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Abstract

Accessing the Web is crucially important in today’s society because of communication, education, and entertain-
ment opportunities. Paralyzed or paretic individuals are unable to capitalize on these opportunities using traditional
human-computer interaction methods. Thus, I develop a low-cost web browsing system for such individuals, inte-
grating eye and brain control in a novel fashion to relay and interpret navigation commands. The system combines
gaze position estimates obtained from a new image processing algorithm with brain concentration levels sensed
and transmitted by an electroencephalogram headset. Since user intent may itself be uncertain, the system incor-
porates a novel fuzzy logic algorithm for combining brainwave and eye position inputs to determine the user’s
targeted hyperlink. The algorithm adopts an approach based on exponential smoothing to efficiently keep a record
of historical signals. Experimental evaluation established that the first attempt success rate of the system lies be-
tween 87% and 95% with 95% confidence. Error recovery accuracy is 98.4%, resulting in a second attempt success
rate of 99.1%. This assistive technology, using off-the-shelf components, costs less than $100 excluding the tablet
computer, and has the potential to affordably open up the Web to millions of individuals.

Keywords: accessible computing, electroencephalography, eye tracking, fuzzy logic, human-computer interaction,
hybrid brain-computer interface

1. Introduction

Individuals with paralysis and paresis resulting from disease, injuries, or old age lack the ability to control their
limbs and may be speech impaired. For example, “locked-in” individuals numbering half a million worldwide have
complete loss of voluntary movement and speech (Randolph & Moore Jackson, 2010). These individuals find it
difficult to communicate directly with friends and family. Indirect communication using computers is a possibility;
however, existing systems that work without mouse, touch, or speech input can be expensive, cumbersome, and
require extensive training. Consequently, these individuals can experience social isolation which in turn can cause
serious behavioral health issues (J. Cacioppo & S. Cacioppo, 2014).

The primary goal of this work is to develop and evaluate a system that can improve the quality of life of such
individuals by allowing them to easily communicate with society. One of the modern interfaces that can be used
as a gateway into society is the World Wide Web. The proposed approach is a multimodal mechanism for allowing
disabled individuals to browse the web, giving them access to the communication, education, and entertainment
opportunities available to others. The duality of brain and eye controls makes this system fast, intuitive, and
accurate. Moreover, the system is inexpensive; the cost is less than one hundred dollars.

We typically use multiple “senses” to interact with a computer. For example, we use vision to read the contents on a
monitor and then use touch or typing to input the desired command. Specifically, when browsing the web, we scan
the currently displayed webpage and then click (using touch or a mouse) on a link to go to the next page. Instead of
using our fingers to tap or click, we may be able to use voice activation in some cases. However, individuals who
can neither control their limbs nor speak are unable to use the World Wide Web affordably. As a result, they miss
out on societal interaction – something that others can take for granted and frequently do through, for example,
social media websites. This system offers a potential solution for such disabled individuals.

In the proposed system, users still use vision to scan the monitor. However, instead of touch, keyboard, or voice
input for relaying a command about where to navigate, this system uses an innovative integration of eye and
brain control. This is the first contribution of this work. The second contribution is the development of an image
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processing algorithm for eye control. Since information from such processing can be imprecise because of both
uncertain user intent when interacting with a computer (particularly when browsing the web) and inaccuracy in
measuring the eye movements, this study uses fuzzy logic to analyze the input in a novel fashion, processing not
just the most recent signal, but a combination of previously recorded signals. This is the third main contribution.
The fourth contribution is the implementation of this system in a user-friendly application for the iPad. Finally,
system evaluation demonstrates that its first attempt accuracy is 90.9% and the accuracy with a second attempt is
99.1%. Since this assistive system has the potential to create new opportunities for locked-in individuals, I use the
acronym FLYAWAY (Fuzzy Logic based eYe-brAin controlled Web Access sYstem).

This paper is organized as follows. Section 2 provides a literature review and hardware assessment. Section 3 pro-
vides an overview of this system. Section 4 supplies the technical details of the various elements of FLYAWAY, and
discusses the algorithmic development and hardware-software integration. Section 5 describes the data collection
and analysis. Finally, Section 6 concludes the paper and provides some future research directions.

2. Literature Review and Hardware Assessment

2.1 Literature Review

Multimodal human-computer interaction systems use more than one modality (for example, speech, vision, facial
expressions, gestures, pen, and touch) (Oviatt, 2012). Multimodal systems are becoming increasingly prevalent
as they can improve or even replace traditional input methods such as keyboard and mouse (Thiran et al., 2010).
By using multiple modalities, we can increase the reliability of the inference about user intent, even if the same
information is conveyed using more than one method. As an example, lip movements from a video signal can
compensate for loss of an audio feed. Multimodal systems can also incorporate complementary information from
the incoming signals. The famous demonstration “Put That There” by the Architecture Machine Group at MIT
augments voice commands with gestures to manipulate objects on a screen (Bolt, 1980). Because a greater amount
of data needs to be collected and analyzed in multimodal systems, the required computational power increases.
Even though modern computing systems are becoming more powerful, the “curse of dimensionality” manifests
itself. This drawback is described later in this paper.

FLYAWAY uses eye and brain data in a multimodal form. The use of these two types of input signals in tandem
is recent and limited, and has typically relied on expensive equipment for both input modalities (McMullen et al.,
2014; Zander et al., 2010). Even though eye tracking has been used for the last couple of decades, brain control is
still in its infancy. Only recently has affordable and easy-to-use brain activity data acquisition hardware started to
appear. FLYAWAY integrates eye and brain inputs using fuzzy logic.

2.1.1 Eye Tracking and Gaze Estimation

Eye tracking focuses on localization of the eye in a face image and gaze estimation tracks eye gaze paths. In
an excellent survey on models for eye tracking, Hansen & Ji (2010) point out that despite active and significant
progress in the area, “eye detection and tracking remains challenging.” Challenges that researchers have identified
include ambient lighting, head pose, occlusion of the eye by eyelids, and characteristics unique to the individual:
size, color, and reflectivity of the iris.

Geometric and photometric characteristics of the eyes are important for eye detection. There are generally three
different approaches that are used for eye detection. These are (i) shape-based approaches which geometrically
model parts of the eye, (ii) appearance-based methods which detect eyes based on color distribution or filter
response of a facial image, and (iii) feature-based methods which identify inherent characteristics of the eye, such
as the limbus, pupil, and cornea reflections.

Some simple shape models, such an elliptical model, are not capable of capturing variations of eye features such
as eyelids and eyebrows. Deformable shape models consist of scalable and deformable templates to allow for a
more detailed fit of the eye shape, but these methods are computationally demanding and may fail when the eye
changes shape (e.g., when the eyes are wide open or occluded by eyelashes) (Hansen & Ji, 2010). A specific type of
appearance-based methods that is based on filter response of an image includes the analysis of Haar-like features.
Haar-like features have high computational efficiency (Castrillón et al., 2007). Feature-based methods tend to be
less sensitive to variations in viewing angle and illumination. One particular method (Yang et al., 1998) locates
pupils by searching for dark regions that satisfy certain constraints using a threshold algorithm. The accuracy of
this method depends on dark regions such as eyebrows and dark circles around the eyes. If a common threshold is
used for both eyes, however, this method can fail due to variable light conditions across the face.
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After locating the eye, the point on the screen at which the user is looking needs to be determined. This is called
gaze position estimation. In order to determine gaze position, we have to analyze both the head pose and eye
orientation. Some low-cost approaches require head gear to be worn on the user (EyeWriter, 2010; Li & Parkhurst,
2006), but this can be cumbersome for the user and a caregiver; FLYAWAY instead assumes that head position is
constant with respect to the camera and uses a built-in tablet camera for the facial video feed (see Section 2.2.2).

The approach for eye tracking in this paper uses Haar feature analysis and a dynamic adaptive threshold, which
results in a reliable system for eye detection despite barriers presented by the use of low-resolution camera input.
Hansen and Ji (2010) pointed out that future research for eye tracking should include low-cost approaches, high
degree of tolerance, and the ability to interpret gaze behavior. The method developed in this study is low-cost, and
since interpreting a gaze requires a high degree of tolerance, this method uses fuzzy logic.

2.1.2 Brain-Computer Interfaces

Computer input devices traditionally use secondary sensors; i.e., their signals are a consequence of cognitive
change or muscle movement (Hinckley & Wigdor, 2002). In contrast, primary sensing directly measures brain
activity, possibly through electroencephalography (EEG), or muscle movement, for example through electromyog-
raphy (EMG). Electroencephalography measures the electrical voltage fluctuations created by neurons in the brain.
EEG technology is primarily used in medical environments and scientific data gathering. EEG-based systems are
also being developed for computer input control. A more detailed description of EEG technology is provided in
Section 4.2.

A brain-computer interface (BCI) is a “non-muscular channel for sending messages and commands to the external
world” providing a direct connection between the brain and a computer (Wolpaw et al., 2002). Müller-Putz et al.
(2011) note that BCIs, often using EEG signals for input, are a suitable options for people with motor disabilities
to give them a method of control without the need for movement. Allison et al. (2012) provide a recent survey of
brain control research. Current brain-machine interface technology has limitations, and researchers have overcome
these limitations by using it in multimodal settings and in a semi-autonomous framework (McMullen et al., 2014;
Müller-Putz et al., 2011; Zander et al., 2010). Such applications are known as hybrid BCIs (Pfurtscheller, et al.,
2010). In a study combining EMG and EEG signal input, Leeb et al. (2010) propose augmenting brain signals
with muscular signals available in a disabled person to utilize any remaining functionalities for control. In the
same vein, FLYAWAY combines brain signals and eye input to take advantage of two critical functionalities in a
locked-in individual.

FLYAWAY is distinctive in the way it uses brain activity to sense user intent in that it does not require expensive
equipment (see Section 2.2.3). The use of brain imaging remains in its infancy (Hinckley & Wigdor, 2002),
and “the development of efficient BCIs and their implementation in hybrid systems that combine well-established
methods in [human-computer interaction] and brain control will not only transform the way we perform everyday
tasks, but also improve the quality of life for individuals with physical disabilities” (Papadelis et al., 2013).

2.1.3 Fuzzy Logic and Theory

Lotfi Zadeh (Zadeh, 1965) proposed the theory of fuzzy sets in 1965. Fuzzy sets differ from classical sets in
that every element of a universal set U has a degree of membership that belongs to the closed interval [0, 1], as
opposed to the clear membership or nonmembership of classical sets. Classical sets are also referred to as crisp
sets because the membership states of elements are unambiguously defined. Fuzzy sets have an increasing number
of applications in natural language processing, risk analysis, and engineering (e.g., Cambria et al. 2014; Ross,
2009; Zimmerman, 2010). A more detailed explanation along with how FLYAWAY uses fuzzy logic is included in
Section 4.3.

2.2 Hardware Assessment

This subsection discusses hardware used for running the mobile application and for detecting eye and brain signals.

2.2.1 Tablet Computer

The application is written for Apple iPad to ensure mobility and ease-of-use while having access to sufficient
computational power. The application has been tested on an iPad (third generation) with 16GB of storage and an
Apple A5X dual-core chip.

2.2.2 Eye detection and Tracking Equipment

FLYAWAY uses the built-in iPad frontal camera, thereby eliminating the requirement for an external camera and
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Figure 1. Schematic Overview of the System. FLYAWAY combines brain and eye inputs to select the appropriate
hyperlink, presented in a tailored web browser

an additional camera expense. As discussed above, approaches for eye tracking which are low-cost often require
head gear to be worn on the user (EyeWriter, 2010; Li & Parkhurst, 2006). Some commercial eye tracking systems
use specialized cameras, and can cost more than $4,000 (Tobii Technology, 2013).

2.2.3 Electroencephalography Equipment

The cost of EEG equipment can range from $2,000 to $100,000 for medical diagnosis or scientific research, and
$100 to $500 on the consumer market (Goldberg, 2012). To align with the goal of creating a low-cost system, this
work used the NeuroSky MindWave Mobile, the least expensive EEG headset at the time of this publication, to
measure the user’s attention level. The headset connected to the iPad via Bluetooth. Even though this hardware
costs less than $100, integrating the input from the brain control with the input from eye control resulted in an
accurate system.

3. System Configuration and Schematic Overview

FLYAWAY allows a user to utilize eye tracking and brain control to navigate the web. In existing eye tracking
interfaces, the primary form of interaction with the computer is “clicking” on a button by simply looking at it for
a certain amount of time (called dwell time). Since cognitive ability often remains in individuals who are motor-
impaired (Wilson et al., 2011), FLYAWAY utilizes the concentration level of the user as a second method of control.
This bimodal control, using the eyes and the brain, utilizes economical and easily available hardware. Figure
gives a schematic of the system. While more details of the implementation are given in Section 4, an overview is
given here. When a user opens a webpage, it is downloaded onto the user’s mobile device. FLYAWAY processes
the webpage to find clickable links and highlight them on the web browser, which I design and implemented as
an iPad app. As the user browses the web page, the gaze is tracked using image processing on camera input.
This information helps FLYAWAY define and update a fuzzy set. The elements of this fuzzy set are the various
hyperlinks and their membership degrees reflect the user’s intent. The membership degrees are constantly updated
using the most recent gaze estimation point. Simultaneously, the electroencephalogram headset is used to measure
the user’s attention level and transmit this information to the iPad. Together, EEG attention level signals and gaze
estimation are used to determine the user’s intended link.

4. System Development

4.1 Eye Control: Image Processing

The frontal camera of the iPad captures the facial image of the user. This image is processed using the OpenCV
software library (Bradski & Kaehler, 2014) to find a general region around the eyes and subsequently approximate
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Figure 2. Eye Detection and Tracking Sequence. This figure visually depicts the sequence of the image
processing algorithm

the centroid of each iris. More details are provided below.

4.1.1 Eye Detection

The red channel in an RGB eye image is especially useful for distinguishing the pupil from other parts of the
eye (Fukuda et al., 2011). This system extracts the red channel from the image inputted by the camera, and uses
the Haar Cascade Classifier two_eyes_large (Castrillón et al., 2007) to detect a basic Region of Interest (ROI)
around both eyes (Figures (a) and (b)).

4.1.2 Eye Tracking

Locating the Iris. The frame is inverted (Figure (c)) by taking the complement of the grayscale pixel values. As
will be shown, this inversion helps in the calculation of the centroid of the iris. By observation, the iris and pupil
tend to be the darkest parts of the eye area (and thus the lightest parts on the inverted grayscale image). Therefore,
binarization is used to distinguish the iris. As noted previously, a global binarization threshold would not be
sufficient due to variations in lighting across the face. This study addresses that problem by applying an adaptive
binary threshold on the inverted grayscale image (Figure (d)). Let binaryImage(x, y) denote the value of the binary
image at coordinate (x, y), grayFrame(x, y) denote the pixel value at coordinate (x, y), τ(x, y) denote the mean of
the pixel values in a neighborhood region around (x, y), and C denote a constant. The function binaryImage(x, y)
is computed as follows:

binaryImage(x, y) =

255 if grayFrame(x, y) > τ(x, y) −C
0 otherwise.

(1)

In the adaptive binary threshold formula, C is a preset constant. However, in testing the algorithm, it was deter-
mined that the contrast of the eye and surrounding areas affect the optimal value of C. To ensure that the iris shape
approximation is accurate for all situations and is robust to shade and lighting conditions, FLYAWAY dynamically
adjusts C based on the binary image resulting from the adaptive binary threshold. Experimentation helped con-
clude that the optimal iris contour’s area is about 3% of the eye region detected. Thus, if the iris contour is greater
than the optimal area, C is decreased (so the pixels are more selectively assigned to 255). Likewise, if the iris
contour’s area is lower than desired, C is increased.

Figure displays a comparison of the three different thresholding techniques. The first row presents an example of
global thresholding with high, medium, and low values for the threshold. The adaptive binary threshold adjusts to,
for example, the differential in lighting on the two sides of the face. However, the high, medium, and low values of
C still affect the resulting binary image (second row). In the last row, C dynamically responds to the current binary
image output (and thus, the different thresholding levels do not apply). Adjusting C results in the most consistent
detection of the iris. FLYAWAY uses OpenCV’s findContours() function to locate the bounding areas of white
regions in the binary image (Figure (e)). The contours are filtered by area to remove noise.
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Figure 3. Thresholding Techniques. FLYAWAY implements dynamic adaptive thresholding to improve the
accuracy of iris contours

Figure 4. Calibration. A four-point calibration procedure improves the accuracy of gaze estimation

Centroid Calculation. FLYAWAY calculates moments on each filtered contour to compute the iris centroid (see
the two dots in the iris contours in Figure (f)). The moment Mmn(A) of an array A with x- order m and y- order n is
defined by

Mmn(A) =
∑

x

∑
y

(A(x, y) · xmyn) , (2)

where A(x, y) is the value of the pixel at location (x, y) in array A. The x-value (y-value) of the centroid of a finite
set of points in 2-D space is the mean of all x-values (y-values). Recall that the grayscale image was inverted
(Figure (c)). Pixels within the iris approximation contour have a value of 1 (white). Thus, M00(A) yields the area
of the contour A, and the coordinates of the centroid of array A can be expressed as

Centroid(A) =
(

M10(A)
M00(A)

,
M01(A)
M00(A)

)
. (3)

Depending on the side (right or left) of the centroid, each centroid is added to an array.

4.1.3 Gaze Estimation

To perform gaze estimation, the iris centroid approximation must be mapped to a point on the screen. To accom-
plish this, a four-point calibration method is implemented, during which the user looks sequentially at each of
four visual stimuli on the screen. Upon selection of each stimulus, the eye image is captured, and the centroid
approximations are used as a calibration point. The calibration points are stored in an array for further processing.
The upper part of Figure provides examples of the centroid approximations overlaid on each other for comparison
and the lower part shows the four visual stimuli. The calibration point associated with each stimulus is used for
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mapping the eye image coordinates onto a point on the screen. Let (XGaze, YGaze) be the mapped gaze estimation
point, (XC ,YC) be the current centroid position, (XTR, YTR) and (XT L, YT L) be the coordinates of the top right and
top left calibration points, (XBR,YBR) and (XBL,YBR) be the coordinates of the bottom right and bottom left calibra-
tion points, and (ScreenResx,ScreenResy) be the resolution of the screen in pixels. The following formula is used
for estimating gaze position:

(XGaze,YGaze) =

(XC − XT L) · ScreenResx
XTR−XT L+XBR−XBL

2

, (YC − YT L) ·
ScreenResy

YTR−YBR+YT L−YBL
2

 . (4)

A cursor image is drawn centered at the gaze estimation point. It is assumed that the head position of a user with
paralysis could be kept stationary; it would also be easy to keep the device stable, for example, by attaching a
bracket to a wheelchair or bed.

4.2 Brain Control: EEG Processing

Electroencephalography relies on electrical impulses created by neurons in the brain. When neurons communicate,
current is created. To measure brain activity, voltage fluctuations are measured from the scalp. Spikes in electrical
potential are known as neural oscillations. Different frequencies in these oscillations can be attributed to different
actions and stages of consciousness (Berger, 1929).

Delta waves have frequency up to 4 Hz. They normally occur when one is in deep sleep. Theta waves which range
from 4 to 8 Hz are linked to daydreaming and emotional stress. Alpha waves which have frequency ranging from
8 to 13 Hz are associated with relaxation. Mu waves which are found in the same frequency range are associated
with the intention of motor movement. Beta waves have frequency in the range 12 to 30 Hz. They are associated
with focused concentration, attention, and arousal. Gamma waves which range from frequency 30 Hz and up are
associated with perception and cognition (Georgieva et al., 2014).

EEG equipment has traditionally been used in the medical field, but is now becoming more readily available.
EEG is the most common approach for brain signal acquisition without surgically implanted devices (Randolph &
Moore Jackson, 2010). The EEG control augments the eye tracking interface to serve as another level of control.
As the user focuses their attention on a hyperlink on the screen, the program determines whether he/she wants to
select it.

After a one-time pairing procedure, the headset automatically connects to the iPad using the built-in Bluetooth
communication capability. This application uses the ThinkGear SDK for iOS for communication with the headset.
The eSenseAttention value provided by the headset primarily uses Beta wave values to measure concentration,
focus, and directed mental activity of the user.

4.3 Integrated Eye and Brain Control Using Fuzzy Logic

Fuzzy logic is used to handle the potential uncertainty in user intention about where to navigate next. Since
hyperlinks are the primary interactive item on a webpage, they are regarded as locations that the user could wish to
select. For every gaze estimation point, a fuzzy set is created containing elements representing all of the hyperlinks.
To illustrate, some definitions are first necessary.

4.3.1 Fuzzy Set Theory

A set is defined as a collection of distinct elements. Every set has a characteristic function, representing an el-
ement’s membership in the set. In classical, or crisp, sets, an element’s membership or nonmembership is well
defined.

LetU denote a universal set and ∅ denote a null set. Let charA(x) denote the characteristic function of a setA ⊆ U
and x ∈ A.

• A is a crisp set if and only if ∀x ∈ A, charA(x) ∈ {0, 1}.

• A is a fuzzy set if and only if ∀x ∈ A, charA(x) ∈ [0, 1].

Thus, fuzzy sets generalize crisp sets. Henceforth, fuzzy sets are denoted by a tilde over an uppercase script letter.
Figure shows an example when the characteristic functions have an inverse relationship with the values of x.

Fuzzy sets are useful when information is imprecise. For example, we are often imprecise in our assessments or
descriptions of situations. We use words such as “virtually,” “practically,” “typically,” and “roughly” which denote
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Figure 5. Examples of Characteristic Functions. In a fuzzy set, membership degree of an element can take up any
value between 0 and 1

different degrees of certainty. Since these words might mean different things to different people, they cannot be
analyzed using classical set theory. Fuzzy sets can model situations of this type, and have been used in several
engineering applications. However, in the situation that this system models, where user intentions may be unclear
and there may be measurement errors, the novel application of fuzzy sets is immensely useful.

Fuzzy set theory follows all but two of the axioms of classical set theory. The union of fuzzy sets A and B is
defined by the characteristic function charÃ∪B̃(x) = max(charÃ(x), charB̃(x)) and the intersection is defined by the
characteristic function charÃ∩B̃(x) = min(charÃ(x), charB̃(x)). Although De Morgan’s principles apply to fuzzy
sets, Ã ∪ ÃC , U ∧ Ã ∩ ÃC , ∅.
4.3.2 Determining Membership Degrees

Every hyperlink on the webpage is assigned a membership degree that reflects the degree of desirability of the link
to the user. The membership degree of each link depends on the location of each link and the gaze estimation point.

Location of Hyperlinks. In order to find the location of hyperlinks, this program uses the HTML source and
JavaScript. Upon loading of a webpage, it obtains and processes the HTML to add an id attribute to every
hyperlink element. The HTML attribute href indicates a hyperhyperlink, so a regular expression is initiated
to locate all hyperlinks and append each occurrence with id="Link%u" where %u specifies an integer relating
the position of the hyperlink occurrence within the HTML. The JavaScript functions getElementById() and
hypergetClientRects() are used to find the spatial coordinates of every hyperlink rendered within the browser.
Membership of Hyperlinks. The location of a hyperlink is used as one of the factors that determine its member-
ship degree. Let L be the set of links Li and F̃t be the fuzzy set for the gaze position at time t. The distance di

between link Li with coordinates Li,x and Li,y and the cursor C (drawn at the gaze estimation point, with coordinates
Cx and Cy) is defined by the Euclidean metric di =

√
(Cx − Li,x)2 + (Cy − Li,y)2 (see Figure ). The relative distance

of link Li yields values between 0 and 1, where relative distance to the cursor is its distance to the cursor divided
by the sum of the distances of all links to the cursor. The greater the distances of the cursor to the other links, the
closer the relative distance of Li is to 0. However, since the end result requires links closer to the cursor to have
higher values, the program takes the difference of 1 and the relative distance.

This function, δt(Li) at measurement t for link Li is represented as

δt(Li) =

∑
j∈L\{Li}

d j∑
j∈L

d j
∀i,∀t. (5)
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Figure 6. Cursor and Hyperlinks. The membership degree of a hyperlink in the fuzzy set depends on its relative
distance from the cursor

Figure 7. Illustration of λ-Cut. FLYAWAY defuzzifies the fuzzy set using a modified λ-cut in which the value of
lambda is dynamic

4.3.3 Updating Membership Degree Using Exponential Smoothing

Every new gaze estimation point creates a new fuzzy set. Some weight should be given to previous gaze esti-
mations to monitor and verify user intent. Considering only the most recent gaze estimation was not a desirable
option because of, for example, inaccurate measurement and because users may simply be scanning all available
hyperlinks without intending to click one. The option existed to use the union or intersection of the most recent
fuzzy sets, but neither alternative was viable. The union would have the maximum membership degree among
all the measured fuzzy sets for each element, which would lead to undesired membership degrees. Likewise, the
intersection would take the minimum, and the minimum values are not important to determining the user intent.
Instead, exponential smoothing is used to give a weight ω to the most recent measurement, but still some positive
weight 1 − ω to the previous membership degree. Let µF̃t

(Li) be the membership degree of link Li in the fuzzy set
F̃t. Then,

µF̃t
(Li) = (ω)δt(Li) + (1 − ω)µF̃t−1

(Li) ∀i,∀t. (6)

Using exponential smoothing allows FLYAWAY to store only the current measurement and the membership degree
for the previous reading. However, this membership degree has embedded in it all of the previous membership
degrees. In this fashion, the memory requirements are minimized and the “curse of dimensionality” is mitigated.

4.3.4 Defuzzification Using λ-Cuts
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Although the system uses fuzzy sets to model impreciseness, the user’s intended hyperlink in the end has to be
determined and clicked. Thus, the fuzzy sets are defuzzified. To determine if the user intends to select a hyperlink, a
λ-cut for defuzzification is used (for example, see Ross, 2009). This work develops and implements a conditional
λ-cut. Before discussing the conditional λ-cut, consider the regular λ-cut. Let the defuzzified set F λt (which is
crisp) be the λ-cut set of F̃t. F λt is defined as F λt = {L ∈ L : µF̃t

(L) ≥ λ}. In other words, any element L ∈ F̃t with
a degree of membership that is greater than or equal to λ belongs to F λt .

Figure graphically illustrates a λ-cut. This system uses λ-cuts to separate the hyperlinks with a high enough
membership to be clicked from the others. When the attention level exceeds a threshold θ, a λ-cut is performed
to extract the hyperlinks with the top values. However, to prevent |F λt | from becoming unmanageable, this system
defines a conditional λ-cut that changes the value of λ depending on the situation. This value at time t is referred
to as λt. Let κ and ∆ be constants. Let µmax be the maximum membership value in F̃t. The value of λt depends on
µmax:

λt =

µmax − ∆ if µmax ≥ κ
κ otherwise.

(7)

In Figure , links 7 and 8 have membership degrees exceeding the cutoff λt and become members of the defuzzified
set.

4.3.5 Link Selection and Target Expansion

The program determines which hyperlink to click using a conditional λ-cut, as described in Section 4.3.4. If
|F λt | = 0, then no link is clicked. If |F λt | = 1, the JavaScript functions getElementById() and click() are
used to simulate the click of the appropriate hyperlink. Note that the use of λ-cuts allows for a click to be made
as long as the membership degree is high enough and does not require the cursor to go exactly over the target,
similar to (Grossman, 2005). When |F λt | > 1, there are multiple links that are close together and it is difficult to
determine the one in which the user is interested. In this case, following previous research (Hwang et al., 2013), a
rectangle around the identified links is magnified. Membership degrees of all links are reset. This strategy allows
a user to have more fine-grained and precise control over their choice. Target expansion uses the Objective-C
UIScrollView method zoomToRect.

4.3.6 Error Recovery Mechanism

In case of a mistake, the system has an error recovery mechanism. Two options were considered: (i) the user closes
his/her eyes for a certain period of time, e.g. five seconds; and (ii) a back arrow. Since a quadriplegic may not have
full voluntary control of his/her eyelids, the system implements a back button presented in the top left corner of
the interface (Figure ). Also, since user intent would be clear in the case of error recovery, membership values are
overridden for gaze estimations within a fixed distance of the back button.

5. Experimental Design and Results

This section describes the experimental evaluation of FLYAWAY. The experiment investigated how accurately a
cross-section of individuals could navigate a webpage using this system. Following previous researchers investi-
gating the performance of non-traditional assistive technologies (for example, Randolph & Moore Jackson, 2010),
this research studied individuals’ initial use of FLYAWAY with just a short introduction. Training effects or learn-
ing through experience due to long-term use of the system were not incorporated in this study. Approval of the
study was obtained from the Intel International Science and Engineering Fair (ISEF) Scientific Review Committee
and affiliated Institutional Review Board.

5.1 Interface Design

Figure shows the interface of this application with two example webpages loaded, and major elements labeled.

5.2 Participants

Participants in this study were at least 18 years old and included students, school teachers, librarians, university
professors, working professionals, retired individuals, and homemakers. Their educational qualifications ranged
from high school graduate to PhD. No compensation was offered for participation in the system testing. The sample
consisted of 31 individuals to evaluate the system. The sample characteristics are as follows. All participants
were non-disabled; while it would have been preferable to conduct an evaluation with quadriplegic individuals, a
representative sample could not be obtained. 68% of the individuals were women and 32% were men. 87% of
the sample had used computers for more than 10 years, but only 29% of the sample had used a mobile device
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Figure 8. User Interface. The upper panel shows the user interface with four hyperlinks, a back button, and scroll
buttons. The lower panel shows the interface after the link to the Google homepage is clicked
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Figure 9. Data Collection. Two participants from the study using FLYAWAY

(smartphone or tablet) for more than four years. 19% reported using the Internet on mobile devices for more
than one hour per day, in comparison to 68% who reported using the Internet on computers for more than one
hour per day. Finally, 94% reported using keyboard and mouse/trackpad as the primary input method while using
computers, and 81% reported using touch as the primary input method while using mobile devices. Two studies
were conducted using this sample.

5.3 Effectiveness of First-Attempt

The first study evaluated the first-attempt accuracy in the system; i.e., how accurate the system is in allowing the
user to navigate to the intended webpage or to scroll on the first try.

5.3.1 Stimuli and Procedures

Each respondent was first told the motivation for developing FLYAWAY and was then asked to sign a consent
form. He/she was then asked to complete a brief questionnaire requesting demographic and computer/internet
usage information. The consent form and questionnaire are available upon request. Subsequently, the EEG headset
was positioned on the participant, and the Bluetooth connection and headset measurements were established and
verified by asking the respondent to concentrate and to relax.

Next, the participant was asked to rest his/her chin on a chin rest to keep the head steady. Figure shows the setup
for two study participants using FLYAWAY. After calibration, the participant was asked to select any one of the
four links on a test webpage, shown in the upper panel of Figure . This process was repeated four times. Next, each
participant was asked to look at the up and down scrolling buttons, in any order. This resulted in six observations
per individual, for a total of 186 observations.

Before presenting the results, it would be useful to note that the accuracy of the system can depend on the complex-
ity of the webpage. While the system was tested on a static webpage as described above, some websites include
dynamic content in the same spatial location of the webpage. In such cases, it is important to click at just the right
moment to navigate to the desired webpage. Such complex webpages were not evaluated using FLYAWAY in this
study, but that can be a topic for future research.

5.3.2 Results and Analysis

Let p denote the proportion of times for which this system accurately navigates to the intended page on the first
attempt. In 169 out of the 186 cases during the data collection, the system navigated to the intended link. The point
estimate, p̂ of the first attempt success rate is therefore p̂ = 169/186 = 0.909.

Next, a confidence interval was developed for the success proportion of the first attempt. A sample size check
showed that the study has a large enough sample size (see, for example, Keller, 2014):

n · p̂ = 186 · 0.909 = 169 > 9 and n · (1 − p̂) = 186 · (1 − 0.909) = 17 > 9.

The standard error is 0.021 and the lower and upper limits of the 95% confidence interval for p are 0.87 and 0.95,
respectively.

Therefore, the data provides evidence with 95% confidence that the first attempt success rate lies between 87% and
95%.
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Figure 10. Decision Tree. Analysis of success rate with error recovery and second attempt

A reasonable hypothesis for this situation is H0 : p ≤ 0.70; Ha : p > 0.70. The reason for this hypothesis stems
from (Kübler et al., 2009; see also Randolph & Moore Jackson, 2010). The data in the sample provides sufficient
evidence to reject the null hypothesis with an alpha of 0.01 (p-value < 0.001).

5.4 Effectiveness of Error Recovery

The second study investigated the effectiveness of the error recovery mechanism of this system.

5.4.1 Stimuli and Procedures

This study was conducted immediately following Study 1 for each respondent. The respondent was told that the
objective of this part of the data collection was to check the effectiveness of error recovery in case of incorrect
navigation. The respondent was asked to click the back button four times, resulting in a total of 124 observations.

5.4.2 Results and Analysis

Let pe denote the proportion and p̂e denote the sample proportion of correct error recovery selection. Since 122
out of the 124 observations resulted in correct error recovery, the point estimate of pe is p̂e = 122/124 = 0.984.

5.5 Success Rate with Second Attempt

The error recovery success rate was used in conjunction with the first attempt rate to calculate the success pro-
portion with a second attempt. Figure graphically shows how this computation was done. Since selection and
error recovery are independent events, the probability of failure on the first attempt, success in error recovery and
success in the second attempt were multiplied to obtain 0.082, which is the joint probability of these three events.
Consequently, the success rate with a second attempt is 0.909 + 0.082, which equals 0.991.

5.5.1 Determining the Confidence Interval for Success Rate with Second Attempt

In Section 5.3, determining the confidence interval was straightforward. However, determining the confidence
interval for the success rate with the second attempt is complicated because it involves three random quantities.
Since no closed form expression could be located, a Monte-Carlo simulation was performed with 100 trials to
construct the confidence interval. For each trial, a random number for the first attempt success rate was generated
from a normal distribution with a mean of 0.909 and a standard deviation of 0.021. Denote this value as X1. Since
the error recovery percentage is already very high (0.986), this value was not simulated. Denote this value as Y .
Finally, a second stage success rate was simulated assuming that the first stage resulted in an incorrect choice. To
do this, a random number X2 was generated from the same distribution as that of X1. The second attempt success
rate for this trial was computed as X1 + (1 − X1) ∗ Y ∗ X2. Next, the mean and the standard deviation of the 100
such values were computed, which were used to determine the 95% confidence interval for the success rate with a
second attempt. Based on the simulation, it was concluded that the upper and lower limits of the 95% confidence
interval for the success rate with a second attempt is are 0.9845 and 0.9966, respectively.

6. Conclusion and Future Directions

This paper describes the development of a low-cost and accurate web browsing system targeted to help individuals
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with motor impairments. The system utilizes multimodal control by capturing eye movements and brain attention
levels. These signals are used as inputs to initiate and continuously update the estimated desirability of links on a
webpage. A novel fuzzy logic algorithm helps accomplish this task. While the system meets the current objectives,
there are several directions that can be explored to improve the system.

Three criteria that are important in designing a system of this type are speed, accuracy, and cost. For a given cost,
a trade-off has to be made between speed and accuracy. Although the iPad (third generation) camera has a high
resolution capability, a low resolution input is used to improve image processing efficiency. It would be important
to see if these algorithms can be fine-tuned so that they can process higher-quality images in the same amount
of time. Of course, improvements in the processing power of mobile devices provide opportunities to extend
the frontier at which this trade-off needs to be made. Potential algorithmic improvements to explore include (i)
determining a function for κ based on number of links |L|, (ii) implementing alternate defuzzification mechanisms,
and (iii) further fine-tuning the attention level threshold θ, exponential smoothing constant ω, and conditional λ-cut
constants κ and ∆.

Alternate methods of user control that hold potential for specific abilities include eye-mouth control, cheek-
eyebrow control, and closing eyes for error recovery. A dynamic interaction interface centered on ability rather
than disability, termed as ability-based design (Wobbrock et al., 2011), would automatically adapt to a wide variety
of users.

While the system is currently implemented for the iPad, the image processing algorithm and fuzzy logic algorithm
can be ported to other mobile tablet operating systems. Developing a cross-platform system could increase its
versatility.

FLYAWAY could also be expanded to a computer-wide control system. On a longer-term basis, this approach
could be used to exploit the “Internet of Things.” Those facing motor-impairments could use multimodal control
to use home appliances in customized settings for further improving their quality of life.
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