P G22.3033-002
Scripting Languages: Performance of Dynamic
Scripting Languages (main focus: Python)

Priya Nagpurkar, IBM Research

August 2, 2012

Popularity of Scripting Languages

« High productivity, quick and simple prototyping
— Language features like dynamic typing, high level data
structures
— Frameworks that simplify development and deployment: Rails
(Ruby), Django and Zope (Python)
« Popular even in emerging server application domains
« Cloud: Google AppEngine

« Web 2.0: FaceBook (PHP/Python), YouTube (Python), Twitter
(Ruby)

- Python application domains:

Web applications, Enterprise Systems Scientific Computing
frameworks, servers applications management
JAEE OpemERP
Tornado
& CherryPy

7/
: &
1O
= ~

',! ’I:,

The Performance Gap

Productivity
A .
@ python
.-1_
/‘
FATN Linguage
. J/i\z"-f\"-
<
1~
Performance

10000.00

(log scale)

Execution Time normalized to Java
=
© = ©
= o o
o o o

1000.00 -

100.00 -

0.01 -

EPython BRuby 1.8 @J]avaScript BLua

« Focus primarily on ease of programming, flexibility, and
features, not on performance

« Original, and often the most commonly used implementations

are interpreters

— Easy to add new features, portable, lightweight
— Also inefficient and very slow!

Dynamic Scripting Languages: Implementation Highlights

« Popular and widely used implementations are interpreters written in C
— Cpython 2.x, Ruby 1.9

« Interpretation and dynamic typing introduce lots of:
— Indirect branches

— Indirect memory accesses
— Indirect function calls

 Fat bytecodes make interpreter dispatch (big switch statement) less
significant as compared to interpreted Java, threading improves
dispatch
— 36x on Java vs. 2x on Python, for n-body benchmark

- Frequent use of shared libraries

Bytecode
compiler

: LOAD_FAST 1(x)

def foo(x): 0
3: LOAD_CONST 1
6
7

a=x+1
: BINARY_ADD
: STORE_FAST 2(a)

Where is the time spent? (Unladen-Swallow benchmarks)

0, — —
100% =]] —] [.] — [ooSs

90% OLIBS

80% BVM.other
& 70% BVM.Modules
% 60% BVM.Objects
o 50% BVM.Python
.E 40% BVM.dispatch

30%
20%
10%

0%

100 -+ —
_— -
= = 0 & B EE E o
90 - . I — N — — |] .
80 | == . — || . = Builtin operators
= = @ B -
70 1 . . . l I . = Control Flow
60 -
50 I I l . I I ® Stack Manipulation
40 - I l I = Generic Numeric
30 - I I I m CMP and JMP
20 4 = Method Call and Return
10 -
0 I l ® Locals Load/Store
,i}é” ,\\QO \<,><\° . C;}Q’ & & AQ}b A?f’ ' d}e’ = Type Resolution and Access
4 <& Q o < & & <
& Q & & &S

Ky
2

Where is the time spent? (Python Web Application)

r 100 os
l 90 - Eother
______________ 1 80 - B _json.so
70 - Blibz.so
mid-2.11.1.s0

."/ httpd
i é % % B datetime.so

@ itertools.so

%Cycles Spent
ul
o

| mod_wsgi 40 -

| | B_mysql.so

: 30 -

; m libpthread.so
h 20 - ® libmysqlclient_r.so
i Python :

{ (codespeed/ ; DB 10 - mlibc.so

e (MySQL) 0 - m libpython.so

« Codespeed: Python web application used to track performance over software
revisions for multiple projects (used by the PyPy, Twisted projects)

« Three-tier application that uses the python django web-application framework
and a backend database, deployed using apache httpd

 Request-level parallelism is achieved using multiple httpd processes/threads,
each with an embedded python interpreter instance

http://codespeak.net/pypy/dist/pypy/doc/
http://twistedmatrix.com/trac/
http://www.djangoproject.com/

At which level should we optimize?

Improve interpreter performance through runtime
techniques

Add JIT compilation

— Method based vs. trace based compilation

— Speculative optimization

Perform dynamic binary optimization of interpreted code

Evaluate and optimize microarchitecture for interpreters
— How to run poorly optimized code well

Provide architectural support for:
— Speculative optimization

— Frequent and expensive operations: e.g. type checking

(Checked Load: Architectural support for JavaScript type-
checking on mobile processors, O. Anderson, E. Fortuna, L.
Ceze, S. Eggers, HPCA 2011)

Some existing approaches

Improving existing interpreters
— Zend: PHP

New Interpreter and JIT
— LualIT

- PyPy

Mapping to existing managed
runtime
— On top of CLR (.NET)

— Jython/JRuby on Java Virtual
achine (JV

— Oracle (BEA): PHP on JVM

Extending existing managed

runtime for Dynamic Scripting

Languages
— Microsoft DLR: IronPython,
IronRuby, IronJscript

— Microsoft Mono: open source CLR

implementation

— Sun DaVinci (JVM): multi-language

Add JIT to existing interpreters
- Unladen-swallow (Google) : CPython +
open source LLVM JIT
- Rubinius: Ruby + open source LLVM JIT
- Psyco: CPython + mini-JIT

Convert to static language (C/C++)
- Cython/Pyrex: Python
- HipHop (FaceBook): PHP

Improving interpreter performance: example
« Global variable and Attribute Caching

— Addresses the overhead associated with loading global variables
and object attributes (fields and methods)

— Global variables and object attributes are stored in dictionaries
and looked up by name

A single read can involve complex control flow, indirect function calls,
and multiple dictionary lookups

— Global variable caching caches the address of the dictionary entry
for a global variable along with a version number

« Change in value does not invalidate cached address
« Change in shape of dictionary is tracked using version numbers

— Global variable caching and attribute caching together lead to a
7% improvement in performance (on an average across the
unladen-swallow benchmark suite)

More details in UCSB tech report: Understanding the Potential of Interpreter-based
Optimizations for Python

Improving Performance through Compilation: Challenges

« Dynamic typing and metaprogramming make static
analysis and optimization difficult

« Large and potentially changing variety of languages
makes per-language approaches non-scalable

 Moving target:
— Many of these languages continue to evolve

— Deployment practices and popular components (web
servers, frameworks) are also evolving

« Compatibility with significant amount of existing code in
the form of reusable modules/libraries and applications
important

10

Adaptive Just in Time Compilation

« IBM Research Project: Fiorano JIT Compiler for Dynamic Scripting
Languages

« Enable Dynamic scripting language support on top of IBM’s Testarossa
compller (TR)

Leverage TR as the optimization framework and backend for native
code generation

— Handle multiple languages with minimal engineerin? effort by creating a
generic Dynamic Scripting Languages optimization framework

— Attach Fiorano JIT compiler to open source language virtual machines

* Preserve original language semantics and compatibility to deal with
rapid language evolution

« Current performance: 63% improvement over CPython

Testarossa Native code
C/C++ Frontend codegen Power

Java Frontend Common codegen System z
Python Frontend optmizer
x86

codegen

Ruby Frontend

11 © 2011 IBM Corporation

Improving Performance through Compilation: Effective
techniques

« Hidden Classes (Self, v8)
— Optimize class offsets and accesses
« Tracing (TraceMonkey, LualIT, PyPy)
— Method + Tracing (JaegerMonkey)
« Profiling Feedback (Unladen Swallow, PyPy)
— Type
— Value
— Global state (dictionary, ...)
- Unboxing
 DynamicSites (DLR), InvokeDynamic (Java’//DaVinci)
— Cache method lookup, specialized implementation
— Polymorphic Inline Cache
— Type inference and propagation

12

PyPy

A Python implementation written in Rpython
— Implementations for other languages also exist

RPython is a restricted version of Python
- Well-typed according to type inference rules of RPython
— Class definitions do not change
— Object model implementation exposes runtime constants
— Various hints to trace selection engine to capture user program scope

Tracing JIT through both user program and runtime
— A trace is a single-entry-multiple-exit code sequence (like long
extended basic block)
— Tracing automatically incorporates runtime feedback and guards into
the trace

The optimizer fully exploits the simple topology of a trace to do
very powerful data-flow based redundancy elimination

It depends greatly on the type of task being performed. The geometric average of all benchmarks is 0.18 or 5.6 times faszer than

PyPy Performance

1.25

1.00 -

0.75 J

0.50 4

0.25 4

0.00 4

How fast is PyPy?

=
fa
mm PvPy trunk

mm CPython 2.7.2

0.78

0.04

0.74

> al e 20 2 o2 & (a3 & WL] o
e .\00':" o o & o o*‘-"?-‘i\h ~¢°‘b A w;ﬁ*sa ﬁ\“&\ B o o“‘\ﬂ% ab?ﬁ b}oq
A & xE N R o *59 P a0 R 2 8 b3 e e
o © & " & 8 ¢ 3 B & a8
o o & s QEP : \&{P" : q}_ab" & g
& & e o) 3

Plot 1: The above plot represents PyPy trunk (with JIT) benchmark times normalized to CPython. Smaller is better.

CPython
Source: http://speed.pypy.org/

14

http://speed.pypy.org/

Performance of JavaScript Implementations

20 19
® TraceMonkey mV8 ® Rhino

18 -

16 -

14 -

12 -

10 -

Speedup (relative to Javascript)

binarytrees fasta mandelbrot nbody spectralnorm geomean

Thank You!

Questions?

16

