

Future Controller Design and Implementation Trends in

Software Defined Networking

Wajid Hassan1 and Tamer Omar2
1
Indiana State University, Terre Haute, IN, USA

2
California State Polytechnic University, Pomona, CA, USA

Email: wajidhassan@yahoo.com; tromar@cpp.edu

Abstract—The centralization of network control and

programmability coupled with network virtualization results in

increased efficiency and flexibility with routine deployment

activities and even major network design changes. This

research attempts to explore the possibilities of Software

Defined Network (SDN). For this purpose we have designed a

novel testbed which can be used to implement and measure

performances and features of many different kinds of SDN

controllers. The paper provides a history of the development of

SDN including the driving factors and the impact SDN has on

today’s enterprise networks. This is followed by an overview

and discussion of the SDN controller OpenContrail, a cloud

based platform that includes the key concepts of network

virtualization, programmability, automation, and analytics.

Then, an SDN solution leveraging the controller is

implemented within the confines of a test environment, after

which various OpenContrail use cases are discussed.1

Index Terms—cloud computing, OpenContrail, NFV, SDN

controllers, openstack

I. INTRODUCTION

Today, the concepts of programmable networks and

network function virtualization (NFV) are topics of great

interest and are often discussed within the context of

Software Defined Networking (SDN). SDN is viewed as

the next step in the evolution of computer networks as it

promises to finally decouple the control plane from the

network nodes moving it to a centrally located controller.

Key activities such as network support, administration,

and implementation are aggregated through the SDN

controller via programmable interfaces and automation

rather than the more traditional Command Line Interface.

NFV extends upon the initial concept of SDN by

proposing that network devices such as routers, switches,

firewalls, and load balancers be implemented as virtual

machines on commodity hardware rather than proprietary,

application-specific hardware.

Manuscript received December 20, 2017; revised May 2, 2018.
 The authors would like to acknowledge the work and assistance of

Mr. Torrell Griffin and Mr. Jimmy Gibson from East Carolina

University whose work and assistance was invaluable for the initial part
of the project. We would also like to thank Nexius Insight Inc (B. Yond)

whose open compute project lab resources were used in the research of
the Open Contrail solution.

doi:10.12720/jcm.13.5.209-217

OpenFlow is the most widely known SDN protocol,

but the SDN concept of programmable networks has

been around for some time [1]. Also, though the term

network function virtualization (NFV) is a recent

development, the idea of network virtualization is again

not a new concept. Protocols such as X.25, Frame-Relay,

and Virtual Local Area Networks (VLANs) are rooted in

virtualization and have been in existence for many years

[1]. Additionally, more recent virtual overlay protocols

such as Transparent Interconnection of Lots of Links

(TRILL), Cisco FabricPath, Virtual Extensible Local

Area Networks (VXLAN) and Network Virtualization

using Generic Routing Encapsulation (NVGRE) have

been explored for use in data center environments [2].

This paper presents the design and basic components

of SDN solutions. Our contribution in this paper is the

design of a new testbed which can be used to implement

different controllers in a simplistic manner. The intent of

the testbed is to compare the performance and features of

different SDN controllers and SDN Solutions. This test

bed uses general purpose servers.

The remainder of this paper is organized as follows.

Section 2 reviews and shows efforts in standardizing the

SDN controller architecture, SDN standards and

mainstream SDN protocols. Section 3 discusses the

drivers for SDN which are promoting the design of many

and various types of SDN solutions. It also introduces the

OpenContrail Controller and discusses its architecture.

Network Design of the testbed is discussed in this section.

Section 3 presents the emulation and the results of the

experimentation done with OpenContrail. A conclusion

of this paper and future works are presented in Sections 4.

Section 5 is an appendix that present the code used for

configuring the system.

II. SOFTWARE DEFINED NETWORKS

A. SDN Architecture Overview

SDN is the decoupling of the control and data planes

of the network, wherein all network policy and logical

state information are centralized and the underlying

network infrastructure is abstracted from both the

network and upper layer applications [3]. The basic

building blocks of the SDN model are represented in Fig.

1:

 The SDN controllers,

209©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

mailto:tromar@cpp.edu

 Open network forwarding devices (e.g. switches,

routers)

 Network operating system providing a set of SDN

protocols

 Application programmable interfaces (APIs).[4]

There are several existing SDN controllers developed

by academia and industry. A list of open source SDN

controllers and commercial SDN solutions are presented

in Table I. Many of the commercially available

controllers are based on OpenDayLight (ODL). The

OpenDaylight project is an open source modular SDN

controller that uses open protocols to provide centralized,

programmatic control and network device monitoring.

ODL possess a well-defined northbound APIs, as well as

support for a variety of southbound protocols including

OpenFlow and NETCONF. The reason of the variation

of available controllers in market is that different SDN

solutions exist to cater to various network needs and one

size fits all is not a possibility.

Fig. 1. SDN basic building blocks

TABLE I:

SDN

SOLUTIONS

Open Source SDN Controllers

Flood Light

OpenMUL

LOOM

ONOS

OpenContrail

Ryu

(supported by NTT)

OpenDaylight

Trema

POX

Beacon

Commercial SDN Controllers

Big Switch Big Cloud Fabric

Juniper Contrail

HP Virtual Application
Networks (VAN) SDN

Controller

Cisco Application Centric
Infrastructure (ACI)/Application

Policy Infrastructure Controller

(APIC).

Brocade Vyatta Controller

Plexxi Big Data Fabric

1) SDN controllers

The SDN controller can range from a somewhat

simple standard server to a complex network of virtual

machines, either of which needs to run one of several

available network operating systems [5]. The SDN

controller is the conduit through which the network may

be programmed by applications allowed to interface with

the SDN controller via different APIs. These applications

can be user or vendor developed for the purpose of

management, deployment and support. Controller APIs

can interface with monitoring tools, troubleshooting tools

and other network functions, such as probes, sniffers,

firewalls, intrusion detection systems, and load balancers

in order to build very precise targeted network policies

which is in turn distributed to the network forwarding

devices. SDN controllers also use APIs in deploying

multiple controllers to interface with peer controllers.

These APIs are required to maintain network state

synchronization between different network forwarding

domains and to provide redundancy in both single and

multiple domain deployments.

The policy output of the SDN controllers are

distributed to the network forwarding devices in the form

of a flow [5]. Network flows, manipulation, and

distribution of network flows is a fundamental concept in

the SDN design model. Network flows are basically the

source to destination mapping of packets requiring the

same forwarding treatment. The controller must also

maintain a database of all active flows in order to ensure

consistent network state. The basic functionality of the

SDN controller can be summarized as follows.

 Flows are created either manually or dynamically via

SDN related protocols and APIs.

 Flows are saved to the controller database.

 Flows are distributed to all applicable network

forwarding devices and peer controllers.

2) Network forwarding device

The next required element is a SDN capable network

forwarding device. SDN’s centralizing of the control

plane may increase the time required for the network

forwarding device to obtain a valid network flow. This,

in turn, could also increase the processing demand on the

network forwarding device. In the SDN models, the

network forwarding device is primarily accountable for

only the data plane or packet forwarding, but it still

requires substantial CPU and memory resources in order

to maintain the data plane and to run SDN related

protocols.

3) Network operating system

The final required element is a protocol that facilitates

communication between the SDN controller(s) and the

network forwarding devices. This operating system

includes the protocols primarily responsible for the

creation and distribution of the network flows. Each time

the network forwarding device receives a packet for

which it has no related network flow; it will interact with

the SDN controller by means of this SDN protocol in

order to communicate the need for a new network flow.

The controller then responds to the network forwarding

device, via the same protocol, with a network “flow

decision”. It is worth pointing out the phrasing “flow

decision” is intentional, as this interaction does not

necessarily result in a new network flow.

4) Application Programmable Interfaces (APIs)

In a SDN network environment, APIs are used to

communicate between the SDN Controller and the

diverse set of applications and services running on top of

the network. These APIs are meant for efficient

210©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

orchestration and automation catering to diverse

requirements of the applications such as Load balancer,

Firewall and IDS/IPS. Since there are variety of

applications and their needs are varied, there is not a

single API standard and many different interfaces exist at

this time. Northbound APIs, which allow the network

components to communicate with the upper layer

network elements are currently in the process of

standardization. SDN Northbound APIs are also used to

integrate the SDN Controller with automation stacks,

such as Puppet, Chef and Ansible, as well as

orchestration platforms, such as OpenStack.

B. SDN Standards

OpenFlow is not the only SDN standard in existence

today, but it is the most prevalent. ForCES and

SoftRouter are two protocols that were developed for

similar purposes. Though ForCES and SoftRouter are not

as widely known as OpenFlow, they have played a key

role in shaping the current SDN landscape.

1) OpenFlow

OpenFlow is by far the most widely known SDN

protocol standard. It is an open source protocol

originally proposed and implemented in a series of

research deployments at Stanford University. OpenFlow

allows the control plane (controller) to program the data

plane (network forwarding device) and to track the

overall data plane state. [6]

2) Forward and Control Element Separation

(ForCES)

ForCES is a SDN standard defined by Internet

Engineering Task Force (IETF). It is viewed as more of a

predecessor to OpenFlow and it proposed the separation

of IP control and data plane without changing the overall

network architecture. ForCES has not been widely

deployed due to significant gaps in the standard related to

the controller-switcher communication rules. [6]

3) Soft router

The SoftRouter model demonstrates a distinct

separation between the control and forwarding planes

categorized as the physical view and the routing view

simultaneously. The physical view is composed of a

number of interconnected Forwarding Elements (FE) and

Control Elements (CE). The forwarding elements are

standard routers minus local complex control logic, while

the control element is a network server providing the

control logic to the forwarding elements. The logical

topology is composed of Network Elements (NE), which

are made up of logical network interfaces, port groupings,

and the associated CE tasked with controlling those

groups. [6]

C. SDN Drivers

SDN has many applications and drivers, some of the

greatest benefits are supporting network management,

carrier optical networks, data centers, Internet of Things

(IoT), and cloud computing. Fig. 2 depicts the various

drivers of Software Defined Networking.

Fig. 2. SDN drivers

1) Network management

Network management policies today are often

implemented via manual combination of third party

management tools supplemented with custom scripting.

SDN introduces the possibility of network management

frameworks, such as Procera, which use the SDN

protocols and APIs to collect events from external

sources, such as intrusion detection and prevention

systems, network probes, device logs, etc. This

information is then sent to a policy engine in order to

produce a policy that can then be distributed to network

forwarding devices by the SDN controller [7].

2) Carrier optical networks

SDN models are of a technology agnostic nature

making them ideal for providing a single point of control

for carrier networks consisting of both circuit switching

and packet switching technologies. These models provide

optical carrier networks with more granular management

and control systems, while allowing a faster time to

market for new services [1]. One of these emerging

architectures is transport SDN (T-SDN), which does just

this by implementing improvements such as data center

bandwidth on demand and virtual transport network

services [8]. Together these service offerings provide the

customer precise, dynamic control of how much

bandwidth they need and how that bandwidth is

consumed.

3) Data centers

SDN is a key element in the movement toward the

software defined data centers (SDDC). The dynamic

nature of the software and applications makes them the

driving force in the data center. However, hardware

profile of the data center is much slower to adapt to

change. Virtualization has provided the means to

decouple the software from the underlying hardware

starting in the compute and storage areas and now, with

SDN, in the network area as well. This allows the overall

211©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

service profile of the data center to change as quickly as

the software and applications require. Software as a

service (SaaS), compute as a service (CaaS), and, more to

the point, network as a service (NaaS). NaaS is the core

principle of SDN in its ability to pool the underlying

network infrastructure and provision the use of that pool

through the SDN controller. [4] [9]
4) Internet of Things (IoT)

The network infrastructure and systems supporting

emerging IoT technologies spans from traditional routers,

switches, 3G/4G and WiFi to new emerging standards

leveraging network function virtualization (NFV) and

wireless technologies that consume less power while

providing higher security [10]. SDN will be the means by

which these network technologies are integrated into the

IoT ecosystem, enabling a network to quickly adapt to

the ever changing needs and inputs from the growing

number of IoT devices.

5) Cloud computing

Cloud computing is the provision of computing as a

service instead of providing the same as a product.

Shared information, software, and resource are offered to

computers as utilities over the internet [11]. It should be

note that despite the rise of cloud computing, several

issues are slowly making it increasingly difficult for most

organizations to consider adopting it to their business

processes. The issues include the cost of bandwidth,

billing and service delivery, performance, what to

migrate, virtualization, reliability and availability, energy

consumption, elasticity and scalability, portability and

interoperability, and privacy and security [12], [13]. SDN

solutions such as OpenContrail resolve some of these

issues for example scalability, portability, service

delivery achievable by deploying the virtual networks

necessary to connect the various segments of the cloud

computing resources such as Storage and Computing on

a most efficient manner.

D. OpenContrail

Juniper Networks OpenContrail [14] is an open,

standards-based software solution that delivers network

virtualization and service automation for federated cloud

networks. It provides self-service provisioning, improves

network troubleshooting and diagnostics, and enables

service chaining for dynamic application environments

across enterprise virtual private cloud (VPC), managed

Infrastructure as a Service (IaaS), and Networks

Functions Virtualization use cases. OpenContrail can be

used with open cloud orchestration systems such as

OpenStack or CloudStack. OpenContrail allows

customers to build elastic architectures that leverage the

benefits of ` computing — agility, self-service, efficiency,

and flexibility — while providing an interoperable, scale-

out control plane for network services within and across

network domains.

Juniper OpenContrail [14] is a perfect example for not

only an SDN platform but also future features

extensibility and expansion. Both a free and a

commercial option for OpenContrail are available with

the main difference being the amount of support the user

is entitled to. The two versions of OpenContrail are the

same in terms of what it must offer and how it functions.

By default, OpenContrail architecture features two

primary drivers for networking, the Cloud Networking

(CN), and Network Function Virtualization (NFV).

Juniper Networks provides details regarding their

commercial version of OpenContrail, which is identical

to the free open-source version.

Use cases in CN range from private clouds for

enterprise, virtual private clouds, to IaaS for cloud

service providers. Juniper suggests in each of these use

cases multiple tenants in a data center share the same

physical resources (physical servers, physical storage,

physical network) which results in each tenant having its

own logical resources whether they are virtual machines,

virtual storage, or virtual networks [15].

NFV involves the administration and configuration of

network functions such as firewalls [16], Intrusion

Detection, and Prevention Systems (IDPS), and Wide

Area Network (WAN) optimization. All of which are

taking place in virtual machines instead of on dedicated

hardware appliances. Using virtualization to manage

WANs instead of physical hardware decreases the time to

market and the cost of optimization. OpenContrail can

also be used to deploy Linux Containers and Dockers.

1) OpenContrail architecture

SDNs is the concept behind that of OpenContrail.

There are two main components that allow the SDN to

function as intended, the OpenContrail Controller, as

well as the OpenContrail vRouter. These two

components allow for the configuration of multiple types

of nodes, providing high availability, and horizontal

scaling. The OpenContrail controller is a logically

centralized but physically distributed SDN controller

responsible for providing the management, control, and

analytics functions of the virtualized network [7]. This

allows the OpenContrail controller to provide a

centralized management platform for the SDN and

controlling the vRouters. The OpenContrail vRouter is

described as a forwarding plane of a distributed router

that runs in the hypervisor of a virtualized server.

vRouters extend the network from the physical routers

and switches in a data center into a virtual overlay

network hosted in the virtualized servers [15]. The

OpenContrail vRouter is a replication for existing

vSwitches but can perform tasks that provide both

routing and higher layer services.

The OpenContrail controller consists of three main

internal components. These components are referred to as

nodes and are broken down into three different types:

configuration nodes, control nodes, and analytics nodes.

Configuration nodes are responsible for translating the

high-level data model into a lower level to interact with

network elements. Control nodes are responsible for

212©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

reproducing the low-level status to and from both

network elements and peer systems in a consistent way.

Meanwhile, the analytic nodes capture the real-time data

from the network elements, abstract it, and provide data

compatible with various applications. [16], [17]. Fig. 3

demonstrates the internal structure of the OpenContrail

Controller. Notice that there are altogether six

OpenContrail nodes, however, this paper focus on the

three internal (control, configuration, analytics) nodes.

Fig. 3. Contrail nodes

In addition to the three main internal nodes, it is

important to introduce the external nodes prior to moving

to the OpenContrail vRouter. The three external nodes

addressed are the compute node, gateway node, and the

service node. The Compute nodes are virtualized servers,

used to host VMs (Virtual Machines). Each compute

node has a vRouter which is responsible for

implementing a forwarding plane, as well as the

distributed part of the control plane. Notice the gateway

node located in Fig. 3, these nodes represent physical

routers and, or switches that connect the virtual networks

to physical networks. Examples would be to connect to

another Data Center, or even non-virtualized servers.

Service nodes represent the remaining physical network

elements providing services such as DPI (Deep Packet

Inspection), and IPS (Intrusion Detection Systems). This

concludes the explanation of node types that make up the

OpenContrail Controller, and define it, but the controller

was only one of the two main components of

OpenContrail.

The second component is the OpenContrail vRouter

As mentioned earlier during node explanation that each

Compute node has a vRouter responsible for

implementing a forwarding plane, as well as the

distributed part of the control plane. There are two

fundamental blocks in a Compute node that require the

implementation of a vRouter. The vRouter Agent, and

the vRouter Forwarding Plane.

The vRouter Agent is developed as a user space

process running inside the compute node. The agent acts

a light-weight, yet logical, control plane that functions in

the following ways. The agent exchanges control states

such as routes, as well as receives low-level

configuration routing instances, and forwarding policies

from the various Control nodes using Extensible

Messaging and Presence Protocol (XMPP) standards.

The Agent also report analytics such as state logs, statics,

and events to the Analytic nodes, and discover the

existence and attributes of VMs with help from the

OpenStack Nova. Nova in turn manages the lifecycle of

compute instances in an OpenStack environment.

Responsibilities include spawning, scheduling and

decommissioning of machines on demand. The Agent is

responsible for applying forwarding policy for the first

packet of each new flow and installing a flow entry in the

flow table of the forwarding plane. [15]

The vRouter Forwarding Plane runs as a kernel

loadable module in the compute node, and is responsible

for tasks such as encapsulating packets to the overlay

network, decapsulating packets from the overlay network,

and assigning packets to a routing instance. Packets are

assigned to a routing instances by performing a lookup of

the destination address in the FIB or (Forwarding

Information Database). By default, packets that are

received from the overlay network are assigned to a

routing instance depending on either the MPLS label,

VNI (Virtual Network Identifier) and virtual interfaces

for local machines are also bound to routing instances.

Optionally, the application of Flow Tables towards the

forwarding policy is available. In doing so the

forwarding policy matches packets against the flow table,

applying the appropriate flow actions where necessary.

Packets can be punted as well to the vRouter Agent

which installs the rule in the flow table, and proxies

DHCP, ARP, and DNS packets. Juniper states, the

forwarding plane supports MPLS over GRE/UDP and

VXLAN encapsulations in the overlay network. The

forwarding plane supports layer-3 forwarding by doing a

Longest Prefix Match (LPM) of the destination IP

address, as well as layer-2 forwarding using the

destination MAC address. The vRouter Forwarding Plane

currently only supports IPv4. Support for IPv6 will be

added in the future. [15]

III. EMULATION AND RESULTS

The design of a new test bed will be used to test SDN

Controllers is shown in Fig. 4. Internet connectivity is

provided to remotely access the HP DL 360 Servers. The

connectivity in the lab is provided by Juniper Switches.

Fig. 4. Network design

213©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

This OpenStack and Juniper OpenContrail SDN

solution design is intended to allow users to quickly

deploy OpenStack/OpenContrail/KVM/ESXi 6.0/EXSi

5.0 software stack which uses overlay networking

(MPLSoGRE or VXLAN) for transport between virtual

machines [18].

The choice of Juniper Switches and HP Dell Servers is

due to their wide availability as well as the fact that

OpenContrail is being developed by Juniper Networks.

In this paper we have implemented the OpenContrail

using automated scripts and have implemented a usecase

where we have demonstrated that many ESXI Servers

can be managed using a single instance of

OpenStack/OpenContrail environment. This highlights

the benefits of open source, industry supported SDN

controllers. We have used a simplified approach to

implement a complex controller. The environment

chosen to implement this solution was memory and

processor intensive.

This section will outline the testbed environment

hardware, software, and operating systems configuration.

In general the server requirements for the actual server

running contrail are very high especially the memory

[14].

Each Contrail running server must have a minimum of:

 64 GB memory

 300 GB hard drive

• 4 CPU cores

 At least one Ethernet port

For production environment, each Contrail running

server must have a minimum of:

 256 GB memory

 500 GB hard drive

 16 CPU cores

Install Script has been modified to help quickly deploy

OpenContrail solutions [19] according to the use cases

discussed below.

Python scripts are used to populate the multi-server

deployment scenario with networks, network policies,

VMs and service chains that will allow the use cases to

be demonstrated (the multi-hypervisor images will be

pre-configured) [20], [21].

This section describes the system hardware

information used for deployment of Juniper

OpenContrail and OpenStack.

 Three HP DL 360 Gen 8 for POD C

2x Processor Intel Xeon E502600 v3 Hyper threading

available 256GB RAM

 Three HP DL 380 Gen 7 for POD C

2x Processor Intel Xeon E502600 v2 128GB RAM

 Two Juniper QFX 5100 switches

 One Juniper EX 3300 switch

 One Juniper EX 2200 switch

 One Juniper SRX

The following table contains OpenStack and Juniper

OpenContrail SDN solution deployment project software

and their versions.

TABLE III: SOFTWARE ON HP SERVERS

Software Version Physical

Hardware

Ubuntu 14.04.2 LTS with kernel

version 3.12.02

3 HP DL

360 Gen 8

VMWare EXSi version 6.0 2 HP DL 380

Gen 7

VMWare EXSi version 5.0 2 HP DL 380

Gen 7

OpenContrail

with OpenStack

OpenContrail version 2.2

and OpenStack Ice house

3 HP DL 360

Gen 8

There are many scenarios where OpenContrail can be

useful to enhance the performance of the network.

Several ESXI Servers can be managed using a single

instance of OpenStack/OpenContrail environment [22]. It

is also possible to use OpenContrail to reduce the CapEx

and OpEx cost by deploying services in Cloud where the

network creation becomes much simplified. The overlay

networks support high scaling, together with traffic

segmentation, and can be configured to implement

service chaining. With the help of overlay networking

Virtual Machines on different datacenters or bare metal

machines can communicate with each other. Through

OpenContrail service chaining feature and Micro

Segmentation and employing simple OpenStack GUI

network functions such as firewalls and load balancer can

be introduced between any two networks.

The code used for the OpenContrail emulation is listed

in the appendix.

IV. CONCLUSION

There are many SDN controllers developed by

academia and industry such as the Open Source SDN

Controllers. In this paper we present the drivers for SDN

networking, highlight several SDN use cases and finally

implement the Juniper OpenContrail Controller Solution

using our newly designed testbed.

OpenContrail creates a standards-based virtualized

L2/L3 network fabric over any IP network infrastructure

and introduces the vRouter for packet forwarding and

distributed routing. Contrail can Segregate network

traffic by tenants. It can be used to automate

orchestration and deployment of complex, multi-server

application topologies. It Supports configuration,

provisioning and chaining of virtualized network

functions. It facilitates creation of abstract network and

security policies and automate distributed enforcement to

maintain security, performance, resilience, and meet

SLAs however it should be noted that these are some of

the same feature implemented by other SDN controllers.

In future we plan to compare the SDN controllers

based on their performance and features using the same

testbed.

APPENDIX

This appendix includes the code that is used to install

Contrail on Ubuntu. It also includes the commands that

are used to configure the Ubuntu.

214©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

Following configurations were used to configure

Ubuntu machines. Restart all three Ubuntu servers. Wait

for them to come back up.

To setup network interface card
sudo vim /etc/network/interfaces

And add the following lines

auto lo
iface lo inet loopback

auto eth0

iface eth0 inet static
address $IP_Address

netmask 255.255.255.0

gateway $Gateway_server
dns-nameservers $DNS_Server

Save the file using “:wq” key combination

Restart the network interface
sudo ifdown eth0

sudo ifup eth0

Ensure all machine in the stack can ping each other

Edit the following file
Vim /etc/hosts

And add the following lines:

$IP_Address $HostName # machine 1
$IP_Address $HostName # machine 2

$IP_Address $HostName # machine 3

Turn off firewall
Sudo iptables –F

Sudo services iptables off

sudo chkconfig iptables off
OpenStack/OpenContrail deployment has been done by

uploading the OpenStack/OpenContrail package file [15]

[17] to all servers in the stack in

/home/wajid/

dpkg –i /home/wajid/OpenContrail-install-packages-
1.xx.xxxx~OpenStack_version_all.deb

cd /opt/OpenContrail /OpenContrail _packages

sudo ./setup.sh

Open the file
Vim /opt/OpenContrail /utils/fabfile/testbeds/testbed.py

Add the following files
from fabric.api import env
host1='wajid@10.2.0.10'

host3=’wajid@10.2.0.11’
host4=’wajid@10.2.0.12’

host2='root@10.2.0.13'

host5=’root@10.2.0.14’
host6=’root@10.2.0.15’

host7=’root@10.2.0.16’

ext_routers = [('mx1', '10.2.0.7')]
router_asn = 64512

host_build = 'wajid@10.2.0.10'

env.roledefs = {
 'all': [host1,host2,host3,host4,host5,host6,host7],

 'cfgm': [host1],

 'OpenStack': [host1],
 'control': [host1],

 'compute': [host1,host2,host3,host4,host5,host6,host7],

 'collector': [host1],
 'webui': [host1],

 'database': [host1],

 'build': [host_build],
 'storage-master': [host1],

 'storage-compute': [host1],

}
env.OpenStack_admin_password = 'wajid123'

env.hostnames = {

 'all': ['WH','OpenContrail VM-24-26']
}

env.passwords = {

 host1: 'rentvm123', host3: 'rentvm123', host4: 'rentvm123',

 host2: 'c0ntrail123', host5: 'c0ntrail123', host6: 'c0ntrail123', host7:
'c0ntrail123',

 host_build: 'rentvm123',

}
env.ostypes = {

host1:'ubuntu',

host2:'ubuntu',
host3:'ubuntu',

host4:'ubuntu',

host5:'ubuntu',
host6:'ubuntu',

host7:'ubuntu',

}
minimum_diskGB = 10

esxi_hosts = {

 'esxi': {
 'ip': '10.2.0.4',

 'username': 'root',

 'password': 'RentVM123',

'datastore': "/vmfs/volumes/55c2f1a5-8dc410dc-943d-e4115bbd72b2/",

 'cluster': "60_cluster",

 'OpenContrail _vm': {
 'name':'OpenContrail VM-24-26',

 'mac': "00:50:56:05:ba:ba",

 'host': host2,
 'vmdk_download_path':"10.2.0.10:10000/ESXi-v5.5-

OpenContrail -host-Ubuntu-trusty-14.04.vmdk",

 }
 'esxi': {

 'ip': '10.2.0.3',

 'username': 'root',
 'password': 'RentVM123',

 'datastore': "/vmfs/volumes/55c2f1a5-8dc410dc-943d-

e4115bbd72b2/",
 'cluster': "60_cluster",

 'OpenContrail _vm': {

 'name':'OpenContrail VM-24-26',

 'mac': "00:50:56:05:ba:ba",

 'host': host5,

 'vmdk_download_path':"10.2.0.10:10000/ESXi-

v5.5-OpenContrail -host-Ubuntu-trusty-14.04.vmdk",

 }

 'esxi': {

 'ip': '10.2.0.2',

 'username': 'root',

 'password': 'RentVM123',

'datastore':"/vmfs/volumes/55c2f1a5-8dc410dc-943d-

e4115bbd72b2/",

 'cluster': "60_cluster",

 'OpenContrail _vm': {

 'name':'OpenContrail VM-24-26',

 'mac': "00:50:56:05:ba:ba",

 'host': host6,

 'vmdk_download_path':"10.2.0.10:10000/ESXi-

v5.5-OpenContrail -host-Ubuntu-trusty-14.04.vmdk",

 }

 'esxi': {

 'ip': '10.2.0.1',

 'username': 'root',

 'password': 'RentVM123',

'datastore': "/vmfs/volumes/55c2f1a5-8dc410dc-943d-

e4115bbd72b2/",

 'cluster': "60_cluster",

 'OpenContrail _vm': {

 'name':'OpenContrail VM-24-26',

 'mac': "00:50:56:05:ba:ba",

 'host': host7,

 'vmdk_download_path':"10.2.0.10:10000/ESXi-

v5.5-OpenContrail -host-Ubuntu-trusty-14.04.vmdk",

215©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

 }

 }
}

Run the following commands
Cd /opt/OpenContrail /utils/

Fab prov_esxi

Manually log into all the ESXI hypervisor machines. Log into

the consoles of the newly deployed VMs and ensure there

interfaces are up. If not. Manually assisng them IP addresses.

Run the following commands

/opt/OpenContrail/utils/fab install_pkg_all:/tmp/OpenContrail

-install-packages-1.xx-xxx~OpenStack_version_all.deb

Cd /opt/OpenContrail /utils/

Fab install_OpenContrail

The system will restart after this command. Wait for the system

to come back.

Cd /opt/OpenContrail /utils/

Fab setup_all
OpenContrail is now running.

REFERENCES

[1] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka,

and T. Turletti, “A survey of software-defined networking:

Past, present, and future of programmable networks,”

IEEE Communications Surveys & Tutorials, vol. 16, no. 3,

pp. 1617-1634, 2014.

[2] R. Jain and S. Paul, “Network virtualization and software

defined networking for cloud computing: A survey,” IEEE

Communications Magazine, vol. 51, no. 11, pp. 24-31,

2013.

[3] Open Networking Foundation (2013). Software-Defined

Networking: The New Norm for Networks. [Online].

Available: https://www.opennetworking.org

[4] D. L. Beaty, “Is software-defined data center next reality?”

Ashrae Journal, vol. 56, no. 2, pp. 58-60, 2014.

[5] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E.

Rothenberg, S. Azodolmolky, and S. Uhlig. (2014).

Software-Defined Networking: A Comprehensive Survey.

CoRR. [Online]. pp. 1-61. Available:

http://arxiv.org/abs/1406.0440v3

[6] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined

network (SDN) and OpenFlow: From concept to

implementation,” IEEE Communications Surveys &

Tutorials, vol. 16, no. 4, 2014.

[7] K. Hyojoon and N. Feamster, “Improving network

management with software defined networking,” IEEE

Communications Magazine, vol. 51, no. 2, pp. 114-119,

2013.

[8] C. Janz, L. Ong, K. Sethuraman, and V. Shukla,

“Emerging transport SDN architecture and use cases.

IEEE Communications Magazine, vol. 54, no. 10, pp. 116-

121, 2016.

[9] ONF SDN Evolution. (September 8, 2016). [Online].

Available: www.opennetworking.org

[10] A. L. V. Caraguary, A. B. Peral, L. I. B. Lopez, and L. J.

G. Villalba, “SDN: Evolution and opportunities in the

development IoT applications,” International Journal of

Distributed Sensor Networks, pp. 1-10, 2014.

[11] K. M. Ahmad, “A survey of security issues for cloud

computing,” Journal of Network and Computer

Applications, pp. 11-29, 2016.

[12] D. B. Rawat and S. R. Reddy, “Software defined

networking architecture, security and energy efficiency: A

survey,” IEEE Communication Surveys & Tutorials, pp. 1-

22. 2016.

[13] V. K. Pachghare, Cloud Computing, Delhi: PHI Learning

Pvt. Ltd, 2015.

[14] Release Notes for Contrail Release 2.20. [Online].

Available:https://www.juniper.net/techpubs/en_US/contrai

l2.2/information-products/topic-collections/release-

notes/index.html

[15] A. Singla and B. Rijsman, (2013). Understanding

OpenContrail Architecture. 1st ed. [Online]. 1. Available:

http://www.juniper.net/dayone

[16] Installing the Contrail Packages, Part One (Cen []tOS or

Ubuntu). [Online]. Available:

http://www.juniper.net/techpubs/en_US/OpenContrail

1.0/topics/task/installation/install-steps-packages-vnc.html

[17] Open Contrail Installation and Provisioning Roles.

[Online]. Available:

https://techwiki.juniper.net/Documentation/OpenContrail/

OpenContrail_Controller_Getting_Started_Guide/30_Insta

llation/20_Installation_and_Provisioning_Roles

[18] Integrating VMware ESXi with OpenStack &

OpenContrail. [Online]. Available:

http://www.tcpcloud.eu/en/blog/2015/02/08/intergrating-

vmware-esxi-openstack-opencontrail/

[19] Install scripts for OpenContrail. [Online]. Available:

https://github.com/Juniper/contrail-installer

[20] Release Notes for OpenContrail Release_2.20. [Online].

Available:https://techwiki.juniper.net/Documentation/Ope

nContrail/OpenContrail_Release_Notes/090_Release_Not

es_for_OpenContrail _Release_2.20

[21] Project Name: OpenContrail Quickstart. [Online].

Available: https://wiki.opnfv.org/display/PROJ/Ocq

[22] OpenContrail Blog; Integrating VMware ESXi with

OpenStack & OpenContrail, February 12, 2015 Jakub

Pavlik. [Online]. Available:

http://www.opencontrail.org/integrating-vmware-esxi-

with-openstack-opencontrail/

Wajid Hassan is a PhD Fellow in the

College of Technology at Indiana State

University. He has a Bachelor of

Engineering in Electronics and M.S. in

Electrical and Computer Engineering

from Wichita State University. He has

worked for AT&T for 8 years as a

Solution Architect and currently consults

as Solution Architect for an Ethernet startup and at US

Department of Architecture for Network Engineering. He has

taught undergraduate and graduate classes and most recently at

Indiana State University. His current research interests include

IPv6, Network Function Virtualization, Software Defined

Networking, System and Network Virtualization, Cloud

216©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

Computing and LTE networks. He is a Cisco Certified Internet

Expert [CCIE] in Service Provider and Datacenter with active

License # 47485. He is also certified VMWare Certified

Professional.

Tamer Omar is an Assistant professor

at the Electrical and Computer

Engineering Department in California

State Polytechnic University- Pomona.

Dr. Omar earned his Ph.D. from the

Electrical Engineering department at

Iowa State University, USA. Dr. Omar

research interests include broadband

wireless networks, cybersecurity in IOT, and big data systems.

Dr. Omar has over 15 years of experience in both academia and

industry serving in different roles at engineering and

technology systems domains.

217©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018

