

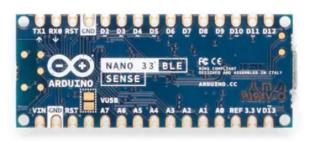
FYS3240- 4240 Data acquisition & control

Arduino and Arduino Nano 33 BLE sense

Spring 2021– Lecture #5

Bekkeng 12.01.2021

What is Arduino:


• Arduino is an open-source electronics platform based on easyto-use hardware and software

Why Arduino in the course?

- Easy to get stated!
 - Many examples available
 - Ready made interfaces to sensors
 - Data communication with a computer is easy
 - Call C/C++ functions
 - Easy-to-use for beginners, but flexible enough for advanced users.
- Can be used for professional applications
 - But the Arduino environment hide much details about what's under the hood.
 - The course focus is <u>not</u> microcontroller programming alone, but the collection of sensor data, processing of sensor data and how they are used in a system with feedback (control).

UiO **Content of Physics**

University of Oslo

APPLICATIONS

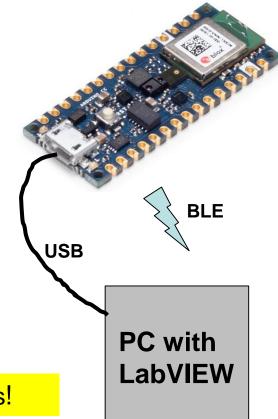
- IoT
 - Smart Home products
 - Industrial mesh networks
 - Smart city infrastructure
- Advanced wearables
 - Connected watches
 - Advanced personal fitness devices
 - Wearables with wireless payment
 - Connected Health
 - Virtual/Augmented Reality applications

nRF52840 Product Brief Version 2.0

- Interactive entertainment devices
 - Advanced remote controls
 - Gaming controller

Nano 33 BLE Sense

Estimate shipping date, mid August 2019.


This compact and reliable Nano board is built around the NINA B306 module for BLE and Bluetooth 5 communication; the module is based on Nordic nRF 52840 processor that contains a powerful Cortex M4F and the board has a rich set of sensors that allow the creation of innovative and highly interactive designs.

Its architecture, fully compatible with Arduino IDE Online and Offline, has a 9 axis Inertial Measurement Unit (IMU), temperature, pressure, humidity, light, color and even gestures sensors and a microphone that are managed through our specialised libraries. Its reduced power consumption, compared to other same size boards, together with the Nano form factor opens up a wide range of applications.

This allows the design of wearable devices and gesture based projects that need to communicate to other devices at a close range. Arduino Nano 33 BLE Sense is ideal for interactive automation projects thanks to the multiprotocol BT 5.0 radio.

We will use Arduino Nano 33 BLE sense

ARM Cortex M4 Inertial measurement unit (IMU) 3-axis accelerometer 3-axis rate gyroscope _ **3-axis magnetometer Bluetooth low energy (BLE)** ٠ + many other sensors

Small size, low cost, powerful and many sensors!

https://www.arduino.cc/en/Guide/NANO33BLESense

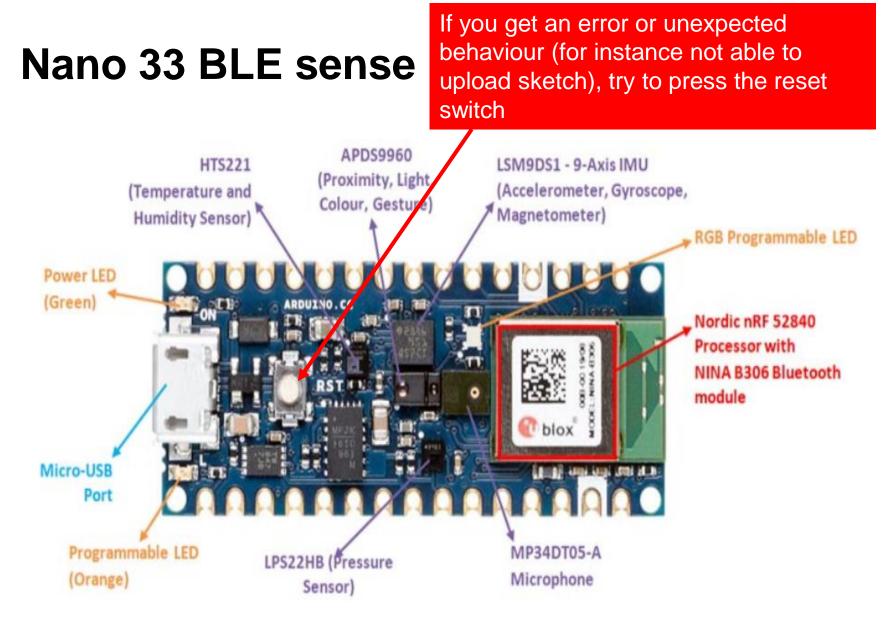
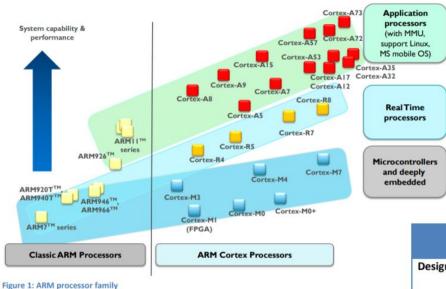



Figure from Arduino Nano 33 BLE Sense Review - What's New and How to Get Started? (circuitdigest.com)

ARM® Cortex®-M

Suggested reading:

White paper "ARM® Cortex®-M for Beginners", particularly section 1 to 2.4.

The criteria of selecting a microcontroller device are mostly heavily dependent on the cost and peripherals available.

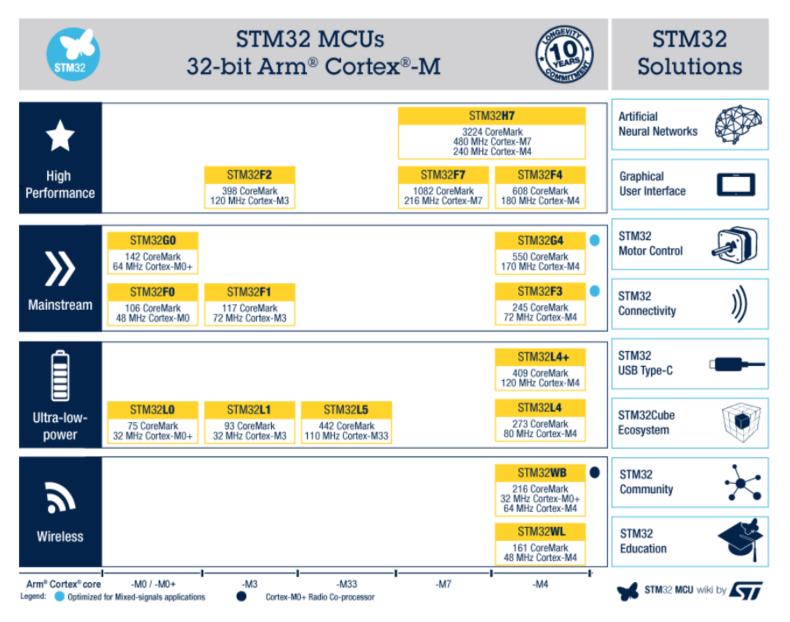
	Application processors	Real-time processors	Microcontroller processors
Design	High clock frequency, Long pipeline, High performance, Multimedia support (NEON instruction set extension)	High clock frequency, Long to medium pipeline length, Deterministic (low interrupt latency)	Short pipeline, ultra low power, Deterministic (low interrupt latency)
System features	Memory Management Unit (MMU), cache memory, ARM TrustZone [®] security extension	Memory Protection Unit (MPU), cache memory, Tightly Coupled Memory (TCM)	Memory Protection Unit (MPU), Nested Vectored Interrupt Controller (NVIC), Wakeup Interrupt Controller (WIC)
Targeted markets	Mobile computing, smart phones, energy-efficient servers, high-end microprocessors	Industrial microcontrollers, automotives, Hard disk controllers, Baseband modem	Microcontrollers, Deeply embedded systems (e.g. sensors, MEMS, mixed signal IC), Internet of Things (IoT)

Table 1: Summary of processor characteristics

ARM® Cortex®-M

- Almost everything can be programmed in high-level language like C
 - easy to use
- The consistency of the architecture make it easier to start using a new Cortex-M processor once you have experience with one of them.

VABS VADO VCMP	VCMPE VCVT		Floating	Point	CVTA
				VEMA	VCVTP
PKHBT PKHTB QADD	QADD16 QADD8	QASX QDADD	QDSUB	VFMS	VCVTM
QSAX QSUB QSUB16	OSUB8		SEL	VENMA	VMAXNM
SHADD16 SHADD8 SHASX	SHSAX		SMLABT	VENMS	VMINNM
SMLATB SMLATT SMLAD	SMLADX DS	P (SIMD, fast MAC)	MLALTT	VLDM	VRINTA
SMLALD SMLALDX SMLANB	SMLAWT	•••••	MLSLDX	VLDR	VRINTN
		SMMLA	SMMLAR	VMLA	VRINTP
ADC ADD ADR	AND ASR		SMMLSR	VMLS	VRINTM
BFC BFI BIC	CBNZ CBZ CDP		SMMULR	VMOV	VRINTX
CLREX CLZ CMN	CMP DBG	EOR SMUAD	SMUADX	VMRS	VRINTZ
LDC EDC2 LDMIA	LDMDB LDR		SMULBT	VMSR	VRINTR
LDRBT LDRD			SMULTT	VMUL	VSEL
	d data processin		SMULWT	VNEG	
LSR MCR bit fiel	d manipulations	MLA SMUSD	SMUSDX	VNMLA	
MLS MOV	umanipulacions	MRRC SSAT16	SSAX	VNMLS	
MRRC2 MUL MVN	NOP ORN	ORR SSUB16	SSUB8	VNMUL	
PLD PLI POP	PUSH RBIT	REV SXTAB	SXTAB16	VPOP	
REV16 REVSH ROR	RRX RSB	SBC SXTAH	UADD16	VPUSH	
SBFX SDIV SEV	SHLAL SHULL	UADD8	UASX	VSQRT	
	STC STC2	STMIA UHADD16	UHSUB8	VSTM	
ADC ADD ADR AND ASR B	STHOB STR		UQADD16	VSTR	
BIC BKPT BL BLX BX	STRBT STRD	STREX UQADD8	UQASX	VSUB	
CMN CMP CPS DMB EOR	STREXB STREXH	STRH UQSAX	UQSUB16		
DS8 ISB LDMIA LDR	STRHT STRT		USAD8		
Consul data nus sessing	SXTB SXTH	TBB USADA8	USAT16		
General data processing	твн тед	USAX O	USUB16		
I/O control tasks	UBFX UDF	UDIV USUB8	UXTAB		
	UMLAL UMULL	USAT UXTAB16	UXTAH		
STMIA STR STRB STRH SUB SVC	UXTB UXTH	WFE UXTB16			
SXTB SXTH TST UDF UXTB UXTH	WFI YIELD		Cortex-M4	Cortex-M4	Cortex-
WFE WFI VIELD Cortex-M0+		Cortex-M3	Cortex-M7	FPU	FF


Optional:

See the White paper "ARM® Cortex®-M for Beginners"

Figure 3: Instruction Set support in the Cortex-M processors

UiO : Department of Physics

University of Oslo

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

Arduino code example

• Take a value in between 0 and 1023 (e.g. 10 bit input from an ADC) and map it with in the 0 to 100 range:

int value2 = map(value, 0, 1023, 0, 100);

Arduino language references

https://www.arduino.cc/reference/en/ •

#define (define)

t (logical not)

ipes	 (pitshift right) (pitshift right) (bitwise sor) (bitwise or)
(of fet	- (bitwise not)
equal to)	Compound Operators %= (compound remainder &= (compound bitwise an
	 (compound multiplical ++ (increment) (compound addition)

Examples for Nano 33 BLE sense in IDE Under Files:

Sketchbook			
Examples		∆ Built-in Examples	
Close	Ctrl+W	01.Basics	>
Save	Ctrl+S		>
Save As	Ctrl+Shift+S	02.Digital	>
Page Setup	Ctrl+Shift+P	03.Analog 04.Communication	>
Print	Ctrl+P	05.Control	
	curri	06.Sensors	>
Preferences	Ctrl+Comma		>
Quit	Ctrl+Q	07.Display	>
Quit	curiq	08.Strings 09.USB	>
			>
		10.StarterKit_BasicKit	>
		11.ArduinoISP	>
		Examples for any board	
		Adafruit Circuit Playground	>
		Arduino_APDS9960	>
		Arduino_HTS221	>
		Arduino_LPS22HB	> 1
		Arduino_LSM9DS1	
		Bridge	
		Ethernet	>
		Firmata	>
		LiquidCrystal	>
		SD	>
		Servo	>
		Stepper	>
		Temboo	>
		RETIRED	>
			>
		Examples for Arduino Nano 33 B	3LE
			> 3LE

Arduino libraries

• <u>https://www.arduino.cc/en/Guide/Libraries#toc3</u>

In Arduino IDE:

Tool	s Help	
	Auto Format	Ctrl+T
	Archive Sketch	
	Fix Encoding & Reload	
	Manage Libraries	Ctrl+Shift+I
	Serial Monitor	Ctrl+Shift+M
	Serial Plotter	Ctrl+Shift+L
	WiFi101 / WiFiNINA Firmware Updater	
	Board: "Arduino Nano 33 BLE"	>
	Port: "COM8 (Arduino Nano 33 BLE)"	>
	Get Board Info	
	Programmer	>
	Burn Bootloader	

💿 Library Manager	\times
Type Installed V Topic All V Filter your search	
Allows you to read the temperature and humidity sensors of your Nano 33 BLE Sense. More info	^
Arduino_LPS22HB	
by Arduino Version 1.0.0 INSTALLED Allows you to read the pressure sensor of your Nano 33 BLE Sense. More info	
For IMU (Lab 3–5)	
Arduino_LSM9DS1	
by Arduino Version 1.1.0 INSTALLED Allows you to read the accelerometer, magnetometer and gyroscope values from the LSM9DS1 IMU on your Arduino Nano 33 BLE Sense. More info	
ArduinoBLE For lab5 by Arduino Version 1.1.3 INSTALLED Enables BLE connectivity on the Arduino MKR WiFi 1010, Arduino UNO WiFi Rev.2, Arduino Nano 33 IoT, and Arduino Nano 33 BLE. This library supports creating a BLE peripheral and BLE central mode. More info	
	~
Clos	se

Arduino libraries

This PC > Documents > Arduino > libraries >

^ [Name	Date modified	Туре	Size
	Arduino_APDS9960	26.07.2020 23:16	File folder	
	Arduino_HTS221	26.07.2020 23:17	File folder	
	Arduino_LPS22HB	26.07.2020 23:18	File folder	
	Arduino_LSM9DS1	26.07.2020 23:20	File folder	
	📕 ArduinoBLE	28.07.2020 23:52	File folder	
	readme.txt	26.07.2020 20:40	Text Document	1 KB
	Arduino_LPS22HB Arduino_LSM9DS1 ArduinoBLE	26.07.2020 23:18 26.07.2020 23:20 28.07.2020 23:52	File folder File folder File folder	1 KB

> This PC > Documents > Arduino > libraries > Arduino_LSM9DS1 > examples >

^	Name	Date modified	Туре
	SimpleAccelerometer	31.07.2019 17:23	File folder
	SimpleGyroscope	31.07.2019 17:23	File folder
	SimpleMagnetometer	31.07.2019 17:23	File folder

IMU an magnetometer library for the Nano 33 BLE sense board

119 Hz set default

<u>https://www.arduino.cc/en/Reference/ArduinoLSM9DS1</u>

Arduino LSM9DS3 library

This library allows you to use the Arduino Nano 33 BLE IMU sensor. The IMU is a LSM9DS1, it is a 3-axis accelerometer and 3-axis gyroscope and 3-axis magnetometer; it is connected to the microcontroller through I2C on the NANO board. The values returned are signed floats.

To use this library

#include <Arduino_LSM9DS1.h>

The library takes care of the sensor initialisation and sets its values as follows:

- Accelerometer range is set at [-4,+4]g -/+0.122 mg
- Gyroscope range is set at [-2000, +2000] dps +/-70 mdps
- Magnetometer range is set at [-400, +400] uT +/-0.014 uT
- Accelerometer Output data rate is fixed at 104 Hz
- Gyroscope Output data rate is fixed at 104 Hz
- Magnetometer Output data rate is fixed at 20 Hz

Objects

- begin()
- end()
- readAcceleration()
- readGyroscope()
- accelerationAvailable()
- gyroscopeAvailable()
- accelerationSampleRate()
- gyroscopeSampleRate()
- readMagneticField()
- magneticFieldSampleRate()
- magneticFieldAvailable()

LSM9DS1 data sheet

LSM9DS1

iNEMO inertial module:

3D accelerometer, 3D gyroscope, 3D magnetometer

Datasheet - production data

life.auamented

Features

- 3 acceleration channels, 3 angular rate channels, 3 magnetic field channels
- ±2/±4/±8/±16 g linear acceleration full scale
- ±4/±8/±12/±16 gauss magnetic full scale
- ±245/±500/±2000 dps angular rate full scale
- 16-bit data output
- SPI / I²C serial interfaces
- Analog supply voltage 1.9 V to 3.6 V
- "Always-on" eco power mode down to 1.9 mA
- Programmable interrupt generators
- Embedded temperature sensor
- Embedded FIFO
- Position and motion detection functions

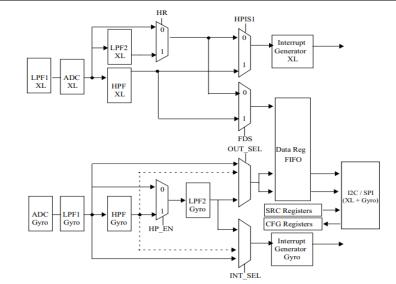
Applications

- Indoor navigation
- Smart user interfaces
- Advanced gesture recognition
- · Gaming and virtual reality input devices
- · Display/map orientation and browsing

Description

The LSM9DS1 is a system-in-package featuring a 3D digital linear acceleration sensor, a 3D digital angular rate sensor, and a 3D digital magnetic sensor.

The LSM9DS1 has a linear acceleration full scale of $\pm 2g/\pm 4g/\pm 8/\pm 16$ g, a magnetic field full scale of $\pm 4/\pm 8/\pm 12/\pm 16$ gauss and an angular rate of $\pm 245/\pm 500/\pm 2000$ dps.

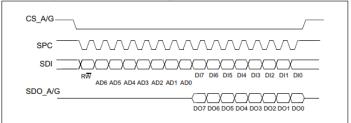

The LSM9DS1 includes an I²C serial bus interface supporting standard and fast mode (100 kHz and 400 kHz) and an SPI serial standard interface.

Magnetic, accelerometer and gyroscope sensing can be enabled or set in power-down mode separately for smart power management.

The LSM9DS1 is available in a plastic land grid

Have a look! Without the Arduino library you had to know "all of this" to implement communication with the IMU

LSM9DS1

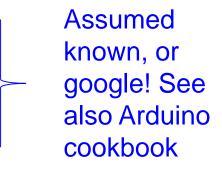

Digital interfaces

5.2 Accelerometer and gyroscope SPI bus interface

The LSM9DS1 accelerometer and gyroscope SPI is a bus slave. The SPI allows to write and read the registers of the device.

The Serial Interface connects to applications using 4 wires: CS_A/G, SPC, SDI and SDO_A/G.

Figure 16. Accelerometer and gyroscope read and write protocol


Table 21. Accelerometer and gyroscope register address map (continued)

Name	Tuno	Register	address	Default	Note
Naite	Туре	Hex	Binary	Delauit	Note
CTRL_REG6_XL	r/w	20	00100000	00000000	
CTRL_REG7_XL	r/w	21	00100001	00000000	
CTRL_REG8	r/w	22	00100010	00000100	
CTRL_REG9	r/w	23	00100011	00000000	
CTRL_REG10	r/w	24	00100100	00000000	

Float vs. integer vs. string.

We need to understand the basics:

- Float (double) vs. int.
- Floating point (decimal) numbers vs. fixed point number

- Digital sensors deliver data as integers (2ⁿ) !
- If we measure e.g. voltage or rotation rate we need to get a decimal number before using the data
 - 3.14 V
 - 20.32 deg/sec

In this course we will send sensor data as float values converted to strings. This is not the most efficient way, but it is easy to write/read and to debug.

Accelerometer example

This example reads the acceleration values from the LSM9DS1 sensor and continuously prints them to the Serial Monitor or Serial Plotter in the IDE

sketch_aug05a	a Arduino 1.8.13 — 🗆	×
File Edit Sketch T	ools Help	
sketch aug05	Auto Format Archive Sketch Fix Encoding & Reload	Ctrl+T
<pre>void setup()</pre>	Manage Libraries	Ctrl+Shift+I
// put you	Serial Monitor Serial Plotter	Ctrl+Shift+M Ctrl+Shift+L
}	WiFi101 / WiFiNINA Firmware Update	r
void loop() // put you	Board: "Arduino Nano 33 BLE" Port: "COM8 (Arduino Nano 33 BLE)"	; ;
}	Get Board Info	
	Programmer Burn Bootloader	>

```
SimpleAccelerometer
/
```

#include <Arduino_LSM9DS1.h>

```
void setup() {
   Serial.begin(9600);
   while (!Serial);
   Serial.println("Started");
```

```
if (!IMU.begin()) {
   Serial.println("Failed to initialize IMU!");
   while (1);
```

```
Serial.print("Accelerometer sample rate = ");
Serial.print(IMU.accelerationSampleRate());
Serial.println(" Hz");
Serial.println();
Serial.println("Acceleration in G's");
Serial.println("X\tY\tZ");
```

```
void loop() {
   float x, y, z;
```

}

}

```
if (IMU.accelerationAvailable()) {
   IMU.readAcceleration(x, y, z);
```

```
Serial.print(x);
Serial.print('\t');
Serial.print(y);
Serial.print('\t');
Serial.print('\t');
```

UiO **Content of Physics**

University of Oslo

LSM9DS1.cpp (source code) – snap shots

#include "LSM9DS1.h"

```
#define LSM9DS1 ADDRESS
                                 0x6b
#define LSM9DS1 WHO AM I
                                0x0f
#define LSM9DS1 CTRL REG1 G
                                0x10
#define LSM9DS1 STATUS REG
                                0x17
#define LSM9DS1 OUT X G
                                0x18
#define LSM9DS1 CTRL REG6 XL
                                0x20
#define LSM9DS1 CTRL REG8
                                0x22
#define LSM9DS1 OUT X XL
                                0x28
writeRegister(LSM9DS1 ADDRESS, LSM9DS1 CTRL REG1 G, 0x78); // 119 Hz, 2000 dps, 16 Hz BW
writeRegister(LSM9DS1 ADDRESS, LSM9DS1 CTRL REG6 XL, 0x70); // 119 Hz, 4G
writeRegister(LSM9DS1 ADDRESS M, LSM9DS1 CTRL REG1 M, 0xb4); // Temperature compensation enable, medium performance, 20 Hz
writeRegister(LSM9DS1 ADDRESS M, LSM9DS1 CTRL REG2 M, 0x00); // 4 Gauss
writeRegister(LSM9DS1 ADDRESS M, LSM9DS1 CTRL REG3 M, 0x00); // Continuous conversion mode
int LSM9DS1Class::readAcceleration(float& x, float& y, float& z)
Ł
  int16 t data[3];
  if (!readRegisters(LSM9DS1 ADDRESS, LSM9DS1 OUT X XL, (uint8 t*)data, sizeof(data))) {
    x = NAN;
    y = NAN;
    z = NAN;
    return 0;
  }
  x = data[0] * 4.0 / 32768.0;
  y = data[1] * 4.0 / 32768.0;
  z = data[2] * 4.0 / 32768.0;
  return 1:
}
```

Interface between Arduino & LabVIEW

- LINX make it easy to interact with Arduino
 - Does not support the Nano 33
- We will use standard serial communication
 - Transmit/receive ASCII data
 - Transmit/receive binary data

LINX

LINX provides easy to use LabVIEW VIs for interacting with common embedded platforms like Arduino, chipKIT and myRIO. Use the built in sensor VIs to start getting data to your PC in seconds or use the peripheral VIs to access your devices digital I/O, analog I/O, SPI, I2C, UART, PWM and more. Reference > Language > Functions > Communication > Serial > Print

Serial.print()

Description

Prints data to the serial port as human-readable ASCII text. This command can take many forms. Numbers are printed using an ASCII character for each digit. Floats are similarly printed as ASCII digits, defaulting to two decimal places. Bytes are sent as a single character. Characters and strings are sent as is. For example-

- Serial.print(78) gives "78"
- Serial.print(1.23456) gives "1.23"
- Serial.print('N') gives "N"
- Serial.print("Hello world.") gives "Hello world."

An optional second parameter specifies the base (format) to use; permitted values are BIN(binary, or base 2), OCT(octal, or base 8), DEC(decimal, or base 10), HEX(hexadecimal, or base 16). For floating point numbers, this parameter specifies the number of decimal places to use. For example-

- Serial.print(78, BIN) gives "1001110"
- Serial.print(78, OCT) gives "116"
- Serial.print(78, DEC) gives "78"
- Serial.print(78, HEX) gives "4E"
- Serial.print(1.23456, 0) gives "1"
- Serial.print(1.23456, 2) gives "1.23"
- Serial.print(1.23456, 4) gives "1.2345"

https://www.arduino.cc/reference/en/language/functions/communication/serial/print/

Regional settings

- Change decimal symbol to "."
 - Under Additional settings (see next slide for how to navigate there)
- Decimal symbol is standard "," in Norwgian, but "." in English.
- Sometimes decimal symbol "." is required!
- For instance the *Spreadsheet string to Array* function in LabVIEW is affected!
 - Important for lab 3 and 4

Թ Region		🗙 🔊 Customize Format	×
Formats Location Adv	ministrative	Numbers Currency Time Date	
<u>F</u> ormat: Norwegian Bokmål	(Norway)	Example	422.455.700.00
	(Positive: 123 456 789.00	Negative: -123 456 789.00
Language preference	es		
Date and time form	nats		
Short date:	dd.MM.yyyy ~	Decimal symbol:	×
Long date:	dddd d. MMMM yyyy $\qquad \lor$	No. of digits after decimal:	2 ~
Short time:	HH:mm ~	Digit grouping symbol:	~
Long time:	HH:mm:ss ~	Digit grouping:	123 456 789 🗸
First day of <u>w</u> eek:	mandag ~	Negative sign symbol:	- ~
		Negative number format:	-1.1 ~
Examples		Display leading zeros:	0.7 ~
Short date:	23.08.2020	List separator:	; ~
Long date:	søndag 23. august 2020		
Short time:	19:35	Measurement system:	Metric ~
Long time:	19:35:23	Standard digits:	0123456789 ~
	A <u>d</u> ditional settings	Use native digits:	Never ~
	OK Cancel Apply	Click Reset to restore the system de numbers, currency, time, and date.	fault settings for Reset

UiO **Department of Physics**

University of Oslo

Settings

Settings \leftarrow

ŝ	Home
---	------

Find a setting

Time & Language

昆 Date & time

- Region & language A字
- J Speech

Date & time

Adjust for daylight saving time automatically

On On

Q

Show additional calendars in the taskbar

Don't show additional calendars

Formats

	First day of week:	mandag		🔗 Region	
	Short date:	11.01.2021		Formats Location Ad	ministrative
	Long date:	mandag 11. januar 202	21	Format:	
	Short time:	22:50		Norwegian Bokmål	(Norway) ~
	Long time:	22:50:15		Language preference	<u>es</u>
	Change date and ti	me formats		Date and time formats	
	Change date and th	ine ionnais		Short date:	dd.MM.yyyy ~
				Long date:	dddd d. MMMM yyyy $\qquad \qquad \lor$
	Related setting	S		Short time:	HH:mm v
]	Additional date tim	ne, & regional settings		Long time:	HH:mm:ss ~
l	/tourtional dute, and	ie, a regional settings	J	First day of week:	mandag ~
		1			
Date and Time	イ	7		Examples	
	Change the time	a zona 👘 Add clocks	for different time zones	Short date:	11.01.2021
Set the time and date	Change the time	e zone Add clocks	for different time zones	Long date:	mandag 11. januar 2021
Longuaga				Short time:	22:54
Language				Long time:	22:54:50
Add a language C	hange input method	ds			

 \sim

Change date, time, or number formats

Cancel Apply

Additional settings...

ОК

Х

ArduinoBLE library

This library supports all the Arduino boards that have the hardware enabled for BLE and Bluetooth 4.0 and above; these include Nano 33 BLE, Arduino NANO 33 IoT, Uno WiFi Rev 2, MKR WiFi 1010.

To use this library #include <ArduinoBLE.h>

A quick introduction to BLE

Bluetooth 4.0 includes both traditional Bluetooth, now labeled "Bluetooth Classic", and the Bluetooth Low Energy (Bluetooth LE, or BLE). BLE is optimized for low power use at low data rates, and was designed to operate from simple lithium coin cell batteries. Unlike standard bluetooth communication basically based on an asynchronous serial connection (UART) a Bluetooth LE radio acts like a community bulletin board. The computers that connect to it are like community members that read the bulletin board. Each radio acts as either the bulletin board or the reader. If your radio is a bulletin board (called a peripheral device in Bluetooth LE parlance) it posts data for all radios in the community to read. If your radio is a reader (called a central device in Blueooth LE terms) it reads from any of the bulletin boards (peripheral devices) that have information about which it cares. You can also think of peripheral devices as the servers in a client-server transaction, because they contain the information that reader radios ask for. Similarly, central devices are the clients of the Bluetooth LE world because they read information available from the peripherals.

BLE class

Used to enable the BLE module.

- begin()
- end()
- poll()
- setEventHandler()
- connected()
- disconnect()
- address()
- rssi()
- setAdvertisedServiceUuid()
- setAdvertisedService()
- setManufacturerData()
- setLocalName()
- setDeviceName()
- setAppearance()
- addService()
- advertise()
- stopAdvertise()
- central()
- setAdvertisingInterval()

https://www.arduino.cc/en/Reference/ArduinoBLE

BLE examples

- <u>https://rootsaid.com/arduino-ble-example/</u>
- <u>https://www.okdo.com/project/get-started-</u> with-arduino-nano-33-sense/

And Nano 33 setup ...

BLE connection to phones and computers

- To send/receive data or for control.
- Apps for test available for Android and IOS
- ArduinoBLE library does not support pairing (optional security feature in BLE)
 - ArduinoBLE can not connect to Windows 10 operating system.
 - Can use a BLE USB dongle and drivers (see lab 5)
- Can have range/stability issues ...

Interrupts

https://www.arduino.cc/reference/en/language/functions/externalinterrupts/attachinterrupt/

Reference > Language > Functions > External interrupts > Attachinterrupt

attachInterrupt()

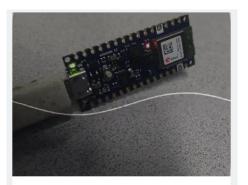
[External Interrupts]

Description

Digital Pins With Interrupts

The first parameter to attachInterrupt() is an interrupt number. Normally you should use digitalPinToInterrupt(pin) to translate the actual digital pin to the specific interrupt number. For example, if you connect to pin 3, use digitalPinToInterrupt(3) as the first parameter to attachInterrupt().

BOARD	DIGITAL PINS USABLE FOR INTERRUPTS
Uno, Nano, Mini, other 328-based	2, 3
Uno WiFi Rev.2, Nano Every	all digital pins
Mega, Mega2560, MegaADK	2, 3, 18, 19, 20, 21
Micro, Leonardo, other 32u4-based	0, 1, 2, 3, 7
Zero	all digital pins, except 4
MKR Family boards	0, 1, 4, 5, 6, 7, 8, 9, A1, A2
Nano 33 loT	2, 3, 9, 10, 11, 13, 15, A5, A7
Nano 33 BLE, Nano 33 BLE Sense	all pins
Due	all digital pins
101	all digital pins (Only pins 2, 5, 7, 8, 10, 11, 12, 13 work with CHANGE)


Common protocols for data transmission

- **JSON** (JavaScript Object Notation) ASCII (text) based
 - name–value pair (key–value pair)
 - {'x' : 0.66, 'y' : 0.59, 'z' : -0.49}
 - See page 136-137 in course book
 - Supported in both Arduino and LabVIEW
 - Self Descriptive protocol
- BSON (binary protocol binary version of JSON)
- MQTT (Message Queuing Telemetry Transport)
 - Publish subscribe
 - Common in IoT devices
 - (More info from page 607 in course book)
- Google Protocol buffers (binary protocol)

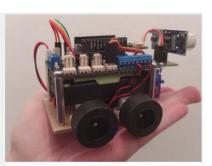
publish: "70 *F

Nano 33 BLE Sense - Project Hub

https://create.arduino.cc/projecthub/products/nano-33-ble-sense

Wake Word Detection

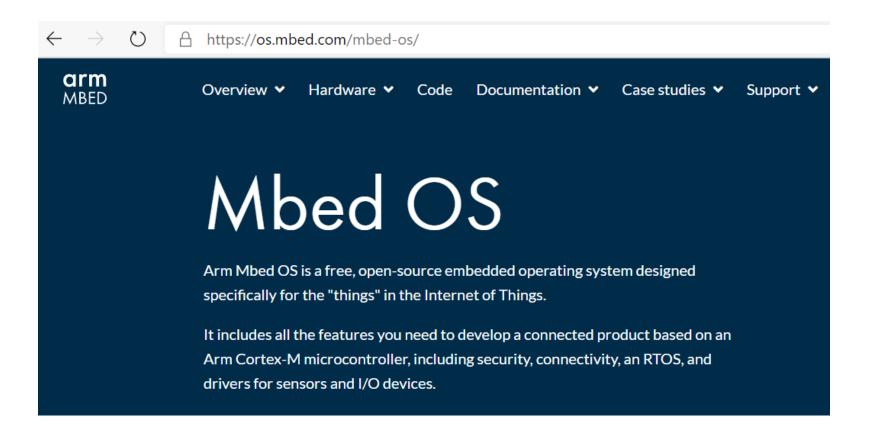
Magic Wand


Build a machine learning application which comprehends human gestures based on the 3D acceleration measured by an accelerometer sensor.

dded 📔 machine le

Arduino Nano 33 Sense l BLE Battery Level Tutorial

Mini 4WD Arduino Robot Controlled by Bluetooth



Person Detection with TensorFlow and Arduino

ARM Mbed OS

- Possible to run on Nano 33 BLE sense!
- We will not use it in this course

