
P G22.3033-002
Scripting Languages: Performance of Dynamic
Scripting Languages (main focus: Python)

Priya Nagpurkar, IBM Research

August 2, 2012

Popularity of Scripting Languages

• High productivity, quick and simple prototyping

– Language features like dynamic typing, high level data
structures

– Frameworks that simplify development and deployment: Rails
(Ruby), Django and Zope (Python)

• Popular even in emerging server application domains
• Cloud: Google AppEngine

• Web 2.0: FaceBook (PHP/Python), YouTube (Python), Twitter
(Ruby)

• Python application domains:

2

Web applications,
frameworks, servers

Systems
management

Scientific Computing Enterprise
applications

The Performance Gap

• Focus primarily on ease of programming, flexibility, and
features, not on performance

• Original, and often the most commonly used implementations
are interpreters

– Easy to add new features, portable, lightweight

– Also inefficient and very slow!

3

Performance

Productivity

26

79
110

24

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

E
x
e
c
u

ti
o
n

 T
im

e
 n

o
r
m

a
li

z
e
d

 t
o
 J

a
v
a

(
lo

g
 s

c
a
le

)

Python Ruby 1.8 JavaScript Lua

Dynamic Scripting Languages: Implementation Highlights

• Popular and widely used implementations are interpreters written in C

– Cpython 2.x, Ruby 1.9

• Interpretation and dynamic typing introduce lots of:

– Indirect branches

– Indirect memory accesses

– Indirect function calls

• Fat bytecodes make interpreter dispatch (big switch statement) less
significant as compared to interpreted Java, threading improves
dispatch

– 36x on Java vs. 2x on Python, for n-body benchmark

• Frequent use of shared libraries

4

Bytecode
 compiler

dispatch

fetch

Python bytecode
def foo(x):
 a = x + 1
 ...

0: LOAD_FAST 1(x)
3: LOAD_CONST 1
6: BINARY_ADD
7: STORE_FAST 2(a)
...

execute
Runtime
libraries

Where is the time spent? (Unladen-Swallow benchmarks)

5

0

10

20

30

40

50

60

70

80

90

100
OTHERS

Builtin operators

Control Flow

Stack Manipulation

Generic Numeric

CMP and JMP

Method Call and Return

Locals Load/Store

Type Resolution and Access

Where is the time spent? (Python Web Application)

6

0

10

20

30

40

50

60

70

80

90

100

%
C

y
c
le

s
 S

p
e
n

t

OS

other

_json.so

libz.so

ld-2.11.1.so

datetime.so

itertools.so

_mysql.so

libpthread.so

libmysqlclient_r.so

libc.so

libpython.so

httpd

mod_wsgi

Python
Python Python

(codespeed/
django)

client

DB
(MySQL)

• Codespeed: Python web application used to track performance over software
revisions for multiple projects (used by the PyPy, Twisted projects)

• Three-tier application that uses the python django web-application framework
and a backend database, deployed using apache httpd

• Request-level parallelism is achieved using multiple httpd processes/threads,
each with an embedded python interpreter instance

http://codespeak.net/pypy/dist/pypy/doc/
http://twistedmatrix.com/trac/
http://www.djangoproject.com/

At which level should we optimize?

• Improve interpreter performance through runtime
techniques

• Add JIT compilation

– Method based vs. trace based compilation

– Speculative optimization

• Perform dynamic binary optimization of interpreted code

• Evaluate and optimize microarchitecture for interpreters

– How to run poorly optimized code well

• Provide architectural support for:

– Speculative optimization

– Frequent and expensive operations: e.g. type checking
(Checked Load: Architectural support for JavaScript type-

checking on mobile processors, O. Anderson, E. Fortuna, L.
Ceze, S. Eggers, HPCA 2011)

7

Some existing approaches

 Improving existing interpreters
– Zend: PHP

 New Interpreter and JIT
– LuaJIT
– PyPy

 Mapping to existing managed

runtime
– On top of CLR (.NET)
– Jython/JRuby on Java Virtual

Machine (JVM)
– Oracle (BEA): PHP on JVM

 Extending existing managed
runtime for Dynamic Scripting
Languages
– Microsoft DLR: IronPython,

IronRuby, IronJscript
– Microsoft Mono: open source CLR

implementation
– Sun DaVinci (JVM): multi-language

8

 Add JIT to existing interpreters
- Unladen-swallow (Google) : CPython +

open source LLVM JIT

- Rubinius: Ruby + open source LLVM JIT

- Psyco: CPython + mini-JIT

 Convert to static language (C/C++)
- Cython/Pyrex: Python

- HipHop (FaceBook): PHP

Improving interpreter performance: example

• Global variable and Attribute Caching

– Addresses the overhead associated with loading global variables
and object attributes (fields and methods)

– Global variables and object attributes are stored in dictionaries
and looked up by name
• A single read can involve complex control flow, indirect function calls,

and multiple dictionary lookups

– Global variable caching caches the address of the dictionary entry
for a global variable along with a version number
• Change in value does not invalidate cached address
• Change in shape of dictionary is tracked using version numbers

– Global variable caching and attribute caching together lead to a
7% improvement in performance (on an average across the
unladen-swallow benchmark suite)

More details in UCSB tech report: Understanding the Potential of Interpreter-based
Optimizations for Python

9

Improving Performance through Compilation: Challenges

• Dynamic typing and metaprogramming make static
analysis and optimization difficult

• Large and potentially changing variety of languages
makes per-language approaches non-scalable

• Moving target:

– Many of these languages continue to evolve

– Deployment practices and popular components (web
servers, frameworks) are also evolving

• Compatibility with significant amount of existing code in
the form of reusable modules/libraries and applications
important

10

© 2011 IBM Corporation
11

Adaptive Just in Time Compilation

• IBM Research Project: Fiorano JIT Compiler for Dynamic Scripting
Languages

• Enable Dynamic scripting language support on top of IBM’s Testarossa
compiler (TR)
– Leverage TR as the optimization framework and backend for native

code generation

– Handle multiple languages with minimal engineering effort by creating a
generic Dynamic Scripting Languages optimization framework

– Attach Fiorano JIT compiler to open source language virtual machines
• Preserve original language semantics and compatibility to deal with

rapid language evolution

• Current performance: 63% improvement over CPython

Testarossa

x86

System z

Power

Native code

Common
optimizer

Java optimizer

C/C++ optimizer

DSL optimizer
Python Frontend

Ruby Frontend

Java Frontend

C/C++ Frontend codegen

codegen

codegen

12

Improving Performance through Compilation: Effective
techniques

• Hidden Classes (Self, v8)

– Optimize class offsets and accesses

• Tracing (TraceMonkey, LuaJIT, PyPy)

– Method + Tracing (JaegerMonkey)

• Profiling Feedback (Unladen Swallow, PyPy)

– Type

– Value

– Global state (dictionary, …)

• Unboxing

• DynamicSites (DLR), InvokeDynamic (Java7/DaVinci)

– Cache method lookup, specialized implementation

– Polymorphic Inline Cache

– Type inference and propagation

13

PyPy

• A Python implementation written in Rpython

– Implementations for other languages also exist

• RPython is a restricted version of Python

– Well-typed according to type inference rules of RPython

– Class definitions do not change

– Object model implementation exposes runtime constants

– Various hints to trace selection engine to capture user program scope

• Tracing JIT through both user program and runtime

– A trace is a single-entry-multiple-exit code sequence (like long
extended basic block)

– Tracing automatically incorporates runtime feedback and guards into
the trace

• The optimizer fully exploits the simple topology of a trace to do
very powerful data-flow based redundancy elimination

PyPy Performance

• Source: http://speed.pypy.org/

14

http://speed.pypy.org/

Performance of JavaScript Implementations

15

2

56

19

4

0

2

4

6

8

10

12

14

16

18

20

binarytrees fasta mandelbrot nbody spectralnorm geomean

S
p
e
e
d
u
p
 (

re
la

ti
v
e
 t

o
 J

a
v
a
s
c
ri
p
t)

TraceMonkey V8 Rhino

Thank You!

Questions?

16

