
G64DBS EXERCISE 4: PHP, MYSQL AND HTML

INTRODUCTION

During this exercise we will cover how to use PHP to produce dynamic web pages based on

our database. SQL is great for declarative queries using a DBMS, but for outputting useable,

formatted documents, it falls short. Instead of trying to adapt SQL to improve the output,

we can use PHP to retrieve our database results, and convert them into good looking HTML.

You might wonder why we need to learn HTML and PHP in a module on databases. Both

HTML and PHP are extremely useful skills to learn, and learning them here will also help us

understand how databases fit into websites. Almost all big websites feature a back-end

database that runs behind the scenes, feeding information to servers that generate dynamic

HTML documents. This exercise will be a brief introduction into this.

For this exercise, we're going to extend our database tables from Exercise 3 a bit. We're

going to add a "Rating" column to the CD that represents review scores these CDs might

receive. We'll also add a "Year" column that represents the release date for the album.

Finally, we'll add a "Nationality" column to the Artist table. If you wish to, you can make all

these additions for yourself. However, to make things easier I've created a setupex4.sql file

that will do it all for you if you'd prefer. In either case, your tables should look like this:

mysql> SELECT * FROM Artist;

+-------+---------------------------------+----------------+

| artID | artName | artNationality |

+-------+---------------------------------+----------------+

| 1 | Muse | British |

| 2 | Mr. Scruff | British |

| 3 | DeadMau5 | Canadian |

| 4 | Mark Ronson | British |

| 5 | Mark Ronson & The Business Intl | British |

| 6 | Animal Collective | American |

| 7 | Kings of Leon | American |

| 8 | Maroon 5 | American |

+-------+---------------------------------+----------------+

8 rows in set (0.00 sec)

mysql> SELECT * FROM CD;

+------+-------+-----------------------------+---------+---------------+----------+--------+

| cdID | artID | cdTitle | cdPrice | cdGenre | cdRating | cdYear |

+------+-------+-----------------------------+---------+---------------+----------+--------+

| 1 | 1 | Black Holes and Revelations | 9.99 | Rock | 78 | 2006 |

| 2 | 1 | The Resistance | 11.99 | Rock | 90 | 2009 |

| 3 | 2 | Ninja Tuna | 9.99 | Electronica | 55 | 2008 |

| 4 | 3 | For Lack of a Better Name | 9.99 | Electro House | 38 | 2009 |

| 5 | 4 | Version | 11.99 | Rock | 77 | 2007 |

| 6 | 5 | Record Collection | 12.99 | Pop | 22 | 2010 |

| 7 | 6 | Merriweather Post Pavilion | 12.99 | Electronica | 82 | 2009 |

| 8 | 7 | Only By The Night | 9.99 | Rock | 67 | 2008 |

| 9 | 7 | Come Around Sundown | 12.99 | Rock | 31 | 2010 |

| 10 | 8 | Hands All Over | 11.99 | Pop | 64 | 2010 |

+------+-------+-----------------------------+---------+---------------+----------+--------+

10 rows in set (0.00 sec)

SETTING UP PHP

Before you can begin writing PHP scripts you need to create a public_html folder inside your

home directory. Begin by starting exceed, and make sure you're in your home directory.

When you log onto avon.cs.nott.ac.uk, you should see the following command line:

username@avon:~>

The :~> tells us you're in your home directory, which is represented as a ~ in linux. If you

see other directories, you can change to your home directory like this:

username@avon:~/solaris/Private> cd ~

username@avon:~>

As you can see, we were in the directory ~/solaris/Private, and after we use the

command 'cd ~', we move back into our home directory.

Now you are in your home directory, we need to create the necessary php and other files

ready for your web page. To make this process easier, we will download a compressed

website from elsewhere, and extract it into your home directory. The steps we will follow

are shown below:

1. Ensure you are logged into avon from exceed, and you are in your home directory.

2. Download the required file from the school servers using the following command:

wget http://cs.nott.ac.uk/~mpp/files/exercise4.tar.gz

This command downloads the file straight to your home directory. This file contains

all the files we need to start a website with PHP.

3. The file is a tar archive, that has also been zipped. When you extract it, it will create

the complete website you need to get started, with all the correct file permissions.

Use the following command to do this:

tar -pxzvf exercise4.tar.gz

This command will extract all the files we need. tar is the program we run, -pxzvf are

the optional flags.

 -p: Instructs the program to preserve all our file permissions. This is extremely

important

 -x: Instructs the program to extract all the files in the archive

 -z: Instructs the program to unzip all the files as well, because they have been

compressed

 -v: Instructs the program to operate in verbose mode, which increases the

information it shows us about the process

 -f: Tells the program we intend to supply a file name for the archive we are

extracting, in this case it's exercise4.tar.gz

4. Now we have downloaded and extracted the file, we should be able to view our test

website. If you open your web browser and go to

http://avon.cs.nott.ac.uk/~username/exercise4/index.php you should see a message

telling you your website has been setup successfully!

The entire process above should look like this on your Exceed terminal (highlighted in bold

are the commands you use):

EDITING THE WEB PAGE

If everything has worked correctly, you should now have a working website. Next you will

want to open up your favourite text editor (I recommend Notepad++ which is installed on all

the lab machines). Once you have an editor running you need to open the following files:

 H:/public_html/exercise4/index.php

 H:/public_html/exercise4/dbconnect.php

There are other files in the directory, such as functions.php and styles.css. We won't be

editing these in this exercise. We will be using them, so feel free to open them and have a

look at how they work. functions.php is a file containing some useful functions. styles.css is a

user@avon:~> wget http://www.cs.nott.ac.uk/~mpp/files/exercise4.tar.gz

--2010-10-23 22:30:55-- http://www.cs.nott.ac.uk/~mpp/files/exercise4.tar.gz

Resolving www.cs.nott.ac.uk... 128.243.21.19, 128.243.20.9

Connecting to www.cs.nott.ac.uk|128.243.21.19|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 3466 (3.4K) [application/x-gzip]

Saving to: `exercise4.tar.gz'

100%[==>] 3,466 --.-K/s in 0s

2010-10-23 22:30:55 (288 MB/s) - `exercise4.tar.gz' saved [3466/3466]

user@avon:~> tar -pxzvf exercise4.tar.gz

public_html/

public_html/exercise4/dbconnect.php

public_html/exercise4/styles.css

public_html/exercise4/images/

public_html/exercise4/images/blend.png

public_html/exercise4/images/flags/

public_html/exercise4/images/flags/flag1.gif

public_html/exercise4/images/flags/flag2.gif

public_html/exercise4/images/flags/flag3.gif

public_html/exercise4/index.php

public_html/exercise4/functions.php

user@avon:~>

cascading style sheet, this tells your browser how to render your website. For example,

properties like background colour and font size are stored in this file.

Index.php is the main page of the website. Currently it only contains the bare minimum

required for a webpage. That is, a pair of <html> tags, around a pair of <body> tags, and

finally the text you saw in your browser. First we'll add a header to the HTML document so

that it reads the style sheet, then we'll begin adding some content.

HTML HEADERS

The HTML <head> tag goes between the <html> tags, but before the <body> tags. We will

add a link to the styles.css file, as well as a title for our webpage. Begin by creating a pair of

<head></head> tags before the <body> start tag. If you do this correctly, your index.php file

should look like this:

<html>

<head></head>

<body>

Well done, you've successfully created your web page!

</body>

</html>

Remember, all tags in HTML need to open and close. You can tell which tags are close tags

because they contain a '/' character. Between your head tags, add a <title></title> pair, that

also contain the text you would like for your web page title. For example:

<title>G64DBS Lab</title>

Next, add the following line inside the <head> tags too:

<link rel="stylesheet" type="text/css" href="styles.css" />

This tells the browser that your HTML gets it's formatting information from styles.css. If

you've done this correctly, your website text will be centered, and your index.php will look

like this:

<html>

 <head>

 <title> G64DBS Lab </title>

 <link rel="stylesheet" type="text/css" href="styles.css" />

 </head>

 <body>

 Well done, you've successfully created your web page!

 </body>

</html>

It's useful to indent each pair of tags that appear inside others, much like you might with

SQL or PHP code. It makes it easier to read, and spot any errors.

CREATING A WEBPAGE

By this point you have a working php file, that currently only contains HTML text. Remember

that a PHP document outputs HTML, so in this case we have simply written the HTML

directly into the file. A PHP script will usually contain a combination of directly typed HTML,

and HTML that is output by PHP code.

Next we will focus on creating some content for the web page. From now onwards all PHP

code blocks and HTML text will be written between these two body tags. That is:

<body>

All web page content will go between these two tags in the

index.php file.

</body>

Begin by deleting any text that appears between the two body tags. Then write in some text

of your own. Save your file, and visit the page in your browser. When you refresh the

browser, you should see that the text has been updated to reflect your changes. From now

on, each time you add some content you might like to revisit the page in your browser, to

make sure everything is working.

Clear any text that is in your body region, and begin by adding a page Heading. This can be

achieved by adding some text into the body, between two <h1></h1> tags. Below this, add

your username between <h2></h2> tags. Your <body> region should look like this:

<body>

<h1>Database Systems</h1>

<h2>Username: user</h2>

</body>

CREATING AN HTML TABLE

Since a lot of the output of SQL is in the form of tables, it's helpful if we understand the

HTML structure we need to create tables on the web page. An HTML table is created in the

following way:

 <table></table> tags around the outside of the table element

 Inside the table tags, <tr></tr> tags for each Table Row that is required.

 Inside the tr tags, <td></td> tags for each table data cell needed.

 Inside each td tag, optional text that will appear.

For example the following code will create a 2x2 table:

<table>

<tr>

<td>Cell 1</td>

<td>Cell 2</td>

</tr>

<tr>

<td>Cell 3</td>

<td>Cell 4</td>

</tr>

</table>

Exercise: Create a table on your webpage that contains 4 rows and 3 columns per row. Put

any text you like inside each cell.

You'll notice that there are no borders at the top and bottom of some of the cells. This is

because the styles.css file has been created to format the table in this way. To make out

table look better, we should tell the browser that the top row of the table is the

"tablehead". By doing this, the browser will look inside the styles.css file for the tablehead

class. It will read the formatting information contained within, and make the top row of the

table look better. To add the tablehead class to the first row in the table, we add an

attribute class="tablehead" to our first <tr> tag. Like below:

<table>

<tr class="tablehead">

<td>Cell 1</td>

<td>Cell 2</td>

</tr>

...

</table>

Only make this change to the first row in your table, otherwise the reformatting will be

applied to every row.

Now that you know how to make a table, we should attempt to create one as if we were

working with the database. At first we will create one by hand, then we will connect to the

database and retrieve information using code.

Exercise: Create a new table using HTML that looks like the one below (Obtained using
SELECT artName, cdTitle, cdPrice, cdGenre FROM Artist NATURAL JOIN

CD WHERE artName LIKE 'M%'):

+---------------------------------+-----------------------------+---------+-------------+

| artName | cdTitle | cdPrice | cdGenre |

+---------------------------------+-----------------------------+---------+-------------+

| Mark Ronson | Version | 11.99 | Rock |

| Mark Ronson & The Business Intl | Record Collection | 12.99 | Pop |

| Maroon 5 | Hands All Over | 11.99 | Pop |

| Mr. Scruff | Ninja Tuna | 9.99 | Electronica |

| Muse | Black Holes and Revelations | 9.99 | Rock |

| Muse | The Resistance | 11.99 | Rock |

+---------------------------------+-----------------------------+---------+-------------+

It's important to become familiar with the HTML Table element, so that we can produce it

using PHP code later in the exercise.

STARTING WITH PHP

Now we're familiar with the main elements of HTML we need, we can begin using PHP to

access the database. For all remaining work in this exercise, you can either delete what you

have previous done, between <body> and </body> or you can add onto the end. It depends

on whether you'd like to keep all your previous HTML answers intact. Remember,

everything must go inside your body tags.

To begin writing a php script, we must open and close a php block. Like this:

<body>

 <h1>Database Systems<h1>

 <h2>Username<h2>

… possibly some previous tables you've created here …

<?php

?>

</body>

It's important to remember that when you're writing inside php tags, you're writing php

code. Outside of php tags, you're writing HTML text. Begin by using the echo command to

output some text using PHP. Like this:

<?php

 echo "This is some text!";

?>

Exercise: Use multiple echo commands to output 5 lines of text. The text can be anything

you like. Go to your browser and see if they appear. You might notice that they will all

appear on the same line in your webpage.

One problem with HTML is that most of the time it will ignore information that isn't text,

including new lines. We can tell HTML to put a new line in, by using
. The br tag

doesn't need anything between them, so we can use a single, self-closed tag. So to output

text on separate lines, echo some pre tags like this:

echo "some text";

echo "
";

echo "some text on a new line";

Exercise: Use the code above to separate your echo commands onto new lines in your web

page.

PHP VARIABLES

Much like other programming languages, PHP uses variables to store information

throughout a script. A variable is declared like this:

$variablename = value;

Variables in PHP can be anything you like, their type is inferred from the value you pass to it.

You can then use variables in functions, in arithmetic, and output them using echo. For

example:

$var1 = 5;

$var2 = 15;

$var1 = $var1 + 5;

echo $var1 * 20 + $var2;

Exercise: Create a variable called $variableone that equals 10. Next multiply this variable by

45, then add 50. Finally, multiply this variable by 3.14 and use echo to display the result on

your webpage.

If you wrote the code correctly, your webpage should show the number 1570.

Next we will create some strings. Strings are much like any other variable in PHP, and are

equivalent to VARCHAR in SQL. You create them in the same way, and can append strings

together using the concatenate operator '.'.

$var1 = "String text 1";

$var2 = $var1 . " and some more text";

echo $var2 . " then even more text";

Exercise: Create 3 string variables containing any text you like, then use echo to output all

strings on a single line. You may wish to add " " space strings between your variables to

output spaces too.

IF STATEMENTS

IF statements are used to run specific segments of code, depending on some conditional

statement. They are structured like this:

$varx = 15;

if($varx < 5)

{

 echo "IF Statement Run 1";

}

else if ($varx > 10)

{

 echo "ELSE IF Statement Run 2";

}

else

{

 echo "ELSE Statement Run 3";

}

The conditional part of if statements can contain boolean variables, or use variables and

conditional operators as above.

Exercise: Copy the above IF statements into your code. Then change the value of $varx to

ensure that statement 1 runs. Check in your browser to test if this has worked. Next, change

the value of $varx two more times to have the PHP script output statement 2 and statement

3.

WHILE LOOPS

While loops are useful if you'd like to run the same section of code repeatedly. For example,

we will use one to output each row of our database result later. The general structure of a

while loop is as follows:

while (condition)

{

 // Some code here

}

Let's imagine we want to output a list of numbers from 1 to 20 onto the webpage. First we

need to create a variable to hold the current number, then inside the loop we output the

number, and then add one to it. The while condition must be true while the number is less

than 21. Like this:

$number = 1;

while ($number < 21)

{

 echo $number . " ";

 $number = $number + 1;

}

Exercise: Write a while loop in your PHP code to output the numbers 10 to 30. Then try to

change the loop to output numbers 20 to 1, in reverse order! Hint: Try starting the $number

higher, and decreasing each loop.

CONNECTING TO MYSQL

By now you should understand all you need to start using database output on your web

page. We will now look at how to connect to MySQL, and query the database. In general,

the process of connecting to MySQL can be summarized as follows:

1. Use function mysql_connect() to connect to the server with your username and

password

2. Check connection has been successful

3. Use the function mysql_select_db to select your database on mysql.

4. Check selecting a database has been successful.

To make things easier, we've put all the necessary code into dbconnect.php, which you

should have open. Have a look through, and make sure you understand what it is doing. To

use this file, we need to include it into our index.php. This will run this code at the specified

point, even if it's in a different file. This means we can alter dbconnect.php once, then leave

it alone and simply include it every time we need to connect to a database.

Exercise: Look inside dbconnect.php and see how it works. Change the strings for server,

username and password to 'mysql.cs.nott.ac.uk', your username and password. You will also

need to add your username on the mysql_select_db line too. On the school servers, your

database is named the same as your username.

Exercise: Connect to mysql by including dbconnect.php inside your index.php using either

include_once() or require_once() like this:

include_once('dbconnect.php');

If you run index.php now, you should notice no change. If the connection hasn't been

successful, you will see error messages. No error messages means no problem!

At this point, your index.php file should look a little like this:

<html>

<head>

<title>G64DBS Lab</title>

 <link rel="stylesheet" type="text/css" href="styles.css" />

</head>

 <body>

 <h1>Database Systems<h1>

 <h2>Username<h2>

… possibly some previous tables you've created here …

<?php

 // Possibly some previous php exercise answers in here.

 include_once('dbconnect.php');

?>

</body>

</html>

QUERYING MYSQL FROM PHP

Now we've connected to PHP, we can send off a query to the database. You can send any

command (E.g. INSERT, CREATE, UPDATE) but for these exercises we're going to focus on

SQL SELECT. The general process for querying the database is as follows:

1. Create a string variable to hold the text of our select query. E.g. "SELECT * FROM
CD"

2. Use the mysql_query() function to send the above string to the database. This will

return a result, which we will store in a variable

3. Create a while loop to retrieve every row in the output, using the

mysql_fetch_array() function.

4. Inside the loop, we can output the result as $row['Name of Column']

The code below shows you how to achieve these steps for a very simple query. Line

numbers are shown and an explanation of each line is also provided:

1 include_once('dbconnect.php');

2

3 $query = "SELECT artName FROM Artist";

4 $result = mysql_query($query);

5

6 while ($row = mysql_fetch_array($result))

7 {

8 echo $row['artName'];

9 echo "
";

10 }

Explanation of each line:

1 Includes dbconnect.php and connects to MySQL.
2 -
3 Creates a string that holds our query.
4 Sends the query to MySQL and returns the result.
5 -
6 While loop. Obtains the next row of our result. If there are no rows

left, $row will be false and the while loop will stop.
7 -
8 Output the current 'artName' in our row to the web page.
9 Output a new line tag. So that all artists don't appear on the same

line.
10 -

Remember, all SQL SELECT queries you might wish to make can be achieved by adapting the

code above.

Exercise: Use the code above, suitably adapted, to output a list of cdTitles from the CD table

to the web page.

Exercise: Further adapt the code to output a list of "cdTitle, cdGenre" pairs, separated by a

comma. If you do it correctly, the output should look like this:

Black Holes and Revelations, Rock
The Resistance, Rock

Ninja Tuna, Electronica
For Lack of a Better Name, Electro House

Version, Rock
Record Collection, Pop

Merriweather Post Pavilion, Electronica
Only By The Night, Rock

Come Around Sundown, Rock
Hands All Over, Pop

Congratulations! You've now successfully created a dynamic web page that reads

information from a database. While this website is not particularly functional or good

looking, almost all websites are built around the principles that you've just learned.

MORE ADVANCED PHP AND MYSQL

Before we can start drawing large sets of results from our database, it would be helpful to

develop a while loop that would output HTML tables, rather than simply values separated

by commas. Remember that PHP echo writes out HTML text, so we can output the <table>

tags and create a table. A very simple example is shown below, and uses the

class="tablehead" that we learned about earlier.

$query = "SELECT artName FROM Artist";

$result = mysql_query($query);

echo "<table>";

echo "<tr class=\"tablehead\">";

echo "<td>artName</td>";

echo "</tr>";

while ($row = mysql_fetch_array($result))

{

 echo "<tr>";

echo "<td>" . $row['artName'] . "</td>";

echo "</tr>";

}

echo "</table>";

This code works in a similar way to the previous examples, but now outputs table tags

where necessary. Before and after the while loop, <table> tags tell the browser there is a

table element. We also output a single table row (<tr>) before the while loop that contains

our column names. Remember all data that goes into the table row must be in a cell, in a set

of <td> tags. Each loop we output a new table row, then a single column with our artist

name inside. We also close every tag we open, as HTML requires.

Note: We have to escape " characters when they appear inside strings. We do this with a

backslash, like this \". This makes sure that PHP knows we want " to be part of our string,

rather than the beginning or end of a string. This is very important!

Exercise: Adapt your cdTitle, cdGenre query from the previous exercise to output

information into a table instead. Each table row will need two sets of <td> tags to hold

cdTitle and cdGenre. Once you are done, your web page table should look like this:

cdTitle cdGenre

Black Holes and Revelations Rock

The Resistance Rock

Ninja Tuna Electronica

For Lack of a Better Name Electro House

Version Rock

Record Collection Pop

Merriweather Post Pavilion Electronica

Only By The Night Rock

Come Around Sundown Rock

Hands All Over Pop

Exercise: Now it gets a little more difficult! As above, use a while loop in PHP to output an

HTML table to hold the information produced by this query "SELECT artName,

cdTitle, cdGenre, cdRating, cdYear FROM Artist NATURAL JOIN CD". The

table on your web page should look like this:

artName cdTitle cdGenre cdRating cdYear

Animal Collective Merriweather Post Pavilion Electronica 82 2009

DeadMau5 For Lack of a Better Name Electro House 38 2009

Kings of Leon Only By The Night Rock 67 2008

Kings of Leon Come Around Sundown Rock 31 2010

Mark Ronson Version Rock 77 2007

Mark Ronson & The Business Intl Record Collection Pop 22 2010

Maroon 5 Hands All Over Pop 64 2010

Mr. Scruff Ninja Tuna Electronica 55 2008

Muse Black Holes and Revelations Rock 78 2006

Muse The Resistance Rock 90 2009

Exercise: Write PHP to output a table to provide a list of artist names along with the average

rating of their albums, and their nationality. You will have to design an SQL SELECT

statement for this as well. The web page output should look something like this:

artName Average Rating artNationality

Animal Collective 82.0000 American

DeadMau5 38.0000 Canadian

Kings of Leon 49.0000 American

Mark Ronson 77.0000 British

Mark Ronson & The Business Intl 22.0000 British

Maroon 5 64.0000 American

Mr. Scruff 55.0000 British

Muse 84.0000 British

Exercise: You might have noticed that our Average rating has been calculated to a very large

degree of accuracy, when in fact all we need is integer precision. Use the round() function

supplied in PHP to remove these zeros. All you need to do is use round($row['Average

Rating']) or similar, depending on your column alias. Once you're done, you should see

this:

artName Average Rating artNationality

Animal Collective 82 American

DeadMau5 38 Canadian

Kings of Leon 49 American

Mark Ronson 77 British

Mark Ronson & The Business Intl 22 British

Maroon 5 64 American

Mr. Scruff 55 British

Muse 84 British

ADVANCED HTML FORMATTING WITH PHP

The following exercises are designed to demonstrate the power of connecting to MySQL

using a programming language, rather than having all results output to simple text

terminals. We're going to start by colouring the output text for the ratings column, then

we're going to replace the nationality information with flag images!

Let's start by colouring the ratings column text, depending on what rating the artist has

received. To begin with, we'll only handle very low ratings. You can colour text in the HTML

table by applying a class to the <td> tag. The classes, like with "tablehead" from earlier, have

been defined in our styles.css file. You can use the classes like this:

<table>

<tr>

<td>Cell with regular text</td>

<td class="greatrating">Great: Green</td>

<td class="goodrating">Good: Yellow</td>

<td class="okrating">Average: Orange</td>

<td class="poorrating">Poor: Red</td>

</tr>

...

</table>

Like common music rating websites, we're going to start by colouring low ratings with red

text. Somewhere inside your while loop you should have some code that looks similar to the

following (don't worry if your aliases are different or you have split this code over multiple

lines and echo statements):

echo "<td>" . round(row['Average Rating']) . "</td>";

We still want to output the average rating for each artist, but we want to colour it

depending on what it's value is. First, we will use a variable as a temporary storage for the

Average Rating, so we can find out the value. Like this:

$roundedrating = round($row['Average Rating']);

echo "<td>" . $roundedrating . "</td>";

This will make no difference to what our page looks like yet, because we have simply read a

variable and output it again. Next we will write an if statement to determine if we want to

recolour the text, and if we do, we can use the td class:

$roundedrating = round($row['Average Rating']);

if ($roundedrating < 40)

{

echo "<td class='poorrating'>" . $roundedrating . "</td>";}

else

{

 echo "<td>" . $roundedrating . "</td>";

}

This code should colour our text red, if the rating is poor, otherwise it will remain black. If

you've done this correctly, you should see the following table on your web page, low ratings

have been coloured red:

artName Average Rating artNationality

Animal Collective 82 American

DeadMau5 38 Canadian

Kings of Leon 49 American

Mark Ronson 77 British

Mark Ronson & The Business Intl 22 British

Maroon 5 64 American

Mr. Scruff 55 British

Muse 84 British

Exercise: Extend your code using ELSE IF statements to colour the remaining ratings using

the rules below:

Average Rating Colour Class Name

0 – 39 Red 'poorrating'

40 – 59 Orange 'okrating'

60 – 79 Yellow 'goodrating'

80 – 100 Green 'greatrating'

If you do this correctly, your output should look like this:

artName Average Rating artNationality

Animal Collective 82 American

DeadMau5 38 Canadian

Kings of Leon 49 American

Mark Ronson 77 British

Mark Ronson & The Business Intl 22 British

Maroon 5 64 American

Mr. Scruff 55 British

Muse 84 British

Next will replace the string showing the artists' nationalities by images of their flag. Most of

the work has already been done for us. In your public_html/images/flags folder there

are 3 flag images that you can use. Inside functions.php there is a function called get_flag()

that will convert a string nationality into an HTML image tag.

Exercise: Use include_once to include functions.php in your code. Do not put this line

inside your while loop, put it at the top of your php near the dbconnect.php include. Next,

use the get_flag() function and pass it the nationality for each row, it will return a flag

image tag, that you can echo as normal. If you do this right, your final table should look like

this (I've renamed the column titles to make them look neater):

Artist Name Average Rating Artist Nationality

Animal Collective 82

DeadMau5 38

Kings of Leon 49

Mark Ronson 77

Mark Ronson & The Business Intl 22

Maroon 5 64

Mr. Scruff 55

Muse 84

Last of all, we'll use some CSS formatting to make the web page look a lot nicer! All the code

is written for us in functions.php, and we've already included it so we just need to make use

of the functions. We're going to use two functions, start_div_region($title) and

end_div_region(). If you like, open functions.php and have a look at these. They simply

output some more HTML tags, that are formatted using styles.css.

You can use these functions as many times as you like, to put each of your tables into a nice

web page region, with a border and title. Before you use echo "<table>"; you must call

start_div_region("Name of Table") with any name you like. After the while loop

and closing table tag, you can use end_div_region(). Like this:

start_div_region("Table showing Artist Names and CD Information");

... The rest of your table code and while loop ...

end_div_region();

Exercise: Use the two functions described above to place your table inside a border. Make

sure that all table HTML code is inside between the two functions. If all goes well, your final

web page will look like this:

You may still have other tables and output from previous exercises, don't worry about this.

