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FOREWORD

In the mid-1960's I had the pleasure of attending a talk by Lotfi Zadeh
at which he presented some of his basic (and at the time, recent) work on
fuzzy sets. Lotfi's algebra of fuzzy subsets of a set struck me as very nice; in
fact, as a graduate student in the mid-1950's, I had suggested similar ideas
about continuous-truth-valued propositional calculus (inf for "and", sup for
"or") to my advisor, but he didn't go for it (and in fact, confused it with
the foundations of probability theory), so I ended up writing a thesis in a
more conventional area of mathematics (differential algebra). I especially
enjoyed Lotfi's discussion of fuzzy convexity; I remember talking to him
about possible ways of extending this work, but I didn't pursue this at the
time.

I have elsewhere told the story of how, when I saw C.L. Chang's 1968
paper on fuzzy topological spaces, I was impelled to try my hand at fuzzi-
fying algebra. This led to my 1971 paper "Fuzzy groups", which became
the starting point of an entire literature on fuzzy algebraic structures.

In 1974 King-Sun Fu invited me to speak at a U.S.-Japan seminar on
Fuzzy Sets and their Applications, which was to be held that summer in
Berkeley. I wasn't doing any work in fuzzy mathematics at that time, but I
had a long-standing interest in fuzzifying some of the basic ideas of pattern
recognition, so I put together a paper dealing with fuzzy relations on fuzzy
sets, treating them from the viewpoint of fuzzy graphs. This doesn't seem
to have led to a flood of papers on fuzzy graph theory, but the topic does
have important applications, and perhaps the prominence given to it in
this book will lead to renewed activity in this area. [My 1976 paper "Scene
labeling by relaxation operations" (with R.A. Hummel and S.W. Zucker;
IEEE Trans. SMC-6, 420-433) included a treatment of the fuzzy version of
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the constraint satisfaction problem, but this too hasn't been widely followed
up.]

Over the past 20 years I have made many excursions into various areas of
fuzzy geometry, digital and otherwise. My 1978 paper "A note on the use of
local min and max operators in digital picture processing" (with Y. Naka-
gawa; IEEE Trans. SMC-8, 632-635) was the first published treatment of
fuzzy mathematical morphology (local max=dilation, local min=erosion).
My 1979 paper "Thinning algorithms for gray-scale pictures" (with C.R.
Dyer; IEEE T3nns. PAMI-1, 88-89) presented a fuzzy version of the thin-
ning process in which local min is applied only where it does not weaken
fuzzy connectedness, as defined in my paper "Fuzzy digital topology" (pub-
lished the same year).

The number of papers on fuzzy (digital) geometry grew steadily during
the 1980's. As early as 1984 1 was able to survey the subject in my pa-
per "The fuzzy geometry of image subsets" (Pattern Recognition Letters
2, 311-317). A subsequent survey appeared in the Proceedings of the First
IEEE International Conference on Fuzzy Systems (San Diego, March 8-
12, 1992), pp. 113-117. An updated version of this survey was presented
at the opening session of the Joint Conference on Information Sciences in
Wrightsville Beach, NC on September 28, 1995 and is to appear in Informa-
tion Sciences. [An early reference on fuzzy geometry, inadvertently omitted
from these surveys is J.G. Brown, "A note on fuzzy sets," Info. Control
18, 1971, 32-39.]

At the end of 1980 I attempted to publish a tutorial paper on fuzzy
mathematics in the American Mathematical Monthly, but the editors ap-
parently didn't like the topic. I then tried the Mathematical Intelligencer;
they eventually published a heavily revised version of that paper ("How
many are few? Fuzzy sets, fuzzy numbers, and fuzzy mathematics", 2, 1982,
139-143), but most of my discussion of fuzzy mathematical structures was
dropped. The original version was University of Maryland Computer Sci-
ence Technical Report 991, December 1980; it finally saw print in Paul
Wang's book Advances in Fuzzy Theory and Technology I, Bookwrights
Press, Durham, NC, 1993, 1-8.

I was delighted to hear that Profs. Mordeson and Nair were publishing
this book-length introduction to fuzzy mathematics. I hope the book is
successful and stimulates increased interest in the subject.

Azriel Rosenfeld
University of Maryland



PREFACE

We eagerly accepted the invitation of Physica-Verlag to prepare a second
edition of our book. The second edition contains an expanded version of
the first. The first four chapters remain essentially the same. Chapter 5
is expanded to contain the work of Rosenfeld and Kiette dealing with the
degree of adjacency and the degree of surroundness. The work of Pal and
Rosenfeld on image enhancement and thresholding by optimization of fuzzy
compactness is also included. Rosenfeld's results on Hausdorff distance be-
tween fuzzy subsets is also included. We expand the geometry of Buckley
and Eslami concerning points and lines in fuzzy plane geometry and in-
clude their new work on circles and polygons in fuzzy plane geometry. In
Chapter 6, we add the latest results on the solution of nonlinear systems
of fuzzy intersection equations of fuzzy singletons.

The book deals with fuzzy graph theory, fuzzy topology, fuzzy geometry,
and fuzzy abstract algebra. The book is based on papers that have appeared
in journals and conference proceedings. Many of the results that appear in
the book are based on the work of Azriel Rosenfeld. The purpose of the
book is to present the concepts of fuzzy mathematics from these areas which
have applications to engineering, science, and mathematics. Some specific
application areas are cluster analysis, digital image processing, fractal com-
pression, chaotic mappings, coding theory, automata theory, and nonlinear
systems of fuzzy equations. The style is geared to an audience more general
than the research mathematician. In particular, the book is written with
engineers and scientists in mind. Consequently, many theorems are stated
without proof and many examples are given. Crisp results of the more ab-
stract areas of mathematics are reviewed as needed, e. g., topology and
abstract algebra. However some mathematical sophistication is required of
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the reader. Even though the book is not directed solely to mathematicians,
it involves current mathematical results and so serves as a research book
to those wishing to do research in fuzzy mathematics.

In Chapter 1, basic concepts of fuzzy subset theory are given. The notion
of a fuzzy relation and its basic properties are presented. The concept of
a fuzzy relation is fundamental to many of the applications given, e. g.,
cluster analysis and pattern classification. Chapter 1 is based primarily on
the work of Rosenfeld and Yeh and Bang.

Chapter 2 deals with fuzzy graphs. Here again most of the results of this
chapter are based on the work of Rosenfeld and Yeh and Bang. Applications
of fuzzy graphs to cluster analysis and database theory are presented.

Chapter 3 concerns fuzzy topology. We do not attempt to give anywhere
close to a complete treatment of fuzzy topology. There are two books de-
voted entirely to fuzzy topology and as a combination give an extensive
study of fuzzy topology. These two books are by Diamond and Kloeden
and by Liu and Luo. Their exact references can be found at the end of
Chapter 3. In Chapter 3, we review some basic results of topology. We
then feature the original paper on fuzzy topology by C. L. Chang. For the
remainder of the chapter, we concentrate on results from fuzzy topology
which have applications. These results deal with metric spaces of fuzzy
subsets.

In Chapter 4, we present the work of Rosenfeld on fuzzy digital topology.
An application to digital image processing is given. The chapter also treats
nontopological concepts such as (digital) convexity.

Chapter 5 is on fuzzy geometry. Once again the work of Rosenfeld is
featured. The fuzzy theory developed in this chapter is applicable to pattern
recognition, computer graphics, and imaging processing. We also present
the geometry currently under development by Buckley and Eslami. The
presentation of their geometry is not complete since the book goes to press
before their geometry is completed. We have expanded this and the next
chapter as described above.

Chapter 6 deals with those results from fuzzy abstract algebra which
have known applications. Rosenfeld is the father of fuzzy abstract algebra.
He published only one paper on the subject. However this paper led to
hundreds of research papers on fuzzy algebraic substructures of various
algebraic structures. Here, as in the chapter on fuzzy topology, we review
crisp concepts which are needed for the understanding of the chapter.

Of course the whole notion of fuzzy set theory is due to Lotfi Zadeh.
His classic paper in 1965 has opened up new insights and applications in
a wide range of scientific areas. A large part of Zadeh's orginal paper on
fuzzy sets deals with fuzzy convexity. This notion plays an important role
in this text.

John N. Mordeson
Premchand S. Nair
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1

FUZZY SUBSETS

In this chapter we explore fuzziness as tool to capture uncertainty. Let S be
a set and let A and B be subsets of S. We use the notation A u B. A n B to
denote the union of A and B and intersection of A and B, respectively. Let
B\A denote the relative complement of A in B. The (relative) complement
of A in S, S\A, is sometimes denoted by A` when S is understood.

Let x be an element of S. If x is an element of A, we write x E A;
otherwise we write x V A. We use the notation A C B or B D A to denote
that A is a subset of B. If A C B, but there exists x E B such that x A,
then we write A c B or B D A and say that A is a proper subset of B. The
cardinality of A is denoted by CAI or card(A). The power set of A, written
p(A), is defined to be the set of all subsets of A. i. e., p(A) = {UIU C A}.
A partition of S is a set P of nonempty subsets of S such that VU, V E P.
either (1) U = V or U fl V = 0, the empty set, and (2) S = U U.

UEP
We let N denote the set of positive integers, Z the set of integers, Q the

set of rational numbers, J the set of real numbers and C the set of complex
numbers.

Let X and Y be sets. If x E X and y E Y. then (x, y) denotes the ordered
pair of x with y. The Cartesian cross product of X with Y is defined to
be the set {(x, y)Ix E X, y E Y} and is denoted by X x Y. At times we
write X2 for X x X. In fact, for n E N, n > 2, we let X" denote the set
of all ordered n-tuples of elements from X. A relation R of X into Y is a
subset of X x Y. Let R be such a relation. Then the domain of R. written
Dom(R). is {x E X 13y E Y such that (x, y) E R} and the image of R.
written Im(R), is {y E YIBx E X such that (x. y) E R}. If (x. y) E R, we
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sometimes write xRy or R(x) = y. If R is a relation from X into X, we say
that R is a relation on X. A relation R on X is called

(i) reflexive if Vx E X, (x. x) E R;

(ii) symmetric if Vx, y E X, (x, y) E R implies (y. r) E R:

(iii) transitive if Vx. y. z E X. (x, y) and (y, z) E R implies (x. z) E R.

If R is a relation on X which is reflexive, symmetric, and transitive,
then R is called an equivalence relation. If R is an equivalence relation on
X, we let [x] denote the equivalence class of x with respect to R and so
[x] = { a E X I aRx } . If R is an equivalence relation on X, then { ]x] ]x E X J
is a partition of X. Also if P is a partition of X and R is the relation on
X defined by Vx, y E X, (x, y) E R if 3U E P such that x, y E U, then R
is an equivalence relation on X whose equivalence classes are exactly those
members of P.

A relation R on X is called antisymmetric if Vx, y E X, (x, y) E R and
(y, x) E R implies x = y. If R is a reflexive, antisymmetric, and transitive
relation on X, then R is called a partial order on X and X is said to be
partially ordered by R.

Let R be a relation of X into Y and T a relation of Y into a set Z. Then
the composition of R with T, written T o R, is defined to be the relation
{(x, z) E X x ZIRy E Y, such that (x, y) E R and (y, z) E T}.

If f is a relation of X into Y such that Dom(f) = X and `dx, x' E X,
x = x' implies f (x) = f (x'), then f is called a function of X into Y and
we write f : X -> Y. Let f be a function of X into Y. Then f is some-
times called a mapping and f is said to map X into Y. If Vy E Y, 3x E X
such that f (x) = y, then f is said to be onto Y or to map X onto Y. If
dx, x' E X, f (x) = f (x') implies that x = x', then f is said to be one-to-
one and f is called an injection. If f is a one-to-one function of X onto Y,
then f is called a biection. If g is a function of Y into a set Z, then the
composition of f with g, go f, is a function of X into Z which is one-to-one
if f and g are and which is onto Z if f is onto Y and g is onto Z. If Im(f)
is finite, the we say that f is finite-valued. We say that an infinite set X is
countable if there exists a one-to-one function of X onto N; otherwise we
call X uncountable.

Fuzzy theory holds that many things in life are matters of degree. A
black and white photo is not just black and white; there are many levels of
gray shades which can be observed in a typical picture. Computer scientists
and engineers have long accepted this fact. As an example, a pixel can have
a brightness value between 0 and 255. The 0 value stands for black, 255
stands for white and every number between 0 and 255 stands for a certain
gray level.

Let S be a set. A fuzzy subset of S is a mapping A : S -+ [0, 1]. We
think of A as assigning to each element x E S a degree of membership,
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o A(x) 1. Let A be a fuzzy subset of S. We let At = {x E SI'() t}
for all -t E 10, 1]. The sets At are called level sets or t-cuts of A. We let
supp(A) = {x E SJA(x) > 0}. We call supp(A) the support of A. The set
of all fuzzy subsets of S is denoted by 3p(S) and is called the fuzzy power
set of S.

Example 1.1 Let S = { a, b, c, d 1. Then A = { a, b} is a subset of S. On
the other hand the mapping A : S - 10, 11 such that A(a) = 1. A(b) =
1, A(c) = 0, A(d) = 0 is a fuzzy subset of S. Similarly, B = {a, c, d} is a
subset of S and the mapping B : S --> [0.11 such that. B(a) = 1, B(b) =
0, B(c) = 1, B(d) = I is a fuzzy subset of S. We see that corresponding to
a subset X of S, there is always a fuzzy subset X of S with the following
property.

(i) x E X if and only if f ((x) = 1

(ii) x X if and only if f ((x) = 0

On the other hand the mapping C : S -- [0,11 which assigns C(a) _
0.3, C(b) = 0.9, C(c) = 0.4. C(d) = 0.625 is a fuzzy subset of S. Corre-
sponding to the fuzzy subset C there are five level subsets of S, as shown
below.

S 0<t<<0.3
{b,c,d} 0.3<t<0.4

Ct = {b, d} 0.4 < t < 0.625
{b} 0.625 < t < 0.9
0 0.9<t<1.0

FIGURE 1.1 Graphical representation of the fuzzy set C-

a d C

We see that a finite-valued fuzzy subset C determines a "chain of sub-
sets of S" . Conversely, given a finite chain of subsets C, C_ C2 C_ ... C_

Cw = S, k > 0. there exists a fuzzy subset 0 such that its level sets are
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CI, C2..... Ck = S. The construction of C can be outlined as follows.
Choose k numbers 0 < tl < t2 < ... < tk < 1. For s E S, define C(s)
as follows:

C(s)
t= ifsECk 2+I\Ck-t.i=1.2.....k-1.

tk if s E Cl.

Let A be a subset of a set S. Define XA : S - [0,1] by XA(a) = 1 if a c- A
and XA(a) = 0 if a E S \ A. Then X.4 is called the characteristic function
of A in S.

Definition 1.1 Let A, B be any two fuzzy subsets of S. Then

(i) A C B if A(x) < B(x) for all x E S,

(ii} A c B if A(x) < B(x) for all x E S and there exists at least one x E S
such that A(x) < B(x),

(iii) A = B if A(x) = B(x) for all x E S.

We now proceed to define the union and intersection of fuzzy subsets
as well as the complement of a fuzzy subset. We use the notation V for
supremum and n for infimum.

Definition 1.2 Let A, B be any two fuzzy subsets of S. Then A U B is the
fuzzy subset of S defined by

(A U B)(x) = A(x) V B(x) for all x E S

and A n b is the fuzzy subset of S defined by

(A n B)(x) = A(x) A B(x) for all x E S.

Definition 1.3 Let A be any fuzzy subset of S. Then Ac is the fuzzy subset
of S defined by

Ac(x) = 1 - A(x) for all x E S.

Example 1.2 Let S = { a, b, c, d } . Let A : S -+,[0.1] be such that A(a) _
0.3, A(b) = 0.9, A(c) = 0.4. A(d) = 0.6 and let B : S -+ [0, 1] be such that
B(a) = 0.3, B(b) = 0.5, B(c) = 0.7, B(d) = 0.2. Then

S 0<t<0.3 S 0<t<0.2
{b,c,d} 0.3<t<0.4 {a,b,c} 0.2<t<0.3

At= {b,d} 0.4<t<0.6 and Bt= {b,c} 0.3<t<0.5
{b} 0.6<t<0.9 {c} 0.5<t<0.7
0 0.9<t<1.0 0 0.7<t<1.0

Now (AUB)(a) -- 0.3, (AuB)(b) = 0.9, (AUB)(c) = 0.7, and (AUB)(d) =
0.6. Also (An B)(a) = 0.3. (AnB)(b) = 0.5, (AUB)(c) = 0.4, (AnB)(d) =
0.2. Thus
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S 0<t<0.3 S 0<t<0.2
{b,c.d} 0.3<t<0.6 {a,b,c} 0.2<t<0.3

(AuB)t = {b, c} 0.6 < t < 0.7 (AnB)t = {b, c} 0.3 < t < 0.4
{b} 0.7 < t < 0.9 {b} 0.4 < t < 0.5
0 0.9<t<1.0 0 0.5<t<1.0

Further,

S 0<t<0.1
{a,c,d} 0.1<t<0.4

A`= {a,c} 0.4<t<<0.6
{a} 0.6<t<0.7
0 0.7<t<1.0

FIGURE 1.2 Fuzzy subsets A, B, A w B, A n b, Ac, respectively.

If S is a collection of fuzzy subsets of S, we define the fuzzy subset
I = (lC (intersection) of S by Vx E S, I(x) = n{C(x)IC E S} and the

CES
fuzzy subset U = UC (union) of S by Vx E S, U(x) = V{C(x)IC E S}.

CES
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Algebraic properties of fuzzy subset operators can be summarized as
follows. Now Xs(x) = 1 for all x E S and XO(x) = 0 for all x E S. Let A. B,
and C be fuzzy subsets of S. Then we have the following properties.

(1) AUB=. uA
(2)AnB=BnA
(3) A u X0 = A
(4) A n Xe = xe
(5) A U Xs = Xs
(6)Anxs=A
(7)AuA=A
(8)AnAA

(9) Au(BuC) = (AuB)uC
(10) An(BnC)=(AnB)nC
(11) An(Bu0) _ (AnB)u(AnC)
(12) Au (BnC) _ (AuB)n(AuC)
(13) (A a B)c = Ac n BC
(14) (An B)c = Ac u Bc
(15) (A°)c = A

It is important to note that the properties A n A` = X0 and A U A` = Xs
do not hold in general. In logic, the former property is known as the law of
contradiction while the latter is known as the law of the excluded middle.

For the interested reader, the bibliography at the end of the chapter
contains many excellent textbooks on fuzzy subsets.

1.1 Fuzzy Relations

Let S and T be two sets and let A and i3 be fuzzy subsets of S and T,
respectively. Then a fuzzy relation R from the fuzzy subset A into the fuzzy
subset b is a fuzzy subset R of S x T such that R(x, Y) < A(x) A A3 (y), dx E
S and y E T. In other words, for R to be a fuzzy relation, we require that
the degree of membership of a pair of elements never exceed the degree of
membership of either of the elements themselves. If we think of the elements
as computers and pairs as the communication links between the computers,
this amounts to requiring that the strength of the communication link can
never exceed the strengths of its connecting computers. More generally,
the amount of flow of a quantity from a source to a sink is limited by the
capability to transmit and receive. Also, the restriction R(x, y) < A(x) A
B(y), dx E S and y E T allows Rt to be a relation from At into Bt for all
t E 10,11 and for supp(R) to be a relation from supp(A) into supp(B).

There are three special cases of fuzzy relations which are extensively
found in the literature.

case 1: S = T and A = B. In this case, R is said to be a fuzzy relation
on A. Note that R is a fuzzy subset of S x S such that R(x. y) <
A(x) A A(y).

case 2: A(x) = 1.0 for all x E S and B(y) = 1.0 for all y E T. In this case,
R is said to be a fuzzy relation from S into T.
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case 3: S=T,A(x)=1.0forallxESandB(y)=1.0forallyET.In
this case, R is said to be a fuzzy relation on S.

There are many applications in which a fuzzy relation on a fuzzy subset is
quite useful. Further, any result we obtain is clearly true for fuzzy relations
on a set. Therefore, we devote the first three sections of this chapter to fuzzy
relations on a fuzzy subset. The last section of this chapter is devoted to
the study of case 2 and case 3.

Example 1.3 Let S = {a, b, c, d}. Define A(a) = 0.3, A(b) = 0.7, A(c)
0.4 and A(d) = 0.5. Then A is a fuzzy subset of S. Let R be a fuzzy subset
of S x S defined as follows:

a b c d

a 0.1 0.2 0.0 0.3
b 0.2 0.7 0.4 0.3
c 0.3 0.6 0.2 0.4
d 0.2 0.5 0.3 0.5

Since R(c, b) A(c) A A(b), R is not a fuzzy relation on A. However, if
we redefine R(c, b) = 0.4 then R is a fuzzy relation on A. Alternatively, we
could redefine A(c) = 0.6 and meet the constraint.

Let R be a fuzzy relation on A. Then R is called the strongest fuzzy rela-
tion on A if and only if for all fuzzy relations Q on A, Vx, y E S, Q(x, y) <
R(x, y).

Example 1.4 Let S = {a, b, c, d}. Define A(a) = 0.3, A(b) = 0.5, A(c) _
0.7 and A(dj = 0.9. Then A is a fuzzy subset of S. The strongest fuzzy
relation on A is given below.

a b c d

a 0.3 0.3 0.3 0.3
b 0.3 0.5 0.5 0.5
c 0.3 0.5 0.7 0.7
d 0.3 0.5 0.7 0.9

The converse problem may also arise in practice. That is, we know the
strength of the pairs and we want to compute the minimum strength re-
quired for the elements themselves. For a given fuzzy subset k of S x S,
the weakest fuzzy subset A of S on which R is a fuzzy relation is defined
by A(x) = V{R(x, y) V R(y, x)Iy E S} for all x E S. That is, if b is a fuzzy
subset of S and R is a fuzzy relation on B, then A C B.

Example 1.5 Let S = { a, b, c, d 1. Let k be a fuzzy subset of S x S defined
as follows:
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a b c d

a 0.1 0.2 0.0 0.3
b 0.2 0.7 0.4 0.3
c 0.3 0.6 0.2 0.4

d 0.2 0.5 0.3 0.5

The largest value on the first row and the first column is 0.3. Therefore
we define A(a) = 0.3. Similarly, the largest value on the second row and
the second column is 0.7. Therefore we define A(b) = 0.7. By the same
reasoning, A(c) = 0.6 and A(d) = 0.5. Clearly, R is a fuzzy relation on A.
In fact, A is the weakest ,fuzzy subset on which R is a fuzzy relation.

Given a fuzzy relation k on a fuzzy set A, it is possible to apply a
threshold value to both of them to obtain a relation Rt on the subset At.

Example 1.6 Let S = {a, b, c, d}. Define A(a) = 0.4, A(b) = 0.7, A(c) =
0.6 and A(d) = 0.5- Then A is a fuzzy subset of S. Let 1? be a fuzzy subset
of S x S defined as follows:

a b c d

a 0.1 0.2 0.0 0.3
b 0.2 0.7 0.4 0.3
c 0.3 0.6 0.2 0.4
d 0.2 0.5 0.3 0.5

It is clear that R is a fuzzy relation on A. Let us choose t = 0.55 as our
threshold value. Then Rt = { (b, b), (c, b) } is a relation on At = {b, c}.

1.2 Operations on Fuzzy Relations

Consider two computer networks, sharing the same computers, but different
connecting lines. If we have the choice of selecting either of the connecting
lines, the maximum strength possible as well as the minimum strength that
can be guaranteed between any pair of computers is an interesting problem.
Let R and Q be two fuzzy relations on a fuzzy subset A of S. Then R U Q
is the relation on A defined by (R U Q) (x, y) = R(x, y) V Q(x, y), dx, y E S.
Clearly, R U Q represents the maximum strength possible between any
two computers. R fl Q is the relation on A defined by (R fl Q)(x, y) =
R(x, y) A Q(x, y), Vx, y E S. The relation R fl Q represents the minimum
strength that can be guaranteed between any two pairs in the event of at
most one of the connecting lines are down at any time.

Suppose we want to send a message from computer x to computer z.
Let us say, we prefer to use the "R" network in the geographical area



1.2 Operations on Fuzzy Relations 9

of the computer x and the "Q" network in the geographical area of the
computer z. Further we are willing to use exactly one computer. say y,
to route our message. In such a situation. we want to find the maximum
strength possible between x and z. Fuzzy theory provides an operation
called composition to provide the answer.

Definition 1.4 Let R : S x T - (0, 11 be a fuzzy relation from a fuzzy
subset A of S into a fuzzy subset B of T and Q: T x U-10,1] be a fuzzy
relation from a fuzzy subset b of T into a fuzzy subset C of U. Define
RoQ:SxU-x(0,1] by

RoQ(x,z) =V{R(x,y) AQ(y,z)(y ET}

for all x E S. z c U. The fuzzy relation R o Q is called the composition of
R with Q.

Note that composition of R with Q is a fuzzy relation from a fuzzy subset
A of S into a fuzzy subset C of U. A closer look at the definition of the
composition operation reveals that RoQ can be computed similar to matrix
multiplication, where the addition is replaced by V and the multiplication
is replaced by A. Since composition is associative,we use the notation R2
to denote the composition R o R, Rk to denote Rk-1 o R, k > 1. Define
R°° (.r,, y) = V { Rk(.x, y)lk. = 1, 2, ... } for all x, y E S. Finally, it is conve-
nient to define R°(x, y) = 0 if x # y and R°(x, y) = A(x) otherwise, for all
x, y E S.We have introduced three binary operations. We now introduce a
unary operation on a fuzzy relation. Given a fuzzy relation R on a fuzzy
subset A of S, define the fuzzy relation R' on A by R° (x, y) = 1 - R(x, y)
for all x,yES.

Definition 1.5 Let R : S x T ---'_(0,1] be a fuzzy relation from a fuzzy
subset A of S into a fuzzy subset B of T. Define the fuzzy relation R-1
7'xS-x[0,1] of i3 into Aby R-1(y,x)=R(x.y) for all(y.r)ETxS.

Example 1.7 Let S = {a. b. c. d}. Define A(a) = 0.4. A(b) = 0.7, A(c)
0.6 and A(d) = 0.5. Then A is a fuzzy subset of S. Let R and Q be fuzzy
relations defined on A as follows:

a b c d a b c d
a 0.1 0.2 0.0 0.3 a 0.3 0.1 0.3 0.4

R: b 0.2 0.7 0.4 0.3 Q: b 0.4 0.5 0.3 0.5
c 0.3 0.6 0.2 0.4 c 0.2 0.4 0.6 0.3
d 0.2 0.5 0.3 0.5 d 0.3 0.3 0.4 0.2

Then the relations f? U Q, R !l o and R o Q are as below:
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a b c d a b c d

a 0.3 0.2 0.3 0.4 a 0.1 0.1 0.0 0.3
RUQ: b 0.4 0.7 0.4 0.5 RnQ: b 0.2 0.5 0.3 0.3

c 0.3 0.6 0.6 0.4 c 0.2 0.4 0.2 0.3
d 0.3 0.5 0.4 0.5 d 0.2 0.3 0.3 0.2

a b c d a b c d

a 0.3 0.3 0.3 0.2 a 0.9 0.8 1.0 0.7
RoQ: b 0.4 0.5 0.4 0.5 R° : b 0.8 0.3 0.6 0.7

c 0.4 0.5 0.4 0.5 c 0.7 0.4 0.8 0.6
d 0.4 0.5 0.4 0.5 d 0.8 0.5 0.7 0.5

Algebraic Properties of Fuzzy Relation Operators

Let T, P, R and Q be any four fuzzy relations on a fuzzy subset A of a set
S. Then we have the following.

1. RuQ= uA
2. RnQ=QnR
3. R = (A°)`

4. Pu(AUQ)=(PUA)U

5. nnQ)(PnR)nQ
6. Po(RoQ) = (PoA)oIQ

7. Pn(RuQ)=(PnA)u(PnQ)
8. Pu(AnQ)(PuA)nU
9. (RuQ)c=QcnRc

10. (RnQ)<=QcuR°

11. For all t E [0, 1), (R U Q)t = Rt U Qt

12. ForalltE[0,11,(RnQ)tAtnQt

13. For all t E (0, 11, (Roo)t D AtoQt and if S is finite, (Roo)t = RtoQt

14. IfTC RandPCQthenTUPC RUQ

15. IfTCRandPCQthenTnPCRnQ
16. IfTCRandPCQthenToPC Ro(
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1.3 Reflexivity, Symmetry and Transitivity

Throughout this section R and Q are fuzzy relations on a fuzzy subset A of
S. As we have seen, it is quite natural to represent a fuzzy relation in the
form of a matrix. In this section, we shall use the matrix representation of
a fuzzy relation to explain the properties of a fuzzy relation. In particular,
we shall use the term "diagonal" to represent the principal diagonal of the
matrix.

Reflexivity

We call R reflexive if R(x, x) = A(x) for all x E S. If R is reflexive, then
R(x, y) < Aix) A A(y) < A(x) = R(x, x) and it follows that "any diagonal
element of R is larger than or equal to any element in its row". Similarly,
"any diagonal element is larger than or equal to any element in its column".
Conversely, given a fuzzy relation R on A such that "any diagonal element is
larger than or equal to any element in its row and column", define a fuzzy
subset b of S as B(xj = R(x, x), dx E S. Then b is the weakest fuzzy
subset of S such that R is a fuzzy relation on B. Further, R is reflexive on
B.

Fuzzy reflexive relations have some interesting algebraic properties. Let
R and Q be any two fuzzy relations on a fuzzy subset A of S. Then we
have the following.

1. If A is reflexive, Q C Q o A and Q C R o Q.

2. If R is refle)ive, R C R2.

3. If R is reflexive, R° C R C R2 C R3 C ... C R°°.

4. If R is reflexive, R°(x, x) = R(x, x) = 1?2(x, x) = R3(x. x)
A00 (X, x) = A(x),Vx E S.

5. If R and Q are reflexive, so is R o Q and Q o R.

6. If R is reflexive, for any 0 < t < 1, Rt is a reflexive relation on At.

Symmetry

We call IA symmetric if R(x, y) = R(y, x), for all x, y E S. In other words,
R is symmetric if the matrix representation of R is symmetric (with respect
to the diagonal). Let R and Q be any two fuzzy relations on a fuzzy subset
A of S. Then we have the following.

1. If R and Q are symmetric, then so is RoQ if and only if RoQ = QoR.

2. If R is symmetric, then so is every power of R.
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3. If R is symmetric, then for any 0 < t < 1. Rt is a symmetric relation
on At.

Transitivity

We call R transitive if R2 C R. It may be noted that Al is transitive for
any fuzzy relation R. Let P, R and Q be any three fuzzy relations on a
fuzzy subset A of S. Then we have the following.

1. If R is transitive, then so is every power of R.

2. If R is transitive and 1' C R. Q C R, then P o Q C R.

3. If R is transitive, Q is reflexive and Q C R. then R o Q= Q o R= R.

4. If R is reflexive and transitive, then R2 = R.

5. If R is reflexive and transitive, then R° C R = R2 = R3 = ... = R°°.

6. If R and Q are transitive and k o Q= Q o R. then R o Q is transitive.

7. If f? is symmetric and transitive, then R(x, y) < R(x, x) and R(y. x)
R(x, x), for all x, y E S.

8. If R is transitive, then for any 0 < t < L k is a transitive relation
on At.

A fuzzy relation R on S which is reflexive, symmetric, and transitive is
tailed a fuzzy equivalence relation on S.

1.4 Pattern Classification Based on Fuzzy
Relations

Let S be a set of patterns. A classification fuzzy relation R on S is a fuzzy
relation satisfying the following two conditions.

C1 R(x,x)=IforallxES.
C2 R(x, y) = R(y, x) for all x. y E S.

Note that the condition C1 states that a pattern x is identical with itself.
Thus the relation is reflexive. Condition C2 means that any relation used
to classify patterns has to be symmetric. Since R is reflexive, k C R2 C
R3 C ... C_ R°°. Note that R°° is a fuzzy equivalence relation. So for any
0 < t < 1, (R°O)t is an equivalence relation on S. Let Pt be the partition of
S -induced by the equivalence relation (R°°)t. The next result holds since
(R°°)t is transitive.
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Lemma 1.1 For all x, y, z E S.
R°° (x, z) > R°° (x, y) A R°° (y, z).

Theorem 1.2 If R' (x, y) 54 1. for all x, y E S such that x # y, then
p(x, y) = 1- R°° (x, y) satisfies the axioms of distance. That is, dx, y. z E S,

(i) p(x, y) = 0 if and only if .r = y,

(ii) AX, Y) = p(y,x),

(iii) p(x, z) p(x, y) + p(y, z).

Proof. We show only property (iii). By Lemma 1.1, R°O(x, z) > R°°(x, y) A
RO°(y, z). Thus 1 + R°°(x, z) > R°° (x, y) + R°° (y, z). The desired result
now follows easily.

Example 1.8 Let S = {xl, x2i x3, x4, x5 } and R(xi, xj) be as follows:

XI x2 x3 x4 x5

11 1.0 0.8 0.0 0.1 0.2

X2 0.8 1.0 0.4 0.0 0.9

X3 0.0 0.4 1.0 0.0 0.0

X4 0.1 0.0 0.0 1.0 0.5
X5 0.2 0.9 0.0 0.5 1.0

Now R°° = R3 is given by

XI X2 x3 x4 x5

x1 1.0 0.8 0.4 0.5 0.8

X2 0.8 1.0 0.4 0.5 0.9

X3 0.4 0.4 1.0 0.4 0.4

X4 0.5 0.5 0.4 1.0 0.5
X5 0.8 0.9 0.4 0.5 1.0

and we have the following partitions of S:
PO = P0f3J= {{xl,x2,x3,x4,x5}}
P0.45 =

fi
flxl,

x2,14,x51, {x3} }
P0.55

= { {x1,12, X51, (X41, (X311
P0.85 = { {xl }, {x2, x5}, {x4 }, (X311
P1.0 = {{x1},{x2},{x5},{x4},{13})
Thus there are many partitions possible and depending upon the level of

detail, one could classify the patterns based on equivalence relations. Note
that ifs > t. then PS is a refinement of Pt .
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Experimental Result

We now present an experiment done by Tamura, Higuchi and Tanaka [8].
Portraits obtained from 60 families were used in their experiment, each
of which were composed of between four and seven members. The rea-
son why they chose the portraits is that even if parents do not possess
a facial resemblance, they may be connected through their children, and
consequently they could classify the portraits into families. First, they di-
vided the 60 families into 20 groups, each of which was composed of 3
families. Each group was, on the average, composed of 15 members. The
portraits of each group were presented to a different student to give the
values of the subjective similarity R(x, y) between all pairs on a scale of
1 to 5. The reason why they used the 5 rank representation instead of a
continuous value representation is that it had been proved that a human
being cannot distinguish into more than 5 ranks. Twenty students joined
in this experiment. An example of the experiment for one group with 16
portraits is shown in Table 1.1 and Table 1.2. The first column of the ta-
bles gives the portrait number. In Table 1.1, the 5 rank representations are
converted to values in [0, 1], namely 0.2, 0.4, 0.6, and 1.0. In this example,
the number of patterns is sufficiently large that they can not be classified
by inspection. The classification requires the calculation of R°°. Since the
levels of the subjective values are different according to individuals, the
threshold was determined in each group as follows. As they lowered the
threshold, the number of classes decreased. Hence, under the assumption
that the number of classes c to be classified was known to be 3, while low-
ering the threshold they stopped at the value which divided the patterns
into 3 classes and some nonconnected patterns. However, as in the present
case, when some R(x, y) take the same value, sometimes there is no thresh-
old by which the patterns are divided into just c given classes. In such a
case, they made it possible to divide them into just c classes by stopping
the threshold at the value where the patterns are divided into less than c
classes and separating some connections randomly that have a minimum
R(x, y) of connections that have the stronger relation than the threshold.
The correctly classified rates, the misclassified rates, and the rejected rates
of 20 groups were within the range of 50-94 percent, 0-33 percent, and 0-
33 percent, respectively, and they obtained the correctly classified rate 75
percent of the time, the misclassified rate 13 percent, and the rejected rate
12 percent as the averages of the 20 groups. Here, since the classes made
in this experiment have no label, they calculated these rates by making a
one-to-one correspondence between 3 families and 3 classes, so as to have
the largest number of correctly classified patterns.

Thus Tamura et al. [8] have studied pattern classification using subjec-
tive information and performed experiments involving classification of por-
traits. The method of classification proposed here is based on the proce-
dure of finding a path connecting 2 patterns. Therefore, this method may
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be combined with nonsupervised learning and may also be applicable to
information retrieval and path detection (8].

TABLE 1.1 Representation of subjective similarities2 R.
2 3 1 5 6 7 d 9 IU 11 12 13 14 1.. 1l.

l
2 U I

:4 () 11 1

4 U l 1 1

U n Il O 1

li 51 U 2 2 U 1

7 0 ,i' 0 0 1 U t

44 4 2 2 51 0 4% 0 1

9 4 ) 4 0 it 4 2 .4 0 I

10 ll 0 2 2 0 O .2 0 .2 1

I1 II 51 .2 2 1) 0 R I) .1 2 1

12 11 U 2 1 U
0 1

0 1 0 (1 1

1.3 $ 4) 2 4 0 .4 1( 4 I1 0 l1 0 1

14 U h 11 2 .1 0 44 O 2 2 U 0 0 1

15 O /1 4 8 0 2 U U 2 U 0 .2 .2 O 1

16 .f. 11 0 2 2 & 0 .4 0 0 0 (1 .t 2 0

TABLE 1.2 The relation R°O.
I 2 3 4 5 6 7 S 9 10 11 12 13 11 IS 16

I

2 4 1

3 4 4 1

5 .4 4 1

1 r d 4 1

/. 4: 4 4 5 4 1

7 4 K 4 .4 .4 4 1

44 G 4 4 5 4 .44 1 I

5 4 4 V. .1 5 4 5 1

10 5 1 .4 M 1 5 .4 5 4 I

11 .4 34 4 4 e 1 6 4 .4 1 1

12 1 .1 t< 1 5 4 .S 6 It 4 1

13 -4 .5 4 6 4 .0 5 .71 4 .5
11 1 P 4 4 .N 4 (4 .4 4 .4 A .4 4 1

15 5 1 4 K It .5 1 .S P .4% 1 .4% 5 .4 I

II .1 4 5 .4 it .1 4% 5 3 .1 .5 .6 4 5

Table 1.2 displays the subjective similarities among family members. The
portraits of family members for family one were 1, 6, 8, 13, and 16 with
portraits 6 and 13 being of parents and 1, 8, and 16 being of the children.
The portraits of family members for family two were 2,5,7,11, and 14, with
portraits 5 and 11 being of parents and 2, 7, and 14 being of the children.
For family three portrait 4 was that of a grand mother, portraits 10 and 15
of parents and 3, 9, and 12 of the children. The rate of correct classification
was 15/16, the rate of misclassification was 0/16, and the rate of rejection
was 1/16. In this experiment the portrait 3 was rejected.

This value was converted from 0.6 to 0.5 for division into just. three classes.
2Reprinted from : Tamura, S., Higuchi, S., and Tanaka, K., Pattern Classification

Based on Fuzzy Relations, IEEE Trans. SNIC-1, 61 66. 1971
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1.5 Advanced Topics on Fuzzy Relations

In this section we will show that the concept of a similarity relation intro-
duced by Zadeh [11] is derivable in much the same way as an equivalence
relation. Throughout this section we shall be dealing with a fuzzy relation
on a set. The results in this section are from [9].

Definition 1.6 Let R be a fuzzy relation on a set S. We define the follow-
ing notions:

(i) R is e-reflexive if `d x E S, R(x, x) > c, where E E [0, 11 .

(ii) R is irrefiexive if dx E S, R(x, x) = 0.

(iii) R is weakly reflexive if for all x, y in S and for all e E [0, 1), R(x, y)
= c . R(x, x) > C.

Remark 1 Note that the definition of a reflexive relation as a 1-reflexive
relation coincides with the definition of a reflexive relation in Section 1.3.

Lemma 1.3 If R is a fuzzy relation from S into T, then the fuzzy relation
R o R-I is weakly reflexive and symmetric.

Let R be a weakly reflexive and symmetric fuzzy relation on S. Define a
family of non-fuzzy subsets FR as follows:

FR={KCSi(30<c<1)(`dxES)[xEKt*(Vx'EK)[R(x,x')>

We note that if we let
FR = {Ke_SI(VxES)[xEK.*(Vx'EK)[R(x,x')>e]]}.

then we see that el < ez * FR =,t FR where "-,<" denotes a covering
relation, i.e., every element in FR is a subset of an element in FR.

A subset J of S is called E-complete with respect to R if V x, x' E
J, R(x, x') _> c. A maximal E-complete set is one which is not properly
contained in any other c-complete set.

Lemma 1.4 FR is the family of all maximal c-complete sets with respect
toRfor0<e<1.

Lemma 1.5 Whenever R(x, x') > 0, there is some c-complete set K E FR
such that {x, x'} C K.

We remark here that sometimes a subclass of FR, satisfying the condition
of Lemma 1.5, will cover the set S. For example, let R be the fuzzy relation
on S = {a, b, c, d, e, f } given by the following matrix.
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a b c d e f

a 1.0 0.3 0.4 0.0 0.4 0.3

b 0.3 1.0 0.2 0.3 0.0 0.4

c 0.4 0.2 1.0 0.3 0.5 0.0
d 0.0 0.3 0.3 1.0 0.0 0.0

e 0.4 0.0 0.5 0.0 1.0 0.0

f 0.3 0.4 0.0 0.0 0.0 1.0

We see that the family consisting of the three maximal complete sets
{a, b, f }. {b. c, d}. and {a, c, e} satisfy the condition of Lemma 1.5, but it
does not contain the maximal complete set {a. b, c}. Note for example that
ta, b, f } is maximal c'-complete V 0 < e' < e where e = 0.3 since R(a. d) _
R(b, e) = R(f , c) = 0. We have

FR = {{a}, {b}, {c}, {d}, {e}, If }}
Fo = {{c,e}, {a}, {b}, {d}, { f}}}
F ON = {{a,c,e},{b, f},{d}}
F ON = {{a,b,f},{a,c,e},{b,d},{c,d}}
F 2 = {{a,b,c},{b,c,d},{a,b, f},{a,c,e}}.
We also note that R is not transitive: R(b, c) = .2 .3 = (.3 A .4) V (1 A

.2)v(.2A1)v(.3A.3) (OA.5)v(.4A0) = V{R(b,y)AR(y,c) I yE S} _
R o R(b, c).

In the next two results X0 is the characteristic function of 0 in S x S.

Lemma 1.6 If R 0 X0 is a weakly reflexive and symmetric ,fuzzy relation
on S, then there exists a set T and a fuzzy relation P from S into T such
that R=PoP-'.

Combining Lemmas 1.3 and 1.6, we have the following result.

Theorem 1.7 A fuzzy relation R 54 X0 on a set S is weakly reflexive and
symmetric if and only if there is a set T and a fuzzy relation P from S into
T such that R= P o P-'

It may he noted given a weakly reflexive and symmetric fuzzy relation
R # X0 on a set S, the set T and the fuzzy relation P from S into T can be
constructed as follows. Define T as the set {K* (K E FR }. In other words,
T is a set having the same cardinality as FR and assume that there is a
one-to-one mapping from FR onto T. Now P from S into T is defined as
follows:

P(x, K*) a if x E K. a is the largest number such that K E FQ .

11 0 otherwise.

For the rest of this section, we shall use the notation OR to denote the
fuzzy relation P defined above.



18 1. FUZZY SUBSETS

Definition 1.7 A cover C on a set S is a family of subsets Si.i E I. of S
such that UiE1 Si = S. where I is a nonempty index set.

Definition 1.8 Let R be a fuzzy relation from S into T. We define the
following, where e E (0.11:

(i) R is e-determinate if for each x E S, there exists at most one y E T
such that R(x, Y) > E.

(ii) R is E-productive if for each x E S, there exists at least one y E T
such that R(x, y) > c.

(iii) R is an e-function if it is both E-determinate and E-productive.

Lemma 1.8 If R is an E-reflexive fuzzy relation on S, then fiR is c-produc
Live and for each e' < e, FR is a cover of S.

In the sequel, we use the term productive (determinate, reflexive, func-
tion) for 1-productive (1-determinate, 1-reflexive, 1-function).

Corollary 1.9 If R is reflexive, then qR is productive and each FR (0 <
E<1) isacover ofS.

The following result is a consequence of Theorem 1.7 and Corollary 1.9.

Corollary 1.10 R is reflexive and symmetric relation on S if and only if
there is a set T and a productive fuzzy relation P from S into T such that
R=PoP-1.

Lemma 1.11 Let R be a weakly reflexive, symmetric and transitive fuzzy
relation on S, and let OR denote the relation 5R whose range is restricted to

FR. That is, 0R equals (AR on S x {K*IK EFR} . Then for each 0 < e < 1,
fiR is E-determinate and the elements of FR are pairwise disjoint.

Definition 1.9 A similarity relation A on S is a fuzzy relation on S which
is reflexive, symmetric and transitive. R is called an e-similarity relation if
it is e-reflexive for some 0 < e < 1, symmetric, and transitive.

A similarity relation on S is merely a fuzzy equivalence relation on S.
Since clearly reflexivity implies weak reflexivity, we have the following

consequence of Lemmas 1.8 and 1.11.

Corollary 1.12 If R is a similarity relation on S, then for each 0 < e < 1,
FR is a partition of S.
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Note that Corollary 1.12 says that every similarity relation R can be
represented as U age,. where Ra is the equivalence relation induced by the

a
partition F, ,R. Indeed, it was pointed out by Zadeh (11] that if the Ra, 0 <
a < 1, are a nested sequence of distinct equivalence relations on S, with al
> a2 if and only if Ra, C_ Rae, RaL is nonempty and the domain of Ra, is
equal to the domain of Rae , then R =U aRa is a similarity relation on S,

where
a

a if(x,y)ERaaRa(x, y) { 0 otherwise.
The following result, which is a straightforward consequence of Theo-

rem 1.7 and Corollary 1.12, yields another characterization of a similarity
relation.

Theorem 1.13 A relation R is an e-similarity (0 < e < 1) relation on a
set S if and only if there is another set T and an c-function P from S into
T such that R = P o P^'

Example 1.9 Let R be the fuzzy relation on S = {a, b, c, d, e, f } given by
the following matrix, MR.

a b c d e f

a 1.0 0.5 0.5 0.2 0.2 0.2
b 0.5 1.0 0.5 0.2 0.2 0.2
c 0.5 0.5 1.0 0.2 0.2 0.2
d 0.2 0.2 0.2 1.0 0.4 0.4
e 0.2 0.2 0.2 0.4 1.0 0.4

f 0.2 0.2 0.2 0.4 0.4 1.0

Now M12 = MA. Thus R is transitive. Clearly, R is reflexive and sym-
metric. We have

FR = { {a}, {b}, {c}, {d}, {e}, { f }}

F5 = {{a,b,c},{d},{e},{f}}
Fo = {{a,b,c},{d,e,f}}

{X}.F O!2=

Let e = 0.4. Then the e - function P : X x {K*IK EFa } - 10, 1],
is defined as follows: P(a, {a. h, c}*) = P(b, ja, b. c}*) = P(c, {a, b, c}*) _
0.5, P(d, {d, e, f }*) = P(e. {d, e, f }*) = P(f, {d, e, f }*) = 0.4, and
P(x, K*) = 0 otherwise.
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2

FUZZY GRAPHS

Any relation R C_ S x S on a set S can be regarded as defining a graph
with vertex set S and edge set R. That is, a graph is a pair (S, R), where S
is a set and R is a relation on S. Similarly, any fuzzy relation R on a fuzzy
subset A of a set S can be regarded as defining a weighted graph, or fuzzy
graph, where the edge (x, y) E S x S has weight or strength R(x, y) E [0, 1].
In this chapter, we shall use graph terminology and introduce fuzzy analogs
of several basic graph-theoretical concepts. For simplicity, we will consider
only undirected graphs through out this chapter, except in Section 2.3.
Therefore, all fuzzy relations are symmetric and all edges are regarded as
unordered pairs of vertices, except for Section 2.3. We abuse notation by
writing (x, y) for an edge in an undirected graph (S, R), where x, y E S.
(We need not consider loops, that is, edges of the form (x, x); we can
assume, if we wish, that our fuzzy relation is reflexive.) Formally, a fuzzy
graph G = (S, A, R) is a nonempty set S together with a pair of functions
A : S [0, 11 and R : S x S [0,1] such that for all x, y in S, R(x, y)
A(x) A A(y). We call A the fuzzy vertex set of G and R the fuzzy edge set
of G, respectively. Note that R is a fuzzy relation on A. We will assume
from now on that the underlying set is S and that it is finite. Therefore,
for the sake of notational convenience, we may omit S for the rest of our
discussion and use the abbreviated notation G = (A, R). Thus in the most
general case, both vertices and edges have membership value. However, in
the special case where A(x) = 1, for all x E S, edges alone have fuzzy
membership. So, in this case, we use the abbreviated notation G = (S, R).
The fuzzy graph H = (B. T) is called a partial fuzzy subgraph of G = (A, R)
if B C A and T C R. Similarly, the fuzzy graph H = (P, B. T) is called
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a fuzzy subgraph of G = (S, A, f?) induced by P if P C_ S. B(x) = A(x)
for all x E P and T(x, y) = R(x, y) for all X. y E P. Whenever there is no
confusion, for the sake of simplicity, we call H a fuzzy subgraph of G. It is
worth noticing that a fuzzy subgraph (P, b, T) of a fuzzy graph (S. A, R)
is in fact a special case of a partial fuzzy subgraph obtained as follows.

B(x) = r A(x) if x E P
l 0 ifxES\P

T (x, y)
_ J R(x, y) if (x, y) E P X P

0 if(x,y)ESxS\PxP
Thus a fuzzy graph can have only one fuzzy subgraph corresponding

to a given subset P of S. Hence we shall use the notation (P) to denote
the fuzzy subgraph of G induced by P. For any threshold t, 0 < t < 1,
At - {x E_SIA(x)_ > t} and Rt = {(x, y) E S x,SIR(x, y) > t}. Since
R1x,V) < A(x) A A(y) for all x, y E S, we have Rt C At x At, so that
(At, Rt) is a graph with the vertex set At and edge set Rt for all t c 10, 1].

Proposition 2.1 Let G be a fuzzy graph. If 0 < u < t < 1, then
(At, Rt) is a subgraph of (A", R"). - - -
Proposition 2.2 Let H = (B, T) be a partial fuzzy subgraph of G =
(A, R). For any threshold t,0 < t < 1, (Bt,Tt) is a subgraph of (At, Rt).

We say that the partial fuzzy subgraph (B, t) spans the fuzzy graph
(A, k) if A = B. In this case, the two graphs have the same fuzzy vertex set;
they differ only in the edge weights. For any fuzzy subset B of S such that
B C A, the partial fuzzy subgraph of (A, R) induced by B is the maximal
partial fuzzy subgraph of (A, R) that has fuzzy vertex set B. Evidently, this
is just the partial fuzzy graph (B, T), where T (x, y) = B(x) AB(y) AR(x, y)
for all x,y ES.

2.1 Paths and Connectedness

Let G = (V, X) be a graph. A walk of G is an alternating sequence of
vertices and edges vo, x1 , v1, - -, vn-1, X., vn, where vo, vi E V, xi E X, xi =
(Vi- I, vi), i = 1....,n. A walk is sometimes denoted by vovl...vn, where the
edges are evident by context. A path is a walk with all vertices distinct. Let
vov1...vn be a path. If n > 2 and vo = vn, then the path is called a cycle.
G = (V, X) is said to be complete if (u, v) E X Vu, v E V, u -A v. A clique
of a graph is a maximal complete subgraph.

A path p in a fuzzy graph (A, ft) is a sequence of distinct vertices
xo, x1, ..., xn such that

R(xz_1, xi) > 0, 1 < i < n. Here n > 1 is called the
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length of the path p. The consecutive pairs (xi_1, xi) are called the edges
of the path. The strength of p is defined as An 1R(xi_1, xi). In other words,
the strength of a path is defined to be the weight of the weakest edge of the
path. A single vertex x may also be considered as a path. In this case, the
path is of length 0. If the path has length 0, it is convenient to define its
strength to be A(xo). It may be noted that any path of length n > 0 can as
well be defined as a sequence of edges (xi_1, xi), 1 < i < n. satisfying the
condition R(xi_1,xi) > 0 for 1 < i < n. A partial fuzzy subgraph (A, R)
is said to be connected if dx, y E supp(A), R' (x, y) > 0.

We call p a cycle if xo = xn, and n > 2. Two vertices that are joined
by a path are said to be connected. It is evident that "connected" is an
equivalence relation. In fact, x and y are connected if and only if R°°(x, y) >
0. The equivalence classes of vertices under this relation are called connected
components of the given fuzzy graph. They are just its maximal connected
partial fuzzy subgraphs. A strongest path joining any two vertices x, y
has strength R°O(x, y). We shall sometimes refer to this as the strength of
connectedness between the vertices.

Proposition 2.3 I f (B, T) is a partial fuzzy subgraph of (A, R), then TOO CR°°

Let (A, R) be a fuzzy graph. We now provide two popular ways of defining
the distance between a pair of vertices. One way is to define the "distance"
dis(x, y) between x and y as the length of the shortest strongest path
between them. This "distance" is symmetric and is such that dis(x, x) = 0
since by our definition of a fuzzy graph, no path from x to x can have
strength greater than A(x), which is the strength of the path of length
0. However, it does not satisfy the triangle property, as we see from the
following example.

Here any path from x to y or from y to z has strength < 1/2 since it
must involve either edge (x, y) or edge (y, z). Thus the shortest strongest
paths between them have length 1. On the other hand, there is a path
from x to z, through u and v, that has length 3 and strength 1. Thus
dis(x, z) = 3 > 1 + 1 = dis(x, y) + dis(y, z) in this case.
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A better notion of distance in a fuzzy graph can be defined as follows:
For any path p = xo, ..., x, , define the R-length of p as the sum of the
reciprocals of p's edge weights, that is,

n

l(p) _J:
t_i R(xi_l,x;)

If n = 0, we define l(p) = 0. Clearly, for n > 1, we have l(p) > 1. For
any two vertices x, y, we can now define their R-distance 6(x, y) as the
smallest R-length of any path from x to y. Thus 6(x, y) = A{l(p)lp is a
path between x and y} if x and y are connected. We define b(x, y) = 00 if
x and y are not connected.

Proposition 2.4 b is a metric on S. That is, Vx, y, z E S,

(i) b(x, y) = 0 if and only if x = y,

(ii) b(x, y) = b(y, x),

(iii) b(x, z) < b(x, y) + b(y, z).

In the non-fuzzy case, l(p) is just the length n of p since all the R's are 1.
Hence, b(x, y) becomes the usual definition of distance, that is, the length
of the shortest path between x and y.

2.2 Clusters

In graph theory, there are several ways of defining "clusters" of vertices.
One approach is to call a subset C of S a cluster of order k if the following
two conditions hold:

(a) for all vertices x, y in C, d(x, y) < k;

(b) for all vertices z V C, d(z, w) > k for some w E C;

where d(u, v) is the length of a shortest path between any two vertices u
and v.

Thus in a k-cluster C, every pair of vertices are within distance k of each
other, and C is maximal with respect to this property. That is, no vertex
outside C is within distance k of every vertex in C.

A 1-cluster is called a clique; it is a maximal complete subgraph. That
is, a maximal subgraph in which each pair of vertices is joined by an edge.
At the other extreme, if we let k --+ oo, a k-cluster becomes a connected
component, that is, a maximal subgraph in which each pair of vertices is
joined by a path (of any length).
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These ideas can be generalized to fuzzy graphs as follows: In C = (A, R),
we can call C C S a fuzzy cluster of order k if

n{Rk(x, y) I x, y E C} > V{n{Rk(w, Z) I W E C} I Z V C}.

Note that C is an ordinary subset of S, not a fuzzy subset. If G is an
ordinary graph, we have Rk(a, b) = 0 or 1 for all a and b. Hence this
definition reduces to

(a) Rk(x. y) = 1 for all x, y in C,

(b) Rk(w. z) = O for all z C and some w E C.

Property (a) implies that for all x. y in C, there exists a path of length
< k between x and y and property (b) implies that for all z C and some
w E C, there does not exist a path of length < k. This is the same as the
definition of a cluster of order k.

In fact, the k-clusters obtained using this definition are just ordinary
cliques in graphs obtained by thresholding the kth power of the given fuzzy
graph. Indeed, let C be a fuzzy k-cluster, and let n{Rk(x, y) I x, y E C) = t.
If we threshold Rk (and A) at t, we obtain an ordinary graph in which C
is now an ordinary clique.

Example 2.1 Let

and

V = {x,y,z,u,v}

X = { (x, y), (x, z), (y, z), (z, u, ), (u, v) }.

Let A(x) = A(y) = A(z) = A(u) = A(v) = 1 and R(x, y) = R(x, z) _
R(y, z) = 1/2, R(z, u,) = R(u, v) = 1/4. Let C = {x, y, z}. Then A

dEC
Rk(c, d) = 1/2 for k = 1, 2,..., V ( A RI (c, e)) = (1/4 n 0 n 0) v (0 n 0 A

e4C cEC
0) = 0, V (n R2(c, e)) = (1/4 n 1/4 n 1/4) V (1/4 n 0 n 0) = 1/4, and

e4C cEC

eV (cE Rk(c, e)) _ (1/4 n 1/4 n 1/4)V(1/4A 1/4 n 1/4) = 1/4 fork > 3.

Hence C = ix, y, z} is a fuzzy cluster of order k for all k > 1.
Now let R(x, V) = R(x, z) = R(y, z) = 1/8, R(z, u) = R(u, v) = 1/4.

Then A Rk(c,d) = 1/8 for k = 1,2,.... V (n RI(c,e)) = (1/4AOn
c,dEC cEC

0)V(OAOAO) = 0, V} ( A R2(c,e)) = (1/4n1/8n1/8)V(1/4AOAO) = 1/8,
eOC, cEC

and V ( A Rk(c, e)) = (1/4 n 1/8 n 1/8) V (1/4 n 1/8 n 1/8) = 1/8 for
cEC

k > 3. Hence C is a fuzzy cluster of order 1, but not of order k for k > 2.

Bridges and Cut Vertices

Let G = (A, R) be a fuzzy graph, let x, y be any two distinct vertices,
and let G' be the partial fuzzy subgraph of C obtained by deleting the
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edge (x, y). That is, G' _ (A, R'), where R'(x. y) = 0 and k = R for all
other pairs. We say that (x, y) is a bridge in G if R'°° (u, v) < k* (u, v) for
some u, v. In other words, if deleting the edge (x, y) reduces the strength of
connectedness between some pair of vertices. Thus. (x, y) is a bridge if and
only if there exist vertices u, v such that (x, y) is an edge of every strongest
path from u to v.

Theorem 2.5 The following statements are equivalent:

(i) (x, y) is a bridge;

(ii) k '(x, y) < R(x, y);

(iii) (x, y) is not the weakest edge of any cycle.

Proof. (ii) (i): If (x, y) is not a bridge, we must have R'°°(x. y) _
R°° (x, y) > R(x, y).

(i)=(iii): If (x, y) is a weakest edge of a cycle, then any path involving
edge (x, y) can be converted into a path not involving (x, y) but at least
as strong, by using the rest of the cycle as a path from x to y. Thus (x, y)
cannot be a bridge.

(iii)=(ii): If k-, (x, y) > R(x, y), there is a path from x to y. not involv-
ing (x, y), that has strength > R(x, y), and this path together with (x, y)
forms a cycle of which (x, y) is a weakest edge.

Let w be any vertex and let G* be the partial fuzzy subgraph of G
obtained by deleting the vertex w. That is, G* is the partial fuzzy subgraph
induced by A*, where A*(w) = 0; A* = A for all other vertices.

Note that in G* = (A*, R*), we must have R*(w, z) = 0 for all z. We
say that to is a cutvertex in C if R*O°(u, v) < R°°(u, v) for some u, v (other
than w). In other words, if deleting the vertex to reduces the strength
of connectedness between some other pair of vertices. Evidently, w is a
cutvertex if and only if there exist u, v, distinct from w such that to is on
every strongest path from u to v. G* is called nonseparable (or sometimes:
a block ) if it has no cut vertices. It should be pointed out that a block may
have bridges (this cannot happen for non-fuzzy graphs). For example, in
Figure 2.1 edge (x, y) is a bridge since its deletion reduces the strength of
connectedness between x and y from 1 to 0.5. However, it is easily verified
that no vertex of this fuzzy graph is a cutvertex.

If between every two vertices x, y of G there exist two strongest paths
that are disjoint (except for x, y themselves), G is evidently a block. This
is analogous to the "if" of the non-fuzzy graph theorem that G is a block
(with at least three vertices) if and only if every two vertices of G lie on
a common cycle. The "only if", on the other hand, does not hold in the
fuzzy case, as the example just given shows.



2.2 Clusters 27

FIGURE 2.1 Fuzzy graph with a bridge; but no cut vertices.
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Forests and Trees

We recall that a graph that has no cycles is called acyclic, or a forest; and
a connected forest is called a tree. We shall call a fuzzy graph a forest if the
graph consisting of its nonzero edges is a forest, and a tree if this graph is
also connected. More generally, we call the fuzzy graph G = (A, R) a fuzzy
forest if it has a partial fuzzy spanning subgraph F = (A, T) which is a
forest, where for all edges (x, y) not in F (i.e., such that T(x, y) = 0), we
have R(x, y) < T°°(x, y). In other words, if (x, y) is in G but (x, y) is not
in F, there is a path in F between x and y whose strength is greater than
R(x, y). It is clear that a forest is a fuzzy forest.

The fuzzy graphs in Figure 2.2 are fuzzy forests and the fuzzy graphs in
Figure 2.3 are not fuzzy forests.

FIGURE 2.2 Fuzzy forests.

x 1.0 V X 1.0

1.0 \ /0.5 1.0 \ /0.5

W

0.25

If G is connected, then so is F since any edge of a path in G is either in
F, or can be diverted through F. In this case, we call G a fuzzy tree. The
examples of fuzzy forests given above are all fuzzy trees. Note that if we re-
placed < by < in the definition, then even the fuzzy graph (S, A, R), where
S = {x, y, z}, A(x) = A(y) = A(z) = 1, R(x, y) = R(x, z) = R(y, z) = 1,
would be a fuzzy forest since it has partial fuzzy spanning subgraphs such
as (S, A, R'), where R'(x, y) = R'(x, z) = 1 and R(y, z) = 0.
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FIGURE 2.3 Fuzzy graphs; but not fuzzy forests.
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Theorem 2.6 G is a fuzzy forest if and only if in any cycle of G, there
is an edge (x, y) such that R(x, y) < R'°° (x. y), where G' = (A, k) is the
partial fuzzy subgraph obtained by the deletion of the edge (x, y) from G.

Proof. Suppose (x, y) is an edge, belonging to a cycle, which has the
property of the theorem and for which R(x, y) is smallest. (If there are no
cycles, G is a forest and we are done.) If we delete (x, y), the resulting partial
fuzzy subgraph satisfies the path property of a fuzzy forest. If there are still
cycles in this graph, we can repeat the process. Note that at each stage, no
previously deleted edge is stronger than the edge being currently deleted;
hence the path guaranteed by the property of the theorem involves only
edges that have not yet been deleted. When no cycles remain, the resulting
partial fuzzy subgraph is a forest F. Let (x, y) not be an edge of F; thus
(x, y) is one of the edges that we deleted in the process of constructing
F, and there is a path from x to y that is stronger than R(x, y) and that
does not involve (x, y) nor any of the edges deleted prior to it. If this path
involves edges that were deleted later, it can be diverted around them using
a path of still stronger edges; if any of these were deleted later, the path
can be further diverted; and so on. This process eventually stabilizes with
a path consisting entirely of edges of F. Thus G is a fuzzy forest.

Conversely, if G is a fuzzy forest and p is any cycle, then some edge (x, y)
of p is not in F. Thus by definition of a fuzzy forest we have R(x, y) <
Too (x, y) R'°° (x, y).

Note that if G is connected, so is the constructed F in the first part of
the proof since no step of the construction disconnects.

Proposition 2.7 If there is at most one strongest path between any two
vertices of G, then G must be a fuzzy forest.

Proof. Suppose G is not a fuzzy forest. Then by Theorem 2.6, there is a
cycle p in G such that R(x, y) > R' (x, y) for all edges (x, y) of p. Thus
(x, y) is a strongest path from x to y. If we choose (x, y) to be a weakest
edge of p. it follows that the rest of the p is also a strongest path from x
to y, a contradiction.
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The converse of Proposition 2.7 is false; G can be a fuzzy forest and
still have multiple strongest paths between vertices. This is because the
strength of a path is that of its weakest edge, and as long as this edge lies
in F, there is little constraint on the other edges. For example, the fuzzy
graph in Figure 2.4 is a fuzzy forest. Here F consists of all edges except
(u, y). The strongest paths between x and y have strength 1/4, due to the
edge (x, u); both x, u, v, y and x, u, y are such paths, where the former lies
in F but the latter does not.

Proposition 2.8 If G is a fuzzy forest, then the edges of F are just the
bridges of G.

Proof. An edge (x, y) not in F cannot be a bridge since R(x, y) < T°°(x, y)
< R'°°(x, y). Suppose that (x, y) is an edge in F. If it were not a bridge, we
would have a path p from x to y, not involving (x, y), of strength > R(x, y).
This path must involve edges not in F since F is a forest and has no cycles.
However, by definition, any such edge (ui, vi) can be replaced by a path pi
in F of strength > R(u, v). Now pi cannot involve (x, y) since all its edges
are strictly stronger than R(u, v) > R(x, y). Thus by replacing each (ui, vi)
by pi, we can construct a path in F from x toy that does not involve (x, y),
giving us a cycle in F, contradiction.

FIGURE 2.4 A fuzzy forest with no multiple strongest paths between
vertices.

2.3 Cluster Analysis and Modeling of Information
Networks

In this section, fuzzy graphs will be analyzed from the connectedness view-
point. The results will be applied to cluster analysis and modeling of in-
formation networks. We do not assume our (fuzzy) graphs are necessarily
undirected in this section.

Let G = (A, R) be a fuzzy graph. We denote by XIA the corresponding
fuzzy matrix of a fuzzy graph G. In other words. (AIA)i, = R(vi, vj).
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Theorem 2.9 Let G = (S, A, R) be a fuzzy graph such that cardinality of
S is n. Then

(i) if R is reflexive, there exists k < n such that AIR < MR < ... <
1418., = n'1 R:;'

(ii) if R is irreflexive, the sequence 1418, AIR.... is eventually periodic.

Definition 2.1 Let G be a fuzzy graph. Let 0 < E < 1. A vertex v is said
to be E-reachable from another vertex u if there exists a positive integer
k such that A' (u, v) > E. The reachability matrix of G, denoted by Mp 0,
is the matrix of the fuzzy graph (A, R°°). The E-reachability matrix of G,
denoted by MR,,, is defined as follows: v) = 1 if R(u, v) > E and
M c,(u, v) = 0, otherwise.

The following algorithm can determine the reachability between any pair
of vertices in a fuzzy graph G.

Algorithm 2.1. Determination of M
1. Let Ri = (ail,..., ain) denote the it row.
2. Obtain the new Ri by the following procedure:

aij(new) _ {k {akj Aaik(old)}},aij(old)}.

3. Repeat Step 2 until no further changes occur.
4. j) = aij(new).
Note that a similar algorithm can be constructed for the determination

of MR.,0<E<1.

Definition 2.2 Let G be a fuzzy graph. The connectivity of a pair of ver-
tices u and v, denoted by C(u, v) is defined to be R°O(u, v) A R°°(v, u). The
connectivity matrix of G, denoted by Cc, is defined such that CG (u, v) =
C(u, v). For 0 < E < 1, the c-connectivity matrix of G, denoted by CG, is
defined as follows: CC (u, v) = 1 if C(u, v) > E and CG" (u, v) = 0 otherwise.

Algorithm 2.2. Determination of CC.
1. Construct 1bM1ft-M.
2. Cc(i,j) = CC(j,i) = MR,(i, j) A MR,(j.i).
An algorithm for determining Cc is similar to Algorithm 2.2.

Definition 2.3 Let G be a fuzzy graph. G is called strongly c-connected
if every pair of vertices are mutually E-reachable. G is said to be initial E-
connected if there exists v E V such that every vertex u in G is E-reachable
from v. A maximal strongly E-connected fuzzy subgraph (MSECS) of G is
a strongly E-connected fuzzy subgraph not properly contained in any other
MSECS.
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TABLE 2.1 Fuzzy matrix and connectivity matrix of a fuzzy graph.

1.0 0.6 0.4 0.0 0.0 1 0 0 0 0

0.0 1.0 0.2 0.6 0.3 0 1 0 1 0

MA = 0.0 0.8 1.0 0.0 0.9 Cg5= 0 0 1 0 1

0.2 0.7 0.3 1.0 0.2 0 1 0 1 0

0.4 0.0 0.5 0.3 1.0 0 0 1 0 1

Clearly strongly E-connectedness implies initial e-connectedness. Also,
the following result is straightforward.

Theorem 2.10 A fuzzy graph G is strongly e-connected if and only if there
exists a vertex u such that for any other vertex v in G, R°O(u, v) > c and
R°°(v,u)>E.

Algorithm 2.3. Determination of all ItI ScCS in G.
1. Construct Cc.
2. The number of MSECS in G is given by the number of distinct row

vectors in C. For each row vector a in Cc, the vertices contained in
the corresponding MSECS are the nonzero elements of the corresponding
columns of a.

Example 2.2 Let G be a fuzzy graph whose corresponding fuzzy matrices
MR and Cc5 is given in Table 2.1. We see that the MSO.5CS's of G
contain the following vertex sets, {1}, {2, 4}, {3, 5}, respectively.

The previous result is now applied to clustering analysis. We assume that
a data fuzzy graph G = (V, R) is given, where V is a set of data and R(u, v)
is a quantitative measure of the similarity of the two data items u and v.
For 0 < E < 1, an E-cluster in V is a maximal subset W of V such that each
pair of elements in W is mutually e-reachable. Therefore, the construction
of c-clusters of V is equivalent to finding all maximal strongly E-connected
fuzzy subgraphs of G.

Algorithm 2.4. Construction of E-clusters
1. Compute R, R2, .... Rk. where k is the smallest integer such that Rk =

Rk+1.
k

2.LetS=U R.
i=1

3. Construct F.
Then, each element in FS is an E-cluster.
We may also define an c-cluster in V as a maximal subset W of V such

that every element of W is e-reachable from a special element v in W. In
this case, the construction of e-clusters is equivalent to finding all maximal
initial E-connected fuzzy subgraphs of G. However, the relation induced by
initial c-connected fuzzy subgraphs is not, in general, a similarity relation.
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Another application is the use of fuzzy graphs to model information
networks. Such a model was proposed in [34] utilizing the concepts of a
directed graph. In [34] a measure of flexibility of a network was introduced.
More specifically, let N be a network with m edges and n vertices. Then
the measure of flexibility on N, denoted by Z(N), is defined as follows:

m-n
n(n - 2)

The equation above is quite useful in classifying certain graph structures
related to information networks. However, it is insensitive to certain classes
of graphs. It seems that the use of fuzzy graphs is a more desirable model for
information networks. The weights in each edge could be used as parameters
such as number of channels between stations, costs for sending messages,
etc. Thus, we propose here the use of a fuzzy graph to model an information
network. Let N have n vertices. Define two measures of N : flexibility and
balancedness, denoted by Z(N) and B(N) respectively, as follows:

n n n
Rvi,vj)

Z(N)
- (

n(n -
B(N) = i_1

1) '

n n
E R(vi, vj) - E R(vk, vi)
j=1 k=1

n(n - 1)

These two measures are much more sensitive to the structure of graphs
as the one given in 1341.

2.4 Connectivity in Fuzzy Graphs

In this section, connectivity of fuzzy graphs will be investigated. In this
section and in fact for the remainder of the chapter, we assume all graphs
are undirected. Let G = (V, R) be a fuzzy graph. Define the degree of
a vertex v to be d(v) = E R(v, u). The minimum degree of G is b(G) _

uOV

A{d(v) I v E V}, and the maximum degree of G is A(G) = V{d(v) I v E V}.

Definition 2.4 Let Gi = (Vi, Ri), i = 1, 2 be two fuzzy subgraphs of G =
(V, R). The union of G1 and G2, denoted by G1 U G2i is the fuzzy graph
(V', R'), where V' = Vl U V2 and

R'(u, v) _ f R(u, v) if {u, v} c V1 U V2
0 if{u,v}%V1UV2

Lemma 2.11 Let G = (V, R) be a fuzzy graph and Gi = (Vi, . , ), i =
1, ..., n, be fuzzy subgraphs of G such that V fl Vj = 0I for i # j,1 < i, j < n,

n
and U Gi is connected. Then

i=1
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n
(i) bU Gi) > A{b(Gi) I i = 1,...,n},

i=1

(ii) L(U Gi) > v{b(G1) I i = 1, ... ,n}.
i=1

Recall that G is said to be connected if for each pair of vertices it and v
in V, there exists a k > 0 such that Rc(u, v) > 0.

Definition 2.5 Let G = (V, R) be a fuzzy graph. G is called T-degree
connected, for some r > 0, if b(G) > r and G is connected. A T-degree
component of G is a maximal r-degree connected fuzzy subgraph of G.

Theorem 2.12 For any r > 0, the r-degree components of a fuzzy graph
are disjoint.

Proof. Let G1 and G2 be two r-degree components of G such that their
vertex sets have at least one common element. Since 6(G1 U G2) > 6(GI) A
b(G2) by Lemma 2.11, G1 U G2 is r-degree connected. Since G1 and G2 are
maximal with respect to r-degree connectedness, we have that G1 = G2.

Algorithm 2.5. Determination of r-degree components of a finite fuzzy
graph G.

1. Calculate the row sums of AIR.
2. If there are rows whose sums are less than r, then obtain a new reduced

matrix by eliminating those vertices, and go to 1.
3. If there is no such row, then stop.
4. Each disjoint fuzzy subgraph of the graph induced by the vertices in

the last matrix as well as each eliminated vertex is a maximal r-degree
connected fuzzy subgraph.

Definition 2.6 Let G be a fuzzy graph, and { V1, V21 be a partition of its
vertex set V. The set of edges joining vertices of V1 and vertices of V2 is
called a cut-set of G, denoted by (VI, V2), relative to the partition {V1,V2}.
The weight of the cut-set (V1, V2) is defined to be

E R(u, v).
tE V1,vE V2

Definition 2.7 Let G be a fuzzy graph. The edge connectivity of G, de-
noted by )(G), is defined to be the minimum weight of cut-sets of G. G is
called r-edge connected if G is connected and A(G) > r. A r-edge compo-
nent of G is a maximal r-edge connected subgraph of G.

Example 2.3 Consider the fuzzy graph G given below.
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TABLE 2.2 Cut sets and their weights.

Vi V2 weight
?

7 7(a} {b.c,d} + - 4

{b}

{c}

{a.c,d}

{a.b,d} 8+

1

22
{d} {a,b,c} 3+ 9

{a,b} {c,d} + 1

{a,c} {b,d} + ±$+s2.
{a,d} {b.c} +8-1

We summarize different cut-sets along with their weights in Table 2.2.
We see that )(G) = 1/2.

The following results can be proved similar to that of Lemma 2.11 and
Theorem 2.12.

Lemma 2.13 Let G be a fuzzy graph and Gi, i = 1, ..., n, be fuzzy subgraphs
n

of G such that V2 fl V) = 0 for all i, j, i j, l < i, j < n and U Gi is

connected. Then A( U Gi) > A (A(Gi)).
i=1 i=1

i=1

Theorem 2.14 For r > 0, the r-edge components of a fuzzy graph are
disjoint.

The algorithm for determining r-edge components is based on a result
of Matula 1271. In order to understand the algorithm we need to introduce
the concept of a cohesive matrix and that of narrow slicing.
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Cohesiveness

Let G = (V, R) be a fuzzy graph. An element of G is defined to be either a
vertex or edge. That is, e either a member of V or e is an unordered pair
of members of V such that R(e) > 0.

Definition 2.8 Let e be an element of a fuzzy graph G. The cohesiveness
of e, denoted by h(e), is the maximum value of edge-connectivity of the
subgraphs of G containing e.

Lemma 2.15 For any fuzzy graph G and element e and 0 < r < h(e),
there exasts a unique. r-edge component of G containing e.

The unique r-edge component of G, for T = h(e) > 0, containing the
element e has the highest order of the maximum edge-connectivity sub-
graphs of G containing e, and will be termed the h(e)-edge component of
e, denoted by He .

Example 2.4 Consider the fuzzy graph G given Example 2.3. We summa-
rize the r-edge components of G in the form a table. Recall that if V1 is a
subset of the set of vertices of G, (V1) denotes the fuzzy subgraph induced
by V1.

r r - edge components
(7/8,1] ({a}), ({b}). ({c}), ({d})

(1/2,7/81 ({c}), ({a, b, d})
[0,1/2] ({a, b, c, d})

The cohesiveness of an element may be determined from the knowledge of
any subgraph of maximum edge-connectivity containing that given element,
and clearly knowledge of the r-edge components of G for all r > 0 is
sufficient to determine h(e) for all elements e of G. The following theorem
shows an important converse relation, that by utilizing the cohesiveness
function it is possible to readily determine He for any element e with h(e) >
0.

Theorem 2.16 Let e be an element of the fuzzy graph G with h(e) > 0.
Let Me be a maximal connected fuzzy subgraph of G containing e such that
all elements of Al, have cohesiveness at least h(e). Then M, = He.

Corollary 2.17 For any fuzzy graph G and any T > 0, the elements of G
of cohesiveness at least r form a fuzzy graph whose components are r-edge
components of G.

Corollary 2.18 If G' is an T-edge component of the fuzzy graph G for
some r > 0, then G' = He for some element e of G.
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Slicing in. Fuzzy Graphs

An ordered partition of the edges of the fuzzy graph G, (C1, C2, ... , C"'),
is a slicing of G if each member

G fori=1
C= is a cut-set (At, As) of i-1G\ U Ci for2<i<m

i=1

A member of the slicing will also be termed a cut of the slicing. A slicing
of G, which is minimal in the sense that there is no subpartition which is
a slicing of G, is called a minimal slicing of G. Clearly each cut C, of a
minimal slicing must be a minimal cut of some component of G \ U-1 C, .

Further, a slicing of G is a narrow slicing of G, if each cut Cs is a minimum
cut of some component of G C;. Note that the notion of slicing
pertains only to graphs with at least one edge.

A slicing may be given a dynamic interpretation as a sequence of non-
void cuts which separates G into isolated vertices and a minimal (narrow)
slicing effects this separation using only minimal (minimum) cuts at each
step. This provides a simple way to compute the minimal (narrow) slic-
ing. However, we want to make the observation that a narrow slicing is a
minimal slicing but not vice versa.

Algorithm 2.6. Narrow slicing of connected fuzzy graph G.
1.Z=0,G1=G,i=1.
2. While G= 0 do

V = the vertex set of G2.
v = a vertex in G2 with minimum degree.
C2 = ({v}, V \ {v})
Z=ZU{C2}
i=i+1
G2 = the fuzzy subgraph induced by V \ { v I.

3. Z is a narrow slicing of G.
The following result is an important link between narrow slicing Z and

the cohesive function h on a fuzzy graph.

Theorem 2.19 Let Z = (CI, C2,..., Cm) be a narrow slicing of G ob-
tained by successively removing one vertex at a time. Let G1 = G D G2
... D be the sequence of fuzzy subgraphs left after each slicing. Then
h(e) = A{a(G2)je E G2i 1< i< m}.
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Example 2.5 Let G be a fuzzy graph such that

a b c d e

a 0.0 0.8 0.2 0.0 0.0

. =AI
b 0.8 0.0 0.4 0.0 0.4

R
0.2 0.4 0.0 0.8 03

d 0.0 0.0 0.8 0.0 0.8
e 0.0 0.4 0.3 0.8 0.0

As in the Algorithm 2.6, let G, denote the fuzzy graph G. Computing the
sum along each row, we have

a b c d e

1.0 1.6 1.7 1.6 1.5

The minimum value occurs at row a. So we set C1 = ({a}, {b, c, d, a})
and let G2 be the fuzzy subgraph induced by the vertex set {b, c,d, a}. Note
that A(G1) = 1.0 and edges (a, b) and (a, c) appear only in G1. It follows
that h(e) = 1.0 for e = (a, b), (a, c). Now the matrix associated with the
fuzzy subgraph G2 is given by

b c d e

b 0.0 0.4 0.0 0.4
c 0.4 0.0 0.8 03
d 0.0 0.8 0.0 0.8
e 0.4 0.3 0.8 0.0

Computing the sum along each row, we have

b c d e

0.8 1.5 1.6 1.5

The minimum value occurs at row b. Hence C2 = ({b}, {c, d, a}) and
G3 is the fuzzy subgraph generated by the vertex set {c, d, a}. Note that
A(G2) = 0.8 and edges (b, c) and (b, e) appear in Gl and G2. and hence
h(e) = 1.0 A 0.8 = 0.8 for e = (b, c), (b, e). Now the matrix associated with
the fuzzy subgraph G3 is given by

c d e

c 0.0 0.8 03
d 0.8 0.0 0.8
e 0.3 0.8 0.0

Proceeding along these lines, we obtain the following cohesive matrix
(where ith row jth column entry denote the cohesiveness of the edge (i, j)
if i 54 j and the cohesiveness of the vertex i if i = j, for i, j E {a, b, c, d, a})
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a b c d e

a 0.0 1.0 1.0 1.0 1.0
b 1.0 0.0 1.0 1.0 1.0

c 1.0 1.0 0.0 1.1 1.1

d 1.0 1.0 1.1 0.0 1.1

e 1.0 1.0 1.1 1.1 0.0

and the narrow slicing
(({a}, {b, c, d, a}), ({b}, {c, d, a}), ({e}, {c, d}), ({c}, {d})).

We are now ready to present an algorithm for the determination of -r-edge
components of a fuzzy graph G.

Algorithm 2.7. Determination of -r-edge components of a fuzzy graph
C.

1. Obtain the cohesive matrix H of the 1bIR.
2. Obtain the r-threshold graph of H.
3. Each component of the graph is a maximal r-edge connected subgraph.

Example 2.6 Consider the fuzzy graph G in the Example 2.5. The -r-edge
components of G for various values r can be summarized as follows.

r r-edge components
(1.1, oo) ({a}), ({b}), ({c}), ({d}), ({e})
(1.0,1.1] ({a}), ({b}), ({c, d, a})

10,1.01 ({a,b,c,d,e})

Definition 2.9 A disconnection of a fuzzy graph G = (V, A, R) is a vertex
set D whose removal results in a disconnected or a single vertex graph. The
weight of D is defined to be E A{R(v, u)IR(v, u) # 0, u E V }.

vED

Definition 2.10 The vertex connectivity of a fuzzy graph G, denoted by
S1(G), is defined to be the minimum weight of disconnection in G. G is said
to be r-vertex connected if fI(G) > r. A -r-vertex component is a maximal
r-vertex connected subgraph of G.

Note that r-vertex components need not be disjoint as do r-degree and
r-edge components. The following result is straightforward.

Theorem 2.20 Let G be a fuzzy graph, then S1(G) < .(G) I-- 6(G). 8

Theorem 2.21 For any three real numbers a. b, and c such that 0 < a <
6 < c, there exists a fuzzy graph G wzth S1(G) = a, A(G) = b, and b(G) = c.

Proof. Let n be the smallest integer such that c/n < 1, and let a' =
a/n, b' = b/n, and c' = c/n. Then 0 < a' < b' < c' < 1. Let G be the fuzzy
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graph constructed as follows. The vertex set is the union of three sets A =
{uo,u1,u2,...,un},B = {v0,vl,v2....,vn}. and C = {wo,wl,w2....,wn}
each containing n + 1 vertices. Let < X > denote the fuzzy subgraph
induced by the set X, for X = A, B, C. In C, d(wo) = nc' and d(wi) =

(n- 1) + c'+ b' for 1 < i < n. In other words, < C\ { wo } > is 1.0-complete
and < C > is c'-complete. In B,d(vo) = n+1 and d(vi) = n+(n-1)+a'+b'
for 1< i < n. < B > is 1.0-complete. In A, d(uo) = n + 1 and d(ui) =
n + (n - 1) + a' for l< i < n. < A > is 1.0-complete. Connections between
subsets are as follows. Each wi is connected to vi with fuzzy value b' for
1 < i < n. And each ui(i # 0) is connected to vi with fuzzy value a' and
to v3's (j # i, 0) with fuzzy value 1.0. Finally uo is connected to vo with
fuzzy value 1. All other edges in the fuzzy graph have value 0. Now we will
show that G thus constructed satisfies the conditions imposed.

(1) From the process of the construction described above it is clear that
6(G) = d(wo) = nc' = c.

(2) The number of edges in any cut of the subgraphs < A >, < B > or
< C > is greater than or equal to n since < A >, < B > and < C > are c'-
complete. Therefore the weight of a cut is greater than or equal to nc', which
means that the weight of any cut which contains a cut of < A >, < B >
or < C > is greater than or equal to nc'. Only other cuts which do not
contain a cut of < A >, < B > or < C > must contain the cut (A, B U C)
or (AUB, C). The weight of the cut (A, BUC) is 1+n(n-1)+na' and that
of the cut (A U B, C) is nb'. Now nb' < nc' and nb' < 1 + n(n - 1) + na'.
Hence A(G) = nb' = b.

(3) Let us determine the minimum number of vertices in disconnection
of G. Since < A >, < B > and < C > are at least c'-complete, they can
be disconnected or become a single vertex by removing at least n vertices.
Only other possible ways to disconnect G are disconnections between A, B,
and C. Since < (A\{uo})U(B\{vo}) > is a a'-complete and uo and vo are
connected to each other and to < (A\{uo})U(B\{vo}) >, any disconnection
must contain at least n + 1 vertices. On the other hand, since < B > and
< C > are connected by n edges, at least n vertices have to be removed
to disconnect < A U B > and < C > . But since vertices on both sides of
edges are all different, at least n vertices have to be removed. Therefore, at
least n vertices have to be removed to disconnect the graph G. Then since
A(f (v)lv E V} = a' and actually {v1,V2, ..., vn} is a disconnection of G, the
weight of the disconnection {v1, v2, ..., vn } specifies the vertex connectivity
of the graph G, namely, S2(G) = na' = a.

2.5 Application to Cluster Analysis

The usual graph-theoretical approaches to cluster analysis involve first ob-
taining a threshold graph from a fuzzy graph and then applying various
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techniques to obtain clusters as maximal components under different con-
nectivity considerations. These methods have a common weakness, namely,
the weight of edges are not treated fairly in that any weight greater (less)
than the threshold is treated as 1(0). In this section, we will extend these
techniques to fuzzy graphs. It will be shown that the fuzzy graph approach
is more powerful.

In Table 2.3, we provide a summary of various graph theoretical tech-
niques for clustering analysis. This table is a modification of table II in
Matula [261.

TABLE 2.3 Cluster procedures.'

Graph theoretical
Cluster Cluster Extent of

interpretation
procedure independence chaining

of clusters

Single Maximal connected
Disjoint High

linkage subgraphs

Maximal connected
k-linkage subgraphs of Disjoint Moderate

minimum degree

k-edge Maximal k-edge
Disjoint Low

connectivity connected subgraph

Maximal k-vertex
k-vertex connected subgraph and Limited

Low
connectivity Cliques on k or less overlap

vertices

Complete Considerable
Cliques None

linkage overlap

In the following definition, clusters will be defined based on various con-
nectivities of a fuzzy graph.

Definition 2.11 Let G = (V, R) be a fuzzy graph. A cluster of type k
(k = 1,2,3,4) is defined by the following conditions (i), (ii), (iii), and (iv)
respectively.

I Reprinted from : R.T. Yeh and S.Y. Bang, Fuzzy Sets and Their Applications, ln:
Zadeh, Fu, Tanaka, Shimura Eds., Fuzzy Sets and Their Applications to Cognitive and
Derision Processes, Academic Press, 125 149, 1975.
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(i) maximal e-connected subgraphs, for some 0 < e < 1.

(ii) maximal 7--degree connected subgraphs.

(iii) maximal -r-edge connected subgraphs.

(iv) maximal T-vertex connected subgraphs.

Hierarchial cluster analysis is a method of generating a set of classifica-
tions of a finite set of objects based on some measure of similarity between
a pair of objects. It follows from the previous definition that clusters of type
(1), (2), and (3) are hierarchial with different a and T, whereas clusters of
type (4) are not due to the fact r-vertex components need not be disjoint.

It is also easily seen that all clusters of type (1) can be obtained by the
single-linkage procedure. The difference between the two procedures lies in
the fact that E-connected subgraphs can be obtained directly from AIR.. by
at most n -1 matrix multiplications (where n is the rank of M0). whereas
in the single-linkage procedure, it is necessary to obtain as many threshold
graphs as the number of distinct fuzzy values in the graph.

Output of hierarchial clustering is called a dendogram which is a directed
tree that describes the process of generating clusters.

In the following, we will show that not all clusters of types 2, 3 and 4 are
obtainable by procedures of k-linkage, k-edge connectivity, and k-vertex
connectivity, respectively.

Example 2.7 Let G be a fuzzy graph given in Figure 2.5(a). The dendro-
gram in Figure 2.5(b) indicates all the clusters of type 2.

FIGURE 2.5 A fuzzy graph and its clusters of Type 21 .

' Repiiuted from R.T. Ych and S.Y. Bang, Fuzzy Sets and Their Applications, ]it:
Zadeh, Fit, Tanaka, Shiumra Eds., Fuzzy Sets and Their Applications to Cognitive and
Decision Processes, Academic Piess. 125 149, 1975.
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FIGURE 2.6 Dendrograms for clusters obtained by k-linkage method for
k=land2l.

It is easily seen from the threshold graphs of G that the same dendrogram
cannot be obtained by the k-linkage procedure. Those for k = 1 and 2 are
given in Figures 2.6(a) and 2.6(b), respectively.

Theorem 2.22 The r-degree connectivity procedure for the construction
of clusters is more powerful than the k-linkage procedure.

Proof. In light of Example 2.7, it is sufficient to show that all clusters
obtainable by the k-linkage procedure are also obtainable by the r-degree
connectivity procedure for some T. Let G be a fuzzy graph. For 0 < e < 1,
let G' be a graph obtained from G by replacing those weights less than a in
G by 0. For any k used in the k-linkage procedure, set r = ke. It is easily
seen that a set is a cluster obtained by applying the k-linkage procedure to
G if and only if it is a cluster obtained by applying the r-degree connectivity
procedure to G'.

FIGURE 2.7 A fuzzy graph and its clusters of Type 31 .

Example 2.8 Let G be a fuzzy graph given in Figure 2.7(a). The dendro-
gram in Figure 2.7(b) gives all clusters of type 3. It is clear by examining
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FIGURE 2.8 Dendrograms for clusters obtained from k-edge method for
k=1and21.

T

0.8

0.4

4

a b c d e

V
a,b c,d,e

a b c d e

a b,c,d,e

a,b,c,d,e a,b,c,d,e

all the threshold graphs of G that the same dendrogram cannot be obtained
by means of the k-edge connectivity technique for any k. Those for k = 1
and 2 are given in Figure 2.8.

By Example 2.8 and following same proof procedure as in Theorem 2.22,
we have the following result.

Theorem 2.23 The r-edge connectivity procedure for the construction of
clusters is more powerful than the k-edge connectivity procedure.

Example 2.9 Let G be a fuzzy graph given in Figure 2.9(a). The dendro-
gram in Figure 2.9(b) provides all clusters of type 4.

FIGURE 2.9 A symmetric graph and its clusters of Type 41 .
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FIGURE 2.10 Dendrograms for clusters obtained from k-vertex method
fork = l and 21 _ _

It is easily seen that the same dendrogram cannot be obtained by means
of the k-vertex connectivity technique for any k. Those for k = 1 and 2 are
given in Figure 2.10.

Following the same proof procedure as in Theorems 2.22 and 2.23, we
conclude with the result below.

Theorem 2.24 The r - vertex connectivity procedure for the construction
of clusters is more powerful than the k-vertex connectivity procedure.

2.6 Operations on Fuzzy Graphs

By a partial fuzzy subgraph of a graph (V, X ),we mean a partial fuzzy
subgraph of the fuzzy graph (Xv, Xx) If G = (V, X) is a graph, a partial
fuzzy subgraph of G is an ordered pair (A, E) such that A is a fuzzy subset
of V and k is a fuzzy subset of V x V. However, without any loss of
generality, we could have defined k as a fuzzy subset of X. Thus it is
possible to interpret (A, E) as a partial fuzzy subgraph of G and that
is the interpretation we are going to follow for this section for the sake of
clarity in presentation. Let (A2i E2) be a partial fuzzy subgraph of the graph
Gi = (V2, Xi) for i = 1, 2. We define the operations of Cartesian product,
composition, union, and join on (A1i E1) and (A2, E2). Throughout this
section we shall denote the edge between two vertices u and v by uv rather
than (u, v). The motivation for this notational deviation is prompted by
the fact that when we take the Cartesian product, the vertex of the graph

t Reprinted from : R.T. Yeh and S.Y. Bang, Fu'zv- Sets and Their Applications, In:
Zadeh, Fu, Tanaka, Shiuntra Eds., Fuzzy Sets and Their Applications to Cognitive and
Decision Processes, Academic Piess, 125 149, 1975
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is, in fact, an ordered pair. If the graph G is formed from G1 and G2 by
one of these operations, we determine necessary and sufficient conditions
for an arbitrary partial fuzzy subgraph of G to also be formed by the same
operation from partial fuzzy subgraphs of G1 and G2.

Cartesian Product and Composition

Consider the Cartesian product G = G1 X G2 = (V, X) of graphs Gi =
(VI, X 1) and G2 = (V2, X2), [16). Then

V = V1 X V2
and
X = {(u,u2)(u,v2)Iu E V1iu2v2 E X2} U {(ui,w)(vi,w)Iw E V2,uiv1 E

X1}.
Let Ai be a fuzzy subset of V2 and Ei a fuzzy subset of Xi, i = 1, 2.

Define the fuzzy /subsets A
1

x A2 of V and E1 E2 of X as follows:
V(ui, u2) E V, (A1 x A2)(u1, u2) = A1(ui) n A2(u2);
Vu E V1 iVu2v2 E X2, E1E2((u, u2)(u, v2)) = Ai (u) n E2(u2v2),
Vw E V2iVuiv1 E Xi,E1E2((ui,w)(v1,w)) = A2(w) n Ei(ulvi).

Proposition 2.25 Let G be the Cartesian product of graphs Gi and G2.
Let (Ai, Ei) be a partial fuzzy subgraph of Gi, i = 1, 2. Then (A1 x A2, E1 E2)
is a partial fuzzy subgraph of G.

Proof. E1E2((u, u2)(u,v2)) = A1(u)AE2(u2v2) < A1(u) n(A2(u2)AA2(v2))
= (Ai(u) AA2(u2)) n(Ai(u)AA2(u2)) _ (A1 xA2)(u,u2)A(A1 xA2)(u,v2).
Similarly, E1E2((ui, w)(vi, w)) < (Ai x A2)(ui, w) A (A1 x A2)(vi, w).

The fuzzy graph (A1 x A2, E1E2) of Proposition 2.25 is called the Carte-
sian product of (A1i E1) and (A2, E2).

Theorem 2.26 Suppose that G is the Cartesian product of two graphs G1
and G2. Let (A, E) be a partial fuzzy subgraph of G. Then (A, k) is a Carte-
sian product of a partial fuzzy subgraph of G1 and a partial fuzzy subgraph of
G2 if and only if the following three equations have solutions for xi, y.7, zjk,
and wih where V i = {v11, vie, ..., vin} and V2 = { V21, V22i ..., V2m }

(i) xi n y, = A(v1i, V2,), i = 1, ..., n; j = 1, .... m;

(ii) xi n z_,k = E((vii, v2j)(vli, v2k)), n; j, k such that v22v2k E X2;

(iii) yl n wih = E((vii, v2j)(vih, v23)). j = 1, ..., m; i, h such that viivlh E
X1.

Proof. Suppose that the solution exists. Consider an arbitrary, but fixed,
j, k in equations (ii) and i, h in equations (iii). Let

zjk = V{E((v1i,v2i)(v1i.v2k))Ii = 1.....n}
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and

wih = V{ E((vii, v2j)(vih, v2j))Ij =I --m}.

Set
J (j, k) j j, k are such that v2jV2k E X2 }

and
I = {(i, h)ji, h are such that vlivlh E X1 }.

Now if {x1,...,x7,} U {zjkl(j,k) E J} U {yl,...,y,,,} U {wihl(i,h) E I} is
any solution to (i), (ii), and (iii), then {xI .... , x } U {zjkl (j. k) E J} U
{yl, ... , ym } U {wiht(i, h) E I} is also a solution and, in fact, zjk is the
smallest possible z,7k and wih is the smallest possible wih. Fix such a solu-
tion and define the fuzzy subsets A1i A2, El . and t2 of V1, V2, X 1, and X2,
respectively, as follows:

Al (vii) = xi for i = I,-, n;
A2(v2j) = yj for j = 1, ..., m;
E2(v2jv2k) = zjk for j, k such that v2jv2k E X2;
Ei(vlivlh) = wih for i,h such that vlivlh E X1.
For any fixed j, k, E((vli, v2j)(vli, v2k)) <_ A(vli, v2j) A A(vil, v2k) _

(Al (v1ti) A A2(v27))A (Al(vli) A A2(v2k)) (A2(v2j) A A2(v2k)), i = 1, .,., n.
Thus zjk = V{E((vii,v2j)(vii,v2k))Ii = 1,...,n} < A2(v2j) A A2(v2k).

Hence E2(v2jv2k) < A2(v23)AA2(v2k). Thus (A2, E2) is a partial fuzzy sub-
graph of G2. Similarly, (Ak, El) is a partial fuzzy subgraph of G1. Clearly,
A=A1 xA2andE=E1E2.

Conversely, suppose that (A, k) is the Cartesian product of partial fuzzy
subgraphs of G1 and G2. Then solutions to equations (i),(ii) and (iii) exist
by definition of Cartesian product.

Remark 2 Consider an arbitrary fixed solution to equations (i), (ii), and
(iii) as determined in the proof of Theorem 2.26 (assuming one exists).

(i) Let (j,k) E J and let I' = {ijk E IIIjk = E((vli,k,v2j)(vlilk,v2k))} in
Theorem 2.26. If xi,k > zjk for some ijk E I', then Zjk is unique for
these particular x1, ... , xn and equals zjk; if xi,A. = zjkdijk E E, then
zjk < zjk < 1 for these particular x1, ... , x,,.

(ii) Let (i,h) E I and let J' = {jih E Jlzuih = E((vli, v2j;,.)(vlh, v2j,,, )) }
in Theorem 2.26. If yj,,, > wih for some jih E J', then ZUih is unique
for these particular yl,... , y,,, and equals wih; if yj;,, = wihdjih E J',
then wih < wih < 1 for these particular

Example 2.10 Let Vl = {v11, V12}, V2 = {v2i, v2?}, XI = {v11v12}, and
X2 = {v21v22}. LetA((vii,v21)) = 1/4,-A((vi1, 1)22)) = 1/2, A((V12,v21)) =
1/8, and A((v12i v22)) = 5/8. Then (A, E) is not a Cartesian product of
partial fuzzy subgraphs of G1 and G2 for any choice of k since equations
(i) of Theorem 2.26 are inconsistent:
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x1 A y1 = 1/4.x1 A y2 = 1/2,x2 A y1 = 1/8,x2 A y2 = 5/8

is impossible.

Examples are easily constructed where equations (i) have a solution, but
either equations (ii) or (iii) are inconsistent.

We now consider the composition of two fuzzy graphs. Let G1 [G2] denote
the composition of graph G1 = (V1i X 1) with graph G2 = (V2, X2), [16].
Then G1 [G2] = (V1 x V2, X°) where X° = { (u, U2) (U, v2) IlL E V1, u2V2 E
X2}U{(u1,w)(vl,w)Iw E V2iulv1 E Xl}U{(ul,u2)(v1,v2)Iulv1 E X1iu2
v2}. Let Ai be a fuzzy subset of Vi and E= a fuzzy subset of Xi.i = 1,2.
Define the fuzzy subsets Al oA2 and El oE2 of Vl x V2 and X°. respectively,
as follows:
d(ui,u2) E V1 x V2,

(A1 o A2)(ul, U2) = Al (ul) A A2 (U2);

`du E VI, Vu2v2 E X2,

(El o E2) ((U, U2) (U, v2)) = A1(u) A E2(u2v2);

`dw E V2,Vu1v1 E X1,

(El oE2)((ul,w)(v1,w)) = A2(w) AEl(ulvl);

d(ul,u2)(vl,v2)EX°\X,
(El o E2)((ul,u2)(vl,v2)) = A2(u2) A A2(v2) A El(ulvi)

where
X = {(u,u2)(u,v2)Iu E V1,u2v2 E X2} U {(ul.w)(vl,w)Iw E V2iu1v1 E

X1}.
We see that Al o A2 = Al x A2 and that El o E2 = E1E2 on X.

Proposition 2.27 Let G be the composition G1 [G2] of graph G1 with
graph G2. Let (Ai, Ei) be a partial fuzzy subgraph of Gi, i = 1, 2. Then
(A1 o A2, El o E2) is a partial fuzzy subgraph of G1 [G2] .

Proof. We have already seen in the proof of Proposition 2.25 that

(El o E2)((ul, U2) (VI, v2)) (Al o A2)((ul u2)) A (A1 o A2)((vl v2))

for all (ul, u2)(vl, v2) E X. Suppose that (ul, u2)(vl, V2) .E X° \X and so
u1 v/1 E XI, u2 v2. Then (E1 o E2)((ui, u2)(v1 i v2)) = A2(u2) A A/2(v2) A

Ei(ulvl) <A2(u2)AA2(v2)AAi(ul)AAl(vl) = (Al(ul)AA2(u2)) A(Ai(vl)A
A2(v2)) = (A1 o A2)((ui, U2)) A (A1 o A2)((vl, V2)).

The fuzzy graph (A1 o A2, El oE2) of Proposition 2.27 is called the
composition of (A1, E1) with (A2, E2).
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Theorem 2.28 Suppose that G is the composition G1 1G21 of two graphs
G1 and G2. Let (A, t) be a partial fuzzy subgraph of G. Consider the fol-
lowing equations:

(i) xi A yj = A(vji.v2j),i = 1,...,n; j = 1,....711:

(ii) xi Az3k = E((vli, v2j)(vli, v2k)), i = 1, .... n: j. k such that v2jv2k E X2;

(iii) yj A wih = E((vli, v21)(vlh, v2j)), j = 1..... m; i, h such that Vlivlh E
Xl;

(iv) yjAykAwih = E((vli,v27)(vlh,v2k)), where (v1i,V2j)(Vlh,V2k) E X°\
X;

where X is defined as above.
A necessary condition for (A, k) to be a composition of partial fuzzy

subgraphs of G1 and G2 is that a solution to equations (i)-(iv) exists.
Suppose that a solution to equations (i)-(iv) exists. If

wih > E((vli, v2j)(v)h, v2k))d(i, h) E 1

such that (vli,v2j)(vlh,v23) E X° \ X, then (A, k) is a composition of
partial fuzzy subgraphs of G1 and G2.

Proof. The necessary part of the theorem is clear. Suppose that a solution
to equations (i)-(iv) exists. Then there exists a solution to equations (i)-
(iv) as determined by in the proof of Theorem 2.26 for equations (i)-(iii)
because every wih > wih and by the hypothesis concerning the wih. Thus
if Ai, Ei, i = 1, 2,are defined as in the proof of Theorem 2.26, we have that
(Ai, Ei) is a partial fuzzy subgraph of Gi, i = 1, 2, and A = Al o A2 and
E=EloE2.

Example 2.11 Let G1 = (Vi, XI) and G2 - (V2, X2) be graphs and let
Al, A2, E1, and E2 be fuzzy subsets of V1, V2, X1, and, X2, respectively.
Then (A1 X A2, E1 E2) is a partial fuzzy subgraph of G1 x G2i but (Ai, Ei)
is not a partial fuzzy subgraph of Gi, i = 1, 2: Let V1 = {u1, v1 J, Y2 =
{u2, v2 }, X1 = {u1v1 }, and V2 = {u2v2}. Define the fuzzy subsets A1, A2, E1,
and t2 as follows: A1(ul) = A1(v1) = A2(u2) = A2(v2) = 1/2 and
El(ulvl) = E2(u2v2) = 3/4. Then (Ai, Ei) is not a partial fuzzy sub-
graph of Gi, i = 1, 2. Now for x E Vi and y E V2, E1 k2 ((X, U2) (X, v2)) _
Al (x) A E2(u2v2) = 1/2 = A1 (x) A A2(v2) A A2(v2) = (AI x A2) ((X, U2)) A
(A1 x A2)((x, v2)) and similarly, ElE2((ul i y) (vl, y)) = (A1 x A2)((u1 i y) A
(A1 x A2)((vl, y)). Thus (A1 x A2, E1E2) is a partial fuzzy subgraph of G1 x
G2. Note that for xly1 E X1 and x2, y2 E V2i (E1 o E2)((x1, x2)(y1, y2)) =
A2(x2)AA2(y2)AE1(xly,) = 1/2 = (A1 xA2)((x1,x2))A(A1 xA2)((yl,y2))
Thus (A1 o A2, E1 o E2) is a partial fuzzy subgraph of G1 JG21.
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We would also like to note that in Example 2.11, (A, x A2, E,E2) satisfies
the conditions in Theorem 2.26. Hence (A1 x A2, E1 E2) is the Cartesian
product of partial fuzzy subgraphs (B2, F2) of Gi, i = 1, 2. In fact, these
Bi and F2 (i = 1, 2) are constant membership functions with membership
value 1/2.

Union and Join

Consider the union G = G1 U G2 of two graphs G1 = (V1, X,) and G2 =
(V2, X2), [16]. Then G = (V1 U V2, X1 U X2). Let A; be a fuzzy subset of V
and Ei a fuzzy subset of Xi, i = 1, 2. Define the fuzzy subsets A, U A2 of
V, U V2 and E1 U E2 of X 1 UX2 as follows:

(A,UA2)(u)=A,(u)ifnE V,\V2i(A,UA2)(u)=A2(u)if uE V2\V1i
and (Al U A2) (U) = A, (u) V A2(u) if u E VI n V2;

(E1 U E2)(uv) = Ei(uv) if uv E X1 \ X2, (E1 U E2)(uv) = E2(uv) if
uv E X2 \ X1, and (E1 U E2) (uv) = E,(uv) V E2(uv) if uv E X1 n X2.

Proposition 2.29 Let G be the union of the graphs G, and G2. Let A, .ti)
be a partial fuzzy subgraph of Gi, i = 1, 2. Then (A, uA2, E, UE2) is a partial
fuzzy subgraph of G.

Proof. Suppose that uv E X1 - X2. We have three different cases to
consider: (1) u, v E V, \ V2, (2) u E V, \ V2i v E V1 n V2 and (3) U, v E V, n V2.

(i) Let u, v E V1 \ V2. Then (E1 U E2)(uv) = Ei (uv) < A, (u) n A, (v) _
(A, U A2)(u) A (A, U A2)(v).

(ii) Let u E V, V2 and v E VI n V2. Then (E, U E2)(uv) < (A, U A2)(u) A
(A1 (v) V A2(v)) = (A, U A2)(u) A (Al u A2)(v)

(iii) Let u, v E VI n V2. Then

(E1 u E2)(uv) < (A,(u) v A2(u)) A (A,(v) v A2(v)) = (A, U A2)(u) A
(Al U A2) (V).

Similarly, if uv E X2\X,, then (ElUE2)(uv) < (A1UA2)(u)A(AIUA2)(v).
Suppose that uv E X, n X2. Then (E1 U E2) (uv) = El(uv) V E2(uv) <
(A,(u) A A,(v)) V (A2(u) A A2(v)) < (A,(u) V A2(u)) A (A1(v) V A2(v)) _
(A1 U A2)(u) A (A, U A2)(v).

The fuzzy subgraph (A, u A2i E1 U E2) of Proposition 2.29 is called the
union of (A,, E1) and (A2, E2).

Theorem 2.30 If G is a union of two fuzzy subgraphs G, and G2, then
every partial fuzzy subgraph (A, k) is a union of a partial fuzzy subgraph of
G, and a partial fuzzy subgraph of G2.

Proof. Define the fuzzy subsets A,, A2, E1, and E2 of V1, V2, X1, and X2,
respectively, as follows: Ai(u) = A(u) if u E V2 and E2(uv) = E(uv) if uv E
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(uivi) = E(uivi) < A(ui) A A(v,) = Ai(ui) A Ai(vi) ifXi,i = 1, 2. Then k.,
uivi E Xi, i = 1, 2. Thus (Ai, Ei) is a partial fuzzy subgraph of Gi, i = 1, 2.
Clearly, A = A 1 U A2 and E = El U E2.

Consider the join G = Gl + G2 = (V1 U V2, X 1 U X2 U X') of graphs
G1 = (V1. X 1) and G2 = (V2. X2) where X' is the set of all edges joining
the nodes of Vi and V2 and where we assume V1 fl V2 = 0, [161. Let Ai be
a fuzzy subset of Vi and Ei a fuzzy subset of Xi, i = 1, 2. Define the fuzzy
subsets Al + A2 of V1 U V2 and E1 + E2 of X1 U X2 U X' as follows:

(A1 + A2)(u) _ (A1'U A2)(u)du E V1 U V2;
(El + E2)(uv) = (El U E2)(uv) if uv E X1 U X2 and (El + E2)(uv) _

A, (u) A A2(v) if uv E X'.

Proposition 2.31 Let G be the join of two graphs G1 and G2. Let (Ai, Ei)
be a partial fuzzy subgraph of Gi, i = 1, 2. Then (A1 + A2, E1 + E2) is a
partial fuzzy subgraph of G.

Proof. Suppose that uv E X1 U X2. Then the desired result follows from
Proposition 2.29. Suppose that uv E X'. Then (E1 + E2)(uv) = A1(u) A
A2(v) _ ((A1 U A2)(u) A (A1 u A2)(v)) = ((A1 + A2)(u) A (Al + A2)(v)).

The fuzzy subgraph (A1 + A2, El+ E2) of Proposition 2.31 is called the
join of (A1, El) and (A2, E2).

Definition 2.12 Let (A, E) be a partial fuzzy subgraph of a graph G =
(Y, X). Then (A, k) is called a strong partial fuzzy subgraph of G if
E(uv) = A(u) A A(v) for all uv E X.

Theorem 2.32 If G is the join of two subgraphs G1 and G2i then every
strong partial fuzzy subgraph (A, t) of G is a join of a strong partial fuzzy
subgraph of G1 and a strong partial fuzzy subgraph of G2.

Proof. Define the fuzzy subsets A1J 2, E1, and E2 of V1, V2, X1, and X2
as follows: Ai(u) = A(u) if u c Vi and Ei(uv) = E(uv) if uv E X.,i = 1, 2.
Then (Ai, ti) is a fuzzy partial subgraph of Gi, i = 1, 2, and A = Al +A2 as
in the proof of Theorem 2.30. If uv E X1 U X2, then E(uv) = (E1 + E2) (uv)
as in the proof of Theorem 2.30. Suppose that uv E X' where u E V1 and
v E V2. Then (E1+E2)(uv) = Ai(u)AA2(v) = A(u)AA(v) = E(uv) where
the latter equality hold since (A, t) is strong.

Example 2.12 Let G1 = (V1, X1) and G2 = (V2, X2) be graphs and let
Al, A2, E1, and E2 be fuzzy subsets of V1, V2, X1, and X2, respectively. Then
(A1 UA2, E1 UE2) is a partial fuzzy subgraph of G1 UG2i but (Ai, Ei) is not a
partial fuzzy subgraph of Gi, i = 1, 2: Let V1 = V2 = {u, v} and X1 = X2 =
{uv}. Define the fuzzy subsets A1, A2, E1, E2 of V1, V2, X1, X2, respectively,
as follows: A1 (u) = 1 = A2(v),Al(v) = 1/4 = A2(u),E1(uv) = 1/2 =
E2(uv). Then (Ai, Ei) is not a partial fuzzy subgraph of Gi, i = 1, 2. Now



2.6 Operations on Fuzzy Graphs 51

(E1 U E2)(uv) = Ei(uv) V E2(uv) = 1/2 < 1 =JAI (u)V A2(u)) A (Aj(v) v
A2(v)) = ((A1 UA2)(u)A(A1 UA2)(v)). Thus (Ai UA2, Ei UE2) is a partial
fuzzy subgraph of Gi U G2.

The above example can be extended to the case where Vi V2, V2ZV1,
X1% X2, and as follows: Let Vi = {u,v,w},V2 = {u,v,z}, X1 =
{uv,uw}, X2 = {uv,vz}, and A, (w) =A2 (Z) = 1 = Ei(uw) = E2(uz).

Theorem 2.33 Let G1 = (VI,X1 and G2 = (V2, X2) be graphs. Suppose
that V1 fl V2 = 0. Let A1, A2, Ei, E2 be fuzzy subsets of V1, V2, X1, X2, re-
spectively. Then (A1 U A2, E1 U E2) is a partial fuzzy subgraph of G1 U G2
if and only if (A1, E1) and (A2, E2) are partial fuzzy subgraphs of Gi and
G2, respectively.

Proof. Suppose that (A1 U A2, E1 U E2) is a partial fuzzy subgraph of
G1 U G2. Let uv E X1. Then uv X2 and u, v E V1 - V2. Hence El (uv) =
(E1 U E2)(uv) < ((A, U A2)(u) A (Al U A2)(v)) = (Ai(u) A A,(v)). Thus
(A1, Ei) is a partial fuzzy subgraph of G1. Similarly, (A2,E2) is a partial
fuzzy subgraph of G2. The converse is Proposition 2.29.

The following result follows from the proof of Theorem 2.33 and Propo-
sition 2.31.

Theorem 2.34 Let Gi = (V1, X1) and G2 = (V2i X2) be graphs. Suppose
that Vi fl V2 = 0. Let A1i A2, E1, E2 be fuzzy subsets of V1, V2, X1, X2i re-
spectively. Then (A1 + A2, Ei + E2) is a partial fuzzy subgraph of Gi + G2
if and only if (A1,E1) and (A2,E2) are partial fuzzy subgraphs of G1 and
G2i respectively.

Definition 2.13 Let (A, k) be a partial fuzzy subgraph of (V, T). Define
the fuzzy subsets A' of V and E' of T as follows: A' = A and Vuv E
T, E'(uv) = 0 if E(u, v) > 0 and E'(uv) = A(u) A A(v) if E(u, v) = 0.

Clearly, (A', E') is a fuzzy graph. (A', E') is called the complement of
(A, E). We also use the notation G' for the complement of G.

Definition 2.14 (A, E) is said to be complete if X = T and Vuv E
X, E(uv) = A(u) A A(v).

We use the notation C,n (A, E) for a complete fuzzy graph where IV I = m.

Definition 2.15 (A, k) is called a fuzzy bigraph if and only if there exists
partial fuzzy subgraphs (Ai, E1), i = 1, 2, of (A, E) such that (A, E) is the
join (A1, E1)+(A2i E2) where V1nV2 = 0 and X1 f1X2 = 0. A fuzzy bigraph
is said to be complete if E(uv) > 0 for all uv E X'.

We use the notation C,,,,n (A, E) for a complete bigraph such that ! V1 I _
m and I V21 = n.

Proposition 2.35 C,n,n(A, E) = C. (A,, El )' + C,, (A2, E2)'.
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2.7 Fuzzy Intersection Equations

We give necessary and sufficient conditions for the solution of a system of
fuzzy intersection equations. We also give an algorithm for the solution of
such a system. We apply the results to fuzzy graph theory and to fuzzy
commutative algebra.

In 1221, Liu considered systems of intersection equations of the form

ellxl A ... A elnxn = bi

(2.7.1)

e,nlxj A ... A emnxn = b,n

where ez j E 10, 1} and b2, xj E L where L is a complete distributive lattice,
i = 1, ..., m; j = 1, ..., n. In this section, we consider systems of equations
of the form (2.7.1), where L is the closed interval 10, 1J. Although this case
is more restrictive, our approach is entirely different than that in [221. The
specificity of [0, 11 yields different types of results than those in [221. We
show that system (2.7.1) is equivalent to several independent systems of
the type where bl = ... = b,n. Also our proofs concerning the existence of
solutions are constructive in nature. In fact, we give an algorithm for the
solution of a system of intersection equations. We also give two applications.
One application is in the area of fuzzy graph theory. The other application
is in the area of fuzzy commutative algebra. This latter application appears
in Chapter 6.

Existence of Solutions

We write the system (2.7.1) in the matrix form Ex = b, where E = [eijJ

i=

xn

and b =

We assume throughout that Vj = 1, ..., n. 3i such that e23 = 1. We also
assume that the equations of (2.7.1) have been ordered so that bq,+i = ... =
bq1 < bQ2+i = ... = bq:3 < ... < bq,+i = ... = bq,+, where 0 = qi < q2 < ... <

qt+1=m.Let I,.={q,.+1....,qr+1}for r=1,...,t.For eachj=1,...,n,
let i denote the maximum i such that ei, = 1. Let ehj = OVh E U3-11 Is
and ehj = ehjVh E US_,.Is, where i! E Jr. Let

eli

E; e2i
=

emu
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...., E;,).Let E" = (E*

Theorem 2.36 Et = b and E'x = b are equivalent systems.

Proof. Let i be any row of E and j any column. Suppose that ei, = I.
Let i E I. Suppose 3h E I. s < r, such that e1 = 1. Let E' be the matrix
[eZ ] where eu = e,,,, if (u, v) 54- (h, j) and e,,, = 0 if (u, v) = (h. j). That
is, E' is obtained from E by replacing the hj-th component of E with 0.
It suffices to show that E'l = b and Et are equivalent. Now the h-th
equations of E'x = b and Ex = b are

ehlxl A ... A Oxj A ... A ehnxn = bq. +l (2.7.2)

and

ehlxl A ... A Ixj A ... A ehnxn = bqA+1, (2.7.3)

respectively. The other equations of E'x = b and E2 = b are identical to
each other. Since etc = 1, we have that xj > bq,.+1 > bqe+1 Thus equation
(2.7.2) and the i-th equation are equivalent to equation (2.7.3) and the i-th
equation. Hence the desired result follows.

Example 2.13 Consider the following systems of intersection equations:

x1 A X3 A x4 = 1/2

X2 A X3 = 3/4

and

x1Ax4=1/2

x2AX3=3/4

and

x1 A X3 = 1/2

x1Ax2Ax3=3/4

and

x1 A X2 A x3 = 3/4.

The first two systems are equivalent while the last two systems are equiv-
alent. The last two systems have no solution. In both pairs of systems, j = 3
andi* =2.
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Theorem 2.37 Consider the system E5 = b.

(i) The system has a unique solution if and only if dr = 1...., t, the system

Eq,-+1.t = bq, +11 ..., Egrll x = q,+,

has a unique solution.

(ii) The system is inconsistent if and only if 3i E { 1, ..., m} such that
bi>0 andeil _...=eon=0.

Proof. (i) Suppose that i E I. and It E I., where r # s. Then e, = 1
implies ehj = 0. That is, the t systems

Egr+lx = 9,,+1,...7 Eq,+Ix = 1,...,t,

pairwise involve distinct unknowns.
(ii) Since the t systems in (i) pairwise involve distinct unknowns,

E*x=b

is inconsistent if and only if one of the t systems is inconsistent. The desired
result now follows by applying the condition in (ii) individually to the t
systems.

For the matrix E, let Ei denote the i-th row of E, i = 1, ..., m. We write
E9 < Eh if and only if Vk = I,-, n, e9k = 1 implies ehk = 1. We write
E9 < Eh if and only if E9 < Eh and E9 # Eh. The addition of two rows of
E is componentwise with 0 + 0 = 0,0 + 1 = 1 + 0 = 1 + 1 = 1.

Corollary 2.38 Consider the system E- = b. Then El = b is inconsistent
if and only if 3i, hl, ..., hk E { I,-, m} such that bi > 0, i E I,. and hu E IS
with r < s for u = 1, ..., k and Ei < Eh, + ... +Ehk .

Proof. There exists i E {1, ..., m} such that eil = ... = ezn = 0 if and only
if 3i, hl, ..., hk E {1, ..., in} such that i E Jr and hu E Is,, with r < su for
u=1,...,kandEi<Eh,+...+Ehk.

We now examine the case where bl = ... = bm. Let i E { 1, ..., m}. Suppose
that 3Ei, , ..., En.. < Ei. If Ei, + ... +Eik; < Ei, then let cij = 0 if ei,, j = 1
for some r = 1, ..., ki and cij = eij otherwise, j = 1, ..., n. If no such Ei,,
exist let cij = eij1 j = 1, "'1 n. Let CZ i = (cE11 "'1 c4'Jl) and C = (Cl, ...' Cm)T 7

i.e., C is the transpose of the matrix (Cl, ...1 Cm). (If Ei, + ... +Eik, = Ei,
then the i-th equation may be deleted.)

Theorem 2.39 Suppose that bl = ... = b,,, = b in system (2.7.1). Let C
denote the matrix defined above. Then the systems Et = b and CMb are
equivalent where R indicates that the relation in the i-th equation is either
"=" or ">" depending upon whether Ci = Ei or C2 0 Ei, respectively.
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Proof. Let S(O) denote the system Ej = b and let S(i) denote the sys-
tem obtained from S(O) by replacing its i-th equation by CixRib where Ri
denotes "=" or ">". Let T(i) be the system CixRib, E=+l.x =
b, ..., E,,,x = b. It is easily seen that Ei, x = b; ..., Eik., = b, E,.t = b and
Ei, x = b, ..., E' it :i: = b. Ci3Rib are equivalent. Thus S(O) and S(i) are
equivalent Vi = 1, ...,m. Now T(1) = S(1) and so S(O) and T(1) are equiv-
alent. Assume that S(O) and T(i) are equivalent (the induction hypothesis).
We now show that S(O) and T(i + 1) are equivalent. Hence the result holds
by induction. As noted above, S(O) and S(i + 1) are equivalent. Let the
(i + 1)-st equation of S(O) (and thus of T(i)) be denoted by y j A . . . A yh A z1 A

... Azk = b where yl, ..., yh, zl, ..., zk E {xl , ..., x } and where the (i + 1)-st
inequality of S(i + 1) is z1A ... Azk > b. Now {y1, ..., yh } fl {zl,..., zk } _
0. Also, y1 A ... A yh A zl A... A zk = b is equivalent to (yiA ... Ayh = b
and zl A ... A zk > b) or (y1 A... A Yh > b and zl A ... A Zk = b). Since T(i)
and S(i + 1) are each equivalent to S(O), T(i) and S(i + 1) are equivalent.
Hence the system T(i) minus the (i + 1)-st equation and the system S(i+1)
minus the (i + 1)-st inequality individually imply y1A ... A Yh = b. Thus
we have the equivalence of T(i + 1) and S(i + 1) and thus the equivalence
of T(i + 1) and S(0).

System (2.7.1) with bl = ... = b,,,, is consistent if and only if Vi, 3j such
that ei, = 1.

Example 2.14 Consider the following system S(0) :

x1A12A13=b

x1 A X2 = b

x1A12A13Ax9=b.

Let i = 1. Then E2 < El. Applying Theorem 2.39, we obtain S(1) :

1lA12A13Ax4=b.

Let i = 2 in S(0). Then S(2) = S(0). Let i = 3 in S(O). Then El+
E2 < E3. Applying Theorem 2.39, we obtain S(3) :

x1Ax2AX3=b
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x1Ax2=b

x4 > b.

Thus T(3) is the system

x3>b

xiAx2=b

x4 > b.

Theorem 2.40 Suppose that b1 = ... = b,,, = b in system (2.7.1). Let C
be the matrix as defined above. Suppose that Chk = Cik = 1, h 0 i, for some
i, k where Chx > b and C,x = b. Suppose that Let dhk = 0 and
du. = cu , if (u, v) # (h, k). Let D = [di,] . Then Chx > b, Cix = b are
equivalent to Dhx > b, Dix = b.

Proof. Both systems force xk > b.
If Ch < Ci, then drop the h-th equation. In fact, if Chx > b, Ch,

Ch, ,= = b and Ch < Ch, +... + Ch,, then drop the h-th equation.
We also note that xl A x2 > b is equivalent to x1 > b and x2 > b.

Example 2.15 The following systems are equivalent:
x2Ax3>b
x1Ax2=b
and
x3>b
x1 A X2 = b.
Hereh=1 andi=k=2.

Example 2.16 The following systems are equivalent:
x2AX3>b
x1Ax2=b
x,Ax3=b
and
x,AX2=b
x,Ax3=b.
In the first system, Cl < C2 + C3.

To solve a general system of intersection equations, we may use the fol-
lowing algorithm. We use the notation Ei to denote the complement of Ei.
We let 0 denote the zero vector. We also assume that b1 > 0.
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Algorithm 2.8.
1. Sort the E, so that the bi's are in nondecreasing order.
2.1. Let Temp and Total each be a row of it zeros
2.2. Let c = b,,,
2.3. For i = m down to 1 do

if bi = c then
Temp = Temp + Ei and Ei = E2 NOR Total

if c > bi then
c = bi, Total = Total + Temp. Temp = Ei
and E, = E NOR Total

2.4. If 3i,1 < i < m, E, = B, then
INCONSISTENT and STOP

3. For each distinct bk
3.1. Let E, , i 1 < j < ik, be all rows such that bj = bk where 1 < i 1, ik < m
3.2. Let O, be the number of 1's in E,
3.3 Sort Ed's such that Oz's are in nondecreasing order
3.4. Let T be a row of n zeros
3.5. For x=i1 toik do
3.5.1. Fort'=x-1 down toil do

if E.' NOR Ex= 0 then
T=T+E?j

3.5.2. If T = Ex then
erase Ex, Rx, bx

3.5.3 Else if T 0 0 then
Cx = Ex XOR T and Rx = ' >'

3.5.4 Else
C. = E.

4. For each distinct bk
4.1. While 3Ci and C; such that

(1)bi = bj = bk
(2)Rj _ `='
(3)Rj _ `>' and
(4)Cj NOR CZ 8 do

C, =C? NOR C.,
4.2. Let Tk = C2VC2 such that bi = bk and Ri
4.3. If 3Ci such that (1) R, = `>' and (2)C2 NOR Tk = B then

erase Ci and bi from matrices C and b, respectively.

The time complexity of the algorithm is easily seen to be 0(m2 n). If each
row in E and C is denoted as a binary number, then the time complexity
becomes O(m2).

A unique minimal solution can be immediately determined.
The results of this section can be applied to those of Section 2.6 as we now

describe. Suppose that G is the Cartesian product of two graphs G1 and G2.
Let (A, k) be a partial fuzzy subgraph of G. Then (A, k) is a Cartesian



58 2. FUZZY GRAPHS

product of a partial fuzzy subgraph of G1 and a partial fuzzy subgraph
of G2 if and only if the system of intersection equations as described in
Theorem 2.26 has a solution.

The composition of fuzzy graphs is also defined in Section 2.6.1. If (A, E)
is a partial fuzzy subgraph of the composition G1 [G2] of graphs G1 and G2,
then necessary and sufficient conditions are given in Section 2.6.1 for (A, k)
to be the composition of partial fuzzy subgraphs of G1 and G2 in terms of
the existence of a solution to a system of fuzzy intersection equations.

In Chapter 6, we give an application to fuzzy commutative algebra.

2.8 Fuzzy Graphs in Database Theory

We now give an application of fuzzy graphs to database theory as developed
in [18]. We examine fuzzy relations which store uncertain relationships
between data. In classical relational database theory, design principles are
based on functional dependencies. In this section, we generalize this notion
for fuzzy relations and fuzzy functional dependencies. Results presented are
useful for designing fuzzy relational databases.

Definition 2.16 Let U = (A1i..., A,,} be the set of attributes and each
Ai is assigned to the set of possible values DOM(A=). A fuzzy subset R
of the Cartesian cross product x!', DOM(A;) is called a fuzzy relation on
x 1DOM(A;)

In classical database theory, functional dependencies play important roles.
A functional dependency `X functionally determines Y in R' means for any
two tuples of the relation R, if the X values are the same, then the Y values
are also same. In other words, Xx_y is equivalent to

Vt1it2((R(tl) and. R(t2) and. t1 [X] = t2 [X]) = tl [Y] = t2 [Y]).

For example, consider the relation R given below:

A B C
a b c

a b d

e f g

e b d

Note that A functionally determines B since for any two rows (known as
tuples in database theory) t1 and t2 of R, if their values in column (known
as attribute in database theory) A are the same then those tuples have
identical values in column B. However, A does not functionally determine
C since considering the first two rows observe that while the column A
values are identical, the column C values are not identical. It may be noted



2.8 Fuzzy Graphs in Database Theory 59

that C functionally determines B and B does not functionally determine
A.

We get a fuzzy version of the formula when we substitute the operators
.and., V with the operators min (A), inf (A) and .or., 3 with max (v), sup
(v), and = with -->, where the implication is defined as follows:

a->b= 1 ifa<b
1 - (a - b), otherwise

and finally not. with where -,a = 1 - a. In this way, we get that the
truth value of the fuzzy relation k satisfies a given functional dependency
X Y:

TR(X,Y) = i - v(R(tl) A R(t2) I t1(Xj = t2 (Xj but t1 [Y] # t2 (Yj},

where tl and t2 are any two tuples of R. As in the classical database theory,
we denote the union of attributes X and Y by XY.

Example 2.17 Consider the fuzzy relation R on DOM(A) x DOM(B) x
DOM(C).

A B C R(t )
a b c 1

a b f 0.8
e d c 0.7
e b f 0.6

The fuzzy relation R generates the following truth values.

TR(A, B) = 0.4, TR(B, C) = 0.2, TR(C, A) = 0.3,
TR(A, C) = 0.2, TR(B, A) = 0.4, TR(C, B) = 0.3,
TR(AC, B) = 1, TR(BC, A) = 0.4, TR(AB, C) = 0.2,
TR(AB, B) =1, TR(AB, A) = 1.

Fuzzy functional dependency satisfies the following properties.

Al If Y C X, then TR(X,Y) = 1,

A2 TR(X, Y) A TR(Y, Z) < TA(X, Z),

A3 TA(X, Y) < TR(X Z, YZ).

From these, other properties can be obtained:

B1 TA(X, Y) ATR(Y, Z) < TR(X, YZ),

B2 TA(X, Y) ATR(WY, Z) < TR(XW, Z),

B3 if Z C Y, then TR(X,Y) < TR(X, Z).
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An important consequence is that TA(X,Y) =A {TR(X. A),A : A E Y}.
Thus a fuzzy relation generates another a fuzzy relation TR(X. Y) on U2

with the properties Al - A3.
Moreover, if there is given an arbitrary fuzzy relation T(X.Y) on U2,

then it defines the fuzzy relation T+(X, Y) which is the smallest fuzzy
relation on U2 that contains T(X, Y) and has the properties Al - A3. We
call t+ (X, Y) the closure of T(X. Y). (Recall that Tl (X, Y) C T2(X. Y) if
and only if Tl(X,Y) < T2(X,Y)VX,Y C U.)

The closure is well defined because the fuzzy relation S(X, Y) = 1 satis-
fies Al - A3 and contains every fuzzy relation on U2, and if T C Si, T C S2,
where S1, S2 satisfy Al - A3, then t C_ Sl fl S2 and St fl S2 also satisfies
Al - A3. (S, fl S2(X,Y) := Si(X,Y) AS2(X,Y) for all X,Y C U.)

Proof of the following result can be found in [18].

Proposition 2.41 T+(X,Y) is a closure, that is

(i) T(X,Y) C T+(X,Y),

(ii) T++(X,Y) = T+(X,Y),

(iii) if T, (X, Y) C T2(X, Y), then t (X, Y) C TZ (X, Y).

Now we extend t+ (X, A) for fuzzy subsets X as follows: Let X be a
fuzzy subset on U and

Tf (X, A)=v{(T+(Z,A)AA) IZCU,AE [0,1],Z,,CX}

where for A E 10, 1] we define

J A, if AEZ(A) = l 0, otherwise.

With the help of Tf (X-, A), we define a closure set on U as follows: Let
X be a fuzzy subset on U. Then f(+ is also a fuzzy set on U and defined
by X+ (A) = Tf+(X, A) for all A E U.

First note that T j (X, A) = T-1- (X, A) if X is a crisp set, that is X (A) = 1
or 0 for all A E U. This is true because t+ (X, A) is an increasing function
in the argument X.

Proof of the following result can be found in [18].

Proposition 2.42 X+ is a closure on U, that is

(i) X C X+,

(ii) if f( C Y, then k I C Y{ ,

(iii) X++ =.k+.
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Representation of Dependency Structure T(X, Y) by Fuzzy
Graphs

Let T(X,Y) be a fuzzy relation on U2. We correspond to T(X,Y) a fuzzy
graph GT = (V , E) as follows. The vertices are ordered pairs (X, Y) such
that V (X , Y) = T (X , Y). Edges are ordered pairs of vertices such that
E((X, Y). (X, Z)) = T(Y, Z).

The following algorithm gives T+(X,Y) by modifying step by step the
labels of the graph:

Algorithm 2.9.
1. For all YCXlet V((X,Y))=1.
2. while (STAT1 is true or STAT2 is true) do

(where STAT 1 is true means
there exists an edge e = (vl,v2) so that
V(v2) < V(vl) A V(e),

and STAT2 is true means
there are vertices v1 = (X, Y) and v2 = (X Z, YZ) so that
f 7(V2) < V (vl ))

if (STAT1 is true) then
f /(V2) = V (vl) A E(e);
for all edges d = ((X, Y), (X, Z)) where v2 = (Y, Z),

E(d) = V(v2);
if (STAT2 is true) then

V(v2) =V(vl);
for all edges d = ((W,XZ), (W,YZ)) where v2 = (XZ,YZ),

E(d) = V(v2);
3) T+(X,Y) = V(v), where v = (X,Y).

Proposition 2.43 The algorithm is correct.

Since X+(A) is defined by t+ (X, A) when X is a crisp set on U, it can
be computed by this algorithm as well.
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3
FUZZY TOPOLOGICAL SPACES

3.1 Topological Spaces

Topology has its roots in geometry and analysis. From a geometric point
of view, topology was the study of properties preserved by a certain group
of transformations, namely the homeomorphisms. Certain notions of topol-
ogy are also abstractions of classical concepts in the study of real or com-
plex functions. These concepts include open sets, continuity, connectedness,
compactness, and metric spaces. They were a basic part of analysis before
being generalized in topology.

In this section, we give a brief presentation of a few basic ideas concerning
topological spaces.

Definition 3.1 Let X be a nonempty set and let T C p(X ). Then T is
called a topology on X if the following conditions hold:

(i) @, X E T.

(ii) The union of any collection of members of T is a member of T.

(iii) The intersection of any two members of T is a member of T.

The members of T are called T-open sets or simply open sets. The pair
(X, T) is called a topological space.

Example 3.1 Let U denote those subsets of R which are arbitrary unions
of open intervals of R. (We recall that an open interval in IR is the set
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(a, b) = {x E 1k I a < x < b}. where a, b E Ik with a < b.) Then (118.U) is a
topological space. U is called the usual topology on R.

Example 3.2 Let U denote those subsets of R2 which are arbitrary unions
of open spheres of II82. (Here we recall that an open sphere in 1[82 is the set
{ (x, y) ` (x - h)2 + (y - k)2 < r2},where h. k, r E 1k with r > 0.) Then
(1k2, U) is a topological space. U is called the usual topology on 1182.

Example 3.3 Let X = {.r,y,z,u,v} andT = (X,0,{x},{z,u},{x,z,u},
{ y, z, u, v 11. Then (X. T) is a topological space since T satisfies the condi-
tions of Definition 3.1. However if we let

T' _ {X,0.{x},{z,u},{x,z,u},{y,z,u})
and

T" _ {X, 0, {x}, {z, u}, {x, z, u}, {x, y, u, v} },
then neither (X, T') nor (X, T") are topological spaces: { x, z, u} U { y, z, u}
= {x, y, z, u} V T' and {x, z, u} fl {x, y, u, v} = {x, u} V T".

Example 3.4 Let X be any set and T = p(X). Then (X, T) is a topo-
logical space. That is, every subset of X is open. T is called the discrete
topology on X.

Example 3.5 Let X be any set and T = {X, 0}. Then (X, T) is a topolog-
ical space. That is, X and 0 are the only open sets. T is called the indiscrete
topology on X.

Example 3.6 Let X be any set and T = {A I A C X, jAcl < oo} U {0},
where A° denotes the set complement of A in X. If A, B E T, then (A fl
B)` = A` U B° E T. Also if S C_ T, then (UAES A)c= I IAES A` E T. Thus
(X, T) is a topological space.

Definition 3.2 Let (X. T) be a topological space. A subset B of T is called
a base for T if every element of T is a union of members of B. If B is a
base for T, then B is said to generate T.

Example 3.7 The open intervals form a base for the usual topology on JR.
This follows since if U is an open subset of 1k, then dx E U, Sax, bx E JR
such that x E (a.,bx) C U and so U = UXEU(ax,bx).

Theorem 3.1 Let (X, T) be a topological space and let A be a subset of
X. Let TA = {U fl A J U E T}. Then (A,TA) is a topological space. 7 is
called the relative topology on A.

Let (X, T) be a topological space. Let x E X and U E T be such that
x E U. Then U is called an open neighborhood of x. A point x E X is called a
limit point or derived point of a subset A of X if for all open neighborhoods
U of x, (U \ {x}) fl A $ 0. The set of limit points of A, denoted by A', is
called the derived set of A.
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Example 3.8 LetX = {x,y,z,u,v} andT = {X,O,{x},{zu},{x,z,u},
(y, z, u, v 11. Then (X, T) is a topological space as noted in Example 3.3.
Let A = {x, y, z}. Then y is a limit point of A since the open sets containing
y are { y, z, u, v } and X, and each contains a point of A different from y,
namely z. The point x is not a limit point of A since the open set {x } does
not contain a point of A different from x. Similarly, u, v are limit points of
A. But z is not since the open set { z, u } does not contain x or y. Thus the
derived set A' of A is { y, u, v } .

Definition 3.3 Let (X, T) be a topological space. A subset A of X is said
to be closed if A` is open.

Example 3.9 Consider again the topological space (X. T), where X =
{x,y,z,u,v} and T = {X,O,{x},{z,u},{x,z,u},{y,z,u,v}}. Then the
closed subsets of X are the complements of the members of T, namely,
O,X,{y,z,u,v},{x,y,v},{y,v},{x}. We note that the sets jxj,fy,z,u,vj,
X, and O are each open and closed, while the set {x, y} is neither open nor
closed.

Let (X, T) be a topological space. Since ACC = A for a subset A of X, A
is open if and only A' is closed.

Theorem 3.2 Let (X, T) be a topological space. Then the following prop-
erties hold:

(i) X and 0 are closed sets.

(ii) The intersection of any collection of closed is a closed set.

(iii) The union of any two closed sets is closed.

Theorem 3.3 Let (X, T) be a topological spare. Let A be a subset of X.
Then A is closed if and only if A' C_ A, that is, A contains all its limit
points.

Definition 3.4 Let (X, T) be a topological space. Let A be a subset of
X. Then the closure of A, denoted by A (or clA), is defined to be the
intersection of all closed subsets X which contain A.

Let (X, T) be a topological space and let A be a subset of X. By Theorem
3.2, A is closed and in fact, A is the smallest closed subset of X which
contains A. It follows easily that A is closed if and only if A = A. We also
have that A = A U A'. A point x E X is called a closure point of A if either
x E A or x E A'. Let B be a subset of X.Then A is said to be dense in B
if BC A.
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Example 3.10 Consider once again the topological space (X.T), where
X = {x,y,z,u,v} and T = {X,O,{x},{z,u},{x,z,u},{y,z,u,v}}. The
closed subsets o f X are0,X, {y, z,u,v}, {x,y,v}, {y, v}, and {x}. It follows
that cl { y } = j y. v j since l y, v j is the smallest closed set containing {y}.
Similarly, cl{x,z} = X and clIy,u} = {y,z.u,v}.

Let A be a subset of a topological space X. A point x E A is called an
interior point of A if there exists an open set U such that x E U C_ A. Let
A° denote the set of all interior points of A. Then A° is called the interior
of A.

Example 3.1 provides us with a simple example of the interior of a set.
Let A denote the interval (a, b]. Then clearly A° = (a, b).

Proposition 3.4 Let A be a subset of a topological space X. Then the
following assertions hold.

(i) A° is open.

(ii) A° is the largest open subset of A.

(iii) A is open if and only if A = A°.

Let (X, T) be a topological space and let A be a subset of X. Let C C_
p(X ). Then C is said to be a cover of A if A C_ C. If C is a cover of
A and every C E C is open, then C is called an open cover of A. If C is a
(open) cover of A and C' C_ C is also a cover of A, then C' is called a (open)
subcover of A contained in C.

Definition 3.5 Let (X, T) be a topological space and let A be a subset of
X. Then A is said to be compact if every open cover of A contains a finite
subcover. If X is compact, then (X, T) is said to be compact .

The definition of compactness is motivated by the Heine-Borel Theorem
of analysis. The following example is essentially this theorem.

Example 3.11 Consider the topological space (R, U) of Example 3.1. Then
every closed and bounded interval [a, b] of R is compact.

Example 3.12 Consider again the topological space. (R, U) of Example

0"3.1. Let a, b E R, a < b. Then [a, b) C u (a - 1. b - 1/n). Thus U =
-n=1

((a - 1, b - 1/n) J n = 1, 2, ... ) is an open cover of [a, b). However U con-
tains no finite subcover of [a, b). Hence [a, b) is not compact. Similarly, (a, b]
and (a, b) are not compact.

Example 3.13 Let (X, T) be a compact topological space and let F be a
finite subset of X. Then F is compact.



3.1 Topological Spaces 71

Example 3.14 Let X be any set and T = {A I A C X, IACI < oo} U
{0}, where A' denotes the set complement of A in X. Then (X,T) is a
topological space as noted in Example 3.6. Let U be an open covering of
X. Let U be any member of U which is not empty. Set F = U`. Then
F is finite. Now Vx E X, 3Ux E U such that x E Ux. Since F is .finite,
{ U} U{ Ux I x E F} is a finite subcovering of X.

Theorem 3.5 Let (X, T) be a compact topological space and let F be a
closed subset of X. Then F is compact.

Theorem 3.6 Let (X, T) be a topological space and let A be a subset of
X. Then A is compact with respect to T if and only if A is compact with
respect to TA.

Definition 3.6 Let (X, T) be a topological space and let A and B be a
subsets of X. Then A and B are said to be separated if A n B = 0 and
AnB=0.

Example 3.15 Consider the topological space (R, U) of Example 3.1. Let
A = (0,1), B = (1, 2), and C = [2, 3). Then A = [0,11 and B = [1, 2].
Hence, A n B= 0 and A n B = 0. Thus A and B are separated. Now B
and C are not separated even though B n C= 0 since 2 E B n C.

Definition 3.7 Let (X, T) be a topological space and let A be a subset of
X. Then A is said to be disconnected if there exist open subsets U and
V of X such that A = (A n U) U (A n V), 0 = (A n U) n (A n V) and
(A n U) # 0 # (A n V) . In this case, U U V is called a disconnection of A.
If A is not disconnected, then A is said to be connected. If X is connected,
then (X, T) is said to be connected.

If (X, T) be a topological space, it follows immediately that 0 and { x}
are connected subsets of X for all x E X.

Example 3.16 Consider the topological space (R,U) of Example 3.1. Let
A = (1, 21 U [4, 5). Let U = (1, 3) and V = (3, 5). Then U U V is a discon-
nection of A.

Example 3.17 Consider the topological space (1R2, U) of Example 3.2. Let
A = {(x, y) I y2 - x2 > 4}. Let U = {(x, y) I y < ---1} and V = {(x, y)ly >
1}. Then U U V is a disconnection of A.

Theorem 3.7 Let (X, T) be a topological space and let A be a subset of
X. Then A is connected if and only if it is not the union of two nonempty
separated subsets of X.

Theorem 3.8 Let (X, T) be a topological space. Then the following con-
ditions are equivalent:
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(i) X is connected.

(ii) X is not the union of two nonempty disjoint open sets.

(iii) X and 0 are the only subsets of X which are both open and closed.

Theorem 3.9 Let (X, T) be a topological space and let A be a subset of
X. Then A is connected with respect to T if and only if A is connected with
respect to TA.

Example 3.18 Consider the topological space (X, T), where X = {x, y, z,
u, v} and T = {X, 0, {x}, {z, u}, {x, z, u}, {y, z, u, v}}. Since {x} and {y, z,
u, v) are complements of each other and X = {x } U {y, z, u, v}, X is dis-
connected. Let A = {y, u, v}. Then the relative topology on A is {A, 0, Jul).
Thus A is connected by Theorem 3.8 since A and 0 are the only subsets of
A which are both open and closed in the relative topology.

Definition 3.8 Let (X, T) be a topological space and let x E X. A subset
Y of X is called a neighborhood of x if the exists an open subset U of X
such that x E U C Y. The set J of all Y such that Y is a neighborhood of
x is called the neighborhood system of x.

Example 3.19 Consider the topological space (R,U) of Example 3.1. Let
x E R. Then d6 > 0, the closed interval [x - 6, x + 6 is a neighborhood
of x since [x - b, x + 6] contains the open interval (x - 6, x + 6) and x E
(x-6,x+6).

Example 3.20 Consider the topological space (R2, U) of Example 3.2. Let
(h, k) E R2 and let r > 0. Then {(x, y) I (x - h)2 + (y - k)2 < r} is a
neighborhood of (h, k) since it contains the open sphere { (x, y) I (x - h)2 +
(y - k)2 <r2}.

Theorem 3.10 Let (X, T) be a topological space and let x E X. Then the
following properties hold Vx E X.

(i) Nx # 0 and x belongs to every member of A1.

(ii) The intersection of any two members of Al is a member of Nx.

(iii) If Z is a subset of X and 3Y E Nx such Z D Y, then Z E Nx.

(iv) VZE NN, 3YENx such that Z _DY, where YENyVyEY.

A topological space (X, T) is called locally compact if every point of X
has a compact neighborhood. R with the usual topology is locally compact,
but not compact.
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Definition 3.9 Let (X, T) be a topological space. A sequence of points
{xn I n = 1, 2, ... } is said to converge to a point x of X if V open subsets U
of X such that x E U. I positive integer no such that. Vn > no, x E U. If
the sequence { x, I n = 1.2.... } converges to x. then x is said to be a limit
of the sequence and we write lim x,, = x or x, -> x.n-oo

Example 3.21 Let T be the discrete topology on the set X. That is, every
subset of X is open. Let {xn I n = 1, 2,... } be a sequence of points in X.
Suppose that {xn I n = 1,2,...} converges to a point x E X. Then since
{ x } is open, 3 positive integer no such that do > no, x,, E { x 1. That is, 3
positive integer no such that do > no, x = x.

Example 3.22 Let T be the indiscrete topology on the set X. That is, X
and 0 are the only open sets. Let {xn I n = 1, 2.... } be a sequence of points
in X. Since X is the only open set which contains any point of X and since
X contains all points of X, {xn I n = 1, 2, ... } converges to every point of
X.

Of course, many examples concerning sequences can be found from cal-
culus.

Definition 3.10 Let (X, T) and (Y, S) be topological spaces. Let f be a
function of X into Y. Then f is said to be continuous relative to T and S
or simply continuous if VV E S, f J 1(V) E T.

The definition of continuity of a function here is consistent. with the one
found in calculus.

Example 3.23 Let (X, T) and (Y, S) be topological spaces defined as fol-
lows:

X = {x,y,z,w), T = {X,0,{x},{x,y},{x,y,z}}
and

Y {s,t,u,v}, S = {Y,0, {s}, {t}, {s, t}, It, U, V11.
Define the function f of X into Y by f (x) = t, f (y) = u, f (z) = v, and
f (w) = u. Then f is continuous since the inverse image under f of every
member of S is in T.

Example 3.24 Let (X, T) and (Y, S) be topological spaces defined in Ex-
ample 3.23. Define the function f of X into Y by f (x) = s, f (y) =
s, f (z) = u, and f (w) = v. Then f is not continuous since it, u, v} E S,
but f-1({t,u,v}) = {z,w} ¢T.

Definition 3.11 Let (X, T) and (Y, S) be topological spaces. Let f be a
one-to-one function of X onto Y. If f and f -1 are continuous, then f is
called a homeomorphism and (X, T) and (Y, S) are said to be homeomor-
phic.
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Example 3.25 Let X = (-1,1). The function f : X - R defined by
f(X) = tan(1/2)irx is a homeomorphism of X onto R, where R has the
usual topology and X has the corresponding relative topology.

Example 3.26 Let (X, 7) and (Y. S) be topological spaces with the discrete
topology. Then since every subset of X is open and every subset of Y is
open, all functions from X into Y are continuous as are all functions from
Y into X. Hence (X, T) and (Y, S) are homeomorphic if and only if X and
Y have the same number of elements.

3.2 Metric Spaces and Normed Linear Spaces

In this section we give some basic ideas concerning the notion of a metric
space. The notion of a metric space is simply an arbitrary set together
with a distance function. The distance function is an abstraction of the
notion of Euclidean distance. A distance function on a set which satisfies
the properties of the following definition allows us to introduce spheres,
neighborhoods, and the nearness relation.

Definition 3.12 Let X be a nonempty set and d a function from X x X
into R. Then d is called a metric or distance function on X if the following
conditions hold: Vx, y, z E X,

(i) d(x, y) > 0 and d(x, x) = 0;

(ii) d(x, y) = d(y, x);

(iii) d(x, z) d(x, y) + d(y, z);

(iv) if x 0 y, then d(x, y) > 0.

The real number d(x, y) is called the distance between x and y. Condition
(ii) in Definition 3.12 is called the symmetric property. Condition (iii) of
Definition 3.12 is called the triangle property. It says that in R2, the sum of
the lengths of two sides of a triangle is greater then or equal to the length
of the remaining side.

If X is a nonempty set and d is a function from X x X into P which
satisfies (i), (ii), and (iii) of Definition 3.12, then d is called a pseudometric
on X.

We now give some examples of metrics.

Example 3.27 Defined : R x R R by dx, y E R, d(x, y) = Ex - yR. Then
d is a metric on R.

Example 3.28 Defined : P2 x P2 - R by dx = (xl, x2), y = (y1, y2) E
II82, d(x, y) = (x1 - x2)2 + (yl - y2)2 . Then d is a metric on P2.
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Example 3.29 Let X be a nonempty set. Define d : X x X -+ JR by
Vx,yEX,

0 ifx=y;
d(x. y) =

1 ifx # Y.

Then d is a metric on X. The function d is often called the trivial metric
on X.

Example 3.30 Let C[a, b] denote the set of all continuous real-valued. func-
tions with domain the closed interval [a, b]. Define d : C[a, b] x C(a, b) -+ 1R
by Vf, g E C(a, b]

d(f,g) = f jf (x) - g(x)]dx.
Then d is a metric on C[a, b].

Example 3.31 Again let C[a, b] denote the set of all continuous real-valued
functions with domain the closed interval [a, b]. Define d : C[a, b] x C[a, b]
]R by V f, g E C la, b]

d(f,g) = V{If(x) - g(x)lx E [a,b]}.
Then d is a metric on C(a, b].

Example 3.32 Defined : R2 x J2 IR by Vx = (xl, x2), y = (y1, y2) E
1R2

d(x, y) = V { Ixl - yl [, [x2 - Y21 } .
Then d is a metric on ]R2.

Example 3.33 Define d : J2 x 1R2 -+ IR by Vx = (X1, x2), y = (yl, y2) E
J2

d(x, y) = iX I - yl [ + [x2 - Y21.
Then d is a metric on R2.

Definition 3.13 Let X be a set and d a metric on X. Vx E X and V real
numbers r > 0, let Sd(x,r) = {y E X [ d(x,y) < r}. We call Sd(x,r) the
open sphere or simply sphere with radius r and center x.

We sometimes write S(x, r) for Sd(x, r) when d is understood.

Theorem 3.11 Let X be a set and d a metric on X. Let Ci = {Sd(x,r) [
x E X,r E ]R,r > 0}. Then C3 is a base for a topology on X.

Definition 3.14 Let X be a set and d a metric on X. The topology gen-
erated by 8 is called the metric topology. The pair (X, d) is called a metric
space .

Example 3.34 Let d be the metric on JR defined by d(x, y) = ]x-y[Vx, y E
R. Then the open spheres in 1R are exactly the finite open intervals. Thus d
induces the usual topology on R. Similarly, the metric on JR2 given by the
distance formula induces the usual topology on IR2.
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Example 3.35 Let X be a set and let d be the trivial metric on X defined
in Example 3.29. Then dx E X and Vr E R. 0 < r < 1. S(x, r) = {.r}. Thus
dx E X, {x} is open. Hence every subset of X is open. Thus the trivial
metric on X induces the discrete topology on X.

Definition 3.15 Let (X. d) and (Y, e) be metric spaces. Let f be a one-to-
one functaon of X onto Y. Then f is said to preserve distances, f is called
an isometry, and (X, d) and (Y, e) are said to be an. isometric if dx. y E X,
d(x, y) = e(f (x), f (y) ).

Theorem 3.12 If (X, d) and (Y, e) are isometric metric spaces, then they
are homeomorphic.

Example 3.36 Let X be a nonempty set and let d be the trivial metric on
X. Let Y be a nonempty set. Define e : Y x Y lR by Vx, y E Y,

e(x, y)
2 if x # y

Then e is a metric on Y and e induces the discrete topology on Y. Since
d also induces the discrete topology on X, X and Y are homeomorphic if
and only if they have the same number of elements. However, even if X
and Y have the same number of elements, they are not isometric sane the
distance between points is different.

Definition 3.16 Let (X, d) be a metric space. A sequence {an I n =
1, 2, ... } in X is said to be a Cauchy sequence if Ye > 0, no E N such
that dn, m > no, d(an, an,) < E.

Definition 3.17 Let (X, d) be a metric space. A sequence { an I n =
1, 2, ... } in X is said to converge in X if 3x E X such that Ye > 0.3no E N
such that `dn. > no, d(x, an) < e.

Definition 3.18 Let (X, d) be a metric space. Then (X, d) is said to be
complete if every Cauchy sequence in X converges to a point of X.

Example 3.37 J8 with the usual metric is complete. However Q with the
n

same metric is not complete. The sequence 1)! I n = 1, 2,...j

converges to e in R which is real, but not rational.

Example 3.38 Let X be a set and d the trivial metric on X. Then a
sequence {an I n = 1, 2, ...} in X is Cauchy if and only if 3no E N such that
Vn > no, 3x E X such that an = x. Hence in this case, { an I n = 1. 2, ... }

converges to x. Thus (X, d) is complete.

Example 3.39 Let IR have the usual metric. Let X denote the open in-
terval (0.1). If X has the usual metric, then X is not complete since the
sequence { 1/2,1/3, ...,1/n, ... } does not converge in X. However it is inter-
esting to note that JR and X are homeomorphic.
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Definition 3.19 Let (X, d) be a metric space and let f be a function of X
into itself. Then f is called contractive or a contraction map if 3s E 10, 1)
such that `dx, y E X, d(f (x)), f (y)) < sd(x, y).

Example 3.40 Consider the Euclidean space 1R2. Let s E (0, 1). Define
f : II82 R2 by f (x, y) = s(x. y) = (sx, sy) V(x. y) E R2. Then

d(f (x, y), f (u, v)) = d(s(x, y), s(u, v)) = (sx - su)2 + (sy - sy)2
= sd((x, y), (u, v)). Hence f is a contraction map.

The following result is known as the "fixed point" theorem. We prove it
in Section 3.7 of this chapter.

Theorem 3.13 Let (X, d) he a complete metric space and let f be a func-
tion of X into itself. If f is a contraction map, then 3 unique fixed point
for f, that is, 3 unique x E X such that f (x) = x.

Definition 3.20 A metric space (X*, d*) is called a completion of a metric
space (X, d) if X* is complete and X is isometric to a dense subset of X*.

Example 3.41 The set R with the usual metric is a completion of Q with
the usual metric since R is complete and Q is a dense subset of R.

Let V be a vector space over R.

Definition 3.21 Let A be a subset of V. Then A is said to be convex if
dv,uEV andd AE [0,1J,.v+(1-A)uE A.

Theorem 3.14 The intersection of any collection of convex subsets of V
is convex.

Definition 3.22 Let A be a subset of V. Let co(A) denote the intersection
of all convex subsets of V which contain A. Then co(A) is called the convex
hull of A.

If A a subset of V, then co(A) is the smallest convex subset of V which
contains A.

Theorem 3.15 Let A be a nonempty subset of V. Then co(A) = { Av +
(1-A)ulv,uE V,AE [0,11}.N

Proposition 3.16 Let A be a subset of V. Then A C co(A) = co(co(A)).
Moreover, if A is closed (compact), then co(A) is closed (compact).

Definition 3.23 Let 11 11 be a function of V into R. Then II II is called a
norm on V if the following conditions hold:

(i) Vv E V. IIvlj>0and llvll=0av=0.
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(ii) Vu, v E V, IIu + vII < IIull + IIuII.

(iii) Va E R. Vv E V. IlavhI = lalllvll

If 11 11 is a norm on V, then V is called a normed linear space and IIvll is
called the norm of v, where v E V.

Theorem 3.17 Let V be a nonmed linear space. Define d : V x V --' R by
V(u, v) E V x V, d(u, v) = Ilu - vII. Then d is a metric on V and is called
the induced metric.

Example 3.42 Consider the vector space JRn over R. Define I I I I : R 1 -' 1R
by V (al , ..., an) E Rn,

II(a,i...,an)II = Val +...+an .
Then

I
II is a norm on 1Rn. II II is called the Euclidean norm on 1Rn.

Let p > 1. Define 1111 on Rn by V(a1, ..., an) E Rn.
II(a1, ..., an)II = (a1p + ... + anp)I/p.

Then 111 is a norm on R".

Example 3.43 Consider the vector space JRn over R. Define I I I I : IRn - 1R
by V(a1i...,an) E 1n,

II(al, ...,an)II = jail V ... V lanl.
Then is a norm on 1Rn.

Example 3.44 Consider the vector space Rn over R. Define 1 1 1 1: JRn - JR
by V(a1 i ..., an) E Rn,

II(al,...,an)II = Tall+...+Ianl.
Then II II is a norm on 1Rn.

Example 3.45 Consider the vector space C(a, b) of all real-valued contin-
uous functions on the closed interval [a, b]. Define I I II : C(a, b] - 1R by
Vf EC[a,bl,

llfll = f'lf(x)ldx.

Then I I I I is a norm on C[a, b].
Define 11 11 : C(a, b] -' 1R by V f E C[a, b],

IIfII = (falf2(x)Idx)11'2
Then I I II is a norm on C[a, b]. This latter normed linear space is usually
denoted by C2[a, b].

Example 3.46 Consider again the vector space C(a, b] of all real-valued
continuous functions on the closed interval [a, b]. Define I I II : C[a, bl -' JR
by V f E C(a, b],

IIf1I = V{If(x)llx E [a,b]}.
Then

I
is a norm on C(a. b].
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Example 3.47 Let R°° denote the set of all sequences < .x > = {x I

o.n = 1, 2, ...} of real numbers such that E Ix,1I2 < oo. Then R°° is a vector
n=I

space over R. D e f i n e 1 1 1 1: R°C --' IR by b{xn I n = 1. 2, ...1 E R,

II<xn>II =

I I I I
is a norm on 1182.

Definition 3.24 Let V be a normed linear space. Let d be the metric in-
duced by I I I ( Then V is called a Banach space if the metric space (V, d) is
complete.

The spaces given in Examples 3.42, 3.46, and 3.47 are Banach spaces.
Let f be a function of R into itself. Then f is said to be lower semicon-

tinuous at y E R if bE > 0, 36 > 0 such that f (y) < f (x) + e dx E R such
that Ix - yI < b. Upper semicontinuity is defined in a similar manner.

Let (X, d) be a metric space and let .T be a set of functions of X
into R. Then F is said to be uniformly bounded if 3M E R such that
Vf E T,Vx E X, I f (x) I < Al. Also X is said to be equicontinuous if Ve > 0,
36 > 0 such that d(x, x') < b implies I f (x) - f (x') I < E V f E.T. Here 6
depends only on E and not on any particular point or function. It is clear
that if T is equicontinuous, then V f E F, f is uniformly continuous. As-
coli's Theorem says that if .T is a closed subset of the function space of
Example 3.46, then .T is compact if and only if F is uniformly bounded
and equicontinuous.

3.3 Fuzzy Topological Spaces

We shall confine our attention in this section to the more basic concepts
such as open set, closed set, neighborhood, interior set, continuity and
compactness, following closely the definitions, theorems and proofs given
in [17], the original paper on fuzzy topological spaces.

Let X be a set. Recall that if A C_ X, then XA denotes the characteristic
function of A in X.

Definition 3.25 A fuzzy topology on X is a family FT of fuzzy subsets
of X which satisfies the following conditions:

(i) Xe, XX E .FT.

(ii) If A, B E .FT, then A n i3 E FT.

(iii) If At E FT for each i E I, then Uze7 A2 E .TT,where I is an index
set.
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If FT is a fuzzy topology on X, then the pair (X,FT) is called a fuzzy
topological space.

Let (X. FT) be a fuzzy topological space. Then every member of FT is
called a FT-open fuzzy subset. A fuzzy subset is FT-closed if and only if its
complement is FT-open. In the sequel, when no confusion is likely to arise,
we shall call a FT-open (FT-closed) fuzzy subset simply an open (closed)
fuzzy subset. As in (ordinary) topologies, the indiscrete fuzzy topology
contains only Xo and XX, while the discrete fuzzy topology contains all
fuzzy subsets of X. A fuzzy topology .RU is said to be coarser than a fuzzy
topology FT if .FU C FT.

Definition 3.26 Let (X, FT) be a fuzzy topological space. A fuzzy subset
Y of X is a neighborhood, or nbhd for short, of a fuzzy subset A if there
exists an open fuzzy subset U of X such that A C U C Y.

The above definition differs somewhat from the ordinary one in that we
consider here a nbhd of a fuzzy subset instead of a nbhd of a point.

Theorem 3.18 Let (X,.FT) be a fuzzy topological space. A fuzzy subset A
of X is open if and only if for each fuzzy subset B of X contained in A, A
is a neighborhood of B.

Proof. It is immediate that if a fuzzy subset A of X is open, then for each
fuzzy subset b of X contained in A, A is a neighborhood of B. Conversely,
suppose that for each fuzzy subset B of X contained in A, A is a neigh-
borhood of B. Then since A C A, there exists an open fuzzy subset U such
that A C U c A. Hence A = U- and A is open.

Definition 3.27 Let (X, FT) be a fuzzy topological space and let A be a
fuzzy subset of X. Then the neighborhood system N of A is defined to be
the set of all neighborhoods of A.

Theorem 3.19 Let (X,.FT) be a fuzzy topological space and let A be a
.fuzzy subset of X. Let N be the neighborhood system of A. If A1, ..., An E N,
then Al fl...fl An E N. If t is a fuzzy subset and 3 C E N such that b D C,
then BEN.

Proof. If Al and A2 are neighborhoods of a fuzzy subset A, there are
open neighborhoods U1 and U2 contained in Al and A2, respectively. Thus
A1 flA2 contains the open neighborhood U1 f1U2 and is hence a neighborhood
of A. Thus the intersection of two (and hence of any finite number of)
members of N is a member of N. Hence, if a fuzzy subset t contains a
neighborhood C of A, it contains an open neighborhood of A since C does
and consequently is itself a neighborhood.
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Definition 3.28 Let (X. FT) be a fuzzy topological space and let A and b
be fuzzy subsets of X such that A D B. Then B is called an interior fuzzy
subset of A of A is a neighborhood of B. The union of all interior fuzzy
subsets of A as called the anterior of A and is denoted by A°.

Theorem 3.20 Let (X, FT) be a fuzzy topological space and let A be a
fuzzy subset of X. Then A° is open and is the largest open fuzzy subset
contained in A. In fact, A is open if and only if A = A°.

Proof. By Definition 3.28, A° is itself an interior fuzzy subset of A. Hence
there exists an open fuzzy subset U such that A° C U C A. But U is
an interior fuzzy subset of A and so U C A°. Hence A° = U. Thus A°
is open and is the largest open fuzzy subset contained in A. If A is open,
then A C A° since A is an interior fuzzy subset of A. Hence A = A°. The
converse is immediate.

3.4 Sequences of Fuzzy Subsets

Definition 3.29 Let (X,.FT) be a fuzzy topological space. A sequence of
fuzzy subsets, {An in = 1.2, ... }, is said to be eventually contained in a fuzzy
subset A if there is a positive integer m such that if n > m, then An C A.
The sequence is said to be frequently contained in A if for each positive
integer m there is an integer it such that n > m and An C A. We say that
the sequence converges to a fuzzy subset A if it is eventually contained in
each neighborhood of A.

Definition 3.30 The sequence { Biji = 1, 2, ...1 is a subsequence of a
sequence { An In = 1, 2, ... } if there is a function f : N - N such that
Bi = Af(i) and for each integer in there is an integer n such that f (i) > m
whenever i > n.

Definition 3.31 Let (X..TT) be a fuzzy topological space. A fuzzy subset
A of X is called a cluster fuzzy subset of a sequence of fuzzy subsets if the
sequence is frequently contained in every neighborhood of A.

Theorem 3.21 Let (X, YT) be a fuzzy topological space. If the neighbor-
hood system of each fuzzy subset of X is countable, then the following as-
sertions hold:

(i) A fuzzy subset A is open if and only if each sequence of fuzzy subsets,
t An I n = 1, 2, ... }, which converges to a fuzzy subset b contained in
A is eventually contained in A.

(ii) If A is a cluster fuzzy subset of a sequence { An I n = 1, 2, ...1 of fuzzy
subsets, then there is a subsequence of the sequence converging to A.
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Proof. (i) Suppose that A is open. Then A is a neighborhood of B. Hence,
{ An I n = 1.... 1, is eventually contained in A. Conversely, let B C_ A and let
{U1, ..., Ui, .... } be the neighborhood system of B. Let Vn = f s 1

UZ. Then

V1, ... , V .... is a sequence which is eventually contained in each neighbor-
hood of B, that is, Vi, ..., Vn, ... converges to B. Hence, there is all m such
that for n > m, V C A . The Vn are neighborhoods of B. Therefore, by
Theorem 3.18, A is open.

(ii) Let { R1...., Rn, ... } be the neighborhood system of A . Let Sn =
U 1

R:. Then S1, ..., Sn,... is a sequence such that Sn+1 C S, for each n.
For every nonnegative integer i, choose f : N -> ICY such that f (i) > i and
Af(2) C Si. Then {Af(j) I i = 1,2,...} is a subsequence of the sequence {An
I n = 1, 2, ... 1. Clearly this subsequence converges to A.

3.5 F-Continuous Functions

In this section, we generalize the notion of continuity. We first establish
several properties of fuzzy subsets induced by mappings.

Definition 3.32 Let f be a function from a nonempty set X into a non-
empty set Y. Let B be a fuzzy subset of Y. Then the pre-image of B under
f , written f is the fuzzy subset of X defined by

f-1(B)(x) = B(f(x))
for all x in X. Let A be a fuzzy subset of X. The image of A under f,
written as f (A), is the fuzzy subset of Y defined by

f(A)(y) - f V{A(z) I z E f -1(y)} if ) is not empty,
0

for ally in Y, where f-1(y) = {x I f(x) = y}.

Theorem 3.22 Let f be a function from X into Y. Then the following
assertions hold.

(i) f _1(Bc) = (f -1(B))c for any fuzzy subset b of Y.

(ii) f (Ac) D (f (A))c for any fuzzy subset A of X.

(iii) Bl C B2 * f -1(.&) C f-1(B2 ), where Bi , B2 are fuzzy subsets of Y.

(iv) Al C A2 f (A1) C f (A2), where Al and A2 are fuzzy subsets of X.

(v) B D f (f -1(B)) for any fuzzy subset B of Y.

(vi) A C f -1(f (A)) for any fuzzy subset A of X.

(vii) Let f be a function from X into Y and g be a function from Y into
Z. Then (g o f)-1(C) = f-1(g-1(C)) for any fuzzy subset C in Z,
where g o f is the composition of g and f.
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Proof. (i) For all x in X, f -1(Bc)(x) = B`(f (X )) = 1 - B(f (x)) _
1 - f-'(B)(x) = (f-'(B))`(x).

(ii) For each y E Y, if f -1(y) is not empty, then f (A`) (y) = V { A"(z) I
z E f-1(y)}} = V{1 -A(z) I z E f-1(y)} = 1- A A(z) I z E fand
(f -' (A))`(y) = 1- f (A)(y) = 1- v{A(z) I z E f-' (y)}. Thus f (A`)(y)
f(A)c(y).

(iii) Now f(B1)(x) = B1(f(x)) and f-'(B2)(x) = B2(f(x)) for any
x E X. Since B1 C B2 , f-1(B1)(x) < f-1(B2)(x) for all x E X. Hence
f-'(B1) C f-'(B2)

(iv) f(A1)(y)-= v{A1(z)-i z E f-'(y)} and f(A2)(y) = V{A2(z) j z E
f1(y)}. Since Al C A2, f(A,)(y) < f(A2)(y) for all y E Y. Hence f(A1) C
f(A2).

(v) If f-'(y) 0 0, then f(f-'(B))(y) = V{ f(B)(z) I z E f-'(y)} =
V{B(f(z))

J z E f-'(y)} = B(y)- If f-1(y) is empty, f(f-'(B))(y) = 0.
Therefore, f (f- 1(B))(y) < B(y) for all y E Y.

(vi) f(f-'(A))(x) = f(A)(f(x)) = V{A(z) I z E f(f(x))} > A(x) for
allxEX.

(vii) For all x E X, (g o f)-1(C)(x) = C(g o f (x)) = C(g(f (x))) _
g-'(C)(f(x)) = f-'(g-'(C))(x).

Definition 3.33 Let (X,.FT) and (Y, .FU) be fuzzy topological spaces. A
function f from X into Y is said to be F-continuous if f -1(U) is .FT-open
for every YU-open fuzzy subset U of Y.

Clearly, if f is an F-continuous function from X into Y and g is an
F-continuous function from Y into Z, then the composition g o f is an F-
continuous function of X into Z, for (g o f)-1(V) = f-'(g-1(V)) for each
fuzzy subset V of Z, and using the F-continuity of g and f it follows that
if V is open so is (go f)-1(V).

Theorem 3.23 Let (X,.FT) and (Y, FU) be fuzzy topological spaces. Let f
be a function of X into Y. Then the conditions below are related as follows:
(i) and (ii) are equivalent; (iii) and (iv) are equivalent; (i) implies (iii),
and (iv) implies (v).

(i) The function f is F-continuous.

(ii) The inverse under f of every closed fuzzy subset of Y is a closed fuzzy
subset of X.

(iii) For each fuzzy subset A of X, the inverse under f of every neighbor-
hood of f (A) is a neighborhood of A.

(iv) For each fuzzy subset A of X and each neighborhood V of f (A), there
is a neighborhood W of A such that f (W) 9 V.



84 3. FUZZY TOPOLOGICAL SPACES

(v) For each sequence of fuzzy subsets { An I n = 1, 2, ...1 of X which
... }converges to a fuzzy subset A of X, the sequence { f 1 n = 1. 2,

converges to f (A).

Proof. (i) a (ii). Since f -i(B`) = (f -1(B))c for every fuzzy subset B of
Y by Theorem 3.22(i), the result is immediate.

(i) (iii). If f is F-continuous, A is a fuzzy subset of X, and V is
a neighborhood of f (A), then V contains an open neighborhood W of
f(A).Since f(A)CWCV, f-i(f(A))C f - i(W)C f -1(V).ButAC
f (f (A)) by Theorem 3.22(vi) and f (W) is open. Consequently, f i (V)
is a neighborhood of A.

(iii) (iv). Since f -i(V) is a neighborhood of A, we have f(W) _
f(f-1(V)) C V, where W = f

(iv) . (iii). Let V be a neighborhood of f (A). Then there is a neigh-
borhood W of A such that f (W) C V. Hence, f -1(f (W )) C f -1(V).
Furthermore, since W C f -1(f (w)), f - i (V) is a neighborhood of A.

(iv) (v). If V is a neighborhood of f (A), there is a neighborhood
W of A such that f (W) C V. Since { An I n = 1, 2, ... } is eventually
contained in W, i.e., there is an m such that for n > in, An C W. we have
f (An) C_ f (W) C V for n > m. Therefore if (An) I n = 1, 2,...j converges
to f (A).

An F-continuous one-to-one function of a fuzzy topological space (X,.FT)
onto a fuzzy topological space (Y,.;rU) such that the inverse of the map is
also F-continuous is called a fuzzy homoemorphism. If there exists a fuzzy
homeomorphism of one fuzzy topological space onto another, the two fuzzy
topological spaces are said to be F-homeomorphzc. Two fuzzy topological
spaces are called topologically F-equivalent if they are F-homeomorphic.

3.6 Compact Fuzzy Spaces

We now consider fuzzy compact topological spaces. If A is family of fuzzy
subsets of a set X, we sometimes use the notation U{ A I A E Al for
UREA A.

Definition 3.34 Let (X,.FT) be a fuzzy topological space. A family A of
fuzzy subsets of X is said to be a cover of a fuzzy subset b of X if t C
U{AAA E A}. A cover A of B is called an open cover of B if each member
of A is an open fuzzy subset of X. A subcover of A is a subfamily of A
which is also a cover.

Definition 3.35 A fuzzy topological space (X, YT) is said to be compact
if each open cover of XX has a finite subcover.
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Definition 3.36 A family A of fuzzy subsets of a set X has the finite inter-
section property if the intersection of the members of each finite subfamily
of A is nonempty.

Theorem 3.24 Let (X,.FT) be a fuzzy topological space. Then X x is com-
pact if and only if each family of closed fuzzy subsets of X which has the
finite intersection property has a nonempty intersection.

Proof. If A is a family of fuzzy subsets of X. then A is a cover of Xx if
and only ifU{AIAEA)=Xx,orifandonly if(U{AIAEA})C=
(Xx )` = X®, or if and only if ('{ A` I A E A } = X0 by De Morgan's laws.
Hence, Xx is compact if and only if each family of open fuzzy subsets of
X such that no finite subfamily covers Xx, fails to be a cover, and this is
true if and only if each family of closed fuzzy subsets which possesses the
finite intersection property has a nonempty intersection.

Theorem 3.25 Let (X, FT) and (Y, .FU) be fuzzy topological spaces. Let
f be an F-continuous function of X onto Y. If X is compact, then Y is
compact.

Proof. Let 3 be an open cover of XY. Since U f -1(B)(x) = V { f -1(B)(x)
HE0

1 B E 8} = V {B(f (x)) I B E 8} =1 for all x E X, the family of all fuzzy
subsets of the form f -1(B), for b in 8, is an open cover of Xx which
has a finite subcover. However, if f is onto, then it is easily seen that
f (f -1(B)) = B for any fuzzy subset b in Y. Thus, the family of images
of members of the subcover is a finite subfamily of 8 which covers XY and
consequently (Y, R4) is compact.

In [93] Lowen, finds the need to alter the definition of a fuzzy topological
space in order to penetrate deeper into the structure of fuzzy topological
spaces. Lowen replaces the condition that X@, Xx E FT in the definition of
a fuzzy topological space to A E .FT for every fuzzy subset A of X such
that 3t E [0, 1], Vx E X, A(x) = t.

3.7 Iterated Fuzzy Subset Systems

In this section, we concentrate on the material from [14]. We first review
some material from [9]. Let (X, d) be a metric space and let f(X) de-
note the set whose points are nonempty compact subsets of X. Then the
Hausdorff distance h(d) (or simply h) between points A and B of f(X) is
defined by h(A, B) = d(A, B) V d(B, A). Then h(d) is a metric on R(X)
and (H(X ), h(d)) denotes the corresponding space of nonempty compact
subsets of X with the Hausdorff metric h(d). (?I(X ), h(d)) is sometimes
referred to as the "space of fractals."
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Theorem 3.26 (The Completeness of the Space of F' actals) Let (X. d)
be a complete metric space. Then (71(X ), h) is a complete metric space.
Moreover, if {An E N(X )ln = 1, 2, ... } as a Cauchy sequence, then A =
limn-.,, An E 71(X) can be characterized as follows:

A = {x E X 13 a Cauchy sequence {xn E A } which converges to .r}.

Let (X, d) be a metric space. Recall from Definition 3.19 that a function
f : X X on (X, d) is called contractive or a contraction map if there
exists s E [0, 1) such that d(f (x), f (y)) < sd(x, y) Vx, V E X. Any such s is
called a contractivity factor for f.

Example 3.48 Let f : R R be defined by f (x) = (1/2)x + 1/2 `dx E R.
Then f"(x) = (1/2)nx+(2"-1)/2". We have that If(x)- f(y)I = (1/2)Ix-
yj and that f (1) = 1. Thus f is a contraction map, 1/2 is a contactivity
factor,for f, and xf = 1 is the fixed point of f. Let x = 0. Then F_°O_1 f"(0)
_ F,°_1(2" -1)/2" is a geometric series for x f = 1. In fact, f" (x)
=1`dxER.

The properties in the next result help us think of fractals. That is, a
fractal could be considered as a fixed point of a contractive mapping on
(1-1(X ), h(d)), where the underlying metric space satisfies these properties.

Proposition 3.27 Let (X,d) be a metric space and let w : X -, X.

(1) If w is a contraction mapping, then w is continuous.

(ii) If w is continuous, then w maps 7.1(X) into itself.

(iii) Let w be a contraction mapping with contractivity factor s. Then w
is a contraction mapping on (7,1(X), h(d)) with contractivity factor s,
where we consider w : 7.1(X) -> 1-1(X) to be such that w(B) _ {w(x)
xE B} forallBE7-((X).

Theorem 3.28 (The Contraction Mapping Theorem) Let (X, d) be a com-
plete metric space. Let f : X -- X be a contraction mapping on (X, d).
Then f possesses exactly one fixed point x f E X. Moreover, Vx E X, the
sequence { f"(x)In = 0, 1, 2...} converges to xf.

Proof. Let x E X. Let s E [0, 1) be a contractivity factor for f. Then

d(f"(x), fm(x)) < sgd(x fin-mi(x)), (3.7.1)

where q = n A m and n, m = 0, 1, 2,. ... For k = 0, 1, 2,...,we have that
d(x, fk(x)) < d(x, f (x)) + d(f(x), f2(x)) + ... + d(fk-' (x), fk(x))

(1+s+s2+ ...+sk-')d(x,f(x))
(1 + s) -'d(x, f (x)).

Substituting into equation (3.7.1), we obtain
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d(f"(x), fm (X)) SQ(1 - s)-1d(x, f (x)).
Hence it follows that If' (x) ` n = 0, 1, 2, ...1 is a Cauchy sequence. Since
X is complete, there exists x f E X such that limn. fn(x) = xf. Since f
is contractive, it is continuous (Proposition 3.27) and hence

f(xf) = f (limn_.. f"(x)) = lim",._,,,.f n+1(x) = Xf.
Thus x f is a fixed point of f. Let y f be any fixed point of f. Then

d(xf,yf) = d(f(xf),f(yf)) < sd(xf,yf)
and so (1-s)d(xf,yf)<0.Thus d(xf,yf)=0.Hence xf=yf.

The fixed points of a function are those which are not moved by a map-
ping. They restrict the motion of the space under nonviolent mappings of
bounded deformation.

Proposition 3.29 Let (X, d) be a metric space.

(i) VB, C, D, and E E 7-1(X ), h(B u C, D u E) < h(B, C) v h(D, E), where
h is the usual Hausdorff metric.

(ii) Let {wn I n = 1, 2...., N} a set of contraction mappings on (f(X), h).
Let sn denote the contractivity factor for wn, n = 1, 2,..., N. Define
W : f(X) -' 7.1(X) by dB E 7.1(X),

W(B) = w1(B) U ... U wn(B).

Then W is a contraction mapping with contractivity factor s = V{sn I n =
1, 2, ..., N}.

Definition 3.37 A (hyperbolic) iterated function system (IFS) is a com-
plete metric space (X, d) together with a finite set of contraction mappings
wn : X - X with respective contractivity factors sn for n = 1, 2, ..., N.
We use the notation {X : wn, n = 1, ..., N} and its contractivity factor is
s= V{sn I n=1,2,...,N).

Theorem 3.30 Let {X : wn, n = 1, ..., N} be a hyperbolic iterated function
system with contractivity factor s. Then the transformation W : 7.1(X) -
7-1(X) defined by W(B) _ U', wn(B) VB E 7-1(X ), is a contraction map
on the complete metric space (7-1(X ), h(d)) with contractivity factor s. That
is,

h(W(B), W(C)) < sh(B, C)

VB, C E 7-1(X). Its unique fixed point, A E 7.1(X) satisfies A = W(A) _
UN

n=1 wn(A), and is given by A = lim,,_,,.Wn(B) `dB E 7-1(X).

The fixed point A E 7{(X) is called the attractor of the IFS.
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Example 3.49 Let X = R and d be the Euclidean metric on X. Consider
the IFS {1R2, wl, w2}, where w1. w2: X -4X are defined by w1(x) = (1/3)x
and w2(x) _ (1/3)x + 2/3 bx E X. It can be shown that the contractivity
factor is s = 1/3. Let B = [0,1) and B = Wn(B) for n = 1, 2,.... Then.

B1 = W(B) = wi([0,1)) U w2([0,1)) _ {(1/3)xlx E [0,1)} U {(1/3)x +
2/31x c [0, 1]} = [0,1/3] U [2/3,1]

and
B2 = W (B1) = w1([0,1/3] U [2/3,1)) U w2(10,1/3) U [2/3,1])
= [0,1/9] U [2/9,1/3] U [2/3,7/9] U [8/9,1].

It follows that A = lirrln.-,,,. Bn is the Cantor discontinuum. The Cantor
discontinuum is usually described in the following manner. Take [0, 1] and
remove the open middle third (1/3,2/3). From the remaining two closed
intervals, remove their open middle thirds (1/9,2/9) and (7/9,8/9). By
induction, we may continue this process and the remainder is the Cantor
discontinuum.

We now introduce a fuzzy subset approach for the construction, analysis,
and approximation of sets and images which may exhibit fractal character-
istics. We examine the inverse problem of encoding a target set or image
with a relatively small number of parameters. Our method incorporates
the technique of iterated function systems in its underlying structure. For
each set {wn I n = 1, ..., N} of contraction maps, there a unique com-
pact set A C X, invariant under the "parallel action" UN wn (A) _
A. For a given set of probabilities { pn I n = 1...., NJ associated with
{wn I n = 1, ..., N}, EN1 pn = 1, there exists a unique invariant measure
µ with support A. We now summarize the approach used in [14].

(1) Let j p(X) denote the set of all fuzzy subsets of X and let F* (X) be
a particular subset of p(X). All images are considered as fuzzy subsets.
This leads to two possible interpretations for A E &(X) :

(a) in image representation, the value A(x) of A at a point x E X may be
interpreted as the normalized grey level value associated with that point,

(b) in pattern recognition, the value A(x) indicates the probability that
the point x is in the foreground of an image.

(2) Associated with each map wn, n = 1, ..., N, is a grey level map
On : [0, 1] -* [0, 1], where [0, 1] is the grey level domain. The collection of
maps {wn I n = 1, ..., N} U {On ] n = 1, ..., N} is used to define an operator
T8 :.F* (X) -, F* (X) which is contractive with respect to the metric dd
(defined below) on .F* (X). This metric is induced by the Hausdorff distance
on the nonempty closed subsets of X. Starting with an arbitrary initial
fuzzy subset Ao E .F*(X), the sequence An E Y* (X) defined recursively by
the iteration A,,+1 = TS(An) converges in the d... metric to a unique and
invariant fuzzy subset A* E .F* (X ), that is, T3 (A*) =.A*.

We let (X,w, 4') denote the triple consisting of X, w= {wn I n = 1. ..., N},
and 4) = {Chn I n = 1, ..., N}. We call (X,w, 4') an iterated fuzzy subset
system (IFZS). The compact space X will be called the base set and the
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unique invariant fuzzy subset A* will be called an attractor for the IFZS.
The support of A* is a subset of the attractor A C X of the underlying IFS
defined by { w I n = 1, .... N}. The approximation of the target image is
accomplished in procedure (2) above. The fuzzy subsets Arz represent grey
level distributions on X which converge to the grey level distribution A*.

A black and white digitized image is a finite set P of points or pixels
ps,, say in 1R2. Associated with each pixel pzj is a nonnegative grey level
or brightness value, ttj. We assume a normalized measure for grey levels,
i. e., 0 < tt? < 1 (0 = black, the background; 1 = white, the foreground).
The function h : P - 10, 11 defined by the grey level distribution of the
image is called the image function. The digitized image is fully described
by its image function h. This is also the situation in the more theoretical
case where grey levels are distributed continuously on the base space X.
At this point, one can see that an image as described by an image function
is nothing but a fuzzy subset A : X - 10, 11. even no probabilistic meaning
is attached to the values A(x) at each point x E X.

It is usual to classify the pixels according to their grey levels by the t-cuts
of A, where t E [0,1]. The value t is thought of as a threshold.

In the following, (X, d) denotes a compact metric space and 3p(X) the
set of all fuzzy subsets of X. We say that A E 'p(X) is normal if A(xo) = 1
for some xo E X. We let F' (X) = { A E ap(X) J A is normal and upper
semicontinuous on X}. If A E a p(X ), we let A+ denote the closure of
{xEX IA(x)>0}.

Proposition 3.31 VA E F* (X) and Vt E (0.1], AI is a nonempty compact
subset of X as is A+.

Let 1-l(X) denote the set of all nonempty closed subsets of X together
with the Hausdorff distance function h : p(X) x p(X) -> R defined by
VA,B E p(X),

h(A, B) = D(A, B) V D(B, A),
where D : p(X) x p(X) -- R is such that

D(A, B) = V{A{d(x, y) `y E B) ] x E A}.
Then (f(X ), h) is a compact metric space. In particular it contains the

t-cuts At VA E F' (X), t E [0,1]. If we define d0 :.F* (X) x F* (X) -- II8
-by VA, b E F* (X),

d,,,, (u, v) = v{h(At, Bt) 3t E [0,1] },
then d,, is a metric on J:'* (X) and in fact (F* (X), dam) is a complete metric
space.

We now introduce the IFS component of the IFZS. Then we are given N
contraction maps wi : X -> X such that for some s E [0, 1),

d(wi(X ) , wa(y)) < sd(x, y),Vx, y E X, i = 1, 2, ..., N.
We call s the contractivity factor. From [9, 10, 60], there exists a unique

set A E ?i(X), the attractor of the IFS which satisfies:
A=U" lwi(A),
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where wi(A) = {wi(X) I x E Al. This represents the self-tiling property
of IFS attractors. In other words, the map w : fl(X) f(X) defined by

w(S) = Un m
wi(S), S E R(X)

has an invariant set. This property is sometimes referred to as the "parallel
action" of the wi. We also have,

h(w"(S),A) -' 0 as n --* oo,VS E f(X).
We now consider the selection of grey levels. For a general N-map IFS,

w = {wi : X - X I i = 1, ..., N}, it now remains to introduce and charac-
terize the associated grey level maps = {/i : [0, 11 --+ [0,1] 1 i = 1, ..., N}
to define the IFZS {X,w,fl. Since our objective is to construct an op-
erator on the class of fuzzy subsets .F*(X), one condition to be satisfied
by the functions `bi is that they preserve upper semicontinuity when com-
posed with functions of F*(X), that is, 4i o A is upper semicontinuous
for AE .F* (X). If the base space X is finite, no conditions need to be
imposed on the fi. For the infinite case, however, the 45i will have to be
nondecreasing and right continuous.

Lemma 3.32 Let 0 : 10, 1] -+ [0,1] and X be an infinite and compact
metric space. Then ¢ o A is upper semicontinuous VA E F* (X) if and only
if 4) is nondecreasing and right continuous.

We now summarize the conditions which should be satisfied by a set of
grey level maps fi = {q5i : [0, 1] -> [0,1] i = 1, ..., N} comprising an IFZS.
For i = 1,2,...,N,

1. ci is nondecreasing,

2. qi is right continuous on [0, 1),

3. Oi(0) = 0,

4. 3 ' 0 j

Properties 1 and 2, by Lemma 3.32 and Property 4, guarantee that the
IFZS maps .J* (X) into itself. Property 3 is a natural assumption in the
consideration of grey level functions: if the grey level of a point (pixel)
x E X is zero, then it should remain zero after being acted upon by the ci
maps.

We now introduce a general class of operators mapping JP(X) into itself,
followed by a special class of operators which map .T*(X) into itself. The
net result is the construction of an operator TS, which is contractive on
the compact metric space (.F* (X), d ,,O). The existence of a unique and
attractive fixed point fuzzy subset/grey level distribution A E .F*(X) will
then be guaranteed.

Conforming to the extension principle for fuzzy subsets and by the same
arguments that will justify our final choice for the operator T : J'* (X) -+
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.F* (X) (see Eq. (3.7.3) below), we define A: &A(X) - [0, 11 as follows: V
AE,3p(X) and VBC X,

A(B)=v{A(y)(yEB}ifB00
A (0) = 0.

Thus A ({x}) = A(x) Vx E X. Define Ai: X [0.1J by

Ai (x) =A (wi 1(x))
bwi,i=1,2,...,N,andVxEX,

where wi-1(x) = 0 if x 0 w(x). If A E F* (X), then each Ai: X - [0,1]

is a fuzzy subset in F (X). For the upper semicontinuity of Ai see Lemma
3.32; the normality is straightforward.

For a general IFZS {X, w, 4} consisting of N IFS maps and N grey
level maps, consider the class of mappings UN : [0, 1]N -- [0,1] and the
operator T : ,tj p(X) -' T p(X) that associates to each fuzzy subset A the
fuzzy subset b = TA whose value at each x E X is given by

B(x) = (TA)(x) = UN(Q1(x),Q2(x),...,QN(x)), (3.7.2)

where Qi : X - 10, 1] is defined by

W x) = Y'i(A(wi-1(x)))

for i = 1, 2. ...., N. In other words, the function UN operates on the modified
grey levels of all possible pre-images of x under the IFS maps wi. the grey
levels having been transformed by the appropriate /i maps.

It appears totally natural to assume UN symmetric in its arguments, i.
e.,

UN(vi,,vi2,...,viN) = UN (VI, V2, VN)
for every permutation (i1i i2, ..., iN) of { 1, 2, ..., N}. However it is convenient
for computational purposes to assume the UN are defined as

UN = U2(vl, UN-1(v2, v3, ..., VN))-
In particular,

U3(v1,v2,v3) = U2(v1,U2(v2,v3)) = U3(v3,vlv2) = U2(v3,U2(v1,v2)) _
U2(U2(v1i v2), v3). Hence we see that the function U2 : (0,1]2 --' [0,1] is an
associative binary operation on [0, 11. We shall let S denote such a binary
operation. We shall assume the following set of additional properties to be
satisfied by S :

1. S : (0,1]2 --' [0, 1) is continuous.

2. For each y E [0, 11, the mapping x -' S(x, y) is nondecreasing; the
brighter the pixel, the brighter its combination with another pixel.

3. 0 is an identity, that is, S(0, y) = y Vy E [0, 11; the combination of a
pixel of brightness y > 0 with one of 0 brightness yield a pixel with
brightness y.
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4. For all x c [0. 1], S(x, x) > x; the combination of two pixels of equal
brightness should not result in a darker pixel.

Theorem 3.33 If S : [0,1]2 _ [0, 11 satisfies properties (1) - (4) above,
then there exists a sequence of dzsjoint open intervals { (ar , br) ]r = 1, 2, ...I
with al = 0 < b1 _< a2 < b2 < ... _< 1. and a sequence of increasing
continuous functions fr : [ar, br] ---> [0, oo] with f,. (Or) = 0, such that

S(x, y) = gr(fr(x) + fr(y)) V(x, y) E [ar, br]2,
where gr (pseudoinverse of fr) is defined as

gr(t) br
-1(t)

if tt b ]E [fr(br),0]
and finally

jS(x, y) = x V y i (x, y) E 10, 112\ U', jar, br]2

Clearly, S(a,., a,.) = a,. and S(br, br) = br for r = 1, 2, ..., that is, the
ar and br are idempotent for the operation S. Moreover, no element in
the open intervals (ar, br) is an idempotent for S. It is possible that the
sequence { (ar, br) I r = 1, 2,...) may reduce to the single interval (0, 1):
indeed this is the case when S has 0 and 1 as its only idempotents, 0 being
the identity, and 1 the annihilator. An example is given by the following
operation, the p-norm, with p a positive integer,

r [xp + yp] 1/2 if xp + yp <
1

1
S(x, y) =

1 if xp + yp > 1
The functions f and g in Theorem 3.33 are given by

f (s) = sp

g(t)
t1/p if t E [0,1]1

= 1 if t E [1,00].
The other extreme case is when S(x, x) = x for all x E [0, 11. In this case,

S(x, y) = x V y V(x, y) E [0,1]2.
In fact, from properties (2) and (4),

S(x, y) > S(x, 0) = x and S(x, y) > S(0, y) = y
and so

S(x,y) > x V Y.

On the other hand, if x < y,
S(x,y) < S(y,y) = y = x V y,

so that S(x, y) = x V y. Even though this operation represents an extreme
case, it appears to be the most natural one for our particular applications:
the combination of two pixels with equal brightness t should result in a
pixel with brightness t. As such, it will now be employed as the binary
associative operation U2 introduced at the beginning of this section.

We now investigate the properties of the resulting operator T : &(X) -
&(X) in Eq. (3.7.3), when U2(v1, v2) = v1 V v2. that is, when

(TA)(x) = (T.A)(x) (3.7.3)
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It will then be shown that TS maps the class of fuzzy subsets.F*(X) into
itself.

Lemma 3.34 For all A E .F*(X) and t E [0,11 with Q; : X - [0, 11
(1 < i < N) defined as in Eq. (3.7.2), we have

(i) Q, is upper semicontinous,

(ii) Q: = wi((Oi o A)t),

(iii) (TSA)` = UN 1w1((Oz o A)t).

We note that the Qi in Lemma 3.34 may not be normal and so some of
their level sets may be empty.

We now state the main result.

Theorem 3.35 The operator Ts is a contraction mapping on (.F* (X), d".),
i. e., Ts maps F* (X) into itself and for 0 < s < 1,

d,, (TSA,TSB) < sd... (A, i3) VA,B E .F*(X).

By virtue of the Contraction Mapping Principle over the complete metric
space (.F*(X ), dam), we have the following important result.

Corollary 3.36 For each fixed IFZS {X, w, 4} there exists a unique fuzzy
subset A* E .F*(X) such that TSA* = A*.

This gives a unique solution to the functional equation in the unknown
AEF*(X),

A(X) = V {-O1(A(wi -' (X ))), ..., ON (A(wN-i (X ))) }
for all x E X. The solution fuzzy subset A* will be called the attractor of
the IFZS since it follows from the Contraction Mapping Principle that

d, ((Ts )"B, A*) -> 0 as n - oo, `dB E .F* (X).
Another important consequence is the property

N

(A*)t = U wi((oi o A*)t), 0 < t < 1, (3.7.4)
i=1

(cf. Lemma 3.34), which can be considered as a generalized self-tiling prop-
erty of t-cuts of the fuzzy subset attractor A*. Let us now show some
properties of A*.

It is easy to see that the operator TS :.F* (X ) -+ F* (X) is monotone,
namely, A, B E .F*(X), A C B implies TSA C TSB.

Proposition 3.37 Let A E 7-t(X) be the attractor of the base space IFS
{ X, w} and let A* E F* (X) denote the fuzzy subset attractor of the IFZS
{X, w, 4 } with corresponding operator Ts. Then for B E Y* (X) and B E
7.1(X).
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(i) TB CB=A*CB.

(ii) w(B)CB=: ACB.

(iii) B C TSB = B C A*.

(iv) BCw(B)=BCA.
The following theorem demonstrates the connection between the fuzzy

subset attractor of an IFZS and the corresponding attractor of the base
space IFS.

Theorem 3.38 Let A E f(X) be the attractor of the IFS {X. w} and let
A* E F* (X) denote the fuzzy subset attractor of the IFZS { X, w, 4 1. Then
supp(A*) C A, that is,

A*+ C A. (3.7.5)

Note that equality holds in (3.7.5) for the following two cases:
diE {1,2,...,N},0i(1)=1, then A* =XA
Vi E {1, 2, ..., N}, the qi are increasing at 0, i. e., Oi-1 (0) = {0}. Indeed,

in this case A*+ = UN1 wi((Oi o A*)+) = UN 1 wi(A) = w(A) = A.
We also point out that in the case O j(0) > 0 for one j E (1, 2,..., N I, the

inclusion (3.7.5) is not true.
Another noteworthy consequence of the contractivity of the T, operator

is given in the next theorem.

Theorem 3.39 (IFSZ Collage Theorem) Let B E .F* (X) and suppose that
there exists an IFZS {X, w, with contractivity factor s so that

e,
where the operator T, is defined by Eq. (3.7.3). Then

A*) < e/(1 - s),
where A* = T,A* is the invariant fuzzy subset of the IFZS.

We now present some examples which illustrate the main features of the
IFZS. In particular, the generality afforded by the grey level maps is shown.

Example 3.50 Let X = [0, 11, N = 4, and wi(x) = 0.25x + 0.25(i - 1),
i = 1,2,3,4. Here A = 10, 11. The following grey level maps were selected

0.25t if0<t<0.25
1(t) 1 t-0.18 if0.25<t<1
952(t) = t, t E [0,1],
03(t) = 0.33t,
j4(t) = sint.
The picture shown in [14, Figure 1, p. 931 is a representation of the graph

of the IFZS attractor A* on (0, 11.
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In the remaining examples, X = [0,1]2 is the base space. Photographs of
the computer approximation to the IFZS invariant sets are shown in 114]

as normalized grey level distributions: the brightness value tip of a pixel pij
representing a point x E X obeys 0 < tij < 1. with tij = A* W; tij = 0 if
x is in the background.

Example 3.51 Let N = 4, wl (x, y) = (0.5x, 0.5y), w2 (x, y) = (0.5x +
0-5,0-5Y), w3(x, y) = (0.5x, 0.5y + 0.5), and w4(x, y) _ (0.5x + 0.5, 0.5y +
0.5). Here A = X. The following grey level maps are given below

0 if0<t<0.2505
(1)

45

0.25 if 0.2505 < t < 0.5051

0.5 if 0.505 < t < 0.7505
0.75 if0.7505<t<1

02(t) = 03(t) _ 0 4(t) = t, t E [0, 1].

Note that A* C A (strict inclusion). This is due to the fact that 01(0) is
not strictly increasing (cf. Theorem 3.38).

Some comments on the properties of A*, as evident from [14, Figure 2,
p. 941, would be instructive here. The grey level distribution exhibits the
generalized self-tiling property of level sets, as given by Eq. (3.7.4). Let
Ai = wi (A), i = 1,2,3,4. One can see the effect of the transformation
01 which is different from the other lai. Given that 02, 03, 04 are identity
maps, the values of A* on A2, A3, A4 are the same. The presence of exactly
four grey levels is due to the step function nature of 01.

The flexibility afforded by the grey level maps q5i should now be apparent.
The dynamics of maps on the unit interval which are nondecreasing and
right continuous may be exploited to affect the pointwise shading of the
image/fuzzy subset in a rather controlled manner.

Example 3.52 Let N = 4 and the transformations wi taken from 1101,
define a base space IFS whose attractor A is a "leaf. " We first consider
identity grey level maps, that is, t, i = 1,2,3,4. Since q5i(1) = 1, i =
1,2,3,4, A* = XA. The attractor A* is shown in [14, Figure 3, p. 94].

Example 3.53 The base space is as in Example 3.52, but with the grey
level maps:

01(t) = 0.85t, (h2 (t) = t, 03(t) = 0.8-\/t-, and 04(t) = 0.4(t2+t), t E 10,11 .

The fuzzy subset attractor is shown in [14, Figure 4, p. 94].

3.8 Chaotic Iterations of Fuzzy Subsets

For this section, most of the material is from [81]. We are interested in
successive iterates f+1 = f" o f of a function f from a topological space
X into itself and a sequence of points
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xn+i = f (xn), n = 0, 1, 2, ... (3.8.1)

in X. In particular, we examine the chaotic behavior of such iterated se-
quences. A point x E X is called a cycle point of f if 3n E N such that
x = fn(x).

Definition 3.38 A function f : [0, 1) --> [0, 1] is called chaotic if the fol-
lowing conditions hold:

(i) There exists a positive integer K such that the iterative scheme (3.8.1)
has a cycle of period k for each k > K;

(ii) The iterative scheme (3.8.1) has a scrambled set, that is, an uncount-
able set S C [0, 1] containing no cycle points of f such that

(a) f (S) C S,

(b) for every xo, yo c S with xo yo, lim sup I fn
(xo) - f n (yo) I > 0;

n-.oo
(c) for every xo E S and cyclic point Yo of f, limsup I f n (xo) -

n-.oo
fn(yo)I > 0;

(iii) There exists an uncountable subset So C S such that for all xo, yo E S,
liminf Ifn(xo) - fn(yo)I = 0.

The following iterative system involves a function which displays chaotic
behavior in the sense of Definition 3.38. The simple logistics equation

xn+1 = 4xn(1 - xn), 0 < xn < 1,
describes the dynamics of a population with non-overlapping generations.

Another example is the baker's equation

xn+i
2xn if 0 < x,,, < 1/2, (3.8)

- 2(1 - xn) if 1/2 < xn < 1, .2

modeling the mixing of a dye spot on a strip of dough which is repeatedly
stretched and folded over on itself.

For further reading material, the reader may wish to consult [79, 80, 82,
88, 102].

Theorem 3.40 (Kloeden) Let f be a continuous function of a Banach
space X into itself and suppose that there exist nonempty compact subsets
A and B of X and integers ni, n2 > 1 such that

(i) A is homeomorphic to a convex subset of X,

(ii) A C f (A),

(iii) f is expanding on A, that is, there exists a constant A > 1 such that
AIjx - yII 11f(X) - f(y)II Vx,y E A,
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(iv) B C A.

(v) f n, (B) n A = 0,

(vi) A C f"-+"'=(B),

(vii) fn'+nl is one-to-one on B.

Then the mapping is chaotic in the sense of Definition 3.38.

Consider the function of (3.8.2), f : [0, 11 (0, 11 defined as follows:

f(x) - f 2x if0<x<1/2,
l 2(1-x) if 1%2<x<1.

Now Theorem 3.40 applies to f with A = 19/16,7/81, B = [3/4,7/81, n, _
1, and n2=1.

Let En = {A : Rn - [0, 1] ! A is normal, A is fuzzy convex, A is upper
semicontinuous, and A+ is compact) . In Theorem 3.41 below, we give an
analogue of Theorem 3.40. Theorem 3.41 provides sufficient conditions for
a mapping on fuzzy subsets to be chaotic, where the definition of chaotic
here is entirely similar to that of Definition 3.38. We consider an iterative
scheme of fuzzy subsets

An+i = f(An), n=0,1,2,...,
where f is a continuous function of E" into itself. The proof uses the fol-
lowing result by Kaleva [68]: Let f : En -, En he a continuous function and
let C be compact convex subset of En such that f (C) C C. Then f has a
fixed point A r f (A) E C.

Theorem 3.41 Let f : En En be a continuous function. Suppose that
there exist nonempty compact subsets A and 13 of En and integers n1, n2 > 1
such that

(i) A is homeomorphic to a convex subset of En,

(ii) A C f (A),

(iii) f is expanding on A, that is, there exists a constant A > I such that
Ad. (A, f3) < d.(f (A), f (B)) VA, B E A,

(iv) 13 C A,

(v) fns(5)nA=0,
(vi) A C fns+n2(B),

(Vii) f1 +n2 is one-to-one on B.

Then f is chaotic.
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We now illustrate Theorem 3.41 with an example. First note that for
each A E Et, there exists a, b : 10, 1] --> I[8 such that the t-cuts of A are the
intervals [a(t), b(t)]. Moreover, a is nondecreasing, b is nonincreasing, and
a(1) < b(1).

Example 3.54 Consider the following subsets of El :

(i) Eot={AEE'Ia(0)=0},

(ii) To' = IA E Eo' I a(t) = (1/2)t(b(0) - L) and b(t) = b(0) - (1/2)t(b(0) -
L) for some L, 0 < L < b(0) },

(iii) Dot = {A E To' I L = 0}.

For any AE Eot, the support A+ is a nonnegative interval anchored on
x = 0. The endograph of any A E To! is a symmetric trapezium centered
on x = (1/2)b(0), with base length b(0) and top length L. For any AE Aol,
the endograph is an isosceles triangle.

Define
ff : E1 - Eo1 by fl (A)t = [a(t) - a(0), b(t) - b(0)J,
f2 : Eot

To' by f2(A)t = [tM, b(0) - tMJ,
where M = (1/2)b(0) - (1/8)(b(0) - a(l));

f3 : To' - Tot by f3(A) = g(b(0))At = [g(b(0))a(t),g(b(0))b(t)],
where g : IR+ -+ R+ is the function

2 if0<x<1/2,
f (x) _ -2+2/x

1
if 1/2 < x < 1,

0 ifx>1.
Also define h : II8+ --> ]R by h(x) = xg(x) dx E 118+. Define f : El E1

by f = f3 o f2 o fl. Then f is continuous with respect to the d,,, metric and
maps Dot into itself. Now any A E dot is determined uniquely by its value
b(0), written b from now on, and will be denoted by Ab. Then f (A) = Ah(b).

Let nl = n2 = 1, A = {Ab E Ao1I9/16 < b < 7/8}, and 5 = (Ab E
A01 13/4 < b < 7/8). Then Theorem 3.41 applies for f. To see this let note
that 8CA;

f(A)={AbEAo1I1/4<b<7/8) so AC f(A),
f (!3) _ {Ab E Aot11/4 < b < 1/2} so f(!3) n A = 0,
f2(8) =f Ab E Do1I1/2 < b < 1} so A C f2(B).
Moreover, f is expanding on A since h is expanding on [9/16,7/8] with
Ih(x)-h(y)I = I(2-2x)-(2-2y)I =2Ix-yI

there. Thus
d. (f (Ax), f(AV)) = 2d. (A., Ay)

for any Ax, Ay E A. Finally, h2 is one-to-one on [3/4,7/8] since
h2(x) = 2(2 - 2x) = 4 - 4x

there. Thus f 2 is one-to-one on B. The function f is thus chaotic. Its
chaotic action is most apparent in the compact subset {Ab E Dot I 0 <
b < 1 } of E1. It can be shown that for any A E E. the successive iterates
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f n(A) asymptote towards this set. Their endographs become more and more
triangular an shape, unless b(0) -- a(0) > 1, in which case they collapse onto
a singleton fuzzy subset.

3.9 Starshaped Fuzzy Subsets

The material in this section is taken for the most part from [30]. As we will
see, convexity plays an important role in the theory and applications of
fuzzy subsets. In this section, we examine a generalization of the concept of
convexity. In particular, we examine the notion of starshaped sets and fuzzy
starshaped sets. They extend convexity in important ways, e.g., unions of
fuzzy starshaped sets with common kernel points are fuzzy starshaped.
They also share similar metric properties with convex sets and convex fuzzy
subsets, where a fuzzy subset A of 1R' is said to be convex if for any line
segment PQ in R" and any point R in PQ, A(R) > A(P) A A(Q).

We restrict our attention to Rn. We denote the Euclidean norm by II Ii,
the inner product by < , >, and the unit sphere by S'-'. The Hausdorff
distance between compact subsets A and B of R" is given by

b,,,,(A, B) = V{v{A{Ia-bJIb E B} I a E A) , V{A{Ia-bla E Al I b E B}}.
Denote by 1C" the space of all nonempty compact sets of 1[8" endowed with
this metric.

A set K E 1C' is said to be starshaped with respect to a point x E K if
for each y E K, the line segment iy joining x to y is contained in K. The
kernel of K, denoted by ker(K), is the set of all points x E K such that
Ty C K for each y E K and co(K) is the convex hull of K.

Definition 3.39 Let ACsr= (K E Kn IK is starshaped with respect to the
origin} . Define 9K : Sn-1 -, R by Vx E Sn-1,

9K (X) = A{AIx E aK}.
Then gK is called the gauge of K.

In Definition 3.39, the gauge of K is a nonnegative lower semicontinuous
function.

Suppose that K is convex. Then gK is the support function of K. Also
if K, L E)CST, then

V{9K(x) - 9L(X) I x E S'} = boo(K, L).
For other properties of starshaped sets and gauge functions defined on all
of IR'1, the reader is referred to [9]. The other Lp metrics are defined in
terms of gauge functions

\ 1/p

bp(K, L) = f 19K(x) - 9L(x)I p11(dx) J ,1 <P<00,

where is unit Lebesgue measure.
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Let A be a fuzzy subset of R. Recall that A is said to be normal if
3x E R" such that A(x) = 1. Let U" denote the set of all normal, upper
semicontinuous, fuzzy subsets of R.

Definition 3.40 Let A E U". Then A is said to be fuzzy starshaped with
respect to y E R" if V x E R" and VA E [0, 1], A(A(x - y)) > A(x - y). Let
S" = { AE U" 13y E R' such that A is starshaped with respect to y } and
let Son= {A E U"I A is starshaped with respect to the origin}.

Proposition 3.42 Let A E U' and let y E R". Then A is fuzzy starshaped
with respect to y if and only if Vt E [0, 1], At is starshaped with respect to
Y.

Proof. We may prove the result for y = 0 without loss of generality.
Suppose that A is fuzzy starshaped with respect to 0. Let t, A E [0, 1] and
let x E k Then A(A(x - 0)) > A(x - 0) > t. Hence Ax E At. Thus Ox
is contained in At. Conversely suppose that Vt E [0, 1], At is starshaped
with respect to 0. Let-x E ll8" and let t = A(x). Then Ax E At. Thus
A(Ax) > A(x) and so A is fuzzy starshaped at 0.0

Definition 3.41 (i) Let A E U". Define ker(A) = {y E R" I A is fuzzy
.starshaped with respect to 0.

(ii) Let A E S". Define the fuzzy subset fker(A) of R" by (f ker(A))t =
ker(At) Vt E 10, 11.

Proposition 3.43 (i) Let A E U". Then ker(A) is a convex set in R".

(ii) Let A E S". Then f ker(A) is a convex fuzzy subset in U".

Proposition 3.44 S" has the structure of a real cone.

Proposition 3.45 Suppose that A and B E S" and that ker(A)flker(B)
0. Then A fl B and A U B are fuzzy starshaped.

We now discuss metric properties of So . Let A, B ESo . Then Vt E 10, 11,
S,,.(At, Bt) = V{ 1gj, (x) -- gb, (x) I x E Sn-1 }. For each 1 < p < oo, define

dp(A, B) = (fo S,,,,(At, Bt)pdt)1/P
and

d... (A, f3) = V{S,,(At, Bt) 1 o< t < 1 ).
The properties of gauge functions guarantee that dp is defined for all A and
B ESo , [11]. Also dp < dq for p < q and

d,,,, (A, b) = limp-,,, dp(A, by
The interested reader may refer to (32] and [78] for further properties of
metrics on convex fuzzy subsets.
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Another class of metrics may be defined directly from LP metrics on
gauge functions as follows: For each A ESo , write A* (t, x) = g i, (x),
0 < t < 1 and x E Si-1. This definition is similar to that for support
functions of convex fuzzy subsets. Further details may be found in (31]. For
1<p<oo,set

pP(A,B) = { fo dt fs -, A*(t,x) -B*(t,x)IPju (dx)}1/P.
Again, properties of gauge functions imply that pp is well defined on So
Also, pp < pq for 1 < p < q < oo and pp < dp < d,,, for 1 < p < oo.

Theorem 3.46 (So , dp) and (So , pp) are metric spaces.

The next result is an extension of a result in [140] to ICsT. It is funda-
mental to the relation between metrics dp and pp. For example, it is used
in the proof of Theorem 3.48 in showing the topological equivalence stated
there.

Theorem 3.47 Let K, L EA T with D = diam(K U L). Then for 1 < p <
00,

D(n-1)/PCp'(K, L) . 6.(K, L)(n+P-1)/P < 6,(K, L),
where

CC(K, L)P = B(p + 1, n - 1)/B(1/2,1/2(n - 1))

and B(-, ) is the beta function.

We say that U cSo is uniformly support bounded if the support sets
A° are bounded in ISn, uniformly for A E U. A family of support functions
U* = { A* I AE U } is said to be equileftcontinuous if the family is equileft-
continuous in t for all A* E U* and x E Sn-1. U is said to be a Blaschke set
if it is uniformly bounded and U* is equileftcontinuous. In (31], it is shown
that a closed set in the space of normal convex fuzzy subsets, endowed with
the d,,. metric, is compact if and only if it is Blaschke.

Theorem 3.48 For each given p, 1 < p < oo, dP and pp induce equivalent
topologies on So , each of which is complete and separable, aid in which
closed Blaschke sets are compact.

Theorem 3.48 shows that the properties of metric spaces are essentially
unaffected by the generalization to the fuzzy starshaped case.

We now look at compactness in (So , dp). That a closed set be Blaschke
is sufficient in the dP metric topology, but is too strong to be necessary
because dp < dom. An appropriate analogue for the weaker topology in
En involved an Lp space type definition [32]. This also holds for fuzzy
starshaped sets and for completeness. In [30], the concept of U being p-
Blaschke is defined. It is noted in [30] that
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1. Every Blaschke set in So is p-Blaschke, but not conversely.

2. A closed set U in (So , dp), 1 < p < oo. is compact if and only if it is
p-Blaschke.

3. A set U in (Si' , dp), 1 < p < oc, is locally compact if and only if every
uniformly support bounded and closed subset of U is p-Blaschke.

4. (So , dp), 1 < p < oo, is a locally compact space.

The reader is encouraged to examine [30] for further details and discus-
sion.
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4
FUZZY DIGITAL TOPOLOGY

4.1 Introduction

Digital picture processing deals with image compression or enhancement
and image analysis. In image compression or enhancement, the output de-
sired is a picture which is an approximation or improvement of the input
picture. In image analysis, the desired output is a description of the input
picture. In digital pictures, geometric considerations of parts of the picture
are important in analysis and description processes.

Various kinds of segmentation processes are used to extract from a digi-
tal picture geometric properties and relationships defined on subsets of it.
However it is often preferable to extract fuzzy subsets rather than crisp
subsets. In this chapter, we develop the topological concepts of connected-
ness, surroundedness, and convexity for fuzzy subsets. Further discussion
of these concepts for the crisp case can be found in [8, Chapters 8, 9) and
(31-

4.2 Crisp Digital Topology

In this section, we briefly review some of the basic concepts of crisp digital
topology.

Let E be a rectangular array of integer-coordinate points or lattice points.
Thus the point P = (x, y) of E has two horizontal neighbors and two
vertical neighbors, namely (x ± 1, y) and (.r, y ± 1) respectively. These are
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known as the 4-neighbors of P. Similarly, it is possible to define 8-neighbors
of P by including the four diagonal neighbors as well, namely, (x ± 1. y ± 1)
and (x ± 1, y 1). If P is on the border of E, then some of these neighbors
may not exist.

Let P, Q be points of E. Then a path p from P to Q is a sequence of
points P = Po, P1...., P,z = Q such that P; is adjacent to Pi_1i1 < i < n.
Note that this is two definitions in one ("4-path" and "8-path"), depending
on whether "adjacent" means "4-adjacent" or "8-adjacent". The same is
true for the definitions and results that follow, unless otherwise specified.

Let S be any subset of E. We say that the points P, Q of E are connected
in S if there is a path from P to Q consisting entirely of points of S. Then
this notion of connectedness in S defines an equivalence relation on E : P
is connected to P (by a path of length 0); if P is connected to Q, then Q is
connected to P (the reversal of a path is a path); and if P is connected to
Q and Q to R, then P is connected to R (the concatenation of two paths
is a path). The equivalence classes induced by this equivalence relation are
maximal subsets Si of S such that every P, Q belonging to a given Ss are
connected. These classes are called the (connected) components of S.

Recall that SC denotes the complement of S. Recall also that a border
point is one which does not have all its neighbors. For simplicity, we assume
that the border points of E are all in SC. Thus one component of S` always
contains the border B of E. The other components, if any, are called holes
in S. If S has no holes, it is called simply-connected. As pointed out in
[8, Section 9.11, opposite types of connectedness (4- and 8-, or 8- and 4-)
should be used for S and for Sc in order for various algorithms to work
properly.

Let S and T be disjoint subsets of E. We say that S surrounds T if any
path from T to the border of E meets S. If S surrounds T, then T does not
surround S; and if S surrounds T and T surrounds W, then S surrounds
W. More generally, for any subsets U, V, W of E, we say that V separates
U from W if any path from U to W meets V. Thus S surrounds T if it
separates T from the border B of E.

The results of this chapter are based primarily on [2], [6[, and 171-

4.3 ]Fuzzy Connectedness

In this section, we extend the concepts of the previous section to fuzzy
sets. Let A be a fuzzy subset of E. Recall that the fuzzy subset A-, of E is
defined by VP E E, A°(P) = 1 - A(P) and is called the complement of A.
We assume for all points P on the border B of E that A(P) = 0.

Definition 4.1 Let A be a fuzzy subset of E and let p : P = Po, P1.. P,, _
Q be any path between two points P and Q of E. Define the strength sA(p)
of p (with respect to A) to be A{A(PZ) 0 < i < n}. Define the degree of



4.3 Fuzzy Connectedness 117

connectedness CA (P, Q) of P and Q (with respect to A) to be V{sA(p)Ip is
a path from P to Q}.

Proposition 4.1 For all P. Q in E, we have c.4 (P. P) = A(P) and cA(P, Q)
= cA(Q, P)

Proof. Since P is on any path p from P to P. we have for any such path
that sA(p) = A{A(PZ) 10 < i < n} < A(P) and so cA(P,P) < A(P).

On the other hand, P itself is a path of length 0 from P to P, for which
sA(p) = A(P). Hence cA(P, P) > A(P). Thus A(P) = cA(P, P). That
cA(P, P) = cA(P, P) follows from the fact that the reversal of a path is a
path, and reversal preserves path strength.

-Suppose that A maps E into (0, 11. Let S = A-'(1) ! {PIP E E and
A(P) = 1}. Then sA(p) = 1 if and only if p consists entirely of points of S,
and cA(P, Q) = 1 if and only if P and Q are connected in S. Thus degree
of connectedness generalizes the ordinary (nonfuzzy) concept of connect-
edness. Note that in general, cA(P, Q) = 1 if and only if there exists a path
from P to Q all of whose points are mapped into 1 by A (and in partic-
ular, A(P) = A(Q) = 1). For any set T C_ E, we can define the degree of
connectedness of T (with respect to A) as cA(T) A{cA(P,Q) I P,Q E T}.

Proposition 4.2 Let P, Q E E. Then cA(P, Q) A(P) A A(Q).

Proof. For any path p : P = P0, Pj, ..., Pn = Q, we have sA(p)
A(A(Pj)I0 < i < n} < A(Po) A A(P) A Hence V{sA(p)Ip is
a path from P to Q} < A(P) A A(Q).

Corollary 4.3 Let T be a subset of E. Then cA(T) < n{A(P)P E T }.

Proof. q(T) = A{cA(P,Q)IP,Q E T} < A{A(P) A A(Q) I P,Q E T} _
n{A(P)IP E T}.

It also follows from Proposition 4.2 that cA, regarded as a fuzzy relation
on E, i.e., as a fuzzy subset of E x E, is a fuzzy relation on the fuzzy subset
A in the sense defined in Chapter 1.

Definition 4.2 Let P, Q E E and let A be a fuzzy subset _of E. Then P
and Q are said to be connected in A if cA(P. Q) = A(P) A A(Q).

We have that cA (P, Q) in Definition 4.2 takes on its maximum possible
value.

Proposition 4.4 Let P, Q E E and let A be a fuzzy subset of E. Then
P and Q are connected in A if and only if there exists a path p' : P =
P0, Pl...., Pn = Q such that A(PP) > A(P) A A(Q), 0 < i < n.
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Proof. If there exists such a path p', we have cI(P, Q) = V { s 9 (p) I p is a
path from P to Q} > sA(p') = A{A(PP)I0 < i < n} > A(P) AA(Q) so that
cA(P,Q) = A(P) A A(Q) by Proposition 4.2. Conversely, suppose that P
and Q are connected in A. Then there is a path p' : P = P0. P1, ..., P,, =
Q such that sq(p') = V{sA(p)jp is a path from P to Q} = cA(P,Q) =
A(P) A A(Q). Thus for all Pi on p', we have A(P1) > A{A(P,)I0 < i <
n} = s,4 (p). 0 -

If A(P) = A(Q) = 1, P and Q are connected if and only if there exists a
path from P to Q such that, for any point P of A, we have A(P') = 1. Thus
if A maps E into 10, 1}, and S = A-1(1), then two points P. Q of S are
connected in A if and only if they are connected in S. It is the case, however,
that points can be connected in A without being connected in S. In fact,
if A(P) = 0, P is connected in A to any Q, with degree of connectedness
zero. Thus "connected in A" is a generalization of "connected in S" only in
some respects, but not in others. In fact, CA - { (P, Q) I P, Q are connected
in Al is not in general, an equivalence relation, as we now see.

For all P in E, cA(P, P) = A(P) = A(P) A A(P) and so CA is reflexive.
That C;i is symmetric is clear since cA is symmetric and A(P) A A(Q) =
A(Q) A A(P). Let E be the 1-by-3 array P. Q, R and let A(P) = A(R) =
1, A(Q) < 1. Then (P, Q) and (Q, R) are connected in A, but P and R
are not. That is, (P, Q), (Q, R) E CA, but (P, R) V CA. Hence CA is not
necessarily transitive.

Nevertheless, CA is a useful relation on E, as we show in the next section.
For any set T C E, we call T connected with respect to A if all P, Q in T
are connected in A.

4.4 Fuzzy Components

Although CA is not an equivalence relation, we can still define a notion
of "connected component" with respect to A. Our definition is based on
the concept of a "plateau" in A. We will see that this definition has many
properties in common with the standard one, even though the compo-
nents do not constitute a partition. For example, let E be the 1-by-3 array
P, Q, R and let A(P) = A(R) = 1, A(Q) < 1. Then {P, Q} and {Q, R) are
components, but {P, Q} n IQ, RI 0 0. However it is worth noticing that
{P}n{Q,R}=0and{P,Q}n{R}=0.

Definition 4.3 Let A be a fuzzy subset of E. A subset II of E is called a
plateau in A if the following conditions hold:

(i) H is connected:
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(ii) A(P) = A(Q) for all P. Q in II;

(iii) A(P) 54 A(Q) for all pairs of neighboring points P E H. Q V 11.

We see that II in Definition 4.3 is a plateau of A if and only if it is a
maximal connected subset of E on which A has constant value. Clearly any
P E E belongs to exactly one plateau.

Definition 4.4 Let A be a fuzzy subset of E and let II be a plateau of A.
Then H is called a top if A(P) > A(Q) for all pairs of neighboring points
P E II, Q II; and II is called a bottom if A(P) < A(Q) for all pairs of
neighboring points P E II, Q 0 H.

We see that II, in Definition 4.4 is a top if its A value is a local maximum.
Similarly, II is a bottom if its A value is a local minimum.

Example 4.1 Consider the fuzzy subset A of E, with all non-zero values
as shown below.

0.4 0.5 0.6 1.0 0.6 0.5

0.3 0.8 0.7 0.6 0.5 0.4
0.2 0.7 0.9 0.9 0.6 0.2

0.6 0.7 0.9 0.9 0.5 0.7
0.5 0.5 0.8 0.5 0.7 0.8
0.8 0.6 0.7 0.6 0.8 0.4

For the sake of our discussion, let us assume we use the "4-neighbor"
convention. Then we have six different tops as shown below.

1

2

3 3

3 3

4

5 6

Note that two tops are not adjacent to each other. In particular, note
that the top labeled 2 and the top labeled 3 are not adjacent.

Proposition 4.5 Let A be a fuzzy subset of E. Then II is a plateau in A
if and only if it is a plateau in A`. II is a bottom in A if and only if it is a
top in AC, and vice versa.

In the crisp case, the plateaus are just the connected components of S
and of Sc. In fact, if S # 0, the tops are just the components of S, and
the bottoms are the components of Sc. Also, every plateau is either a top
or a bottom. Thus we can regard tops and bottoms as generalizations of
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connected components. In the remainder of this section, II is a top, and we
assume that the points P E H have A(P) > O,otherwise II = E.

With any top n we associate the following three sets of points.
An ={PEEl 3path that A(P,_1)<

A(Pi),I<i<n}.
Bn = { P E Ej 3 path P = Po, P1, ..., P = Q E II such that A(P)

A(Pi) < A(Q), 1 < i < n}.
Cn = { P E E13 path P = Po, P1, ..., P = Q E II such that A(P) <

A(Pi), 1 < i < n}.
The next result follows immediately from the definitions.

Proposition 4.6 II C All C Bn C Cll.

We call a path p : Po, P1 i ... , P monotonic in A if either A(Pi) >
A(Pi_1) for i = 1,2,...,n or A(Pi) < A(Pi_1) for i = 1,2,...,n. Now P
E An if and only if there is a monotonically nondecreasing path from P to
H. Thus there cannot be a local minimum between P and H. Similarly, if
P is in Bn, there cannot be a peak higher than II between P and H. The
sets Bn and Cn need not be connected in the ordinary sense (though Cn
is connected in the A sense; see Theorem 4.8). However An is connected
in the ordinary sense as we now show. Let P, P' E An. Then there exists
paths p: P=Po,P1i...,P, =QEIIandp': P'=PP,PI,...,PP=Q'E11
such that A(Pi_1) < A(Pi),i = 1,2,...,n and A(PJ_1) < A(Pj,),j =
1, 2, ... , m. Hence b y definition of An, Pi, P P E An f o r i = 1, 2, ... , n and
j = 1, 2, ... , m. Now there exists a path o in 11 connecting Q and Q'. Hence
pcrpi-1 is a path in An connecting P and P'.

Note also that all points whose A values are sufficiently low will be in
Cn, e.g., if A(P) = 0, P is in Cn for all H. On the other hand, as we show
in Proposition 4.7, points whose values are higher than A(lI) (the common
A value of the points in n) cannot be in Cn; indeed, if P is in Cn and
A(P) > A(II), then we have P E H.

The points adjacent to a top 11 are evidently in An. Also two tops can
never be adjacent to one another, for if they have the same height, they
belong to the same top; if they have different heights, the shorter one cannot
be a top.

Example 4.2 . Let E be the 1-by-4 array P, Q, R, S and let A(P) = 1,
A(Q) = 1/2, A(R) = 3/4, and A(S) = 1/4. Then II = {P} is a top, as is
{R}. An = {P,Q} and Bn = {P,Q,S} =Cn.

Example 4.3 Now let E be the 1-by-4 array P, Q, R, S and let A(P) =
1/2, A(Q) = 1,A(R) = 1/2, and A(S) = 3/4. Then II = {S} is a top.
An = { R. S1 = Bn and On = (P, R, S, } .
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Example 4.4 Let E and A be as to Example 4.1. Let II denote the top
labeled 3. Then An, B1 and Cn are from left to right as follows:

* * *

* * * * *

* * * * * *

* * * * *

* * * *

* * *

* * * *

* * * * *

* * * *

* * * *

* * * *

* * * *

* * * * *

* * * * *

* * * *

* * * *

We see that An Bn 0 Cn 96 A.

Proposition 4.7 If P E Cn and P f II, then A(P) < A(II).

Proof. Suppose that A(P) > A(H). Then P E Cn and so there exists a
path p from P to II such that for all P2 on p, A(Pi) > A(P) > A(H).
However, if P V II, p must pass through a point Q that is adjacent to 11,
but not in II. For any such Q, we have A(Q) < A(fl) since II is a top, a
contradiction.

Theorem 4.8 Cn is the set of all points of E that are connected to points
of H.

Proof. Let Q E II and let P be connected to Q. Then by Proposition
4.4, there exists a path p from P to Q such that for all Pi on p, A(Pi) >
A(P) AA(Q). Suppose that A(P) > A(Q). Then P II and A(Pi) > A(Q)
for all Pi on p. However, by the proof of Proposition 4.7, this is impossible
since p must pass through a point Q' adjacent to H, but not in H, and
for such a point we must have A(Q') < A(H). Hence A(P) < A(Q) and
A(Pi)>_A(P)forallPionpsothat PECn. _

Conversely, suppose that P E Cu. Then A(P) < A(II) by Proposition
4.7. Hence there exists a path p from P to a point Q of II such that for
all Pi on p, A(Pi) > A(P) = A(P) A A(Q). Thus P connected to Q by
Proposition 4.4.

Since An C_ Bn C_ Cn, it follows that every point in An(Bn) is connected
to points of H.

Theorem 4.9 For any P E E, there exists a top II such that P E An.

Proof. Let P be in the plateau TIo. If IIo is a top, we have P E IIo C
An,, and we are done. If IIo is not a top, let P1 be a neighbor of IIo
such that A(PP) > A(Po), where PO = P. Then we have a monotonically
nondecreasing path from Po to P1 (going through IIo up to a neighbor of
P1). Repeat this argument with P1 replacing P. and continue in this way to
obtain P2, P3, .... This process must terminate, say at P,,, since E is finite.
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Then fl the plateau containing P,,, is a top, and we have a monotonic
nondecreasing path from P to P,,. Hence P E An,, .

We see from Theorem 4.9 that if II is a unique top, then An = E.

Theorem 4.10 For any two distinct tops H. UI'. we have II' f1Cf1 = 0.

Proof. Suppose that P E H' fl Cn. Then there exists a path p from P to
II such that for any point Pi on p, A(P) <_ A(Pi). However for a point
Pi adjacent to IF, but not in IT, we must have A(Pi) < A(H') = A(P), a
contradiction.

Theorems 4.9 and 4.10 show that the tops II' and their connected "com-
ponents" Cr, have partition-like properties: Every point belongs to some
top in a strong sense (E = UAn, where the union is taken over all tops),
and a fortiori in a weak sense (An C_ Cn); but no top can belong to an-
other top even in a weak sense (II' fl Cr, = 0). These remarks are further
supported by the following.

Theorem 4.11 Let P, Q E E. Then P and Q are connected if and only if
there exists a top II such that P and Q E Cll.

Proof. Suppose that P, Q are in C11. Then there are paths pl, p2 from P
and Q, respectively, to II such that for all P, on pl, A(Pi) > A(P) and for
all Qi on P2, A(QM) > A(Q). Thus pt p2-1 is a path from P to Q such that
for all points R on this path, A(R) > A(P) A A(Q). Hence P is connected
to Q by Proposition 4.4.

Conversely, suppose that P and Q be connected. Let A(P) < A(Q) (say).
By Theorem 4.9, there exists a monotonic nondecreasing path p' from Q
to some top II. Then Q E An C C11. On the other hand, by Proposition
4.7, there is a path p from P to Q such that for all Pi on p, A(Pi) >
A(P)AA(Q) = A(P). Now for all Qi on p', we have A(Qi) > A(Q) > A(P).
Thus the path pp' from P to II guarantees that P E Crl.

The following result is an immediate consequence of Theorems 4.10 and
4.11.

Corollary 4.12E is connected with respect to A if and only if there exists
a unique top in A.

Since bottoms are tops with respect to Ac, results for bottoms hold which
are analogous to those for tops. In particular, the connected component of
points having A = 0 that contains the border of E is a bottom, which we can
think of as the "background com,ponent" of A'; while all other bottoms can
be regarded as "holes in A". If A has no holes, we call it simply-connected.

For any top II, we can define a fuzzy subset A. of E defined by
A(P)/A(II), if P E Cn,An (P)
0 otherwise.
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Note that by Proposition 4.7, An(P) = 1 if and only if P E II.
An alternative method of defining membership in a component can be

found in [6].

4.5 Fuzzy Surroundedness

In this section, we deal with the concept of fuzzy surroundedness. Let
A, B, C be fuzzy subsets of E. We say that B separates A from C if for all
points P, R in E, and all paths p from P to R, there exists a point Q on_ p
such that B(Q) > A(P) AC(R). In particular, we say that b surrounds A if
it separates A from the border of E. Since the border C of E is a nonfuzzy
subset, we have

_ I if R is in the border of E
C(R)

0 if R is not in the border of E

Thus the definition of surroundedness reduces to the following statement.
For all P E E and all paths p from P to the border, there exists a point Q
on p such that b(Q) > A(P) since R is in the border of E.

If A, B, C are ordinary subsets these definitions reduce to the ordinary
ones given in Section 4.2. Indeed, we need only consider the case where
P E A and R E C, since otherwise the minimum is zero. The definition of
separatedness thus reduces to: B separates A from C if for all P E A and
R E C and all paths p from P to R, there exists a point Q on p such that
Q E B.

In Section 4.2 we defined "surrounds" only for disjoint sets and pointed
out that it is antisymmetric and transitive. For nondisjoint sets, the situa-
tion is more complicated since two sets can surround one another without
being the same. We illustrate this in the following example.

Example 4.5 Consider the 4 x 4 array given below.

a a a a

a b b a

a c c a

a a a a

Let b E S, c E T, and a E S fl T. Then S and T surround each other.
However, it can be shown that if S and T surround each other, then S fl T
must surround both of them which is impossible for disjoint nonempty sets,
since the empty set can only surround itself.

Analogously, in the fuzzy case we can prove the next result.

Theorem 4.13 "Surrounds" is a weak partial order relation. That is, for
all fuzzy subsets A, B, C of E the following properties hold.
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(i) Reflexivity: A surrounds A.

(ii) Antzsymmetry: k f A and B surround each other, then An n surrounds
both of them.

(iii) Transitivity: If A surrounds B and b surrounds C, then A surrounds
C.

Proof. (i) Take Q = P.
(ii) Let p be any path from P to the border and_ let Q be the last point

on p such that b(Q) > A(P). Since A surrounds B, there is a point Q' on
p beyond Q (or equal to Q) such that A(Q') > B(Q). Since b surrounds
A, there is a point Q" on p beyond (or equal to) Q' such that B(Q") >
A(Q') >A(P). By our choice of Q, this implies that Q = Q' = Q" so that
A(Q)n B(Q) > A(P). Since P_ was arbitrary, we have thus proved that
A n B surrounds A. Similarly, A n B surrounds B.

(iii) Given any P E E and any path p from Pto the border B, there is
a point Q on p such that b(Q) > C(P) since B surrounds C. Moreover,
on the part of p between Q and the border there is a point R such that
A(R) > B(Q) since A surrounds B.

Recall that for any fuzzy subset A of E and any 0 < t < 1, the level set
At = {P E EJA(P) > t}.

Proposition 4.14 If A surrounds B, then for any t, At surrounds k.

4.6 Components, Holes, and Surroundedness

In ordinary digital topology, if a component of S and a component of S' are
adjacent, then one of them surrounds the other. This is not true about the
tops and bottoms of a fuzzy subset as illustrated in the following example.

Example 4.6 Consider the following 4 x 4 array.

0.4 0.5 1.0 0.7

1.0 0.0 0.0 0.8
0.4 0.0 0.0 1.0

0.6 1.0 0.4 0.6

In the above array of membership values, the 1's are all adjacent to the
0's, but the 0's are not surrounded by any one of these components.

Nevertheless, we can establish some relationships between surrounded-
ness for tops or bottoms and surroundedness for the corresponding compo-
nents.
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Theorem 4.15 Let H be a top, II' a bottom, and let An surround An,
Then II surrounds All, J II', while outside II we have Cn f1 Cn, = 0.

Proof. By Proposition 4.14, if An surrounds A,,, then II must surround
n' since 11 = (An)' is just the set of points for which An has value 1,
and similarly for H'. Moreover, II must even surround An, since we cannot
have a monotonic path from a point outside II to a point (of n') inside
11 (the path must go both up and down when it enters and leaves II).
On the other hand, suppose that II is a top and II' is a bottom (or vice
versa), that P is outside 11, and that P is in both Cn and Cn,. Then we
have A(II') < A(P) < A(II) and there is a path from P to IF that has
membership A values below A(P). However this is impossible since the
path must cross II.

Corollary 4.16 If 11 is simply-connected, An cannot surround any An,.

We have seen in the proof of Theorem 4.15 that if II and II' are tops,
and 11 surrounds II', it also surrounds An,.

Assume that II and II' are tops and An surrounds II'. Suppose P E Any
is not surrounded by An so that P V An. Let p be a monotonic path from
P to W. Then p meets An since otherwise we could get from IF to B (first
using p t to get to P) without crossing An. Let p meet An at the point
Q. Then there is a monotonic path from P to n (use p up to Q, then take
a monotonic path from Q to n) so that P E An, a contradiction. Thus we
have the following result.

Theorem 4.17 If II and H' are tops and An surrounds II', then it also
surrounds An'-

Theorem 4.18 If a point P is surrounded by a union U I1t of tops, it is
surrounded by one of them.

Proof. If P is in one of the fl , then that II= surrounds it. Hence we may
assume that P is not in any of the Ili. Each Ht is a connected set and P is
contained in its complement W. This complement consists of a background
component (containing the border B of E) and possibly other components
which are holes in IIi. If P is contained in a hole, then Hi surrrounds it
and we are done. Otherwise, P is in the background component of Il;. If
a path p from P to B meets Ili! we can divert p to pass through points
adjacent to III; and none of these points can be in any other II) by the
remarks following Proposition 4.6. Hence points in Ili can be eliminated
from p, and this is true for any i so that we can find a p that does not meet
any of the iii s, contradicting the assumption that U II; surrounds P.
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Theorem 4.19 If a connected set is surrounded by a union of tops, it is
surrounded by one of them.

Proof. Suppose that a connected set C is surrounded by U Hi. where each
Hi is a top. We can assume that without loss of generality that no two
IIi's surround one another. Suppose C meets more than one of the IIi's,
say II3 and Ilk. Since ilk is in the background component of 11 , and C
is connected, there must exist a point Q E C adjacent to 11 and in the
background component of H. Q is not in any IIi since tops cannot be
adjacent. Moreover, since no IIi, distinct from H;, surrounds IIi, there is
a path from Q to B (through 113) that does not meet any IIi # III. Thus
no IIi surrounds Q, and neither does III. It follows by Theorem 4.18 that
U IIi does not surround Q, contradicting the fact that Q E C. Thus C can
meet at most one of the IIi's say IIj; and by the argument just given, no
point of C can be in the background component of III (since there would
then be such a point Q adjacent to IIi, which would lead to the same
contradiction). Hence C is contained in the union of IIj and its holes so
that II; surrounds it.

In particular, if a top or bottom is surrounded by a union of tops (or
bottoms), it is surrounded by one of them. On the other hand, a union
of tops and bottoms can nontrivially surround a point (without it being
surrounded by any one of them) since tops and bottoms can be mutually
adjacent.

Component Counting; The Genus

Define the number of components of A as the number of its tops. It is pos-
sible to design a "one-pass" algorithm that counts these tops. The central
idea is to scan E row by row and assign distinct labels to each plateau H.
We also note whether or not the neighbors of each plateau have higher or
lower A values. Once the scan is completed, we determine all the equiva-
lence classes of neighbors that were found to belong to the same plateau. If
all the labels in a given class had only neighbors with lower A values, the
corresponding plateau is a top; and similarly for bottoms.

The genus of A is defined as the number of its tops minus the number
of its bottoms, excluding the border of E. Since the tops and bottoms can
be computed in a single pass, by counting both the tops and the bottoms,
it is possible to compute the genus also in one pass.

Application to Digital Image Processing

We now discuss the practicality of the results developed in this chapter
to digital picture segmentation. The discussion is taken from [6]. Let f be
a digital picture defined on the array E. First, normalize the grayscale of
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f to the interval [0, 1J. Thus f defines a fuzzy subset A f of E, where the
membership of a point P E E in A f is given by f (P). If f contains dark
objects on a light background, or vice versa, it is reasonable to segment it by
thresholding due to the fact that the objects become connected components
of above-threshold points. However, if we want to be more flexible in terms
of thresholding, we can try to segment peaks in A f. Observe that for any
top II, there exists a threshold namely, A f (II), which yields exactly lI
as a connected component of above-threshold points. Moreover, P is in
Cn if and only if thresholding at Af (P) puts P into the same connected
component as II. Thus the theory of fuzzy components is a generalized
theory of "thresholdable connected objects" in digital pictures that does
not require choosing a specific threshold.

If the objects in f have smooth profiles, so that each object contains only
one top, we can count objects by simply counting tops, as described in Sec-
tion 4.5. If f is noisy, there will be many "local tops" that do not correspond
to significant objects; but such tops would presumably be "dominated by"
other tops (e.g., we might say that II dominates II' if An surrounds An,;
see Theorem 4.17), or would be small and could be discarded on grounds
of size.

4.7 Convexity

Let E be the Euclidean plane and let A be a fuzzy subset of E. We say that
A is convex, if for all P, Q in E and all R on the line segment PQ, we have
A(R) > A(P) A A(Q). Note that if A maps E into {0, 1}, the condition
A(R) A(P) A A(Q) requires that any point on the segment PP also be
in A, which is the standard definition of convexity.

A real-valued function f defined on R is called min-free if, for all points
A < B < C in R, we have f (B) > f (A) A f (C). Then a fuzzy subset A
is convex if and only if all its cross-sections are min free functions, where
a cross section of A by a line l is the restriction of A to 1. In Section 4.9,
we determine when the projections of convex fuzzy subsets are min-free
functions. Note that a fuzzy subset of the real line is convex if and only if,
regarded as a real-valued function, it is min-free.

Proposition 4.20 A is convex if and only if its level sets are all convex.

Proof. Suppose that -A is convex. Let t E [0.1) and P, Q E At. Then bR E
PQ, A(R) > A(P) A A(Q) > t and so R E At. Thus At convex. Conversely,
suppose At is convex Vt E [0,11. Let P, Q E E and t = A(P) A A(Q). Then
P, Q E At and YR EPI , R E At. Hence A(R) _> t = A(P) A A(Q). Thus A
is convex.

A similar argument shows that Proposition 4.20 is also true if we define
"level set" using > rather than > .
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Example 4.7 Consider the fuzzy subsets A, B and C of E defined as fol-
lows: bx, y E E, A(x, y) = 1 if IxJ + MyM < 1, A(x, y) = t if Jx) + My] = 1/t,
where t E (0,1] ; B(x, y) = 1 If x2 + y2 < 1, j3 (X, y) = t if x2 + y2 =
where t E (0, 1] ; C = 1 A IxI A lyl. It may be noted that A and b are con-
vex. To verify that A is convex, we show that At is convex Vt E [0, 11. Now
A' = {(x, y) I Jx' + Jyj < 1}, At = {(x, y) 11xI + Jyl < l/t}, t E (0,1), and
A° = E. Clearly, then At is convex. In a similar fashion, b can be shown
to be convex. However, C is not convex.

4.8 The Sup Projection

For any line I and any point P E 1, let l p be the line perpendicular to I
at P. By the sup projection of a fuzzy subset A of E on l we mean the
function A, such that VP E 1, At(P) = v{A(R)IR E lp}. Evidently At is
a fuzzy subset of l since 0 < At (P) < 1, P E 1. Also, for all 1, At can be
considered as fuzzy subset of E by defining AS(P) = 0 for P E V. It is
easily seen that if A, considered as a crisp subset of E, is connected, then
At is an interval. Indeed, let A, (P) = A, (Q) = 1. Then there exist points
on l p and lq for which A = 1. Since A is connected, these points are joined
by a path consisting of points for which A = 1, and the projection of this
path on l contains the interval PQ.

Proposition 4.21 If A is convex, so is At .

Proof. Let A, B, C (in that order) be points of 1. Let E > 0. Then Ipoints
A' and Con IA and 1c, respectively, such that At(A) < A(A') + e and
A,(C) < A(C') + E. Let B' be the intersection of segment A'C' with lB.
Since A is convex and B' E A'C', we have A(B') _> A(A') A A(C') >
[A,(A) - e] A [At(C) - E] _ [A,(A) A A1(C)] - e. But A(B') < A(B) by
definition of the sup projection. Hence A,(B) _> [At(A) A A,(C)] - e, and
since c is arbitrary, we have A,(B) > At(A) A A,(C). Thus A, is convex.

The converse of Proposition 4.21 is false; even if all the sup projections
of A are convex, A need not be convex. To see this, let A be an ordinary
set and suppose that A is connected. By the remarks preceding Proposition
4.21, the sup projection of A on any l is an interval and hence is convex,
but A itself need not be convex.

4.9 The Integral Projection

By the integral projection of A on I we mean the function At that maps
each point P E I into f,f, A, the integral of A over the line l p perpendicular
to I at P. If A is an ordinary convex set, l p meets A in an interval and
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fit. A is just the length of this interval. We assume here that this integral

always exists. Note that we no longer have 0 < Al < 1 as we did in the
case of the sup projection.

Example 4.8 Consider the convex fuzzy subset B defined in Example 4.7.
Let l be the x-axis. Then BI (x, 0) = f B(x, y)dy

= 2 (fo B(x, y)dy + f1 ° B(x, y)dy)
= 2 (fo ldy + fl' (x2 + y2)-ldy)

`J= 2 1 + {tan()1100) J
X Y=1

2 (l + 2x _ tan

x

(1))
.

Proposition 4.22 If A, considered as a crisp subset of E, is convex, then
Al is a min-free function.

FIGURE 4.1 A convex set and intersecting lines'

Proof. Let A, B, C be points of l with B on the line segment AC. Each of
the lines IA, 1B, lc meets the convex set A in an interval (possibly degener-
ate or empty). Let the end-points of these intervals be A', A", B', B", and
C', C", respectively (see Figure 4.1). Since A is convex, the segments A'C'
and A"C" are subsets of A. Hence the points P, Q, where these segments
meet 1 B are in A and lie between B' and B". Now IA'A"I AIC'C"I < I PQF <

'Reprinted from: Pattern Recognition, 15, no 5, 379 382, 1982, Some Results on
Fuzzy (Digital) Convexity, L. Janos and A. Rosenfeld, with permission from Elsevier
Science.
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I A'A" I V I C' C" I , where vertical bars denote the length of an interval. But

IA'A"I = A,(A) and IC'C"I = A,(C), as pointed out in the paragraph pre-

ceding Example 4.8. Hence A,(B) = IB'B"I > IPQI ? IA'A"I A IC'C"I =
A1(A) A A,(C). Therefore A, is min-free.

It is interesting to note that Proposition 4.22 is false if A is only assumed
to be a convex fuzzy subset. To see this, let A be defined as follows: A= 0.2
in the quadrilateral whose vertices 21L(1, 0 , (1, 5), (3, 2) and (3, 0); except
that A= 0.5 on the line segment (3, 0), (3, 2). Since the level sets of A are
convex, A is convex by Proposition 4.20. But for the integral projection
of A on the x-axis, we have A,(1,0) = fo .2 dx = 1, A,(2, 0) = fo .5

.2

dx = 0.7 and Al (3, 0) = fo .5 dx = 1. Hence Al is not a min-free function.
(See Figure 4.2.)

FIGURE 4.2 An example to illustrate: Al is not min-free.'

A =0.5

The converse of Proposition 4.22 is also false; even if all the integral
projections of A are min-free functions, A is not necessarily convex. In
fact, consider the L-shaped polygon whose vertices are (0,0), (0,10),
(10,0), (5,10), (5,5), and (10,5) (Figure 4.3) and project %F onto an arbitrary
line l (Figure 4.4). Then the value of this projection A has no strict local
minimum (see Figure 4.4) (it strictly increases from Pl to P2, remains
constant from P2 to P3, strictly decreases from P3 to P4, remains constant
from P4 to P5, and strictly decreases from Ps to P6), and hence is a min-free
function, but ' is not convex.

Reprinted from: Pattern Recognition, 15, no. 5, 379 382, 1982, Some Results on
Fuzzy (Digital) Convexity, L..lanos and A. Rosenfeld, with permission from Elsevier
Science.
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FIGURE 4.3 A counter example: Converse of Proposition 4.22 is false. 1

FIGURE 4.4 Figure 4.3 rotated to make the line l horizontal.1

4.10 Fuzzy Digital Convexity

Digital Convexity

Let R be a subset of the plane such that (R°) = R (R is the closure of
its interior); we call such an R regular. We regard each lattice point P as
the center of an open unit square P*. We call such a square a cell. The
set I(R) - {PAR n P* # 0} is called the digital image of R. Note that the
digital image is defined only for regular sets.

By the definition of I (R), R meets Q* if and only if Q E I (R). If R meets
any Q* on its boundary, it meets the interior of at least one of the cells
that share that boundary. Hence we have the following result.

Proposition 4.23 R C U{P*IP E I(R)} and I(R) is the smallest set of
lattice points for which this is true.

1Reprinted from: Pattern Recognition, 15, no. 5, 379 382, 1982, Some Results on
Fuzzy (Digital) Convexity, L. Janos and A. Rosenfeld, with permission from Elsevier
Science.



132 4. FUZZY DIGITAL TOPOLOGY

A set S of lattice points is called digitally convex if it is the digital image
of a convex regular set R.

We show that the digital image S of any arcwise connected regular set
R is 4-connected. For all P, Q E S, R meets P* and Q*, say in the points
(.x, y) and (u, v), and there is a path in R from (x, y) to (u, v). Hence this
path meets a sequence of interiors of 4-adjacent cells which thus yield a
4-path in S from P to Q. The following result follows from this argument.

Proposition 4.24 A digitally convex set is 4-connected.

The proofs of the following two theorems can be found in [3]

Theorem 4.25 The following properties of a 4-connected set S are equiv-
alent:

(i) for all P, Q in S, no point not in S lies on the line segment PQ,

(ii) for all P, Q in S and all (u, v) EPQ, there exists a point (x, y) E S
such thatjx-u[VIy-vj <1.

We call S regular if every P E S has at least two (horizontal or vertical)
neighbors in S.

Theorem 4.26 Any digitally convex set has the properties of Theorem
4.25. A regular set S is digitally convex if and only if it has the properties
of Theorem 4.25.

If S is not regular, it may satisfy the properties of Theorem 4.25, but
not have a convex pre-image.

Fuzzy Digital Convexity

We discuss the possibility of generalizing Theorems 4.25 and 4.26 to convex
fuzzy subsets. Given a fuzzy subset A of the plane, we define a fuzzy subset
A' of the lattice points by

A'(P) - v{A(x,y)I (x, y) E P*) .

If A is a fuzzy subset of the plane and t E [0, 1] we let At = {(x, y)
A(x, y) > t}.

Proposition 4.27 If At is regular, A't is its digital image.

Proof. P E I(A1) if and only if Atf1P* # 0 if and only if V{A(x, y)I (x, y) E
P*} > t if and only if A'(P) > t if and only if P EA't.

The corresponding result is not true if we replace > with > . Indeed, if
such a level set At meets P*, we have V{A(x, y)I(x, y) E P* } > t, so that
A'(P) > t and P E A't; but conversely, if the supremum > t, At may only
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meet P* (though it does have to meet the interior of some cell that shares
its border with P*. if At is regular). Thus we know only that if At is regular
At contains its digital image.

Corollary 4.28 If A is an ordinary regular set, then A' is its digital image.

Proof. Since A is an ordinary set, A = A0 and so is regular. Thus A'0 = A'
is its digital image.

We call A fuzzily regular if all At are regular, 0 < t < 1. If A is fuzzily
regular, we call A' its digital image.

We call A' fuzzily digitally convex (FDC) if it is the digital image of a
fuzzily regular, convex A. Analogous to Proposition 4.20, we then have the
following result.

Proposition 4.29 If A' is FDC, then At is digitally convex for all t E
[0111.

Proof. Every A't is the digital image of At by Proposition 4.27 and At is
convex.

Analogous to Condition (i) in Theorem 4.25, we have the next result.

Proposition 4.30 If A' is FDC, then for all collinear triples of lattice
points A, B, C, with B between A and C, we have A'(B) > A'(A) A A'(C).

Proof. Let e > 0. By the definition of A', there exists points A' and C' of
the cell interiors A*and C* such that A'(A) < A(A')+e and A'(C) < A(C')
+e. Now, A'C' meets the cell interior B*. Let B' be a -point of B* fl A'C'.
Since A is convex, we have A(B) > A(A')AA(C') > (A'(A)-e)A(A'(C)-
E) = (A'(A) A A'(C)) -_e. Since A'(B) = v{A(x,y)I(x,y) E B*} > A(B'),
we thus have A'(B) > A'(A) A A'(C) - e; and since e is arbitrary, it follows
that A'(B) > A'(A) A A' (C).

4.11 On Connectivity Properties of Grayscale
Pictures

The purpose of this section is to present some additional results on con-
nectivity properties of gray scale pictures.

In studying topological properties in the case where points take on only
the values 0 and 1, it is customary to use opposite types of connectedness
for the two types of points, regarding diagonal neighbors as adjacent for the
1's but not for the 0's, or vice versa. For multi-valued pictures, e.g., those
whose points have values from [0, 1] , the situation is more complicated.
To avoid these complications, we deal primarily with pictures defined on a
hexagonal grid, where a point has only one kind of neighbor.
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Let E be a bounded regular grid of points in the plane. We will assume,
in most of this section, that the grid is hexagonal rather than Cartesian, so
that each point of E has six neighbors. Let S be any subset of E. which we
assume does not meet the border of E. Two points P, Q of S are connected
in S if there exists a path p : P = P0, P1, ... , P, = Q of points of S such
that Pi is a neighbor of Pz_1i1 < i < n. The notion of connectedness is
an equivalence relation and its equivalence classes are called the connected
components of S. If there is only one component, we can S connected.
The complement of S also consists of connected components. One of them,
called the background, contains the border of E. The others, if any, are
called holes of S.

Let A be a fuzzy subset of E. Since E is finite, A takes on only finitely
many values on E. We are only interested in the relative size of these
values and can thus assume them to be rational numbers. Hence if we let
a = 1/A, where A is the least common multiple of the denominators of these
values, then these values are integer multiples of a. For the remainder of
the chapter, we will assume A takes on integer values (dividing the original
rational values by a), so that A defines a digital picture on E whose gray
level at P is A(P)/a - g(P), where 0 < g(P) < M (say). We assume that
A has value 0 on the border of E.

A digital picture A can be decomposed into connected components C of
constant gray levels, i.e., for some gray level 1, C is a connected component
of the set Al of points having gray level 1. C is called a top if the components
adjacent to C all have lower gray levels than C; a bottom is defined anal-
ogously. Hence, for any point P, there is a monotonically non-descending
(non-ascending) path to a top (bottom). The gray level of a component C
will be denoted by l(C).

Recall that A is connected if, for all P, Q in A, there exists a path P =
Po, Pl,..., P. = Q such that each A(PP) > A(P) A A(Q). It was shown in
[5] that A is connected if and only if A has a unique top.

Equivalent Characterizations of Connectedness

Let 0 < l < M. Then the set of points that have gray level l will be denoted
by Al and the set of points that have gray levels > I will be denoted by
A,+. For the sake of brevity, a connected component of Al will be called
an 1-component and a connected component of A,+ will be called an l+-
component.

Now for any non-empty l+-component and for any P in the component
there is a monotonically non-descending path to a top, and this path lies
in the component. Thus we have the following result.

Proposition 4.31 Any non-empty 1+-component contains a top.
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Theorem 4.32 The following properties of A are all equivalent:

(i) A has a unique top.

(ii) For all 1, Al+, is connected.

(iii) Every 1-component is adjacent to, at most, one 1+-component.

Proof. (i) = (ii): If some A1+ had two components, each of them would
contain a top by Proposition 4.31, and these tops must be distinct.

(ii) (iii): Immediate.
(iii) = (i): Suppose that A had two tops U, V and consider a sequence of

components U = Co, C1, ..., C,, = V such that C2 is adjacent to C1_1, 1 <
i < n. Of all such sequences, select one for which n{l(C,) I i = 1, 2,. .., n} =
I is as large as possible, and of all these, pick one for which the value l is
taken on as few times as possible. Let 1(C;) = 1, then evidently 0 < j < n.
If CC_1 and C.,+1 were in the same l+-component, the sequence could be
diverted to avoid C; by passing through a succession of components of
values > 1. The diverted sequence would thus have fewer terms of value 1,
a contradiction. Hence, C; is adjacent to two l+-components.,

Note that an l-component is adjacent to no l+-components if and only
if it is a top.

We now conclude this chapter with some comments concerning coher-
ence. The interested reader should see [7] for more details and also for a
discussion concerning the genus.

We call A coherent if, for any component C, exactly one component is
adjacent to C along each of its borders.

Proposition 4.33 Let A have the property that, along any of its borders,
any C meets components that are either all higher or all lower than it in
value. Then A is coherent.

Proposition 4.34 If A is coherent, the conditions of Theorem 4.32 are
also equivalent to the following condition.

(iv) Every l-component is adjacent to, at most, one l'-component such that
1'>1.
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5

FUZZY GEOMETRY

5.1 Introduction

In this chapter, we concentrate on fuzzy geometry. Fuzzy geometry has been
studied from different perspectives. The theory presented in this chapter
is applicable to pattern recognition, computer graphics and image process-
ing and follows closely the theory as developed by Rosenfeld, [37,47-51].
Buckley and Eslami, [7,8], are developing a fuzzy plane geometry which is
quite different, but has the potential for applications in various fields of
computer science.

In pattern recognition one often wants to measure geometric properties
of regions in images. Such regions are not always two-valued. It is some
times more appropriate to regard them as fuzzy subsets of the image. It is
not obvious how to measure geometric properties of fuzzy subsets. In this
chapter, we deal with different geometric concepts of a fuzzy subset of the
plane and show that they reduce to the usual ones if the fuzzy subset is an
ordinary subset.

5.2 The Area and Perimeter of a Fuzzy Subset

Let A and B be subsets of the Euclidean plane R2 such that B D A. Then
the area of A is less than or equal to the area of B, assuming their areas
exist. Similarly, the perimeter of A is less than or equal to the perimeter
of B, provided their perimeters are defined and both A and B are convex.
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Let A be a fuzzy subset of R2. If A is integrable, we define its area as f f A
dx dy, where the integration is performed over the entire plane, JR2. Thus,
if B is fuzzy subset of R2 containing A, we have Area(B) > Area(A), if
both are defined. Defining the perimeter is not as simple as the area.

We first define perimeter for a simple class of ' piecewise constant' fuzzy
subsets. This class includes the class of digital pictures as a special case.
We show that this definition reduces to the ordinary one when the fuzzy
subset is crisp. We also define the perimeter for 'smooth' fuzzy subsets
and outline an argument showing that the smooth and piecewise constant
definitions agree 'in the limit'. We then point out that a unified definition,
including both the smooth and piecewise constant cases, can be given in
terms of generalized functions.

We consider convex fuzzy subsets and show that if B D A, the perimeter
of B is greater than or equal to that of A. This generalizes a theorem about
crisp convex sets to piecewise constant convex fuzzy subsets. We conclude
the section with a study of fuzzy disks.

A set of points II = { xo, x1, ... , x,, } satisfying the inequality a = xo <
xl < ... < x = b is called a partition of [a, b]. Let f be a real-valued
function defined on [a, b]. If there exists a positive integer M such that
Ek=1 If (xk)- f (xk_1)I < Al for all partitions of [a, b], then f is said to be
a bounded variation on [a, b].

Example 5.1 Let f (x) = x cos(ir/2x) for all x E (0,1] and f (0) = 0. Let
[I= {0> 2n 2n-1,... 3 2, 1}. Then jk=1 If(xk)- f (xk-1)I = 1+2+...+
n which cannot be bounded for all n since °_ n diverges. Thus f is not
of bounded variation over [0, 1] even though the derivative f' exists in (0, 1).

Let x = x(t), y = y(t) be a parameterization of a continuous curve C in
R2, a < t < b. A partition II of the interval [a, b] determines an inscribed
polygon II(C) formed by joining the points corresponding to parameter
values. The length L(II(C)) of such a polygon is defined the usual way.
The length 1(C) of the curve is defined to be the least upper bound of
L(II(C)) for all partitions H. If 1(C) is finite, the curve C is said to be
rectifiable. It is a well known fact that C is rectifiable if and only if x(t)
and y(t) representing C are of bounded variation.

We now examine the piecewise constant case. Let E Sl, ..., S,, } be a
partition of 1R2 such that all but one of the St's (say Sn) are bounded. The
set Si, = Si fl S; (where the overbar denotes closure with respect to the
Euclidean metric) is called the common boundary of Si and S;. We call E
a segmentation of 1R2 if for all 1 < i, j < n, St.i is a finite union of rectifiable
arcs Ai;k of finite lengths, where 1 < k < niJ and thus Sil = Uk'1 A1;k

Definition 5.1 The total perimeter of a segmentation E _ {S,,.. -, S,t} is
defined as
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n n,,
l(Aijk),

i,j=1k=1
i<j

where l denotes are length.

Definition 5.2 A fuzzy subset A of R2 is called piecewise constant if there
exists a segmentation F_ = { S1, ..., S. } of ][82 such that A has constant value
ai on each S, and A - 0 on Sn (i.e., an = 0). If A is piecewise constant,
we define the perimeter of A as

n,,

p(A) lai - ajll(Aijk)
i,j=1k=1
i<j

Let E = IS,, ..., Sn } be a segmentation of JR2. Let A be a subset of JR2.
Then the only pairs (Si, Sj) that make nonzero contributions to p(XA) are
those such that XA = 1 on Si and XA = 0 on Si (or vice versa), and for
such pairs we have jai - ajI = 1, so that p(XA) = Thus, if A
is a union of connected regions Si whose borders are the rectifiable closed
curves Aik, then p(XA) _ l(Aik), which is just the total perimeter of
A as ordinarily defined.

The digital pictures with gray levels in [0, 1] are a special case of the
piecewise constant fuzzy subsets. Here we partition R2 into an m x m
array of half-open unit squares and A is constant on each of these squares,
with A = 0 on the rest of ]R2.

We now define the perimeter for `smooth' fuzzy subsets.

Definition 5.3 A fuzzy subset A of J2 is called smooth if it has first
partial derivatives everywhere. We define the perimeter of such an A as

if IVAldxdy, (5.2.2)

provided this integral exists, where

IVA! = aA 2 + aA 28x ay

is the magnitude of the gradient of A.

To see the connection between Definitions 5.2 and 5.3, we consider the
case where A is a digital picture. Let A* be the same as A, except in strips
of width e centered on the common borders of the unit squares, where it
changes linearly from one constant value to another. (At the corners where
four squares meet, A* has to be defined in a more complicated way to make
it smooth, but this only involves strip intersections whose areas are 0(e2)
and so does not affect our argument.) Thus IVA* I = 0, except on the strips;
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while on the strip aid centered on Aij (say), where the value of A* changes
from a2 to aj, we have IVA*I = Iai - a.il/e (except near the ends of aid).
Since the area of aij is l(A2 )E. we thus have

f f I vA* I d.rdy = [IL ;; FDA" I dxdy]
1.J=1
i0J

(1(Ai.7)e)(Iai - a.iI /E)
Lei=1
i#)
tz

_ I(Ai))Iai - a3I = p(A),
i,j:1
i0j

where = denotes approximately equal to.
This argument shows that the two definitions of perimeter agree 'in the

limit'. If A is piecewise constant, we can approximate it by a smooth A*
such that

fJ IVA'Idxdy = p(A).

We now show, using the theory of generalized functions, how we can
formulate a definition of perimeter that has both the piecewise constant
and smooth definitions as special cases. We first review some pertinent
results from analysis.

Let f be a function from R into R. Then f is called ordinary if it is
integrable in each finite interval [a, b]. (By integrable, one usually means
Lebesgue integrable, but for our purpose Riemann integrability suffices.)
Thus continuous functions are ordinary. The set E of all continuous func-
tions form a vector space over R.

Now certain ordinary functions including some that are continuous have
no derivatives at all, for example, the Weierstrass function [60]. Certain
other ordinary functions have a derivative, but the derivative is not ordi-
nary, for example, f(x) = 1/ Ixf. It is also possible for the derivative of
an ordinary function to exist and that the derivative is ordinary, but such
that when integrated the original function is not recovered, for example, the
Cantor function [55]. We now examine this situation a little more closely.

Let f be a function from a subset S of R into R. Then f is said to
be absolutely continuous on S if d E> 0, 36 > 0 such that E'1 If (xi)-
f(xi)I <E for every finite collection of nonoverlapping intervals {(x;,xi)I
Xi xiES,i=1,...,n}such that E

It is known that a real-valued function from [a, b] possesses an ordinary
derivative f'(x) such that f (x) = f (a) + fa f'(u)du if and only if f is
absolutely continuous [55]. It is possible for a function f to be uniformly
continuous on [a, b), but not absolutely continuous and not of bounded
variation [59]. However if f is absolutely continuous on [a, b],then f is of
hounded variation on [a, b].
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In the theory of distributions or generalized functions, 120], a function f
is represented via its action on 'test' functions cp through the integral

(f F) = Jf(x)(x)dx . (5.2.3)

where integration is over the whole space.
We assume for test functions that all derivatives exist and are continuous

and to either be identically zero outside some fixed interval or else to go to
zero rapidly, together with all their derivatives, as x goes to infinity.

These concepts may be used for functions of one or several variables. For
uniformity of notation, and also because the formulas introduced may be
of interest for sets in 3-space as well as in the plane, we shall follow [20]
and have x denote a point (x1, x2, ..., in R and dx denote dx1 dx2 . .

. dx,,. Thus

By a `test' function cp being zero at infinity, we mean either that W(x) is
identically zero for all points x outside some fixed sphere centered at the
origin, or else W and all its partial derivatives of all orders go to zero with
some specified rapidity as the Euclidean norm of x, (xi + x2 + ... + x2 )1/2,
approaches infinity.

When n = I the `distributional derivative' f is introduced via the for-
mula

(f','P) = f "0
00

foo f (x)c (x)dx (5.2.4)

When the function f is actually differentiable this is merely the formula
for integration by parts; recall that cp, as a test function, is zero at ±00.
Note that when f is not actually differentiable, then equation (5.2.4) defines
a new generalized function f. Thus we see that if f is not differentiable,
but we need the value of the integral of f multiplied by a test function
cp which has a bounded derivative, we could obtain one as if f'(x) existed
by taking (f', cp) in (5.2.4). This technique is used in certain problems in
mathematical physics.

For example, if f is the function defined by

f(x)= r 0 ifx<0
5l

1 ifx>0
then

(f', P) = f f f (x),P (x)dx = - f a'(x)dx = P(0)
00 o o

(5.2.5)
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Thus f' is the 'Dirac delta' function.
Generalized functions are not necessarily functions in the ordinary sense.

They are rather defined only in terms of their actions on test functions. In
equation (5.2.5), the notation f'(x) is used for its convenience in manipu-
lation of formulas. It does not stand for a specific real number for each real
value of x.

For n > 1, partial derivatives are defined by the formula

`, 0) = - (f , 2 ) -

(5.2.6)

The gradient vector V f is a generalized vector function that acts on test
vector functions

P(x) =

by the formula

(Vf. co) a ax
i=1 i=1

We also use the notation

f .,
V f(x) - cp(x)dx

for (Vf,4c).

Suppose that G is a crisp subset of 1Rn, having a smooth or piecewise
smooth boundary, and XG is its characteristic function. Then

(V XG, W)

=_
XG' 8xi } ` fG

dx.
i=1 i

Integrating by parts, we can show that the last integral is equal to

I apt cos vide,

where r is the boundary of G, da is the `area' element on r (when n = 2
and IF is a curve, do is the element of arc length, usually written ds) and
vi is, at each point of r, the angle between the positive xi direction and
the unit outward pointing vector normal to t at that point. Thus we have

fRyl

r (
V XG " ppdx = (VXG, gyp) =

J
E oi COS vi dn.
i=1

If we now take for cp any vector test function that is equal on I' to the
unit outward pointing normal vector N, whose components are cos vl, cos
v2i ..., cos and denote this cp simply by N, we have
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f V -
Ndx = f E (cosii)2 da = J da. (5.2.7)

rR r i=1

which is the area of r' or the surface area (in two dimensions the perimeter)
of G. (When the normal to IF is not an entirely smooth function of position
on r, (5.2.7) may be obtained as a limit using smooth W's which more and
more closely approximate N on F. )

We now extend (5.2.7) to generally define the `surface area' of a fuzzy
subset A in Rn as

L.
VA N, (5.2.8)

where N is, at each point, the unit vector pointing in the direction in which
A increases most rapidly. Where A is smooth, N is the unit vector in the
direction of the gradient of A, so that IvA I. On surfaces F (curves
when n = 2) where A has a finite jump, N is a unit normal to the surface.
If, in a neighborhood of r, VA is either zero or else the direction of VA
approaches that of the normal to I' as any point of r is approached, then
(5.2.8) can be used to calculate the contribution of r to the `perimeter' of A
in the manner in which (5.2.7) was derived. This includes, in particular, the
case of A being a step-function, so that (5.2.8) includes both our previous
definitions (5.2.1) and (5.2.2).

We now consider the convex case. Recall that A is called convex if for all
triples of collinear points P, Q, R in R2, with Q between P and R, we have
A(Q) > A(P) A A(R). Then by Proposition 4.20, we have that A is convex
if and only if the level set At = { P E 1[82 JA(P) > t j is a convex subset of
R2 for all t E [0,1].

Let A be convex and piecewise constant, say with values 0 = ao < a1 <
< an. Then we have

Aa, C A°^-' c ... c Aa' c Aa° =R2.

Since each Aa, is convex, it is simply connected and its border (for i > 1)
is a simple closed curve, call it C. The perimeter of A in this case is thus

n
(ai - ai-1)(ai - ai-1)l(Ci) = an

a
l(Ci).

icl i=1

Since

n

(ai - ai-1) = an - a0 = an,
i=1

this last sum can be regarded as a weighted average of the t(C2)'s since the
coefficients
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(ai - ai-1)

an

sum to 1.
Let A and B be convex subsets of R2 whose perimeters are well defined.

Then it can be shown that A C_ B implies p(A) < p(B). (This is false for
non-convex sets. For example, let B be a disk and A a subset of B with a
very `wiggly' border.) We now show that this property generalizes to fuzzy
perimeter.

Proposition 5.1 Let A and B be piecewise constant convex fuzzy subsets
of 1[82 such that A C B. Then p(A) < p(B).

Proof. Let the values of A and b be a1 < ... < a, and b1 < ... < b8
respectively. Then

Aar C...CAa' and.b9 C...CBb'.

Let the outer borders of these level sets be denoted by C,., ..., Cl and
D8i...,D1. Let Ai = Aa, for i = 1,...,r and Bj = Bbi for j = 1,...,s.
Since the Ai and Bj are all convex, we have l(C,.) < ... < l(C1) and
l(D8) < ... < l(D1). Moreover, since A C B, the value of b on each Ai is
at least ai. Hence for all bj < ai, we have Bj Ai and so 1(Ci) < 1(Dj).

Since B2A,we have B>Oon Al.Thus Al CB1.LetB1 DB2J...D
Bj, A1, but Bj,+1 0 A1i where jl > 1. Let ail bj, < ai,+l, where
r > it > 1. Thus we have the following equation:

-

(ai - ai-1)1(Ci) < l(C1) (a2 - ai-1) = ai,l(C1) < bj, l(C1)
i=1 i=1

(bj -bj-1)l(C1) < (bj -bj-1)l(Dj).
j=1 j=1

If it = r, we are done since the left-hand side of the above equation is p(A)
and the right-side is less than or equal to p(B). Otherwise, since b J A,
we have _B > ai,+1 on Ai,+1. Thus there must exist j1 > jl such that
Bp, ? Ai,+1. Let By, 2 Bj,,+, 2 ... 2 Bj2 D Ai,+1, but
where j2 > j'1. Let ail < bJ2 < ai2+1, where evidently i2 > i1 + 1. Then

i2 i2
(ai-ai_1)1(Ci) > l(Ci,+1) F_ (ai-ai-1) = l(Ci,+1)(ai2 -ail)

< l(Ci,+1)(ai2 - bj,) + l(Ci,+1)(bj, - air )
The first term, of the right-hand side of the above equation is

j2 j2
< 1(Ci,+1)(bj2 - bat) = l(Ci,+1) E (bj -. bj-1) < E (bj -

j=j, +1 j=j, +1
bj-1)l(Dj)
which again is part of p(B); while the second term < (bj, - ai,)t(Ci ).
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Continuing in the same way, we can show that p(A) < p(B).

We now introduce a class of fuzzy subsets of R2 which we use to show
that fuzzy subsets differ from crisp subsets with respect to their perimeters.

A fuzzy subset A in the plane is called a fuzzy disk if there is a point Q
such that A(P) depends only on the distance from P to Q. Q is called the
center of the fuzzy disk.

In dealing with fuzzy disks, we shall take the center of the disk as the
origin of a polar coordinate system (r, 0) in the plane. Then A is a function
of x2 -+y2 and so the substitution x = r cos 0 and y = r sin 0 yields A as
a function of r alone. The area of the fuzzy disk is given by

if
r

jA(A) = J J Adxdy = J rA(r)drd0 = 2ir J rA(r)dr. (5.2.9)
0 0

Since A is a function of r alone and r = x2 -+y2 , it follows that ax =

A'(r) (x/ x2 + y2) and a = A'(r) (y/ x2 + y2) . Thus
()2

LA- +
()2

= J(A1(r))2Hence IVAI = IA'(r)I. We thus obtain

00

p(A) = 27r 1 r I A' (r) I dr. (5.2.10)
0

We consider only those fuzzy disks for which A is piecewise smooth, with
at most finite jumps between intervals of smoothness. Let A have jumps
jl, j2, ..., in at r = ri, r2, ..., rn, respectively. Each jump then contributes a
delta-function Ii;I 6(r - r2) to IA'(r)I, and (5.2.10) must be interpreted as
the sum of

Iji I27rri + Ii2I2irr2 + ... + IjnI2irrn
and the integrals of 21rrIA'(r)I over the intervals of smoothness of A.

It is clear from (5.2.10) that we may make a fuzzy disk have arbitrarily
large perimeter by having A oscillate rapidly, while its area is small.

A fuzzy disk for which A oscillates is not convex. In fact, a fuzzy disk is
convex if and only if A(r)-is nonincreasing in r. For a convex fuzzy disk A
that is smooth, we have IA'(r)I = -A'(r) and we may integrate by parts in
(5.2.10). If we further assume that rA(r) , 0 as r -> oo (which is certainly
true in the most interesting case, i.e., when A is zero outside some bounded
region of the plane), we obtain

p(A) = 27r or.A(r)dr. (5.2.11)
0

If A has jumps as described above, then we temporarily introduce the
auxiliary function

n
A. (r) = A(r)- j2(H(r - ri) - 1),

t=i
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where H(x) is the Heaviside function

H(x) 1 1 ifx > 0.
0 ifx<0.

Formula (5.2.10) becomes

p(A) = - F 27rriji - 2rr fo
i=1

Integrating by parts, we obtain

o0 00

P(A)= - 27rriji + 27r
J

A,(r)dr = 27r
J

A(r)dr,
i=1 0 0

where the second equality holds since fo (H(r - ri) -- 1)dr = -ri for
i = 1, ... , n. This verifies (5.2.11) in the more general case.

Comparing (5.2.11) and (5.2.9), we see that it can happen that if A(r)
is small, but not zero for very large values of r, A(A) may be large while
p(A) is small. For example, if

A(r) ice, r <Ro
0, r>Ro+1{

and A drops smoothly from a/(1 + r2) to 0 in the interval [Ro, Ro + 1], then
p(A) = 27re arctan Ro + a < rr2e + a, where a is the contribution to p of
the interval [Ro, Ro + 1], and it is clear that

2rre0<a< (1+Ro)

since A(r) < e/(1 + Ro) on [Ro, Ro + 11. Also

A(A) = re log(1 + Ro) + Q,

where 0 is the contribution of [Ro, Ro + 11 :

27rRo0<,Q< (I+ R02)'

By choosing e, we can make p(A) arbitrarily small and we can at the same
time, by choosing Ro, make A(A) arbitrarily large.

In the case of crisp sets, the isoperimetric inequality relates the area and
perimeter by

p2 > 47rA. (5.2.12)

Hence p cannot be small while A is large. Crisp disks are important in con-
nection with (5.2.12). They are the only sets for which equality is achieved.
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It is interesting to note that for convex fuzzy disks we get a reversed in-
equality. If A is piecewise smooth convex fuzzy disk such that rA(r) - 0
as r -+ oc, then

p2(A) < 4irA(A). (5.2.13)

We refer the reader to [51] for a discussion of (5.2.13).

5.3 The Height, Width and Diameter of a Fuzzy
Subset

In this section, we introduce the definitions of the height, width, extrinsic
diameter, and intrinsic diameter of a fuzzy subset. These definitions reduce
to the usual ones if the fuzzy subset is an ordinary subset. We also establish
some properties of these definitions, particularly for convex fuzzy subsets,
and we show how they relate to area and perimeter.

Recall that if A is integrable, we defined its area as f f A dx dy, where the
integration is performed over the entire plane. We assume in this section
that A is integrable and has bounded support, i.e., A = 0 outside a bounded
region R of R2. Hence

f f A dxdy = f f A dxdy < f f dxdy < area of R.
R R

Definition 5.4 Let A be a fuzzy subset of R2. The height of A is defined
as

h(A) = f V{A(x, y)]x E R} dy,
and its width as

w(A) = f V{ A(x, y)l y E R) dx.

It may be noted that for digital pictures, x and y take on only discrete
values, and since A = 0 outside a bounded region, the supremums are over
finite sets. In the Euclidean plane, the integrals are all finite since A has
bounded support.

Let A be crisp. Then V{A(x,yo) I x E IR) = 1 if A meets the horizontal
line y = yo, and = 0 otherwise. Thus h(A) = f V{A(x, y) Ix E R}dy is the
measure of the set of yo's such that A meets y = yo, which is a reasonable
way of defining the height of A. Each connected component of A gives
rise to an interval of y's. In particular, if A is connected, there is only one
interval, and h(A) is just the length of this interval. For example, suppose
A(x, y) = 1 if x2 + y2 < r2 and A(x, y) = 0 otherwise. Then h(A) = 2r
which is the length of the interval (-r, r] . Similar remarks apply to our
definition of width. Of course, in the digital case the height (width) of a
crisp set A is just the number of rows (columns) that A meets.
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Proposition 5.2 Let A be a fuzzy subset of R2. Then A(A2) = f f A2 dx
dy < h(A)w(A).

Proof. Since
A2(x, y) < v{A(x, y)lx E R} V (A(x, y)ly E R}.

it follows that
if A2 < f f v{A(x, y)Ix E R} V{A(x, y)Jy E R}dx dy
= f V{A(x,y)lx E R}dy f v{A(x,y)ly E R}dx = h(A)w(A).

Note that we cannot replace A2 by A in Proposition 5.2. For example, let
A = a on an H x W upright rectangle and A = 0 elsewhere, where a < 1.
Then h(A) = Ha, w(A) = Wa, but A(A) = HWa > HWa2. As this
simple example shows, the height and width of a fuzzy subset depend not
only on its geometrical measurements, but also on its membership values.

More generally, we define the extrinsic diameter of A as
E(A) =v f v{A(u,v)Iv E R}du,

u

where u, v denote any pair of orthogonal directions. Evidently, if A is crisp,
the u giving the maximum is the direction of the line on which A's projec-
tion has the largest measure. Clearly, h(A) < E(A) and w(A) < E(A), so
that A(42) < E2(A). As an example, suppose A(x,y) = 1 if IxI < s and
JyI < s, A(x, y) = 0 otherwise. Then h(A) = 2s. However, if we take for the
coordinate axes, the diagonals of the square, we see that E(A) = 2,12-s.

Let A be a crisp, connected set, and let P, Q be any points of A. Let pPQ
be any rectifiable path from P to Q that lies entirely in A; such paths exist
since A is connected. (We assume here and in what follows that A is not a
pathological set, so that there is no problem with the rectifiability of the
paths.) The intrinsic diameter of A is defined as

I(A) - Q {Apf,QIPPQI } (5.3.1)

where `pPQ I denotes the length of pPQ.

Proposition 5.3 If A is crisp and connected, then E(A) < I(A).

Proof. Since A is connected, the line on which A's projection is the longest
is an interval. The length of this interval is E(A). Let P, Q be points of
A that project into (or within a of) the endpoints of this interval. Then
the shortest path in A from P to Q is at least as long as the straight
line segment PQ joining them, and this segment is at least as long as the
interval since the interval is a projection of it.

Proposition 5.4 If A is crisp and convex, then E(A) = I(A).

Proof. Let P, Q be the endpoints of the path giving the maximum in the
definition of I(A). Since A is convex, the shortest path in A from P to Q
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is just the line segment PQ. The projection of A on the line PQ thus has
length at least I(A). Thus E(A) > I(A).

We define intrinsic diameter only for connected fuzzy subsets. A fuzzy
subset A is connected if and only if its level sets At = {P1A(P) > t} are
connected for all t. Let P, Q be any points and let p pQ be any rectifiable
path from P to Q such that for any point R on p pQ, A(R) > A(P) A A(Q).
Since A is connected, such a path always exists. We now define the intrinsic
diameter of A as

i(A) - VP,Q{APJ,Q f Al.
PPQ

(5.3.2)

If A is crisp and P or Q (or both) is not in A, then pPQ can be any path,
and the minimum is taken on for a path that has the smallest possible
intersection with A. Thus we get the same maximum over P, Q if we restrict
ourselves to P, Q that both lie in A. For such P, Q we have A = 1 on pPQ,
so that f PPQ A is just the length of pPQ, which proves that (5.3.2) is the
same as (5.3.1) in the crisp case.

We now give an example in order to show how I(A) depends on both the
shapes and the membership values of the level sets of A. Define the fuzzy
subset A of R2 by V(x, y) E R2,

a if x2 + y2 < r2,
A(x, y) = b if r2 < x2 + y2 < s2,

0 otherwise.

Here, if s is not much larger than r and a is much larger than b, we may
get the maximum when P and Q are both in the inner disk (diametrically
opposite), so that I(A) = 2ra. To see this, note that when P and Q are
diametrically opposite in the outer disk, the path joining them that gives
the minimum may be a diameter of the outer disk, yielding 2ra + 2(s - r)b;
but it may also be a path that goes around the inner disk (e.g., between
the points where the tangents from P and Q touch the inner disk), yielding
b[2(s2 - r2)1/2 +r(7r - 2 cos-'(r/s))], and this can be smaller than 2ra.

This example shows that we can have E(A) > I(A) in the fuzzy case
since E(A) for our fuzzy disk equals 2ra + 2(s - r)b in all cases, no matter
what the relative values of a, b, r, and s. On the other hand, if A is convex,
we haveA(r) _> A(P) A A(Q) for all R on PQ so that

fPQ A>'PrQA
for the path pPQ giving the minimum. If we project A on the line PQ, say
in direction u, we have

f (v A)du > fPQ Adu.
V

We thus have
E(A) =V f v{AIv E ]R}du > fPQ A > fPf Q A = I(A),
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so that we have the following result.

Proposition 5.5 Let A be a fuzzy subset of R2. If A is convex, then
E(A) > I(A).

Note that E(A) can be strictly greater than I(A) even when A is convex.
For example, the fuzzy disk is convex when a > b.

In [43] it is shown, in the digital case, that the intrinsic diameter of a
set is at most half of the set's total perimeter. A discussion concerning the
relationship of the intrinsic diameter and the perimeter of a fuzzy subset
can be found in [47].

Theorem 5.6 Let A be a fuzzy subset of IR2. If A is piecewise constant
and convex, then AA) <

2
p(A).

Proof. Since A is convex, for any points P, Q and any point R on the line
segment PQ, we have A(R) > A(P) A A(Q). Thus PQ is one of the paths
PPQ in the definition of I(A) and so

I(A)
4{PPQfP''VA)< Q fpQ A.

P

Let Im(A) = {0, a1i ..., an} where 0 < a1 < ... < an,. Let Mi = Aa' \Aa.+'
fori=l,...,n-1.NowA(x)=OifxER2\A°',A(x)=aiifxEMi,i=
1, ... , n - 1, A(x) _= an if x E Al.. Also the At" are convex. Let ci be
the perimeter of Aa' (= the outer perimeter of Mi), i = 1, ... , n. Thus, a
segment PQ which yields V fPQ A may be taken to be a chord of A°' , i.e.,

with P and Q on the border of Aa'. [If P or Q were interior to Aa' we could
extend PQ (until it hits the border) and increase f A, a contradiction;
and we need not extend PQ past the border since A = 0 outside Aa, and
such an extension would not increase fpQ A.] Let this PQ intersect the
Mi's in the sequence of segments m1i m2, ..., mk_1i mk, m'k_1i ..., m'2, m'1i
where Mk is the innermost of the M's that PQ intersects. Hence, the
concatenation of mi, mi+1, ..., mk, ..., m'i+1, m'i is a chord of Al'. Thus by
the nonfuzzy relationship between perimeter and diameter we have mi +
mi+1 + ... + Mk + ... + m'41 + m'i < 2ci. We thus have

JpQ A=m1a1 +m2a2+...+mkak+...+m'2a2+m'lal
= mkak + (mk_1 +m'k_1)ak_l + (Mk-2 + m'k_2)ak-2
+... + (m2 + m'2)a2 + (Ml + m'1)ai
= mkak - ak_1) + (7nk_1 + Mk + r'k_i)(ak-l - ak-2)
+(mk-2 + Mk-1 + Mk + Mk-1 + m'k)(ak-2 - ak-3)
+...+(m2+m3+...+m'k+...+m'3+m'2)(a2 -al)
+(m1 +m2+...+mk+...+m'2+m'1)(al -0) < 2[ck(ak -ak_1)+

Ck-1(ak-1 - ak-2) + ... + c2(a2 - a1) + cl (a1 - 0)]
in which the last expression is just the fuzzy perimeter of A.

Although our presentation so far is based on the work of Rosenfeld, we
find it worthwhile to include some results and ideas appearing 141. In [4},
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Bogomolny modifies some of the definitions presented in the first two sec-
tions of this chapter and defines a projection operator that should be used
along with the multiplicative operator in the process of fuzzy reasoning.
Bogomolony shows that his definitions of perimeter, diameter, and height
fit comfortably with the notion of area. For example, the area of a set is less
than or equal to its height times its width. Also the isoperimetric inequality
holds for a large class of fuzzy subsets.

For any two orthonormal vectors a and b in R2, the projection PraA of
a fuzzy subset A of R2 onto the direction of a parallel to the direction b is
a fuzzy subset of R defined by

(PraA)(r) = V{ Al/2(ra+sb)ls E R} Vr E R.
For a unit vector a the a-width of a fuzzy subset A of R2 is defined by

wa(A) = fR(PraA)(r)dr.
The height h(A) and the width w(A) are defined respectively by

h(A) = W"2 (A) and w(A) = we, (A),
where e1 = (1, 0) and e2 = (0,1).

Proposition 5.7 Let A be a fuzzy subset of 1182 Then Area(A) <h(A)w(A).

Proof. We have
0 < A(xl, X2) = A'12(x1, X2) - A'12(xi, x2)
_< v(A1/2(x1, x2) I x1 E R) V{A'12(xl, x2) I x2 E R}.

Thus
Area(A) = f fee A(xi,x2)dxldx2
< fR v{A1'2(x1, x2) f x1 E R}dx2 fl, v{A'/2(xl, x2) I X2 E R}dxl

= we 2(A) - we, (A) = h(A)w(A).

We now consider the perimeter of a fuzzy subset A of II82 which is a step
function. An explicit definition is given below. We let S denote the closure
of a subset S of 1[82 in the Euclidean topology.

Definition 5.5 Let A be a fuzzy subset of 1[82. Then A is called a fuzzy
step function if the following conditions hold:

(i) there exist (crisp) open sets S1, ..., S,t+.1, of which all but one (say Sn+1)
are bounded;

(ii) Si n Sj = 0, i 5 j;

n+1
(iii) U Si = R2;

i=1

n,)
(iv) if i Si n s, = U Aijk , where each Aijk is a rectifiable Jordan

k=1
arc of length l(Aijk);

(v) A - a, on Si, i = 1,...,n+ 1, a,,,+1 = 0.
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The the perimeter of a fuzzy step function A is defined to be
n+1 J:., 1/2 _ 112

p(A) = E E lai aj Il(Aijk)
i,j=1k=1
i<3

Theorem 5.8 Let A be a fuzzy step function. Then (p(A) )2 > 4irArea(A),
i. e., the isoperimetric inequality holds.

5.4 Distances Between Fuzzy Subsets

Let S be a metric space with metric d. The distance between two subsets
U and V is normally defined as

A{d(P,Q)IPEU,QEV}. (5.4.1)

This definition yields the shortest distance between U and V. In [10,11] two
methods of defining the distance between two fuzzy subsets A. B of S are
presented. The first method yields a `distance' which is a fuzzy subset of
R+, the nonnegative reals. It is defined for all r E R+ by

dA B(r) = v{A(P) A B(Q) I P, Q E S, d(P, Q) = r}. (5.4.2)

Suppose that A and B are crisp. Then dA a (r) = 1 if there exist P E A, Q E
B such that d(P, Q) = r and dA s (r) = U otherwise. Thus dA a generalizes
the set of distances between two crisp sets, but not the shortest distance
between two crisp sets. We propose a definition very similar to (5.4.2) that
does generalize the concept of shortest distance.

The second definition discussed in [15,16) generalizes the Hausdorff dis-
tance between crisp sets, namely

Ta - {PE S I3QET,d(P,Q) <A}, (5.4.3)

where T C S and A E R. We can think of T' as being the result of
`expanding' T by the radius A. Define the function L of p(S) x p(S) into
R+ by `du, v E p(S),

L(U,V) =A{AER+ I UA DV}.

Then the Hausdorff distance between U and V is the function L* of p(S) x
p(S) into R+defined by

L*(U,V) = L(U,V) V L(V,U). (5.4.4)

We see that, L* (U, V) is the smallest amount that one of U or V must be
expanded in order to contain the other one. This definition has an imme-
diate generalization to fuzzy subsets of S. For any such fuzzy subset T and
any A E R+, we define the function T' of p(S) into R+ by VP E S,
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i (P) = V{T(Q) I d(P.Q) < a}. (5.4.5)

Here, we can think of Ta as the result of applying to T a `local maximum'
operation with radius A. It clearly generalizes (5.4.3). We then define the
functions L and L* of 3p(S) x 'p(S) into W+ by VA, B E $p(S)

L(A. B) = A(A E R+ I A-' > B},

and

L* (A, B) = L(A, B) v L(B, A).

Later, we shall indicate how our definition is related to this approach.
Let A, b be fuzzy subsets of S. Define the fuzzy subset DAB of R by

for all rER+.

AA ,,§(r) = V{A(P) AB(Q) I P,Q E S,d(P,Q) < r}. (5.4.6)

This definition is almost identical to (5.4.2) except that = is replaced by
< . If A and b are crisp, we have AA(r) = 0 for all r < d(A, B), and
AAB(r)=1for all r>d(A,B).

Proposition 5.9 Let A and B be fuzzy subsets of S. Then DAB is a
monotonically nondecreasing function of r.

Proposition 5.10 Let A and B be fuzzy subsets of S. Then AA B(0) _
V{A(P) A B(P) I P E S}. In particular, L A B(0) = 0 if and only if (A n
B)=X0

Proof. AA B(0) = v{A(P) A B(P) I P E S} since d(P, Q) < 0 if and only
if P = Q. Thus AA B(0) = 0 if and only if (A fl B)(P) = 0 VP E S.

Proposition 5.11 Let A and B be fuzzy subsets of S. Then
limr DA,B(r) _ (v{A(P)I P E S}) A (V{B(Q) I Q E S}).
In particular, DAB = 0 if and only if A = X0 or b = X0

Proofi limr_,,. DA,b(r) = V {A(P) A . (Q) I P, Q, E S} _ (v{A(P)I P E
S}) A (v{B(Q)IQ E S}).

Now AA A(r) = 0 Vr E R+ if and only if A(P) A B(Q) = 0 VP, Q E S if
and only if either A = 0 or b - 0.

Proposition 5.12 If A' c A and b' c B, then AA, B, 9 LAB.
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If A and b are crisp, then AA ,f3 has a step from 0 to 1 at r = d(A, B)
and is constant everywhere else. (This is not strictly true if A and B are
nondisjoint since then 1A B 1 for all r E R+; but if we extend the
definition of A. 4,b to the entire real line by defining AA ,,§(r) 0 for all
r < 0, we now have a step at r = 0 in the nondisjoint case.) Let A and b
be discrete valued, say taking on the values 0 < to < tl < ... < t,, < 1. By
(5.4.6), we have

AA,B(r) = V{tilP E At,,Q E Bti,d(P,Q) < r}.
Let di =_ d(At., Bt=). Note that 0 = do < dl < ... < d,l. Suppose that

0 = do < di, < ... < d,, are the strictly increasing d's. This means that
At', and Bt', are strictly farther apart than At', and Bt'.,-' . Thus AA,B
has a step of height tip - ti., _, at each dig , and it has no other steps (except
for a step of height

do == AA,B(0) = v{tiiP E At, n Bt=}
at r = 0 if this supremum is nonzero).

In the discrete valued case, we could obtain a very nice generalization of
the shortest distance between two sets by defining a discrete fuzzy subset
of IIt+ having membership ti, - tij_, at each di, (and do at 0), and zero
elsewhere. Note that when A and B are crisp, this fuzzy subset is just the
crisp point {d(A, B)}. However, it is not clear how we could extend this
definition to the situation where A or b is not discrete valued.

The reader may wish to consult [48] for a discussion of another possible
approach.

In the following examples, we show that there is no simple relationship
between the differentiability of AAB and the continuity or differentiability
of b, where A and b is a fuzzy subset of R. Let d denote the Euclidean
metric on R. Then d(x, y) = Ix - yI Vx, y E R. Let A is the fuzzy subset of
Rdefined by A(x)=0`dxER,xj4 0,andA(0)=1.

Example 5.2 If b is continuous, AA ,,§ is continuous, except possibly at
0: If b(O) = b > 0, the value of DAB jumps from 0 to b at r = 0. Suppose
AA,B had a discontinuity at r = a > 0, say a jump from c to c + h. Then
we must have i3(x) < c for Jxl < a, and i3(x) = c + h either at x = a, at
x = -a, or at a sequence of x's having JxJ > a and x arbitrarily close to a
or -a. In either case, this makes b discontinuous at a or -a.

Example 5.3 If b is differentiable, AA ,f3 need not be differentiable: Let
B be any differentiable fuzzy subset that satisfies the following conditions:
B(0) = 0; B is strictly monotonically increasing as we move away from
0 in either direction; B(a) = B(-a) = b (where a, b > 0); and B'(a) >
-B'(-a). Since B(x) < b for JxJ < a and B(x) > b for JxJ > a, we have
AA,B(r) < b for r < a,AA,B(r) > b for r > a, and AA,B(r) = b for
r = a. In a sufficiently small neighborhood, the values of B(x) for IxI < a
are greater for x near -a than for x near +a, because B'(a) > -B'(-a);
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while the values for I xI > a are greater for x near +a than for x near -a.
Hence in this neighborhood the slope of Dq B(r) is (approximately) equal
to -B'(-a) for r < a; to k(a) for r > a; and the slope has a discontinuity
at r = a.

Example 5.4 la A a can be differentiable even if B is not continuous: Let
B(x) be differentiable and strictly monotonically increasing for x > 0, and
let B be arbitrary for x < 0, subject only to the restriction that B(-x) <
B(x) for all x > 0. Evidently for all r > 0 we have 1 A B(r) = B(r), so
that A is differentiable.

Let P E S and let b be a fuzzy subset of S. The distance distribution
from P to b, d e n o t e d L P is defined as DAB, where A(P) = 1, A(Q) = 0
for all Q E S, Q i4 P. Hence

L1pE(r) = V{ B(Q) I d(P,Q) <r}.
The effect on A of applying a local maximum operation to B (or A) is

easy to describe. We recall that B'(P) - V{B(Q)Id(P,Q) < A}. Then the
following result holds readily.

Example 5.5 OAAA(r) = AA,a(r+.1) = Ai,,,,§(r).

For a discussion concerning the application of the operation ()a to A or
B, the reader is referred to [48]. For a discussion on local minimum and
maximum operations and their effects on distance, see [28]. Other pertinent
results can be found in [52], [39], and [48].

5.5 Fuzzy Rectangles

In this section, we define the notion of a separable fuzzy subset of the plane
R2 For such a fuzzy subset, connectedness, convexity, and orthoconvexity
are all equivalent. We call a fuzzy subset with these properties a fuzzy
rectangle. We also define a fuzzy convex polygon in terms of an infimum of
fuzzy halfplanes and show that a fuzzy rectangle is a fuzzy convex polygon.

Definition 5.6 Let A be a fuzzy subset of the plane. Then A is called
separable if there exists a coordinate system (x, y) and fuzzy subsets B and
C of JR such that

A(x, y) = B(x) A C(y) for all x, y E R.

Let A be a fuzzy subset of J2. Then A is connected if for all points
P, Q there exists an are p from P to Q such that A(R) > A(P) A A(Q)
yR E p. A is convex if VP, Q and VR on the line segment PQ, we have
A(R) > A(P) A A(Q). A is orthoconvex if the same is true whenever P and
Q have the same x coordinate or the same y coordinate, i. e., whenever the
line segment PQ is vertical or horizontal.
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Theorem 5.13 Let A be a fuzzy subset of R2. Then the following condi-
tions are equivalent:

(i) A is connected,

(ii) A is convex,

(iii) A zs orthoconvex.

Proof. There exists fuzzy subsets b and C of IR such that A(x, y) _
B(x) A C(x) dx, y E R.

(i) (ii): Suppose that (i) holds. Let P = (a, b), Q = (c, d), and let a <
r < c (or vice versa). There exists an arc p from P to Q such that A(R) >
A(P) A A(Q) VR E p. Now p must cross the vertical line with abscissa r.
Thus for some so, we have (r, so) on p so that A(r, so) > A(a, b) A A(c, d).
Hence B(r) A C(so) > A(P) A A(Q) so that B(r) > A(P) A A(Q). The
analogous argument shows that if b < s < d (or vice versa) we must have
C(s) _> A(P) A A(Q). In particular, in and on the (possibly degenerate)
rectangle that has P and Q as opposite corners, we have both

B(r) > A(P) A A(Q) and C(s) > A(P) A A(Q)
so that

A(r, s) = B(r) A C(s) > A(P) A A(Q);
but the line segment PQ is a diagonal of this rectangle. That (ii) implies
(i) is immediate.

(ii) a (iii): Clearly (ii) implies (iii). Thus it remains only to show that
(iii) implies(i). Let P = (a, bj, Q = (c, d), and R = (a, d). Then

A(R) = B(a) AC(d)} > (B(a) A C(b)) A (B(c) A C(d)) = A(P) A A(Q).
Since A is orthoconvex, we have A(S) > A(P) A A(Q) for all S on the
vertical line segment PR. Hence

A(S) _> A(P) A (A(P) A A(Q)) = A(P) A A(Q).
Similarly,

A(S) > A(Q) A A(R) > A(Q) A (A(P) AA(Q)) = A(P) A A(Q)
for all S on the horizontal line segment QR. Thus for all S on the L-
shaped path from P to Q composed of these two line segments, we have
A(S) > A(P) A A(Q), which proves that A is fuzzy connected.

If A is separable and satisfies (i), (ii), and (iii) of Theorem 5.13, we call
A a fuzzy rectangle.

Theorem 5.14 A is a fuzzy rectangle if and only if there exist two convex
fuzzy subsets B, C of R such that

A(x, y) = B(x) A C(y)
for allx,yER.

Proof. If B and C exist, then it is immediate that A is a fuzzy rectangle.
Conversely, suppose that A is a fuzzy rectangle. Then A is separable and
so there exist fuzzy subsets B and 0 of IR such that A(x, y) = B(x) AC(y)
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Vx, y E R. Suppose that b is not convex. Then there exist xl < X2 < x3
such that f3(X2) < B(xl) A B(x3). Suppose for some y that C(y) > B(x2).
Then

A(xi , y) = B(xi) A C(y) > B(x2),
A(x2, Y) = B(x2) A C(y) = B(x2),

and
A(x3, Y) = B(x3) A C(y) > B(x2),

which contradicts the convexity of A. Thus C(y) < BSx2) for all y so that
A(x, y) = B(x) AC(y) = B(x) A(C(y) AB(x2)) = (B(x) AB(x2)) AC(y).

Let B(x2) be the smallest value of B that violates convexity. Then B(x) A
B(x2) must be convex. (If B(x) AB(x2) had a triple of values that violated
convexity, say xi < x' < x3, then B(x'2)AB(x2) < B(x')AB(x2)AB(x3)A
B(x2) and so B(x2) < B(x1) A B(x3) and B(x2) < B(x2). The same triple
of points would also violate the convexity of B, contrary to the minimality
of B(x2).) Thus if B is not convex, we can replace it by B(x) n B(x2),
which is convex, and we still have A(x, y) = (B(x) A B(x2)) A C(y); and
similarly for C.

Proposition 5.15 A is a fuzzy rectangle if and only if At is a rectangle
for all t E [0, 1). (The rectangle may be degenerate: it may have zero width
or height (or both), or it may be infinite in x or y or both, in one or both
directions.)

Proof. Suppose that A is a fuzzy rectangle. Then there exists fuzzy subsets
b, C of R such that A(x, y) = B(x) A C(y). Thus dt E [0,1J . A(x, y) > t if
and only if b(x) > t and CSy) > t. Hence

At = {xIB(x) > t}_x {yIC(y) > t} = Bt x Ct.
By Theorem 5.14, if A is a fuzzy rectangle, we can assume that B and C are
convex. Thus for any t, Bt and Ct are convex, i. e., are intervals (possibly
degenerate) so that their direct product is a rectangle. Conversely, if At is
a rectangle for all t, Bt and Ct must be intervals for all t, hence are convex.
Thus B and C are convex, which makes A a fuzzy rectangle by Theorem
5.14.

A fuzzy subset A of the plane is called a fuzzy halfplane if there exists a
direction x and a fuzzy subset b of R such that

(a) A(x, y) = B(x) for all x, y E IR;
(b) B is inonotonically nonincreasing, i. e., xl > X2 implies B(xl) <

B(x2)
Therefore, A is a fuzzy halfplane if and only if the At, 0 < t < 1, are

halfplanes (possibly degenerate).

Proposition 5.16 Let A be a fuzzy halfplane. Then A is convex.

Proof. Let B be a fuzzy subset of IR such that A(x, y) = B(x) Vx, y E R.
For any points P, Q, R such that R is on the line segment PQ, let u, v. w be
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the x-coordinates of P, Q, R respectively. Then u < w < v (or vice versa).
Thus b(u) > B(w) > B(v) (or vice versa) so that A(P) > A(R) > A(Q)
(or vice versa). Hence A(R) > A(P) A A(Q).

Let A1, .., Ak be fuzzy halfplanes whose associated directions x1, ..., xk
are in cyclic order (modulo 2x). If every pair of successive directions (mod-
ulo k) differs by less than ir, we call Al n ... n Ak a fuzzy convex polygon.
Since an infimum of convex fuzzy subsets is convex, it follows from Propo-
sition 5.16 that a fuzzy convex polygon is a convex fuzzy subset. Thus,
(A1 n ... n Ak) is a fuzzy convex polygon if and only if { (A 1 n ... n Ak )' 10 <
t < 1 } is a set of convex polygons.

_

Proposition 5.17 A fuzzy subset B of IR is convex if and only if there ex-
ists fuzzy subsets B1, B2 of R such that B = B1 nB2i where B1 is monoton-
ically nonincreasing and B2 is monotonically nondecreasing.

Proof. As in the proof on Proposition 5.16, a nonincreasing or nondecreas-
ing fuzzy subset of the line is convex. Hence the infimum of two such fuzzy
subsets is convex. Conversely, let b be convex. If B ever decreases, it can
never increase afterwards. Thus either b is nondecreasing or nonincreasing,
or it is first nondecreasing, say up to xo, and then nonincreasing. Let

V{B(x)Ix E R} = M.
Then we must have B(xo) = M. Thus in the first two cases, we can take
Bl B and B2 = M or vice versa, while in the last case, we can define
B1=Mforx<xo,B1 =Bforx>xo,andB2=Bforx<x0,B2 =M
for x > xo.

Theorem 5.18 A fuzzy rectangle is a fuzzy convex polygon.

Proof. By Theorem 5.14, if A is a fuzzy rectangle, we have A(x, y) =
B(x) n C(y) , where B and C are convex. By Proposition 5.17, we have
B = B1 nB2 and C = Cl nC2, where the B's and C's are monotonic. Hence
A is the infimum of four fuzzy halfplanes whose associated directions are
fx and ±y.

5.6 A Fuzzy Medial Axis Transformation Based on
Fuzzy Disks

Let S be a subset of a metric space. Let P be any point of S and let DP be
the maximal disk centered at P and contained in S. Then S is the union of
the D p's. Let S' be any subset of S such that for all P E S, there exists
Q E S' such that Dp C DSQ; we call S' a sufficient subset of S. Clearly,
for any such S', S is the union of the Ds's.

In particular, let S be a set of nodes in a graph. Then the graph can be
regarded as a metric space under the metric defined by path length. Let



5.6 A Fuzzy Medial Axis Transformation Based on Fuzzy Disks 159

S* be the set of nodes Q of S at which DQ is a local maximum (i. e., for
any neighbor P of Q, DP C DQ). Then S* is a sufficient subset of S.
S* is called the medial axis of S and the set of DQ's for Q E S* is called
the medial axis transformation (MAT) of S. When the graph is the set of
pixels in a digital image under any of the standard definitions of `neighbor',
this reduces to a standard definition of the MAT [52].

In this section, we generalize the definition of the MAT to fuzzy subsets
of a metric space. Our definition is based on the concept of a fuzzy disk,
which is a fuzzy subset in which membership depends only on distance from
a given point. Unfortunately, specifying the MAT may require, at times,
more storage space than specifying A itself.

There have been several generalizations of the MAT to grayscale images,
e. g., using a 'gray-weighted' definition of distance [27,61J, or using the
methods of gray-weighted `mathematical morphology' [39,56]; a related idea
is the concept of thinning or skeletonization (18,29]. If the gray levels are
scaled to lie in the range [0, 1], we can regard the gray level of a pixel as
its degree of membership in the set of high-valued ('bright') pixels. Thus a
gray scale image can be regarded as a fuzzy subset.

The general definition of the MAT given above generalizes straightfor-
wardly to fuzzy subsets of a metric space. We recall from Section 5.2 that
for any metric, a fuzzy disk centered at the point P is a fuzzy subset in
which membership depends only on distance from P.

Let D be a metric space with metric d and let A be a fuzzy subset of D.
For each P E D, let Bp be the fuzzy subset of D defined by for all Q E D,

BA (Q) = A{A(R) I d(P, R) = d(P, Q), R E D}.
Then, BA is a fuzzy disk and BP C A. In fact, BA is the maximal
disk centered at P such that BP C A. Let Q E D. Then BQ(Q) <

(PED
Hence U f3-4 =A.

PED
Let D' be any subset of D such that
VP E D, 3Q E D' such that BA C BQ .

We call such a D' an A-sufficient subset of D. For any such D', we have
A U BQ -D U BP = A and so A = U E.

QED' PED QED'
In particular, let D be the set of nodes of a graph under the path metric.

We say that P E D is a (nonstrict) local maximum of A if P has no neighbor
Q such that BA C B. Evidently, the set DA of such local maxima of A
is an A-sufficient subset of D so that A is such that A(Q) = v{BA(Q) I
P E DA } for all Q E D. We call DA the fuzzy medial axis of A, and we call
{ BP [ P E DA } the fuzzy medial axis transformation of A. It is easily seen
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that if A is a crisp subset of D. these definitions reduce to those given at
the beginning of the section.

It should be pointed out that although crisp disks are convex, fuzzy disks
are not necessarily convex. However, we can show that if D is the plane
under the Euclidean metric and A is convex, then the BP's are all convex.
Hence, a fuzzy disk centered at P in the Euclidean plane is convex if and
only if its membership function is a monotonically nonincreasing function
of distance to P.

Proposition 5.19 If A is convex, then the BP are convex for all P.

Proof. Assume that there exists collinear points Q1i Q, Q2 with Q on the
line segment Q1Q2 such that BP (Q) < BP (Q1) A BP (Q2). Then there ex-
ists a point R such that A(R) < BP(Ql) ABP(Q2) and d(P, Q) = d(P, R).
Now there exists a point Q' such that d(P, Ql) = d(P, Q') and Q', R
and Q2 are collinear with R on the line segment Q'Q2. Since d(P, Q 1) =
d(P,Q'),BP(Q1) = BP(Q'). Thus A(R) < BP(Q') ABP(Q2) and so A is
convex. This gives the desired result by contrapositive.

FIGURE 5.1 Illustration of the proof of Proposition 5.19.

The converse of Proposition 5.19 is false. If A = 1 at two points and
A = 0 elsewhere, then every BP is convex, but A is not. In fact, A is not
even connected.

Since crisp disks are convex, we also have a generalization of the crisp
MAT if we define the FMAT using the maximal convex fuzzy disk centered
at (every) P and not exceeding A. We shall consider both the general
definition and this `convex' definition in our examples.

The following discussion is from (37]. Let D be the digital plane (the
integer-coordinate lattice points) under the chessboard metric, i.e., max{ Ix-
ul, Iy - vi} for points (x, y) and (u, v). A `disk' in this metric is an upright
square of odd side length. Let A be zero except on an n x n array of lattice
points so that A represents an n x n digital image with gray levels in the
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range [0. 1] . For any pixel P, we have k p (r) = 0 for any r > the chessboard
distance dp from P to the border of the image. Thus to specify Bp, we
need only list its values for the (integer) chessboard distances up to dp. In
an n, x n digital image, the average number of values will be on the order of
n, arid if the number of pixels that belong to the fuzzy medial axis is also
O(n), the total number of values needed to specify the FMAT is O(n2).

As an example, consider the 5 x 5 digital image shown in Table 5.1(a).
For the pixels on the border of the image, Bp is specified by the single
value A(P). For the pixels having value 0.2. BP is defined by the pair of
values (0.2, 0.1) except for the lower left-hand 0.2, where BA is defined by
(0.2, 0).Finally, for the center pixel, i3-4

p
is defined by the triple of values

(0.3, 0.2, 0). This implies that, as shown in Table 5.1(b), all the pixels hav-
ing value 0.2, except the lower left-hand one, belong to the fuzzy medial
axis (since the center of pixel's BP is not > their Bp's); thus 8 of the 25
pixels belong to the fuzzy medial axis. Thus specifying the FMAT requires
17 membership values (one disk requires three values, and seven require
two each). This result remains true if we define the FMAT using only con-
vex fuzzy disks since the disks in this example are all convex. Note that
specifying the image itself requires only 25 values.

TABLE 5.1 (a) 5 x 5 digital image. (b) X's denote pixels belonging to the
fuzzy medial axis of (a). 1

0.1 0.1 0.1 0.1 0.1

0.1 0.2 0.2 0.2 0.1 X X X
0.1 0.2 0.3 0.2 0.1 X X X
0.1 0.2 0.2 0.2 0.1 X X
0.0 0.1 0.1 0.1 0.1

(a) (b)

For real images, the situation can even be worse. In [37, Figures 3(a) and
4(a), p.588 and p.589] show, respectively, a 16 x 41 chromosome image and
a 36 x 60 image of an `S'; each of them has 32 possible membership values.
In the first case, all but 189 of the 656 pixels belong to the fuzzy medial
axis [37, Figure 3(b), p.588], and in the second case all but 411 of the 2160
pixels belong to it [37, Figure 4(b), p.589]. The results are similar if we
allow only convex disks in the FMAT. In the first case, we still need all

'Reprinted from Pattern Recognition Letters, 12, no. 10, S.K. Pal and A. Rosenfeld,
A fuzzy medial axis transformation based on fuzzy disks, 585 590, 1991 with kind per-
mission of Elsevier Science NL, Saia Burgerhartstraat 25, 1055 KV Amsterdam, The
Netherlands.
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but 211 of the pixels [37, Figure 3(c), p.588], and in the second case all but
730 [37, Figure 4(c), p.589]. (The fact that we need fewer maximal convex
fuzzy disks, even though their values are smaller than those of the maximal
fuzzy disks (the BA's), is apparently because the convex fuzzy disks have
fewer nonstrict local maxima.)

Somewhat better results can be obtained by defining the FMAT using
disks of bounded radius (i. e., disks whose memberships are 0 beyond a
given radius r); evidently, for any r > 0 the image is still the supremum of
these disks. (Of course, for r = 0 the FMAT is just the entire set of pixels in
the image.) As we decrease r, the number of disks needed will increase, but
since small disks are specified by fewer values, the total number of values
needed may decrease. Unfortunately, for the images in [37, Figures 3 and
4] it turns out that for every value of r, the number of values needed to
specify the FMAT is at least as great as the number of pixels in the images,
as shown in Tables 5.2 and 5.3.

The FMAT, defined using either fuzzy disks or convex fuzzy disks, is
a natural generalization of the MAT. Unfortunately, since 0(n) member-
ship values are required to specify a fuzzy disk in an n x n digital image,
the FMAT is a compact representation of the image only if it involves a
relatively small number of fuzzy disks.

The compactness of the representation can be improved in two ways:
(a) The FMAT, like the MAT, is redundant. BP is not used if there

exists a Q such that BP C BQ, but we could use also eliminate many other

BP's for which there exist sets Q of Q's such that Bp C U BQ. On this
QEQ

approach to reducing the redundancy of the MAT see [2].
(b) The MAT and FMAT completely determine the original image. For

many purposes it would suffice to use a representation from which an ap-
proximation to the image could be constructed. A MAT-based approach of
this type is described in [1].

It would be of interest to generalize both these approaches to the FMAT.

TABLE 5.2 Number of disks and number of values needed for the chro-
mosome image ([37, Figure 3], 656 pixels) when we use disks of radii
< 7,5,3,2, 1, or 0. 1

Radius Disks Values
7 304 1237

5 310 1193

3 311 980

2 319 828

1 345 656

0 656 656
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TABLE 5.3 Number of disks and number of values needed for the S image
([37, Figure 41, 2160 pixels) when we use disks of radii < 17, 5, 3, 1

or 0.1

Radius Disks Values
17 1744 15,278

13 1749 14,678

10 1752 13,411

7 1764 11,251

5 1817 9,440

3 1903 7,074
1 2059 4,031

0 2160 2,160

5.7 Fuzzy Triangles

In this section, we introduce the notion of a fuzzy triangle in the plane. We
define the notions of area, perimeter, and side lengths. We show that side
lengths are related to the vertex angles by the Law of Sines. The material
is based on [49].

For any direction 9 in the plane, let (xei ye) be Cartesian coordinates
with xe measured along 0 and yo measured perpendicular to 0. A fuzzy
subset A of the plane is called a fuzzy halfplane in direction 9 (Section
5.5) if A(xe, ye) depends only on xe and is a monotonically nondecreasing
function of xe. Hence, a level set of a fuzzy halfplane in direction 0 is either
the entire plane, or a halfplane bounded by a line perpendicular to 9, or
empty.

For example, let 9 be a direction in the plane. Define the fuzzy subset A
of the plane by

0 ifxe<1,
A(xe, ye) =

I
xA-1 if xe > 1.

xe

Then 1 < xe < xe implies In -1 < xe -1 and so A is a monotonically
e

nondecreasing function of xe. It follows that A is a fuzzy halfplane in the
direction of 9.

Reprinted from Pattern Recognition Letters, 12, no. 10, S.K. Pal and A. Rosenfeld,
A fuzzy medial axis transformation based on fuzzy disks, 585 590, 1991 with kind per-
Inission of Elscvici Science NL, Saia Burgerhartstraat 25, 1055 KV Amsterdam, The
Netherlands
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Proposition 5.20 If A is a fuzzy halfplane, then A is convey.

Proof. Let P. Q. and R be points such that Q is on the line segment
PR. For any direction 0. the x9-coordinates P9. QB. Re of such a collinear
triple P, Q, R must satisfy either PB < QB < Re or PB _> QB > Re. Hence
A(P) A A(Q) A A(R) must equal either A(P) or A(R).

Fuzzy convex polygons of various types can be defined as infimums of
fuzzy halfplanes (Section 5.5). Note that such polygons must be convex
fuzzy subsets since an infimum of convex fuzzy subsets is convex. We will
be primarily concerned with fuzzy triangles, with emphasis on the case
where the membership functions are discrete-valued.

Let y be three directions in the plane which are not all contained
in a halfplane. Let A, b, C be fuzzy halfplanes in directions a, 0,,y, respec-
tively. To avoid degenerate cases, we will assume that A, B,and C are all
nonconstant and all take on the value 0. Then A fl B fl C is called a fuzzy
triangle.

Proposition 5.21 Let A, B, C be as described above. Any nonempty level
set of A fl b fl C is a triangle with its sides perpendicular to a, 0, y.

Proof. The nonempty level sets of A are halfplanes bounded by lines per-
pendicular to a and they lie on the sides of these lines in the direction of
a (i. e., the direction of nondecreasing A); and similarly for the level sets

of b and C. Now Vt E [0,1] , (A fl b fl C} = At fl Bt fl Ct. Since a, Q,and

y are not all contained in a halfplane, an intersection of level sets of A, b,
and C is either empty or a triangle.

Let A, B,and C be discrete-valued and suppose that A n b fl C takes on
the values 0 < t1 < ... < t,,, < 1. Then we can specify a fuzzy triangle t
by defining a nest of triangles Ti each of which has its sides perpendicular
to a, f3, and -y. On the innermost nonempty triangle T, t has value t,,;
on the remaining part of the triangle
T takes on value on the remaining part of the outermost triangle
T1, t takes on value t1; and its value on the rest of the plane is zero. Note
that the Ti's can be irregularly placed, as long as they are parallel-sided
and nested; and note that the Ti's must all be similar. A simple example
of a fuzzy triangle, involving only the membership values 0, .4, .6 and 1, is
shown in Fig. 5.2. This fuzzy triangle is defined by fuzzy halfplanes whose
images in [0,1] are {0,1 }, {0, 0.6, 11 and 10, 0.4,0.6, 1} . As this example
shows, some of the sides of the Ti's may coincide.

Recall that the sup projection of a fuzzy subset A onto a line L is a fuzzy
subset of L whose value at P E L is the supremum of the values of A on
the line perpendicular to L at P.

Proposition 5.22 A fuzzy triangle is completely determined by its sup
projections on lines perpendicular to any two of the directions a. (3. y.
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FIGURE 5.2 A fuzzy triangle.

Since these lines are parallel to the sides of the Ti's, we can think of them
as defining the directions of the sides of T.

Let the areas of T1, ..., Tn be S1, ..., Si,, let their perimeters be P1, ..., P. ,

n
and let bi = ti -- t7_1 (where to = 0). Then the area of t is S =E biSi.

i=1
We see that this sum counts the area S1 of T1 with weight t1 and counts

the area Si of each successive inner Ti with additional weight bi. The
perimeter of t is

n

P=E bipi.
i=1

Let the side lengths of Ti perpendicular to a,,3, and -y be ai, bi,and ci,
respectively. Then we can define the side lengths of t as

n n n

a 6iai, b bibi, c 6ici.
i=1 s=1 i=1

Thus, we have a + b + c = P. Note that since the Ti's are parallel-sided,
they all have the same vertex angles, say A. B, C. We can regard these as
the vertex angles of T. Note that by the Law of Sines, we have for each Ti

ai bi ci

sin A sinB sin C

If we multiply by bi and sum over i, this gives the following result.
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Proposition 5.23 a/ sin A = b/ sin B = c/ sin C.

Corollary 5.24 If two vertex angles of t are equal, their opposite side
lengths must be equal, and conversely.

Many properties of ordinary triangles do not generalize to arbitrary fuzzy
triangles. For example, let the side lengths of a fuzzy right triangle be

n n n

a b=at, b bibi, c bic,.

Since the Ti's are all right triangles, we have a;2 + bit = ci2 for each
i. However, we cannot conclude that a2 + b2 = c2, in general. Some other
generalization failures are described in [50].

5.8 Degree of Adjacency or Surroundedness

In this section, we propose definitions of the degree of adjacency of two
regions in the plane and the degree of surroundedness of one region by
another. Our results are from [54]. We show that some of these concepts
have natural generalizations to fuzzy subsets of the plane. Applications of
the proposed measures to digital polygons are given and algorithms for
computing these measures are presented.

In describing a picture, one often needs to specify geometric relations
among the regions of which the picture is composed. A review of such
relations and their measurement in digital pictures can be found in [53].

The concept of adjacency is an important relation between regions. In
a digital picture, sets S and T are adjacent if some border pixel of S is
a neighbor of some border pixel of T. In the Euclidean plane, regions S
and T are adjacent if their borders intersect. However, this relation is not
quantitative since S and T are not considered adjacent even if they are
very close to one another. It also doesn't matter whether they are adjacent
at one point or at many points. We propose a quantitative definition of
adjacency which takes these factors into account.

Quantitative definitions of adjacency have been used in defining criteria
for region merging in segmentation. For example, merge merit can be based
on the length of common border of two regions relative to their total border
lengths, [64]. However, this assumes that the regions are exactly adjacent.
Parts of the borders that lie very close to one another do not contribute
to the length of common border. The definition presented here takes near-
misses into account, and can even be extended to define degree of adjacency
for fuzzy subsets.

The concept of surroundedness is also an important region relation. All
pictures are assumed to be of finite size. The region of the plane outside a
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FIGURE 5.3 Examples of near-adjacency (a, b) and non-adjancency (c).

FIGURE 5.4 The line of sight requirement in measuring adjancency.

T

S

(a)

S

(b)

picture is called the background. S is said to surround T if any path from T
to the background must intersect S. This definition is also non-quantitative.
We propose two ways of defining the degree to which S surrounds T.

We first consider quantitative adjacency in Euclidean regions.
Let Co be a rectifiable simple closed curve in the plane and let Cl,..., Cn

be rectifiable simple closed curves not crossing one another and contained
in the interior Co of Co. According to the orientation of Co, the closed set
Co U Co is either a bounded set or the infinite plane except for a bounded
set (infinite case). For C1, ..., Cn, we assume that C1, ..., C. are bounded
sets. Then (Co U Co)\(C1 U ... U C,) is called a region. Co is called its outer
border and C1, ..., Cn are called its hole borders. In the infinite case, there
is no unique distinction between the outer border and the hole borders
because the outer border may be considered to be a hole border itself. The
perimeter of the region is defined to be the sum Eno ICt) of the lengths
of its borders.

It is intuitive to consider two regions S and T to be "somewhat" adja-
cent if some border of S "nearly" touches some border of T. The degree
of adjacency depends on how nearly they touch and along how much of
their lengths they touch. The borders nearly touch if they are close to one
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another. That is illustrated in Figures 5.3(a) and (b). Note that S and T
are allowed to overlap. However, not all cases in which borders are close
to each other imply near-adjacency. This is shown in Figure 5.3(c). The
difference is that in Figures 5.3(a) and (b), the shortest paths between the
close borders lie outside both regions or inside both of them, while in Fig-
ure 5.3(c) these paths lie inside one region and outside the other. It also
seems reasonable that only line of sight paths should be counted in defining
adjacency. In Figure 5.4(a), the left-hand edge of T should contribute to its
degree of adjacency to S, but its other edges should not, and similarly in
Figure 5.4(b), the parts of the border of the concavity in T from which S
is not visible should not contribute. Finally, note that as can be seen from
Figures 5.5(a) and (b), quantitative adjacency is not symmetric. In Figure
5.5(a), S is highly adjacent to T since much (or all) of its border nearly
coincides with the border of T, but T is not as highly adjacent to S since
only a small part of its border coincides with that of S.

Due to above line of reasoning, the degree of adjacency of S to T is
defined as follows: Let P, Q be any border points of S and T, respectively,
If P # Q, we say that. the line segment PQ is admissible, with respect
to (S,T) understood, if its interior lies entirely outside both S and T or
entirely inside both of S and T. If P = Q, we call Pl admissible if the
(signed) normals to the borders of S and T at P do not point in the same
direction. Let dp be the length of the shortest admissible line segment PQ
having P as an endpoint; if no such segment exists, let dp = oo. Then we
define the adjancency of S and T as follows:

a(S,T) = fas 1/(dp + 1)dP,
where the integration is over the border OS of S. Suppose for example that
S and T are two squares of size a x a with distance b between them. Then

a(S,T) = a(T, S) = a/(1 + b).
As another example suppose that S is a square of size a x a located at

the center of a square T of size b x b, defining an infinite region T. Then
a(S, T) = 4a/(1 + (b - a) /2).
Hence

a --+b.
Consequently, a border point P of S contributes maximally to a(S, T) if

it also lies on the border of T (and the conditions for the case P = Q are
met), since in this case dp = 0 and

1/(dp+1)=1.
It does not contribute at all if no admissible segment PQ exists, e.g., if

the border of T is not visible from P since in this case dp = oo and
1/(dp + 1) = 0.

Since dp _> 0 in any case, we have
1/(dp + 1) < 1.
Thus
a(S, T) : fas 1dP = P(S)
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FIGURE 5.5 Degree of adjacency is not symmetric.

S
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the perimeter of S. Now a(S, T) can be normalized by dividing it by p(S).
It then lies between 0 (not at all adjacent) and 1 (maximally adjacent).
For example, it follows from Proposition 5.26 that a hole in a region is
maximally adjacent to that region. A different function f (dp) could have
been used in place of 1/(dp + 1) in defining a(S, T). The essential require-
ments are that f be a monotonically decreasing function of dp and that
f (0) = 1, f (oo) = 0.

Proposition 5.25 Let S and T be regions. Then a(S, T) = 0 if and only
ifSCT.

Proof. Suppose that S C T. Then there are no admissible segments PQ.
Note that where the borders touch, the signed normals of S and T point in
the same direction. Conversely, suppose S % T. Then by the definition of
a region, there must exist a border arc of S at every point of which there
is an admissible segment. Hence, a(S, T) # 0.

Proposition 5.26 Let S and T be regions. Then a(S, T) = p(S) if and
only if either S is bounded, lies inside a hole in T and its border is identical
to the border of that hole or S is unbounded, T lies inside a hole in S and
the border of S is identical to the outer border of T.

Proof. Suppose the conditions hold. Then dp = 0 at every border point
of S. Conversely, under no other circumstances can the entire border of S
coincide with a part of the border of T. Note that since a region cannot
consist of several isolated parts, it must be contained in one hole only.

The definition of a(S,T) can be extended to types of sets other than
regions. As an example, consider a single point P. Define a(P,T) to be 0
if P E T and 1/(d(P,T) + 1) if P V T, where d(P,T) is the distance from
P to T. (We note that this definition is not exactly analogous to the one
for regions; a single point has a zero border length, so that integrating over
it should always give zero. The analogy would be better if, in the region
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FIGURE 5.6 The degree of adjacency of a region T to a point P is not
necessarily a monotonically decreasing function of d(P,T) and is not nec-
essarily a continuous function of the position of P.

P

b

definition, we normalized a(S,T) by dividing by p(S). We also note that
it follows from this definition that a(P, T) = 1 when P is on the border
of T.) Conversely, for a single point Q we can define a(S, Q) using the
original definition for sets S and (Q}. Here too there are no admissible
segments if Q E S, but that otherwise a(S, Q) is obtained by integration
over the part of the border of S visible from Q. Similarly, we can define
a(S, T) if S or T is an are, although the details are not provided here. If
the a(Si, TT) are defined for S1, ..., S,,, and T1, ..., T,,, it is also possible to
define 1Si,Ujn=iTj).

However, we omit the details.

Proposition 5.27 If T' C T and SnT = 0. then a(S,T') < a(S, T).

Proof. Let PQ be any admissible segment in the definition of a(S, T).
Let R be the first point in which PQ meets T. Then PR or a shorter line
segment is admissible in the definition of a(S, T). (Note that R P since
S fl T = 0.) If dp, dp are the lengths of the shortest admissible segments in
the definitions of a(S, T) and a(S,T'), respectively, then dp < d'p. (Note
that for some P's there may be admissible segments with respect to T, but
not with respect to T'.) Thus

fas 1/(d' + 1)dP < fas 1/(dp + 1)dP.

Proposition 5.28 If P, P" 0 T and d(P',T) < d(P, T), then a(P', T) >
a(P, T), but it is not necessarily the case that a(T, P') > a(T, P).

Proof. We have that
a(P',T) = 1/(d(P',T) + 1) > 1/(d(P,T) + 1).
On the other hand, let P, P and T be as shown in Figure 5.6. Then for P

sufficiently close to P', the contributions of side b to a(T, P) and a(T, P')
are approximately equal, but sides a and c do not contribute to a(T, P').
Hence its total contribution is smaller. (See also the example above.)
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Proposition 5.29 Suppose that P V T. Then a(P,T) is a continuous
function of the position of P, but a(T, P) is not.

Proof. The proof follows from Proposition 5.28 and the example given
there.

The definition of adjacency can be generalized to the case of bounded
fuzzy subsets of the plane, i. e., fuzzy subsets which are equal to zero outside
a bounded region B. Let A and b be such fuzzy subsets. The desirability of
defining geometric concepts in the fuzzy case, so that they can be measured
without having to first crisply segment a picture, is discussed in [46].

We assume in the following that A and h are ` piecewise constant' in the
following sense. Partition B into a finite number of regions whose interiors
are disjoint and such that the border of each region is contained in the
union of the borders of the other regions. Let U be the union of all borders
of these regions. In the interior of each region, A has constant value and
at each point of a border, it has one of the neighboring interior values.
Another case of interest is that in which A and B are `smooth', that is,
everywhere differentiable. Note that we can approximate a piecewise con-
stant A by a smooth b which is constant except near the borders, where
it changes rapidly from one constant value to another. `Smooth' versions
of the definitions in this section could be given, using derivatives in place
of differences.

If P 54 Q, we call the segment PQ admissible with respect to (A, B) (or
simply admissible) if

(a) P is on a border of U and Q is on a border of U. We assume that
only two of the constant regions of A(B) meet at P(Q). (More than two
regions meet only at a finite number of points and these can be ignored in
defining degree of adjacency.) _

(b) Let R be a point of PQ such that R # P and A changes value at
R as we move from P to Q and let LR be this change in value. Note that
there can be only a finite number of such R's. Let the values of A at the
two regions that meet at P be a and b, where b is the value on PQ near P,
and let L p = a - b. Assume that Op and all the AR's have the same sign
and that I'FI > IARI for all R.
_ (c) Let VRand VQ be defined analogously to LR and Ap in (b), with
B replacing A and the roles of P and Q reversed. Assume that VQ and all
the VR's have the same sign. Assume also that this is the same sign as in
(b) and that IVQI > IVRI for all R. _

It follows from conditions (b) and (c) that the changes in A as we move
from P to Q are all in the same direction and that the change `at P'
is the largest of them. The changes in B as we move from Q to P are
analogous. What this means is that the border points P and Q of U are
facing either toward or away from each other since the changes have the
same signs in both cases. This also means that no `stronger' border points
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FIGURE 5.7 Counterexample to the fuzzy generalization of Proposition
5.27
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(at which larger changes _occur) lie between them, so that they are within
`line of sight'. Clearly if A and h are crisp, these conditions reduce to the
definition of admissibility given previously for P Q.

When P = QLwe call PQ admissible if P is a border point of U and
the changes in A and B at P in a fixed direction from one region of the
partition of B to the other touching it at P have opposite sign' In this
case, let Op and VQ, respectively, be the changes in the values of A and B
at P, defined as in the preceding paragraph, where APVQ > 0 is assumed.

For each P, let
g(P) = V{ApVQ/(d(P,Q) + 1) 1 PQ is admissible},

where d(P, Q) is the distance from P to Q. The numerator is always positive
since the changes in A and h at P and Q have the same sign. Since JApi
< 1 and JVQI < 1, the numerator is in the interval (0, 11. Hence, in the
crisp case the numerator must be 1, and the sup is achieved when the
denominator is as small as possible. Hence g(P) is the same as 1/(dp + 1)
mentioned above. It is understood that g(P) = 0 if no admissible PQ exists.

The definition of g(P) involves a trade-off between the border strengths
(= sizes of changes) at P and Q and the distance d(P, Q): the supremum
may arise from weak changes that are close together (or even coincide) or
from stronger changes that are farther apart. The nature of the trade-off
can be manipulated by using some other monotonic function of d(P, Q)
in place of 1/(dp + 1). It is of interest to compare this with the previous
remark about f (P).

The adjacency between A and B is defined as follows:
u(A, B) = fu g(P)dP,

where the integration is along all borders U of the partition of B. It may be
of interest to extend this definition by defining a(P, B) and a(A, Q) where P
and Q are points and to investigate the possibility of fuzzy generalizations
of the propositions above. We prove here only the following result.

Proposition 5.30 Let p(A) denote the perimeter of A. Then a(A. B) <
p(A).

Proof. By Definition 5.2, p(A) is just the sum of the lengths of the border
arcs of U at which pairs of regions of A meet. each multiplied by the
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absolute difference in value between that pair of regions. This difference at
a given border point P is Ap. Hence

p(A) = fc- IApIdP > f(J g(P)dP
for all A since
g(P) = APVQ/(d(P, Q) + 1)
for a certain point Q with IVQI < 1 and
1/(d(P.Q) + 1) < 1.
while ApVQ = IApl . IVQI since they have the same sign.

The fuzzy generalization of Proposition 5.27 does not hold.-This follows
since A fl b = Xo and B' C_ B do not imply a(A, B') < a(A, B). In Figure
5.7, PQ is admissible for B and

g(P) = 1/(d + n - 1).
With respect to b, however, the steps in value are all 1/n, except for the

last, which is 2/n. The only possible maximal values of g(P) are thus
(1/n)/(d + 1) and (2/n)/(d + n - 1).
If n > 2 and d + n - I < (d + 1)n, these values are both smaller than

that for B'. This counterexample would fail if a different definition of g(P)
were used such as

[Ap/(d(P, Q) + 1) + YREPQ(AR/(d(R, Q) + 1)1 x [VQ/(d(Q, P) + 1) +
EREQP(V RI (d(R, P) + 1).

However, this alternative approach is not pursued here.
In the example in Figure 5.6, T is a polygon. If T has a smooth boundary,

then a(T, P) is continuous, but whether or not it is monotonic may depend
on the function of distance that is used in defining adjacency. (We use
1/(d + 1) here.) For example, if T is a disk, as P moves away from T the
amount of T's border visible from P increases and this may compensate
for the fact that the border is farther away from P.

We now consider digital polygons.
Subsets of digital pictures may be considered from different points of

view. For example, they may be considered as sets of grid points, as sets
of cells, or as digital polygons. For the purpose of defining quantitative
adjacency in the digital (crisp) case, it is convenient to deal with digital
polygons.

In a digital simple polygon S = (Po, P1, ..., P,t) for k = 0,1, ..., n, the
Pk are all grid points with integer coordinates. Points Pk and Pk-+1are 8-
neighbors, where Pn,+1 = Pa. In relation to the interior of S, the sequence
Po, P1, ..., Pn has clockwise orientation; the border of S is non-crossing, i.e.
S is a simple polygon in the usual sense. Since the orientation is fixed, finite
and infinite digital simple polygons can both be defined in this way. For S =
(Po, P1, ..., Pn), the complementary polygon S is given by (Pa, Pn_1, ..., Pa).

Since digital simple polygons are regions as defined above, the degree of
adjacency a(S, T) is defined for digital polygons S and T. However, for the
needs of picture processing or computer graphics, a more specifically digital
approach is used. With this in mind, the set of border points BP(S) of a
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digital polygon S are restricted to grid points on the (real) borders of S, i.e.,
BP(S) = { Po, P1, ..., P. } for S = (Po, P1, ..., P,,). Admissible line segments
are defined as above for P E BP(S) and Q E BP(T), where S and T are
digital polygons. (At a vertex of a digital polygon, the (signed) normal is
defined to be the bisector of the vertex angle.) Let AL(S,T) denote the
set of all admissible line segments from border points of S to border points
of T. Then AL(S, T) # AL(T, S) for almost all digital polygons S and T
and AL(S, S) = BP(S), and AL(S, S) = 0. For digital polygons S and T,
define the digital degree of adjacency as follows:

adi9(S,T) = EPEBP(S)1/(1 + dp) if AL(S, T) # 0 and 0 otherwise.
It follows that all the properties given above for the function a are true

for adi9 also. The property a(S, T) < p(S), the perimeter of S, is replaced
by adi9(S,T) < card(BP(S)), which may be considered to be the digital
perimeter of S.

Proposition 5.31 Let S and T be digital polygons. Then adi9(S,T)
card(BP(S)) if and only if T = S.

Proof. Since AL(S, S) = BP(S), dp = 0 for all P E BP(S). Thus,
adi9(S, S) = card BP(S). Conversely, if T # S, then there exists at least
one point P E BP(S) with dp > 0.

The normalized degree of adjacency is defined as follows:
adi9(S, T) = adi9(S, T)/card(BP(S)),

where S and T are digital polygons. The following examples illustrate the
behavior of this concept of degree of adjacency.

Example 5.6 Let S and Tn be convex digital polygons with distance n
between them, as shown in Figure 5.8. For different values of n, the poly-
gon T changes its position in relation to S. For example, for n = 0, S
is in a centralized position within To and for n = 7 and n = -7. S and
Tn are in touching positions. By symmetry, adi9(S,Tn) = adi9(S,T_n) and
adi9(T, S) = adi9(T n, S) f o r n = 0, 1, 2, .... For the normalized degrees
of adjacency, we use card(BP(S)) = 16 and card(BP(Tn)) = 24. For
n = 0, 1, 2, ..., 10, the values of adi9(S, Tn) and adi9(Tn, S) are given in
[54, Table 1, p. 175]. These values are graphically illustrated in Figure
5.9. As seen in this figure, there is a somewhat unbalanced behavior of the
proposed measure adi9 for intersecting positions (-6 < n < 6) and non-
intersecting positions (Inj > 8) of the two polygons. Even for the `most
adjacent' positions (n = 7) we don't have the maximum value, which oc-
curs when Inj = 2 This behavior is due to the influence of border points for
which P = Q, P E BP(S) and Q E BP(T,,). The definition of adi9 may
be changed by requiring dp = 0 if and only if there are border segments
PP' and QQ' of S and Tn, respectively, such that P # P', PP = QQ'
and the signed normals of S and Tn on this common border segment point
in exactly inverse directions. In all other cases of P = Q, P E BP(S) and
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FIGURE 5.8 Two convex digital polygons n units apart.

Q E BP(T,,,), we let dp = oo. The resulting modified function adz9 is de-
noted by as9. Results for ad

9 can be found in [54, Table 1, p. 1751 for
-10<n<10.

Convex digital polygons are restricted to be octagons at most, where
`convexity' is understood as in the real plane. Then, for two convex digital
polygons S and T with n = card(BP(S))+ card(BP(T)), there exists an
O(n) worst case time algorithm for computing adi9(S, T) or ada9(S.T). The
basic ideas of the algorithm are as follows.

(i) Determine the upper and lower tangents on S U T by dividing the
polygonal border of S (or T) into a connected part, where no admissible
line segments to T (or to S) are possible, and a second connected part
containing all points which may contribute to adi9(s,T) (or to adi9(T, S)).

(ii) Perform two search procedures, one top-down and one bottom-up, to
compute candidate values for dp, for all points P in the interesting part of
the border of S, where only points in the interesting part of the border of T
need be considered. In both search procedures the connection line between
two points P E BP(S) and Q E BP(T) which are under consideration for
computing dp moves monotonically down (or up) in the interesting parts
of the borders of S and T. During these search procedures, at most two
crossings of the borders of S and T are possible.

(iii) For all points P in the interesting part of the border of S, take the
minimum of both candidate values found in (ii) to compute dp.

(iv) Determine adi9(S,T) by using the values of dp.
Using small examples, it can already be seen that two search procedures

are necessary in step (ii), which cooperate to give the final result in step
(iv).

Example 5.7 Here, we consider a moving point in relation to a fixed digi-
tal polygon T; see Proposition 5.28. Pn, denotes the point at distance n from
T, as illustrated in Figure 5.10. In this case, it follows that adt9(P,L,T) =
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1/(n+l) forn > 0 andadig(T.Po) = 1,adi9(T.PI) = 1.94646,ad;9(T.P2) =
1.47377, adt9(T, P3) = 1.99526, etc.

Functions and S) are described pictorially in [54,
Figure 7, p. 174] for the polygon in Figure 5.8, for -10 < n < +10. Results
for Example 5.6 can be found in (54, Table 1, p. 175.

We now consider quantitative surroundedness. We present two quanti-
tative definitions of surroundedness in the Euclidean plane. We show how
each of them generalizes to the fuzzy case. We then discuss quantitative
surroundedness in digital pictures. We first consider visual surroundedness.

Let P be a point and T a bounded set. Let ro(P, T) = 1 if the ray
emanating from P in direction 9 meets T and re(P,T) = 0 otherwise.
Define the degree of visual surroundedness of P by T as follows:

v(P,T) = 1/2ir fo re(P,T)d9.
We note that this integral might not be defined for certain sets T, but it

is defined for various types of well-behaved sets such as regions and arcs.
If S is a (well-behaved) set, define v(S,T) as A{v(P, T) I P E S}. (An-

other possibility would he to take the `average' value of v(P, T) for all
P E S). It can be shown that v(S, T) is defined by a border point of S, i.e.,
v(S,T) = A{v(P,T) I P E 8S}.

For the sets given in Figure 5.10, v(S,T) = v(P,T) = tan -1(5/6)/7r =
0.2211 and v(T, S) = v(Q, S) = tan ~1(1/2)/n =0.1476.

If A and b are fuzzy subsets, define re(P, A, B) = 1 if b(R) _> A(P) at
some point _R on the ray emanating from P in direction 9. (Recall that i3-
surroundssurrounds A if for any point P and any path 7r from P to B, there exists
R E 7r such that b(R) > A(P).) Then define v(P, A, b) to be

1/27r fo" re (P, A, B)dP

and define v(A, B) by taking the minimum over all P in the plane. (In the
case of taking the `average' value of v(P, A, B), the denominator for the
average is

AdP.
It follows that this generalizes the crisp definition.

Proposition 5.32 Suppose that T D T. Then v(P, T) > v(P, T') for any
P and v(S, T) > v(S, T') for any S.

Proof. The result is immediate from the fact that ro(P,T) > ro(P,T') for
any P.

Analogously, in the fuzzy case, if B D B', then v(P, A, B) > v(P, A, k)
for any P and A.

Clearly, v(P, T) is a continuous function of the position of P. On the
other hand, v(P, T) need not increase as P moves closer to T. even if T is
convex. This is illustrated in Figure 5.11.
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FIGURE 5.9 Point P,, at distance n from polygon T, as used in Example
5.7.

If T subtends angle a from P, it follows that v(P, T) = a/27r. Conse-
quently, if T is convex, as P approaches T, v(P,T) approaches 1/2 since a
approaches 7r. If P E T, then v (P, T) = 1.

Let T be non-convex and let H(T) be its convex hull. It follows easily
that if P H(T), then any ray from P that meets H(T) must also meet T.
Hence, v(P, H(T)) = v(P, T). In order for v(P, T) to exceed 1/2, P must
lie in H(T).

We now consider topological surroundedness. Even if v(P,T) = 1, T may
not surround P in the usual sense since there may be a curved path from P
to B (the `background' region, outside the picture) that does not intersect
T. This is illustrated in Figure 5.12. We now introduce an alternative de-
finition of quantitative surroundedness that is more closely related to the
usual topological definition.

The degree to which T topologically surrounds P is intuitively related
to how much a path from P must change direction in order to reach B
without intersecting T. For example, if T is a spiral and P is `surrounded'
by a very large number of turns of T, a path from P that does not intersect
T must turn through a very large multiple of 2ir before it can reach B.

Let 7rg be any rectifiable path from P' to B that starts at P' in direction
B and that does not intersect T. (If no such path exists, define t(P',T) _
oo.) Let

C., (P', T) = fir I cne (P) I dP,
where (P) denotes the absolute curvature of 7rg at a point P on 7rg. Let

C.,, (P', T) = 17rg}

if T is a `well behaved' set (e.g. a region) and P V T and P is not inside
a hole of T. Then Co(P'. T) is finite. Finally, let

t(P',T) = 1/27r fo
the average of Co (P. T) over 0. We could have used A{ Co (P. T) for our
definition of topological surroundednss, but using the average allows our
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FIGURE 5.10 Example sets for illustrating surroundedness.
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FIGURE 5.11 P is closer to T than P, but v(P,T) > v(P',T).
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definition to be sensitive to `partial' surroundedness of P' by T. For exam-
ple, if T is a circle with a small gap and P' is at its center, there exists a
direction in which gyre does not have to turn at all, so that the definition
gives 0, as if T were not there at all. On the other hand, the averaging
definition reflects the fact that some paths may have to turn by as much as
7r before they can get out of T. In fact, the average is approximately 7r/2,
but it gets smaller as the gap in the circle gets wider.

If S is a (well behaved) set, define t(S,T) as A{t(P,T) I P E 8S}. If
A and b are fuzzy subsets, use analogous definitions, except that Ire is a
path from P to B such that h(R) < A(P) for all R on 7ro.This is the
fuzzy version of `does not intersect T'. In the fuzzy case, t(A, B) would be
(f f t(P, A, B)dxdy)/ f f Adxdy if we use the averaging definition.

Proposition 5.33 Suppose that T D V. Then t(P, T) > t(P,T') for all P
and t(S, T) > t(S,T') for all S.

Proof. Any path (from any P) that meets T' also meets T. Hence the
desired result follows immediately.

Analogously, in the fuzzy case, if b D B', then t(A, b) > t(A, B') for
any A.

It follows easily that t(P, T) is a continuous function of the position of
P. However, t(P,T) need not increase as P moves closer to T, even if T is
convex. This can be seen from the examples in Figure 5.11.

Let T be convex and subtend angle a at P. Clearly, for all 0 outside that
angular sector, paths from P to B exist that do not turn at all and do
not meet T. However, if 0 is inside the sector, say /3 away from the nearer
boundary of the sector, a path from P in direction 0 must turn by at least
,a in order to reach B without meeting T. Furthermore, such paths exist
that do not turn by more than A. It follows that t(P, T) is just the average
value of Q for all directions 0 in the sector; this is evidently just a/2. In
particular, as P approaches T, t(P, T) approaches 7r/2 since a approaches
7r. It follows that if P E T, then t(P,T) = oo. For nonconvex T, remarks
similar to those above apply.

Surroundedness for Digital Polygons

For subsets of digital pictures, approaches to quantitative surroundedness
must be `digitized'. We define visual surroundedness as follows:

Vdjg(S,T) = A{vd2g(P,T) I P E BP(S)}
for digital polygons S and T, where vd;g (P, T) = v(P, T) = cY/27r if

T subtends angle a from P. The rectangles S and T in Fig. 5.10 may be
considered to be digital polygons, for example. Then the values of vdt9 (S, T)
and vd;9(T, S) remain the same as given above, by v(S,T) and v(T, S)
respectively. The straightforward approach to computing vdig (S, T) would
be as follows:
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FIGURE 5.12 Visual surroundedness does not imply surroundedness.

EL)
angle = + oo,
compute the convex hulls S', T' of S, T using any desired linear time

algorithm
for all points P in BP(S') do

compute the two tangents from P to T'
the angle a between the two tangents from P to T'
if angle > a, then angle = a

return angle/21r.
Since when P moves around S' the released tangential points Q1, Q2 E

BP(T') move around ' monotonically, this algorithm leads to an 4(n)
time algorithm n = card(BP(S))+ card(BP(T)) by using two points to
the actual tangential points in BP(T').

In the case of topological surroundedness for a digital polygon S, besides
the restriction of aS to BP(S), the set of possible directions 0 for paths
from BP(S) to the background B must be digitized. Assume that 9 is
restricted to the set

angm = {n21r/m ( n = 0, 1, 2,...' m - 1),
for m > 1. Then C9 (P, T) denotes the minimal angle that a path xe in

direction 9 starting at P may take around T to B, as defined previously
and tai (P, T) is defined by

1/m 9Ean9,,, C9(P,T)
for a digital polygon T and a point P. Finally, we have
tMdi9(S.T) = I P E BP(S)}.
Clearly, the computational requirements for computing tmdi9(S,T) exceed

those for computing the visual surroundedness measure vdt9(S, T), but nev-
ertheless tats seems to be a practically useful function. For example, in the
situation of Figure 5.10, we have t8d19(P,T) = 1/8(tan 1(5/6)+0+0+0+
0+0+0+0) = 0.0276-ir = 0.0868. It follows that tdi9(S,T) < td19(P,T) _
0.0868. Analogously, tdi9(T, S) < tdi9(Q, S) = 0.0184-ir = 0.0579. Nearly
the same algorithm for computing vdi9(S, T) can be used for computing
tdt9(S,T) with some extensions. After computing the two tangents from P
to T', we determine a = tdt9(P, ') by using the minimal angular differences
to these tangents if 0 is between these tangents; otherwise Ce(P.T') = 0.
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Thus tdt9(S) T) with n = card(BP(S)) + card(BP(T)) may be computed
within O(mn) time in the worst case sense.

Some algorithms for computing quantitative adjacency and surround-
edness have been presented for the digital case. Fast algorithms for the
adjacency measure in the general case (arbitrary polygons) need develop-
ment.

It is noted in [54] that the proposed measures should be of interest in
the study of stochastic geometry in the real plane and that these measures
can be used to characterize relationships between objects in a segmented
digital picture or to compare objects in two different pictures.

5.9 Image Enhancement and Thresholding Using
Fuzzy Compactness

The results of this section are from [36]. Algorithms based on minimization
of compactness and of fuzziness are developed so that it is possible to
obtain both fuzzy and nonfuzzy thresholded versions of an ill-defined image.
By incorporating fuzziness in the spatial domain, i.e., in describing the
geometry of regions, it becomes possible to provide more meaningful results
than by considering fuzziness in grey level alone. The effectiveness of the
algorithms is shown for different bandwidths of the membership function
using a blurred chromosome image having a bimodal histogram and a noisy
tank image having a unimodal histogram as input.

The problem of grey level thresholding is important in image processing
and recognition. For example, in enhancing contrast in an image, proper
threshold levels must be selected so that some suitable non-linear transfor-
mation can highlight a desirable set of pixel intensities compared to others.
Similarly, in image segmentation it is necessary to have proper histogram
thresholding whose objective is to establish boundaries in order to partition
the image space (crisply) into meaningful regions.

When the regions in an image are ill-defined, it is natural and also ap-
propriate to avoid committing to a specific segmentation by allowing the
segments to be fuzzy subsets of the image. Fuzzy geometric properties
which generalize those for ordinary regions as defined in Sections 5.1 - 5.7
are helpful in such an analysis.

The above mentioned task is performed automatically with the help of a
compactness measure [51] which takes into account fuzziness in the spatial
domain, i.e., in the geometry of the image regions. In addition to this mea-
sure, the ambiguity in grey level through the concepts of index of fuzziness
[26], entropy [14] and index of nonfuzziness (crispness) are considered, [31].
These concepts were found in [30, 32-35] to provide objective measures for
image enhancement, threshold selection, feature evaluation and seed point
extraction.
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The algorithms described in this section extract the fuzzy segmented
version of an ill-defined image by minimizing the ambiguity in both the
intensity and spatial domain. In order to making a nonfuzzy decision, one
may consider the cross-over point of the corresponding S function [63]
as the threshold level. The nonfuzzy decisions corresponding to various
algorithms are compared here when a blurred chromosome image and a
noisy tank image are used as input.

We now consider various measures of fuzziness in an image developed as
in [30, 31, 33, 341.

We consider an image X of size M x N and L levels of brightness as an
array of fuzzy singletons, each having a value of membership denoting its
degree of brightness relative to some brightness level 1, 1 = 0, 1, 2,..., L - 1.
Let AX (x,nn) = A,nn, where Amn E [0,1] for m = 1, ..., M; n = 1, ..., N.
The values Amn denote the grade of possessing some brightness property
by the (m, n)-th pixel x,nn. This brightness property is defined below.

The index of fuzziness reflects the average amount of ambiguity (fuzzi-
ness) present in an image X by measuring the distance ('linear' and 'quadrat-
ic' corresponding to linear index of fuzziness and quadratic index of fuzzi-
ness) between its fuzzy property Ax and the nearest two-level property
AX, i.e., the distance between the gray tone image and its nearest two-
tone version. The term `entropy' uses Shannon's function but its meaning
is quite different from classical entropy because no probabilistic concept is
needed to define it. The index of nonfuzziness measures the amount of non-
fuzziness (crispness) in Ax by computing its distance from its complement
version. These indices are defined as follows.

(a) Linear index of fuzziness:
vi (X) = 2/MN Em=1 En=1 I Ax (xmn) AX (xmn)

= 2/MN EM
m=1 EnN=1 Axnz (xmn)
M

2/MN Fm=1 n=1 Ax (xmn) A (1 - Ax (xmn),
where AX(x,nn) denotes the nearest two-level version of X such that

Ax(xmn) 0
1

(b) Quadratic index of fuzziness:

if AX(xmn) < 0.5
otherwise.

(5.9.1)

Be(X) = 2/
z MN[rm=1 En==1(AX(xmn) - AZC(xmn))]1h'2,

(c) Entropy

H(X) = 1/(MN In 2) Fm F.n
1 Sn(Ax(xmn))

where
Sn (AX (xmn)) = -AX (xmn) In Ax (xmn)-(1-Ax (xmn) ln(1-Ax (xmn)),
m = 1,2,...,M;n = 1,2,..., N.
(d) Index of nonfuzziness (crispness):
71(X) = 1/MN EMn-_1 Fn

1 I AX (xmn) - AX (xmn)1.
The above measures lie in [0,1] and have the following properties for

m=1,...,Mandn=l....,N:
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I(X) = 0 (min) for Ax (x,nn) = 0 or 1,
I (X) = 1 (max) for Ax (x,,,.) = 0.5,
I(X) > I(X`),
I(X) = I(X),
where I stands for v(X),H(X) and 1 - 77(X), and where X* is the

`sharpened' or `intensified' version of X such that
Ax (Xinn) if

n)Ax (xmn) { < Ax (xmn) otherwise
0.5

Fuzzy Geometry of Image Subsets

In Sections 5.1 - 5.7, the concepts of digital picture geometry were extended
to fuzzy subsets and some of the standard geometric properties of and
relationships among regions were generalized to fuzzy subsets. We only
consider here the area, perimeter and compactness of a fuzzy image subset,
characterized by AX(x,,,,n). These extensions will be used in the following
for developing threshold selection algorithms. For simplicity, we replace
Ax(x,,,n) by A in defining these parameters.

The area of A, written a(A), is defined as follows:
a(A) = f A,
where the integral is taken over any region outside which A = 0.
If A is piecewise constant, the case in a digital image, a(A) is the weighted

sum of the areas of the regions on which A has constant values, weighted
by these values.

For the piecewise constant case, the perimeter of A, written p(A), is
defined to be

p(A) _
Fr-1

Fll=i+i Ek"_i jAt - A3jjAjjkI.

This is the weighted sum of the length of the arcs A23k along which the i-
th and j-th regions meet and have constant A values Ai and A3 respectively,
weighted by the absolute difference of these values.

The compactness of A, written comp(A), is defined to be
comp(A) = a(A)/p2(A).
For crisp sets, this is largest for a disk, where it is equal to 1/47r. For a

fuzzy disk where A depends only on the distance from the origin (center),
it can be shown that

a(A)/p2(A) > 1/47r-
That is, of all possible fuzzy disks, the compactness is smallest for its

crisp version. Consequently, we use minimization rather than maximization
of fuzzy compactness as a criterion for image enhancement and threshold
selection.
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Threshold Selection

We now consider minimizing fuzziness. Consider for example, the minimiza-
tion of vi (X). It follows from equation (5.9.1) that the nearest ordinary
plane Ax (which represents the closest two-tone version of the grey tone
image X) is dependent on the position of the cross-over point, i.e., the
0.5 value of Ax. Consequently, a proper selection of the cross-over point
may be made which results in a minimum value of v(X) only when the
cross-over point corresponds to the appropriate boundary between regions
(clusters) in X.

This can be explained further as follows. Consider the standard S-function
in Figure 1 of [631.

Ax(x,ttn) = S(xmnia,b,c) _

0 if xmn < a,
2[(xmn - a)/(c - a)12 if a < Xmn < b,
1 - c)/(c - a)12 if b < xmn < C,
1 if xmn ! C,

(5.9.2)

with cross-over point b = (a + c)/2 and bandwidth
Lb=b-a=c-b
for obtaining Ax(xmn) or Umn (representing the degree of brightness of

each pixel) from the given xmn of the image X. Then for a cross-over point
selected at, say, b = li, Ax(li) = 0.5 and umn would take on values > 0.5
and < 0.5 corresponding to xmn > li and < li. This implies allocation of
the grey levels into two ranges. The term v(X) then measures the average
ambiguity in X by computing AxnX (xmn) in such a way that the con-
tribution of the levels towards v(X) comes mostly from those near li and
decreases as we move away from li.

Hence, modification of the cross-over point results in different segmented
images with varying v(X). If b corresponds to the appropriate boundary
(threshold) between two regions, then there is a minimum number of pixel
intensities in X having umn 0.5 (resulting in v 1) and a maximum
number of pixel intensities having umn 0 or 1 (resulting in v = 0)
thus contributing least towards v(X). This optimum (minimum) value of
fuzziness would be greater for any other selection of the cross-over point.

We now consider some algorithms.
Algorithm 1
Input: A M x N image with minimum and maximum grey levels lmin

and lmax respectively..
Step 1. Construct the `bright image' of membership Ax, where
Ax (1) = S(1; a, li, c), lmin <- 1, li -< lmax,
using equation (5.9.2) with cross-over point b = li and a particular band-

width Ab=c-l=1i-a.
Step 2. Compute the amount of fuzziness in Ax corresponding to b = li

with
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v(X )[li = 2/MN E min{ S(l; a, li, c),1 - S(l; a, li, c) }h(l)
i

= 2/MN>2Ti(l)h(1) (5.9.3)
i

where Ti(l) = min{S(l; a, li, c),1-S(1; a, li, c) J and h(l) denotes the number
of occurrences of the level 1.

Step 3. Vary 1i from to lmax and select li = lc, say, for which v(X)
is a minimum.

1, is thus the cross-over point of Ax having minimum ambiguity,
i.e., for which Ax has minimum distance from its closest two-tone version.
Now A7L1 can be regarded as a fuzzy segmented version of the image, with
Amt < 0.5 and > 0.5 corresponding to regions [lm;n,1, - lJ and [lc, lmaxl.

For the purpose of nonfuzzy segmentation, the level 1. can be considered
as the threshold between background and object, or the boundary of the
object region. This can further be verified from equation (5.9.3) which
shows that the minimum value of v(X) would always correspond to the
valley region of the histogram having minimum number of occurrences.

We now consider variation of bandwidth (tb).
Call Till) (in equation 5.9.3) a Triangular Window function centered

at li with bandwidth Ob. As Vb decreases, AX has more intensified con-
trast around the cross-over point resulting in decrease of ambiguity in Ax.
Therefore, the possibility of detecting some undesirable thresholds (spuri-
ous minima in the histogram) increases due to the smaller width of the
Ti(1) function.

On the other hand, an increase of 1-1b results in a higher value of fuzziness
and thus leads to the possibility of losing some of the weak minima.

The application of this technique to both bimodal and multimodal im-
ages with various Ti functions based on vl(X), vq(X), H(X) and A(X) is
demonstrated in [33,34J.

We consider next minimizing compactness.
In the previous discussion of threshold selection, fuzziness in the grey

levels of an image was considered. Fuzziness in the spatial domain is now
taken into consideration by using the compactness measure for selecting
nonfuzzy thresholds.

It follows that both the perimeter and area of a fuzzy segmented image
depend on the membership value, denoting the degree of brightness, say,
of each region. Furthermore, the compactness of a fuzzy region decreases
as its A value increases and it is smallest for a crisp one. We now present
two algorithms to show how the above mentioned concept can be utilized
for selecting a threshold between two regions (say, the background and a
single object) in a bimodal image X.
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As in Algorithm 1, we construct u,,,,, with different S functions having
constant Lb value and select the cross-over point of the Ax as the boundary
of the object for which comp(A) is a minimum.

Algorithm 2
Input: Given an M x N image with minimum and maximum grey levels

lmin and lmax
Step 1. Construct `bright' image AX as in Step 1 of Algorithm 1.
Step 2. Compute the area and perimeter of AX corresponding to be

b = liwith
a(A)Ili = J:m=1 En==1 ?'Finn = Ei S(l, a, li, c)h(1),
lmin < 1, li < lmax
and

N M-1M ENp(A)I1i = Em=1 1 Iumn - Um,n+l I + n=1 m=1 Iumn - um F1,nI
excluding the frame of the image.
For example, consider the 4 x 4 Amn array
0 0 0 0

0 0 0
0

where 1> a, ,13, -y, S> 0.

0 b 0 0

Here, a(A) = a + 2,3 + -y + b and
p(A) = [a+IQ-al+,0+,o+Iry-,ol+6+bJ+[a+a+b+,3+0+,O+ry+ry].
Step 3. Compute the compactness of AX corresponding to b = Ii with

comp (A) Ili = (a(A)Ili)/(p2(A)Ili). (5.9.4)

Step 4. Vary li from Imin to lmax and select that Ii = Ic for which
comp (A) is minimum.

Consequently, the level l,, denotes the cross-over point of the fuzzy image
plane u,,,,, which is the least compact (or most crisp). These um, can
therefore be viewed as a fuzzy segmented version of the image X.

The level 1, can be considered as the threshold for making a nonfuzzy
decision on classifying/segmenting the image into regions.

Approximate the definitions of area and compactness of AX by consid-
ering that AX has only two values corresponding to the background and
object regions. The A-value for the background is assumed to be zero,
whereas the A-value of the object region is monotonically increasing with
increase in threshold level. Consequently, by varying the threshold, one
can have different segmented versions of the object region. Each segmented
version thresholded at li has its area and perimeter computed as follows:

a(At) = a At = At Ei h(l), It < 1 < lmax,
where a denotes the area of the region on which A = At (constant), i.e.,

the number of pixels having grey level greater than or equal to It and
p(At)=Atp
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where p denotes the length of the arcs along which the regions having
A = At and A = 0 meet, or, in other words, the perimeter of the region
on which A = At (constant).

For the example considered in Algorithm 2, the values of a(At) and p(At)
for a =,a = ry = S = At are 5At and 12At respectively.

The algorithm for selecting the boundary of a single-object region from
an M x N dimensional image may therefore be stated as follows:

Algorithm 3
Input: Given an M x N image with minimum and maximum grey levels

Imin and lmax
Stepl. Construct the `bright' image AX using
Ax(1) = S(l;a,b,c)
with a = lmin, C = Imax and b = (a + c)/2.
Step 2. Generate a segmented version putting
A=0 if A < At else A = At,
where At is the value of Ax (lt) obtained in Step 1.
Step 3. Compute the compactness of the segmented version thresholded

atIt:
comp(At) = a . A,lp2 At = a/p2At.

comp(At) = a Ay/p2 A2 = a/p2 At. (5.9.5)

Step 4. Vary It in (Imin, I,,,ax) and hence At in (0, 1) and select the level
as boundary of the object for which equation (5.9.5) attains its minimum.

Note that after approximation of the area and perimeter of A,,,n, the
compactness measure (equation (5.9.5)) reduces to 1/At times the crisp
compactness of the object region. Unlike Algorithms 1 and 2, here AX is
kept fixed throughout the process and the output of the algorithm is a
nonfuzzy segmented version of X determined by It.

Algorithm 4
Algorithms 1-3 minimize either the amount of fuzziness or the compact-

ness of an image X. We combine these measures and compute the product
of fuzziness and compactness, and determine the level for which the product
becomes a minimum. Compute using equations (5.9.3) and (5.9.4),

Bt = v(X) Ili comp(A)Iii (5.9.6)

or we compute using equations (5.9.3) and (5.9.5),

Bt = v(X)Ilt comp(At) (5.9.7)

at each value of Ii (or It), lmin < li, It < lmax, and select Ii = l,,, say
as threshold for which equation (5.9.6) (or (5.9.7)) is a minimum. The
corresponding Umn represents the fuzzy segmented version of the image as
far as minimization of its fuzziness in grey level and the spatial domain is
concerned.
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Note that although the linear index of fuzziness in Algorithms 1 and 4
is considered, the other measures, namely vq(X), H(X) and A(X) can be
considered for computing the total amount of fuzziness in u,,,,,.

Figure 2a in 136, p. 821 shows a 64 x 64,64 level image of a blurred
chromosome with lmi = 12 and lmax = 59. Its bimodal histogram is shown
in [36, Fig. 2b, p.82]

The different minima obtained using Algorithms 1-4 for Ab = 2.4, 8,16
are given in Table 1 of 136, p.83J. The enhanced version of the chromosome
corresponding to these thresholds (minima) are shown in [36, Figures 3-8]
only for Lb = 4,8 and 16. In each of Figures 3-5 of [36], (a), (b) and (c)
correspond to Algorithm 1, Algorithm 2 and equation (5.9.6) of Algorithm
4. Similarly, Figures 6-7 in [36J, (a), (b) and (c) correspond to Algorithm
1, Algorithm 3 and equation (5.9.7) of Algorithm 4.

The interested reader is strongly encouraged to see [36] for a detailed
discussion of the algorithms concerning implementation and results.

The compactness measure usually results in more minima as compared
to index of fuzziness. The index of fuzziness (Algorithm 1) sharpens the
histogram and it detects a single threshold in the valley region of the his-
togram for Lb = 4,8 and 16. At Ab = 2, the algorithm as expected results
in some undesirable thresholds corresponding to weak minima of the his-
togram. This conforms to the earlier investigation [33]. Algorithms 2 and 3
based on the compactness measure detect a higher-valued threshold (global
minimum) which results in better segmentation (or enhancement) of the
chromosome as far as its shape is concerned.

The advantage of the compactness measures over the index value is that
they take fuzziness in the spatial domain (i.e., the geometry of the object)
into consideration in extracting thresholds. The index value, on the other
hand, incorporates fuzziness only in grey level. In addition, for Algorithm
2 as Ab increases, the number of and the separation between minima also
decrease.

Multiplying v(X) by comp(At), in equation (5.9.7), produces at least
as many thresholds as are generated by the individual measures. However
this is not the case for equation (5.9.6) where the number of thresholds is
(except for Lb = 2) equal to or less than the numbers for the individual
measures.

We now explain the observations made above. As mentioned before, v(X )
basically sharpens the histogram. Hence as It increases, it first increases un-
til it reaches a maximum, and then decreases until a minimum (threshold)
is attained. Then it follows the same pattern for the other mode of the
histogram. The compactness measure, on the other hand, first starts de-
creasing until it reaches a minimum, then increases for awhile, and then
starts decreasing again.

It can also be seen that the variation of compactness in Algorithm 3 plays
a more dominant role than the variation of index value in Algorithm 1 in
detecting minima. The case is reversed for the combination of Algorithm 1
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and Algorithm 2, where the product is influenced more by the index value.
Consequently, the threshold obtained by equation (5.9.6) is found to be
within the range of threshold values obtained by the individual measures.
Equation (5.9.7), on the other hand, is able to create a higher-valued (or
at least equal) threshold which results in better object enhancement than
those of the individual measures.

Figures 9(a) and 9(b) in [36, p.841 show a noisy image of a tank and its
unimodal histogram, having lmin = 14, (max = 50. The minima obtained
by the different algorithms for Ab = 2,4,8 and 16 are given in Table 2 in
[36, p.85]. The corresponding enhanced versions for Ab = 4,8 and 16 are
shown in Figures 10-12 in [36, p.85] for various combinations of algorithms.

As expected, the index of fuzziness alone was not able to detect a thresh-
old for the tank image because of its unimodal histogram. However the
compactness measure does give good thresholds. As in the case of the chro-
mosome image, equation (5.9.7) yields at least as many thresholds as are
generated by the compactness measure. Except for Ab = 2, equation (5.9.6)
yields at most as many thresholds as the compactness measure.

The following conclusions are drawn in [36]. Algorithms based on com-
pactness measures of fuzzy sets are developed and used to determine thresh-
olds (both fuzzy and nonfuzzy) of an ill-defined image (or the enhanced
version of a fuzzy object region) without referring to its histogram. The
enhanced chromosome images obtained from the global minima of the mea-
sures are found to be better than those obtained on the basis of minimizing
fuzziness in grey level, as far as the shape of the chromosome is concerned.
Consideration of fuzziness in the spatial domain, i.e., in the geometry of the
object region, provides more information by making it possible to extract
more than a single thresholded version of an object. Similarly in the case
of the unimodal (noisy) tank image, the compactness measure is able to
determine some suitable thresholds but the index parameter is not. Fur-
thermore, optimization of both compactness and fuzziness usually allows
better selection of thresholded enhanced versions.

5.10 Fuzzy Plane Geometry: Points and Lines

In this section, we present a version of fuzzy plane geometry different from
that of the previous sections. This version was initiated by Buckley and
Eslami, [7,8]. In the previous sections, the concepts of the area, height,
width, diameter, and perimeter of fuzzy subsets are real numbers. The
approach used here is one which will lead to these measures being fuzzy
real numbers. This approach will have as an application, the superimposing
of objects from fuzzy geometry onto databases to obtain a fuzzy landscape
over the data base. A soft query could be a fuzzy probe into the landscape
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with the system's response the number data points in a level set of the
interaction of the fuzzy probe and the fuzzy landscape.

Definition 5.7 Let N be a fuzzy subset of R. Then N is called a (real)
fuzzy number if the following conditions hold:

(i) N is upper semi-continuous,

(ii) there exist c, d E R with c < d such that Vx V [c, d], N(x) = 0,

(iii) there exist a, b E R such that c < a < b < d and N is increasing on
[c, a], N is decreasing on [b, d], and N(x) = 1Vx E [a, b].

It follows Vt E [0, 1] that if N is a fuzzy number, then Nt is a bounded
closed interval.

Suppose that N _is a fuzzy subset of R satisfying (ii) of Definition 5.7 with
a = b such that N(a) = 1 and the graph of N is a straight line segment
from c to a and a straight line segment from a to b. Then N is a fuzzy
number and is called a triangular fuzzy number.

A natural way to define a fuzzy point in the plane would be as an ordered
pair of real fuzzy numbers. However this definition does not give good
results for fuzzy lines. Also pictures of fuzzy points under this definition
cannot be constructed. Hence the following definition of a fuzzy point is
used.

Definition 5.8 Let (a, b) E 111;2 and let P be a fuzzy subset of R2. Then P
is called a fuzzy point at (a, b) if the following conditions hold:

(i) P is upper semi-continuous;

(ii) V(x, y) E R2, P(x, y) = 1 if and only if (x, y) = (a, b);

(iii) Vt E 10, 1], Pt is a compact, convex subset of R2. (If P is a fuzzy point
at (a, b), we sometimes write P(a,b) for P.)

The concept of fuzzy point is based on the idea of a fuzzy vector in R",
[5,8].

Let (a, b) E R2 and let P be a fuzzy point at (a, b). Then we can visualize
P as a surface in R3 through the graph of the equation z = P(x, y), (x, y) E
R2.

Example 5.8 Let f( and k be real fuzzy numbers, where f ((x) = 1 if and
only if x = a and k(y) =_I if and only if y = b. Then the fuzzy subset P of
R2 defined by P(x, y) = X (x) AY(y) d(x, y) E R2 is a fuzzy point at (a, b).

In the following, we let d denote the usual Euclidean distance metric on
R2.

We now define the fuzzy distance between two fuzzy points.
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Definition 5.9 Let P1 and P2 be two fuzzy points. Vt E [0,1]1 let 11(t) =
{d(u,v)Iu E (P1)t and v E (P2)t}. Define the fuzzy subset D(P1iP2) of ]R
by D(P1i P2)(a) = V{t'a E 11(t)} Va E R.

Let t E [0, 1]. We note that in Definition 5.9, 1l(t) is defined in terms of a
pair of fuzzy points, say P11 P2. Then 11(t) {r E RI 3u E (P1)t, 3v E (P2)t

such that r = d(u, v) }.

Theorem 5.34 Let P1 and P2 be two fuzzy points. Then Vt E [0, 11, the
level set D(PA, P2)t = 11(t). Further, D(P1, P2) is a fuzzy number.

Proof. We first show that i5 (161, P2)t = 11(t), 0 < t < 1. Let d E 11(t).
Then b(d) > tand11(t) C D. We now show that Dt is a subset of 11(t).
Let d E Dt. Then b(t) > t. Set D(d) = s. We consider the cases s > t and
s = t. Suppose that s > t. Then there is an_r, t < r < s, with d E 11(r).
Since 11(r) C_ 11(t), we have d E 11(t). Hence Dt CS1(t). Assume that s = t.
Let K = {w I d E 11(w)). Then VK = s = t = D(d). There is a sequence
rn in K such that r,, ? t. Given e > 0 there is a positive integer N such
that t - e < r, for all n > N. Now d in for all nimplies that d is
in Q(t - e) for all e > 0. Thus d = d(u, v) for some u E P(al, bl )t-E and v

E P(a2i b2)t-E. Hence P(al, bl)(u) > t -- e and P(a2,b2)(v) > t - C. Since
e > 0 was arbitrary, we have that P(a1,b1)(u) > t and P(a2ib2)(v) > t.
Therefore, d E 11(t). Thus Dt C 11(t). Hence Dt = 11(t) for 0 < t < 1. It
follows easily that D° = 11(0).

We now show that b is a fuzzy number.
Since the t-cuts of P(al, b1) and P(a2, b2) are compact it, follows that

11(t) is a bounded closed interval for all t. Let 11(t) _ [l(t), r(t)], 0 < t < 1.
It is also is known that if the t-cuts of a fuzzy number are closed sets, then
its membership function is upper semi-continuous [4]. But Dt = 11(t) is a
closed interval for all t. Hence, b is upper semi-continuous.

Let 11(0) = [c, d] . Then b(d) = 0 outside [c, d]. _
Let 11(1) = a, where a = d((al, bl), (a2i b2)). Now since Dt = 11 (t), r (t)]

for all t with l(t) is increasing from c to a and r(t) decreasing from d to a
we obtain b is increasing on [c., a] and decreasing on [a, d] with b(d) = 1
atd=a.

Consequently, D is a fuzzy number

Let P and Q be fuzzy points at (a, b) and (c, d), respectively. Suppose
that D(P,Q)(r) = 0 Vr > 0. Then 0 = V{tI3u E (Plt, 3v E (Q)t such that
r = d(u, v) }Vr > 0. Thus there do not exist u E (P)t and v E (Q)t such
that r = d(u, v) for any r > 0 and for any t E (0,1]. Hence (a, b) = (c, d)
else for r = d((a, b), (c, d)), D(P, Q)(r) = 1 and r > 0. Now suppose that
D(P, Q) (r) = 1 Vr > 0, where (a, b) = (c, d). Suppose that Q is not crisp.
Then 3v c (Q)t0, v 36 (a, b), for some to such that 0 < to < 1. Now
d((a, b), v) > 0. Hence D(P, Q) (d((a, b), v)) = 1 by assumption and also
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D(P, Q) (d((a. b), (a, b))) = 1. However this is impossible since D(P, Q) is
a fuzzy number and thus attains the value I uniquely.

Now suppose that P and Q are (crisp) fuzzy points at (a, b) and (c, d),
respectively. Let r > 0. Then (P)t = { (a, b) } and Qt = { (c, d) } Vt E (0, 1].
Hence D(P.Q)(r) = V{tI3u E {(a,b)}, 3v E {(c,d)} such that r = d(u,v)}.
Thus

D(P, Q)(r) _ 1 if r = d((a, b), (c, d))
0 otherwise.

Hence b reduces to d if P and Q are crisp.

Definition 5.10 Define the fuzzy subset 0 of R by 0(x) = 0 if x < 0 and
0(x) = 1 if and only if x = 0 and 0 is decreasing in some interval (0, d) for
some d > 0, and 0(x) = 0 for x > d.

Definition 5.11 Let A and i3 be fuzzy numbers and set At = [al(t), a2(t)],
Bt = [b1(t), b2 (t)] Vt E [0,1]. We write A <8 B if and only if al (t) < b1(t)
and a2(t) < b2 (t) Vt E [0,1]. We write A <,, B if and only if a2(t) b2(t)
Vt E [0, 1]. We call <a a strong ordering and <w a weak ordering.

Theorem 5.35 The relation <e is a partial order (reflexive, transitive,
antisymmetric) on the set of fuzzy numbers. The relation <,,, is reflexive
and transitive.

The addition of fuzzy numbers in the following definition is done by
interval arithmetic. That is, we just add At and Bt Vt E [0, 11 to determine
A + B, where A and b are fuzzy numbers.

Definition 5.12 A fuzzy metric k is a function from the set of all pairs of
fuzzy points (P1: P2) into the set of all fuzzy numbers such that the following
conditions hold:

(i) 1 t (P1 i P2) = 0 if and only if Pl and P2 are both fuzzy points at some
(a, b);

(ii) M(Pi, P2) = M(P2, Pl);

(iii) M(P1, P2) < M(P1i P3) + M(P3i P2) for all fuzzy points P1, P2i and
P3.

If < is <s (<w), we call M a strong (weak) fuzzy metric.

Theorem 5.36 D is a weak fuzzy metric.

Proof. Clearly, D(P1, P2) = D(P2i P1). Let P1 =P(al, b1), P2 = P(a2, b2).
Suppose that D(P1, P2) = 0. Then 0 is in D(P1i P2)1. However, D(P1, P2)1
is the set of all d(u. v), where u E (P1)1 =I (a,, bl) I, V E (P2)1 =I (a2.b2)1-
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Hence d(_(a1i b1), (a2, b2)) = 0 implies (a1i b1) _ (a2, b2).Now suppose that
P1 and-,P2 are fuzzy points at (a,b). It follows that D(P1iP2)1 = {0} and
D(P1, P2) has the correct shape to be called an 0.

Let P3 = P(a3, b3), A = D(P1, P2), b= D(P1, P3), C = D(P3, P2),
At = [a1(t),a2(t)]. Bt = [b1(t).b2(t)], Ct = [c1(t),c2(t)]. We now show that
a2(t) < b2(t) + c2(t) for all t.

We have from Theorem 5.34 that
a2(t) = V{d(u,v) ( u E (P1)t,v E (P2)t},
b2 (t) = v{d(u, v) [ u E (P1)t, v E (P3)t},
c2(t) =V{d(u,v) [ u E (P3)t,v E (P2)t}.
Hence, _
a2(t) < {d(u, w) + d(w, v) ( u E (Pi )t, w E (P3)t, v E (P2)t }

< V {d(u, w) I u E (Pl )t, w E (P3) t } + v) I w E (P3) t, v E
(P2)Ht}

b2(t) + c2(t).

The following example shows that b is not a strong fuzzy metric.

Example 5.9 Let A, P2, and P3 be fuzzy points at (1, 0), (3, 0),and (2, 0),
respectively. The shape of each P. is a right circular cone. For example, P1
is a right circular cone with base (x - 1)2 + y2 < 114 and vertex (1, 0). The
base of P2 is Ix - 3)2 + y2 < 114 and the base of P3 is (x - 2)2 + y2 < 1/4.
Then D(PI,P2)(0)_= 11, 31, D(Pi,P3)(0) = D(P3iP2)(0) _ [0,2] so that
D(P1i P3)(0) + D(P3, P2)(0) = (0, 4] and (1, 3] is not <a [0, 4].

There several possible ways to define a fuzzy line. First, we might define
a fuzzy line to be the set of all pairs of fuzzy numbers (X, k) which are
solutions to

AX+BY=C
for given fuzzy numbers A, B, C. However this equation often has no solu-
tion for X and k using standard fuzzy arithmetic.

Another possible method is to define a fuzzy line to be the set of all pairs
of fuzzy numbers (X, Y) which are solutions to

Y = MX + B for given fuzzy numbers M, B. With this method, one
cannot construct pictures of this type of fuzzy line.

A third possible method is to use the following approach. Let A, B, C be
fuzzy numbers. If A(1) = (al and B(1) = {b}, we assume that a and b are
not both zero. Let

5211(1) = {(x, y)(ax + by = c, a E At, b E Bt, c E Ct } Vt E (0,1]. Then we
let L11 denote the fuzzy subset of R2 defined by V(x, y) E R2,

L11 (x, y) = V{tI(x, y) E 5211 }.
If A(1) = 0 and B(1) = 0, then 5211(1) can be empty since we then have
the equation Ox+Oy = c, c E C(1), which will have no solution when c # 0.

Another possible method to define a fuzzy line is with the equation y =
mx + b. Let Al and B be fuzzy numbers. Let
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1112(t) =I (x,y)l y = mx + b,m E Mt, b E k j Vt E [0,1].
Then we let L12 denote the fuzzy subset of R2 defined by V(x, y) E R2.

L12(x,y) = V{tl(x,y) E 5212}.
Still another possible method is by using a point-slope form. Let k be a
fuzzy point in R2 and let M be a fuzzy number. Let

p2(t) = { (x, y)ly - v = m(x -- u), (u, v) E Kt, M E R' j Vt E [0, 11.
Then we let L2 denote the fuzzy subset of 182 defined by V(x, y) E R2,

L2(x,y) = V{tI(x,y) E 522}.
Finally, another possibility is the two-point method. Let P1 and P2 be two
fuzzy points in the plane. Let

113(t) = {(x, y)[(y - vl)/(x - u1) _ (v2 - vl)/(u2 - u1), (ul, vl) E (P1)t,
(u2, v2) E (R )t } dt E [0,1].
Then we let L3 denote the fuzzy subset of R2 defined by V(x, y) E 182.

L3(x, Y) = V {tl(x, y) E 523}. _

We consider L11, L12, L2, and L3 to be four different types of fuzzy lines.

Theorem 5.37 (Lil)t = 1111(t), (L12)t = 5212(t), (L2)t = 12(t), and (L3) t
= 113(t) Vt E [0, 1].

We now give some examples of fuzzy lines.

Example 5.10 Let A = (-1, 0, 1), f3 = (-1,1, 2), and C = (0, 1, 2) be
triangular fuzzy numbers. Then the support of L11, cl( U Li1). is all of

o<t<l
182. Also the level set (L11)1 is the crisp line y = 1.

Example 5.11 Let L12 be defined by y = 2x + B, where b = (0, 1, 2) is
a fuzzy triangular number. Here k is the crisp number 2. The graph of
z = L12(x, y) is generated by b on the y-axis, base on the interval [0, 2],
and "running" the triangle along the crisp line y = 2x + 1.

Example 5.12 Let M denote the crisp real number 1 and let K be a fuzzy
point at (1, 1). Then (L2)t will be all lines, slope 1, through a point in Kt.
(L2)1 is the crisp line y = x. L2 is "thin" when cl( U Kt) is "small".

O<t<1

Example 5.13 Let P1(0, 0) and P2(1,1) be two fuzzy points whose graph is
a right circular cone. The base of P1 (0, 0) is B1 = { (x, y) l x2 +y2 < (1/3)2 }
and vertex (0, 0). The base of P2(1,1) is B2 = {(x, y)I(x - 1)2 +(y - 1)2 <
(1/3)2} and vertex (1, 1). Then the support of L3, is all lines through a
point in Bl and B2. (L3)l is the line y = x. L3 is thin between B1 and B2,
but gets wider and wider as we move along y = x for x > 1 or for x < 0.

A fuzzy line L is said to contain a fuzzy point P if and only if P C L.
Clearly L2 contains K. if P(, d) is a fuzzy point at (c, d) and L2 contains

P(c d), then (c, d) E 522(1). Let the level set 1111 = [m1, m2] be an interval.
We have that 122(1) is all lines through (a, b) with slope m, m1 < m < m2.
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If 141 is a triangular number, M 1 = fm I, then Q2 (l) is the crisp line y - b =
m(x - a).

Let P1 and P-2 be fuzzy points at (al, b1) and (a2, b2), respectively, which
define L3. Then L3 contains both P1 and A. Also (L3)1 = 523(1) will
always be the crisp line through (a1, b1) and (a2, b2). If L3 contains some
other point Q. then Q1 must be on the line which is 523(1).

We now consider some relationships. We show how. under certain condi-
tions, L11 is an L12, L3 is an L2, L2 is an L12, and L12 is an L2. We first
consider L11 and L12. _

Assume that zero does not belong to B°. Define
Stm(t) = {-a/bI a E At,b E Bt}, 0 < t < 1,

and define M by Vx E R2,
M(x) = V{t I x E Stm(t)}.

Next set _
f2b(t) = {c/d : b E Bt, c E Ct }, 0 < t < 1,

and define Bo by Vx E R2,
Bo(x) = V{t x E S2b(t)}.
In the above definitions, A, B, C are the fuzzy numbers in the definition of

L. It follows that M and Bo are also fuzzy numbers and that i t = Stm(t)
and (Bo)t = f b(t) for all t. Thus let M and B° be the fuzzy numbers in
the definition of L12.

Theorem 5.38 L11 = L12.

Proof. We show that (L11)t = f111(t) is the same as (L12)t = f112(t) for
all t. _

If (x, y) E fl 1(t), then ax + by = c for some a E At, b E Bt, C ECt. Then
y = mx + b° for m = -a/b, bo = c/b. However m E Mt, bo E (Bo)t. Thus
(x, y) E 1112(t). Hence, 5111(t) is a subset of 012(t)-

Similarly, it follows that 1112(t) is a subset of ft11(t).

We now consider L3_nd L2.
Let P1 = P(ai, b1), P2 = P(a2, b2) be two fuzzy points which define L3.

Define Projx(Projy) to be the projection of a subset of the plane onto the x-
axis (y-axis). Assume that Projx(Pi)°flProjx(P2)° = 0. Hence if (ul,v1) E
(P1)° and (u2i v2) E (P2)°, then ul - u2_ will never be zero. Define

Stm(t) _ {m m = u2-u , (u1, v1) E (Pi)t, (u2, 2'2) E (P2)t} for O < t < 1,
and set

141(x) = V{t x E Stm(t)}. _
It follows that M is a fuzzy number and Mt _= Stm (t) for all t. Now let

M and P1 be fuzzy subsets in the definition of L2.

Theorem 5.39 L3 = L2.
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Proof. We show 523(t) = 522(t) for all t. Let (x, y) E (L3)t. Then y - 7'1 =
m(x-ul) for in E lilt, (u 1, v1) E (Pl)t. But then (x, y) E 522(t) and 113(t) is
a subset of 522(t). Similarly, we can show that 522(t) is a subset of 523(t).

We consider L12 and L2 next.
We first show that given an L 12, we can define an L2 so that L2 = L,2

Let M, b be fuzzy numbers that define L12. We use the same Al for
L12. [7, Figure. 1. p. 1861 shows a typical t-cut of an L12. Recall that
(L12)t = Q12(1). We need to specify a fuzzy point K to completely define
L2. Let Mt = [7711.7112] and Bt = [bl, b2]. Assume that B(x) = 1 if and only
if x = b* where bl < b* < b2. That is, b is normalized at only one point.
Define K to be a fuzzy point at (0, b*) so that its t-cut lies in region Rt in
[7, Figure 1, p. 186]. Then 522(t) = f212(t) and L2 will be the same as L12.

Conversely, let M and K be the fuzzy subsets in the definition of L2.
Then K must be a fuzzy point on the y-axis. Let K be a fuzzy point at
(0, b*) so that its t-cuts fit inside region Rt of [7, Figure 1, p.186]. ProjyKt
will be [bl, b2) in [7, Figure 1, p. 186]. Define the fuzzy number B so that
Bt = ProjyKt for all t. The same M is used for L12. Then 5212(t) = p2(t)
for all t so that L 12 = L2.

We consider some general properties.
A fuzzy line L will be an L,1, L12, L2, or an L3. Then the following

properties hold: _
(1) t-cuts of L are closed, connected and arcwise connected, but not

necessarily convex;
(2) L(x, y) is upper semi-continuous since t-cuts are closed; and
(3) L is normalized, or there is always at least one crisp line in L1.

Definition 5.13 Let La, Lb be two fuzzy lines. A measure of parallelness
(p) of La and Lb is defined to be 1 - A where A = V{La(x, y) A Lb(x, y) [

(x,y)E1R2}.

In Definition 5.13, A is just the height of the intersection of La and Lb.
Hence, if La fl Lb is the empty set (completely parallel), then A = 0 and
p = 1. Let la and lb be a crisp lines in (La)' and ( Lb)1, respectively. If
la and lb intersect, then A = 1 and p = 0. Thus p has some properties we
would expect for a measure of parallelness. _

Suppose La and Lb are both crisp lines. Then p = 1 if and only if La
and Lb arejarallel.

Now let_La be a crisp line and Lb a fuzzy line. For example, let Lb = L12
or L2. If Ml = [ml, m2], m1 < m2, then La intersects a crisp line in (Lb)1
and p = 0. Hence p = 0 for a crisp line and a fuzzy line.

Definition 5.14 Let La and Lb be two fuzzy lines. Assume p < 1. The
fuzzy region R of intersection of La and Lb is R = La f1 Lb. Then R(x, y)

La (x, y) A Lb(x Y) -
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Clearly, if p = 1, then the fuzzy region of intersection j-? is the empty set.

5.11 Fuzzy Plane Geometry: Circles and Polygons

This section continues the development of fuzzy plane geometry of the
previous section. The material is from )8). We investigate fuzzy circles and
fuzzy polygons. We show that the fuzzy area of a fuzzy circle, or a fuzzy
polygon, is a fuzzy number. We also show that the fuzzy perimeter of a
fuzzy circle, or a fuzzy polygon, is a fuzzy number.

We define a fuzzy circle and show how to get t-cuts of a fuzzy circle. We
also consider some examples of fuzzy circles. We define the fuzzy area of a
fuzzy circle and show that it is a fuzzy number. We then define the fuzzy
circumference of a fuzzy circle and prove that it is also a fuzzy number.
We look at some examples of the fuzzy area and the circumference of fuzzy
circles.

The equation x2 + ax + y2 + by = c defines a circle when 4c > a2 + b2.
Our first method is to fuzzify this procedure.

Let A , B , C be fuzzy numbers. A fuzzy circle it is all pairs of fuzzy num-
bers (X, Y) _which are solutions to

(X)2+AX+(Y)2+BY=C,
where 4C > (A)2 + (B)2.
However, the above equation usually has no solution (using standard

fuzzy arithmetic) for k and k, 191. Therefore, we do not use this method
in defining a fuzzy circle.

Another possible method in specifying a circle is to use the standard
equation for a circle: (x - a)2 + (y - b)2 = c2. This leads us to our second
method of defining a fuzzy circle.

Let A , B, C be fuzzy numbers. A fuzzy circle t is all pairs of fuzzy num-
bers (X,_Y) which are solutions to

(X - A)2 + (Y - B)2 = (C)2.
Unfortunately, this equation also has few, if any, solutions for k and k,

[9). This leads to the next approach in defining fuzzy circles [6,10,11).
Let A, B, C be fuzzy numbers. Let _ _ _
1l(t) _ { (x, y) I (x - a)2 + (y - b) 2 = c2, a E At, b E Bt, c E Ct },

for 0 < t < 1. A fuzzy circle is defined as follows: V(x, y) E R2,
C(x,y) = V(t I (x,y) E Si(t)}.
We will adopt this method to define a fuzzy circle. This type of fuzzy

circle will be seen to have desirable properties including its fuzzy area and
circumference being fuzzy numbers (or real numbers as a special case of
fuzzy numbers).

As the following theorem, shows it is not too difficult to obtain t-cuts of
fuzzy circles.
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Theorem 5.40 Ct = SZ(t), 0 < t < 1.

Proof. We first show that the t-cuts are the same for 0 < t < 1. Let
v E 11(t.). Then e:(v) > t and 11(t) is a subset of Qt.

We now show that Ct is a subset of 1(t). Let v E C t. Then t(v) > t .

Set C(v) = s. We consider two cases: (a) s > t; and (b) s = t.
(a) Suppose that s > t. There is an r, t < r < s with v in 1(r). Since

1(r) is a subset of 11(t), we have v in 1(t).
(b) Suppose that s = t. Let K = j w I v E Q(w)j. Then V K = s =

t = e(v). There is a sequence r7z in K such that r,, T t. Given c > 0 there
is a positive integer N so that t - e < r,,, n > N. Now v E Q(r,,) for
all n implies that v is also in 11(t - e) for all e > 0. If v = (x, y), then
(x - a)2 + (y - b)2 = c2 for some a in i`, bin Bt-e, c in Ct-e. Hence,

A(a) > t - e, B(b) > t - e, C(c) > t - e. Since e > 0 was arbitrary, A(a) > t,
B(b) > t, C(c) > t and a E At, b E Bt, c E C. Hence v = (x, y) is in 11(t).
Thus Ert is a subset of 11(t).

It follows that C°=1(0)since Ct=1(t),0<t<1.
Example 5.14 The fuzzy circle defined here is called "thick" or `fat" in
[8]. Let A = (0/1/2) = B = C be triangular fuzzy numbers. The support of
T-, (CO = 11(0) is the rectangle (-2,41 x [-2,4] with rounded edges. In fact,
all t-cuts of e:,0 < t < 1, are rounded corner rectangles with t1 the crisp
circle (x - 1)2 + (y - 1)2 = 1. The graph of the membership function of
is a four-sided pyramid, with rounded edges and vertex at (1, 1).

Example 5.15 By a "regular" fuzzy circle, we mean that t-cuts, 0 < t < 1,
will be disks. Let A = B = I (real number one) and C = (1/2/3). All t-cuts,
0 < t < 1, ofd are disks with it = {(x, y) J1 < (x - 1)2 + (y - 1)2 < 9}.
V is the crisp circle (x - 1)2 + (y - 1)2 = 1.

Definition 5.15 Let A, B, C be fuzzy numbers in the definition of the fuzzy
circle (E. Set _

1a (t) _ {e 1 0 is the area of (x - a)2 + (y - b)2 = c2, a E At, b E Bt , c E

Ct} _
Q < t < 1. The area 8 of C is defined as follows:
8(0) = v{t 10 E 11a(t)}.

There are some degenerate cases which must be considered where i5
becomes a (crisp) real number (a special case of a fuzzy number). If A, B, C
are all real numbers, then C is a crisp circle and 8 is a real number. Thus
assume that at least one of the A, B, C is a fuzzy number which is not a real
number. The only case where 8 can degenerate into _a crisp number is when
C is real. Let C = c, c > 0, a real number. Then 8 = irc2 a real number.
Thus, in the next theorem, it is assumed that C is not a real number.

Theorem 5.41 6' = 1Q(t) for all t and 6 is a fuzzy number.
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Proof. The proof that Ot = Sla(t) for all t is similar to the proof that
q2t = 1(t) for all t in Theorem 5.40. _

We now show that O is a fuzzy number. Since the t-cuts of A. B, C are
compact intervals, it follows that )(t) is a bounded closed interval for all t.
Let Sla(t) = [l(t).r(t)].0 <, t < 1. If the t-cuts are closed intervals, then the
membership function is upper semi-continuous [11]. However, Ot = Q(t) =
a closed interval for all t. Hence, 6(9) is upper semi-continuous. Let Q(O) =
[c, d]. Clearly, 6(0) = 0 outside [c, d]. Let Sl(1) = [a, b]. Then, 6(0) = 1 on
[a, b]. Now since 1(t) = [l(t), r(t)] = Ot for all t with l(t) increasing from
c to a and r(t) decreasing from d to b, it follows that 6(0) is increasing
on [c, a], decreasing on [b, d], and it equals 1 on [a, b]. Thus O is a fuzzy
number.

Definition 5.16 Let A, B, C be fuzzy numbers in the definition of (E. De-
fine

Q, (t) {A I A is the circumference of (x - a)2 + (y - b)2 = c2, a E
At, b E Bt, c E Ct },
0 < t < 1. Define the circumference bas

b(L) = V{t [ 0 E Sla(t)}.

In the following theorem, assume that C is not a real number. If C is
real, then b is a real number.

Theorem 5.42 bt = Sla(t) for all t and b is a fuzzy number.

Proof. The proof is similar to the proof of Theorem 5.41.

Example 5.16 Consider the "regular" fuzzy circle of Example 5.15. Then
A = B = 1 and C = (1/2/3) is a triangular fuzzy number. The level sets
of C are [t + 1, 3 - t], 0 < t S 1. Thus 6t = [7r(t + 1)2, a(3 - t)2], bt =
[21r(t + 1), 2ir(3 - t)], 0 < t < 1. Hence, the fuzzy area O is a triangular-
shaped fuzzy number with support [7r, 97r] and vertex at (47r, 0) . The fuzzy
circumference b is a triangular fuzzy number (27r/47r/67r).

Example 5.17 Consider Example 5.14, where A = B = C = (0/1/2).
The level sets of C are it, 2 - t], 0 < t < 1. It follows that O is a triangular-
shaped fuzzy number with t-cuts [irt2, 7r(2 - t)2], 0 < t < 1. Also, b is a
triangular fuzzy number (0/ir/4ir) .

We next discuss what we mean by a regular n-sided polygon, define
(regular) n-sided polygons, and compute t-cuts of fuzzy polygons. We define
the fuzzy area and perimeter of a fuzzy polygon and show that they are
fuzzy numbers. We also look at two special cases as fuzzy rectangles and
triangles.
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A polygon is a rectilinear figure with n sides, n > 3. We allow n = 3
and n = 4 so that triangles and rectangles can be considered polygons. A
regular polygon will have a convex interior.

Definition 5.17 Distinct points v1, ..., v in R2 are said to be convex in-
dependent if and only if any v2 does not belong to the convex hull (convex
closure) of the rest of the v., l < j < n, j # i.

Let v1, ..., vn be convex independent. Assume they are numbered coun-
terclockwise, i.e., as we travel from vl to v2, ..., vn_1 to v,, we continually
travel in a counterclockwise direction. We connect adjacent vi with line
segments in the following manner. We draw a line segment 112 from v1 to
V2, ..., lnl from vn to vi. The v2, together with the line segments, define a
regular n-sided polygon. We call such a polygon an n-gon. The interior of
an n-gon is convex. When n = 3 we have a triangle.

Let v1i...,vn be n distinct points in the plane that define an n-gon (a
regular n-sided polygon). Next let Pi be a fuzzy point at vi,1 < i < n. We
now need the definition of a fuzzy line segment.

Definition 5.18 Let P and Q be distinct fuzzy points. Let 91(t) denote
the set of all line segments from a point in Pt to a point in Qt }. The fuzzy
line segment Lpq, from P to Q is defined as follows:

Lpq(x,y) = V{t I (x,y) E Q1(t)}.
As in the proof of Theorem 5.40, we can show that (Lpq)t = S21(t) for all

t.

Definition 5.19 Let L1, ..., in be fuzzy line segments from P1 to 152, ..., P.
to P1, respectively. Then a (regular) n-sided fuzzy polygon q3 is defined to
be q3 =U 1L2.

It follows that

T (x, y) = V{L2(x, y)l i = 1, ..., n} (5.11.1)

for all (x. y) E IR2. _
If the two fuzzy points P1 and P2 are such that (P2)° is a subset of (P1)°,

then we obtain a degenerate fuzzy polygon. In a degenerate fuzzy polygon
the support, T°, does not show all the (fuzzy) n vertices.

Example 5.18 Let n = 3 and the fuzzy points be all right circular cones.
Pl has base B1 = {(x,y) I x2 + y2 < (0.1)2} and vertex at (0,0), P2 has
base B2 = {(x, y) I (x - 1)2 + y2 < (0.1)2} with vertex at (1,0), and P3
has base B3 = { (x, y) I (x - 1)2 + (y - 0.5)2 < 1 } having vertex at (1, 0.5).
Clearly, (P2)° C (P3)° and (P1)°, (P3)° are disjoint. Thus, (L2)° C (P3)°
and T is degenerate. Also, L1(0) C L3(0). Hence support of '4.3 is (L3)0
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Definition 5.20 We call a regular n-sided fuzzy polygon a fuzzy n-gon.
We say a fuzzy n-gon is non-degenerate if (Pi)° is not a subset of (Pj)°,
j # i, for all i = 1...., n. We say the fuzzy n-gon is strongly non-degenerate
if the (Pi)°i < n, are pairwise disjoint.

Example 5.19 Let n = 4 and let P1 be a fuzzy point at (0, 0) , P2 a fuzzy
point at (1, 0), P3 a fuzzy point at (1,1) , and P4 a fuzzy point at (0,1) .
Let P1 be a right circular cone with base Bl = { (x, y) I x2 + y2 < (0.1)2 }
and vertex at (0, 0) . The rest of the Pi, i > 1, will just be rigid translations
of P1 to their position in the plane. Then' I3 is strongly non-degenerate; in
fact, we would call '3 a fuzzy rectangle.

Theorem 5.43 'a3t = Us 1(Li)t for all t.

Proof. We have that (Li)t = Sli(t), where Sli(t) is the set of all line seg-
ments from (P=)tto (Pi+1)t,0 < t < 1. (We replace i + 1 by 1 when i = n).
Thus, we must show

qJt = U1 1Sli(t),0 < t < 1. (5.11.2)

We first show that Eq.(5.11.2) is true for 0 < t < 1.
Let v belong to the union of the Sli(t). Then there is some value of i, say

i = 1, such that v E Sli(t). Then L1(v) > t. Hence by Eq. (5.11.1) 3(v) > t
and v belongs to Vt. Thus the union of the Sli(t) is a subset of Vat.

Let v belong to Vt and let q3(v) = s. Then s > t or s = t.
Suppose s = t. By (5.11.1), there is an i, say i = 1, such that L1(v) = t.

Hence v E Sll (t) and v belongs to the union of the Sli (t). _
Suppose s > t. By (5.11.1), there is an i, say i = 1, such that L1 = s.

Then v E Sll (s). However since s > t we also have v in S11 (t). Hence v
belongs to the union of the Sli(t). Thus '.)3t is a subset of the union of the
Sli (t).

Since Eq.(5.11.2) holds for 0 < t < 1, it holds for t = 0.

We now consider the fuzzy area of a fuzzy n-gon.

Definition 5.21 Let T be a strongly non-degenerate fuzzy n-gon defined
by fuzzy points Pi,1 < i < n. Define Sla(t) to be the set of all areas of
n-gons such that vi E (Pi)t, 1 < i < n,0 < t < 1. The area 9 of q3 is
defined to be
0(0) = v{t 0 E Sla(t)}.

In a similar way, we can define the fuzzy perimeter of a fuzzy n-gon.

Definition 5.22 Let T be a strongly non-degenerate fuzzy n-gon defined
by fuzzy points Pi, i < i < n. Set Sli(t) equal to the set of all perimeters
of n-gons defined by vi in (Pi)t,1 < i < n. 0 < t < 1. Then the fuzzy
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Eerimeter b is
6(o) = V{a 1 A E Sla(t)}.

Theorem 5.44 Ot = Sta (t) and bt = Ste(t) for all t.

Proof. The proof is similar to those of Theorems 5.40 and 5.41.
If we allow ' 3 to be degenerate, we still obtain Ot = Sla(t), St = Ste(t.),

for all t, but B and S may not be fuzzy numbers.

Example 5.20 Consider the degenerate fuzzy polygon in Example 5.18.
Since some t-cuts of P2 are inside the corresponding t-cuts of P3, Ste(t) is
the interval (0, r(t)], 0 < t < t* for some 0 < t* < 1. However Ot = Sla(t)
so that Ot is not always be a closed interval. Hence, B(8) is not be upper
semi-continuous. Similar results hold for the fuzzy perimeter. Here neither
© nor S are fuzzy numbers.

If n = 3 a fuzzy n-gon, it is a fuzzy triangle. If it is strongly non-
degenerate, its fuzzy area and perimeter are fuzzy numbers. Now, since we
have a fuzzy triangle we may investigate the beginnings of fuzzy trigonom-
etry (see also [51] and Section 5.2). For the remainder of the section, we
assume that the fuzzy triangle is strongly non-degenerate.

Definition 5.23_Let_Pl, P_2i P3 be the fuzzy points that define the ,fuzzy
trianle T .Let L12, L23LL31 be the fuzzy line segments connecting P1 to
P2, P2 to P2 to P3, and P3 to P1, respectively. Define Q, (t) denote the set
of all angles (in radians) between 112 and l31 such that 112 is a line segment
from a point in (P1)t to a point in (P2)L, 131 is a line segment from (P3)t
to (Pl)t, and 112, 131 initiate from the same point in (F1)t,0 s t < 1. We
define II, the fuzzy angle between L12 and L31, as follows:
II(7r) = V{t I n E ft,r(t)}.

Theorem 5.45 fit = Q, (t) for all t and II is a fuzzy number.

Proof. The proof is similar to that of Theorems 5.40 and 5.41.

In the definition of II, assume that P2 is a fuzzy point at vi in R2, i =
1, 2, 3. II depends not only on the vi, but also on the "size" of the fuzzy
points. That is, if we substitute fuzzy point P2 at v2 for P2 and (P2)t C
(P2)t for all t and n' is the resulting fuzzy angle, then we can get II C IF.
Thus we write II = II(P1 i P2, P3) to show the dependence of II on the fuzzy
points.

Consider elementary fuzzy right triangle trigonometry. Consider fuzzy
points P1i P2, P3 at vi = (0, 0), v2 = (a, 0), v3 = (a, b), a > 0, b > 0,
respectively. The P2i 1 i < 3, form a right triangle. II is the fuzzy angle
between L12 _an_d L31. Define _

tan(II) = D(P2, P3)/D(PI, P2),
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where D(P, Q) is the fuzzy distance from fuzzy point P to Q. Now tan(H)
is well-defined and is _a fuzzy number, since (a) zero does not belong to
the support of D(P1, P2) and (b) D(P2, P3) and D(P1i P2) are both fuzzy
numbers. We can define sin(II) and cos(II) in a similar manner and both
will be fuzzy numbers.

However, many properties of triangles and crisp trigonometry identities
such as cos2(0) + sin2(0) = 1 do not generalize to fuzzy triangles (see also
[511 and Section 5.2). The following example shows that the Pythagorean
theorem may not hold for fuzzy right triangles.

Example 5.21 Let P1, P2, P3 be fuzzy points at v1 = (0, 0). v2 = (1, 0),
V3 = (1, 1), respectively. Each Pi is a right circular cone, base a circle of
radius 0.1 centered at vi, with vertex at vi, i = 1, 2, 3. Let A = D(PI, P2),
B = D(P2, P3),C = MA, P3). Now L12 and L23 are the two sides of the
fuzzy right angle T and L31 is the hypotenuse. The lengths of L12, L2, L31
are A, B, C, respectively. But (A)2 + (B)2 # (C)2 because A° = B° _
[0.8,1.2], C° = [f - 0.2, f + 0.2] so that the support of (A)2 + (B)2 is
[1.28, 2.88] but the support of (C)2 is [1.474, 2.6061.

We now consider fuzzy rectangles. Let v1 = (x, y), V2 = (x + r, y), v3 =
(x + r, y + s), and v4 = (x, y +s), r > 0, s > 0 be four points in the plane.
Next let Pi be a fuzzy point at vi, i = 1, 2, 3, 4. The Pi define a fuzzy 4-gon.
We assume it is strongly non-degenerate. We call this fuzzy 4-gon a fuzzy
rectangle. We have seen above that we can define the area and perimeter
of a fuzzy rectangle and they will be fuzzy numbers.

However, the fuzzy area of the fuzzy rectangle may not be the product
of the side lengths and the fuzzy perimeter may not equal the sum of
the side lengths. Let A b(161, P2), b = D(P2, P3), C = D(P3, P4) and
D = D(P4i P1). Since the t-cuts of the fuzzy points may have different
sizes, we may get A 0 C and &:A D. Thus assume the fuzzy points are
all the "same", just centered at different points in the plane. The following
example shows that still the area may not be the product of the side lengths
and the perimeter may not equal to the sum of the side lengths.

Example 5.22 Let P1i P2, Par P4 be fuzzy points at v1 = (0, 0), v2 = (0, 1),
V3 = (1, 1), v4 = (1,0), respectively. Then we have a fuzzy square. Assume
each Pi is a right circular cone with base a circle of radius 0.1 centered at
vi, and vertex at vi, 1 < i <4.

Let A = D(P1, P2), B = D(P2, P3), C = D(P3, P4), ..., D = D(P4, Pi).
We see that A° = B_° = C° = D° = [0.8,1.2]. Thus, (AB)° _ [0.64,1.44]
and (A + B + C + D)° = [3.2, 4.8]. Let 1a (t) denote the set of all areas of
a rectangle with vertices in Pi(a),1 < i < 4, 0 < t < 1, then the fuzzy area
6 is such that 6(0) = V{t 10 E 1l (t)}.
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Similarly, we define the fuzzy perimeter b. We easily see that the left end

point of 60 is greater_than0.64 and_ the left end point of b is more than
3.2. Hence. 6 $ AB. b # A + B + C + D.

The authors of ]8] plan to extend above results to 1R", n > 3. They
may define and study fuzzy points and lines in R", n > 3. Then introduce
fuzzy planes in 1R3 and fuzzy hyperplanes in R', n >, 3. They will look at
fuzzy distance in W', n >, 3, and the intersection of fuzzy lines and fuzzy
hyperplanes, etc. The authors of [8] also plan to apply their results to fuzzy
data bases.

5.12 Fuzzy Plane Projective Geometry

In this section, we introduce some concepts of fuzzy projective geometry as
initiated by Gupta and Ray, [23]. The approach used here is different than
that used in the previous sections. For example in the previous section,
fuzzy numbers were central to the development, while in this section fuzzy
singletons are central. Also, an axiomatic approach is used in this section.

Let S be a nonempty set. A collection II of fuzzy points (singletons) of S
is called a complete set of fuzzy points if given x E S, there exists t E (0, 1]
such that xt E H. If Xt E II and t > 0, then xt is called a fuzzy vertical
point. It is possible for xt, X. E II with t # s. If xi, ys E II with x y,
then xt and ys are called fuzzy distinct. A nonzero fuzzy subset L of S is
called a fuzzy line through Ill if Vx E S, L(x) > 0 implies that xt E II,
where t = L(x). A fuzzy line L is said to contain or pass through the fuzzy
point xt of II if L(x) = t. In this case, we say that xt lies on L. This gives
a symmetric incidence relation I such that LIxt or xtIL means that L
contains the fuzzy point xt. A fuzzy plane projective geometry (FPPG)
is an axiomatic theory with the triple (II, A, I) as its fundamental notions
and Fl, F2, and F3 as its axioms (listed below), where II is complete set
of fuzzy points of a nonempty set S and A is a collection of fuzzy lines
through H.

Fla. Given two fuzzy distinct points in A, there is a least one fuzzy line
in A with which both are incident.

Flb. Given two fuzzy distinct points in 11, there is at most one fuzzy line
in A with which both are incident.

F2. Given two distinct fuzzy lines in A, there is at least on fuzzy point
in II with which both are incident.

F3. II contains at least four fuzzy distinct points such that no three of
them are incident with one and the same fuzzy line in A.

We now give three examples of fuzzy plane projective geometries.

Example 5.23 (The Straight Line Model) Let S = RU{riJr # O, r E
R } U { oo I. where i is the imaginary number and oo is an object which
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is not a complex number. Let II = {xt]xt.x E k8,0 < t < 1} U {ri,Js =
(1/7r)cot-'(r).r E R,r # 0} U {001/2}. The fuzzy lines are defined as
follows: For 0 -X 771 E R, c E R. define the fuzzy line [m, c] through II by

(1/7r) cot- 1 (771 x + c) if x E R,
[m. c] (.r) _ (1/7r) cot-1 (7n) if x = mi.

0 otherwise.

For d E R, define the fuzzy line [d] through II by

(1/7r) cot' (d) if x E IR,
[d] (x) = 1/2 if x = oo,

1 0 otherwise.

Define the unique fuzzy line w through II by w(xi) = (1/7r)cot-'(x),
0 # r E IR, w(oo) = 1/2, w(x) = 0 if x E R. It. follows easily that this model
satisfies F1 , F2, and F3.

Example 5.24 (Model M) In this model, S and II are as defined in the
previous model. The fuzzy lines are defined as follows: For 0 0 m E R, c E
R, define the fuzzy line [m, c] through lI by

(1/7r) cot-' (mx + c) if m < 0, x E R, or m > 0, x < 0,
[m'

c]
(x) _ (1/7r) cot-' (2mx + c) if m > 0, x > 0,

(1/7r)cot(m) if x = mi,
0 otherwise.

For d E R, define the fuzzy line [d] through lI by

(1/7r) cot-' (d) if x E ]R,
[d] (x) = 1 /2 if x = 00,

0 otherwise.

Define the unique fuzzy line w through II by w(xi) - (1/ir)cot-'(x),
0 0 x E IR, w(o0) = 1/2, w(x) = 0 if x E R. It follows easily that this model
satisfies F1 , F2, and F3.

Example 5.25 (The Spherical Geodesic Model) Let S = (0, it] and H =
{xy[0 < x < 7r, 0 < y < 1}. The set A consists of fuzzy lines [a,b], a, b E R,
where [a, b] denotes the function

y = (1/7r) cot-' (a cos(x) + bsin(x)), 0 < x < 7r.

If we do not insist that the values assumed by [a, b] should lie in [0, 1], we
may take II = {xy[0 < x < it, 0 < y < 7r} and by [a, b] we mean the
function

y = cot-'(acos(x) + bsin(x)).0 < .r. < it.
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These are functions from S into (0, 7r). This revised model is called the
Expanded Spherical Model (ESG) Model. All the geometric properties, viz.,
cut points. formation of triangles, configurations for Desargues's theorem,
etc. are invariant for both the SG and the ESG Models. It can be shown
that these models are fuzzy plane projective geometries, [23, Theorem 3.5,
p. 193].

Theorem 5.46 Let (R, A, I) be a fuzzy plane geometry. Then the following
assertions hold.

(i) Given two distinct fuzzy lines, there is at most one fuzzy point with
which both are incident.

(ii) A contains at least four distinct fuzzy lines such that no three of them
pass through one and the same fuzzy point in II.

(iii) Every fuzzy point is incident with at least three distinct fuzzy lines.

(iv) Every fuzzy line is incident with at least three fuzzy distinct points.

The point of intersection of two distinct fuzzy lines L and k is the unique
fuzzy point with which both are incident. It is denoted by L f1 M. If A and
B are two fuzzy distinct points, then we let AB denote the unique fuzzy
line with which both A and B are incident. Two or more fuzzy points Ai,
i = 1, 2. ..., n, are said to be fuzzy collinear if there is a fuzzy line with
which each of them is incident. Clearly no two of them are fuzzy vertical.
The fuzzy lines Li, i = 1, ..., n, are said to be fuzzy concurrent if there is a
fuzzy point with which each of them is incident.

Definition 5.24 A fuzzy triangle in an FPPG is a set of three fuzzy dis-
tinct points Al, A2, and A3 and a set of three fuzzy lines L1, L2, and L3
such that A;IL1 for i # j and it is not the case that Ai.ILi (i, j = 1, 2, 3).
The fuzzy points Ai are called the vertices and the fuzzy lines Li are called
the sides of the triangle. The triangle is denoted by A1A2A3.

Fuzzy Desargues' proposition (fD11) : Let A1A2A3 and B1B2B3 be
two fuzzy triangles. Let Ai and Bi be corresponding vertices. Let Li and
Mi be corresponding sides. If every two corresponding vertices are fuzzy
distinct and every two corresponding sides are distinct and the fuzzy lines
connecting corresponding vertices are incident with a fuzzy point 0, then
the corresponding sides intersect in three fuzzy points which are either
fuzzy collinear or fuzzy vertical.

Theorem 5.47 The fuzzy Desargues' proposition is not valid in the Model
M.

Theorem 5.48 The fuzzy Desargues' proposition is valid in the Spherical
Geodesic Model.
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Theorem 5.49 The fuzzy Desarques' proposition is independent of F1,
F2, andF3.

Fuzzy small Desargues' proposition (f D10) : Let Al A2A3 and B1 B2B3
be two fuzzy triangles such that the corresponding vertices are fuzzy dis-
tinct and the corresponding sides are distinct. Let Ci = L; fl M. where
Li and R1i are the sides of Al A2A3 and B1 f32i33, respectively, i = 1,2,3.
The lines connecting corresponding vertices are incident with a fuzzy point
6. There is an extra incidence A11M1. Then C1, C2: C3 are either fuzzy
collinear or fuzzy vertical.

Theorem 5.50 The fuzzy small Desargues' proposition is independent of
F1, F2, and F3.

5.13 A Modified Hausdorff Distance Between
Fuzzy Subsets

The results of this section are from [13]. The concept of distance is of
importance in science and engineering. It is often desirable that the distance
be a metric. Let S be a set. A function d from S x S into R is called a
metric if (1) VP, Q E S, d(P, Q) 3 0, (2) VP, Q E S, d(P, Q) = 0 if and
only if P = Q, (3) VP, Q E S, d(P, Q) = d(Q, P), and (4) VP, Q, R E S,
d(P, R) < d(P, Q) + d(Q, R). If d satisfies (1) and (2), it is called positive
definite. If d satisfies (2) it is called symmetric. If d satisfies (4), it is said
to satisfy the triangle inequality.

Let ]RP denote p-dimensional Euclidean space. Minkowski defined a class
of metric distances on RP as follows:

P
dn(P,Q) = { E lxi - yil"}1/",

i=1
where P, Q are two points in RP and xi and yi are the i-th coordinate
values of P and Q, respectively. Of these distances, the one most used in
pattern recognition and image applications are the city block, chessboard
and Euclidean distances, i. e., those corresponding to n = 1, oo and 2,
respectively.

The concept of distance has been extended to subsets of a metric space.
One popular set distance is the Hausdorff distance. It is a metric. Let W'
denote the operation of dilating the set W by radius r (i.e., W' is the set of
all points within distance r of W). For any two non-empty, compact (closed
and bounded) subsets U and V of RP, let

L(U,V) =A{re R+ I Ur DV}.
Then the Hausdorff distance H(U, V) is defined to be
V{L(U, V), L(V, U) }.
We first review methods of defining the distance between two fuzzy sub-

sets, including methods of generalizing the Hausdorff distance to fuzzy sub-
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sets, and discuss their shortcomings. We then propose a modified Hausdorff
distance for fuzzy subsets and establish its metric properties. We provide
some examples and compare our definition to other recently proposed defi-
nitions. We conclude the section with a discussion concerning applications
and we give an example showing that our definition is relatively robust to
noise.

Distances Between Fuzzy Subsets

Two methods of defining the distance between two fuzzy subsets A and B
of lR" have been proposed in [16]. One of these was later modified in [48].

In one of the methods in [16], a distance which is a fuzzy subset of R+
was defined, where R+ denotes the set of nonnegative real numbers. For
r E R+, the distance is defined as

dA B(r) = V{A(P) A B(Q)) I d(P,Q) = r; P,Q E 1[8P}.
For two non-fuzzy sets U and V, this definition leads to du,v(r) = 1 if

there exist P E U, Q E V such that d(P, Q) = r; otherwise du,v (r) = 0.
The metric properties of this distance function are discussed in [16]. The
function dU,v is not a metric in the usual sense of the term.

The definition was modified and renamed in [48] as follows:
AA,B(r) = v{A(P) n B(Q)) I d(P,Q) < r. P,Q E ]RP}.
It follows that AA,B is a monotonically non-decreasing function of r and

if A' C A and B' C B for fuzzy subsets A', B'of IRP, then DA,, a, < AA,B
The distance DA,B satisfies some other desirable properties.

The mean distance between two fuzzy subsets A and B (A # X0 # B
was also defined in [48] as follows:

E EP.QESd(P,Q)]A(P)AB(Q)1
Z E P.QESIA(P)/B(Q))

In [16], the Hausdorff distance was generalized to fuzzy subsets as follows.
For a fuzzy subset W for all r E R+, let

W'' (P) = v{W(Q) I d(P,Q) < r}.
Here W', the expansion of W by r, is the result of applying to all points

of W a local max operation within a region of radius r. Now let
L(A, B) =_ A{r E R+ I Ar D B}.
The fuzzy Hausdorff distance Hf(A, b) is then defined as
Hf(A, B) - L(A, B) V L(B, A)].
It follows that if the supremum of A does not equal the supremun of b,

then either L(A, B) or L(B, A) does not exist and so Hf(A,) cannot be
defined. Thus, two fuzzy subsets of S must have the same supremum for
the distance Hf between them to exist. This is a serious drawback of this
definition.
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Another definition, proposed in [42], compared the level sets of the fuzzy
subsets. This definition is also limited to fuzzy subsets that have equal
maximum membership values.

In order to handle fuzzy subsets with unequal maximum memberships,
an expression for Hausdorff distance was proposed in [12]. Here the fuzzy
subsets A and B are modified to A' and B' that have maximum membership
value equal to 1. For sets with finite and countable support, the distance
is defined as

Hf (A,
B) __ Ein1 ti

m(At,-,
Bt,) + E>PES I A(P) - B(P) (5.13.1)

Li=1 ti card(S)

where ti, i = 1, ..., in, are the distinct membership values of A' and B'
and where At; is the crisp set defined as

At; _ { P I A' (P) > ti }
(and similarly for Bt,) and finally where a is a small positive constant,

and card(S) is the cardinality of the finite countable support S.
If S is an uncountable metric space, then this definition is modified to

1 fs IA'(s) - B'(s)I ds
Hf(A', B') _ J tH(A1, Bt)dt + e

f8 ds
(5.13.2)

8

Both (5.13.1) and (5.13.2) have two terms. The first term defines geo-
metric distance in the Hausdorff sense, while the second term represents
dissimilarity. Combining two terms representing two unrelated notions is
not very appealing.

To overcome this, a single-term expression is proposed in this section
that represents geometric distance only. This expression is a metric. It is a
generalization of the `crisp' Hausdorff distance and is applicable to arbitrary
fuzzy subsets. Other modifications of our definition are given in [5] and in
[19]. These definitions will be compared with the one presented later.

A Proposed Modified Hausdorff Distance

Let A and i3- be any two non-empty fuzzy subsets of a metric space S. The
maximum membership of A is

u*=V{A(x)IxES}.
Let _
Amax = {x I A(x) = u*}.
Let Aa be a crisp subset of S such that
Aa D Amax _
and such that for any two fuzzy subsets A and B
Aa = B. if and only if A,,, = B,,,a,,.
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For t E 10. 11, let
At = {x I A(x) E [t,u*]} if t < u*,
=Aaift>u*.
It follows that At = Amax if t = u*, and that the second case does not

arise if u* = 1.
For any subfuzzy set A such that u* > 0. At # 0 Vt E (0, 1]. If A = B,

At = Bt for all t E [0, 11.

Proposition 5.51 If A # B, then there exists t > 0 such that At Bt.

Proof. We consider two cases, depending on whether or not A and B have
the same maximum membership value.

Suppose that u* = v*. Since A B, there exist x E S such that A(x) #
B(x). If A(x) > B(x) then, by the definition of At and Bt, we have A4(x) #
BB(x). This follows since AA(x) contains the point x, but BB(x) does not.

Similarly, if b(x) > A(x), we must have AA(x) 0 Bbiyi. Thus, the desired
result holds.

Suppose that u* # v*. Without loss of generality, let u* > v*. If Amax =
B,,,ax, then the proposition is true for t = u* since in that case At = Amax,
but Bt = B. = A. which is a superset of Amax .

Suppose that Amax # Bmax. Then the proposition is true for t = u*
provided Amax # B. because then At = A,na while Bt = Ba # Amax.

Now suppose Ba is constructed so that Ba = Amax. Since B. is a superset
of B,,,ax, there exists p E Ba\Bma,,. Clearly, at t = v* the proposition is
true since then Bt = B.,,,,, but At D A,,,.x Bn,a U {p} J Bt.

Suppose first that the fuzzy subsets take on only a discrete set of mem-
bership values tji t2,..., t,,,,. Let H(At;, Bt;) be the crisp Hausdorff distance
between At, and Bt,. Then we define

Hf(A,B) _
Emlt=H(At:,Bt;)

EM
Lei=1 ti

(5.13.3)

as the fuzzy Hausdorff distance between A and B. That H f is a metric
follows from Proposition 5.51 and comments preceding it.

Now H f is a membership-weighted average of the crisp Hausdorff dis-
tances between the level sets of the two fuzzy sets, where some of the level
sets are modified, if necessary, to preserve the metric properties. In some
sense, this average can be regarded as an expected value of the Hausdorff
distance.

More generally, the membership values t in the numerator and denomi-
nator of H f could be raised to some power. But in computing the Hausdorff
distance between two fuzzy subsets, one can work directly with a power of
t rather than with t. Therefore an exponent is not used in the expression
for Hf.
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If A and h are continuous-valued, in analogy with (5.13.3), we have the
integral expression

Hf(A, B) = / tH(At, Bt)dt/ f 1 tdt = 2 1 tH(At, Bt)dt. (5.13.4)
0 0 0

It can be shown that both definitions reduce to the conventional Haus-
dorff distance in the crisp case. This follows since for a crisp set, H(At, Bt)
is constant for all t > 0 and this constant can be taken out of the integral
sign.

The definition here depends on Aa, which can be chosen in many ways.
If a fuzzy subset A has maximum membership u* = 1, A. need not be
defined since At does not use it. If u* < 1, define Aa by adjoining a single
point xA to Amax, i.e., Aa = Amax U {xA}. This single point can have a
negligible effect on the distance, because it can be given negligible area.
Consider the more specific case of a discrete space of pixels defined by a
square tessellation, as is encountered in digital image processing. Let Umax
be the set of pixels at which u attains its maximum. Then xA can be a
pixel adjacent to any border pixel of Am"x. Any of the adjacent pixels can
be chosen as xA, provided that xA = xb if Amax = Bm,.,. Note that the
same singleton should be used for all fuzzy subsets that have the same
maximum-value level set. A convention of where to place the singleton can
be defined provided that this convention is maintained, the results will be
consistent.

In [13, Figure 1, p. 165], an example in the digital domain is presented,
using Euclidean distance between (centers of) pixels. The reader is encour-
aged to see [13] for example. In [13, Figure 2, p. 167], another example is
presented in which one of the two fuzzy subsets, A, does not have any pix-
els with membership value 1. Thus its 1-level set is empty. The two sets at
membership value 1 cannot be compared directly. To apply our definition
to this example, a pixel to the level set of the highest membership value
of A is appended and this set along with the 1-level set of B is used to
compute the 1-level Hausdorff distance.

In [5], a definition was proposed that modifies those given by (5.13.1)
and (5.13.2). It was assumed that there exists a non-empty set S' disjoint
from the set S on which the fuzzy subsets are defined. The membership of
any point of S' in any fuzzy subset was defined to be zero and every fuzzy
subset was modified by appending the zero membership region. Hence,
every fuzzy subset was forced to have a non-empty set of zero membership
values. However, this method gives more weight to distances between low-
membership regions than to distances between high-membership regions.
This is counterintuitive since the higher the membership of a region, the
stronger is its degree of belongingness to the fuzzy subset. Also, the defi-
nition in [5] does not reduce to the conventional Hausdorff distance in the
crisp case. To see this suppose, for example, that S is a disk of diameter D.
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Let A and B be two disks of diameter d < D whose centers are located at
distance (D - d) /2 from the center of S in opposite directions. Consider
a fuzzy set A whose membership is 1 on A and 0 elsewhere, and a fuzzy
subset b whose membership is 1 on B and 0 elsewhere. It can be shown
that, according to the definition in [5], the distance between A and b is
d/6, which is not the crisp Hausdorff distance (D - d) between A and B.
The definition used here does not suffer from this drawback.

Another modification of our previous definition was given in [19]. There
it was assumed that the underlying metric space S is a compact subset
of Euclidean space. Thus, D = vh(U, V) exists for all non-empty compact
proper subsets of S. h is then extended to all compact subsets of S by
defining h(0, 0) = 0 and h(0, W) = h(W, 0) = D for all non-empty compact
subsets W of S. The extended h can then be generalized to fuzzy subsets
of S using expressions analogous to (5.13.1) and (5.13.2), provided their
level sets are all compact. However, this h is biased on the diameter D of
S. This drawback is demonstrated by an example given in [19].

We close this section with the summary given in [13]. The proposed
fuzzy Hausdorff distance can be used in a wide variety of practical ap-
plications. For example, consider the problem of matching two gray-tone
images. Working with gray-tone images may be advantageous over their
two-tone thresholded versions since it is not necessary to commit to any
specific thresholding method. Instead, the gray-tone images can be consid-
ered as fuzzy subsets (for example, by rescaling the gray-tone values to the
range 10,1]) and the proposed measure can be used to define their degree
of match. The measure presented here can also be used to match sets of
feature points (for example, edge or corner points) extracted from two im-
ages, where these points are characterized by their locations and by their
strengths. These strengths, scaled to the range [0,1], can be regarded as
fuzzy membership values. They do not have to be thresholded.

Since the definition of crisp Hausdorff distance makes use of maximum
and minimum functions, the presence or absence of a single stray datum in
the set A can drastically change the value of its distance from another set
B. This is the well-known robustness problem of the Hausdorff distance. It
limits its practical applications. To deal with this problem, several modifi-
cations to Hausdorff distance have been proposed. In [25], a ranked distance
was used. In [17], several modifications were considered, one of which per-
forms well under Gaussian noise. In [38], a concept called censored Haus-
dorff distance was used. These modifications can handle noise to various
extents, but they are no longer metrics. Since the fuzzy Hausdorff distance
proposed here is the membership-weighted average of the crisp Hausdorff
distances of level sets, any of these modifications in (5.12.3) and (5.12.4) can
also be used. However, the metric property of the fuzzy Hausdorff distance
is then lost.
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A different approach to handling noise is proposed here. It allows the
metric property to be preserved. Any binary digital image can be regarded
as a fuzzy subset, where the white pixels have zero membership values, and
the membership values of the black pixels are determined by examining
their neighborhoods. (The 3-by-3 neighborhood was used here, but larger
neighborhoods could also be used.) If a black pixel p has k black neighbors,
its membership value is taken to be k/8. Thus p has membership 1 if and
only if all its 8 neighbors are black. Black pixels having no black neighbors
have zero membership value, as do all white pixels. Consequently, black
pixels that are due to noise will have small or zero membership values.

Any two binary images can be converted into fuzzy subsets in this way
and their fuzzy Hausdorff distance can be computed using (5.13.3). It was
verified experimentally in [13] that the noise has less effect on this distance
compared to its effect on the classical crisp Hausdorff distance.

The experiment used binary images of numerals. The original and noisy
images are shown in [13, Figure 3, p. 169). Noise was added to the images
by converting 5% of the white pixels randomly into black ones. For each
pair of images, the minimum Hausdorff distance was found by translat-
ing and rotating one image with respect to the other. It can be proved
as follows that the minimum of any metric under translation and rotation
is also a metric: Let D be a metric and let A, B, C be sets. The mini-
mum distance D' between any two sets can be achieved by keeping one
of them fixed and translating and rotating only the other. Let B' be the
translation and rotation of B such that D(A, B') is a minimum, and let C'
be defined analogously. Let C* be the translation and rotation of C such
that D(B', C*) is a minimum. Then D'(A, C) = D(A, C') < D(A, C*) <
D(A, B') + D(B', C*) = D'(A, B) + D'(B, C) since D is a metric. This
shows that the minimum of D under translation and rotation satisfies the
triangle inequality. Clearly, it is positive definite and symmetric.

The classical Hausdorff distances between all the pairs of numerals were
computed for both the noise-free and noisy images. The results are pre-
sented in [13, Tables I and 2, pp. 169, 1701. The images were also converted
into fuzzy subsets as described above and the fuzzy Hausdorff distances be-
tween them were then computed. The results are presented in 113, Tables
3 and 4, p.170]. The diagonal entries in [13, Tables 2 and 41 are not zeros
since the noisy images are matched with their noiseless ideal prototypes.

It was demonstrated in [13] that the classical Hausdorff distance was
drastically changed by noise. The fuzzy Hausdorff distance was also changed,
but the change was much smaller. In fact, [13, Tables 3 and 41 show that
the fuzzy distance can be used for pattern classification in the presence of
noise since the intra-class distances are much smaller than the interclass
distances.
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6
FUZZY ABSTRACT ALGEBRA

In 1971, Azriel Rosenfeld wrote his seminal paper on fuzzy subgroups, [52].
This paper led to a new area in abstract algebra as well as a new area in
fuzzy mathematics. Hundreds of papers examining various fuzzy substruc-
tures of algebraic structures have since appeared in the literature. In this
chapter, we examine those fuzzy substructures which have applications or
strong potential for applications outside of mathematics, namely computer
science or engineering. We emphasize that the nature of fuzzy abstract al-
gebra differs from that of the algebra of fuzzy numbers such as triangular
fuzzy numbers and others.

6.1 Crisp Algebraic Structures

Semigroups

In this section, we review some basic results of those crisp algebraic struc-
tures needed in this chapter. The first algebraic structure we examine is a
semigroup. Applications of semigroups can be found in automata theory,
codes, algebraic linguistics, and combinatorics.

Definition 6.1 The (n + 1)-tuple (S, *1, ..., *,,) is called an algebraic sys-
tem if S is a nonempty set and *; is a binary operation on S, that is,
*z : S x S -+ S, i = 1, 2,..., n. If (S, *) is an algebraic system and d
a, b E S, a * b = b * a, we say that * or (S, *) is commutative.
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Definition 6.2 An algebraic system (S, *) is called a semigroup if * is
associative, that is, Va, b. c. E S, a * (b * c) = (a * b) * c. A semigroup
(S, *) is called a monoid if at has an identity, that is, 3e E S such that
`daES,e*a=a=a*e.

If (S. *) is a semigroup, we sometimes merely refer to S as a semigroup
when the binary operation * is understood.

Let (S, *) be a monoid and let e, f be identities of S. By treating f and
then e as an identity in the equation, e = e * f = f , we see that the identity
of a monoid is unique.

Let (S, *) be a semigroup and let a E S. Define al = a. Suppose a' is
defined for n E N. Define a'+' = a" * a. If (S, *) is a monoid with identity
e, we define a0 = e. Since * is associative, we have that a' * aj = a'+.i

di,jEN.

Example 6.1 The mathematical systems (NU{0), +), (N, ), and (Z, ) are
monoids, where + and are the usual operations of addition and multipli-
cation, respectively. The mathematical system (N, +) is a semigroup which
is not a monoid.

Definition 6.3 Let (S, *) be a semigroup (monoid) and let X be a subset
of S. Then (X, *) is a subsemigroup (submonoid) of (S, *) if (X, *) is a
semigroup (monoid with the same identity as S). (The operation * on X is
really *Ix),x, the restriction of * to X x X.)

We see that if (S, *) is a semigroup and X is a nonempty subset of S,
then X is a subsemigroup of S if and only if Va, b E X, a * b E X. Similarly
we have that if (S, *) is a monoid and X is a nonempty subset of S, then
X is a submonoid of S if and only if Va, b E X, a * b E X and e E X, where
e is the identity of S. In Example 6.1, (N, ) is a submonoid of (Z, .) and
(N, +) is a subsemigroup of (N U {0}, +).

Theorem 6.1 Let S be a semigroup (monoid) and let { S= I i E I j be a
collection of subsemigroups (submonoids) of S, where I is a nonempty index
set. Then fl,E f Si is a subsemigroup (submonoid) of S.

Definition 6.4 Let S be a semigroup (monoid) and let X be a subset of S.
Let (X) denote the intersection of all subsemigroups (submonoids) which
contain X. Then (X) is called the subsemigroup (submonoid) generated by
X.

Let S be any semigroup. Let e be an element not in S and let S* =
S U { e) . Extend the binary operation of S to S* by defining e * e = e and
e * a = a * e = a Va E S. Then S* is a monoid with e as the identity and
with S as a subsemigroup. If S is a monoid, it is not a submonoid of S*
since e V S. If S is commutative, then so is S*.
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Definition 6.5 Let (S, *) and (T, ) be semigroups and let f be a function
of S into T. Then f is called a homomorphism of S into T if Va, b E S,
f (a * b) = f (a) f (b). If f is a one-to-one homomorphism of S onto T, then
f is referred to as an isomorphism of S onto T, S and T are said to be
isomorphic, and we write S T.

Let X be a set. By a free semigroup on the set X, we mean a semigroup
F together with a function f : X -+ F such that for every function g of
X into a semigroup S, there exists a unique homomorphism h : F -+ S
such that h o f = g. We sometimes write (F, f) for a free semigroup with
function f. The proofs of the following results on free semigroups can be
found in 1141.

Theorem 6.2 If a semigroup F together with a function f : X -+ F is
a free semigroup on the set X, then f is one-to-one and its image f (X)
generates F.

Theorem 6.3 If (F, f) and (F', f') are free semigroups on the same set X,
then there exists a unique isomorphism j of F onto F' such that jof = f'.

Let X be a set, let X * denote the set of all strings of finite length of
elements of X including the empty string, A, and let X+ = X* \ { Al.
Define a binary operation on X+ by Vx1...xm,Y1...yn E X+,

(xi...xm)(yl...yn) = XI...xmyl...yn.
This operation is associative and is sometimes called concatenation. X+
with this binary operation is a free semigroup. The proof of this fact, nor-
mally appears in the proof of the next theorem. As a consequence, we have
that X* with this binary operation is a free monoid with identity A.

Theorem 6.4 For any set X, there exists a free semigroup on X.

Theorem 6.5 If X is a set of generators of a semigroup S, that is, (X) _
S, then S = {x1 * ... * xn I xi E X, n E N}, i. e., every element of S is a
finite product of elements of X.

Let X be a set. Then the strings of elements of X, say 5152...5m and
y1 y2...yn, are equal if and only if m = n and xi = y=, i = 1, 2, ..., m. Hence
every element of X+ admits a unique factorization of elements of X.

Every set X determines an essentially unique free semigroup (F, f ). Since
the function f : X -' F is one-to-one, we may identify X with its image
f (X) in F. This having been done, X becomes a subset of F which generates
F. Every function g : X -> S from X into an arbitrary semigroup S extends
to a unique homomorphism h : F -+ S. We refer to the semigroup F as the
free semigroup generated by X.

Consider the monoid F* = FU{e}, where F is a free semigroup generated
by a set X. Then every function g : X -' S, where S is a monoid. extends
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to a unique homomorphism h : F* -> X. This property characterizes the
monoid F* by means of the discussion analogous to the one given above
for semigroups. This monoid F* is called the free monoid generated by X.

Groups

We now review the notion of a group. The theory of groups is one of the
oldest branches of abstract algebra. The concept of a group is so universal
that it has appeared in many different branches of mathematics and science.
Group theory can be used to describe symmetries and permutations in
nature and mathematics. For example, groups can be used to classify all
the forms chemical crystals can take. Groups also can be used to count
the number of nonequivalent objects under permutations or symmetries;
for example, the number of different switching functions of n variables
when permutations of the inputs are allowed. Besides crystallography and
combinatorics, groups have applications in quantum mechanics, particle
physics, and coding theory, to name just a few.

Definition 6.6 A monoid (G, *) is called a group if Va E G, 3b E G such
that a * b = e = b * a, where e is the identity of G. The element b is called
an inverse of a.

It is also easily shown that in a group G, the inverse of an element a is
unique. For example, if a' and a" are inverses of an element a in a group G
with identity e, then a' = a' * e = a' * (a * a") _ (a' * a) * a" = e * a" = a".
We denote the inverse of a E G by a-1. If n E N, we define a-n = (a-1)"
and a° = e. If we use additive notation for the binary operation of the
group, then we write na for an Vn E Z.

Example 6.2 The mathematical systems
(Z, +), (Q, +), (R, +), and (C, +)

are commutative groups as are
(Q\ {0},.),(R\ and (C\

where + is the usual operation of addition and is the usual operation of
multiplication.

Another important example of a group is (S, o), where S is the set of all
one-to-one functions of a set X onto itself and o denotes the composition
of functions. If X is finite, then S is known as the symmetric group on X.

Definition 6.7 Let (G, *) be a group. Let H be a subset of G. Then H is a
subgroup of G if (H, *) is a group. (The operation * on H is really HXH,
the restriction of * to H x H.)

Example 6.3 Each group in Example 6.2 is a subgroup of the group ap-
pearing to its right.
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We supply the proof of the next result because of its fundamental im-
portance.

Theorem 6.6 Let (G, *) be a group and let H be a nonempty subset of G.
Then H is a subgroup of G if and only if Va. b E H, a * b-1 E H.

Proof. Suppose that H is a subgroup of G. Then Va, b E H, a, b-1 E H
and so a * b-1 E H. Conversely, suppose that Va, b E H, a * b-1 E H. Since
H # 0, 3a E H. Thus e = a * a-1 E H. Hence Vb E H, b-1 = e * b-1 E H.
Thus `da, b E H, a, b-1 E H and so a * b = a * (b-1) _ 1 E H. The associative
law holds for H since it holds in the larger set G. Therefore H is a subgroup
ofG.
Theorem 6.7 Let (G, *) be a group and let { H2 I i E I } be a collection
of subgroups of G, where I is a nonempty index set. Then n2E1 Hi is a
subgroup of G.

Proof. Since e E Hindi E I, e E niE1 H2 and so n2E1 Hi 0 0. Let a, b E
niE1 H2. Then a, b E HiVi E I. Hence a * b-1 E Hindi E I and so a * b-1 E

niEI Hi . Thus niEI H2 is a subgroup of G by Theorem 6.6.

Definition 6.8 Let (G, *) be a group and let X be a subset of G. Let (X)
denote the intersection of a all subgroups of G which contain X. Then (X)
is called the subgroup of G generated by X.

In Definition 6.8, it follows that (X) is the smallest subgroup of G which
contains X.

Let xi, ..., xn E X. Then since (X) D X and since (X) is a subgroup
of G by Theorem 6.7, products of the form xi' * ... * xn^ must be in (X),
where xi E X, ei = ±1, i = 1, 2, ..., n; n E N. The next result says that (X)
is exactly the set of such elements.

Theorem 6.8 Let (G, *) be a group and let X be a nonempty subset of G.
Then (X) = {x',' * ... * xn' I xi E X, ei = ±1, i = 1, 2,..., n; n E N}.

Proof. Let A={xi'*...*xn^ IxiEX,ei=±1,i=1,2,...,n;nEN}.We
have just argued above that (X) D A. One shows that (X) C A by showing
that A is a subgroup of G containing X and then applying the fact that
(X) is the smallest subgroup of G containing X.

Corollary 6.9 Let (G,*) be a group and let a E G. Then ({a}) _ {am I
mEZ}.

Proof. ({a}) = {aej ...ae- I ei = ±1, i = 1,2,...,n; n E N} = {ae+e" I
ei=±1,i=1,2,...,n;nEN}={amImEZ}.

If (G, *) is a group such that there exists a E G such that G = ({a}),
then G is called a cyclic group. We often simply write (a) for ({a}).
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The order of a group is defined to be the number of elements in a group. If
G is a finite group (a group with a finite number of elements) of n elements,
then G has order n. If G is an infinite group, then G is said to have infinite
order. Let G be a group and let a E G. If there exists a positive integer n
such that a' = e, then the smallest such positive integer is called the order
of a. If no such positive integer exists, we say that a has infinite order.

It can be shown that cyclic groups fall into one of two types. One type
consists of infinite cyclic groups. Here the a' in (a' I m E Z} are distinct.
The second type consists of finite cyclic groups. Here the a'n in {a'" I in E
Z} are not distinct. If < a > is a finite cyclic group of order n, then a has
order n, (a) _ {e, a, a2..., ar-1 }, and a' * a? = ak, where k = i + j modulo
n.

In the following example, we give a group which is not cyclic. The group
is known as the Klein four-group.

Example 6.4 Let G = { e, a, b, c). Define the binary operation * on G by
the following operation table.

e a b c

e e a b c

a a e c b

b b c e a

c c b a e

We have
(e)={e}54 G,<a>={e,al #G,<b>={e,b}#G, and<c>=

{e, c} # G.
Thus G is not cyclic.

Rings and Ideals

The importance of commutative algebra and algebraic geometry to the
computer scientist and engineer has been enhanced by the development of
computers fast enough to run new algorithms for manipulating polynomial
equations. We now review some concepts from these two areas. We apply
these concepts to polynomial equations.

Definition 6.9 The mathematical system (R, +, ) is called a ring if (R, +)
is a commutative group, (R, ) is a semigroup, and the distributive properties
hold, that is, `da, b, c E R, a (b + c) = a b + a c and (b + c) a = b a + c a.

Let (R, +, .) be a ring. If (R, ) is a commutative semigroup, then we call
R a commutative ring. If (R, ) is a monoid, we let 1 denote its identity
and we say that the ring R is with identity. We let 0 denote the identity of
(R, +). Let S be a subset of R. Then S is called a subring of R if (S, +, )
is a ring.
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Definition 6.10 The mathematical system (F, +, -) is called a field if it
a commutative ring with identity such that Va E F, a # 0. there exists
a-' E F such that as-l = 1.

We see that the mathematical system (F. +,) is a field if and only if
(F, +) and (F \ {0}, -) are commutative groups such that the distributive
laws hold.

Example 6.5 The mathematical systems (Z, +, ), (Q, +, ), (R, +. ). and
(C, +, -) are commutative rings with identity. In fact, the latter three are
fields. The mathematical system ({qn [ q E is a commutative ring
without identity, where n E N \ { 11.

In what follows, we are only interested in commutative rings with iden-
tity. Some of the concepts and results we review from ideal theory hold for
more general types of rings.

We now give a nonrigorous definition of a polynomial over a ring.

Definition 6.11 Let R be a commutative ring with identity and let x be
an indeterminate over R. A polynomial in x with coefficients in R or a
polynomial in x over R is an expression of the form a,x" + ... + a2x2 +
a, x + aox°, where ai E R, i = 0,1, ..., n; n E N U {0} and x° = 1. (By an
indeterminate x over R, we mean that an x' + ... + a2x2 + alx + aox° = 0
if and only if ai = 0, i = 0,1, ..., n.)

Let p(x) _ Ei`_o aix' be a polynomial over a commutative ring R. If
we write >Z o aixi for p(x) with n > m, then we mean ai = 0 for i =
m + 1, ..., n. By Definition 6.11, we have that two polynomials > `_° aixi
and E o bjxj are equal if and only if ai = bi for i = 0,1, ..., m V n.

Definition 6.12 Let R be a commutative ring with identity and let x be
an indeterminate over R. Let R[x] denote the set of all polynomials in x
over R. Define + and - on R[x] as follows: V J:m o aixi and E" bjxj
E R[x] , E_ `o aix' + E o bjx' = Ek=o(ak + bk)xk, where q = m V n
and (Ei °aixi) .( F

j
06jxj) _ Ek

O Ckxk, where Ck = Eh.oahbk-h,
k=0,1,...,m+n.

Let R[x] be the set of all polynomials over the commutative ring R with
identity. If we associate a with ax°, then we can consider R to be a subset
of R [x].

Theorem 6.10 Let R be a commutative ring with identity. The mathe-
matical system (R [x] , +, -) is a commutative ring with identity. In fact, the
identities of R and R [x] coincide. Furthermore, R is a subring of R [x] .

We assume that the reader is familiar with the more basic properties of
polynomials.
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We now extend the definition of a polynomial ring from one indetermi-
nate to several indeterminates. Let R be a commutative ring with identity.
We define recursively

R (xl, x2...., xn.] = R [x1, x2, ..., Xs-11 (x,,] , where x1 is an indeterminate
over R and x is an indeterminate over R [Si, x2...., X.-11. R [xl, x2....,
is called a polynomial ring in n indeterminates.

We now describe a polynomial ring in three indeterminates x, y, z over a
commutative with identity.

R [x, y, z] = {L..k=o 230 LiR0 aijkxty3 zk
I aijk E R, i = 0.1,...,m;

j=0,1,...,n;

Definition 6.13 Let (R, +, ) be a commutative ring with identity and let
I be a subset of R. Then I is said to be an ideal of R if (I, +) is a subgroup
of (R, +) and `dr E R and Va E I, ra E I.

Theorem 6.11 Let (R, +, ) be a commutative ring with identity and let I
be a nonempty subset of R. Then I is an ideal of R if and only if Va, b E I,
a - bEI and VrER anddaE1,raE1.

Example 6.6 Consider the ring (Z, +, ). Let n E N. Then I = {qn I q E
7L} is an ideal of 7L since Vqn, q'n c- I and Vr E 7L, qn - q'n = (q - q')n E I
and r(qn) = (rq)n E I. However even though 7L is a subring of Q, Z is not
an ideal of Q since (1/2) 1 V Z and 1 E Z.

Theorem 6.12 Let R be a commutative ring with identity and let { Ij I

j E J} be a nonempty collection of ideals of R. Then njEJ Ii is an ideal of
R.

Definition 6.14 Let R be a commutative ring with identity and let X be
a subset of R. Define (X) to be the intersection of all ideals of R which
contain X. Then (X) is called the ideal of R generated by X.

In Definition 6.14, (X) is the smallest ideal of R which contains X.
Suppose that xi E X and ri E R for i = 1, 2,..., n. Then from the definition
of an ideal, rixi E (X) for i = 1, 2, ..., n. Since an ideal is closed under
addition, Ei 1 rixi E (X). The next theorem states that (X) is precisely
the set of all such sums. This follows by showing that { E 1 rixi ri E
R, xi E X, i = 1, 2,..., n; n E N} is an ideal of R containing X and then
using the fact that (X) is the smallest ideal of R containing X.

Theorem 6.13 Let R be a commutative ring with identity and let X be
a nonempty subset of R. Then (X) _ (Fǹ  rixi I ri E R, xi E X, i =
1,2,...,n;nENJ.

Corollary 6.14 Let R be a commutative ring with identity and let x E R.
Then<{x}> = {rxjrER}.
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If R is a commutative ring with identity and x E R, we often write (x)
for<{x}>.

Corollary 6.14 gives us a method to construct examples of ideals. This
can be seen from the following example.

Example 6.7 Consider any commutative ring R with identity. Let x be
any (fixed) element of R. Then {rx I r E R} is an ideal of R by Corollary
6.14.

Example 6.8 Let R [x] be a polynomial ring in the indeterminate x,where
R is a commutative ring with identity. Then (x) = {r(x)xlr(x) E R[x]} is
an ideal of R [x] . (x) is the set of all polynomials with zero constant term.

Example 6.9 Let R [x, y, z[ be a polynomial ring in three indeterminates
over R. Then < y--x2, x2z > = {r(x, y, z)(y-x2)+s(x, y, z)x2z I r(x, y, z),
s(x, y, z) E R [x, y, z] } by Theorem 6.13.

If I and J are ideals of R, we define the product of I and J, written I I. J,
to be the set I - .1 = {Ek=1 ikik I ik E I, 7k E J, k = 1, ... , n; n E N}. It
follows that I I. J is an ideal of R.

The concept introduced in the next definition is quite useful in the study
of nonlinear systems of equations.

Definition 6.15 Let R be a commutative ring with identity. Then R is
said to satisfy the ascending chain condition for ideals or to be Noetherian
if for every ascending chain of ideals

119129 ...C_InC_...,
there exists a positive integer m such that do > m, In = I,n.

Example 6.10 The ring Z of integers is Noetherian. We can see this from
the following argument. It can be shown that for every ideal I of Z, them
existsnENU{0} suchthatI=<n>.Let<k1>C...C<kn>C...
be an ascending chain of ideals of Z for k E N, n = 1, 21 .... Then kn E
< kn+1 > and so 3rn E Z such that kn = rnkn+i. Thus kn > kn+1 > 0
for n = 1, 2,.... Hence 3m E N such that bn > m, kn = k,,.

Example 6.11 The polynomial ring F [x] over a field F is Noetherian by
an argument similar to the one used in the previous example.

Any field F is Noetherian since F has only the ideals {0} and F.

Theorem 6.15 If R is a Noetherian ring, then a polynomial ring R[xi,
..., xn] in the indeterminates x1i ..., xn over R is Noetherian.

Theorem 6.16 Let R be a commutative ring with identity. Then R is
Noetherian if and only if every ideal has a finite generating set.



228 6. FUZZY ABSTRACT ALGEBRA

From Theorem 6.16, we have immediately that every ideal in the poly-
nomial ring F [xl...., xn] over the field F is finitely generated.

The notion of a prime ideal introduced in the next definition is an ex-
tension of the notion of a prime integer in the ring Z. It will allow us to
get a type of Fundamental Theorem of Arithmetic which we can apply to
the study of nonlinear systems of equations. In fact, the study of nonlin-
ear systems of equations motivates the presentation of the material in the
remainder of this section.

Definition 6.16 Let R be a commutative ring with identity and let P be
an ideal of R. Then P is said to be a prime ideal of R if da, b E R. ab E P
and a P implies b E P.

Example 6.12 Consider the ring of integers Z and let p be a prime ele-
ment of Z. Then < p > is a prime ideal of Z. We can see this from the
following reasoning. Let ab E < p > . By Corollary 6.14, 3r E Z such that
ab = rp. Hence either a or b is a multiple of p since p is prime and so
either a E< p> or b E< p >, respectively.

Example 6.13 Consider the polynomial ring F [x], where F is a field. Let
p(x) be an irreducible polynomial in F [x]. Then < p(x) > is a prime ideal
of F [x] by a similar argument as used in the previous example.

Definition 6.17 Let R be a commutative ring with identity and let Q be
an ideal of R. Then Q is called a primary ideal of R if Va, b E R, ab E Q
and a V Q implies there exists n E N such that bn E Q.

It is clear from the definitions that a prime ideal in a commutative ring
with identity is also a primary ideal.

Example 6.14 Consider the ring of integers Z and let p be a prime ele-
ment of Z. Then < pn > is a primary ideal of Z, where n E N.

Example 6.15 Consider the polynomial ring F [x] , where F is afield. Let
p(x) be an irreducible polynomial in F [x] . Then < p(x)n > is a primary
ideal of F [x] , where n E N.

Definition 6.18 Let R be a commutative ring with identity and let I be
an ideal of R. Then the radical of I, denoted f , is defined to be the set

v'17 = (aERIa'°EI forsome nEN}.

Theorem 6.17 Let Q be an ideal of a commutative ring with identity R.
Then

(i) fly is an ideal of R and ,/5 2 Q;

(ii) if is a primary ideal, then v/Q is a prime ideal.
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Example 6.16 Consider the ring of integers Z. Let p E Z be a prime and
let n be a positive integer. Then < p" > is a primary ideal whose radical is
the prime ideal < p > .

Example 6.17 Consider the polynomial ring F (x( in the indeterminate
x over the field F. Let p(x) be an irreducible polynomial in F [x] and n a
positive integer. Then < p(x)" > is a primary ideal whose radical is the
prime ideal < p(x) > .

Let R be a commutative ring with identity and Q a primary ideal of R.
Then the radical P = of Q is called the associated prime ideal of QVIQ

and Q is called a primary ideal belonging to (or primary for) the prime
ideal P.

If I and J are ideals of a commutative ring R with identity, then one can
show that I n J= f n vrJ-.
Definition 6.19 Let R be a commutative ring with identity, I be an ideal
of R, and Q1...., Q. be primary ideals of R. If I has a representation,

I=Q1n...nQ",

then this representation is called a primary representation of I. It is called
redundant or reduced if no Qi, i = 1, ..., n, contains the intersection of the
other Qj 's and the Qi 's have distinct radicals.

Theorem 6.18 Every ideal I in a Noetherian ring R has a reduced pri-
mary representation.

Theorems 6.15, 6.18 and Examples 6.10, 6.11 provide us with examples
of rings in which every ideal has a reduced primary representation.

Example 6.18 Consider the ring 7Z of integers. Then every ideal of R has
a reduced primary representation since Z is Noetherian. For example, let n
be any positive integer and let

n = pl' ...pe,.

be the prime factorization of n, where pi is a prime and ei is a positive
integer, i = 1, ..., k. Then

<n>=<plej >n...n<pke'" >
is a primary representation of < n > . We also have that

1<n> _ <p >n...n
and that

<pi' > _ <pi>,i=1...,k.
From Example 6.18, we can see the connection of the concepts just pre-

sented to the Fundamental Theorem of Arithmetic.

Varieties

The remainder of this section is concerned with the geometry dealing with
affine varieties. An affine variety is defined by polynomial equations. These
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polynomial equations may define for example curves and surfaces. Through-
out the rest of this section, we let F [x l, ..., denote a polynomial ring in
the indeterminates x1, ..., x over the field F. Let

f = f(x1,...,xn) =
Ee, ai,...i rl`'...x," E F x1i...,xn We

sometimes write E1 a;x1'1 ...xn'1 for f (x1, ..., xn), where i = (i1, .... in).

Definition 6.20 Let n be a positive integer. The set
Fn = { (al, ..., an) I ai E F, i = 1, ..., n} is called the affine space over F.

For f E F [Si, ..., xn) , we can interpret f as a function from F" into F
as follows: For all (a1, ..., an) E Fn,

f ((al, ..., an)) = ,i alai ...a,:

Definition 6.21 Let 11, ..., fm E F [xl, ...,xn1. The set
V(fi,...,fm) _ {(al,...,an) E Fn I fi(a1,...,an) = O,2 = 1,...,m} is

called the affine variety defined by fl,..., fT1.

Consider, for example, the following linear system of equations
x + 2y + z = 2
x+y-z=1.
We replace the second equation by the second equation minus the first

equation to obtain
x+2y+z=2
-y-2z=-1.
We then replace the first equation by the first equation plus twice the

second equation. This gives us
x -3z = 0
-y - 2z = -1.
Thus
V(x+2y+z-2,x+y-z-1)={(3t, 1-2t,t)ItEF}.
For an application of polynomial equations, we can turn to robotics. We

consider the motion of a robot's arm in the plane. We assume that we have
three linked rods of length 6, 4, 2, respectively.

The positions or states of the arm are determined by the solution in R6
to the following polynomial equations.

x2 + y2 = 36
(z-x)2+(w-y)2=16
(u-z)2+(v-w)2=4
Other applications can be found in computer graphics and geometric

theorem proving, [8).

Lemma 6.19 Let V, W C Fn be affine varieties. Then V fl W and V U W
are acne varieties.

Proof. Let V = V(fl,..., fm) and W = V(g1i... gq) for some f1i...,fn,
91, ..., gq E F [x1, ..., xn) . Now (a1, ..., E VnW if and only if f i(a1, ..., an)



6.1 Crisp Algebraic Structures 231

FIGURE 6.1 Robotic arm

= 0 and gj (al, ..., an) = 0 for i = 1, ..., m and j = 1, ..., q if and only if
(a,,...,an) E V(fl,...,fm,gl,...,gq). Thus V nW = V(fl,

Let (al, ..., an) E V. Then fi(al,..., an)gj (al, ..., an) = 0 for i = 1, ..., m
and j = 1, ..., q. Hence V C V ({ figj I i = 1, ..., m and j = 1, ..., q}).
Similarly, W C V({ figj I i = 1, ..., m and j = 1, ..., q}). Thus V U W C
V({ fig? I i = 1,...,m and j = 1,...,q}). Let (al,...,an) E V({figj I i =
I,-, m and j = 1, ..., q}). Suppose there exists i such that fi(al,..., an) # 0.
Since fi(al,..., an)gj (al, ..., an) = 0 for i = 1,...,m and j = 1,...,q, we
have gj (a1i ..., an) = 0 for j = 1, ..., q. Therefore (al, ..., an) E W. Suppose
fi(al,..., an) = 0 for i = 1, ..., m. Then (al,..., an) E V. Thus V ({figj I

i = 1, ..., m and j = 1, ..., q}) C V U W. Consequently, V ({figj I i = 1, ..., m
and j=1,...,q})=VUW.

Definition 6.22 Let I be an ideal of the polynomial ring F [xl,..., xn] in
indeterminates X1, ..., xn over a field F. Define V(I) to be the set

V(I)_{(a,,...,an)EFnI f (a,,..., an) = 0, f EI}.

Proposition 6.20 Let I be an ideal of the polynomial ring F [xl, ..., xn]
in indeterminates x1, ..., xn over afield F. Then V(I) is an affine variety.
In fact, if I =< fl,..., fm >, then V(I) = V(fl,...,fm).

Proof. By Theorem 6.16, there exist fl,..., fm E F [xl, ..., xn] such that
I =< fl,...,fm > . Since {fl,..., fm} C I, V(I) C V(fl,...,f,, ). For
any g E I, we have by Theorem 6.13 that g = >q ` 1 ri fi for some ri E
F [xi, ..., xn] , i = 1, ..., m. Thus if (al, ..., an E V fn), f i (a an)
0 for i = 1 , ..., m. Hence g(al, ..., an) = 0. Therefore (al, ..., an) E V(I).
Consequently, V(fl,..., fm,) C V(I).

Definition 6.23 Let V C_ Fn be an affine variety. Let I (V) = If E
F[xii...,xn] I f(a,,...,an) = 0 b(al,...,a,,) E V}.
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Lemma 6.21 Let V C Fn be an affine variety. Then I (V) is an ideal of
F [x1, .... x,t].

Proof. Clearly the zero polynomial is in 1(V) since 0(a 1...., 0 V
(a1i...,an) E Fn. Let f,g E I(V). Then (f -g)(al.....an) = f(a1,...,an) -
g(at,..., an) = 0 - 0. Thus f - g E I(V). Let h E F [xt,..., xn] . Then
(hf)(aj,...,an) = h(at,...,an)f(ai,...,an) =
h f E I(V). Hence I (V) is an ideal of F [x i ...., x" J .

Example 6.19 Let V = { (0, 0) } in F2. Then I (V) =< x, y > .

Example 6.20 Let V = F'. Then f E I(F") if and only if f(a1....,a,1)
= 0 `d(a1,..., a,.) E F". Hence if F is infinite, then f is the 0 polynomial.
Thus I(F") = {0} if F is infinite.

Proposition 6.22 Let V and W be affine varieties in F". Then

(i) V C W if and only if I(V) I(W),

(ii) V = W if and only if 1(V) = I (W ).

Definition 6.24 An affine variety V C Fn is irreducible if whenever V =
V1 U V2, where V1 and V2 are affine varieties, then either V1 = V or V2 = V.

Proposition 6.23 Let V C F' be an affine variety. Then V is irreducible
if and only if I(V) is a prime ideal of F [xt, ... , xn] .

Proposition 6.24 Let V1 V2 ... V" ... be a descending chain of
varieties in F". Then there exists a positive integer m such that Vn > rn,
Vn = Vm 0

Example 6.21 Consider the variety V(xz, yz) in 1R3. If z = 0, then x and
y are arbitrary and if z # 0, then x = y = 0. Thus V(xz, yz) is the union
of the xy-plane and the z-axis.

Example 6.22 Consider the variety V = V(xz - y2, x3 - yz). It follows
nontrivially that V is the union of the two irreducible varieties V (x, y) and
V (xz - y2, x3 - yz, x2y - z2). The details may be found in [8].

Definition 6.25 Let V C F" be an affine variety. A decomposition V =
V1 U ... U V,,,, where each Vi is an irreducible variety, is called a minimal
(or irredundant) decomposition if V, VJ for i # j.

Theorem 6.25 Let V C_ F" be an affineine variety. Then V has a minimal
decomposition V = Vt U ... U Furthermore, this minimal decomposition
is unique up to the order in which V1i..., V,,, are written.
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Example 6.23 Consider the variety V(xz - y2. x3 - yz) of Example 6.22
and the ideal I =< xz - y2. x3 - yz > . Then from the decomposition
V (xz - y2, x3 -- yz) = V (X, y) U V (xz - y2.x3 - yz, x2y - z2). we deduce
that I =< x. y > fl < xz - y2, .r3 - yz,.r2y - z2 > . It can be shown that
<x, y > and < xz - y2, x3 - yz, x2y - z2 > are prime ideals. The details
can be found in [8].

We close this section by applying the ideas presented here on rings to
nonlinear systems of equations. Let lRix, Y. Z) denote a polynomial ring in
the indeterminates x, y, z over the field of real numbers R. Consider the
nonlinear system of equations

x2-y=0
x2z=0.
We know by Theorem 6.15 that R[x, y, z) is Noetherian and hence from

Theorem 6.18 that the ideal < x2 - YI X2z > has a reduced primary repre-
sentation. This representation is

<x2-y,x2z>=<x2-y,z>n<x2,y>.
The radicals of the primary ideals < x2 - y, z > and < x2, y > are the

prime ideals < x2 - y, z > and < x, y >, respectively. The corresponding
irreducible affine varieties are {(x,x2,0) I x E IR} and {(0,0,z) I z E IR},
respectively. It is clear that the union of these affine varieties is the solution
set to the given nonlinear system.

6.2 Fuzzy Substructures of Algebraic Structures

Definition 6.26 Let (S, *) be a semigroup. Let A be a fuzzy subset of S.
Then A is called a fuzzy subsemigroup of S if Va, b E S, A(a * b) > A(a) A
A(b).

The definition of a fuzzy subsemigroup A of a semigroup S is motivated
by the following reasoning. If A(a) = 1 and A(b) = 1, then A(a * b) = 1,
i. e., in the crisp sense if a E A and b E A, then a * b E A. We see that
Definition 6.26 extends Definition 6.3.

Definition 6.27 Let (S, *) be a monoid and let A be a fuzzy subset of S.
Then A is called a fuzzy monoid of S if Va, b E S, A(a * b) > A(a) A A(b)
and Va E S, A(e) > A(a), where e is the identity of S.

If we note in Definition 6.27 that if A(a) = 1, then A(e) = 1 and so we
see that Definition 6.27 extends Definition 6.3.

Proposition 6.26 Let S semigroup (monoid) and let A be a fuzzy subset
of S.

(i) Then A fuzzy subsemigroup (submonoid) of S if and only if At is a
subsemigroup (submonoid) of S Vt Elm(A).
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(ii) If A is a fuzzy subsemigroup (submonoid) of S and supp(A) # 0. then
supp(A) is a subsemigroup (submonoid) of S.

Proof. () Suppose that A is a fuzzy subsemigroup (submonoid) of S. Let
t E Im(A). Let a, b E At. Then A(a) > t and A(b) _> t. Since A(a * b) >
A(a) A A(b) > t, a * b E At. (If A is a fuzzy submonoid, then e E At
Vt E Im(A) since A(e) > A(a) Va E S.) Conversely, suppose that At is a
subsemigroup (submonoid) of S Vt E Im(A). Let a, b E S. Let A(a) = t
and A(b) = s with t > s, say. Then a, b E AS and so a * b E As. Hence
A(a * b) > s = A(a) A A(b). (If each At is a monoid, then e E At for each
t EIm(A) and so A(e) > A(a) Va E S.)

(ii) Let a, b E supp(A). Then A(a * b) > A(a) A A(b) > 0 and so a * b E
supp(A). (If A is a fuzzy monoid, then e E supp(A) since A(e) > A(a)Va E
S.)

Definition 6.28 Let (G, *) be a group and let A be a fuzzy subset of G.
Then A is called a fuzzy subgroup of G if `da, b E G, A(a * b-1) > A(a) A
A(b).

The definition of a fuzzy subgroup of a group is motivated by Theorem
6.6. We see that if A(a) = 1 and A(b) = 1 in Definition 6.28, then A(a *
b-1) = 1 and Theorem 6.6 is thus extended.

Proposition 6.27 Let (G, *) be a group and let A be a fuzzy subset of
G. Then A is a fuzzy subgroup of G if and only if da, b E G, A(a * b) >
A(a) A A(b) and A(a-1) > A(a).

Proof. Suppose that A is a fuzzy subgroup of G. Then Va E G, A(e) _
A(a * a-') > A(a) A A(a) = A(a). Hence Va E G, A(a') = A(e * a-') >
A(e)AA(a) = A(a). Thus A(a*b) > A(a) AA(b-') > A(a)AA(b)Va,b E G.
For the converse, let a, b E G. Then A(a * b-') > A(a) A A(b-1) > A(a) A
A(b).

The proof of the following result follows in a similar manner as that of
Proposition 6.26.

Proposition 6.28 Let G be a group and let A be a fuzzy subset of G.

(i) Then A is a fuzzy subgroup of G if and only if At is a subgroup of G
Vt EIm(A).

(ii) If A is a fuzzy subgroup of G and supp(A) # 0, then supp(A) is a
subgroup of G.

We now review some results from fuzzy ideal theory. These results are
taken primarily from [24-26,28,29,38,40,48,49,56).
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Definition 6.29 Let (R, +, -) be a commutative ring with identity and let
I be a fuzzy subset of R. Then I is called a fuzzy ideal of R if Va. b E R,
I(a - b) > I(a) A I(b) and I(a - b) > I(a) V I(b).

If A is a fuzzy ideal of R, then A(o) > A(x) for every x E R. We let A.
_ {x E R I A(x) = A(0)}. Then by the following result, A. is an ideal of
R.

Proposition 6.29 Let R be a commutative ring with identity and let I be
a fuzzy subset of R.

(i) Then I is a fuzzy ideal of R if and only if it is an ideal of R Vt E
Im(I).

(ii) If 1 is a fuzzy ideal of R and supp(A) 0, then supp(I) is an ideal of
R.

Proposition 6.30 Let R be a commutative ring with identity. Then the
intersection of any collection of fuzzy ideals of R is a fuzzy ideal of R.

Definition 6.30 Let R be a commutative ring with identity and let A and
B be fuzzy ideals of R. Define the fuzzy subset AB of R by Vx E R,

AB(x) = V{A{A(ai) A B(bi) I i = I,-, n} I x = z1 aibi, ai, bi E R,
i=1,...,n;nEN}.

Proposition 6.31 Let R be a commutative ring with identity and let A
and B be fuzzy ideals of R. Then AB is a fuzzy ideal of R.

Definition 6.31 Let R be a commutative ring with identity and let P be
a fuzzy ideal of R. Then P is called a prime fuzzy ideal of R if for all fuzzy
ideals A and B of R, ABC P and A %P implies b C P.

Theorem 6.32 Let R be a commutative ring with identity and let P be a
nonconstant fuzzy ideal of R. Then P is a prime fuzzy ideal of R if and
only if Im(P) _ {1, t}, where 0 _< t < 1, and the level ideal Pi is a prime
ideal of R.

Definition 6.32 Let R be a commutative ring with identity and let A be
a fuzzy ideal of R. The radical of A, denoted by VA, is defined byvfAi =
fl P, the intersection being taken over those prime fuzzy ideals P such that
PDAandP.;A..
Theorem 6.33 Let R beta commutative ring with identity and let A be a
fuzzy ideal of R. Then \/A- is a fuzzy ideal of R such that _? A and
V A(0) = 1.
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Theorem 6.34 Let R be a commutative ring with identity and let A and
B be fuzzy ideals of R such that A(0) = 1 = B(0). Then A fl b =

nVB.
Definition 6.33 Let R be a commutative ring with identity and let Q be
a fuzzy ideal of R. Then Q is called a primary fuzzy ideal of R if either Q

Q= XR or Q is nonconstant and for all fuzzy ideals A and B of R, AB c

and A Q implies b C

Theorem 6.35 Let R be a commutative ring with identity and let. Q be a
nonconstant fuzzy ideal of R. Then Q is a primary fuzzy ideal of R if and
only if Im(Q) 1, t}, where 0 < t < 1, and the level ideal P1 is a primary
ideal of R.

Theorem 6.36 Let R be a commutative ring with identity and let Q be a

primary fuzzy ideal of R. Then
V

is a prime fuzzy ideal of R.

Definition 6.34 Let R be a commutative ring with identity and let Q be

a primary fuzzy ideal of R. Then P =
.
sQ is called the associated prime

fuzzy ideal of Q and Q is called a primary ideal belonging to P or simply
primary for P.

In the remainder of this section, we let R denote the polynomial ring
F [x1, ..., x,,] in indeterminates x1, ..., x over a field F. Let L be a field
containing F, possibly an algebraic closure of F. We now give definitions
for the fuzzy counterparts of the affine variety of a set of points in Ln and
the ideal in R of an affine variety. Let c be a strictly decreasing function of
[0, 1] into itself such that c(O) = 1, c(1) = 0, and for all t E [0, 1), c(c(t)) = t.
The following approach has the advantage that c may be changed to fit the
application.

Definition 6.35 Let X be a finite-valued fuzzy subset of L", say Im(X) _
{to) ti , ..., t }, where to < t1 < ... < t,,. Define the fuzzy subset I (X) of R
as follows:

c(tn) if f E R \ I (Xt ),
I(X)(f) = c(t,) if f E I(Xt;+ ,) \ I(Xt,),i = 1,...,n - 1,

1 c(to) if f E I(Xt, )

If n = 0, then we define I(X)(0) = 1.

In Definition 6.35, it possible for I(Xt;+,) = I(Xt,) or R = In
this case, c(ti) Im(I(X)), i = 1, ..., n.
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Definition 6.36 Let A be a finite-valued fuzzy ideal of R, say Int(A) =
{ so, s l , .... s,,, 1. where so < sl < ... < s Define the fuzzy subset V (A) of
L" as follows:

I c(5,,,.) if b E L" \ V (AB,,, ),
if b E V(AB;+,) \ V (AS }, i = 1, ..., m - 1,V (A)(b) = c(si)

C(so) if bEV(A8,).

V (A) is called a fuzzy affine variety.

In Definition 6.36, it is possible for c(si) Im(V(A)) for some i = 1, ..., M.

Proposition 6.37 Let X be a finite-valued fuzzy subset of L" and let A
be a finite-valued fuzzy ideal of R. Then

(i) Vt E [0, 11, V(I(X))` = V(I(Xt)),

(ii) Vs E (0, 11, I(V(A))8 = I(V(AS)).

Proposition 6.38 Let X be a finite-valued fuzzy subset of L" and let A
be a finite-valued fuzzy ideal of R. Then

(i) I(V(I(X))) = I(X),

(ii) V(I(V(A))) = V(A).

Proposition 6.39 Let f( be a fuzzy subset of Ln. Then X is a fuzzy affine
variety if and only if X is finite-valued and for all t E Im(X), Xt is an
affine variety.

Proposition 6.40 If A is a nonconstant prime fuzzy ideal of R, then A
= I(V(A)).

Proposition 6.41 Let A be a finite-valued fuzzy ideal of R. If A(0) = 1,
then V(A) = V(V).

Corollary 6.42 If P is a prime fuzzy ideal of R belonging to the primary
fuzzy ideal Q of R, then V(Q) = V(P).

Theorem 6.43 Let A and -b be finite-valued fuzzy ideals of R such that
A(0) = B(0) = 1. Then V (A n B) = V (A) U V (B).

Theorem 6.44 Let X and k be fuzzy affine varieties. If 0 E Im(X) n
Im(Y), then I(X UY) = I(X) nI(Y).
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6.3 Fuzzy Submonoids and Automata Theory

In our first application, we consider strings of fuzzy singletons as input to a
fuzzy finite state machine. The notion of fuzzy automata was introduced in
[58]. There has been considerable growth in the area, [18]. In this section, we
present a theory of free fuzzy monoids and apply the results to the area of
(fuzzy) automata. In (fuzzy) automata, the set of strings of input symbols
can be considered to be a free monoid. We introduce the notion of fuzzy
strings of input symbols, where the fuzzy strings form free fuzzy submonoids
of the free monoid of input strings. We show that (fuzzy) automata with
fuzzy input are equivalent to (fuzzy) automata with crisp input. Hence the
results of (fuzzy) automata theory can be immediately applied to those of
(fuzzy) automata theory with fuzzy input. The results are taken from [7]
and [34].

Let f be a homomorphism of a semigroup F into a semigroup S. Let A
be a fuzzy subset of F and b a fuzzy subset of S. We recall that the fuzzy
subset f (A) of S and the fuzzy subset f +1(B) of F are defined as follows:

Vy E S, f (A) (y) = v{A(x) I f (x) = y, x e F} if y E f (F) and f (A)(y)
=0ify f(F);

Vx E F, f-1(B)(x) = B(f(x))

Proposition 6.45 Let f be a homomorphism of a semigroup (monoid) F
into (onto) a semigroup (monoid) S.

(i) If A is a fuzzy subsemigroup (submonoid) of F, then f (A) is a fuzzy
subsemigroup (submonoid) of S.

(ii) If b is a fuzzy subsemigroup (submonoid) of S, then f (B) is a fuzzy
subsemigroup (submonoid) of F.

Definition 6.37 Let S be a semigroup (monoid) and C a fuzzy subset of S.
Let < C > (<< C >>) denote the intersection of all fuzzy subsemigroups
(submonoids) of S which contain C. Then < C > (< < C > >) is called the
fuzzy subsemigroup (submonoid) generated by C.

Clearly < C > (<< C >>) in Definition 6.37 is the smallest fuzzy
subsemigroup (submonoid) of S which contains C. Let tC denote V{C(x)
I xES}.

Theorem 6.46 Let S be a semigroup (monoid) and C a fuzzy subset of S.
Define the fuzzy subset A of S by V x E S,

A(x) = V{(zl)t,...(zn)_tR)(x) [ x = zl...zn, zz E S, C(z1) = t:, i =
I,...,n;nEN}. Then <C>=A(<< C>>=AVet(,).

Definition 6.38 Let F be a free semigroup (monoid) on the set X with
respect to the function f : X --> F. Let k be a fuzzy subset of X. Let Al be a
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fuzzy subsemigroup (submonoid) of F. Then if is said to be free with respect
to k if f (k) = .ICY on f (X ), <f(k) > = M(<< f (k) >> = M) and V
semigroups (monoids) S and V fuzzy subsemigroups (submonoids) A of S
with g : X --+ S and g(Y) = A on g(X), there exists unique homomorphism
h of F into S such that g h o f and h(M) C A.

Theorem 6.47 Let F be a free semigroup (monoid) on the set X with
respect to the function f : X -- F. Let k be a fuzzy subset of X. Then there
exists a fuzzy subsemigroup (submonoid) of F which is free with respect to
Y.

Proposition 6.48 Let S be a semigroup (monoid) and B a fuzzy subsemi-
group (submonoid) of S. Then 3 a free semigroup (monoid) F, a free fuzzy
subsemigroup (submonoid) 1li of F, and a homomorphism h of F onto S
such that h(M) C B.

Proposition 6.49 Let S be a semigroup (monoid) and b a fuzzy subsemi-
group (submonoid) of S. Then 3 a free semigroup (monoid) F and a free
fuzzy subsemigroup (submonoid) M of F such that B is weakly isomorphic
[7,34,59] to a quotient semigroup (monoid) [7,34,59] of M.

Before showing how the results on free fuzzy submonoids can be applied
to the study of fuzzy finite state machines with fuzzy input, we give some
basic definitions. A fuzzy finite state machine (ffsm) M is a triple (Q, X, A)
where Q and X are finite nonempty sets and A is a function from Q x X x Q
into [0,1]. The elements of Q are called states and the elements of X are
called input symbols. The function A is the fuzzy transition function. Let
X* denote the set of all strings of finite length of elements of X including
the empty string, A. Then X * is a free monoid. Let M = (Q, X, A) be a
ffsm. Define A* : Q x X * x Q -- [0,1] by A*(q, A, p) = 1 if q = p and
A* (q, A, p) = 0 if q -:A p and V (q, x, p) E Q x X* x Q, Va E X, A*(q, xa, p)
= V{A*(q,x,r) A A*(r,a,p) I r E Q}.

Let xi E X, i = 1, ..., n. Let k be a fuzzy subset of X. Let x = xl ...xn.
Then (xl).k(y,)...(xn)Y(r.,) _ xk.(x),where Y*(x)

= Y(xi)A...AY(xn). Thus inputting the string of fuzzy singletons (x1)c (x1),

..., (xn),k(x,) successively is the same as inputting xY.(s) where x = xi...xn.
That is, there is a consistency between input and the semigroup operation,
concatenation, of X*. We also know that << Y >> = Y on X.

We can think of k* as << Y >>, the fuzzy subsemigroup of X* gener-
ated by Y.

We now apply our results to the theory of fuzzy automata. Let RVf =
(Q, X, A) be a ffsm. Let k be a fuzzy subset of X and let k* _ < < Y > > .

Definition 6.39 Let M = (Q, X, A) be a ffsm. Let k be a fuzzy subset of
X. Define AY : Q x X x Q -+ [0,1] and A}..: Q x X* x Q-' [0,1] as
follows:
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d(q, a, p) E Q x X x Q, Af (q, a, p) = Y(a) A A(q, a, p);
d(q, x, p) E Q X X * x Q. At.. (q, x, p) = Y* (x) A A* (q, x. p).

If X E X*. we define the length, jxj , of x as follows: if x = A, then jxj = 0
and if x = xi ... x,,, where xi E X, i = 1, .... n.then ¶xj = n.

Theorem 6.50 Let Af = (Q. X, A) be a ff sm. Let k be a fuzzy subset of
X. Then (A.)* = Ay..

Proof. AY. (q, a, p) = Y* (.\) AA- (q, A, p) = I A 1 if q = p and 1 A 0 if q # p.
Thus AY. (q, k p) = (AY)*(q, A, p). Assume AY. (q, x, p) _ (AY)*(q, x, p)
for [x4 > 0. Now A..(q,xa,p) = Y*(xa) A A*(q,xa,p) = Y*(x) AY*(a) A
V{A*(q,x,r) A A(r,a,p) } r E QJ = VtY*(x) A Y*(a) A A*(q,x,r) A
A(r, a, p) I r E Q} =-V{Y*(x) A Y(a) A A*(q, x, r) A A(r, a, p) I r E Q}
= V {(A,?)* (q, x, r) A Ar (r, a, p) { r E Q } (by the induction hypothesis) _
(Ak) * (q, xa, p).

Corollary 6.51 Let M = (Q, X, A) be a ffsm. Let k be a fuzzy subset of
X. Then Vq, p E Q,Vx, y E X *, AY. (q, xy, p) = V{Ay,. (q, x, r) AAf.. (r, y, p)
IrEQ}.

We see from Theorem 6.50 that a ffsm with fuzzy input acts like a ffsm.
Hence results for ffsm's can be immediately carried over to ffsm's with fuzzy
input.

6.4 Fuzzy Subgroups, Pattern Recognition and
Coding Theory

The material for the presentation in this section is from [3,4,7]. We show
how the concept of fuzzy subgroups can be used to examine the faith-
fulness of a device which decodes messages transmitted a cross a noisy
channel. Let G denote a group. The notion of a fuzzy subgroup of G was
introduced by Rosenfeld [52]. Subsequently Anthony and Sherwood [3,4]
introduced the notion of a fuzzy subgroup where an arbitrary t-norm re-
placed the t-norm "minimum" used by Rosenfeld and where A(e) = 1
was required, e the identity of G. By a t-norm, we mean a function T of
[0,1] x [0, 1] , [0,1] such that Vx, y, z E [0, 1), T (x, 1) = x, T(x, y) < T(z, y)
if x < z, T(x,y) = T(y,x), and T(x,T(y,z)) = T(T(x,y),z)). Then ac-
cording to [3], a fuzzy subset A of G is a fuzzy subgroup of G if Vx, y E G,
A(xy-1) > T(A(x), A(y)) and A(e) = 1. We introduce two classes of fuzzy
subgroups. Each fuzzy subgroup in these classes satisfy the definition of a
fuzzy subgroup with the t-norm T,,, given by T,,, (s, t) = (s + t - 1) V 0 V s, t
E [0, 1]. Although these classes look different, each fuzzy subgroup in either
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is isomorphic to one in the other. We note that a fuzzy subgroup satisfies
the definition of fuzzy subgroup with T = "minimum" if and only if it is
a fuzzy subgroup generated of a very special type. These notions are then
applied to some abstract pattern recognition problems and coding theory
problems.

In the following result, we can think that the value of the fuzzy subgroup
at a particular point .r represents the probability that x will be found in a
randomly selected subgroup. This gives us a particular way of generating
fuzzy subgroups. We first quickly review some basic definitions from prob-
ability. For a set Q, a set A of subsets of St is a cr-algebra if (1) 0 E A.
(2) VA E A, A` E A, and (3) if { Ai I i E I } is a countable collection of
elements of A, then UiE1 Ai E A. We call P : A - R a probability measure
if P(A) > 0 VA E A, P(fl) = 1, and P(U°_1 Ai) = Ei=1 P(Ai) for any
denumerable union of disjoint sets Ai, i = 1, 2,.... The triple (f2, A. P) is
called a probability space.

Theorem 6.52 Let G be a group and let S be the set of all subgroups of G.
For each xEG,let S.=IS ESIxES} andletT={So, IxEG}.LetA
be any cs-algebra on S which contains the o-algebra generated by T and let
m be a probability measure on (S, A). Then the fuzzy subset A of G defined
by A(x) = m(SS) V x E G is a fuzzy subgroup of G with respect to T,,,. A
fuzzy subgroup obtained in this manner is called a subgroup generated.

In the next result, we think of a point which travels in some random
fashion through a group and we compute the probability of finding the
point in a particular subgroup. We thus have another way of generating
fuzzy subgroups.

Theorem 6.53 Let (G, +) be a group and H a subgroup of G. Let (St, A, P)
be a probability space and let (G, (l)) be a group of functions mapping ft into
G with E}) defined by pointwise addition in the range space. Suppose that d
f E G, G f = { w E 9 1 f (w) E H } is an element of A. Then the fuzzy subset
B of 9 defined by B(f) = P(C1) V f E G is a fuzzy subgroup of G with
respect to A fuzzy subgroup obtained in this manner is called function
generated.

The next theorems establish a basic equivalence between the notions of
subgroup generated and function generated.

Theorem 6.54 Every function generated fuzzy subgroup is subgroup gen-
erated.

Theorem 6.55 Every subgroup generated fuzzy subgroup is isomorphic to
a function generated fuzzy subgroup.
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Theorem 6.56 Every fuzzy subgroup with respect to A is subgroup gen-
erated.

Theorem 6.57 Let A be a fuzzy subgroup of G with (S, A, m) and the sets
Sz for x E G as defined in Theorem 6.52. If there exists S" E A which is
linearly ordered by set inclusion such that m(S*) = 1, then A is a fuzzy
subgroup with respect to A.

Theorem 6.58 A fuzzy subgroup is a fuzzy subgroup with respect to A if
and only if it is subgroup generated and the generating family possesses a
subfamily of measure one which is linearly ordered by set inclusion.

Suppose that F is a device which receives a stream of discrete inputs and
produces a stream of discrete outputs. We assume the following conditions.

(1) F is deterministic and acts independently on each individual input.
That is, a particular input will produce the same output each time that
input is provided to F. However, the output which is produced by a specific
input is not known.

(2) There is complete knowledge of the outputs. That is, the output
stream is observable.

(3) The input stream is not observable. The possible inputs are known
and estimates can be obtained of their relative frequencies in a large seg-
ment of the input stream.

(4) The outputs have an algebraic character in the sense that they can be
identified with the objects in a group. Thus there is a method of combining
the outputs which has the ordinary properties of a group operation.

Let I designate the collection of inputs and let 0 be the collection of out-
puts. If T E Z, then F(T) E 0. Hence F is identified with a function from I
into 0. Suppose that f is a known function from I into 0. Moreover, sup-
pose that some particular character of F which we shall call "faithfulness"
is associated with solvability for x of an equation in the output "group" of
the form x + f (T) = F(T), where + is the group operation. If for some
T E Y a solution for x can be found in a given subgroup H, then the
output F(T) will be called H-f faithful to the input T. For a sufficiently
large finite segment of the output stream and for a given function f and
subgroup H, we examine the problem of approximating the proportion of
the outputs which are H- f faithful to their respective inputs.

To translate this problem into the setting of fuzzy subgroups, certain
identifications are necessary. The outputs have already been identified with
a group (G, +). The inputs may be identified with a probability space
(St, A, P) where St = Z, A is the power set of 9, and P(T) is the known
estimate of the relative frequency of T in the input stream for each T E
Q. If (G, (})) is the set of all functions from 1 into G with (4) defined by
pointwise addition in the range space, then both F and f may be identified
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with elements of G. The function f is known while F is not known. H is
a fixed subgroup of G. By Theorem 6.53, the fuzzy subset b of G defined
by B(g) = P{T E Q ` g(T) E H) is a function generated fuzzy subgroup
of g with respect to T,,,,. Now B(F) can be estimated by observing the
output stream over some finite segment and computing the percentage of
those outputs which are in H. Note that B(( f) = B(f) is known since f
is known. Now an output, F(T), is H-f faithful to T if and only if x +
f (T) = F(T) has a solution for x in H. This happens if and only if x =
F(T) - f (T) = (F() f)(T) E H. Therefore B(F() f) is the probability that
F(T) is H- f faithful to T. The solution to the original problem may now be
identified with B(F () f). This may be estimated using B(f ), an estimate
of B(F), and the properties of the fuzzy subgroup, B, in the following way:
Since T,,,,(B(F), B(O f )) = T,,,(B(F), B(f )) = (B(F) + B(f) - 1) V 0 >
B(F)+B(f)-l, we have

B(F () f) > T,,,(B(F), B(() f )) = T,,, (B(F), B(f )) > B(F) + B(f) - 1.
(6.4.1)

Similarly, since T,,,(B(F() f),B(f)) = (B(F() f)+B(f)-1)VO> B(FO
f)+B(f)-l,wehave

i3(F) = B(F()f+f) 2T,,,(B(FOf),B(f)) > B(FOf)+B(f)-1. (6.4.2)

Further, since T,,,(B(f (-) F), B(F)) = Tr()§(F (-) f ), b(fl) = ((F( ) f) +
B(F) - 1) V 0 > B(F () f) + B(F) - 1,

B(f) = B(f O F a) F) > T,,,(B(f O F), B(F)) > B(F Q f) + B(F) - 1.
(6.4.3)

From (6.4.1) and (6.4.2), we obtain

b(F) - (1 - B(f)) < B(F () f) < B(F) + (1 - B(f )). (6.4.4)

From (6.4.1) and (6.4.3), we obtain

B(f) - (1 - B(F)) < B(F () f) < B(f) + (1 - B(F)) (6.4.5)

Thus we obtain the following estimate for the solution B(F f) :

B(F O f) - (B(f) A B(F)) j< 1 - (B(f) V B(F)). (6.4.6)

This estimate is close only when B(f) or b(F) is close to 1. However, if
B can be shown to be a fuzzy subgroup with respect to A, the situation
changes considerably.

Suppose B is a fuzzy subgroup of G with respect to A. Then (6.4.1),
(6.4.2), and (6.4.3) become, respectively,
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B(F ( f) > B(F) A B(f) (6.4.7)

B(F) > B(F () f) A B(f) (6.4.8)

B(f) > B(F () f) A B(F) (6.4.9)

Now if b(f) > B(F), then from (6.4.7) we get B(F f) > B(F) and from
(6.4.8) we get b(F) > B(F ) f ). Thus B(F () f I = B(F). Similarly, if
B(f) < B(F), then from (6.4.7) we conclude that B(F 0 f) > B(f ). From
(6.4.9), we obtain B(f) > B(F () f) so that B(F (} f) = B(f). Therefore
if B(f) # B(F), then B-(F E) f) = B(f) A B(F) and we know the solution
exactly. Finally, if B(F) = B(f) the best one can say is b(F) = B(f) < B
(F(3f)<1.

Let n E N. An n x n array of the integers 1, 2, 3, ..., n2 is called a pattern.
Suppose that F is a machine which accepts input patterns and produces
output patterns. Each pattern may be identified with a transformation in
S.-, the symmetric group on n2 elements, in the following way.

k1 k2 ... kn

kn+1 kn+1 . . . k2n
F,

kn2-n kn2-n+l ... k,t2

where F(i) = ki f o r i = 1, 2, ... , n2. Thus F is identified with a function
from Sn2 into Sn2. An output pattern will be called recognizable if it is a
composition of translations and rotations of the input. There is a subgroup
H of Sn2 such that an output pattern F(T) is recognizable if and only if
there exists a permutation T' in H such that T* oT = F(T). Suppose that
estimates of the relative frequency of patterns in the input stream can be
obtained. Let 1 = Sn2, A be the power set of Sn2 , and P be a probability
measure on Sn2 obtained from the estimates of the relative frequency of
input patterns. Now (f', A, P) = (Sn2, A, P) and (G, +) = (Sn2, o) with
(G, E13) and H defined appropriately. Let f1 : Sn2 -4 Sn2 be defined by
f1 (T) = T for every T E Sn2. Then the output pattern F(T) is recognizable
if and only if the equation x o fl (T) = F(T) has a solution for x in H. This
is the definition of F(T) being H- f 1 faithful to T. Note that

B(fl)=P{TE Sn2 I fl(T)=TEH}=P(H).
From the discussion of the generalized recognition problem, the probabil-
ity the output is recognizable (h-f1 faithful) is B(F H fl) which may be
estimated using the inequality

I f3 (F () f1) - (P(H) A B(F))I < 1 - (P(H) V B(F)).

Once again, in the event b can be shown to be a fuzzy subgroup with
respect to minimum, we obtain
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B(F O f) = P(H) A B(F)
if P(H) # B(F); otherwise P(H) = B(F) _< B(F () f) < 1. It should
he remembered that P(H) is known and B(F) can be estimated by the
percentage of outputs which are in H.

We now consider the standard problem concerning the transmission of
strings of 0's and l's across a symmetric binary channel with noise. Let B
= 10, 1} and B" denote the set of all binary n-tuples, n > 2. Then B" is
a group under coinponentwise addition modulo 2. Let C C_ B" denote the
set of all codewords. Then C is a subgroup of B". We make the following
identifications: C = H = I _ H and B" = G = 0 where H, G, 1,!Q and 0
are as described above. In this situation, f is known, f (T) is unknown, F is
unknown, and F(T) is known where T E H. We let f be the identity map
since in the ideal situation their is no noise and so the output equals the
input. We recall that F(T) is observable and B(F) can be estimated. Since
f is the identity map, b(f) = 1. Thus, B(F (-) f) = B(F) by inequality
(6.4.1). Thus F(T) is H- f faithful to T.

We now consider a more general situation. Assume that 1 > B(f) >
B(F). This is a reasonable assumption since f represents the ideal situation
while F represents the real world situation. Then by inequality (6.4.1),
JB(F 0 f) - (B(f) A B(F))I < 1 - (B(f) V B(F)) and so I B(F () f) -
B(F)J < 1 - B(f). Now assume that d s, t E Im(B), s # t, 1 - B(f) < Is
- ti. Then I B(F () f) - B(F)I = 0. Hence B(F o f) = B(F). Once again,
F(T) is H- f faithful. Consider the fuzzy coset B f where B f (g) = B(g () f )
V g E G. Then Bf(F) = B(F). Also, g E (Bf)t Bf(g) > t a B(g (:) f)
>te4'gof EBt..gE f0HBt.

We now note a structure result for the group (G, G)) and the fuzzy sub-
group b of G. V f E G, (g (1) g)(T) = g(T) 6) g(T) = 0 d T E I. Thus, 29 =
{9} where 9(T) = 0 d T E T. Thus G = E) < g > . For all g E G, define the

gE9s

fuzzy subset B(g) of g as follows:. (9)(9) = 5(9) which equals 1,-B(9)(g)
= B(g) if g E supp(B) and B(9)(h) = 0 if h E G \ 19, g}. Then b(g) is -a
fuzzy subgroup of G. Hence B = (l) B(s) for some subset S C_ supp(B)

gES

where ISF = [supp(B) : Z2] by [37, Theorem 2.3, p. 961.

6.5 Free Fuzzy Monoids and Coding Theory

Semigroup theory has found a wide range of applications. It is used, for
example, in the study of combinatorics, algebraic linguistics, and automata
theory. In this section, we describe the use of free monoids and fuzzy free
monoids in the construction of codes. The material is taken from [21] and
113].

Let A be a set, M be a monoid, and f : A -> M be an injection of A
onto a set of generators of M. We recall from Section 6.1 that M is free on
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f (A) if and only if for every monoid M' and for every mapping g : A Al'
there exists a homomorphism h : M -> M' such that g = h o f.

For subsets A and B of a semigroup, we let AB = lab I a E A. b E B}.
Then forallnEN, An _ la,...an Iai EA,i=1,...,n}.

Proposition 6.59 Let Al be monoid and let S = M \ {e}, where e is the
identity of M. Then M is free if and only if every element of S has a unique
factorization as a product of elements of S \ S2.

Proof. Suppose that M is free. Then M = A*, where A = S \ S2. Thus the
unique factorization property holds by definition of A*. Conversely, suppose
that every element of M \ {e} has a unique factorization as a product of
elements of A = S \ S2. Then there is a homomorphism h of A* onto M
such that h(aia2...an) = aia2...an. Since every element of S has a unique
factorization as a product of elements of A, h is an isomorphism. Thus M
is free.

Definition 6.40 A monoid M is called equidivisible if for every a, b, c, d E
M, ab = cd implies either a = cu, ub = d for some u E M or av = c, b = vd
for some v E M.

Proposition 6.60 Let M be a monoid and let S = M \ {e}. The M is free
if and only if M is equidivisible and WHEN Sn = 0.

Corollary 6.61 Let Al be a monoid. Then M is free if and only if M is
equidivisible and there exists a homomorphism h from M into the monoid
(N U {0}, +) such that h-1(0) is the identity of M.

Let M be a monoid and let U = (x E M I 3x' E M such that xx' = e =
x'x}. Then U is a group, called the group of units of M. U is called trivial
if U = {e}. M is called cancellative if for all a, b, c E M, ab = ac implies
b = c and ba = ca implies b = c.

Corollary 6.62 Let M be a monoid. Then M is free if and only if M
is cancellative, equidivisible, has a trivial group of units and every m E
M, m # e, has a finite number of nontrivial left factors (factors L e).

Example 6.24 Let X be a nonempty set and R+ be the set of all nonnega-
tive real numbers. Let F(IR+, X) = { (f, r) I f : (0, r) -- X, r E R+}. Define
a binary operation * on F(1R+, E) as follows: (f , r) * (g, s) = (h, r + s),
where h(x) = f (x) if x E (0, r] and h(x) = g(x - r) if x E (r, r + s]. Then
it can be shown that F(R+, E) is a monoid under * which is cancellative,
equidivisible, and has a trivial group of units. Let (h, t) E F(1R+, E) and
r E (0, t). Then (h, t) = (f, r) * (g, t), where f (x) = h(x) if x E (0, r] and
g(x) = h(r + x) if x E (0, t - r]. Then (h, t) has infinitely many left factors.
By Corollary 6.62, F(R+, E) is not free.
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We sometimes call a set A an alphabet and its elements letters. The
elements of A` are called words.

Proposition 6.63 Let M be a submonoid of a free monoid A* on the
alphabet A. Then M has a unique minimal set of generators C = AI+ \
(M+)2, where M+ = M \ {e}. C is called the base of M.

Proof. It follows from Proposition 6.60 that ffE,,(M+)" = 0. Thus for
all m E M+, there exists k E N such that m E (M+)k \ (M+)k+l. Hence m

can be written as a product c1c2...ck with ci E A1+ \ (M+)2 for i = I,-, k.
Therefore C is a set of generators of M. Let C' C M+ be another set of
generators of M. Then every c E C can be written c = c'1c'2...c' with
c'i E C' C M+. Since C E M+ \ (M+)2, n = 1. Hence c E C'. Thus C C C'
and so C is a minimal set of generators and is in fact unique with respect
to this property.

Example 6.25 Let A = {a, b}. Then M = {ai I i E NU{0}, i 1} is a
submonoid of A* and C = {a2,a3} is the base of M. Now M is not free
over C since a6 has a factorization as a product of elements of C in two
different ways, namely a2a2a2 and a3a3. By Proposition 6.59, Al is not
free.

Proposition 6.64 Let M be a submonoid of a free monoid A*. Then the
following conditions are equivalent.

(i) Al is free.

(ii) dwEA*, MwnM#0 and wMflM#0 implywEM.

(iii) Vw E A*, mw fl m fl wM o 0 imply w E M.

Definition 6.41 Let C be a subset of a free monoid A*. Then C is called
a code over A if C is the base of a free submonoid M of A*. We write
M = C* in this case.

Let C be any subset of A* and B a set such that there exists a bijection
f : B C. Then f can be extended to a homomorphism f * of B* onto the
submonoid M of A* generated by C. Now C is a code if and only if f * is
an isomorphism. In this case, f is called an encoding of B in the alphabet
A. The next example shows that it is not always easy to detect whether or
not a subset of A* is a code.

Example 6.26 Let A = {a, b} and C = { a4, b, bat, ab, aba2 }. Then C =
{a4}U{aiba3 I i=0,1 and j=0,2}. Now a' E C* if and only if m=40.
If a word w contains occurrences of b we write w = a"bai2b...aikbaik+I
with i1, i2, ..., ik+1 > 0. If U; E C*, then i1 -4 0 or 1 and ik+1 =_4 0 or 2.
Conversely, if it =4 0 or 1 and ik+1 =4 0 or 2, then w E C*. We now
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consider the uniqueness of the expressions. V j,1 < j < k, the equivalence
class of i j modulo 4 can be uniquely decomposed as a sum i j= 4k3 + l j +mn j,
where lj E {0.1}, n1j E {0, 2}. Sow = ... (all - I bam,)(a4)kJ(all baI?',+I) ....
Since this decomposition of w E C* is unique, we have that C is a code.

We note that the equivalence (ii) and (iii) in Proposition 6.64 is true for a
submonoid of any monoid N even if N is not free. We call a submonoid M
of a monoid N weakly unitary if it satisfies (ii) or (iii) of Proposition 6.64.
For the proof of (iii) implies (ii), we have that m1 w E M and wrn2 E M
implies that w(m2mlw) = (wm2m1)w E M and so w E M by (iii).

The next result provides a simple method for constructing examples of
codes.

Proposition 6.65 Let M be a submonoid of a free monoid A* and C its
base. Then the following conditions are equivalent.

(i) Vw E A*, Mw n M# 0 implies w E M.

(ii) CA+nC=0.

Definition 6.42 A code C over the alphabet A is called a prefix (suffix)
code if it satisfies CA+nC = 0 (A+CnC = 0). C is called a biprefix code if
it is a prefix and a suffix code. A submonoid M of any monoid N satisfying
(ii) of Proposition 6.65 is called left unitary in N. M is called right unitary
(unitary) in N if it satisfies the dual of (i), namely A+C n C = 0, (both (i)
and its dual).

By condition (ii) in Proposition 6.65, no word of C is a proper left factor
of another word of C. Define the relation <1 on A* by Vu, v E A*, u <1 v if
v is a left factor of u. Then <1 is a partial ordering of A*. In the diagrams
to follow, we display the top part of AS partially ordered by <1 when
A = {a, b} and when A = {a, b, c}.

A* partially ordered by <l when' A = {a, b}

Semigroups and Combinatorial Applications, G. Lallement, Copyright 1979.
Reprinted by permission of John Wiley & Sons, inc
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A* partially ordered by <1 when' A = {a, b, c}

A necessary and sufficient condition for a subset C of A* to be a prefix
code is that for every c E C, w E A*, w <1 c and w# c implies w f C.
Thus to obtain examples of prefix codes, it suffices to select subsets C
of A* that will be end points for <1 . For example, the trees displayed
below give the prefix codes Cl = {a2, aba, ab2, b} over {a, b} and C2 =
{a2, ab, ac, ba, b2, cb, c2 } over {a, b, c}. The set B = {anb I n E NJ is an
example of an infinite prefix code over {a, b} and is represented by an
infinite falling tree with end points a"b, n E N.

Prefix codes over' {a, b}

'Semigioups and Con,biuatorial Applications. G. Lallenient, Copyright 1979.
Reprinted by permission of John Wiley & Sons, Inc.
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Prefix codes over' (a, b, c}

There is no simple characterization of general codes analogous to con-
dition (ii) of Proposition 6.65 for prefix codes. However, we do have the
following result.

Proposition 6.66 Let A* be a free monoid and C be a subset of A*. Define
the sequence of subsets Di of A* recursively by Do = C and Di = {w E
A+ I Di_iwf1C # 0 or Cwfl Di_1 # 0}, i = 1, 2, .... Then C is a code over
Aifandonly ifCflDi=Ofori=1,2,....

Suppose that C is finite. Then the length of the words in Di for every
i is bounded by the maximal length of words in C. Hence, there is only
a finite number of distinct Di and Proposition 6.66 gives an algorithm for
deciding whether or not C is a code.

Example 6.27 (i) For C = {a, a3b, aba, }, we have Do = C, D1 = {alb,
ba}, D2 = {ab},and D3 = {a, b}. Since c fl D3 0, C is not a code.

(ii) For C = {a, alb, bab, b2 }, we have Do = C, D1 = {ab}, D2 = {b},and
Di = {ab, b} for i = 3,4,.... Since C fl Di = 0 for i = 1, 2,..., C is a
code.

We now consider the construction of codes using fuzzy subsemigroups.
The material is taken from Gerla [13]. Let L be a partially ordered set.
Then L is called a A-semilattice (V-semilattice) if Vx, y E L, x and y have
a greatest lower bound (least upper bound), say xAy (xVy). A A-semilattice
(V-semilattice) is called complete if for every subset of L has greatest lower
bound (least upper bound) in L. Let B+ denote a free semigroup and L
be a complete semilattice. Then {A I A : B+ --> L} is a semilattice whose
elements are L-subsets of the free semigroup B+. An L-subset A of B+ is an
L-subsemigroup of B+ if for t E L, the level set At = {x E B+ I A(x) > t}

'Semigroups and Combinatorial Applications, G. Lalleinent, Copyright. 1979.
Reprinted by permission of John Wiley & Sons, Inc.
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is a subsemigroup of B+. Then A is a L-subsemigroup of B+ if dx, y c B+,
A(xy) > A(x) A A(y).

The search for suitable codes for communication theory is known. It was
proposed by Gerla that L-semigroup theory be used. To this end, free,
pure, very pure, left unitary, right unitary, unitary L-subsemigroups of a
free semigroup are defined. To every such L-subsemigroup there is a family
of codes associated with it. An L-subsemigroup of a free semigroup is free,
pure, very pure, left unitary, right unitary, unitary if and only if its level sets
are free, pure, very pure, left unitary, right unitary, unitary, respectively.
Thus any method used to construct an L-subsemigroup of a free semigroup
of one of these types yields a family of semigroups of the same type, namely
the level sets of the L-subsemigroup.

Proposition 6.67 Let A be an L-subsemigroup of B+. Then A is free,
pure, very pure, left unitary, right unitary, or unitary if and only if Vx, y E
B+

(i) A(x) > A(yx) A A(xy) A A(y),

(ii) A(x) = A(xn) Vn E N,

(iii) A(x) > A(yx) A A(.ry),

(iv) A(x) > A(yx) A A(y),

(v) A(x) > A(xy) A A(y),

(vi) A(x) > A(yx) A A(xy) and A(x) > A(xy) A A(y),

respectively.

Proposition 6.68 If L is a A-complete semilattice, then the class of free
(pure, very pure, left unitary, right unitary, or unitary) L-subsemigroups
of B+ is closed with respect to finite and infinite intersections.

A closure system for a semigroup S is an n-complete class C of subsemi-
groups of S such that S E C. For any subset X of S, let (X) = n{M E
C I M D X). Every closure system C is a semilattice with respect to the
operation V defined by setting X V Y =< X U Y > VX, Y E C. It is im-
portant to note that the order relation associated with V is the dual of the
ordinary inclusion.

Proposition 6.69 Let S be a semigroup, C a closure system for S, and g
a homomorphism of B+ into S. Then the function A : B+ - C defined by
dx E B+, A(x) = < g(x) > is a C-subsemigroup of B+. If dx, y E B+,

(i) x E< yx, xy, y >.
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(ii) xE<x">VnEN,

(iii) x E< yx,xy >,

(iv) x E< yx, y >,

(v) x E< xy, y >,

(vi) xE<yx,y>n <xy,y>,

then A is free, pure, very pure, left unitary, right unitary, or unitary, re-
spectively. Moreover, AX = g-1(X) for every X E C.

Corollary 6.70 There exists an L-subsemigroup A of B 4- such that { AX
X E L} is the family of all free (pure, very pure, left unitary, right unitary,
or unitary) subsemigroups of B+.

Corollary 6.71 Let S be a semigroup, C a class of subsemigroups of S,
and C the closure system generated by C. Then if g : B+ S is any
homomorphism, the function A defined by A(x) = < g(x) > bx E B+ is a
unitary C-subsemigroup of B+.

Methods to construct examples can be found in [13].

6.6 Formal Power Series, Regular Fuzzy
Languages, and Fuzzy Automata

We now describe an approach for the construction of fuzzy automata us-
ing formal power series representations. The formal power series approach
yields a minimal fuzzy automata. The results of this section are from [51,
53].

Definition 6.43 A mathematical system (A, +, ) is called a semiring if (i)
(A, +) is a commutative monoid, (ii) (A, ) is a monoid, (iii) Va, b, c E A,
a.(b+c) and
Va E A. (We let 0 denote the "additive" identity of (A, +) and 1 denote
the "multiplicative" identity of (A, ), 0 0 1.)

If (A, +, ) is a semiring, we sometimes write ab for a b, where a, b E A.

Definition 6.44 A commutative monoid (D, +) is called an A-semimodule
over the semiring (A, +, ) with respect to : A x D - D if the following
conditions hold:

(i) b'a,bE A and VdE D, (ab)d=a(bd).



6.6 Formal Power Series, Regular Fuzzy Languages. and Fuzzy Automata 253

(ii) Va, b E A and Vd1, d2 E D.

a (d1 + d2) = (a . dl) + (a d2) and (a + b) d1 = (a dl) + (b di )

(iii) VdE D. 1 d=d

Definition 6.45 Let (D, +) be an A-semimodule over the semiring
(A, +, ). Let U be a nonempty subset of D. Then (U, +) is called a sub-
semimodule of D if (U, +) is an A-semimodule.

Proposition 6.72 Let (D, +) be an A-semimodule over the semiring
(A, +, ). Let U be a nonempty subset of D. Then (U, +) is a subsemimodule
of D if and only if Vu1i U2 E U and Va, b E A, aul + but E U.

Let (D, +) be an A-semimodule over the semiring (A, +, -). Let U be
a nonempty subset of D. Then the intersection of all subsemimodules
of D which contain U is a subsemimodule of D and is called the sub-
semimodule generated by U. We let < U > denote this submodule. It
is the smallest subsemimodule of D containing U. It can be shown that
<U>={E', ajui Ia1EA,u1EU,i=1,...,n;nEN}.

Let A' I I I be the set of all m x m matrices with elements from a semiring
A. Then Amxm is a semiring under the usual definitions of addition and
multiplication. Let M be a monoid. Then the multiplicative homomorphism
ii : M -> Amxm is called a representation if Vw1, w2 E M, µ(w1w2) _
f1(w1)A(w2)-

Definition 6.46 Let M be a monoid and A be a serniring. A function r
of M into A is called formal power series, and r is written as a formal sum

r = 1] (r, w) w. (6.6.1)
wEM

The values of (r, w) E A are also referred to as the coefficients of the series.

We will consider here the free monoid VT* generated by the words over
an alphabet VT and r will be a series with noncommuting variables in VT.

Let M be a monoid. The collection of all formal power series r, as defined
above, is denoted by A [[M]] . For r E A [[M]] , the set {w E M I (r, w) # 0}
is called the support of r and is denoted by supp(r). A subset of VT* is
called a language. A language may be uniquely associated with a formal
power series r belonging to A The elements of the support of r,
r E A are the words w E VT: such that (r, w) 0 0, and hence
supp(r) may be considered as a language over the alphabet VT.

Definition 6.47 The elements of A [[M]] consisting of all series with finite
support are referred to as polynomials. We let A [M] denote the set of all
polynomials.
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We let 0 denote the series all of whose coefficients equal 0. We let ,1
denote the identity of VT*. Then da E A, as = a. If w E VT*. then aw
denotes the series whose coefficient of w is a and the remaining coefficients
are 0. Then aw E A [VT*] and aw is called a monomial.

The support of a series in A ((VT*]] is a language over the alphabet VT*.
A series r E A [[VT*]] , where every coefficient equals 0 or 1, is called the
characteristic series of its support L, and written r = char(L).

For the purpose of inference of regular grammars, we require only rational
series and recognizable series.

Define the function d : A[[M]] x A([M]] Ill by `dr, r' E A[[1vi]],

j 0 ifr=r'd(r, r) 2-t ifr # r'

where l = A{ lg(w) I (r, w) (r', w), w E MI and Ig : M - N. Then d
is a metric on A JIM]]. We can thus discuss convergence of sequences of
elements of A [[M]] with respect to d.

We now illustrate some of the concepts introduced up to now. Let M =
{x' 0, 1, 2,...). Define the binary operation on M by dx', xi E M,
x' xi = x=+.i

. Then M is a monoid under with identity xO = 1. Then,
using more familiar notation, E-EM(r, w)w becomes E°__o(r, x')x'. Define
lg:M--'Nby lg(x')=i'Ix'EM.If

r = J:°_°o(r, x')x' and r' = E7 o(r', x')x'
with (r, x') = (r', x`) for i = 0, 1, ..., k and (r, xk+l) (r', xk+' ), then
1=k+1.

Definition 6.48 An element r of A [[M]] is called quasi-regular if (r, A) =
0, where A E M is the null string. The quasi-regular series has the property
that the sequence r, r2, ..., rn, ... converges to 0 and

limn_.< :k=1 rk
exists. If r is quasi-regular, then the series

r+ = Fk>1 rk
is called a quasi-inverse of r.

Definition 6.49 A subsemiring Q(A [[M]]) is called rationally closed if it
contains the quasi-inverse of every quasi-regular element.

The family of A-rational series over lvi, denoted by Arat [[M]), is the
smallest rationally closed subset of A [[M]] containing all polynomials, i.
e., Arat [[M]] A [M] . A series of A [[M]] is termed A-recognizable, i.e.,
r E Arec [[M]] if

r = (r, A),\ + E.,,a p(tw)w,
where µ : M Amxm, m # 1, is a representation. The value p(a¢j) can be
expressed as a linear combination of the entries a;j with coefficients in A,
i. e.,
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p(ail) = ai.l pig . pi.1 E A. (6.6.2)

is

Example 6.28 Consider N where X = {x, x}. The series
r = E', 2'(xt)'x + 3x = (2xz)+x + 3x

is N-rational. Supp(r) is denoted by the regular expression
(x;i)+x U X.
Consider the representation p defined by

0
,a(x) _ 1 p(x) = 100 0
Let p be the function defined by

p(ail) = all +a12.
Then the N-recognizable series

r' = E,,,EX' p(pw w
can be written in the form

r' = En =
ooo anxn,

where the sequence ao, al, ..., an, ... constitutes the Fibonacci sequence. To
see this, letr

A(xn) =
L

an-1 anan a,,,+i
where ao = 0, al = 1, a2 = 1, and ak = ak_ I + ak_2 for k = 2, 3, .... Then

p(A(xn)) = an-i + an for n = 1, 2, ....
(We recall that the Fibonacci sequence is defined by al = a2 = I and
an = an-2 + an-i for n = 3, 4, ....)

Example 6.29 Consider N [[X" ]] , where X = {x,'}, and two sequences
of polynomials r1(i) and r2(i), i = 0, 1, 2,..., defined as follows:

r1(°) = r2 (0) = 0,
ri(i+i) = r2(i) +ri(`) r2(i),
r2(i+1) = xrl(i).t+A, for all i > 0.

Then both of the sequences r1(i) and r2(i) converge and the limit of the
former sequence is the characteristic series of the Dyck language (on 2
letters) over X. We recall that the Dyck language is given by the following
grammar: ({S}, {x,x}, S, (S - SS, S -, A,S - xSx}), where {S} is the
set of nonterminals, {x, x} is the set of terminals, S is the initial symbol,
and{ S -> SS, S --> A, S - xSx } is the set of productions.

The following theorem provides a convenient characterization of recog-
nizable power series.

Theorem 6.73 (Schutzenberger) (541 If r E ATe' ([M]] , then there exists
a row vector a, a representation p, and a column vector, 3 such that

r = E (a(pw)f3)w. (6.6.3)
WE A1
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Conversely, any series of the form

EwEA1(a(µw)/3)w
belongs to Arec [IM 11 , M

Example 6.30 Consider N [[X *]] , where X = {x,.i"}. Let the represen-
tation u be defined as in Example 6.28. Let a = (1, 0) and /3 = (1.1)T ,
the transpose of (1, 1). Then ap(xn)f3 = (ap(x"))/3 = (an- 1, an)(1,1)T =
(an_1 + an). This gives us once again the series r' >°n°_o anx", where
the sequence ao, a1...., an, ... constitutes the Fibonacci sequence.

Theorem 6.74 (Kleene-Schutzenberger) 1541 For the free monoid VT*, the
sets Arec[[VT*]] and At [[VT*]] coincide.

We now define Hankel matrices. They can be used to characterize rational
power series.

Definition 6.50 The Hankel matrix of r E A ([VT*]] is a doubly infinite
matrix H(r) whose rows and columns are indexed by the words VT* and
whose elements with the indices u (row index) and v (column index) are
equal to (r, uv).

A formal power series r E A [[VT*]] is a function from VT* to A. We
denote the set of all functions from VT* to A by Avr*. The set

Av-,_

also
provides a convenient way to visualize the columns of H(r) as elements in
Avr * .

We note that with the column H(r) corresponding to the word v E VT*
(the v-th column of H(r)), we may associate the function F, E

AVT'.
as

follows:

F,, (u) = (r, uv), du E VT*. (6.6.4)

Then P.,, (u) is essentially equivalent to the (u, v)-th entry of H(r).

Example 6.31 Let VT* = {xn I n E N} and A = Z. Consider the formal
power series r = °° nxn. Then the Hankel matrix H(r) is the doubly
infinite matrix whose (x', xj) -th entry is i + j for i, j = 0, 1, .... Define
f : VT* -, A by Vxn E VT*, f (xn) = n. Now f is the set of ordered
pairs f = {(xn,n) I n E N}. If g : VT* --+ A is another such function,
then g = { (xn, an) Ian E Z, n E NJ. Now f = g if and only if n = an
Vn E N. Thus we see that we can uniquely associate f with the power series
F_001 nx'i. Also F ,,j (x') = (i + j, x'x3) which is the (x', x3) - th entry of
H(r).

If we appropriately define addition of functions in AVr* and multipli-
cation of functions in AVM by an element a E A, then AV"-* becomes an
A-semimodule. We define addition on

Av".
by d f j , f2 E Av'!
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(f, + f2) (u) = f, (u) + f2(u)Vu E Vr*. (6.6.5)

Now fz(u) E A for i = 1,2. Hence f, (u) + f2(u) corresponds to addition of
elements of A.

Thus f, + f2 E AV-,-* and AV"' * is a commutative monoid with respect to
the addition of functions as defined here. For all a E A and f E A[[VT*]]
define a f by

(a f) (u) = a - f (u)du E VT'. (6.6.6)

Then AV7. becomes an A-semimodule.
We next introduce a new operation, where for w E VT* and F E AVT ,

the function wF E AvT * is defined as follows:

wF(v) = F(vw),Vv E VT*. (6.6.7)

Let F, G E AV-,'' and w E VT*. Then Vu E VT*, (w(F + G))(u) =
(F + G)(uw) = F(uw) + G(uw) = wF(u) + wG(u) = (wF + wG)(u).
Thus w(F + G) = wF + wG. Let a E A. Then VU E VT*, (a(wF))(u) =
a(wF)(u) = aF(uw) _ (aF)(uw) = w(aF)(u). Hence a(wF)) = w(aF).
Now define 4) : A`,` - AC'T' by 4)(F) = wF VF E AVT' and w E VT*.
Then 4)(F + G) = w(F + G) = wF + wG = 4D(F) + 4)(G) and 4)(aF) _
w(aF) = a(wF) = a(fi(F)). That is, 4) is linear.

If we consider the function F corresponding to the v-th column of H(r),
then from Eqs. (6.6.4) and (6.6.7), we have

(r,uwv)du E VT*. (6.6.8)

This results in

F,,,,,(u)bu E VT*. (6.6.9)

Thus the operation of premultiplication of F by w results in a new function
F,,,,, that corresponds to the wv-th column of H(r).

We now define a stable subsemimodule.

Definition 6.51 A subsemimodule S of AVT * is called stable if w E VT*
and F E S imply that wF E S.

The following result determines whether a given formal power series is a
rational series.

Theorem 6.75 Let A be a commutative semiring and r E A [[VT*]] . Then
the following conditions are equivalent:

(i) r E Arat [[VT*]] -
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(ii) The subsemimodules of
AVI.

generated by the columns of H(r) are
contained in a finitely generated stable subsemzmodule of AV' .

We will now be concerned only with a fuzzy semiring A in our goal to
construct the minimal fuzzy automaton that accepts sentences in R+ of a
fuzzy language.

A fuzzy language over an alphabet VT* is defined to be a fuzzy subset A
of VT* and a string x in VT* has a membership grade A(x), 0 < A(x) < 1,
denoting its grade of membership in the fuzzy language.

A regular fuzzy language is a set of sentences generated by a regular
fuzzy grammar whose finite set of productions are of the form

A-OaB or A-->0a, (6.6.10)

where 0 < 0 < 1, A, B E VN, a E VT.
A finite fuzzy automata over VT that accepts the strings generated by a

regular fuzzy grammar is a 4-tuple

M = (Q,7r,F,r1), (6.6.11)

where Q is a nonempty finite set of internal states, 7r is an n-dimensional
fuzzy row vector called the initial state designator, r) is a column vector
called the final state designator, and F is a fuzzy transition matrix.

To construct a fuzzy automaton from a set of sentences belonging to a
positive sample set of a fuzzy language, the Hankel matrix is formed using
all possible factorizations of each of the strings wt. As observed above, the
Hankel matrix is formed by the words of VT* with each element equal to
(r, uw), where u and v in VT* correspond to the row and column indices
of H(r). We recall that AVT * becomes an A-semimodule if the functions in
AV, * are suitably operated.

We now establish that the interval (0, 11 becomes a commutative semiring
with respect to the maximum and minimum operations, V and A, respec-
tively. To see this, we first note that [0, 11 is a commutative monoid with
respect to V : `da, b, c E [0) 1])

(i) aV(bvc)=(avb)Vc,

(ii) aVO=OVa=a,

(iii) aVb=bVa.

Secondly, we note that (0, 11 is a commutative monoid with respect to
A : Va, b, c E [0, 11,

(i) aA(bAc)=(aAb)Ac,

(ii) a A 1= l A a= a.
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(iii) a A b= b A a.

Also. Va, b, c E
aA (bVc) _ (aAb) V (aAc),
aV(bAc)=(aVb)A(aVc),

and `da E [0,11,
a A 0 = 0 A a = 0.
These equations can be verified by examining the various cases:
a>b>_c,a>_c>_b,b>_a>c,b>c>a,c>a>_b,andc>b>a.
The interval [0, 11 with respect to V and A thus forms a semiring. In the

remainder of the section, we call ([0,1] , V, A) a_fuzzy semiring.
1 0 ,

column vectors whose components are from A, where A is a fuzzy semiring.
By b A h, we mean the fuzzy column vector (b A h i , ...b A hi, ...)T. By h V k,
we mean the fuzzy column vector (h1 V kl,..., hi V ki,...)T. Now given the
fuzzy column vectors hl,..., hn, a fuzzy column vector h belongs to the
fuzzy A-subsemimodule generated by {h1..... hn } if there exist Sl, ..., bn
E [0, 1] such that

h= (6.6.12)

In this case, we say that h is dependent on {h1i ..., hn}. If no such Si
exists, h is said to be independent o f

A'
{ h1, . . . , } .in A set f of fuzzy column

vectors is said to be independent if E f, h is not dependent on 1i \ {h}.
Since the interval [0,11 is not a field with respect to the operations V and A,
techniques of vector spaces to determine a basis are not directly applicable
here. At the end of the section, we present an algorithm for identifying a
set of independent columns of H(r).

Suppose H(r) has finitely many independent columns say, F1, ..., F. We
first show that the subsemimodule S generated by {F1, ..., Fn } of H(r)
is stable. Let F,, be a column of H(r) indexed by v E VT`. Then F,, is
dependent on {Fl, ..., Fn} and hence F,, E S. Now from (6.6.9), for w E VT*,
w F = Fw,,, where Fwv is the column of H (r) indexed by wv E VT*. Hence

Fwv is dependent on {F,,..., Fn} and consequently Fw E S. Therefore from
Definition 6.51, S is stable. Thus from conditions (i) and (ii) of Theorem
6.75, r E Arat [[VT"`]] . Conversely, suppose there do not exist finitely many
independent columns of H(r). Then from the definition of independence of
a column vector of the fuzzy Hankel matrix, the subsemimodule generated
by the columns of H(r) also does not have a finite set of generators. Thus
from Theorem 6.75, r cannot be a rational power series. We have thus
proved the following corollary to Theorem 6.75.

Corollary 6.76 If A is a fuzzy semiring, then r E Arat [[VT`]] if and only
if there are finitely many independent columns of H(r).
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Suppose that H(r) has finitely many independent columns and r E
A''°' [[VT*]]. Then from Theorems 6.73 and 6.74, r may be expressed as

r = (a(Fcw),3)w, (6.6.13)
wEVT'

where a is a row vector, Q is a column vector, y is a representation, and
Iv E VT*.

Since H(r) has finitely many independent columns, there exists a max-
imal set, F,;,,, }, of independent columns of H(r) associated with
{ V1, ..., v,, }, where vi E VT* are strings associated with these columns,
i = 1, ..., m. Thus for x E VT, xF,,, must be dependent on { F,,, , ..., F.,,, },
where xF,,, should be interpreted as in Eq. (6.6.9). Hence xF,,; may be
represented as

m
xF,,, = j(µx)jtF, (6.6.14)

j=1

for x E VT, where it: VT. -> A"'.
We must now establish that p is a representation. Assuming that the

above equation holds for x = w1 and x = w2. Since
m

w1w2F,,: (v) = F,,, (vw1w2) _, ({.1w2)ji(F,,,)(vw1)
j=1

= CE 1(Fiw2)ji Ek l(F.twl)kj Fvk(v)
= Ek 1(EEm

k=1(µw1AW2)kiFu,,(v),

(w1w2)Fv, (v) _ (v). (6.6.15)
k=1

This equation holds for x = w1w2. Since it holds for x E VT, it also holds
for any x E VT*. Thus to construct it, we need to consider the dependencies
of xFi for i = 1, ..., m and x E VT on IF,,,..., F,,,,, } . Once p. is constructed,
a and Q can be constructed in the following manner.. Since r belongs
to a finitely generated subsemimodule of A[[VT`]], there exist elements

m
,31 i ...,,3,,, E A such that r = 3i F, , where F,,, is now treated as a

s=1
function in ATT. Then
(r, w) = E'/1,6 FF, (w) = Lirt 1 Qi(wFF; (A)) = Ein 1 Qi E', (pw)jiF., (A)

= (A1, ..., F3m)(µw)T (F'v, (A), F*2(A), --., Fv,. (.))T
_ (F,,, (A), Fvz(A), ..., F,,,. (A))(pw)(Ql, ..., m)T

and so

(r, w) = (F., (7), F,,,, (,\), ..., F,,,,. (A))(F.w)(01..... 0.)T.
(6.6.16)
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Considering a = (F, , (Ji), F,,, (A)) and Q )T, (r, w) _
n (µw)3. Here a corresponds to the entries in F,,, ...., F,,,,, for the row in
H(r) labeled by A E VT*. Also iii corresponds to the coefficients of F,,; in
the expansion of Fa in terms of F,,..,..., F,,,,,.

Now a and 8 correspond to the initial and final states, respectively, of
the fuzzy automaton Al. Once a,,6, and y are determined, the desired fuzzy
automaton that recognizes the strings in R+ can be constructed. The fuzzy
automaton

M = (4,{gl,...,gm},F.?1)
can now be defined as

7r = a, r1 = Q, and f (g2, x, gk) = [µ(x)]ki, x E VT.
Thus the steps required to construct the fuzzy automaton that accepts only
the strings in R+(a positive sample set of strings) of a fuzzy language are
as follows:

(1) Construct the fuzzy Hankel matrix H(r).
(2) Identify a complete set of independent columns of H(r).
(3) Obtain the fuzzy vectors a and ,3 and the fuzzy matrices µ(x2),

Vx, E VT.
(4) Construct the fuzzy automaton.
We note that while inferring a grammar from a positive set R+ of samples

of finite length, any column corresponding to a word v, v E VT*, that is
not a factorization of any string w2 E R+ will be identically zero. The same
situation arises in the case of the rows of H(r) corresponding to a word u
that is not a factorization of wi. Thus the Hankel matrix essentially reduces
to the form

H(r) H(r) 0 1
0 0

where the zeros are infinite matrices and H(r) is a submatrix of H(r). In the
case of recursive production of strings with cycles, the inference procedure
deals with a Hankel matrix of the form

H(r) = [Hl (r), H2 (r), 0],
where Hl (r) is a finite submatrix and contains all the relevant information
[5].

The problem of identification of a set of independent columns of H(r)
thus reduces to identifying the set of independent columns of H(r), which
will be henceforth designated as H(r) only.

We now show how a set of independent column vectors can be identified
from the finite fuzzy Hankel matrix.

Previously, we defined the dependence of a column vector h on a set
of generators (hl,..., h,} of the finite fuzzy Hankel matrix H(r). Here we
present an algorithm that checks whether h belongs to the subsemimodule
F generated by this set of generators and also identifies its coefficients 6j.
The j-th element of the vector hk will be denoted by h.1k and the i-th
element of h by hi.
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Given the set of fuzzy column vectors hl,..., hn of dimension m, a set of
row vectors S(i) are formed for i = 1, ..., M.

S(i) = {j I j E {1,...,n} such that hi < hji}.
In the following procedure, in order to identify 6j, j = 1, ..., n, we examine

the dependencies of hi on {h1i, h2i, ..., hni} for i = 1, ..., m.
When hi can be expressed in terms of hki, k = 1, ..., n, the coefficients of

hji will be denoted by bji, i. e.,

n
hi = j]bjihji. (6.6.17)

j=i

Each such equation identifies a range of admissible values of 6ji.
To identify such constraints on bji, note that for k E S(i),
hi > hji implies bki E [0, 11 (no restriction on bki),

and for k E S(i),

hi < hji Ski E [0, hi). (6.6.18)

If now card(S(i)) = 1, say S(i) _ {j},then bji has a single value, i. e.,
bji = hi.

On the other hand, if card(S(i)) > 1, for any i E { 1, ..., m} and j E S(i),
then the maximum value that bji can have is bji Imax= hi. Let 6ji, and bji,,,
denote the minimum and maximum admissible values of 6ji as dictated by
Eq. (6.6.18). Let

6j1 = V {6ji, I i = 1, ..., m} and bju = V {bji,,, i = 1, ..., m). (6.6.19)

If Eq. (6.6.12) is satisfied, then bj must belong to {bj1, bju}.
Let bj E {63 1ibju} and suppose Rj = {i I i E {1,...,m} is such that hi

= bj A hji. We now present the condition of dependence of h on the set of
fuzzy column vectors in the following theorem.

Theorem 6.77 A fuzzy column vector h is dependent on a set {hl, ..., hn}
of fuzzy column vectors if and only if

RlUR2U...URn={1,...,m}. (6.6.20)

Proof. The necessity is obvious. Suppose R1 U R2 U ... U Rn = 11, ..., m}.
Then there is at least one i E {1,.., m) such that hi = (6i A h1i) V ...
V (6n A hni). Since not all Ri are empty, i = 1, ..., n, let Rk1 , .., Rk,. 0,
where ki E {1, ...,n} are such that RkI U ... U Rkn = {1, ...,m}. Then from
the definition of the Ri, we can express the fuzzy vector h as

h=(5 Ahi)V...V(b, Ahn), (6.6.21)

where bj = 0 if j {k1, ...,kn} and Ski = hk for k E Rki.
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Corollary 6.78 A fuzzy column vector h E A' is independent of a set of
fuzzy column vectors {h1i..., hn,} if S(i) = 0 for any i E { 1, ..., m}.

We give the algorithm for checking if a non-null column vector xk in the
subsemimodule F is linearly dependent on a set of fuzzy vectors at the end
of this section.

If a set of column vectors gz, i = 1, ..., n, is given, a complete set of
independent fuzzy vectors ff, i= 1,,;,- -1 1, can be selected such that the
subsemimodule generated by {fl, ..., f,,,} contains the gj's. The procedure
is shown in the form of a flow chart given in [51].

We describe an application of the inference of fuzzy grammar in character
recognition. Each of the 45 classes of Bengali alphabetic characters has
been coded in the form of a string over VT = {a, b, c, d). Linguistic analysis
is carried out for only a small zone of the pattern where the structural
dissimilarity of the training patterns representing different pattern classes
is maximum. For structural analysis these zones are represented by strings
of pattern primitives. All the strings of a particular pattern class are next
associated with a generative grammar that is not known a priori. The
grammar corresponding to each class of patterns is next constructed using
the inference procedure described [51].

It may be noted at this point that the positive sample R+(L(G)) (L(G)
is the language corresponding to a pattern class whose grammar is G) must
be structurally complete with respect to G. Otherwise, if a new string not
hitherto included in R is accepted by the automaton, the set R is enhanced
to include it and the fuzzy Hankel matrix is modified accordingly. The
repetition of this procedure continues until the sample set R+ is complete.

We now consider a positive sample set
R+ = 0.8ab, 0.8aabb, 0.3ab, 0.2bc, 0.9abbc.
The finite submatrix of the fuzzy Hankel matrix H(r) is shown in Table

6.1.
Using the algorithm DEPENDENCE, the independent columns of the

fuzzy Hankel matrix have been indicated as F1, F2, F5, F6 and F7.
The algorithm DEPENDENCE also identifies if any column vector h(j)

is dependent on the set of generators HU (m) _ { f1, ..., &I of the Han-
kel matrix as constructed in Table 6.1. It also identifies the coefficients
b;, using the procedure ARRANG(S(i), N, CARD(i)) and the procedure
COMPARE(SO(K), SO(K - 1)).

Once the independent set of column vectors are extracted, the next step
is to find out the matrices µ(x), x E VT.

In order to determine the matrices M(x), x e V, initially the expression
xF has to be computed for x = a, b, c and i = 1...., 7. The matrices p(a),
Fi(b), and µ(c) are given in Table 6.1.

The ctit's can be computed from the relationship a = (F1(A), .... F
where the vector corresponds to the entries in the set of independent
columns Fl,..., F,,,. for the row in H(r) labeled by A. Thus
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TABLE 6.1 The finite submatrix of the fuzzy Hankel matrix H(r) 2

p(a) =

S1

S2

S3

S4

S5

S6

S7

S1 S2 S3 S4 S5 S6 S7

0 0 0 0 0 0 0
0 0 .3 0 1 0 .8
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 .8 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

S1 S2 S3 S4 S5 S6 S7

S, 0 0 0 0 0 0 0
S2 0 0 0 0 0 0 0
S3 0 0 0 1 0 0 0
S4 0 0 0 0 0 0 0
S5 0 0 1 0 0 0 0
S6 0 0 0 0 0 0 1

S7 1 0 0 0 0 0 0

S1 S2 S3 S4 S5 S6 S7

A

a

ab

abc

be

abb

abbc

as

aab

aabb

S1 0 0 0 0 0 0 0
S2 0 0 0 0 0 0 0
S3 0 0 0 0 0 0 0
S4 1 0 0 0 0 0 0
S5 0 0 0 0 0 0 0
S6 0 0 0 0 0 0 0
S7 0 0 0 0 0 0 0

A ab b abc be c abbc bbc aabb abb bb
r 0 .8 0 .3 .2 0 .9 0 .8 0 0

0 0 .8 0 .3 0 0 .9 0 .8 0
.8 0 0 0 .9 .3 0 0 0 0 0
.3 0 0 0 0 0 0 0 0 0 0
.2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 .9 0 0 0 0 0
.9 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 .8 0 0 0 0 0 0 0 0
.8 0 0 0 0 0 0 0 0 0 0
F, F7 F3 F4 F2 F5 F6
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a=(00.90.20000).
The vector

,Q=(1000000),
because column Fl is an independent column. Once a,,3, and µ(a), p(b),and
ti(c) have been determined, the fuzzy automaton can be constructed by the
method already described. The fuzzy automaton that accepts 1 the strings
is shown in Figure 6.2.

FIGURE 6.2 Inferred fuzzy automata.2

PROCEDURE DEPENDENCE
Step 1. i = 1; Form S(i) such that

S(i)={v3Ihji>hi}.

Find card(S(i)).
Step 2. If card(S(i)) = 0, go to step 12. Else do
Step 3. If card(S(i)) = I and S(i) = { jk },

b,, =b,,,=hiforj=3k.

For any other j # jk, bju = 0, bju = 1, go to step 5. Else do
Step 4. If card(S(i)) > 1,

b;l = 0 and bi, = hi for all j = 3k.

Reprinted from Information Sciences 55, A.K. Ray, B. Chatterjee, and A.K. Majutn-
dar, A Formal Power Series Approach to the Construction of Minimal Fuzzy Automata,
189 207,1991 with pcnnissio n from Elsevier Science
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F o r any other j # jk, b31 = 0, bj = 1.
Step 5. i = i + 1. Repeat the procedure until i = m.
Step 6. j = 1. Find V{bjkt} and A{bjk,}, k = 1.....m. If V{bjkj} >

A{bjku}, 90 to
step 12. Else do

Step 7. Select a bj such that

bjkl Imax< bj < bjku 1-in

and set Rj = 0.
Step 8. Form Rj = Rj U i (i E {1, ..., n} such that hi = bj A hji).
Step 9. j = j + 1. If j < n, go to step 6.
Step 10. Check if Rj covers all i E {1,...,m}. If Rj = {1,....m}, go to

step 11.
Else go to step 12.

Step 11. h is dependent, print the values of bj's.
Step 12. h is independent.

6.7 Nonlinear Systems of Equations of Fuzzy
Singletons

Recall that if S is a set, x E S, and t E [0, 1], then the fuzzy subset xt of
S is called a fuzzy singleton if Vs E S, xt(s) = t if s = x and xt(s) = 0
if s 54 x. A fuzzy subset A of S is said to have the sup property if every
subset of A(S) has a maximal element.

In this section, we examine nonlinear systems of equations of fuzzy sin-
gletons, i. e., each equation is of the form

rr4i 4" a. ((x1)t1)t'...((xn)t.,)i., = Ot,
where E7, 0 r i ...xn E F (x1,...;xn] the polynomiali ... -+
ring in n indeterminates over the field F, and t1, ..., tn, t E (0, 1].

Example 6.32 Consider the polynomial ring R (x, y, z] in indeterminates
x, y, z over R. An example of a nonlinear system of equations of fuzzy
singletons is

(x3)2 - yt = 01/4

(x3)2xu = 01/2,

where x,, yt, and zu are fuzzy singletons.

Definition 6.52 Let R be a commutative ring with identity and let A be a
fuzzy ideal of R. A representation of A as a finite intersection A = Q1 fl...fl
Qm of fuzzy primary ideals of R is called a fuzzy primary representation (or
decomposition) of A. It is called irredundant or reduced if no Q, contains
n Q j and the Qi have distinct radicals.
j=1
j#i
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Theorem 6.79 Let R be a commutative ring with identity. Every fuzzy
ideal A of R such that A(0) = I and A is finite-valued has a fuzzy primary
representation if and only if every ideal of R has a primary representa-
tion.

Corollary 6.80 Suppose that R is a Noetherian ring. Then every fuzzy
ideal A of R such that A(0) = 1 and A is finite-valued has a fuzzy primary
representation.

A commutative ring with identity is called Artinian if every descending
sequence of ideals is finite.

Theorem 6.81 Let R be a commutative ring with identity. Then every
fuzzy ideal of R such that A such that A(O) = 1 has a fuzzy primary repre-
sentation if and only if R is Artinian.

Theorem 6.82 Let R be a commutative ring with identity and let A be a
fuzzy ideal of R. If A has a primary representation, then A has a reduced
primary representation.

Example 6.33 Consider the polynomial ring R = IR [x, y, z] in indetermi-
nates x, y, z over R. Let A be the fuzzy ideal of R generated by (x114 )2 -Y1/4
and (x1/2)221/2 i. e., A =< (x114)2 - Y1/4, (x1/2)221/2 > . Then

A=Q1nQ2nQ3nQ4nQ5
is a reduced fuzzy primary representation of R, where the primary fuzzy
ideals Q2, i = 1, 2, 3, 4, 5, of R are defined as follows: `du E R,

Q1(u) = 1 if u E< x2, y >, Q1(u) = 0 otherwise,
Q2(u) = 1 if u E< x2 - y .z >, Q1(u) = 0 otherwise,
Q3(u) = 1 if u E< x2 >, Q3(u) = 1/4 otherwise,
Q4(u) = 1 if u E< z >, Q4(u) = 1/4 otherwise,
Q5(u) = 1 if u E< 0 >, Q5(u) = 1/2 otherwise.
The radicals of the Q;,, i = 1, 2, 3, 4, 5 are as follows:

Q: = QZ for i = 2,4,5,
and Vu E R,

FQI (u) = 1 if u E< x, y > and FQI (u) = 0 otherwise,

CQ?3 (u ) = 1 if u E (x) and Q3 (u) = 1/4 otherwise.
ow illustrate how the solution to the nonlinear system of equations

of fuzzy singletons
(x3)2 - yt = 01/4

(x3)22, = 01/2

is related to the reduced fuzzy primary representation of A. Clearly the
solution is given by

2{(x,y,z)Iy=x,z=O;x,yER}U{(x,y,z)Ix=0=y;zER} and
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s A t = 1/4 and s A it = 1/2.

Hence t = 1/4 and s A u = 1/2. The radicals Q;, i = 1, 2, display the
crisp part of the solution, namely { (0, 0, z) I z E R} and { (x, x2, 0) I x E R}

respectively, while the radicals FQI , i = 3, 4. 5 display the fuzzy part. This
will be better seen once we have developed the notion of a fuzzy affine variety
of a fuzzy ideal, Definition 6.36.

Definition 6.53 Let X be a fuzzy affine variety. Then X is called irre-
ducible if for all fuzzy affine varieties X' and X" such that X = X' U X"
either X = X' or X = X"; otherwise X is called reducible.

Theorem 6.83 Let X be a fuzzy affine variety. Then k is irreducible and
nonconstant if and only if Im(X) = {0, t}, 0 < t, and X t is irreducible.

Theorem 6.84 Let A be a finite-valued fuzzy ideal of R. Then I (V (A)) is
prime if and only if V (A) is irreducible.

Theorem 6.85 Let A be a finite-valued fuzzy ideal of R with A(0) = 1.
Then I(V(A)) = \11

Theorem 6.86 There exists a one-to-one correspondence between fuzzy
mine varieties X with 0 E Im(X) and fuzzy radical ideals.

Theorem 6.87 Every fuzzy affine variety X with 0 E IM(X) can be
uniquely expressed as the union of a finite number of irreducible algebraic
varieties no one of which is contained in the union of the others.

Example 6.34 Let R = F [x, y, z] , where F is the field of complex num-
bers and x, y, z are algebraically independent indeterminates over F. Define
the fuzzy subset A of R by A(0) = 1, A(f) = 1/2 if f E < x2z > \ < 0 >,
A(f) = 1/4 if f E< x2 + y2 - 1,x22 > \ < x2z >, and A(f) = 0 if
f E R\ < x2+y2 -1, x2z > . Then A is a fuzzy ideal of R. Now v /A is such

that VA(0)=1,V'(f)=1/2if fE<xz>\<0>,VA(f)=1/4if f E
<x2+y2-1,xz>\<xz>,and/4(f)=0iff ER\<x2+y2-1,xz>.
Hence

AO =R,(V )o=R

Al/4 = <x2+y2-1,x22>, (VA)114= <x2+y2-1,xz>
A1/2 = <x2z>, (vi) = <xz>

A'_<0>,(VA)'_<0>
Since F3=V(<0>).
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I c(1/2) if b E V(< 0 >) \ V((xz)),
V(A)(b) = c(1/4) if b c V(< xz >) \ V(< x2 + y2 - 1,xz >),

c(0)=1 ifbEV(<x2+y2-1.xz>).

Define the fuzzy subsets Q(') of R, i = 1, .... 6 as follows:
Q(1)(f) = 1 if f E< x2,y 1 >, Q(1)(f) = 0 otherwise;
Q(2) (f) = 1 if f E< x2, y + 1 >, Q(2) (f) = 0 otherwise;
Q(3) (f) = 1 if f E< x2 + y2 - 1, z >, Q(3) (f) = 0 otherwise;
Q(4) (f) = 1 if f E< x2 >, Q(4) (f) = 1/4 otherwise;
Q(5) (f) = 1 if f E< z >, Q(5) (f) = 1/4 otherwise;
Q(6)(f) = 1 if f E< 0 >, Q(6)(f) = 1/2 otherwise.

s
Then Q(2) is a fuzzy ideal of R, i = 1,-, 6 and A = n Q(2). In fact,

i=1
s

an irredundant fuzzy primary representation of A. Nown
Ii=1

Q(1)(f)=1 if f E<x,y-1>, VQM otherwise;

Q(2) (f) = 1 if f E< X' y + 1 >, Q(2) (f) = 0 otherwise;

Q(3) (f) = 1 if f E< x2 + y2 - 1, z >, Q(3) (f) = 0 otherwise;

Q(4) (f) = 1 if f E (x), JQ(4)(f) = 1/4 otherwise;

Q(5)(f) = 1 if f E< z >, J(f) = 1/4 otherwise;

Q(s) (f) = 1 if f E< 0 >, Q(s) (f) = 1/2 otherwise.

We see that Q() = Q(2) for i E {3,5,6}. Also = n P(2), where
i=1

P(z) = Q(2) is prime fuzzy ideal of R, i = 1, .... 6.V
We have the following fuzzy affine varieties:

V(P(1))(b) = 1 if b E V(< x, y - 1 >), V(P(1))(b) = 0 otherwise;
V(P(2))(b) = 1, if b E V (< x, y + 1 >), V(P(2))(b) = 0 otherwise;
V(P(3))(b) = 1, if b E V(< x2 + y2 - 1, z >), V(P(3))(b) = 0 otherwise;
V(P(4))(b) = c(1/4), if b E V((x)), V(PWJ(b) = 0 otherwise;
V(P(5))(b) = c(1/4), if b E V(< z >), V(P(5))(b) = 0 otherwise;
V(i'(6))(b) = c(1/2), if b E F3.

6

Then V (A) _ U V (P(')) and in fact V (P(')) is irreducible and no V (P(2) )
i=1

is contained in the union of the others, i = 1, ..., 6.
Consider the nonlinear system of equations of fuzzy singletons:
(x3)2 + (yt)2 - 11/4 = 01/4,
(x3)2zu = 01/2.

Then a solution is given by t > 1/4 and s A u = 1/2 and the line x =
0, y = 1; the line x = 0, y = -1; and the circle z = 0,x2 + y2 = 1.
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Note also that < A > =< (x2 + y2 - 1)1/4, (x2z)1/2 > . If we let c(0) =
1,c(1/4) = 1/2,c(1/2) = 1/4, and c(1) = 0, then the above representation
of V(A) seems to better represent the solution of the above nonlinear system
of equations of fuzzy singletons. The V (i3(')) for i = 1,2,3 represent the
crisp part of the solution while the V(P(t)) for i = 4,5,6 yield the fuzzy
part.

In Example 6.34 it was shown how a solution to a system of fuzzy in-
tersection equations could be displayed by a primary representation of the
fuzzy ideal generated by the defining polynomials of the intersection equa-
tions. We now show this holds in general. The proofs of the results are in
[41). If A is a fuzzy ideal of R, we let A. _ {x c R1 A(x) = A(0)}. Then
A. is an ideal of R.

Theorem 6.88 Let A = ((fi)ts..... (fq)t4) U 01 where fi,..., fq E R,
1 > ti _> ... > tq > 0 and t # tq. Suppose that (fi,... , fq) # R. Let
{ti, , ... , ti,,, } = {ti,... , tq } be such that ti, > ... > ti,n. Let

J7tm-u-1 = {fkltk > tirn-u /,

u = 0,1,... , m -1, and let Jrt:,., = If,,.., fq }. Define the fuzzy subsets W,
W1, ... , Wm of R as follows:

1 if r E .Ft;
0 if r V .Ftin,

1 if r E (.Ft,

ti,n-u+I if r r YTtfnn

u=1, ,m-1.
1 ifrE(0)
ti. if r 0 (0)

Then W, Wi,... , W,n are fuzzy ideals of R and A = W n Wi n ... nW,n.

Theorem 6.89 Let A = ((fi)t1, , (fq)t,) U 01 where fl, ... , fq E R,
1 > ti > ... > t4 > 0 and ti # tq. Suppose that (fi, ... , fq) # R. Let W,
Wi, ... , Wm be defined as in Theorem 6.88. Let

and

x1:1,,=Qoin...nQok0

X(w,,). =Qui n...nQk,,
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be fuzzy primary representations of x,v. and respectively, u =

1, ... , m. For each u = 0.1.... , m, define the fuzzy subsets Au1..... Auk
of R as follows: V r E R.

Ao,(r)
1 if rEQoj
0 if rVQoj

j = 1,...,ko.

Au.i (T) =
1 if r E Qua
0 if T V Qu;

j = 1, ... , ku; u = 1, ... , m. Then the following assertions holds:

(i) Au 1, ... Auk are fuzzy ideals of R, u = 0, 1, ... , m.

, 111.(ii) Wu = Aul n ... n Auk , u = 0,1....

(iii) A = (A01n...nAoko)n(A11n ...nA1k,)n...n(A,,,n...nA,nk,,,
is a fuzzy primary fuzzy representation of A.

Let R denote the polynomial ring Fix,,.. -, xn] in n indeterminates over
the field F. Then every ideal of R has a primary representation. Let

k1, k,.,

1: ... ...((x,.)3,.f)i = (ri)t,,j
i,=1 i,.=1

(6.7.1)
denote q nonlinear equations in the fuzzy singletons (x1 ),,, , ... , (xn)y where
sil = si if xi appears in equation j and 1 otherwise, i = 1, ... , n; j = 1, ... , q
and where the (ri,...i,. j )1 and the (rj)t, are fuzzy singletons and the rj and
the are in F. Let

k,, k",
f, = ... ri,...i"7(x1)2j ... (xn)2",j = 1,...,q.

i,=1 i"=1

Then the system of equations (6.7.1) is equivalent to the following two
systems of equations:

fj = rj, j = 1,...,q (6.7.2)

and

LA (6.7.3)

Let A = ((f 1)t, , .... (f4)t9) U 01. It is clear that in (iii) of Theorem 6.89,

A01 n ... n Aoka
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gives, via unions of the corresponding irreducible algebraic fuzzy varieties,
the crisp part, (6.7.2), of the solution to the fuzzy intersection equations,
(6.7.1), while

Al,n...n Alk,)n...n( A,.,n...n A,,,k.,

gives the fuzzy part, (6.7.3).

6.8 Localized Fuzzy Subrings

The notion of algebraic fuzzy varieties was introduced in order to use pri-
mary representation theory of fuzzy ideals to examine the solution of fuzzy
intersection equations. The concepts of quasi-local fuzzy subrings and com-
plete local fuzzy subrings were developed in [27] and [11, 391, respectively,
in order to lay the ground work for the examination of fuzzy intersection
equations locally. In this section, we characterize local rings in terms of
certain fuzzy ideals. We also characterize rings of fractions at a prime ideal
in terms of fuzzy ideals. We apply our results to fuzzy intersection equa-
tions. In particular, we show that the fuzzy ideal which represents a system
of fuzzy intersection equations in a polynomial ring is such that its exten-
sion in a ring of fractions represents the same system of fuzzy intersection
equations.

Throughout this section R denotes a commutative ring with identity. Let
A# = {x E RIA(x) > A(1)}. If A is a fuzzy ideal of R, then A# is an ideal
of R. Let S be a set of fuzzy singletons of R such that if xt, x8 E S, then_
t = s > 0. Let foot(S) = { x l xt E S1. If A is a fuzzy ideal of R such that A
= (S) U OA(o) for some S, then S is called a generating set for A. If S is a

generating set for A, and (S\{xt}) U OA(o) C A Vxt E S, then S is called

a minimal generating set for A. If S is a subset R, we let (S) denote the
ideal of R generated by S.

A commutative ring with identity, but not necessarily Noetherian, is said
to be local if it has a unique maximal ideal. (Such a ring is called quasi-local
in [271). In [27] the definition of a quasi-local fuzzy subringof R was given
when R was assumed to be local. That is, a fuzzy subring A of a local ring
R was called quasi-local if A(x) = A(x-1) for all units x of R. If A is a
fuzzy ideal of R, then A(x) = A(1) for all units x of R. Hence if R is a local
ring and A is a fuzzy ideal of R, then A is a quasi-local fuzzy subring of R.
We also know that if A is a fuzzy ideal of R, then A(y) > A(1) Vy E R. If
A is a nonconstant fuzzy ideal of R, then A(0) > A(1).

Definition 6.54 A fuzzy ideal A of R is called local if Vx E R, A(x)
A(1) is equivalent to x being a unit in R.
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Note that if A is a fuzzy ideal of R which is local, then µ is not constant
since 0 is not a unit of R. Let R denote the polynomial ring F[x] over the
field F. Define the fuzzy subring A of R by A(z) = 1 if z = 0. A(z) = a
if z e F\{0}, and A(z) = a if z E R\F. Then A is a fuzzy subring of R.
Also, A(z) = A(1) if and only if z is a unit. However A is not a fuzzy ideal
of R. We also note that R is not a local ring.

Lemma 6.90 Let A be a nonconstant fuzzy ideal of R. Then A is local if
and only if A# is the unique maximal ideal of R.

Recall that a fuzzy ideal A of R is a generalized maximal fuzzy ideal if
A_ is not constant and for any fuzzy ideal B of R, if A C B, then either
A* = B. or b = 1R. Then afuzzy ideal A of R is maximal if and only if
jIm(A) I = 2, _A(0) = 1, and A. is a maximal ideal of R.

Let A and C be fuzzy ideals of R. Then A and C are said to be equivalent
if

{AtIt E Im(A)} = {CtIt E Im(C)}.

Theorem 6.91 The following conditions are equivalent:

(i) R is local;

(ii) R has a fuzzy ideal which is local;

(iii) all generalized maximal fuzzy ideals of R are local;

(iv) all generalized maximal fuzzy ideals of R are equivalent.

If R is Artinian, _we say that a fuzzy ideal A of R is of maximal chain if
the level ideals of A form a composition series.

Theorem 6.92 Let R be Artinian. Then R is local if and only if every
fuzzy ideal of R of maximal chain is local.

A fuzzy ideal A of R is called normalized if A(O) = 1.

Theorem 6.93 R is a field if and only if the set of all normalized L-ideals
of R which are local coincides with the set of all generalized maximal fuzzy
ideals of R.

Throughout the remainder of the section, S denotes a closed multiplica-
tive system in R such that 0 V S and which is saturated, i.e., Vx, y E R, xy E
S implies x, y E S, [6]. Let RS-1 denote the corresponding ring of fractions.
Then RS-1 = {0(r)/O(w) I r E R, w E S}, where 0 is a homomorphism
of R into RS-1 such that Ker Qi = {x E RI xw = 0 for some w in S} and
the elements of 5(S) are units in RS-1, [61, p. 222]. If I is an ideal of R,
we use the notation IS-1 for the ideal of RS-1 generated by 4)(I).
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Definition 6.55 Assume A and A' are fuzzy ideals of R and RS-', re-
spectively. _Then A' is called the L-subring of A in RS-' if Im(A) = Im(A')
and At = AtS`' Vt Elm(A).

In the following example, we show that not every fuzzy ideal of R has a
localized fuzzy subring in RS-'.

We say that the ring of fractions RS-' is a localized ring of R at a prime
ideal, if there exists a prime ideal P of R such that S = cP, the complement
of P in R.

Theorem 6.94 The ring of fractions RS-' is a localized ring of R at a
prime ideal of R if and only if there exists a fuzzy ideal A of R which has
a localized fuzzy subring A' in RS-1 and S D R\A#. In such a case, A#
is a prime ideal of R and RS-' is a localized ring of R at A#.

Let S be a set of fuzzy singletons. Define the fuzzy subset CS of R by
Vx E R,

CS(x) = V{t I xt E S}.

If r E R and xt is a fuzzy singleton, we let rxt denote the fuzzy singleton
(rx)t.

Theorem 6.95 Let S be a set of fuzzy singletons of R. Let C be the fuzzy
subset of R defined by Vx E R,

_ k

C(x)=V{(Eri(xi)t,)(x) IriER,xt, ES,i=1,...,k;kENJ.
i=1

Then C = (S) , where (S) = (c5)..

Lemma 6.96 Suppose that A is a fuzzy ideal of R such that has the
sup property. Let S = UtE(o,11St,where Sa C {xt I x E R, A(x) = t} if t E
Im(A) and St = 0 if t E [0,11\Im(A). Then A = (S) U OA(o) if and only if

At = (foot( us>tS8)) Vt E Im(A).

Proposition 6.97 Suppose A is a fuzzy ideal of R such that A has the sup
property. Let

S = UtE10,11St,

where St C { xt ! x E R, A(x) = t} if t EIm(A) and St = 0 if t E
[0,11\Im(A). If foot(U8>t(S.,) is a minimal generating set for At Vt E
Im(A), then S is a minimal generating set for A.



6.8 Localized Fuzzy Subrings 275

Definition 6.56 Let S denote a set of fuzzy singletons such that if xt and
xs E S, then t = s > 0. Let be a fuzzy ideal of It Then S is called an
S-minimal generating set for A if A = (S) U O9(o) and Vx Efoot(S), there
does not exist w E S such that sw E (foot(S)\{x}).

Proposition 6.98 Let S denote a set of fuzzy singletons such that-if Xt
and xs E S, then t = s > 0. Let A be a fuzzy ideal of R such that A has
the sup property. If S is an _S-minimal generating set for A, then S is a
minimal generating set for A.

If xt is a fuzzy singleton of R, then gi(xt) = O(x)t. Let A and A' be
fuzzy ideals of R and RS-1, respectively, such that A' is a localized fuzzy
subring of A in RS-1. If S is a set of fuzzy singletons which generate A,
then { 5(x)t I xt E S} generates A' and we say that A and A' have the
same set of generators and we write q(S) for {¢(x)t I xt E S}.

Theorem 6.99 Let C, C' be fuzzy ideals of R. RS-1, respectively, such
that C has the sup property. If C has an S-minimal generating set and C'
is a localized fuzzy subring of C in RS` 1, then C and C' have the same
minimal generating sets and Im(C) =_Im(C'). Conversely, if RS-1 is a
localized ring at a prime ideal of_R, C and C' have the same minimal
generating sets and Im(C) = Im(C'), then C' is a localized fuzzy subring
of 15 in RS-1. 0

We now apply our results in the following example.

Example 6.35 Let R denote the polynomial ring R[x, y, z] in the alge-
braically independent indeterminates x, y, z over the field of R of real num-
bers. Then the ideal (x2 - y, x2z) represents the nonlinear system of equa-
tions

x2-y = 0
x2 z = 0

and has the reduced primary representation

(x2 - y, x2z) = (x2
- y, z) n (x2, y) .

Hence
(x2 - y

2 -, x2z) = (x y, z) n (x, y)

and the prime ideals (x2 - y, z) and (x, y) display the solution of the nonlin-
ear system of equations via their corresponding irreducible affine varieties.

Now consider the following nonlinear system of fuzzy intersection equa-
tions

(xs)2 - yi = O
(xs)2z,, = O.
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Then this system is represented by the fuzzy ideal p = ((x2 - y) . (x2z) i )
and S = { (x2 - y) i , (x2z), } is a minimal generating set for p. In order to
examine the system locally we consider either of the prime ideals (x2 - y, z)
and (x. y) , say, P = (x, y) , and we form the quotient ring Rp. Then in
Rp, the extended ideal [61] of (.c2 - y, z) is

(x2
- y,x2z)e = (x2.y)e

Hence the corresponding nonlinear system of fuzzy intersection equations
is

yt = O
(xs)2 = 0j.

This system is represented by the fuzzy ideal B = (yi, (x2) 4) in R. Now

S = {yi,(x2) .} is a minimal generating set for B. By Theorem 6.99, we
4 2

have that S is a minimal generating set for the fuzzy localized subring B'
of b in Rp. Hence B' represents the same system of fuzzy intersection
equations as b does.

If we consider the prime ideal N = (x2 - y, z) , then in RN

(x2 - y,x2z)e = (x2 - y,z)e.

Hence the corresponding nonlinear system of fuzzy intersection equations
is

(xb)2 - ya = 01
4

zu = 01.

This system is represented by the fuzzy ideal C = ((x2 - y)4,Z ) in R.

We have that { (x2 - y) , z } is a minimal generating set for C and also
for the fuzzy localized subring C' of C in RN.

6.9 Local Examination of Fuzzy Intersection
Equations

In this section, R denotes a commutative ring with identity. The notion of
algebraic fuzzy varieties was introduced in order to use primary represen-
tation theory of fuzzy ideals to examine the solution of fuzzy intersection
equations. Local concepts of subrings were developed in order to lay the
ground work for the examination of fuzzy intersection equations locally. In
this section, we carry out a local examination of fuzzy intersection equa-
tions. We show that a system of fuzzy intersection equations can be exam-
ined locally to obtain the general solution to the crisp part of the system.
The details can be found in [2].
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Let M be a multiplicative system in R [61, p. 46]. Let N = {x E R I
mx = 0 for some rn E MI. Then N is an ideal of R. If N = 101. their M is
said to be regular. Let h be the natural homomorphism of R onto R/N C_
R,u, the quotient ring of R with respect to M. If I is an ideal of R. then
the ideal in R,4A generated by h(I) is called the extended ideal of I in RM
and is denoted by h(I)e. If J is an ideal of RM, then h-1(J) is called the
contracted ideal of J in R.

Let A be a fuzzy ideal of R. Define the fuzzy subset h(A)e of RM by
Vy E RM. h(A)e(y) = v{t E [0, 1] 1 y E (h(A))t }. Then h(A)e is a fuzzy
ideal of R,M.Let tE[0,11.Now yeh(A)te*h(A)(y)>tr*V{A(r)k
h(x)=y}>tG3xEAtsuch that h(x)=p pEh(AL).where

becomes "GW" if A has the sup property. Hence if A has the sup property,
then h(A)t = h(At) and so (h(A))' = h(At)M. We use the notation Ae
for h(A)e at times. If I is an ideal of R, we sometimes use the notation
Ie for h(I)e. If b is a fuzzy ideal of RM, then we use the notation Bc for
h-1 (B) at times. If J is an ideal of RM, we sometimes use the notation JC
for h-1(J).

Suppose that A has the sup property. Then (Ae)(y) = t t* h(A)e(y) _
t V{shy E h(A)Ml = h(AS)M} = t t-* t is maximal in [0,1] such that
y E h(A)t = h(At)M = h(At)e (since A has the sup property) _ (At)e
Hence (AC)t = (At)e Vt E 10, 1].

Theorem 6.100 Let B be a primary fuzzy ideal of RM. Then B°(/ )`.
Theorem 6.101 Let A be a primary fuzzy ideal of R such that A. is dis-
joint from M.

(1) Then A = All and V Al = (%)ec
(2) Then Ae is primary and Ae =

Lemma 6.102 Let A and b be fuzzy ideals of RM. Then (A n B)C =
Ac nBC.

Theorem 6.103 Let Abe a fuzzy ideal of R such that A has a reduced
primary representation A = nn 1Ai. Suppose that for 1 < i < k. (A1). n
M =0 and that fork + 1 < i < n, (Ai)* n M 540. Then Ae = nk 1Aie is

a reduced primary representation. Furthermore, AeC = nk 1 Ai.

Example 6.36 Let R denote the polynomial ring IR[x, y, z) in algebraically
independent indeterminates x, y, z over the field R of real numbers. Then
the ideal (x2 - y, x2z) has the reduced primary representation

(x2 - y x2z) = (.r2 - y. z) n (x2, y)
.
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We also have
(x2 - y x2z) = (x2 - y, z) n (x, y).

Now consider the nonlinear system of fuzzy singletons

(xs)2 - yt = 0;
(xs)2zu = 0z

The solution to system (6.9.1) is

{(0, 0, r) I r E R} U {(s, s2, 0)Is E R},

(6.9.1)

t = 4, s A u = 2. Let A denote the fuzzy ideal ((x2 - y): , (x2z) 2) U Ol.
Then

1 ifr=0
1 if r E x( 2z)\{0}

A(r)
4 if r E x2 - y, x2z) \ (x2z)
0 if r E R\ (x2 - y, x2z) .

Define the fuzzy subset Qi of R, i = 1, ... , 5, as in Example 6.3.3._ Recall
that Qi is a primary fuzzy ideal of R, i = 1, ... , 5 and A = n5.1Qi is a
reduced primary representation of A.

As before, we see that the crisp part of the solution to system (6.9.1)

is displayed by rQj n Q2 while the fuzzy part is displayed by rQ3 n

Q4 n Q5. (In order to see this more clearly, one should consider the

irreducible fuzzy algebraic varieties corresponding to the A. Then one
would be concerned with c(4) = 2 rather than 4 and c(2) = .1 rather than
1

2 )
Consider the quotient ring Rp, where P is the prime ideal (x, y) . Since

P n cP = 0, we have in Rp that (x2 - Y I X2z)e = (x2, y)e by [61, Theorem
17, p.2251. Now

Q1, n cP = (x2, y) n cP = 0.

Q3.ncP=(x2)ncP=O.

Q5.ncP=(0)ncP=O,

while

Q2.ncP=(x2-y,z)ncP0 0.

Q4.ncP=(z)ncP0 0.
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Thus by Theorem 6.103, we have in Rp that Ae = Q1 e n Q3e n Q5e and so

0 if r E Rp\ (x2. y)
e

Ae{r) = 4
if rE (x2'

y)e
\

(x2)e

2 ifrE (x2) \{0}
1 if rE {0}.

Hence by Theorem 6.103,

0 if r E R\ (x2, y)

Aec(r) = Qi n Q3 n Q5(r) =
1 if r E x2) {0}

x2)

1 if rE {0}.

Consider the nonlinear system of fuzzy singletons

(xa)2 = 0.L.
(6.9.2)

1

Then { (0, 0, r) I r E IR}, t = 4, s = i is the solution to this system. It is
represented by the fuzzy ideal B = ({x. )2, y4) uo1. Now B = Q1 nQ3 nQ5

is a reduced primary representation of B. FQ1 displays the crisp part of

the solution while FQ3 n FQ5 displays the fuzzy part. Now consider the
prime ideal N = (x2 - y, z) . Since N n cN = 0, we have in RN that
(x2 - Y I X2z)e = (x2 ._ y, Z)1. NOW

Q2* n cN = (x2 - y, x2z) n cN = 0,

Q4*ncN = (z) ncN = 0,

Q5*ncN = (0) n cN = 0,

while

Q1* ncN = (x2, y) ncN # 0,

Q3*ncN=(x2)ncN#O.

Thus by Theorem 6.103, we have in RN that Ae = Q2e n Q4e n Q5e and so

0 ifrERN\(x2-y,z)e
-1 if r E (X2 - y,A(r)
2 if rE (z)e \{0}z)e \

(z)e

I if rE {0}.
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Hence by Theorem 6.103,

A`(r) = Q2 n Q4 n Q5(r) _

0 2f r E R\ (x2 - y, z)

2 if r E ) {0}
z (z}

1 if r E {0}.

Consider the nonlinear system of fuzzy singletons

(Ts)2 - ye = 0; (6.9.3)
zu = 0.

Then { (w, w2.0)ls E R}, sAt = 4, and u = 2 is the solution to this system.

The system is represented by the fuzzy ideal C = ((x2 y) .L , z, ) U01. Now
1 z

C = Q2nQ4 nµQ5 is rreduced primary representation of C. FQ2 displays

the crisp part of the solution while Q4 (1 Q5 displays the fuzzy part.
We have examined the system (6.9.1) locally. From the two examinations,

we obtain for the crisp part of the solution { (0, 0, r) I r E ]R} for (6.9.2)
and { (w, w2, 0) 1 w E R} for (6.9.3). The union of these two gives us the
crisp part of the solution to system (6.9.1). However the fuzzy solutions to
(6.9.2) and (6.9.3) are t = a, s = 2 and t A s = 4'-, u = .1 , respectively.
The fuzzy part of the solution to (6.9.1) is t = 4 and s A u = 2. The two
"local" fuzzy solutions do not seem to give us the fuzzy part of the solution
to (6.9.1), at least not immediately.

Consider all possible A's of the two fuzzy solutions above

1 1tAsAt=4A4
1 1tAu=4 A

1 1sAsAt=2A
1 1sAu= A22 .

These equations reduce to

Hence t= 1 and sAu=

1sAu= 2

2 which is the solution to the original problem.
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It is an open problem to determine a general procedure to find the solu-
tion to the fuzzy part of the original problem from the local solutions.

An algorithm for solving fuzzy systems of intersection equations is given
in [46] and an application to fuzzy graph theory is given in [47]. For a study
if L-intersection equations for L a complete distributive lattice, the reader
is referred to [22].

The interested reader can consult [38, 40, 41, 461 for more results along
these lines.

6.10 More on Coding Theory

In this section, we let F denote the field of integers modulo 2. We define a
fuzzy code as a fuzzy subset of Fn, where Fn = { (a1, ..., an) I a; E F, i =
1, ..., n} and n is a fixed arbitrary positive integer. We recall that Fn is a
vector space over F. We give an analysis of the Hamming distance between
two fuzzy codewords and the error-correcting capability of a code in terms
of its corresponding fuzzy code. We assume that the channel is a binary
symmetric channel so that an error in any one location is equally likely as
an error in another. The results appearing in the first part of this section
are from [17].

Definition 6.57 Vu = (ul, ../., un) E Fn, define the fuzzy subset Au of F"
by \Iv = (vi, ..., vn) E Fn, Au(v) = pn-dqd, where d = E 1 [ ui - v, [ and
p and q are fixed positive real numbers such that p + q = 1.

Define (b: Fn ---, An = {Au I u E FnI by 4t(u) = Au VU E Fn. Then $
is a one-to-one function of Fn onto An.

Definition 6.58 If C C Fn, then 4i(C) is called a fuzzy code correspond-
ing to the code C. If c E C, then A. is called a fuzzy codeword.

We consider an example. Let n = 3 and C = { (0, 0, 0), (1,1,1) 1. If (0, 0, 0)
is transmitted and (0, 1, 0) is received, then assuming q < 1/2, there is a
greater likelihood that (0,0,0) was transmitted than (1, 1. 1) (since we are
assuming burst errors do not occur).

Let u E Fn and vn E Fn. Then Ea
1 Iui --- v,,l is the number of coordi-

nate positions in which u and v differ. The number of errors required to
transform u into v equals this number. We let d(u, v) denote F

1
jui - vi[.

d(u, v) is called the Hamming distance of u, v.

Definition 6.59 Let C C_ Fn be a code. The minimum distance of C is
defined to be d nin(C) = A{d(a, b) [ a, b E C, a 0 b}.

If C is a subspace of Fn, then dmin(C) = A{d(a, 0) I a E C, a # 0},
where 0 = (0. ..., 0). Now d(a. 0) is the number of nonzero entries in a and
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is called the weight of a and often is denoted by jal. When a code C is a
subspace of Fn, we called it a linear code.

Let [[ ]] denote the greater integer function on the real numbers. For
any code C C Fn,

Ec = [[(dmin(C) - 1)/2]]
is the maximum number of errors allowed in the channel for each n bits
transmitted for which received signals may be correctly decoded. One of
the most important problems in coding theory is to define codes whose
codewords are `far apart' from each other as possible or whose value EC is
maximized. It is also desirable to decode uniquely. For example, let n = 3
and C = {(0, 0, 0), (1, 0,1)}. Then d,,,in(C) = 2. Suppose that a codeword
is transmitted across the channel and (0, 0, 1) is received. Then (0, 0, 1) is of
distance 1 from both the codewords (0, 0, 0) and (1, 0, 1). Hence (0, 0. 1) can-
not be decoded uniquely. Thus in order to always be able to correct a single
error, we must have dmin(C) at least equal to 3. If C = 1 (0,0,0), (1,1,1)},
then (0, 0,1) is decoded as (0, 0, 0) since it is closer to (0, 0, 0) than it is to
(1,1,1).

We now examine fuzzy codes. For any code C C Fn, we have seen that
there is a corresponding fuzzy code (C). If u E Fn is a received word
and c is a codeword, i. e., c E C, then A, (u) is the probability that c was
transmitted. Fuzzy subsets appear to be a natural setting for the study of
codes in that probability of error in the channel is included in the definition
of the (fuzzy) code. In the following, we assume that p # q.

Definition 6.60 Let C C_ Fn be a code. Define b : Fn -* {A I A is a fuzzy
subset of Fn} by'du E Fn, 0(u) _ {A, c E C,

A code for which IB(u)I = 1 `du E Fn is uniquely decodable. In such a
case, u is decoded as --1(9(u)).

As mentioned previously, an important criteria in designing good codes is
spacing the codewords as far apart from each other as possible. The Ham-
ming distance is the metric used in Fn to measure distance. Analogously,
the generalized Hamming distance between fuzzy subsets may be used as
a metric in An. It is defined by VAu, A E An,

d(A., EWE F.. IA. (w) - A.(w)I
The theorem which follows shows that d(AU, A,,) is independent of n.

Theorem 6.104 Let u, V E Fn be such that d(u, v) = d. If p # q and
p # 0, 1, then d(A,, Ed, where

Ed = Edo (i lpigd-i - pd-iqiI.

Lemma 6.105 If p # q and p # 0,1, then EO < E1 = E2 < E3 =
E4<E5=.... 0

Lemma 6.106 Let p 0 q and p :A 0, 1. If d(a. b) < d(u, v), then d(Aa, Ab) <
d(A,, A).
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For a fuzzy code 4(C), we define its minimum distance by

(4 (C)) = A {d(AC,Ab) I A,, Ab E 4,(c), Ac Ab}

Theorem 6.107 Let Cl and C2 be two codes used in the same channel.
If p # q and p # 0, 1, then Ec, = Ec2 if and only if d,nin('(Ci)) _

Proof. Let di = d,nin(I(Ci)) for i = 1, 2. If Ec, = Ec2, then either d2 = d2
in which case the desired result holds or d2 = dl + 1, where dl is an odd
positive integer. From Lemma 6.105, we have d,nin(,1'(Cl)) = dmin(4'(C2))

Conversely, if d,nin(4(Ci)) = d,nin(-W2)), then it follows from Lemma
6.105 that either dl = d2 and so EC, = EC, or d1 = d2 ± 1, where dl A d2
is odd and so Ec, = Ec2.

Let M be a subset of R. Let C C Fn be a code. Suppose c E C is
transmitted across the channel and that u E F" is received. The signals
that are transmitted are usually distorted by varying degrees. The electrical
receiver may record the signals in one of two ways. The electrical waves
representing the received word u is measured bit by bit as real numbers.
The signals then are either recorded as n-tuples over M or each bit of u
is transformed into an element of F. u is then decoded in F' for some
positive integer m < n. For example, suppose that (1, 0, 1) is encoded as
c = (1, 0, 1, 0) and transmitted electronically across the channel. Suppose
the received waves are measured as it = (1.02,0.52,0.98,0.02) and recorded
as v = (1,1,1,0). Then some information is lost in recording u as v. Some
possible directions for further study to overcome this loss are suggested in
[15]. For example, let x E F' and define the fuzzy subset A,, of M" by
Vy E Mn,

A. (y) = p(x,y),
where p(x, y) is the probability that if x is encoded and transmitted across
the channel, y is received. Then soft decoding may be studied via IA.,
xEFtm).

We have assumed that errors in the transmission of words across a noisy
channel were symmetric in nature, i. e., that the probability of 1 -+ 0
and 0 -+ 1 crossover failures were equally likely. However errors in VSLI
circuits and many computer memories are on a unidirectional nature, [8]. A
unidirectional error model assumes that both 1 -+ 0 and 0 -+ 1 crossovers
can occur, but only one type of error occurs in a particular data word.
This has provided the basis for a new direction in coding theory and fault
tolerance computing.

Also, the failure in the memory cells of some of the LSI single transistor-
cell memories and NMOS memories are most likely caused by leakage of
charge. If we represent the presence of charge in a cell by 1 and the absence
of charge by 0, then the errors in those type of memories can be modeled
as 1 0 type asymmetric errors, [8].
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The results in the remainder of this section are from [15]. Once again
F denotes the field of integers modulo 2 and F" the vector space of n-
tuples over F. We let p denote the probability that there is no error in
transmission, i. e., a transmitted 1 will be received as a 1 and a transmitted
0 will be received as a 0. Let q = 1 - p. Then q is the probability that there
is an error in transmission in an arbitrary bit.

In the following definition, we define a fuzzy word for a unidirectional
error model.

Definition 6.61 Let it = (ul, ..., u") E F". Define the fuzzy subset A,,, of
F" as follows: Vv = (vl,.,v") E F",

A. (v)0 if kjAk2#0,
I pm-dqd otherwise,

where

kl -E10V(ui-vi), k2=E 10V(vi-ui),

d=1 k1 ifk2=0.
l k2 if k1 = 0,

E 1 ui if k2 = 0,
nm= /n-Ei=1ui ifkl =0,

(E 1ui)V(n-Eti 1ui) ifkl=k2=0

In Definition 6.61, Au(v) is zero if both one and zero transitions have
occurred. It allows either, by themselves, to occur in a given received word.
In the case that a received word is the same as that transmitted, one may
choose either the one's or the zero's as possibly toggling. In our definition,
we choose whichever there are more of. For example, if there are more
ones, the definition would expect 1 -> 0 transitions only. Hence in equals
the number of 1's and d = 0. In any event, we only allow m to take the value
of the number of bits which can transition in calculating our membership
function. The bits that cannot change are not considered in the function.

In the following definition, we define a fuzzy word for an asymmetric
error model in which only 1-errors may occur.

Definition 6.62 Let u = (ul,..., u,,) E F". Define the fuzzy subset Au of
F" as follows: Vv = (vl, ..., v") E F",

Au(v) - J 0 if dh > d,
l pm-dqd otherwise,

where
1Iui-vil, andm=E' 1ili.
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In Definition 6.62 only 1's are considered in the membership function
calculation. They are the only bits that may transition under this asym-
metric model. If both 1's and 0's transition, the membership is zero since
this is not allowable by definition of asymmetric errors.

Let A" = { Au I u E Fn}. Define' : F" A" by 1Y(u) = A for all
u E F'. Then 'I' is a one-to-one function of F" onto A'. Let C C F" be a
code. Then %P(C) is called a fuzzy code. If c e C, then A, is called a fuzzy
codeword.

Previously in this section, the Hamming distance dH(u, v) I ui -
vZI of u, v E F" was given as was the generalized Hamming distance between
fuzzy subsets of An. It is defined by VAu, A,,, E An,

d(AI, A") = E EF° IAU(w) - A,, (w)I
Since in this section we are using the asymmetric model, the asymmetric

distance metric [8] may also provide a useful comparison in F".

Definition 8.63 Define the function de, : F" x F" -' JR by Vu, v E F",

da(u, v) = N(u, v) V N(v, u),

where N : F" x F" - lR is such that N(u, v) = E 10 V (u; - v;), u =
(u1, ..., un), and v = (v1, ..., vn). Then da is called the asymmetric distance
metric.

It was previously noted that the generalized Hamming distance for sym-
metric errors was independent of n. We now show that a similar result
holds for asymmetric errors, but not for unidirectional errors.

The next example shows that for unidirectional errors d(Au, depends
not only on d(u, v), but on n as well.

Example 6.37 Let n = 2. Let u = (0, 0) and v = (1, 1). Then
d(AI,A.) = Ip2q°-p°q2I +Ip'q'-p'q'I +Ip'gl-p1g1I+Ip°q2 -p2q°I
= 2(p - q)

and
dH (u, V) = 2.

Now let n = 3, w = (1,1,1), and x = (0, 0,1) in F3. Then
d(Au,AV) = Ip°q3-p°q'I +Ip'g2-p2q°I +Ip'g2-0I +Ip2q' -p'q'I+

Ip'q2-0I+Ip2q'-p'q'I+Ip2q'-0I+Ip3q°-p°g2I
=q-g2-g3+p3+p2+2pq+pq2+pq2-p2q jl- 2(p-q)

and
dH (w, x) = 2.
We have the same Hamming distance between u, v and w, x, respectively,

but different distances between the corresponding fuzzy codewords.

We now state a result which says that the distance between fuzzy code-
words is independent of n for ideal symmetric errors. The result holds when
the Hamming distance or the asymmetric distance is used as the distance
metric between two codewords.
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71-Theorem 6.108 Let u, v E F" and set da(u, v) = da. If p q and 0
p 36 1, then dh(Au. A,) = rdn, where rda = 2 - 2qd° .

Lemma 6.109 rl<r2<...<r,, <2.

If instead of using the Hamming distance to measure the distance be-
tween two fuzzy codewords, we used the asymmetric distance, so that

Da(Au, Av) = (I.EFn (Au(w) - Av(w)) V (EWEFn (Au(w) - Au(w))),
then the following theorem holds.

Theorem 6.110 Let u, v E Fn and set da (u, V) = da. If p # q and 0 #
P $ 1, then Da(Au, Av) = fides, where fide = 1 - ddu.

Lemma 6.111 fil <fi2 <...<fin<1.

As the asymmetric distance between codewords on which fuzzy codes will
be based becomes large, there is only a small increase in the measurable
distance between codewords. For unidirectional errors, the case is that the
space of the code will affect the distance between the fuzzy code words.
These issues must be taken into account in designing fuzzy codes.

6.11 Other Applications

We now mention some other ways fuzzy abstract algebra has been applied.
The paper (35] deals with the classification of knowledges when they are
endowed with some fuzzy algebraic structure. By using the quotient group
of symmetric knowledges, an algebraic method is given in [35] to classify
them. Also the (anti) fuzzy subgroup construction is used to classify knowl-
edges.

In the paper [20], fuzzy points are regarded as data and fuzzy objects
are constructed from the set of given data on an arbitrary group. Using the
method of least squares, optimal fuzzy subgroups are defined for the set of
data and it is shown that one of them is obtained as a fuzzy subgroup by
a set of some modified data.

In [55], a decomposition of an L-valued set (L a lattice) gives a family
of characteristic functions which can be considered as a binary block-code.
Conditions are given under which an arbitrary block-code corresponds to
an L-valued fuzzy set. An explicit description of the Hamming distance, as
well as of any code distance is also given, all in lattice-theoretic terms. A
necessary and sufficient condition is given for a linear code to correspond
to an L-valued fuzzy set. In such a case, the lattice has to be Boolean.
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Noetherian, 227
nonseparable, 26
nonstrict local maximum, 159
norm, 77
normal, 89
normalized, 273
normalized degree of adjacency,

174
norined linear space, 78
number of components, 126

one-to-one, 2
onto, 2
open cover, 70, 84
open neighborhood, 68
open sets, 67
open sphere, 75
open subcover

open subcover, 70
order, 224
ordinary, 140
orthoconvex, 155
outer border, 167

p-Blaschke, 101
partial fuzzy graph

connected, 23
partial fuzzy subgraph, 21

strong, 50
partial order, 2
partially ordered, 2
partition, 1, 138
pass, 204
path, 22, 116
pattern, 244

recognizable, 244
perimeter, 138, 152, 165, 167
piecewise constant, 139
plateau, 118
polynomials, 253
positive definite, 207
pre-image, 82
prefix, 248
primary, 236

primary ideal, 228, 229, 236
primary representation, 229

reduced, 229
redundant, 229

prime fuzzy ideal, 235
associated, 236

prime ideal, 228
probability space, 241
productive, 18
pseudometric, 74
pure, 251

quasi-inverse, 254
quasi-regular, 254

radical, 228
rationally closed, 254
recognizable, 244
rectifiable, 138
reduced, 229, 266
reducible, 268
redundant, 229
reflexive, 2, 11, 18
region, 167
regular, 131, 132
relation, 1
relative, 68
representation, 253
ring, 224

commutative, 224
generated, 226
ideal

associated prime, 229
primary, 228, 229
prime, 228

saturated, 273
scrambled set, 96
segmentation, 138
self-tiling, 90
semigroup, 220

free, 221
generated

free, 221
homomorphism, 221
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isomorphic, 221
isomorphism, 221

semiring, 252
separable, 155
separated, 71
separates, 116, 123
side lengths, 165
sides, 206
o-algebra, 241
simply-connected, 116, 122
slicing, 36

cut, 36
minimal, 36
narrow, 36

smooth, 139
spans, 22
sphere, 75
stable, 257
starshaped, 99
states, 239
strength, 23, 116
strong, 50
strong ordering, 192
strongly e-connected, 30
submonoid, 220

base, 247
free, 239
generated, 220
weakly unitary, 248

subring, 224
subsemigroup, 220

generated, 220
subsemimodule, 253

generated, 253
subsequence, 81
sufficient subset, 158
suffix, 248
sup projection, 128
sup property, 266
V-semilattice, 250

complete, 250
support, 3, 253
surround, 167
surrounds, 116, 123
symmetric, 2, 11, 207

symmetric group, 222
symmetric property, 74

t-cuts, 3
T-open sets, 67
r-degree component, 33
,r-degree connected, 33
r-edge component, 33
r-edge connected, 33
r-vertex component, 38
top, 119, 134
topological space, 67
topology, 67

base, 68
closed set, 69
closure, 69
closure point, 69
compact, 70
connected, 71
continuous, 73
continuous relative, 73
contractivity factor, 86
converge, 73
cover, 70
dense, 69
derived point, 68
derived set, 68
disconnected, 71
disconnection, 71
discrete, 68
generate, 68
homeomorphic, 73
homeomorphism, 73
indiscrete, 68
interior, 70
limit, 73
limit point, 68
locally compact, 72
metric, 75
neighborhood, 72
neighborhood system, 72
open cover, 70
open neighborhood, 68
open sets, 67
open subcover, 70
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relative, 68
separated, 71
T-open sets, 67
topological space, 67
usual, 68

transitive, 2, 12
tree, 27
triangle inequality, 207
triangle property, 74
triangular fuzzy number, 190
triangular-shaped, 199
trivial, 75, 246

uncountable, 2
uniformly bounded, 79
uniformly support bounded, 101
union, 49
unitary, 248

left, 248
right, 248

units, 246
upper semicontinuity, 79
usual, 68

vertex angles, 165
vertices, 206
very pure, 251

walk, 22
weak ordering, 192
weakly reflexive, 16
weakly unitary, 248
weight, 33, 38, 282
width, 147
words, 247



Studies in Fuzziness and Soft Computing

The series "Studies in Fuzziness and Soft Computing"contains
publications on various areas within the so-called soft computing
which Include fuzzy sets, rough sets, neural networks, evolution-
ary computations, probabilistic and evidential reasoning. multival-
ued logic, and related fields. The publications within "Studies in
Fuzziness and Soft Computing" are primarily monographs and
edited volumes. They cover significant recent developments in
the field, both of a foundational and applicational character. An
important characteristic feature of the series is a short publica-
tion time and world-wide distribution. This permits a rapid and
broad dissemination of research results.

Mordeson Nair
Fuzzy Mathematics 2nd Edition

The book deals with fuzzy graph theory, fuzzy topology. fuzzy
geometry, and fuzzy abstract algebra. It presents the concepts of
fuzzy mathematics with applications to engineering. computer
science, and mathematics. In this second edition the chapter on
geometry is expanded and contains results on the degree of ad-
jacency of two regions and the degree of surroundedness of a
region by another. Applications to digital polygons and image
description are also given. Furthermore, the new edition includes
results on image enhancement and thresholding by optimization
of fuzzy compactness as well as results concerning a Flausdorff
distance between fuzzy subsets. The most current work on the
solution of nonlinear systems of fuzzy intersection equations of
fuzzy singletons has been added to the chapter on algebra. The
book is written with engineers and computer scientists in mind.
but it can also serve as a research guide to interested mathemati-
cians as it involves current results.

ISSN 1434-9922)

ISBN 3-7908-1420-2

7P
1111

ht t p://wow . s pringer. de


