)

− ∧ PIMi
t

)∑
i J

i
tPIMi

t

λt ≤ λt.

In fact, given the very conservative (such as 99% or more) levels of IM prescribed by
the regulation for bilateral transactions in the coming years, such a blended spread
λ̄t is typically much smaller than the unsecured funding spread λ. Equivalently, the
blended recovery rate R̄ in (13), i.e.

R̄t = (1− λ̄t
λt

) +
λ̄t
λt
R

(noting that everything in the paper can be readily extended to a G predictable recovery
rate process R̄), is much larger then the unsecured borrowing recovery rate R.

Note that, for the argument to be valid, the IM lender does not need to anticipate
the nature of future trades, which in the case of a market maker, such as a bank, would
be impossible. The argument is robust and independent of future dealings. The IM
lender simply needs to know (which is public regulatory information) that the collateral
posted by the bank is supposed to be sufficient to cover losses in the 99% of the cases,
no matter what trades are entered in the future.

Such an IM funding policy is not a violation of pari passu rules, just as repo or
mortgages are not. It is just a form of collateralised lending, which does not transfer
wealth from senior creditors in the baseline case.

For similar ideas regarding VM, see Albanese, Brigo, and Oertel (2013). However,
such funding schemes are much more difficult to implement for VM because VM is far
larger and more volatile than IM.

7 KVA Is Not a CET1 Deduction

Despite what the “valuation adjustment” terminology fallaciously induces one to be-
lieve, our KVA (better named risk margin) as of (5) is not part of the value of the
derivative portfolio, but only part of entry prices as a risk premium. As risk margin
is retained earnings meant to be released to bank shareholders, the KVA in our sense
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does not belong to the balance-sheet as a liability, at least not statically as part of
contra-assets. But, in some sense, our KVA is a measure of the fluctuations of the
balance sheet (i.e. of the process (−L), see Albanese and Crépey (2016, Section 4) for
more details).

By contrast, in Green et al. (2014) and Green and Kenyon (2016), and discussed
in some theoretical actuarial literature (see Salzmann and Wüthrich (2010, Sect. 4.4)),
the KVA is instead treated as part of the value of the derivative portfolio, so that there
is a single account for reserve capital and risk margin altogether and a further KVA
contra-asset.

In our notation, the KVA in their sense would correspond to the value of an addi-
tional hECtdt cash-flow in the loss process (24). But the nature and meaning of this
cash-flow are not clear. As the KVA is loss-absorbing, hence part of EC, shareholder
capital at risk reduces to SCR=EC−KVA, so that putting h(ECt−KVAt)dt instead of
hECtdt would look a bit better. But then the KVA itself would appear in the modified
loss process (24), making the resulting CA BSDE intractable.

Moreover, based on such premises, one is forced to focus on regulatory instead of
economic capital in KVA computations. Otherwise, forward starting one-year-ahead
fluctuations of the KVA should be simulated for capital and in turn KVA calculation,
which would both involve a conceptual circularity and be intractable numerically. Us-
ing regulatory instead of economic capital is motivated by practical considerations but
is less self-consistent. It loses the connection, established from structural balance-sheet
considerations in Albanese and Crépey (2016, Section 4), whereby the right KVA in-
put should be the contra-asset mis-hedge loss process L (cf. (4)-(5)). This connection
is what makes the KVA and CA equations, hence the XVA problem as a whole, a
self-contained and well-posed problem.

Remark 7.1 For KVA computations entailing capital projections over decades, an
equilibrium view based on Pillar II economic capital (EC) is more attractive than
the ever-changing Pillar I regulatory charges supposed to approximate it (see Pykhtin
(2012)). However, Pillar I regulatory capital requirements could be incorporated into
our approach, if desired, by replacing ES by its maximum with the regulatory capital
pertaining to the portfolio.

In addition, Green et al. (2014) and Green and Kenyon (2016) derive their KVA-
inclusive CA equation based on a replication argument, whereas the main motivation
for capital requirements is that credit markets are very incomplete and hedging is not
possible.

Example 7.1 The fact that regulators require CVA reserve capital to be held reflects
the fact that there are no CDS contracts for most names and as a consequence there
is credit risk which cannot be hedged.

The core function of banks in the economy is to take credit risk notwithstanding this
fundamental incompleteness and, for this purpose, regulators require capital. From
this point of view, deriving a KVA equation from replication arguments seems self-
contradictory. A KVA-inclusive CA equation similar to the ones in Green et al. (2014)
or Green and Kenyon (2016) is derived in an expectation setup in Elouerkhaoui (2016).
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8 The XVA Algorithm

Under our analysis in this paper, prices of individual trades are no longer computable in
isolation. Instead, they can only be computed incrementally with respect to existing
endowment. This is a major innovation in mathematical finance, which so far has
mainly revolved on option pricing theory for individual payoffs in isolation. There are
antecedents in this direction in the XVA literature, but the new KVA dimension pushes
this logic to an unprecedented level. By current industry practice, XVA desks are the
first consulted desks in all major trades, whose pros and cons are assessed in terms of
incremental XVAs (incremental KVA in particular).

This portfolio view raises computational and modeling challenges. Our XVA ap-
proach can be implemented by means of nested Monte Carlo simulations for approxi-
mating the loss process L required as input data in the KVA computations. Contra-
assets (and contra-liabilities if wished) are computed at the same time.

Since one of our goals in the numerics is to emphasize the impact on the FVA of
the funding sources provided by reserve capital and economic capital, we consider the
FBSDE (31)–(32) which accounts for the use of EC (on top of RC) as VM. Let

FVA
(0)
t = Et

∫ τ̄

t
β−1
t βsλs

(∑
i

J isP
i
s

)+
ds, (33)

which corresponds to an FVA that accounts only for the re-hypothecation of the varia-
tion margin received on hedges, but ignores the FVA deductions reflecting the possible
use of reserve and economical capital as VM. Based on nested simulated paths, we
compute UCVA, MVA and FVA(0) at all nodes of the primary simulation grid. We
consider the following Picard iteration in the search for the solution to (31)–(32):
L(0) = z, CA(0) = UCVA + FVA(0) + MVA with FVA(0) as of (33), KVA(0) = 0 and,
for k ≥ 1,

L
(k)
0 = z and, for t ∈ (0, τ̄ ],

dL
(k)
t = dCA

(k−1)
t dt− rtCA

(k−1)
t dt+

∑
i

Jτi(1−Ri)(Qiτi − RIMi
τi)

+δτi(dt)

+ λt

(∑
i

J itP
i
t −max

(
ESt(L

(k−1)),KVA
(k−1)
t

)
− CA

(k−1)
t

)+
dt

+ λ̄t
∑
i

J itPIMi
tdt+ γtUCVAtdt

CA
(k)
t = UCVAt + FVA

(k)
t + MVAt, where FVA

(k)
t =

Et
∫ τ̄

t
β−1
t βsλs

(∑
i

J isP
i
s −max

(
ESs(L

(k)),KVA(k−1)
s

)
− CA(k−1)

s

)+
ds

KVA
(k)
t = hEt

∫ τ̄

t
e−

∫ s
t (ru+h)du max

(
ESs(L

(k)),KVA(k−1)
s

)
ds.

(34)
Controlling this iteration for establishing the convergence of (L(k),CA(k),KVA(k)) to
the solution (L,CA,KVA) of (31)-(32) and (5)-(6) is challenging due to the terms of
the form ESt(L). This convergence is studied in Crépey et al. (2016).

Numerically, one iterates (34) as many times as is required to reach a fixed point
within a preset accuracy. In the case studies we considered, one iteration (k = 1) was
found sufficient. In other words, the KVA is computed based on the linear formula
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(5) with ESs(L
(1)) instead of ECs(L) there and a refined FVA is obtained as a value

FVA0 ≈ FVA
(1)
0 accounting for the use of reserve capital and economic capital as VM.

A second iteration did not bring significant change, as:

• In (31)-(32), the FVA feeds into EC only through FVA volatility and EC feeds
into FVA through a capital term which is typically not FVA dominated.

• In (5)-(6), in most cases as in Figure 2, we have that EC = ES. The inequality
only stops holding when the hurdle rate h is very high and the term structure of
EC starts very low and has a sharp peak in a few years, which is quite unusual
for a portfolio held on a run-off basis, as considered in XVA computations, which
tends to amortize in time.

It could be that particular portfolios and parameter choices would necessitate two or
more iterations. We did not encounter such situations and did not try to build artificial
ones.

However, going even once through (34) necessitates the conditional risk measure
simulation of ESt(L

(1)). On realistically large portfolios, some approximation is re-
quired for the sake of tractability. Namely, the simulated paths of L(1) are used for
inferring a deterministic term structure

ES(1)(t) ≈ ESt(L
(1)) (35)

of economic capital, obtained by projecting in time instead of conditioning with respect
to Gt in ES, i.e. taking the 97.5% expected shortfall of

∫ s+1
s β−1

s βudLu conditional
on {τ > (s + 1)} instead of, in principle, Gs ∨ {τ > (s + 1)} (see the explanation
following (5)). Simulating the full-flesh conditional expected shortfall process would
involve not only nested, but doubly-nested Monte Carlo simulation, because of the
conditional one-year-ahead CA(0) fluctuations that are part of the conditional one-
year-ahead fluctuations of the loss process L(1).

Note that, if a corporate holds a bank payable, it typically has an appetite to
close it, receive cash, and restructure the hedge otherwise with a par contract (the
bank would agree to close the deal as a market maker, charging fees for the new
trade). Because of this natural selection, a bank is mostly in the receivables in its
derivative business with corporates. Hence, the tail-fluctuations of its loss process
L are mostly driven by the counterparty default events rather than by the volatility
of the underlying market exposure. As a consequence, working with a deterministic
term structure approximation ES(1)(t) of economic capital should be acceptable. If,
by exception, the derivative portfolio of a bank is mostly in the payables, then all the
XVA numbers are small and matter much less anyway.

Remark 8.1 A similar argument is sometimes used to defend a symmetric FVA (or
SFVA) approach, such as, instead of FVAt in (19):

SFVAt = Et
∫ τ̄

t
β−1
t βsλ̃s

(∑
i

J isP
i
s

)
ds, 0 ≤ t ≤ τ̄ , (36)

for some VM blended funding spread λ̃t (cf. Piterbarg (2010), Burgard and Kjaer
(2013) and the discussion in Andersen et al. (2016)). This explicit, linear SFVA
formula can be implemented by standard (non-nested) Monte Carlo simulations. For
a suitably chosen blended spread λ̃t, the equation yields reasonable results in case of a
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typical bank portfolio dominated by unsecured receivables. However, in the case of a
portfolio dominated by unsecured payables, this equation could yield a negative FVA,
i.e. an FVA benefit, proportional to the own credit spread of the bank, which is a not
acceptable from a regulatory point of view.

9 Numerical Results

To illustrate our XVA methodology, we present two XVA case studies on fixed-income
and foreign-exchange portfolios. Toward this end we use the GARCH-type market and
credit portfolio models of Albanese, Bellaj, Gimonet, and Pietronero (2011) calibrated
to the relevant market data.

We use nested simulation with primary scenarios and secondary scenarios generated
under the risk neutral measure Q calibrated to derivative data using broker datasets
for derivative market data.

All the computations are run using a 4-socket server for Monte Carlo simulations,
Nvidia GPUs for algebraic calculations and Global Valuation Esther as simulation
software. Using this super-computer and GPU technology the whole calculation takes
a few minutes for building the models, followed by a nested simulation time in the
order of about an hour for processing a billion scenarios on a real-life bank portfolio.

We assume a hurdle rate h = 10.5% and no variation or initial margins on the
portfolio (but perfect variation-margining on the portfolio back-to-back hedge). In
particular, the MVA numbers are all equal to zero and hence not reported in the
tables below. We take Qi = P i in all the counterparty credit exposures (9)-(10).

9.1 Toy Portfolio Results

We first consider a portfolio of ten USD currency fixed-income swaps depicted in Table
1, on the date of 11 January 2016. The nominal of each swap is 104. The swaps are
traded with four counterparties i = 1, . . . , 4, with 40% recovery rate and credit curves
as of Figure 1.

We use 20,000 primary scenarios up to 30 years in the future run on 54 underlying
time point with 1,000 secondary scenarios starting from each primary simulation node,
which amounts to a total of 20, 000× 54× 1, 000 = 1,080 million scenarios. In this toy
portfolio case the whole calculation takes roughly ten minutes to run, including two to
three minutes for building the pre-calibrated market and credit models.

The corresponding XVA results are displayed in the left panel of Table 2. Since the
portfolio is not collateralized, its UCVA is quite high as compared with the nominal
(104) of each swap. But its KVA is even higher. Note that given our deterministic
term structure approximation (35) for expected shortfalls, the computation of the KVA
reduces to a deterministic time-integration, which is why there is no related standard

error in Table 2. The number FVA
(0)
0 , accounting only for re-hypothecation of variation

margin received on hedges, amounts to $73.87. However, if we consider the additional
funding sources due to economic capital and reserve capital, we arrive at an FVA

figure of FVA
(1)
0 =$3.87 only. The FTDCVA and FTDDVA metrics, whose difference

corresponds to the fair valuation CCR of counterparty credit risk (cf. Theorem 4.1(iii)),
are also shown for comparison.

The right panel of Table 2 shows the incremental XVA results when the fifth
(resp. ninth) swap in Table 1 is last added in the portfolio. Note that, under an
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Mat. Receiver Rate Payer Rate i
10y Par 6M LIBOR 3M 3
10y LIBOR 3M Par 6M 2
5y Par 6M LIBOR 3M 2
5y LIBOR 3M Par 6M 3

30y Par 6M LIBOR 3M 2
30y LIBOR 3M Par 6M 1
2y Par 6M LIBOR 3M 1
2y LIBOR 3M Par 6M 4

15y Par 6M LIBOR 3M 1
15y LIBOR 3M Par 6M 4

Table 1: Toy portfolio of swaps (the
nominal of each swap is $104).

Figure 1: Credit curves of the bank and its
four conterparties.

incremental run-off XVA methodology, introducing financial contracts one after the
other in one or the reverse order in the portfolio at time 0 would end-up in the same
aggregated incremental FTP amounts for the bank, equal to its “portfolio FTP” (1),
but in different FTPs for each given contract and counterparty.

Interestingly enough, all the incremental XVAs of Swap 9 (and also the incremental
FVA of Swap 5) are negative. Hence, Swap 9, when added last, is XVA profitable to
the portfolio, meaning that a price maker should be ready to enter the swap for less
than its mark-to-market value, assuming it is already trading the rest of the portfolio:
the corresponding FTP amounts to $-85.82, versus $202.87 in the case of Swap 5.

$Value SE

UCVA0 471.23 0.46%

FVA
(0)
0 73.87 1.06%

FVA0 3.87 4.3%

KVA0 668.83 N/A

FTDCVA0 372.22 0.46%

FTDDVA0 335.94 0.51%

Swap 5 Swap 9

∆UCVA0 155.46 -27.17

∆FVA
(0)
0 -85.28 -8.81

∆FVA0 -80.13 -5.80

∆KVA0 127.54 -52.85

∆FTDCVA0 98.49 -23.83

∆FTDDVA0 122.91 -80.13

Table 2: Toy portfolio. Left: XVA values and standard relative errors (SE). Right:
Respective impacts when Swaps 5 and 9 are added last in the portfolio.

9.2 Large Portfolio Results

We now consider a representative portfolio with about 2,000 counterparties, 100,000
fixed income trades including swaps, swaptions, FX options, inflation swaps and CDS
trades.

We use 20,000 primary scenarios up to 50 years in the future run on 100 underlying
time points, with 1,000 secondary scenarios starting from each primary simulation
node, which amounts to a total of two billion scenarios. Using super-computer and
GPU technologies, the whole calculation takes about 2 hours.

Table 3 shows the XVA results for the large portfolio. The FVA is much smaller
than the KVA, especially after accounting for the economic and reserve capital funding
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XVA $Value

UCVA0 242 M

FVA
(0)
0 126 M

FVA0 62 M

KVA0 275 M

FTDCVA 194 M

FTDDVA 166 M

Table 3: XVA values for the large portfolio.

sources. The KVA amounts to $275 M, which makes it the greatest of the XVA
numbers. Figure 2 shows the term structure of economic capital along with the term
structure of the KVA obtained by a deterministic term structure approximation ES(1)

as of (35) for economic capital and by the linear KVA formula (5) with ES(1) instead
of EC there. Such a term structure of economic capital, with a starting hump followed
by a slow decay after 2 or 3 years, is rather typical of an investment bank derivative
portfolio assumed held on a run-off basis until its final maturity, where the bulk of the
portfolio consists of trades with 3y to 5y maturity. In relation with the second point
made after (34), note that the KVA computed by the linear formula (5) based on this
term structure of economic capital is below the latter at all times.

The funding needs reduction achieved by EC and RC = CA = UCVA+FVA is also
shown in Figure 3 by the FVA blended curve. This is the FVA funding curve which,
whenever applied to the FVA computed neglecting the impact of economic and reserve
capital, gives rise to the same term structure for the forward FVA as the calculation
carried out with the CDS curve λ(t) of the bank as the funding curve but accounting
for the economic and reserve capital funding sources. This blended curve is often in-
ferred by consensus estimates based on the Markit XVA service. However, here it is
computed from the ground up based on full-fledged capital projections.

Figure 2: Term structure of economic
capital compared with the term struc-
ture of KVA.

Figure 3: FVA blended funding curve
computed from the ground up based on
capital projections.

10 Conclusions

To conclude this paper we put its main technical insights in perspective with the
existing XVA literature.

Theorem 4.1 yields a complete specification of all the XVA metrics and of the loss
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process L required as input data in the KVA computations, in the case of a bank
engaged in bilateral trade portfolios. It identifies the FTP (all-inclusive XVA add-on
to the entry price) of a new trade as its incremental (UCVA+FVA+MVA+KVA), the
difference with the complete market formula (FTDCVA− FTDDVA) being explained
by the contra-liabilities (CL) wealth transfer and the KVA risk premium triggered by
the impossibility for the bank to replicate jump-to-default exposures.

Our FVA is defined asymmetrically since in no way can we recognise, even approx-
imately, a positive funding benefit to excess capital at hand in the future. Symmetric
variants of the FVA have been advocated in Piterbarg (2010), Burgard and Kjaer
(2013) and Andersen, Duffie, and Song (2016), on the premise that most unsecured
bank derivative books are net receivables. Asymmetric FVA is more rigorous and has
been considered in Albanese and Andersen (2014), Albanese, Andersen, and Iabichino
(2015), Crépey (2015), Crépey and Song (2016), Brigo and Pallavicini (2014), Bielecki
and Rutkowski (2015) and Bichuch, Capponi, and Sturm (2016). In Section 5 we
improve upon these asymmetric FVA models by accounting for the funding source
provided by economic capital: The refined FVA in (32) captures the intertwining be-
tween the FVA and economic capital, which leads to a significantly lower FVA as a
result of the fungibility of economic capital (on top of reserve capital) as a source of
funding for variation margin.

Section 6 shows that specialist initial margin lending schemes may drastically re-
duce the funding cost for initial margin (MVA).

In contrast to the other XVAs, our KVA is not the valuation of some cash flows,
but a risk premium. As risk margin is retained earnings meant to be released to the
bank shareholders, the KVA in our sense does not belong to the balance-sheet as a
liability, at least not statically as part of contra-assets. But, in some sense, our KVA
is a measure of the fluctuations of the balance sheet. In Section 7 this is contrasted
with alternative KVA approaches in the literature where all the pricing adjustments
are viewed as part of fair valuation and where, in particular, the KVA is treated as
a contra-asset for reserve capital such as CVA, FVA and MVA, as if the KVA was a
capital deduction.

An interesting direction of research would be to see how the XVA analysis of this
paper can be adapted to the case of a bank trading through a CCP, which is becoming
the standard for vanilla products. The magnifying impact of model risk on the different
XVA metrics is another important topic of future investigation.

A Acronyms

BSDE Backward stochastic differential equation.

CA Contra-assets (or their valuation).

CCR Counterparty credit risk (or its valuation).

CL Contra-liabilities (or their valuation).

CDS Credit default swap.

CVA Credit valuation adjustment (can be either UCVA or FTDCVA).

CVACL Difference (UCVA− FTDCVA).
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DVA Debt valuation adjustment (can be either unilateral or FTDDVA).

EC Economic capital.

ES Expected shortfall at the confidence level 97.5%.

FDA Funding debt adjustment (the contra-liability counterpart of the FVA).

FTDCVA First-to-default CVA.

FTDDVA First-to-default DVA.

FTP Funds transfer price (all-inclusive XVA add-on to the entry price of a deal).

FVA Funding valuation adjustment.

IM Initial margin (with PIM and RIM for IM posted and received by the bank).

KVA Capital valuation adjustment.

MDA Margin debt adjustment (the contra-liability counterpart of the MVA).

MtM Mark-to-market of a portfolio when all XVAs are ignored.

MVA Margin valuation adjustment.

OIS rate Overnight index swap rate.

RC Reserve capital (or CA account).

RM Risk margin (or KVA) account.

SCR Shareholder capital at risk.

UCVA Unilateral CVA.

VM Variation margin.

XVA Generic “X” valuation adjustment
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Armenti, Y. and S. Crépey (2016). Central clearing valuation adjustment.
arXiv:1506.08595v2.

Bichuch, M., A. Capponi, and S. Sturm (2016). Arbitrage-free XVA. Mathematical
Finance. Forthcoming (preprint version available as ssrn2820257).

Bielecki, T. and M. Rutkowski (2002). Credit Risk: Modeling, Valuation and Hedg-
ing. Springer Finance, Berlin.

Bielecki, T. R. and M. Rutkowski (2015). Valuation and hedging of contracts with
funding costs and collateralization. SIAM Journal on Financial Mathematics 6,
594–655.

Brigo, D. and A. Capponi (2008). Bilateral counterparty risk with application to
CDSs. arXiv:0812.3705, short version published later in 2010 in Risk Magazine.

Brigo, D. and A. Pallavicini (2014). Nonlinear consistent valuation of CCP cleared
or CSA bilateral trades with initial margins under credit, funding and wrong-way
risks. Journal of Financial Engineering 1, 1–60.

Burgard, C. and M. Kjaer (2013). Funding Strategies, Funding Costs. Risk Maga-
zine, December 82–87.
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