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Popularity of Scripting Languages

« High productivity, quick and simple prototyping
— Language features like dynamic typing, high level data
structures
— Frameworks that simplify development and deployment: Rails
(Ruby), Django and Zope (Python)
« Popular even in emerging server application domains
« Cloud: Google AppEngine

« Web 2.0: FaceBook (PHP/Python), YouTube (Python), Twitter
(Ruby)

- Python application domains:

Web applications, Enterprise Systems Scientific Computing
frameworks, servers applications management
JAEE  OpemERP
Tornado
& CherryPy
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The Performance Gap
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« Focus primarily on ease of programming, flexibility, and
features, not on performance

« Original, and often the most commonly used implementations

are interpreters

— Easy to add new features, portable, lightweight
— Also inefficient and very slow!



Dynamic Scripting Languages: Implementation Highlights

« Popular and widely used implementations are interpreters written in C
— Cpython 2.x, Ruby 1.9

« Interpretation and dynamic typing introduce lots of:
— Indirect branches

— Indirect memory accesses
— Indirect function calls

 Fat bytecodes make interpreter dispatch (big switch statement) less
significant as compared to interpreted Java, threading improves
dispatch
— 36x on Java vs. 2x on Python, for n-body benchmark

- Frequent use of shared libraries

Bytecode
compiler

: LOAD_FAST 1(x)

def foo(x): 0
3: LOAD_CONST 1
6
7

a=x+1
: BINARY_ADD
: STORE_FAST 2(a)




Where is the time spent? (Unladen-Swallow benchmarks)
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Where is the time spent? (Python Web Application)
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« Codespeed: Python web application used to track performance over software
revisions for multiple projects (used by the PyPy, Twisted projects)

« Three-tier application that uses the python django web-application framework
and a backend database, deployed using apache httpd

 Request-level parallelism is achieved using multiple httpd processes/threads,
each with an embedded python interpreter instance



http://codespeak.net/pypy/dist/pypy/doc/
http://twistedmatrix.com/trac/
http://www.djangoproject.com/

At which level should we optimize?

Improve interpreter performance through runtime
techniques

Add JIT compilation

— Method based vs. trace based compilation

— Speculative optimization

Perform dynamic binary optimization of interpreted code

Evaluate and optimize microarchitecture for interpreters
— How to run poorly optimized code well

Provide architectural support for:
— Speculative optimization

— Frequent and expensive operations: e.g. type checking

(Checked Load: Architectural support for JavaScript type-
checking on mobile processors, O. Anderson, E. Fortuna, L.
Ceze, S. Eggers, HPCA 2011)



Some existing approaches

Improving existing interpreters
— Zend: PHP

New Interpreter and JIT
— LualIT

- PyPy

Mapping to existing managed
runtime
— On top of CLR (.NET)

— Jython/JRuby on Java Virtual
achine (JV

— Oracle (BEA): PHP on JVM

Extending existing managed

runtime for Dynamic Scripting

Languages
— Microsoft DLR: IronPython,
IronRuby, IronJscript

— Microsoft Mono: open source CLR

implementation

— Sun DaVinci (JVM): multi-language

Add JIT to existing interpreters
- Unladen-swallow (Google) : CPython +
open source LLVM JIT
- Rubinius: Ruby + open source LLVM JIT
- Psyco: CPython + mini-JIT

Convert to static language (C/C++)
- Cython/Pyrex: Python
- HipHop (FaceBook): PHP



Improving interpreter performance: example
« Global variable and Attribute Caching

— Addresses the overhead associated with loading global variables
and object attributes (fields and methods)

— Global variables and object attributes are stored in dictionaries
and looked up by name

A single read can involve complex control flow, indirect function calls,
and multiple dictionary lookups

— Global variable caching caches the address of the dictionary entry
for a global variable along with a version number

« Change in value does not invalidate cached address
« Change in shape of dictionary is tracked using version numbers

— Global variable caching and attribute caching together lead to a
7% improvement in performance (on an average across the
unladen-swallow benchmark suite)

More details in UCSB tech report: Understanding the Potential of Interpreter-based
Optimizations for Python



Improving Performance through Compilation: Challenges

« Dynamic typing and metaprogramming make static
analysis and optimization difficult

« Large and potentially changing variety of languages
makes per-language approaches non-scalable

 Moving target:
— Many of these languages continue to evolve

— Deployment practices and popular components (web
servers, frameworks) are also evolving

« Compatibility with significant amount of existing code in
the form of reusable modules/libraries and applications
important

10



Adaptive Just in Time Compilation

« IBM Research Project: Fiorano JIT Compiler for Dynamic Scripting
Languages

« Enable Dynamic scripting language support on top of IBM’s Testarossa
compller (TR)

Leverage TR as the optimization framework and backend for native
code generation

— Handle multiple languages with minimal engineerin? effort by creating a
generic Dynamic Scripting Languages optimization framework

— Attach Fiorano JIT compiler to open source language virtual machines

* Preserve original language semantics and compatibility to deal with
rapid language evolution

« Current performance: 63% improvement over CPython

Testarossa Native code
C/C++ Frontend codegen Power

Java Frontend Common codegen System z
Python Frontend optmizer
x86

codegen

Ruby Frontend

11 © 2011 IBM Corporation



Improving Performance through Compilation: Effective
techniques

« Hidden Classes (Self, v8)
— Optimize class offsets and accesses
« Tracing (TraceMonkey, LualIT, PyPy)
— Method + Tracing (JaegerMonkey)
« Profiling Feedback (Unladen Swallow, PyPy)
— Type
— Value
— Global state (dictionary, ...)
- Unboxing
 DynamicSites (DLR), InvokeDynamic (Java’//DaVinci)
— Cache method lookup, specialized implementation
— Polymorphic Inline Cache
— Type inference and propagation
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PyPy

A Python implementation written in Rpython
— Implementations for other languages also exist

RPython is a restricted version of Python
- Well-typed according to type inference rules of RPython
— Class definitions do not change
— Object model implementation exposes runtime constants
— Various hints to trace selection engine to capture user program scope

Tracing JIT through both user program and runtime
— A trace is a single-entry-multiple-exit code sequence (like long
extended basic block)
— Tracing automatically incorporates runtime feedback and guards into
the trace

The optimizer fully exploits the simple topology of a trace to do
very powerful data-flow based redundancy elimination



It depends greatly on the type of task being performed. The geometric average of all benchmarks is 0.18 or 5.6 times faszer than

PyPy Performance
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How fast is PyPy?
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Plot 1: The above plot represents PyPy trunk (with JIT) benchmark times normalized to CPython. Smaller is better.

CPython
Source: http://speed.pypy.org/
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http://speed.pypy.org/

Performance of JavaScript Implementations
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Thank You!

Questions?
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