
 
 

 
 

Future Controller Design and Implementation Trends in 

Software Defined Networking 
 

Wajid Hassan1 and Tamer Omar2 
1
Indiana State University, Terre Haute, IN, USA 

2
California State Polytechnic University, Pomona, CA, USA 

Email: wajidhassan@yahoo.com; tromar@cpp.edu  
 

 

Abstract—The centralization of network control and 

programmability coupled with network virtualization results in 

increased efficiency and flexibility with routine deployment 

activities and even major network design changes. This 

research attempts to explore the possibilities of Software 

Defined Network (SDN). For this purpose we have designed a 

novel testbed which can be used to implement and measure 

performances and features of many different kinds of SDN 

controllers. The paper provides a history of the development of 

SDN including the driving factors and the impact SDN has on 

today’s enterprise networks. This is followed by an overview 

and discussion of the SDN controller OpenContrail, a cloud 

based platform that includes the key concepts of network 

virtualization, programmability, automation, and analytics. 

Then, an SDN solution leveraging the controller is 

implemented within the confines of a test environment, after 

which various OpenContrail use cases are discussed.1 

 

Index Terms—cloud computing, OpenContrail, NFV, SDN 

controllers, openstack 

I. INTRODUCTION 

Today, the concepts of programmable networks and 

network function virtualization (NFV) are topics of great 

interest and are often discussed within the context of 

Software Defined Networking (SDN).  SDN is viewed as 

the next step in the evolution of computer networks as it 

promises to finally decouple the control plane from the 

network nodes moving it to a centrally located controller.  

Key activities such as network support, administration, 

and implementation are aggregated through the SDN 

controller via programmable interfaces and automation 

rather than the more traditional Command Line Interface.  

NFV extends upon the initial concept of SDN by 

proposing that network devices such as routers, switches, 

firewalls, and load balancers be implemented as virtual 

machines on commodity hardware rather than proprietary, 

application-specific hardware. 
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OpenFlow is the most widely known SDN protocol, 

but the SDN concept of programmable networks has 

been around for some time [1]. Also, though the term 

network function virtualization (NFV) is a recent 

development, the idea of network virtualization is again 

not a new concept.  Protocols such as X.25, Frame-Relay, 

and Virtual Local Area Networks (VLANs) are rooted in 

virtualization and have been in existence for many years 

[1]. Additionally, more recent virtual overlay protocols 

such as Transparent Interconnection of Lots of Links 

(TRILL), Cisco FabricPath, Virtual Extensible Local 

Area Networks (VXLAN) and Network Virtualization 

using Generic Routing Encapsulation (NVGRE) have 

been explored for use in data center environments [2]. 

This paper presents the design and basic components 

of SDN solutions. Our contribution in this paper is the 

design of a new testbed which can be used to implement 

different controllers in a simplistic manner. The intent of 

the testbed is to compare the performance and features of 

different SDN controllers and SDN Solutions. This test 

bed uses general purpose servers. 

The remainder of this paper is organized as follows. 

Section 2 reviews and shows efforts in standardizing the 

SDN controller architecture, SDN standards and 

mainstream SDN protocols. Section 3 discusses the 

drivers for SDN which are promoting the design of many 

and various types of SDN solutions. It also introduces the 

OpenContrail Controller and discusses its architecture. 

Network Design of the testbed is discussed in this section. 

Section 3 presents the emulation and the results of the 

experimentation done with OpenContrail. A conclusion 

of this paper and future works are presented in Sections 4. 

Section 5 is an appendix that present the code used for 

configuring the system. 

II. SOFTWARE DEFINED NETWORKS 

A. SDN Architecture Overview 

SDN is the decoupling of the control and data planes 

of the network, wherein all network policy and logical 

state information are centralized and the underlying 

network infrastructure is abstracted from both the 

network and upper layer applications [3].  The basic 

building blocks of the SDN model are represented in Fig. 

1: 

 The SDN controllers,  
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 Open network forwarding devices (e.g. switches, 

routers)  

 Network operating system providing a set of SDN 

protocols  

 Application programmable interfaces (APIs).[4] 

There are several existing SDN controllers developed 

by academia and industry. A list of open source SDN 

controllers and commercial SDN solutions are presented 

in Table I. Many of the commercially available 

controllers are based on OpenDayLight (ODL). The 

OpenDaylight project is an open source modular SDN 

controller that uses open protocols to provide centralized, 

programmatic control and network device monitoring. 

ODL possess a well-defined northbound APIs, as well as 

support for a variety of southbound protocols including 

OpenFlow and NETCONF. The reason of the variation 

of available controllers in market is that different SDN 

solutions exist to cater to various network needs and one 

size fits all is not a possibility. 

 
Fig. 1. SDN basic building blocks 

TABLE I:
 
SDN

 
SOLUTIONS

 
Open Source SDN Controllers

 
Flood Light

 
OpenMUL

 
LOOM

 
ONOS

 
OpenContrail

 
Ryu

 
(supported by NTT)

 
OpenDaylight

 
Trema

 
POX

 
Beacon

 
Commercial SDN Controllers

 
Big Switch Big Cloud Fabric

 
Juniper Contrail

 
HP Virtual Application 
Networks (VAN) SDN 

Controller
 

Cisco Application Centric 
Infrastructure (ACI)/Application 

Policy Infrastructure Controller 

(APIC).  
 

Brocade Vyatta Controller
 

Plexxi Big Data Fabric
 

1) SDN controllers 

The SDN controller can range from a somewhat 

simple standard server to a complex network of virtual 

machines, either of which needs to run one of several 

available network operating systems [5].  The SDN 

controller is the conduit through which the network may 

be programmed by applications allowed to interface with 

the SDN controller via different APIs. These applications 

can be user or vendor developed for the purpose of 

management, deployment and support. Controller APIs 

can interface with monitoring tools, troubleshooting tools 

and other network functions, such as probes, sniffers, 

firewalls, intrusion detection systems, and load balancers 

in order to build very precise targeted network policies 

which is in turn distributed to the network forwarding 

devices. SDN controllers also use APIs in deploying 

multiple controllers to interface with peer controllers. 

These APIs are required to maintain network state 

synchronization between different network forwarding 

domains and to provide redundancy in both single and 

multiple domain deployments.   

The policy output of the SDN controllers are 

distributed to the network forwarding devices in the form 

of a flow [5]. Network flows, manipulation, and 

distribution of network flows is a fundamental concept in 

the SDN design model. Network flows are basically the 

source to destination mapping of packets requiring the 

same forwarding treatment.  The controller must also 

maintain a database of all active flows in order to ensure 

consistent network state.  The basic functionality of the 

SDN controller can be summarized as follows. 

 Flows are created either manually or dynamically via 

SDN related protocols and APIs. 

 Flows are saved to the controller database. 

 Flows are distributed to all applicable network 

forwarding devices and peer controllers. 

2) Network forwarding device 

The next required element is a SDN capable network 

forwarding device. SDN’s centralizing of the control 

plane may increase the time required for the network 

forwarding device to obtain a valid network flow.  This, 

in turn, could also increase the processing demand on the 

network forwarding device. In the SDN models, the 

network forwarding device is primarily accountable for 

only the data plane or packet forwarding, but it still 

requires substantial CPU and memory resources in order 

to maintain the data plane and to run SDN related 

protocols. 

3) Network operating system  

The final required element is a protocol that facilitates 

communication between the SDN controller(s) and the 

network forwarding devices. This operating system 

includes the protocols primarily responsible for the 

creation and distribution of the network flows. Each time 

the network forwarding device receives a packet for 

which it has no related network flow; it will interact with 

the SDN controller by means of this SDN protocol in 

order to communicate the need for a new network flow.  

The controller then responds to the network forwarding 

device, via the same protocol, with a network “flow 

decision”. It is worth pointing out the phrasing “flow 

decision” is intentional, as this interaction does not 

necessarily result in a new network flow. 

4) Application Programmable Interfaces (APIs) 

In a SDN network environment, APIs are used to 

communicate between the SDN Controller and the 

diverse set of applications and services running on top of 

the network. These APIs are meant for efficient 
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orchestration and automation catering to diverse 

requirements of the applications such as Load balancer, 

Firewall and IDS/IPS. Since there are variety of 

applications and their needs are varied, there is not a 

single API standard and many different interfaces exist at 

this time. Northbound APIs, which allow the network 

components to communicate with the upper layer 

network elements are currently in the process of 

standardization. SDN Northbound APIs are also used to 

integrate the SDN Controller with automation stacks, 

such as Puppet, Chef and Ansible, as well as 

orchestration platforms, such as OpenStack. 

B. SDN Standards 

OpenFlow is not the only SDN standard in existence 

today, but it is the most prevalent. ForCES and 

SoftRouter are two protocols that were developed for 

similar purposes. Though ForCES and SoftRouter are not 

as widely known as OpenFlow, they have played a key 

role in shaping the current SDN landscape. 

1) OpenFlow 

OpenFlow is by far the most widely known SDN 

protocol standard.  It is an open source protocol 

originally proposed and implemented in a series of 

research deployments at Stanford University.  OpenFlow 

allows the control plane (controller) to program the data 

plane (network forwarding device) and to track the 

overall data plane state. [6] 

2) Forward and Control Element Separation 

(ForCES) 

ForCES is a SDN standard defined by Internet 

Engineering Task Force (IETF). It is viewed as more of a 

predecessor to OpenFlow and it proposed the separation 

of IP control and data plane without changing the overall 

network architecture. ForCES has not been widely 

deployed due to significant gaps in the standard related to 

the controller-switcher communication rules. [6] 

3) Soft router  

The SoftRouter model demonstrates a distinct 

separation between the control and forwarding planes 

categorized as the physical view and the routing view 

simultaneously.  The physical view is composed of a 

number of interconnected Forwarding Elements (FE) and 

Control Elements (CE). The forwarding elements are 

standard routers minus local complex control logic, while 

the control element is a network server providing the 

control logic to the forwarding elements. The logical 

topology is composed of Network Elements (NE), which 

are made up of logical network interfaces, port groupings, 

and the associated CE tasked with controlling those 

groups. [6] 

C. SDN Drivers 

SDN has many applications and drivers, some of the 

greatest benefits are supporting network management, 

carrier optical networks, data centers, Internet of Things 

(IoT), and cloud computing. Fig. 2 depicts the various 

drivers of Software Defined Networking. 

 

Fig. 2. SDN drivers 

1) Network management 

Network management policies today are often 

implemented via manual combination of third party 

management tools supplemented with custom scripting. 

SDN introduces the possibility of network management 

frameworks, such as Procera, which use the SDN 

protocols and APIs to collect events from external 

sources, such as intrusion detection and prevention 

systems, network probes, device logs, etc. This 

information is then sent to a policy engine in order to 

produce a policy that can then be distributed to network 

forwarding devices by the SDN controller [7]. 

2) Carrier optical networks 

SDN models are of a technology agnostic nature 

making them ideal for providing a single point of control 

for carrier networks consisting of both circuit switching 

and packet switching technologies. These models provide 

optical carrier networks with more granular management 

and control systems, while allowing a faster time to 

market for new services [1]. One of these emerging 

architectures is transport SDN (T-SDN), which does just 

this by implementing improvements such as data center 

bandwidth on demand and virtual transport network 

services [8]. Together these service offerings provide the 

customer precise, dynamic control of how much 

bandwidth they need and how that bandwidth is 

consumed. 

3) Data centers 

SDN is a key element in the movement toward the 

software defined data centers (SDDC).  The dynamic 

nature of the software and applications makes them the 

driving force in the data center. However, hardware 

profile of the data center is much slower to adapt to 

change. Virtualization has provided the means to 

decouple the software from the underlying hardware 

starting in the compute and storage areas and now, with 

SDN, in the network area as well. This allows the overall 
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service profile of the data center to change as quickly as 

the software and applications require.  Software as a 

service (SaaS), compute as a service (CaaS), and, more to 

the point, network as a service (NaaS).  NaaS is the core 

principle of SDN in its ability to pool the underlying 

network infrastructure and provision the use of that pool 

through the SDN controller. [4] [9] 
4) Internet of Things (IoT) 

The network infrastructure and systems supporting 

emerging IoT technologies spans from traditional routers, 

switches, 3G/4G and WiFi to new emerging standards 

leveraging network function virtualization (NFV) and 

wireless technologies that consume less power while 

providing higher security [10]. SDN will be the means by 

which these network technologies are integrated into the 

IoT ecosystem, enabling a network to quickly adapt to 

the ever changing needs and inputs from the growing 

number of IoT devices. 

5) Cloud computing 

Cloud computing is the provision of computing as a 

service instead of providing the same as a product. 

Shared information, software, and resource are offered to 

computers as utilities over the internet [11]. It should be 

note that despite the rise of cloud computing, several 

issues are slowly making it increasingly difficult for most 

organizations to consider adopting it to their business 

processes. The issues include the cost of bandwidth, 

billing and service delivery, performance, what to 

migrate, virtualization, reliability and availability, energy 

consumption, elasticity and scalability, portability and 

interoperability, and privacy and security [12], [13]. SDN 

solutions such as OpenContrail resolve some of these 

issues for example scalability, portability, service 

delivery achievable by deploying the virtual networks 

necessary to connect the various segments of the cloud 

computing resources such as Storage and Computing on 

a most efficient manner. 

D. OpenContrail 

Juniper Networks OpenContrail [14] is an open, 

standards-based software solution that delivers network 

virtualization and service automation for federated cloud 

networks. It provides self-service provisioning, improves 

network troubleshooting and diagnostics, and enables 

service chaining for dynamic application environments 

across enterprise virtual private cloud (VPC), managed 

Infrastructure as a Service (IaaS), and Networks 

Functions Virtualization use cases. OpenContrail can be 

used with open cloud orchestration systems such as 

OpenStack or CloudStack. OpenContrail allows 

customers to build elastic architectures that leverage the 

benefits of ` computing — agility, self-service, efficiency, 

and flexibility — while providing an interoperable, scale-

out control plane for network services within and across 

network domains. 

Juniper OpenContrail [14] is a perfect example for not 

only an SDN platform but also future features 

extensibility and expansion. Both a free and a 

commercial option for OpenContrail are available with 

the main difference being the amount of support the user 

is entitled to. The two versions of OpenContrail are the 

same in terms of what it must offer and how it functions. 

By default, OpenContrail architecture features two 

primary drivers for networking, the Cloud Networking 

(CN), and Network Function Virtualization (NFV). 

Juniper Networks provides details regarding their 

commercial version of OpenContrail, which is identical 

to the free open-source version.  

Use cases in CN range from private clouds for 

enterprise, virtual private clouds, to IaaS for cloud 

service providers. Juniper suggests in each of these use 

cases multiple tenants in a data center share the same 

physical resources (physical servers, physical storage, 

physical network) which results in each tenant having its 

own logical resources whether they are virtual machines, 

virtual storage, or virtual networks [15].  

NFV involves the administration and configuration of 

network functions such as firewalls [16], Intrusion 

Detection, and Prevention Systems (IDPS), and Wide 

Area Network (WAN) optimization. All of which are 

taking place in virtual machines instead of on dedicated 

hardware appliances. Using virtualization to manage 

WANs instead of physical hardware decreases the time to 

market and the cost of optimization. OpenContrail can 

also be used to deploy Linux Containers and Dockers. 

1) OpenContrail architecture 

SDNs is the concept behind that of OpenContrail. 

There are two main components that allow the SDN to 

function as intended, the OpenContrail Controller, as 

well as the OpenContrail vRouter. These two 

components allow for the configuration of multiple types 

of nodes, providing high availability, and horizontal 

scaling. The OpenContrail controller is a logically 

centralized but physically distributed SDN controller 

responsible for providing the management, control, and 

analytics functions of the virtualized network [7]. This 

allows the OpenContrail controller to provide a 

centralized management platform for the SDN and 

controlling the vRouters. The OpenContrail vRouter is 

described as a forwarding plane of a distributed router 

that runs in the hypervisor of a virtualized server. 

vRouters extend the network from the physical routers 

and switches in a data center into a virtual overlay 

network hosted in the virtualized servers [15]. The 

OpenContrail vRouter is a replication for existing 

vSwitches but can perform tasks that provide both 

routing and higher layer services. 

The OpenContrail controller consists of three main 

internal components. These components are referred to as 

nodes and are broken down into three different types: 

configuration nodes, control nodes, and analytics nodes.  

Configuration nodes are responsible for translating the 

high-level data model into a lower level to interact with 

network elements. Control nodes are responsible for 

212©2018 Journal of Communications

Journal of Communications Vol. 13, No. 5, May 2018



 
 

 
 

reproducing the low-level status to and from both 

network elements and peer systems in a consistent way. 

Meanwhile, the analytic nodes capture the real-time data 

from the network elements, abstract it, and provide data 

compatible with various applications. [16], [17]. Fig. 3 

demonstrates the internal structure of the OpenContrail 

Controller. Notice that there are altogether six 

OpenContrail nodes, however, this paper focus on the 

three internal (control, configuration, analytics) nodes. 

 
Fig. 3. Contrail nodes 

In addition to the three main internal nodes, it is 

important to introduce the external nodes prior to moving 

to the OpenContrail vRouter. The three external nodes 

addressed are the compute node, gateway node, and the 

service node. The Compute nodes are virtualized servers, 

used to host VMs (Virtual Machines). Each compute 

node has a vRouter which is responsible for 

implementing a forwarding plane, as well as the 

distributed part of the control plane. Notice the gateway 

node located in Fig. 3, these nodes represent physical 

routers and, or switches that connect the virtual networks 

to physical networks. Examples would be to connect to 

another Data Center, or even non-virtualized servers. 

Service nodes represent the remaining physical network 

elements providing services such as DPI (Deep Packet 

Inspection), and IPS (Intrusion Detection Systems). This 

concludes the explanation of node types that make up the 

OpenContrail Controller, and define it, but the controller 

was only one of the two main components of 

OpenContrail.  

The second component is the OpenContrail vRouter  

As mentioned earlier during node explanation that each 

Compute node has a vRouter responsible for 

implementing a forwarding plane, as well as the 

distributed part of the control plane. There are two 

fundamental blocks in a Compute node that require the 

implementation of a vRouter. The vRouter Agent, and 

the vRouter Forwarding Plane.  

The vRouter Agent is developed as a user space 

process running inside the compute node. The agent acts 

a light-weight, yet logical, control plane that functions in 

the following ways. The agent exchanges control states 

such as routes, as well as receives low-level 

configuration routing instances, and forwarding policies 

from the various Control nodes using Extensible 

Messaging and Presence Protocol (XMPP) standards. 

The Agent also report analytics such as state logs, statics, 

and events to the Analytic nodes, and discover the 

existence and attributes of VMs with help from the 

OpenStack Nova. Nova in turn manages the lifecycle of 

compute instances in an OpenStack environment. 

Responsibilities include spawning, scheduling and 

decommissioning of machines on demand. The Agent is 

responsible for applying forwarding policy for the first 

packet of each new flow and installing a flow entry in the 

flow table of the forwarding plane. [15]  

The vRouter Forwarding Plane runs as a kernel 

loadable module in the compute node, and is responsible 

for tasks such as encapsulating packets to the overlay 

network, decapsulating packets from the overlay network, 

and assigning packets to a routing instance. Packets are 

assigned to a routing instances by performing a lookup of 

the destination address in the FIB or (Forwarding 

Information Database). By default, packets that are 

received from the overlay network are assigned to a 

routing instance depending on either the MPLS label, 

VNI (Virtual Network Identifier) and virtual interfaces 

for local machines are also bound to routing instances. 

Optionally, the application of Flow Tables towards the 

forwarding policy is available. In doing so the 

forwarding policy matches packets against the flow table, 

applying the appropriate flow actions where necessary. 

Packets can be punted as well to the vRouter Agent 

which installs the rule in the flow table, and proxies 

DHCP, ARP, and DNS packets. Juniper states, the 

forwarding plane supports MPLS over GRE/UDP and 

VXLAN encapsulations in the overlay network. The 

forwarding plane supports layer-3 forwarding by doing a 

Longest Prefix Match (LPM) of the destination IP 

address, as well as layer-2 forwarding using the 

destination MAC address. The vRouter Forwarding Plane 

currently only supports IPv4. Support for IPv6 will be 

added in the future. [15] 

III. EMULATION AND RESULTS 

The design of a new test bed will be used to test SDN 

Controllers is shown in Fig. 4. Internet connectivity is 

provided to remotely access the HP DL 360 Servers. The 

connectivity in the lab is provided by Juniper Switches. 

 
Fig. 4. Network design 
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This OpenStack and Juniper OpenContrail SDN 

solution design is intended to allow users to quickly 

deploy OpenStack/OpenContrail/KVM/ESXi 6.0/EXSi 

5.0 software stack which uses overlay networking 

(MPLSoGRE or VXLAN) for transport between virtual 

machines [18].  

The choice of Juniper Switches and HP Dell Servers is 

due to their wide availability as well as the fact that 

OpenContrail is being developed by Juniper Networks. 

In this paper we have implemented the OpenContrail 

using automated scripts and have implemented a usecase 

where we have demonstrated that many ESXI Servers 

can be managed using a single instance of 

OpenStack/OpenContrail environment. This highlights 

the benefits of open source, industry supported SDN 

controllers. We have used a simplified approach to 

implement a complex controller. The environment 

chosen to implement this solution was memory and 

processor intensive.  

This section will outline the testbed environment 

hardware, software, and operating systems configuration. 

In general the server requirements for the actual server 

running contrail are very high especially the memory 

[14]. 

Each Contrail running server must have a minimum of: 

 64 GB memory 

 300 GB hard drive 

• 4 CPU cores 

 At least one Ethernet port 

For production environment, each Contrail running 

server must have a minimum of: 

 256 GB memory 

 500 GB hard drive 

 16 CPU cores 

Install Script has been modified to help quickly deploy 

OpenContrail solutions [19] according to the use cases 

discussed below. 

Python scripts are used to populate the multi-server 

deployment scenario with networks, network policies, 

VMs and service chains that will allow the use cases to 

be demonstrated (the multi-hypervisor images will be 

pre-configured) [20], [21]. 

This section describes the system hardware 

information used for deployment of Juniper 

OpenContrail and OpenStack. 

 Three HP DL 360 Gen 8 for POD C  

2x Processor Intel Xeon E502600 v3 Hyper threading 

available 256GB RAM 

 Three HP DL 380 Gen 7 for POD C 

2x Processor Intel Xeon E502600 v2 128GB RAM 

 Two Juniper QFX 5100 switches 

 One Juniper EX 3300 switch 

 One Juniper EX 2200 switch 

 One Juniper SRX 

The following table contains OpenStack and Juniper 

OpenContrail SDN solution deployment project software 

and their versions.  

TABLE III: SOFTWARE ON HP SERVERS 

Software Version Physical 

Hardware  

Ubuntu  14.04.2 LTS with kernel 

version 3.12.02 

3  HP DL 

360 Gen 8 

VMWare EXSi version 6.0 2 HP DL 380 

Gen 7 

VMWare EXSi version 5.0 2 HP DL 380 

Gen 7 

OpenContrail 

with OpenStack  

OpenContrail  version 2.2 

and OpenStack Ice house 

3 HP DL 360 

Gen 8 
 

There are many scenarios where OpenContrail can be 

useful to enhance the performance of the network. 

Several ESXI Servers can be managed using a single 

instance of OpenStack/OpenContrail environment [22]. It 

is also possible to use OpenContrail to reduce the CapEx 

and OpEx cost by deploying services in Cloud where the 

network creation becomes much simplified. The overlay 

networks support high scaling, together with traffic 

segmentation, and can be configured to implement 

service chaining. With the help of overlay networking 

Virtual Machines on different datacenters or bare metal 

machines can communicate with each other. Through 

OpenContrail service chaining feature and Micro 

Segmentation and employing simple OpenStack GUI 

network functions such as firewalls and load balancer can 

be introduced between any two networks. 

The code used for the OpenContrail emulation is listed 

in the appendix. 

IV. CONCLUSION 

There are many SDN controllers developed by 

academia and industry such as the Open Source SDN 

Controllers. In this paper we present the drivers for SDN 

networking, highlight several SDN use cases and finally 

implement the Juniper OpenContrail Controller Solution 

using our newly designed testbed.  

OpenContrail creates a standards-based virtualized 

L2/L3 network fabric over any IP network infrastructure 

and introduces the vRouter for packet forwarding and 

distributed routing. Contrail can Segregate network 

traffic by tenants. It can be used to automate 

orchestration and deployment of complex, multi-server 

application topologies. It Supports configuration, 

provisioning and chaining of virtualized network 

functions. It facilitates creation of abstract network and 

security policies and automate distributed enforcement to 

maintain security, performance, resilience, and meet 

SLAs however it should be noted that these are some of 

the same feature implemented by other SDN controllers.  

In future we plan to compare the SDN controllers 

based on their performance and features using the same 

testbed.  

APPENDIX 

This appendix includes the code that is used to install 

Contrail on Ubuntu. It also includes the commands that 

are used to configure the Ubuntu. 
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Following configurations were used to configure 

Ubuntu machines. Restart all three Ubuntu servers. Wait 

for them to come back up.  

 

To setup network interface card 
sudo vim /etc/network/interfaces 

And add the following lines 

auto lo 
iface lo inet loopback 

auto eth0 

iface eth0 inet static 
address $IP_Address 

netmask 255.255.255.0 

gateway $Gateway_server 
dns-nameservers $DNS_Server 

Save the file using “:wq” key combination 

Restart the network interface 
sudo ifdown eth0 

sudo ifup eth0 

Ensure all machine in the stack can ping each other 

Edit the following file 
Vim /etc/hosts 

And add the following lines: 

$IP_Address   $HostName # machine 1 
$IP_Address  $HostName # machine 2 

$IP_Address  $HostName # machine 3 

Turn off firewall 
Sudo iptables –F 

Sudo services iptables off 

sudo chkconfig iptables off 
OpenStack/OpenContrail deployment has been done by 

uploading the OpenStack/OpenContrail package file [15] 

[17] to all servers in the stack in 

/home/wajid/ 

dpkg –i /home/wajid/OpenContrail-install-packages-
1.xx.xxxx~OpenStack_version_all.deb 

cd /opt/OpenContrail /OpenContrail _packages 

sudo ./setup.sh 

Open the file  
Vim /opt/OpenContrail /utils/fabfile/testbeds/testbed.py 

Add the following files 
from fabric.api import env 
host1='wajid@10.2.0.10' 

host3=’wajid@10.2.0.11’ 
host4=’wajid@10.2.0.12’ 

host2='root@10.2.0.13' 

host5=’root@10.2.0.14’ 
host6=’root@10.2.0.15’ 

host7=’root@10.2.0.16’ 

ext_routers = [('mx1', '10.2.0.7')] 
router_asn = 64512 

host_build = 'wajid@10.2.0.10' 

env.roledefs = { 
    'all': [host1,host2,host3,host4,host5,host6,host7], 

    'cfgm': [host1], 

    'OpenStack': [host1], 
    'control': [host1], 

    'compute': [host1,host2,host3,host4,host5,host6,host7], 

    'collector': [host1], 
    'webui': [host1], 

    'database': [host1], 

    'build': [host_build], 
    'storage-master': [host1], 

    'storage-compute': [host1], 

} 
env.OpenStack_admin_password = 'wajid123' 

env.hostnames = { 

    'all': ['WH','OpenContrail VM-24-26'] 
} 

env.passwords = { 

    host1: 'rentvm123', host3: 'rentvm123', host4: 'rentvm123', 

    host2: 'c0ntrail123', host5: 'c0ntrail123', host6: 'c0ntrail123', host7: 
'c0ntrail123', 

    host_build: 'rentvm123', 

} 
env.ostypes = { 

host1:'ubuntu', 

host2:'ubuntu', 
host3:'ubuntu', 

host4:'ubuntu', 

host5:'ubuntu',  
host6:'ubuntu', 

host7:'ubuntu', 

} 
minimum_diskGB = 10 

esxi_hosts = { 

       'esxi': { 
             'ip': '10.2.0.4', 

             'username': 'root', 

             'password': 'RentVM123', 

'datastore': "/vmfs/volumes/55c2f1a5-8dc410dc-943d-e4115bbd72b2/", 

              'cluster': "60_cluster", 

               'OpenContrail _vm': { 
 'name':'OpenContrail VM-24-26', 

                'mac': "00:50:56:05:ba:ba", 

                 'host': host2, 
                   'vmdk_download_path':"10.2.0.10:10000/ESXi-v5.5-

OpenContrail -host-Ubuntu-trusty-14.04.vmdk", 

             } 
       'esxi': { 

             'ip': '10.2.0.3', 

             'username': 'root', 
             'password': 'RentVM123', 

             'datastore': "/vmfs/volumes/55c2f1a5-8dc410dc-943d-

e4115bbd72b2/", 
             'cluster': "60_cluster", 

             'OpenContrail _vm': { 

    'name':'OpenContrail VM-24-26', 

                   'mac': "00:50:56:05:ba:ba", 

                   'host': host5, 

                   'vmdk_download_path':"10.2.0.10:10000/ESXi-

v5.5-OpenContrail -host-Ubuntu-trusty-14.04.vmdk", 

             } 

       'esxi': { 

             'ip': '10.2.0.2', 

             'username': 'root', 

             'password': 'RentVM123', 

 

'datastore':"/vmfs/volumes/55c2f1a5-8dc410dc-943d-

e4115bbd72b2/", 

              'cluster': "60_cluster", 

              'OpenContrail _vm': { 

    'name':'OpenContrail VM-24-26', 

                   'mac': "00:50:56:05:ba:ba", 

                   'host': host6, 

                   'vmdk_download_path':"10.2.0.10:10000/ESXi-

v5.5-OpenContrail -host-Ubuntu-trusty-14.04.vmdk", 

             } 

        'esxi': { 

   'ip': '10.2.0.1', 

  'username': 'root', 

 'password': 'RentVM123', 

'datastore': "/vmfs/volumes/55c2f1a5-8dc410dc-943d-

e4115bbd72b2/", 

              'cluster': "60_cluster", 

              'OpenContrail _vm': { 

    'name':'OpenContrail VM-24-26', 

                   'mac': "00:50:56:05:ba:ba", 

                   'host': host7, 

                   'vmdk_download_path':"10.2.0.10:10000/ESXi-

v5.5-OpenContrail -host-Ubuntu-trusty-14.04.vmdk", 
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             } 

 

       } 
} 

Run the following commands 
Cd /opt/OpenContrail /utils/ 

Fab prov_esxi 

Manually log into all the ESXI hypervisor machines. Log into 

the consoles of the newly deployed VMs and ensure there 

interfaces are up. If not. Manually assisng them IP addresses.  

Run the following commands 

/opt/OpenContrail/utils/fab install_pkg_all:/tmp/OpenContrail 

-install-packages-1.xx-xxx~OpenStack_version_all.deb  

Cd /opt/OpenContrail /utils/ 

Fab install_OpenContrail  

The system will restart after this command. Wait for the system 

to come back. 

Cd /opt/OpenContrail /utils/ 

Fab setup_all 
OpenContrail is now running. 
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