
LAB MANUAL

for

Diane Christie
University of Wisconsin – Stout

Addison-Wesley

New York Boston San Francisco

London Toronto Sydney Toyko Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Publisher Greg Tobin
Executive Editor Michael Hirsch
Associate Editor Lindsey Triebel
Cover Designer Nicole Clayton
Senior Marketing Manager Michelle Brown
Marketing Assistant Sarah Milmore
Prepress and Manufacturing Carol Melville
Supplement Coordination Marianne Groth
Proofreader Melanie Aswell

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Copyright © 2008 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. For information on obtaining permission for
use of material in this work, please submit a written request to Pearson Education, Inc.,
Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston, MA 02116,
fax your request to 617-848-7047, or e-mail at http://www.pearsoned.com/legal/per-
missions.htm.

ISBN 0-321-51690-7
1 2 3 4 5 6 7 8 9 10—BB—10 09 08 07

Gaddis_516907_Java 4/10/07 2:10 PM Page ii

Preface

About this Lab Manual

This lab manual accompanies Starting Out With Java: From Control Structures to
Objects, by Tony Gaddis. Each lab gives students hands on experience with the major
topics in each chapter. It is designed for closed laboratories—regularly scheduled
classes supervised by an instructor, with a length of approximately two hours. Lab
manual chapters correspond to textbook chapters. Each chapter in the lab manual con-
tains learning objectives, an introduction, one or two projects with various tasks for the
students to complete, and a listing of the code provided as the starting basis for each
lab. Labs are intended to be completed after studying the corresponding textbook
chapter, but prior to programming challenges for each chapter in the textbook.

Students should copy the partially written code (available at www.aw.com/cssupport)
and use the instructions provided in each task to complete the code so that it is opera-
tional. Instructions will guide them through each lab having them add code at speci-
fied locations in the partially written program. Students will gain experience in writing
code, compiling and debugging, writing testing plans, and finally executing and testing
their programs.

Note: Labs 7 and 12 are written entirely by the student using the instructions in
the various tasks, so there is no code provided as a starting basis.

What You’ll Find in this Lab Manual

The Lab Manual contains 15 labs that help students learn how to apply introductory
programming concepts:

• Chapter 1 Lab Algorithms, Errors, and Testing
• Chapter 2 Lab Java Fundamentals
• Chapter 3 Lab Selection Control Structures
• Chapter 4 Lab Loops and Files
• Chapter 5 Lab Methods
• Chapter 6 Lab Classes and Objects
• Chapter 7 Lab GUI Applications
• Chapter 8 Lab Arrays
• Chapter 9 Lab More Classes and Objects
• Chapter 10 Lab Text Processing and Wrapper Classes
• Chapter 11 Lab Inheritance
• Chapter 12 Lab Exceptions and Advanced File I/O
• Chapter 13 Lab Advanced GUI Applications
• Chapter 14 Lab Applets and More
• Chapter 15 Lab Recursion

Gaddis_516907_Java 4/10/07 2:10 PM Page iii

Supplementary Materials

• Students can find source code files for the labs at www.aw.com/cssupport, under
author “Christie” and title “Lab Manual to Accompany Starting Out with Java:
From Control Structures to Objects” or “Gaddis”, “Starting Out with Java: From
Control Structures to Objects.”

• Solution files and source code are available to qualified instructors at Addison-
Wesley’s Instructor Resource Center. Register at www.aw.com/irc and search for
author “Gaddis.”

Acknowledgements

I would like to thank everyone at Addison-Wesley for making this lab manual a reality,
Tony Gaddis for having the confidence in me to write labs to accompany his books and
my colleagues who have contributed ideas to help develop these labs.

I also thank my students at the University of Wisconsin-Stout for giving me feed-
back on these labs to continue to improve them.

Most of all, I want to thank my family: Michael, Andrew, and Pamela for all of
their encouragement, patience, love, and support.

iv Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page iv

Contents

Chapter 1 Lab Algorithms, Errors, and Testing 1

Chapter 2 Lab Java Fundamentals 9

Chapter 3 Lab Selection Control Structures 21

Chapter 4 Lab Loops and Files 31

Chapter 5 Lab Methods 41

Chapter 6 Lab Classes and Objects 51

Chapter 7 Lab GUI Applications 61

Chapter 8 Lab Arrays 67

Chapter 9 Lab More Classes and Objects 75

Chapter 10 Lab Text Processing and Wrapper Classes 87

Chapter 11 Lab Inheritance 97

Chapter 12 Lab Exceptions and Advanced File I/O 109

Chapter 13 Lab Advanced GUI Applications 113

Chapter 14 Lab Applets and More 121

Chapter 15 Lab Recursion 127

Gaddis_516907_Java 4/10/07 2:10 PM Page v

Gaddis_516907_Java 4/10/07 2:10 PM Page vi

Chapter 1 Lab
Algorithms, Errors, and Testing

Objectives
• Be able to write an algorithm
• Be able to compile a Java program
• Be able to execute a Java program using the Sun JDK or a Java IDE
• Be able to test a program
• Be able to debug a program with syntax and logic errors

Introduction

Your teacher will introduce your computer lab and the environment you will be using
for programming in Java.

In chapter 1 of the textbook, we discuss writing your first program. The example
calculates the user’s gross pay. It calculates the gross pay by multiplying the number of
hours worked by hourly pay rate. However, it is not always calculated this way. What
if you work 45 hours in a week? The hours that you worked over 40 hours are consid-
ered overtime. You will need to be paid time and a half for the overtime hours you
worked.

In this lab, you are given a program which calculates user’s gross pay with or with-
out overtime. You are to work backwards this time, and use pseudocode to write an
algorithm from the Java code. This will give you practice with algorithms while allow-
ing you to explore and understand a little Java code before we begin learning the Java
programming language.

You will also need to test out this program to ensure the correctness of the algo-
rithm and code. You will need to develop test data that will represent all possible kinds
of data that the user may enter.

You will also be debugging a program. There are several types of errors. In this lab,
you will encounter syntax and logic errors. We will explore runtime errors in lab 2.

1. Syntax Errors—errors in the “grammar” of the programming language. These
are caught by the compiler and listed out with line number and error found. You
will learn how to understand what they tell you with experience. All syntax
errors must be corrected before the program will run. If the program runs, this

Gaddis_516907_Java 4/10/07 2:10 PM Page 1

does not mean that it is correct, only that there are no syntax errors. Examples
of syntax errors are spelling mistakes in variable names, missing semicolon,
unpaired curly braces, etc.

2. Logic Errors—errors in the logic of the algorithm. These errors emphasize the
need for a correct algorithm. If the statements are out of order, if there are
errors in a formula, or if there are missing steps, the program can still run and
give you output, but it may be the wrong output. Since there is no list of errors
for logic errors, you may not realize you have errors unless you check your out-
put. It is very important to know what output you expect. You should test your
programs with different inputs, and know what output to expect in each case.
For example, if your program calculates your pay, you should check three dif-
ferent cases: less than 40 hours, 40 hours, and more than 40 hours. Calculate
each case by hand before running your program so that you know what to
expect. You may get a correct answer for one case, but not for another case.
This will help you figure out where your logic errors are.

3. Run time errors—errors that do not occur until the program is run, and then
may only occur with some data. These errors emphasize the need for complete-
ly testing your program.

2 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 2

Task #1 Writing an Algorithm

1. Copy the file Pay.java (see code listing 1.1) from www.aw.com/cssupport or as
directed by your instructor.

2. Open the file in your Java Integrated Development Environment (IDE) or a text
editor as directed by your instructor. Examine the file, and compare it with the
detailed version of the pseudocode in step number 3, section 1.6 of the text-
book. Notice that the pseudocode does not include every line of code. The pro-
gram code includes identifier declarations and a statement that is needed to
enable Java to read from the keyboard. These are not part of actually complet-
ing the task of calculating pay, so they are not included in the pseudocode. The
only important difference between the example pseudocode and the Java code
is in the calculation. Below is the detailed pseudocode from the example, but
without the calculation part. You need to fill in lines that tell in English what
the calculation part of Pay.java is doing.

Display How many hours did you work?
Input hours
Display How much do you get paid per hour?
Input rate

Display the value in the pay variable.

Chapter 1 Lab Algorithms, Errors, and Testing 3

Gaddis_516907_Java 4/10/07 2:10 PM Page 3

Task #2 Compile and Execute a Program

1. Compile the Pay.java using the Sun JDK or a Java IDE as directed by your
instructor.

2. You should not receive any error messages.

3. When this program is executed, it will ask the user for input. You should calcu-
late several different cases by hand. Since there is a critical point at which the
calculation changes, you should test three different cases: the critical point, a
number above the critical point, and a number below the critical point. You
want to calculate by hand so that you can check the logic of the program. Fill
in the chart below with your test cases and the result you get when calculating
by hand.

4. Execute the program using your first set of data. Record your result. You will
need to execute the program three times to test all your data. Note: you do not
need to compile again. Once the program compiles correctly once, it can be
executed many times. You only need to compile again if you make changes to
the code.

4 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Hours Rate Pay (hand calculated) Pay (program result)

Gaddis_516907_Java 4/10/07 2:10 PM Page 4

Task #3 Debugging a Java Program

1. Copy the file SalesTax.java (see code listing 1.2) from www.aw.com/cssupport
or as directed by your instructor.

2. Open the file in your IDE or text editor as directed by your instructor. This file
contains a simple Java program that contains errors. Compile the program. You
should get a listing of syntax errors. Correct all the syntax errors, you may
want to recompile after you fix some of the errors.

3. When all syntax errors are corrected, the program should compile. As in the
previous exercise, you need to develop some test data. Use the chart below to
record your test data and results when calculated by hand.

4. Execute the program using your test data and recording the results. If the output
of the program is different from what you calculated, this usually indicates a
logic error. Examine the program and correct logic error. Compile the program
and execute using the test data again. Repeat until all output matches what is
expected.

Chapter 1 Lab Algorithms, Errors, and Testing 5

Item Price Tax Total (calculated) Total (output)

Gaddis_516907_Java 4/10/07 2:10 PM Page 5

6 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Code Listing 1.1 (Pay.java)

//This program calculates the user’s gross pay

import java.util.Scanner; //to be able to read from the keyboard

public class Pay

{

public static void main(String [] args)

{

//create a Scanner object to read from the keyboard

Scanner keyboard = new Scanner(System.in);

//identifier declarations

double hours; //number of hours worked

double rate; //hourly pay rate

double pay; //gross pay

//display prompts and get input

System.out.print("How many hours did you work? ");

hours = keyboard.nextDouble();

System.out.print("How much do you get paid per hour? ");

rate = keyboard.nextDouble();

//calculations

if(hours <= 40)

pay = hours * rate;

else

pay = (hours - 40) * (1.5 * rate) + 40 * rate;

//display results

System.out.println("You earned $" + pay);

}

}

Gaddis_516907_Java 4/10/07 2:10 PM Page 6

Chapter 1 Lab Algorithms, Errors, and Testing 7

Code Listing 1.2 (SalesTax.java)

//This program calculates the total price which includes sales tax

import java.util.Scanner;

public class SalesTax

{

public static void main(String[] args)

{

//identifier declarations

final double TAX_RATE = 0.055;

double price;

double tax

double total;

String item;

//create a Scanner object to read from the keyboard

Scanner keyboard = new Scanner(System.in);

//display prompts and get input

System.out.print("Item description: ");

item = keyboard.nextLine();

System.out.print("Item price: $");

price = keyboard.nextDouble();

//calculations

tax = price + TAX_RATE;

total = price * tax;

//display results

System.out.print(item + " $");

System.out.println(price);

System.out.print("Tax $");

System.out.println(tax);

System.out.print("Total $");

System.out.println(total);

}

}

Gaddis_516907_Java 4/10/07 2:10 PM Page 7

Gaddis_516907_Java 4/10/07 2:10 PM Page 8

Chapter 2 Lab
Java Fundamentals

Objectives
• Write arithmetic expressions to accomplish a task
• Use casting to convert between primitive types
• Use a value-returning library method and a library constant
• Use string methods to manipulate string data
• Communicate with the user by using the Scanner class or dialog boxes
• Create a program from scratch by translating a pseudocode algorithm
• Be able to document a program

Introduction

This lab is designed to give you practice with some of the basics in Java. We will con-
tinue ideas from lab 1 by correcting logic errors while looking at mathematical formu-
las in Java. We will explore the difference between integer division and division on
your calculator as well as reviewing the order of operations.

We will also learn how to use mathematical formulas that are preprogrammed in
Java. On your calculator there are buttons to be able to do certain operations, such as
raise a number to a power or use the number pi. Similarly, in Java, we will have pro-
grams that are available for our use that will also do these operations. Mathematical
operations that can be performed with the touch of a button on a calculator are also
available in the Math class. We will learn how to use a Math class method to cube the
radius in the formula for finding the volume of a sphere.

This lab also introduces communicating with the user. We have already seen how
console input and output work in lab 1. We will now need to learn how to program
user input, by investigating the lines of code that we need to add in order to use the
Scanner class. We will also learn the method call needed for output.

Alternately, you may use dialog boxes for communicating with the user. An intro-
duction to graphical user interface (GUI) programming is explored using the
JOptionPane class.

The String class is introduced and we will use some of the available methods to
prepare you for string processing.

Gaddis_516907_Java 4/10/07 2:10 PM Page 9

We will bring everything we have learned together by creating a program from an
algorithm. Finally, you will document the program by adding comments. Comments
are not read by the computer, they are for use by the programmer. They are to help a
programmer document what the program does and how it accomplishes it. This is very
important when a programmer needs to modify code that is written by another person.

10 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 10

Task #1 Correcting Logic Errors in Formulas

1. Download the file NumericTypes.java (see code listing 2.1) from
www.aw.com/cssupport or as directed by your instructor.

2. Compile the source file, run the program, and observe the output. Some of the
output is incorrect. You need to correct logic errors in the average formula
and the temperature conversion formula. The logic errors could be due to con-
version between data types, order of operations, or formula problems. The nec-
essary formulas are

3. Each time you make changes to the program code, you must compile again for
the changes to take effect before running the program again.

4. Make sure that the output makes sense before you continue. The average of 95
and 100 should be 97.5 and the temperature that water boils is 100 degrees
Celsius.

C =
5
9(F - 32)average =

score1 + score2
numberOfScores

Chapter 2 Lab Java Fundamentals 11

Gaddis_516907_Java 4/10/07 2:10 PM Page 11

Task #2 Using the Scanner Class for User Input

1. Add an import statement above the class declaration to make the Scanner class
available to your program.

2. In the main method, create a Scanner object and connect it to the System.in
object.

3. Prompt the user to enter his/her first name.

4. Read the name from the keyboard using the nextLine method, and store it into
a variable called firstName (you will need to declare any variables you use).

5. Prompt the user to enter his/her last name.

6. Read the name from the keyboard and store it in a variable called lastName.

7. Concatenate the firstName and lastName with a space between them and
store the result in a variable called fullName.

8. Print out the fullName.

9. Compile, debug, and run, using your name as test data.

10. Since we are adding on to the same program, each time we run the program we
will get the output from the previous tasks before the output of the current task.

12 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 12

Task #2 (Alternate) Using Dialog Boxes for User Input

1. Add an import statement above the class declaration to make the JOptionPane
class available to your program.

2. In the main method, prompt the user to enter his/her first name by displaying
an input dialog box and storing the user input in a variable called firstName
(you will need to declare any variables you use).

3. Prompt the user to enter his/her last name by displaying an input dialog box
and storing the user input in a variable called lastName.

4. Concatenate the firstName and lastName with a space between them and
store the result in a variable called fullName.

5. Display the fullName using a message dialog box.

6. Compile, debug, and run, using your name as test data.

7. Since we are adding on to the same program, each time we run the program we
will get the output from the previous tasks before the output of the current task.

Chapter 2 Lab Java Fundamentals 13

Gaddis_516907_Java 4/10/07 2:10 PM Page 13

Task #3 Working with Strings

1. Use the charAt method to get the first character in firstName and store it in
a variable called firstInitial (you will need to declare any variables that
you use).

2. Print out the user’s first initial.

3. Use the toUpperCase method to change the fullName to all capitals and
store it back into the fullName variable

4. Add a line that prints out the value of fullName and how many characters
(including the space) are in the string stored in fullName (use the method
length to obtain that information).

5. Compile, debug, and run. The new output added on after the output from the
previous tasks should have your initials and your full name in all capital letters.

14 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 14

Task #4 Using Predefined Math Functions

1. Add a line that prompts the user to enter the diameter of a sphere.

2. Read in and store the number into a variable called diameter (you will need to
declare any variables that you use).

3. The diameter is twice as long as the radius, so calculate and store the radius in
an appropriately named variable.

4. The formula for the volume of a sphere is

Convert the formula to Java and add a line which calculates and stores the
value of volume in an appropriately named variable. Use Math.PI for and
Math.pow to cube the radius.

5. Print your results to the screen with an appropriate message.

6. Compile, debug, and run using the following test data and record the results.

p

V =
4
3pr3

Chapter 2 Lab Java Fundamentals 15

Diameter Volume (hand calculated) Volume (resulting output)

2

25.4

875,000

Gaddis_516907_Java 4/10/07 2:10 PM Page 15

Task #5 Create a program from scratch

In this task the student will create a new program that calculates gas mileage in miles
per gallon. The student will use string expressions, assignment statements, input and
output statements to communicate with the user.

1. Create a new file in your IDE or text editor.

2. Create the shell for your first program by entering:
public class Mileage
{

public static void main(String[] args)
{

// add your declaration and code here
}

}

3. Save the file as Mileage.java.

4. Translate the algorithm below into Java. Don’t forget to declare variables
before they are used. Each variable must be one word only (no spaces).

Print a line indicating this program will calculate mileage
Print prompt to user asking for miles driven
Read in miles driven
Print prompt to user asking for gallons used
Read in gallons used
Calculate miles per gallon by dividing miles driven by gallons used
Print miles per gallon along with appropriate labels

5. Compile the program and debug, repeating until it compiles successfully.

6. Run the program and test it using the following sets of data and record the
results:

16 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Miles driven Gallons used Miles per gallon Miles per gallon
(hand calculated) (resulting output)

2000 100

500 25.5

241.5 10

100 0

7. The last set of data caused the computer to divide 100 by 0, which resulted in
what is called a runtime error. Notice that runtime can occur on programs
which compile and run on many other sets of data. This emphasizes the need to
thoroughly test you program with all possible kinds of data.

Gaddis_516907_Java 4/10/07 2:10 PM Page 16

Task #6 Documenting a Java Program

1. Compare the code listings of NumericTypes.java with Mileage.java. You will
see that NumericTypes.java has lines which have information about what the
program is doing. These lines are called comments and are designated by the
// at the beginning of the line. Any comment that starts with /** and ends
with */ is considered a documentation comment. These are typically written
just before a class header, giving a brief description of the class. They are also
used for documenting methods in the same way.

2. Write a documentation comment at the top of the program which indicates the
purpose of the program, your name, and today’s date.

3. Add comment lines after each variable declaration, indicating what each vari-
able represents.

4. Add comment lines for each section of the program, indicating what is done in
that section.

5. Finally add a comment line indicating the purpose of the calculation.

Chapter 2 Lab Java Fundamentals 17

Gaddis_516907_Java 4/10/07 2:10 PM Page 17

Code Listing 2.1 (NumericTypes.java)

//TASK #2 Add import statement here to use the Scanner class

//TASK #2 (Alternate) Add import statment to use JOptionPane
//class

/**
This program demonstrates how numeric types and operators behave

*/

public class NumericTypes

{

public static void main (String [] args)

{

//TASK #2 Create a Scanner object here

//(not used for alternate)

//identifier declarations

final int NUMBER = 2 ; // number of scores

final int SCORE1 = 100; // first test score

final int SCORE2 = 95; // second test score

final int BOILING_IN_F = 212; // freezing temperature

int fToC; // temperature in Celsius

double average; // arithmetic average

String output; // line of output to print out

//TASK #2 declare variables used here

//TASK #3 declare variables used here

//TASK #4 declare variables used here

// Find an arithmetic average

average = SCORE1 + SCORE2 / NUMBER;

output = SCORE1 + " and " + SCORE2 +

" have an average of " + average;

System.out.println(output);

// Convert Fahrenheit temperatures to Celsius

fToC = 5/9 * (BOILING_IN_F - 32);

output = BOILING_IN_F + " in Fahrenheit is " + fToC

+ " in Celsius.";

Code Listing 2.1 continued on next page.

18 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 18

System.out.println(output);

System.out.println(); // to leave a blank line

// ADD LINES FOR TASK #2 HERE

// prompt the user for first name

// read the user’s first name

// prompt the user for last name

// read the user’s last name

// concatenate the user’s first and last names

// print out the user’s full name

System.out.println(); // to leave a blank line

// ADD LINES FOR TASK #3 HERE

// get the first character from the user’s first name

// print out the user’s first initial

// convert the user’s full name to all capital letters

// print out the user’s full name in all capital

// letters and the number of characters in it

System.out.println(); // to leave a blank line

// ADD LINES FOR TASK #4 HERE

// prompt the user for a diameter of a sphere

// read the diameter

// calculate the radius

// calculate the volume

// print out the volume

}

}

Chapter 2 Lab Java Fundamentals 19

Gaddis_516907_Java 4/10/07 2:10 PM Page 19

Gaddis_516907_Java 4/10/07 2:10 PM Page 20

Chapter 3 Lab
Selection Control Structures

Objectives
• Be able to construct boolean expressions to evaluate a given condition
• Be able to compare Strings
• Be able to use a flag
• Be able to construct if and if-else-if statements to perform a specific task
• Be able to construct a switch statement
• Be able to format numbers

Introduction

Up to this point, all the programs you have had a sequential control structure. This
means that all statements are executed in order, one after another. Sometimes we need
to let the computer make decisions, based on the data. A selection control structure
allows the computer to select which statement to execute.

In order to have the computer make a decision, it needs to do a comparison. So we
will work with writing boolean expressions. Boolean expressions use relational opera-
tors and logical operators to create a condition that can be evaluated as true or false.

Once we have a condition, we can conditionally execute statements. This means
that there are statements in the program that may or may not be executed, depending
on the condition.

We can also chain conditional statements together to allow the computer to choose
from several courses of action. We will explore this using nested if-else statements as
well as a switch statement.

In this lab, we will be editing a pizza ordering program. It creates a Pizza object to
the specifications that the user desires. It walks the user through ordering, giving the
user choices, which the program then uses to decide how to make the pizza and how
much the cost of the pizza will be. The user will also receive a $2.00 discount if
his/her name is Mike or Diane.

Gaddis_516907_Java 4/10/07 2:10 PM Page 21

Task #1 The if Statement, Comparing Strings, and Flags

1. Copy the file PizzaOrder.java (see code listing 3.1) from www.aw.com/cssup-
port or as directed by your instructor.

2. Compile and run PizzaOrder.java. You will be able to make selections, but at
this point, you will always get a Hand-tossed pizza at a base cost of $12.99 no
matter what you select, but you will be able to choose toppings, and they
should add into the price correctly. You will also notice that the output does not
look like money. So we need to edit PizzaOrder.java to complete the program
so that it works correctly.

3. Construct a simple if statement. The condition will compare the String input by
the user as his/her first name with the first names of the owners, Mike and
Diane. Be sure that the comparison is not case sensitive.

4. If the user has either first name, set the discount flag to true. This will not
affect the price at this point yet.

22 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 22

Task #2 The if-else-if Statement

1. Write an if-else-if statement that lets the computer choose which statements to
execute by the user input size (10, 12, 14, or 16). For each option, the cost
needs to be set to the appropriate amount.

2. The default else of the above if-else-if statement should print a statement that
the user input was not one of the choices, so a 12 inch pizza will be made. It
should also set the size to 12 and the cost to 12.99.

3. Compile, debug, and run. You should now be able to get correct output for size
and price (it will still have Hand-tossed crust, the output won’t look like money,
and no discount will be applied yet). Run your program multiple times ordering
a 10, 12, 14, 16, and 17 inch pizza.

Chapter 3 Lab Selection Control Structures 23

Gaddis_516907_Java 4/10/07 2:10 PM Page 23

Task #3 Switch Statement

1. Write a switch statement that compares the user’s choice with the appropriate
characters (make sure that both capital letters and small letters will work).

2. Each case will assign the appropriate string indicating crust type to the crust
variable.

3. The default case will print a statement that the user input was not one of the
choices, so a Hand-tossed crust will be made.

4. Compile, debug, and run. You should now be able to get crust types other than
Hand-tossed. Run your program multiple times to make sure all cases of the
switch statement operate correctly.

24 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 24

Task #4 Using a Flag as a Condition

1. Write an if statement that uses the flag as the condition. Remember that the
flag is a Boolean variable, therefore is true or false. It does not have to be com-
pared to anything.

2. The body of the if statement should contain two statements:
a) A statement that prints a message indicating that the user is eligible for a

$2.00 discount.
b) A statement that reduces the variable cost by 2.

3. Compile, debug, and run. Test your program using the owners’ names (both
capitalized and not) as well as a different name. The discount should be cor-
rectly at this time.

Chapter 3 Lab Selection Control Structures 25

Gaddis_516907_Java 4/10/07 2:10 PM Page 25

Task #5 Formatting Numbers

1. Add an import statement to use the DecimalFormat class as indicated above the
class declaration.

2. Create a DecimalFormat object that always shows 2 decimal places.

3. Edit the appropriate lines in the main method so that any monetary output has 2
decimal places.

4. Compile, debug, and run. Your output should be completely correct at this time,
and numeric output should look like money.

26 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 26

Code Listing 3.1 (PizzaOrder.java)

import java.util.Scanner;

import java.text.DecimalFormat;

/**
This program allows the user to order a pizza

*/

public class PizzaOrder

{

public static void main (String [] args)

{

//TASK #5 Create a DecimalFormat object with 2 decimal

//places

//Create a Scanner object to read input

Scanner keyboard = new Scanner (System.in);

String firstName; //user’s first name

boolean discount = false; //flag, true if user is

//eligible for discount

int inches; //size of the pizza

char crustType; //code for type of crust

String crust = "Hand-tossed"; //name of crust

double cost = 12.99; //cost of the pizza

final double TAX_RATE = .08; //sales tax rate

double tax; //amount of tax

char choice; //user’s choice

String input; //user input

String toppings = "Cheese "; //list of toppings

int numberOfToppings = 0; //number of toppings

//prompt user and get first name

System.out.println("Welcome to Mike and Diane’s Pizza");

System.out.print("Enter your first name: ");

firstName = keyboard.nextLine();

Code Listing 3.1 continued on next page.

Chapter 3 Lab Selection Control Structures 27

Gaddis_516907_Java 4/10/07 2:10 PM Page 27

//determine if user is eligible for discount by

//having the same first name as one of the owners

//ADD LINES HERE FOR TASK #1

//prompt user and get pizza size choice

System.out.println("Pizza Size (inches) Cost");

System.out.println(" 10 $10.99”);

System.out.println(" 12 $12.99");

System.out.println(" 14 $14.99");

System.out.println(" 16 $16.99");

System.out.println("What size pizza would you like?");

System.out.print(

"10, 12, 14, or 16 (enter the number only): ");

inches = keyboard.nextInt();

//set price and size of pizza ordered

//ADD LINES HERE FOR TASK #2

//consume the remaining newline character

keyboard.nextLine();

//prompt user and get crust choice

System.out.println("What type of crust do you want? ");

System.out.print("(H)Hand-tossed, (T) Thin-crust, or " +

"(D) Deep-dish (enter H, T, or D): ");

input = keyboard.nextLine();

crustType = input.charAt(0);

//set user’s crust choice on pizza ordered

//ADD LINES FOR TASK #3

//prompt user and get topping choices one at a time

System.out.println("All pizzas come with cheese.");

System.out.println("Additional toppings are $1.25 each,"

+ " choose from");

System.out.println("Pepperoni, Sausage, Onion, Mushroom");

Code Listing 3.1 continued on next page.

28 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 28

//if topping is desired,

//add to topping list and number of toppings

System.out.print("Do you want Pepperoni? (Y/N): ");

input = keyboard.nextLine();

choice = input.charAt(0);

if (choice == ‘Y’ || choice == ‘y’)

{

numberOfToppings += 1;

toppings = toppings + "Pepperoni ";

}

System.out.print("Do you want Sausage? (Y/N): ");

input = keyboard.nextLine();

choice = input.charAt(0);

if (choice == ‘Y’ || choice == ‘y’)

{

numberOfToppings += 1;

toppings = toppings + "Sausage ";

}

System.out.print("Do you want Onion? (Y/N): ");

input = keyboard.nextLine();

choice = input.charAt(0);

if (choice == ‘Y’ || choice == ‘y’)

{

numberOfToppings += 1;

toppings = toppings + "Onion ";

}

System.out.print("Do you want Mushroom? (Y/N): ");

input = keyboard.nextLine();

choice = input.charAt(0);

if (choice == ‘Y’ || choice == ‘y’)

{

numberOfToppings += 1;

toppings = toppings + "Mushroom ";

}

//add additional toppings cost to cost of pizza

Code Listing 3.1 continued on next page.

Chapter 3 Lab Selection Control Structures 29

Gaddis_516907_Java 4/10/07 2:10 PM Page 29

cost = cost + (1.25*numberOfToppings);

//display order confirmation

System.out.println();

System.out.println("Your order is as follows: ");

System.out.println(inches + " inch pizza");

System.out.println(crust + " crust");

System.out.println(toppings);

//apply discount if user is eligible

//ADD LINES FOR TASK #4 HERE

//EDIT PROGRAM FOR TASK #5

//SO ALL MONEY OUTPUT APPEARS WITH 2 DECIMAL PLACES

System.out.println("The cost of your order is: $" + cost);

//calculate and display tax and total cost

tax = cost * TAX_RATE;

System.out.println("The tax is: $" + tax);

System.out.println("The total due is: $" + (tax+cost));

System.out.println(

"Your order will be ready for pickup in 30 minutes.");

}

}

30 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 30

Chapter 4 Lab
Loops and Files

Objectives
• Be able to convert an algorithm using control structures into Java
• Be able to write a while loop
• Be able to write an do-while loop
• Be able to write a for loop
• Be able to use the Random class to generate random numbers
• Be able to use file streams for I/O
• Be able to write a loop that reads until end of file
• Be able to implement an accumulator and a counter

Introduction

This is a simulation of rolling dice. Actual results approach theory only when the sam-
ple size is large. So we will need to repeat rolling the dice a large number of times (we
will use 10,000). The theoretical probability of rolling doubles of a specific number is
1 out of 36 or approximately 278 out of 10,000 times that you roll the pair of dice.
Since this is a simulation, the numbers will vary a little each time you run it.

Check out how to use the random number generator (introduced in section 4.11 of
the text) to get a number between 1 and 6 to create the simulation.

We will continue to use control structures that we have already learned, while
exploring control structures used for repetition. We shall also continue our work with
algorithms, translating a given algorithm to java in order to complete our program. We
will start with a while loop, then use the same program, changing the while loop to a
do-while loop, and then a for loop.

We will be introduced to file input and output. We will read a file, line by line, con-
verting each line into a number. We will then use the numbers to calculate the mean
and standard deviation.

First we will learn how to use file output to get results printed to a file. Next we
will use file input to read the numbers from a file and calculate the mean. Finally, we
will see that when the file is closed, and then reopened, we will start reading from the
top of the file again so that we can calculate the standard deviation.

Gaddis_516907_Java 4/10/07 2:10 PM Page 31

Task #1 While loop

1. Copy the file DiceSimulation.java (see code listing 4.1) from
www.aw.com/cssupport or as directed by your instructor. DiceSimulation.java
is incomplete. Since there is a large part of the program missing, the output will
be incorrect if you run DiceSimulation.java.

2. I have declared all the variables. You need to add code to simulate rolling the
dice and keeping track of the doubles. Convert the algorithm below to Java and
place it in the main method after the variable declarations, but before the output
statements. You will be using several control structures: a while loop and an if-
else-if statement nested inside another if statement. Use the indenting of the
algorithm to help you decide what is included in the loop, what is included in
the if statement, and what is included in the nested if-else-if statement.

3. To “roll” the dice, use the nextInt method of the random number generator to
generate an integer from 1 to 6.

Repeat while the number of dice rolls are less than the number of times the dice should
be rolled.

Get the value of the first die by “rolling” the first die
Get the value of the second die by “rolling” the second die
If the value of the first die is the same as the value of the second die

If value of first die is 1
Increment the number of times snake eyes were rolled

Else if value of the first die is 2
Increment the number of times twos were rolled

Else if value of the first die is 3
Increment the number of times threes were rolled

Else if value of the first die is 4
Increment the number of times fours were rolled
Else if value of the first die is 5

Increment the number of times fives were rolled
Else if value of the first die is 6

Increment the number of times sixes were rolled
Increment the number of times the dice were rolled

4. Compile and run. You should get numbers that are somewhat close to 278 for
each of the different pairs of doubles. Run it several times. You should get dif-
ferent results than the first time, but again it should be somewhat close to 278.

32 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 32

Task #2 Using Other Types of Loops

1. Change the while loop to a do-while loop. Compile and run. You should get the
same results.

2. Change the do loop to a for loop. Compile and run. You should get the same
results.

Chapter 4 Lab Loops and Files 33

Gaddis_516907_Java 4/10/07 2:10 PM Page 33

Task #3 Writing Output to a File

1. Copy the files StatsDemo.java (see code listing 4.2) and Numbers.txt from
www.aw.com/cssupport or as directed by your instructor.

2. First we will write output to a file:
a) Create a PrintWriter object passing it the filename “Results.txt” (Don’t for-

get the needed import statement).
b) Since you are using a PrintWriter object, add a throws clause to the main

method header.
c) Print the mean and standard deviation to the output file using a three deci-

mal format, labeling each.
d) Close the output file.

3. Compile, debug, and run. You will need to type in the filename Numbers.txt.
You should get no output to the console, but running the program will create a
file called Results.txt with your output. The output you should get at this point
is: mean = 0.000, standard deviation = 0.000. This is not the correct mean or
standard deviation for the data, but we will fix this in the next tasks.

34 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 34

Task #4 Calculating the Mean

1. Now we need to add lines to allow us to read from the input file and calculate
the mean.
a) Create a File object passing it the filename.
b) Create a Scanner object passing it the File object.

2. Write a loop that reads items from the filr until you are at the end of the file.
The body of the loop will
a) read a double from the file
b) add the value that was read from the file to the accumulator
c) increment the counter

3. When the loop terminates, close the input file.

4. Calculate and store the mean. The mean is calculated by dividing the accumula-
tor by the counter.

5. Compile, debug, and run. You should now get a mean of 77.444, but the stan-
dard deviation will still be 0.000.

Chapter 4 Lab Loops and Files 35

Gaddis_516907_Java 4/10/07 2:10 PM Page 35

Task #5 Calculating the Standard Deviation

1. We need to reconnect to the file so that we can start reading from the top again.
a) Create a File object passing it the filename.
b) Create a Scanner object passing it the File object.

2. Reinitialize sum and count to 0.

3. Write a loop that reads items from the file until you are at the end of the file.
The body of the loop will
a) read a double file from the file
b) subtract the mean from the value that was read from the file and store the

result in difference
c) add the square of the difference to the accumulator
d) increment the counter

4. When the loop terminates, close the input file.

5. The variance is calculated by dividing the accumulator (sum of the squares of
the difference) by the counter. Calculate the standard deviation by taking the
square root of the variance (Use Math.sqrt () to take the square root).

6. Compile, debug, and run the program. you should get a mean of 77.444 and
standard deviation of 10.021.

36 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 36

Code Listing 4.1 (DiceSimulation.java)

import java.util.Random; //to use the random number

//generator

/**
This class simulates rolling a pair of dice 10,000 times and
counts the number of times doubles of are rolled for each differ-
ent pair of doubles.

*/

public class DiceSimulation

{

public static void main(String[] args)

{

final int NUMBER = 10000; //the number of times to

//roll the dice

//a random number generator used in simulating

//rolling a dice

Random generator = new Random();

int die1Value; // number of spots on the first

// die

int die2Value; // number of spots on the second

// die

int count = 0; // number of times the dice were

// rolled

int snakeEyes = 0; // number of times snake eyes is

// rolled

int twos = 0; // number of times double

// two is rolled

int threes = 0; // number of times double three

// is rolled

int fours = 0; // number of times double four

// is rolled

int fives = 0; // number of times double five

// is rolled

int sixes = 0; // number of times double six is

// rolled

Code Listing 4.1 continued on next page.

Chapter 4 Lab Loops and Files 37

Gaddis_516907_Java 4/10/07 2:10 PM Page 37

//ENTER YOUR CODE FOR THE ALGORITHM HERE

System.out.println ("You rolled snake eyes " +

snakeEyes + " out of " + count + " rolls.");

System.out.println ("You rolled double twos " + twos +

" out of " + count + " rolls.");

System.out.println ("You rolled double threes " +

threes + " out of " + count + " rolls.");

System.out.println ("You rolled double fours " + fours

+ " out of " + count + " rolls.");

System.out.println ("You rolled double fives " + fives

+ " out of " + count + " rolls.");

System.out.println ("You rolled double sixes " + sixes

+ " out of " + count + " rolls.");

}

}

38 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 38

Code Listing 4.2 (StatsDemo.java)

import java.text.DecimalFormat; //for number formatting

import java.util.Scanner; //for keyboard input

//ADD AN IMPORT STATEMENT HERE //for using files

public class StatsDemo

{

public static void main(String [] args) //ADD A THROWS

//CLAUSE HERE

{

double sum = 0; //the sum of the numbers

int count = 0; //the number of numbers added

double mean = 0; //the average of the numbers

double stdDev = 0; //the standard deviation of the

//numbers

double difference; //difference between the value

//and the mean

//create an object of type Decimal Format

DecimalFormat threeDecimals =

new DecimalFormat("0.000");

//create an object of type Scanner

Scanner keyboard = new Scanner (System.in);

String filename; // the user input file name

//Prompt the user and read in the file name

System.out.println(

"This program calculates statistics"

+ "on a file containing a series of numbers");

System.out.print("Enter the file name: ");

filename = keyboard.nextLine();

//ADD LINES FOR TASK #4 HERE

//Create a File object passing it the filename

//Create a Scanner object passing it the

//File object.

Code Listing 4.2 continued on next page.

Chapter 4 Lab Loops and Files 39

Gaddis_516907_Java 4/10/07 2:10 PM Page 39

//write a loop that reads from the file until you

//are at the end of the file

//read a double from the file and add it to sum

//increment the counter

//close the input file

//store the calculated mean

//ADD LINES FOR TASK #5 HERE

//Create a File object passing it the filename

//Create a Scanner object passing it the

//File object.

//reinitialize the sum of the numbers

//reinitialize the number of numbers added

//write a loop that reads until you are at

//the end of the file

//read a double value and subtract the mean

//add the square of the difference to the sum

//increment the counter

//close the input file

//store the calculated standard deviation

//ADD LINES FOR TASK #3 HERE

//create an object of type PrintWriter

//using "Results.txt" as the filename

//print the results to the output file

//close the output file

}

}

40 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 40

Chapter 5 Lab
Methods

Objectives
Be able to write methods
Be able to call methods
Be able to write javadoc comments
Be able to create HTML documentation for our Java class using javadoc

Introduction

Methods are commonly used to break a problem down into small manageable pieces.
A large task can be broken down into smaller tasks (methods) that contain the details
of how to complete that small task. The larger problem is then solved by implementing
the smaller tasks (calling the methods) in the correct order.

This also allows for efficiencies, since the method can be called as many times as
needed without rewriting the code each time.

Finally, we will use documentation comments for each method, and generate
HTML documents similar to the Java APIs that we have seen.

Gaddis_516907_Java 4/10/07 2:10 PM Page 41

Task #1 void Methods

1. Copy the file Geometry.java (code listing 5.1) from www.aw.com/cssupport or
as directed by your instructor. This program will compile, but when you run it,
it doesn’t appear to do anything except wait. That is because it is waiting for
user input, but the user doesn’t have the menu to choose from yet. We will need
to create this.

2. Above the main method, but in the Geometry class, create a static method
called printMenu that has no parameter list and does not return a value. It will
simply print out instructions for the user with a menu of options for the user to
choose from. The menu should appear to the user as:

This is a geometry calculator
Choose what you would like to calculate
1. Find the area of a circle
2. Find the area of a rectangle
3. Find the area of a triangle
4. Find the circumference of a circle
5. Find the perimeter of a rectangle
6. Find the perimeter of a triangle
Enter the number of your choice:

3. Add a line in the main method that calls the printMenu method as indicated by
the comments.

4. Compile, debug, and run. You should be able to choose any option, but you will
always get 0 for the answer. We will fix this in the next task.

42 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 42

Task #2 Value-Returning Methods

1. Write a static method called circleArea that takes in the radius of the circle and
returns the area using the formula

2. Write a static method called rectangleArea that takes in the length and width
of the rectangle and returns the area using the formula

3. Write a static method called triangleArea that takes in the base and height of
the triangle and returns the area using the formula

4. Write a static method called circleCircumference that takes in the radius of the
circle and returns the circumference using the formula

5. Write a static method called rectanglePerimeter that takes in the length and
the width of the rectangle and returns the perimeter of the rectangle using the
formula

6. Write a static method called trianglePerimeter that takes in the lengths of the
three sides of the triangle and returns the perimeter of the triangle which is cal-
culated by adding up the three sides.

P = 2l + 2w.

C = 2pr.

A =
1�2bh.

A = lw.

A = pr2.

Chapter 5 Lab Methods 43

Gaddis_516907_Java 4/10/07 2:10 PM Page 43

Task #3 Calling Methods

1. Add lines in the main method in the GeometryDemo class which will call these
methods. The comments indicate where to place the method calls.

2. Below, write some sample data and hand calculated results for you to test
all 6 menu items.

3. Compile, debug, and run. Test out the program using your sample data.

44 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 44

Task #4 Java Documentation

1. Write javadoc comments for each of the 7 static methods that you just wrote.
They should include
a) A one line summary of what the method does.
a) A description of what the program requires to operate and what the result of

that operation is.
a) @param listing and describing each of the parameters in the parameter list

(if any).
a) @return describing the information that is returned to the calling statement

(if any).

2. Generate the documentation. Check the method summary and the method details
to ensure your comments were put into the Java Documentation correctly.

Chapter 5 Lab Methods 45

Gaddis_516907_Java 4/10/07 2:10 PM Page 45

Code Listing 5.1 (Geometry.java)

import java.util.Scanner;

/**
This program demonstrates static methods

*/

public class Geometry

{

public static void main (String [] args)

{

int choice; //the user’s choice

double value = 0; //the value returned from the method

char letter; //the Y or N from the user’s decision

//to exit

double radius; //the radius of the circle

double length; //the length of the rectangle

double width; //the width of the rectangle

double height; //the height of the triangle

double base; //the base of the triangle

double side1; //the first side of the triangle

double side2; //the second side of the triangle

double side3; //the third side of the triangle

//create a scanner object to read from the keyboard

Scanner keyboard = new Scanner (System.in);

//do loop was chose to allow the menu to be displayed

//first

do

{

//call the printMenu method

choice = keyboard.nextInt();

switch (choice)

{

Code Listing 5.1 continued on next page.

46 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 46

case 1:

System.out.print(

"Enter the radius of the circle: ");

radius = keyboard.nextDouble();

//call the circleArea method and

//store the result

//in the value

System.out.println(

"The area of the circle is " + value);

break;

case 2:

System.out.print(

"Enter the length of the rectangle: ");

length = keyboard.nextDouble();

System.out.print(

"Enter the width of the rectangle: ");

width = keyboard.nextDouble();

//call the rectangleArea method and store

//the result in the value

System.out.println(

"The area of the rectangle is " + value);

break;

case 3:

System.out.print(

"Enter the height of the triangle: ");

height = keyboard.nextDouble();

System.out.print(

"Enter the base of the triangle: ");

base = keyboard.nextDouble();

//call the triangleArea method and store

//the result in the value

System.out.println(

"The area of the triangle is " + value);

break;

Code Listing 5.1 continued on next page.

Chapter 5 Lab Methods 47

Gaddis_516907_Java 4/10/07 2:10 PM Page 47

case 4:

System.out.print(

"Enter the radius of the circle: ");

radius = keyboard.nextDouble();

//call the circumference method and

//store the result in the value

System.out.println(

"The circumference of the circle is " + value);

break;

case 5:

System.out.print(

"Enter the length of the rectangle: ");

length = keyboard.nextDouble();

System.out.print(

"Enter the width of the rectangle: ");

width = keyboard.nextDouble();

//call the perimeter method and store the result

//in the value

System.out.println(

"The perimeter of the rectangle is " + value);

break;

case 6:

System.out.print("Enter the length of side 1 " +

"of the triangle: ");

side1 = keyboard.nextDouble();

System.out.print("Enter the length of side 2 " +

"of the triangle: ");

side2 = keyboard.nextDouble();

System.out.print("Enter the length of side 3 " +

"of the triangle: ");

side3 = keyboard.nextDouble();

//call the perimeter method and store the result

//in the value

System.out.println("The perimeter of the " +

"triangle is " + value);

break;

default:

Code Listing 5.1 continued on next page.

48 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 48

System.out.println(

"You did not enter a valid choice.");

}

//consumes the new line character after the number

keyboard.nextLine();

System.out.println("Do you want to exit the program " +

"(Y/N)?: ");

String answer = keyboard.nextLine();

letter = answer.charAt(0);

}while (letter != ‘Y’ && letter != ‘y’);

}

}

Chapter 5 Lab Methods 49

Gaddis_516907_Java 4/10/07 2:10 PM Page 49

Gaddis_516907_Java 4/10/07 2:10 PM Page 50

Chapter 6 Lab
Classes and Objects

Objectives
• Be able to declare a new class
• Be able to write a constructor
• Be able to write instance methods that return a value
• Be able to write instance methods that take arguments
• Be able to instantiate an object
• Be able to use calls to instance methods to access and change the state of an

object

Introduction

Everyone is familiar with a television. It is the object we are going to create in this lab.
First we need a blueprint. All manufacturers have the same basic elements in the televi-
sions they produce as well as many options. We are going to work with a few basic
elements that are common to all televisions. Think about a television in general. It has
a brand name (i.e. it is made by a specific manufacturer). The television screen has a
specific size. It has some basic controls. There is a control to turn the power on and
off. There is a control to change the channel. There is also a control for the volume. At
any point in time, the television’s state can be described by how these controls are set.

We will write the television class. Each object that is created from the television
class must be able to hold information about that instance of a television in fields. So a
television object will have the following attributes:

• manufacturer. The manufacturer attribute will hold the brand name. This
cannot change once the television is created, so will be a named constant.

• screenSize. The screenSize attribute will hold the size of the television
screen. This cannot change once the television has been created so will be a
named constant.

• powerOn. The powerOn attribute will hold the value true if the power is on,
and false if the power is off.

• channel. The channel attribute will hold the value of the station that the tele-
vision is showing.

• volume. The volume attribute will hold a number value representing the loud-
ness (0 being no sound).

Gaddis_516907_Java 4/10/07 2:10 PM Page 51

These attributes become fields in our class.
The television object will also be able to control the state of its attributes. These

controls become methods in our class.
• setChannel. The setChannel method will store the desired station in the

channel field.
• power. The power method will toggle the power between on and off, changing

the value stored in the powerOn field from true to false or from false to true.
• increaseVolume. The increaseVolume method will increase the value

stored in the volume field by 1.
• decreaseVolume. The decreaseVolume method will decrease the value

stored in the volume field by 1.
• getChannel. The getChannel method will return the value stored in the

channel field.
• getVolume. The getVolume method will return the value stored in the volume

field.
• getManufacturer. The getManufacturer method will return the constant

value stored in the MANUFACTURER field.
• getScreenSize. The getScreenSize method will return the constant value

stored in the SCREEN_SIZE field.

We will also need a constructor method that will be used to create an instance of a
Television.

These ideas can be brought together to form a UML (Unified Modeling Language)
diagram for this class as shown below.

52 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

!

!

!

!

!

!

!

-MANUFACTURER: String
-SCREEN_SIZE: int
-powerOn: boolean
-channel: int
-volume: int

+Television(brand: String, size: int)
+setChannel (station: int): void
+power(): void
+increaseVolume(): void
+decreaseVolume(): void
+getChannel(): int
+getVolume(): int
+getManufacturer(): String
+getScreenSize(): int

+ public
– private

Data type returned

Television

Attributes or fields

Class Name

Methods

Gaddis_516907_Java 4/10/07 2:10 PM Page 52

Task #1 Creating a New Class

1. In a new file, create a class definition called Television.

2. Put a program header (comments/documentation) at the top of the file
// The purpose of this class is to model a television
// Your name and today’s date

3. Declare the 2 constant fields listed in the UML diagram.

4. Declare the 3 remaining fields listed in the UML diagram.

5. Write a comment for each field indicating what it represents.

6. Save this file as Television.java.

7. Compile and debug. Do not run.

Chapter 6 Lab Classes and Objects 53

Gaddis_516907_Java 4/10/07 2:10 PM Page 53

Task #2 Writing a Constructor

1. Create a constructor definition that has two parameters, a manufacturer’s brand
and a screen size. These parameters will bring in information

2. Inside the constructor, assign the values taken in from the parameters to the
corresponding fields.

3. Initialize the powerOn field to false (power is off), the volume to 20, and the
channel to 2.

4. Write comments describing the purpose of the constructor above the method
header.

5. Compile and debug. Do not run.

54 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 54

Task #3 Methods

1. Define accessor methods called getVolume, getChannel,
getManufacturer, and getScreenSize that return the value of the cor-
responding field.

2. Define a mutator method called setChannel accepts a value to be stored in
the channel field.

3. Define a mutator method called power that changes the state from true to false
or from false to true. This can be accomplished by using the NOT operator (!).
If the boolean variable powerOn is true, then !powerOn is false and vice
versa. Use the assignment statement

powerOn = !powerOn;

to change the state of powerOn and then store it back into powerOn (remem-
ber assignment statements evaluate the right hand side first, then assign the
result to the left hand side variable.

4. Define two mutator methods to change the volume. One method should be
called increaseVolume and will increase the volume by 1. The other
method should be called decreaseVolume and will decrease the volume by
1.

5. Write javadoc comments above each method header.

6. Compile and debug. Do not run.

Chapter 6 Lab Classes and Objects 55

Gaddis_516907_Java 4/10/07 2:10 PM Page 55

Task #4 Running the application

1. You can only execute (run) a program that has a main method, so there is a dri-
ver program that is already written to test out your Television class. Copy
the file TelevisionDemo.java (see code listing 3.1) from www.aw.com/cssupport
or as directed by your instructor. Make sure it is in the same directory as
Television.java.

2. Compile and run TelevisionDemo and follow the prompts.

3. If your output matches the output below, Television.java is complete and cor-
rect. You will not need to modify it further for this lab.

OUTPUT (boldface is user input)

A 55 inch Toshiba has been turned on.

What channel do you want? 56

Channel: 56 Volume: 21

Too loud!! I am lowering the volume.

Channel: 56 Volume: 15

56 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 56

Task #5 Creating another instance of a Television

1. Edit the TelevisionDemo.java file.

2. Declare another Television object called portable.

3. Instantiate portable to be a Sharp 19 inch television.

4. Use a call to the power method to turn the power on.

5. Use calls to the accessor methods to print what television was turned on.

6. Use calls to the mutator methods to change the channel to the user’s prefer-
ence and decrease the volume by two.

7. Use calls to the accessor methods to print the changed state of the portable.

8. Compile and debug this class.

9. Run TelevisionDemo again.

10. The output for task #5 will appear after the output from above, since we added
onto the bottom of the program. The output for task #5 is shown below.

OUTPUT (boldface is user input)

A 19 inch Sharp has been turned on.

What channel do you want? 7

Channel: 7 Volume: 18

Chapter 6 Lab Classes and Objects 57

Gaddis_516907_Java 4/10/07 2:10 PM Page 57

Code Listing 6.1 (TelevisionDemo.java)

import java.util.Scanner;

/** This class demonstrates the Television class*/

public class TelevisionDemo

{

public static void main(String[] args)

{

//create a Scanner object to read from the keyboard

Scanner keyboard = new Scanner (System.in);

//declare variables

int station; //the user’s channel choice

//declare and instantiate a television object

Television bigScreen = new Television("Toshiba", 55);

//turn the power on

bigScreen.power();

//display the state of the television

System.out.println("A " + bigScreen.getScreenSize() +

bigScreen.getManufacturer() +

" has been turned on.");

//prompt the user for input and store into station

System.out.print("What channel do you want? ");

station = keyboard.nextInt();

//change the channel on the television

bigScreen.setChannel(station);

//increase the volume of the television

bigScreen.increaseVolume();

//display the the current channel and volume of the

//television

System.out.println("Channel: " +

bigScreen.getChannel() +

" Volume: " + bigScreen.getVolume());

Code Listing 6.1 continued on next page.

58 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 58

System.out.println(

"Too loud!! I am lowering the volume.");

//decrease the volume of the television

bigScreen.decreaseVolume();

bigScreen.decreaseVolume();

bigScreen.decreaseVolume();

bigScreen.decreaseVolume();

bigScreen.decreaseVolume();

bigScreen.decreaseVolume();

//display the current channel and volume of the

//television

System.out.println("Channel: " +

bigScreen.getChannel() +

" Volume: " + bigScreen.getVolume());

System.out.println(); //for a blank line

//HERE IS WHERE YOU DO TASK #5

}

}

Chapter 6 Lab Classes and Objects 59

Gaddis_516907_Java 4/10/07 2:10 PM Page 59

Gaddis_516907_Java 4/10/07 2:10 PM Page 60

Chapter 7 Lab
GUI Applications

Objectives
• Be able to create a closeable window
• Be able to create panels containing buttons
• Be able to use different layouts
• Be able to handle button events

Introduction

In this lab, we will be creating a graphical user interface (GUI) to allow the user to
select a button that will change the color of the center panel and radio buttons that will
change the color of the text in the center panel. We will need to use a variety of Swing
components to accomplish this task.

We will build two panels, a top panel containing three buttons and a bottom panel
containing three radio buttons. Layouts will be used to add these panels to the window
in the desired positions. A label with instructions will also be added to the window.
Listeners will be employed to handle the events desired by the user.

Our final GUI should look like the following

Gaddis_516907_Java 4/10/07 2:10 PM Page 61

Task #1 Creating a GUI

1. Import the required Java libraries.

2. Create a class called ColorFactory that inherits from JFrame.

3. Create named constants for a width of 500 and height of 300 for the frame.

4. Write a default constructor that does the following
a) Set the title of the window to Color Factory.
b) Set the size of the window using the constants.
c) Specify what happens when the close button is clicked.
d) Get the content pane of the JFrame and set the layout manager to border

layout.
e) Call the method to build the top panel (to be written as directed below).
f) Add the panel to the north part of the content pane.
g) Call the method to build the bottom panel (to be written as directed below).
h) Add this panel to the south part of the content pane.
i) Create a label that contains the message “Top buttons change the panel

color and bottom radio buttons change the text color.”
j) Add this label to the center part of the content pane.

62 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 62

Task #2 Writing Private Methods

1. Write a private method that builds the top panel as follows
a) Create a panel that contains three buttons, red, orange, and yellow.
b) Use flow layout for the panel and set the background to be white.
c) The buttons should be labeled with the color name and also appear in that

color.
d) Set the action command of each button to be the first letter of the color

name.
e) Add button listener that implements action listener for each button.

2. Create a bottom panel in the same way as the top panel above, but use radio
buttons with the colors green, blue, and cyan.

Chapter 7 Lab GUI Applications 63

Gaddis_516907_Java 4/10/07 2:10 PM Page 63

Task #3 Writing Inner Classes

1. Write a private inner class called ButtonListener that implements
ActionListener. It should contain an actionPerformed method to handle the but-
ton events. This event handler will handle all button events, so you must get the
action command of the event and write a decision structure to determine which
color to set the background of the content pane.

2. Write another private inner class called RadioButtonListener, similar to Button
listener. It will handle all radio button events, so you will need to check the
source of the event and write a decision structure to determine which color
should be used for the text of the message.

64 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 64

Task #4 Running the GUI Program

1. Write a main method that declares and creates one instance of a ColorFactory,
then use the setVisible method to show it on the screen.

Chapter 7 Lab GUI Applications 65

Gaddis_516907_Java 4/10/07 2:10 PM Page 65

Gaddis_516907_Java 4/10/07 2:10 PM Page 66

Chapter 8 Lab
Arrays

Objectives
• Be able to declare and instantiate arrays
• Be able to fill an array using a for loop
• Be able to access and process data in an array
• Be able to write a sorting method
• Be able to use an array of objects

Introduction

Everyone is familiar with a list. We make shopping lists, to-do lists, assignment lists,
birthday lists, etc. Notice that though there may be many items on the list, we call the
list by one name. That is the idea of the array, one name for a list of related items. In
this lab, we will work with lists in the form of an array.

It will start out simple with a list of numbers. We will learn how to process the
contents of an array. We will also explore sorting algorithms, using the selection sort.
We will then move onto more complicated arrays, arrays that contain objects.

Gaddis_516907_Java 4/10/07 2:10 PM Page 67

Task #1 Average Class

Create a class called Average according to the UML diagram.

This class will allow a user to enter 5 scores into an array. It will then rearrange the
data in descending order and calculate the mean for the data set.

Attributes:
• data[]—the array which will contain the scores
• mean—the arithmetic average of the scores

Methods:
• Average—the constructor. It will allocate memory for the array. Use a for

loop to repeatedly display a prompt for the user which should indicate that user
should enter score number 1, score number 2, etc. Note: The computer starts
counting with 0, but people start counting with 1, and your prompt should
account for this. For example, when the user enters score number 1, it will be
stored in indexed variable 0. The constructor will then call the
selectionSort and the calculateMean methods.

• calculateMean—this is a method that uses a for loop to access each score
in the array and add it to a running total. The total divided by the number of
scores (use the length of the array), and the result is stored into mean.

• toString—returns a String containing data in descending order and the
mean.

• selectionSort—this method uses the selection sort algorithm to rearrange
the data set from highest to lowest.

- d a t a [] : i n t
- m e a n : doub l e

+ A ve r a g e ()
+ c a l c u l a t e M e a n() : vo i d
+ t oS t r i ng() : S t r i ng
+ s e l e c t i onS or t () : vo i d

Average

68 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 68

Task #2 Average Driver

1. Create an AverageDriver class. This class only contains the main method.
The main method should declare and instantiate an Average object. The
Average object information should then be printed to the console.

2. Compile, debug, and run the program. It should output the data set from highest
to lowest and the mean. Compare the computer’s output to your hand calcula-
tion using a calculator. If they are not the same, do not continue until you cor-
rect your code.

Chapter 8 Lab Arrays 69

Gaddis_516907_Java 4/10/07 2:10 PM Page 69

Task #3 Arrays of Objects

1. Copy the files Song.java (code listing 8.1), CompactDisc.java (code listing 8.2)
and Classics.txt (code listing 8.3) from www.aw.com/cssupport or as directed
by your instructor. Song.java is complete and will not be edited. Classics.txt is
the data file that will be used by CompactDisc.java, the file you will be editing.

2. In CompactDisc.java, there are comments indicating where the missing code is
to be placed. Declare an array of Songs, called cd, to be of size 6.

3. Fill the array by creating a new song with the title and artist and storing it in
the appropriate position in the array.

4. Print the contents of the array to the console.

5. Compile, debug, and run. Your output should be as follows:

Contents of Classics
Ode to Joy by Bach
The Sleeping Beauty by Tchaikovsky
Lullaby by Brahms
Canon by Bach
Symphony No. 5 by Beethoven
The Blue Danube Waltz by Strauss

70 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 70

Code Listing 8.1 (Song.java)

/*This program represents a song*/

public class Song

{

/**The title of the song*/

private String title;

/**The artist who sings the song*/

private String artist;

/**constructor

@param title The title of the song

@param artist The artist who sings the song

*/

public Song(String title, String artist)

{

this.title = title;

this.artist = artist;

}

/**toString method returns a description of the song

@return a String containing the name of the song

and the artist

*/

public String toString()

{

return title + " by " + artist + "\n";

}

}

Chapter 8 Lab Arrays 71

Gaddis_516907_Java 4/10/07 2:10 PM Page 71

Code Listing 8.2 (CompactDisc.java)

import java.io.*;

import java.util.Scanner;

/** This program creates a list of songs for a CD by

reading from a file

*/

public class CompactDisc

{

public static void main(String [] args) throws IOException

{

File file = new File("Classics.txt");

Scanner input = new Scanner(file);

String title;

String artist;

//Declare an array of songs, called cd, of size 6

for (int i = 0; i < cd.length; i++)

{

title = input.readLine();

artist = input.readLine();

// fill the array by creating a new song with

// the title and artist and storing it in the

// appropriate position in the array

}

System.out.println("Contents of Classics:");

for (int i = 0; i < cd.length; i++)

{

//print the contents of the array to the console

}

}

}

72 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 72

Code Listing 8.3 (Classics.txt)

Ode to Joy

Bach

The Sleeping Beauty

Tchaikovsky

Lullaby

Brahms

Canon

Bach

Symphony No. 5

Beethoven

The Blue Danube Waltz

Strauss

Chapter 8 Lab Arrays 73

Gaddis_516907_Java 4/10/07 2:10 PM Page 73

Gaddis_516907_Java 4/10/07 2:10 PM Page 74

Chapter 9 Lab
More Classes and Objects

Objectives
• Be able to write a copy constructor
• Be able to write equals and toString methods
• Be able to use objects made up of other objects (Aggregation)
• Be able to write methods that pass and return objects

Introduction

We discussed objects in Chapter 6 and we modeled a television in the Chapter 6 lab.
We want build on that lab, and work more with objects. This time, the object that we
are choosing is more complicated. It is made up of other objects. This is called aggre-
gation. A credit card is an object that is very common, but not as simple as a television.
Attributes of the credit card include information about the owner, as well as a balance
and credit limit. These things would be our instance fields. A credit card allows you to
make payments and charges. These would be methods. As we have seen before, there
would also be other methods associated with this object in order to construct the object
and access its fields.

Examine the UML diagram that follows. Notice that the instance fields in the
CreditCard class are other types of objects, a Person object or a Money object. We can
say that the CreditCard “has a” Person, which means aggregation, and the Person
object “has a” Address object as one of its instance fields. This aggregation structure
can create a very complicated object. We will try to keep this lab reasonably simple.

To start with, we will be editing a partially written class, Money. The constructor
that you will be writing is a copy constructor. This means it should create a new object,
but with the same values in the instance variables as the object that is being copied.

Next, we will write equals and toString methods. These are very common
methods that are needed when you write a class to model an object. You will also see a
compareTo method that is also a common method for objects.

Gaddis_516907_Java 4/10/07 2:10 PM Page 75

After we have finished the Money class, we will write a CreditCard class. This
class contains Money objects, so you will use the methods that you have written to
complete the Money class. The CreditCard class will explore passing objects and the
possible security problems associated with it. We will use the copy constructor we
wrote for the Money class to create new objects with the same information to return to
the user through the accessor methods.

76 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Credit Card

Money Person

Address

-balance:Money
-creditLimit:Money
-owner:Person

+CreditCard(newCardHolder:Person, limit:Money)
+getBalance():Money
+getCreditLimit():Money
+getPersonals():String
+charge(amount:Money):void
+payment(amount:Money):void

-dollars:long
-cents:long

+Money(anount:double)
+Money(otherObject:Money)
+add(otherAmount:Money):Money
+subtract(otherAmount:Money):Money
+compareTo(otherObject:Money):int
+equals(otherObject:Money):boolean
+toString():String

-lastName:String
-firstName:String
-home:Address

+toString():String

-street:String
-city:String
-state:String
-zip:String

+toString():String

Gaddis_516907_Java 4/10/07 2:10 PM Page 76

Task #1 Writing a Copy Constructor

1. Copy the files Address.java (code listing 9.1), Person.java (code listing 9.2),
Money.java (code listing 9.3), MoneyDriver.java (code listing 9.4), and
CreditCardDemo.java (code listing 9.5) from www.aw.com/cssupport or as
directed by your instructor. Address.java, Person.java, MoneyDemo.java, and
CreditCardDemo.java are complete and will not need to be modified. We will
start by modifying Money.java.

2. Overload the constructor. The constructor that you will write will be a copy
constructor. It should use the parameter money object to make a duplicate
money object, by copying the value of each instance variable from the parame-
ter object to the instance variable of the new object.

Chapter 9 Lab More Classes and Objects 77

Gaddis_516907_Java 4/10/07 2:10 PM Page 77

Task #2 Writing equals and toString methods

1. Write and document an equals method. The method compares the instance
variables of the calling object with instance variables of the parameter object
for equality and returns true if the dollars and the cents of the calling object are
the same as the dollars and the cents of the parameter object. Otherwise, it
returns false.

2. Write and document a toString method. This method will return a String
that looks like money, including the dollar sign. Remember that if you have less
than 10 cents, you will need to put a 0 before printing the cents so that it
appears correctly with 2 decimal places.

3. Compile, debug, and test by running the MoneyDriver.java driver program. You
should get the output:

The current amount is $500.00
Adding $10.02 gives $510.02
Subtracting $10.88 gives $499.14
$10.02 equals $10.02
$10.88 does not equal $10.02

78 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 78

Task #3 Passing and Returning Objects

1. Create a CreditCard class according to the UML Diagram on the back. It
should have data fields that include an owner of type Person, a balance of type
Money, and a creditLimit of type Money.

2. It should have a constructor that has two parameters, a Person to initialize the
owner and a Money value to initialize the creditLimit. The balance can be ini-
tialized to a Money value of zero. Remember you are passing in objects (pass
by reference), so you have passed in the address to an object. If you want your
CreditCard to have its own creditLimit and balance, you should create a new
object of each using the copy constructor in the Money class.

3. It should have accessor methods to get the balance and the available credit.
Since these are objects (pass by reference), we don’t want to create an insecure
credit card by passing out addresses to components in our credit card, so we
must return a new object with the same values. Again, use the copy constructor
to create a new object of type money that can be returned.

4. It should have an accessor method to get the information about the owner, but
in the form of a String that can be printed out. This can be done by calling the
toString method for the owner (who is a Person).

5. It should have a method that will charge to the credit card by adding the
amount of Money in the parameter to the balance if it will not exceed the credit
limit. If the credit limit will be exceeded, the amount should not be added, and
an error message can be printed to the console.

6. It should have a method that will make a payment on the credit card by sub-
tracting the amount of Money in the parameter from the balance.

7. Compile, debug, and test it out completely by running CreditCardDemo.java.
You should get the output:

Diane Christie, 237J Harvey Hall, Menomonie, WI 54751
Balance: $0.00
Credit Limit: $1000.00
Attempt to charge $200.00
Charge: $200.00
Balance: $200.00
Attempt to charge $10.02
Charge: $10.02
Balance: $210.02
Attempt to pay $25.00
Payment: $25.00
Balance: $185.02
Attempt to charge $990.00
Exceeds credit limit
Balance: $185.02

Chapter 9 Lab More Classes and Objects 79

Gaddis_516907_Java 4/10/07 2:10 PM Page 79

Code Listing 9.1 (Address.java)

/**Defines an address using a street, city, state, and zipcode*/

public class Address

{

/**The street number and street name*/

private String street;

/**The city in which the address is located*/

private String city;

/**The state in which the address is located*/

private String state;

/**The zip code associated with that city and street*/

private String zip;

/**Constructor creates an address using four parameters

@param road describes the street number and name

@param town describes the city

@param st describes the state

@param zipCode describes the zip code*/

public Address(String road, String town, String st,

String zipCode)

{

street = road;

city = town;

state = st;

zip = zipCode;

}

/**toString method returns information about the address

@return all information about the address*/

public String toString()

{

return (street + ", " + city + ", " + state + " " +

zip);

}

}

80 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 80

Code Listing 9.2 (Person.java)

/**Defines a person by name and address*/

public class Person

{

/**The person’s last name*/

private String lastName;

/**The person’s first name*/

private String firstName;

/**The person’s address*/

private Address home;

/**Constructor creates a person from a last name,

first name, and address

@param last the person’s last name

@param first the person’s first name

@param residence the person’s address*/

public Person(String last, String first, Address residence)

{

lastName = last;

firstName = first;

home = residence;

}

/**toString method returns information about the person

@return information about the person*/

public String toString()

{

return(firstName + " " + lastName + ", " +

home.toString());

}

}

Chapter 9 Lab More Classes and Objects 81

Gaddis_516907_Java 4/10/07 2:10 PM Page 81

Code Listing 9.3 (Money.java)

/**Objects represent nonnegative amounts of money*/

public class Money

{

/**A number of dollars*/

private long dollars;

/**A number of cents*/

private long cents;

/**Constructor creates a Money object using the amount of

money in dollars and cents represented with a decimal

number

@param amount the amount of money in the conventional

decimal format*/

public Money(double amount)

{

if (amount < 0)

{

System.out.println("Error: Negative amounts " +

"of money are not allowed.");

System.exit(0);

}

else

{

long allCents = Math.round(amount*100);

dollars = allCents/100;

cents = allCents%100;

}

}

/**Adds the calling Money object to the parameter Money object.

@param otherAmount the amount of money to add

@return the sum of the calling Money object and the

parameter Money object*/

public Money add(Money otherAmount)

{

Code Listing 9.3 continued on next page.

82 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 82

Money sum = new Money(0);

sum.cents = this.cents + otherAmount.cents;

long carryDollars = sum.cents/100;

sum.cents = sum.cents%100;

sum.dollars = this.dollars

+ otherAmount.dollars + carryDollars;

return sum;

}

/**Subtracts the parameter Money object from the calling

Money object and returns the difference.

@param amount the amount of money to subtract

@return the difference between the calling Money object

and the parameter Money object*/

public Money subtract (Money amount)

{

Money difference = new Money(0);

if (this.cents < amount.cents)

{

this.dollars = this.dollars - 1;

this.cents = this.cents + 100;

}

difference.dollars = this.dollars - amount.dollars;

difference.cents = this.cents - amount.cents;

return difference;

}

/**Compares instance variable of the calling object with

the parameter object. It returns -1 if the dollars and the

cents of the calling object are less than the dollars and

the cents of the parameter object, 0 if the dollars and the

cents of the calling object are equal to the dollars and

cents of the parameter object, and 1 if the dollars and the

cents of the calling object are more than the dollars and

the cents of the parameter object.

@param amount the amount of money to compare against

@return -1 if the dollars and the cents of the calling

Code Listing 9.3 continued on next page.

Chapter 9 Lab More Classes and Objects 83

Gaddis_516907_Java 4/10/07 2:10 PM Page 83

object are less than the dollars and the cents of the

parameter object, 0 if the dollars and the cents of the

calling object are equal to the dollars and cents of the

parameter object, and 1 if the dollars and the cents of the

calling object are more than the dollars and the cents of

the parameter object.*/

public int compareTo(Money amount)

{

int value;

if(this.dollars < amount.dollars)

{

value = -1;

}

else if (this.dollars > amount.dollars)

{

value = 1;

}

else if (this.cents < amount.dollars)

{

value = -1;

}

else if (this.cents > amount.cents)

{

value = 1;

}

else

{

value = 0;

}

return value;

}

}

84 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 84

Code Listing 9.4 (MoneyDriver.java)

/**This program tests the money class.*/

public class MoneyDriver

{

//This is a driver for testing the class

public static void main(String[] args)

{

final int BEGINNING = 500;

final Money FIRST_AMOUNT = new Money(10.02);

final Money SECOND_AMOUNT = new Money(10.02);

final Money THIRD_AMOUNT = new Money(10.88);

Money balance = new Money(BEGINNING);

System.out.println("The current amount is " +

balance.toString());

balance = balance.add(SECOND_AMOUNT);

System.out.println("Adding " + SECOND_AMOUNT +

" gives " + balance.toString());

balance = balance.subtract(THIRD_AMOUNT);

System.out.println("Subtracting " + THIRD_AMOUNT +

" gives " + balance.toString());

boolean equal = SECOND_AMOUNT.equals(FIRST_AMOUNT);

if(equal)

System.out.println(SECOND_AMOUNT + " equals "

+ FIRST_AMOUNT);

else

System.out.println(SECOND_AMOUNT +

" does not equal " + FIRST_AMOUNT);

equal = THIRD_AMOUNT.equals(FIRST_AMOUNT);

if(equal)

System.out.println(THIRD_AMOUNT + " equals " +

FIRST_AMOUNT);

else

System.out.println(THIRD_AMOUNT +

" does not equal " + FIRST_AMOUNT);

}

}

Chapter 9 Lab More Classes and Objects 85

Gaddis_516907_Java 4/10/07 2:10 PM Page 85

Code Listing 9.5 (CreditCardDemo.java)

/**Demonstrates the CreditCard class*/

public class CreditCardDemo

{

public static void main(String[] args)

{

final Money LIMIT = new Money(1000);

final Money FIRST_AMOUNT = new Money(200);

final Money SECOND_AMOUNT = new Money(10.02);

final Money THIRD_AMOUNT = new Money(25);

final Money FOURTH_AMOUNT = new Money(990);

Person owner = new Person("Christie", "Diane",

new Address("237J Harvey Hall", "Menomonie",

"WI", "54751"));

CreditCard visa = new CreditCard(owner, LIMIT);

System.out.println(visa.getPersonals());

System.out.println("Balance: " + visa.getBalance());

System.out.println("Credit Limit: "

+ visa.getCreditLimit());

System.out.println();

System.out.println("Attempt to charge " +

FIRST_AMOUNT);

visa.charge(FIRST_AMOUNT);

System.out.println("Balance: " + visa.getBalance());

System.out.println("Attempt to charge " +

SECOND_AMOUNT);

visa.charge(SECOND_AMOUNT);

System.out.println("Balance: " + visa.getBalance());

System.out.println("Attempt to pay " + THIRD_AMOUNT);

visa.payment(THIRD_AMOUNT);

System.out.println("Balance: " + visa.getBalance());

System.out.println("Attempt to charge " +

FOURTH_AMOUNT);

visa.charge(FOURTH_AMOUNT);

System.out.println("Balance: " + visa.getBalance());

}

}

86 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 86

Chapter 10 Lab
Text Processing and Wrapper Classes

Objectives
• Use methods of the Character class and String class to process text
• Be able to use the StringTokenizer and StringBuilder classes

Introduction

In this lab we ask the user to enter a time in military time (24 hours). The program will
convert and display the equivalent conventional time (12 hour with AM or PM) for each
entry if it is a valid military time. An error message will be printed to the console if the
entry is not a valid military time.

Think about how you would convert any military time 00:00 to 23:59 into conven-
tional time. Also think about what would be valid military times. To be a valid time,
the data must have a specific form. First, it should have exactly 5 characters. Next,
only digits are allowed in the first two and last two positions, and that a colon is
always used in the middle position. Next, we need to ensure that we never have over
23 hours or 59 minutes. This will require us to separate the substrings containing the
hours and minutes. When converting from military time to conventional time, we only
have to worry about times that have hours greater than 12, and we do not need to do
anything with the minutes at all. To convert, we will need to subtract 12, and put it
back together with the colon and the minutes, and indicate that it is PM. Keep in mind
that 00:00 in military time is 12:00 AM (midnight) and 12:00 in military time is 12:00
PM (noon).

We will need to use a variety of Character class and String class methods to vali-
date the data and separate it in order to process it. We will also use a Character class
method to allow the user to continue the program if desired.

The String Tokenizer class will allow us to process a text file in order to decode a
secret message. We will use the first letter of every 5th token read in from a file to
reveal the secret message.

Gaddis_516907_Java 4/10/07 2:10 PM Page 87

Task #1 Character and String Class Methods

1. Copy the files Time.java (code listing 10.1) and TimeDemo.java (code listing
10.2) from www.aw.com/cssupport or as directed by your instructor.

2. In the Time.java file, add conditions to the decision structure which validates
the data. Conditions are needed that will
a) Check the length of the string
b) Check the position of the colon
c) Check that all other characters are digits

3. Add lines that will separate the string into two substrings containing hours and
minutes. Convert these substrings to integers and save them into the instance
variables.

4. In the TimeDemo class, add a condition to the loop that converts the user’s
answer to a capital letter prior to checking it.

5. Compile, debug, and run. Test out your program using the following valid
input: 00:00, 12:00, 04:05, 10:15, 23:59, 00:35, and the following invalid input:
7:56, 15:78, 08:60, 24:00, 3e:33, 1:111.

88 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 88

Chapter 10 Lab Text Processing and Wrapper Classes 89

Task #2 StringTokenizer and StringBuilder classes

1. Copy the file secret.txt (code listing 10.3) from www.aw.com/cssupport or as
directed by your instructor. This file is only one line long. It contains 2
sentences.

2. Write a main method that will read the file secret.txt, separate it into word
tokens.

3. You should process the tokens by taking the first letter of every fifth word,
starting with the first word in the file. These letters should converted to capitals,
then be appended to a StringBuilder object to form a word which will be print-
ed to the console to display the secret message.

Gaddis_516907_Java 4/10/07 2:10 PM Page 89

Code Listing 10.1 (Time.java)

/**Represents time in hours and minutes using

the customary conventions*/

public class Time

{

/**hours in conventional time*/

private int hours;

/**minutes in conventional time*/

private int minutes;

/**true if afternoon time, false if morning time*/

private boolean afternoon;

/**Constructs a cutomary time (12 hours, am or pm)

from a military time ##:##

@param militaryTime in the military format ##:##*/

public Time(String militaryTime)

{

//Check to make sure something was entered

if (militaryTime == null)

{

System.out.println(

"You must enter a valid military time.");

}

//Check to make sure there are 5 characters

else if (//CONDITION TO CHECK LENGTH OF STRING)

{

System.out.println(militaryTime +

" is not a valid military time.");

}

else

{

//Check to make sure the colon is in

//the correct spot

if (//CONDITION TO CHECK COLON POSITION)

{

System.out.println(militaryTime +

" is not a valid military time.");

}

Code Listing 10.1 continued on next page

90 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 90

//Check to make sure all other characters are

//digits

else if (//CONDITION TO CHECK FOR DIGIT)

{

System.out.println(militaryTime +

" is not a valid military time.");

}

else if (//CONDITION TO CHECK FOR DIGIT)

{

System.out.println(militaryTime +

" is not a valid military time.");

}

else if (//CONDITION TO CHECK FOR DIGIT)

{

System.out.println(militaryTime +

" is not a valid military time.");

}

else if (//CONDITION TO CHECK FOR DIGIT)

{

System.out.println(militaryTime +

" is not a valid military time.");

}

else

{

//SEPARATE THE STRING INTO THE HOURS

//AND THE MINUTES, CONVERTING THEM TO

//INTEGERS AND STORING INTO THE

//INSTANCE VARIABLES

//validate hours and minutes are valid

//values

if(hours > 23)

{

System.out.println(militaryTime +

" is not a valid military" +

" time.");

}

Code Listing 10.1 continued on next page

Chapter 10 Lab Text Processing and Wrapper Classes 91

Gaddis_516907_Java 4/10/07 2:10 PM Page 91

else if(minutes > 59)

{

System.out.println(militaryTime +

" is not a valid military" +

" time.");

}

//convert military time to conventional

//time for afternoon times

else if (hours > 12)

{

hours = hours - 12;

afternoon = true;

System.out.println(this.toString());

}

//account for midnight

else if (hours == 0)

{

hours = 12;

System.out.println(this.toString());

}

//account for noon

else if (hours == 12)

{

afternoon = true;

System.out.println(this.toString());

}

//morning times don’t need converting

else

{

System.out.println(this.toString());

}

}

}

}

Code Listing 10.1 continued on next page

92 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 92

/**toString method returns a conventional time

@return a conventional time with am or pm*/

public String toString()

{

String am_pm;

String zero = "";

if (afternoon)

am_pm = "PM";

else

am_pm = "AM";

if (minutes < 10)

zero = "0";

return hours + ":" + zero + minutes + " " + am_pm;

}

}

Chapter 10 Lab Text Processing and Wrapper Classes 93

Gaddis_516907_Java 4/10/07 2:10 PM Page 93

Code Listing 10.2 (TimeDemo.java)

public class TimeDemo

{

public static void main (String [] args)

{

Scanner keyboard = new Scanner(System.in);

char answer = ‘Y’;

String enteredTime;

String response;

while (//CHECK ANSWER AFTER CONVERTING TO CAPITAL)

{

System.out.print("Enter a miitary time using" +

" the ##:## form ");

enteredTime = keyboard.nextLine();

Time now = new Time (enteredTime);

System.out.println(

"Do you want to enter another (Y/N)? ");

response = keyboard.nextLine();

answer = response.charAt(0);

}

}

}

94 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 94

Code Listing 10.3 (secret.txt)

January is the first month and December is the last. Violet is a
purple color as are lilac and plum.

Chapter 10 Lab Text Processing and Wrapper Classes 95

Gaddis_516907_Java 4/10/07 2:10 PM Page 95

Gaddis_516907_Java 4/10/07 2:10 PM Page 96

Chapter 11 Lab
Inheritance

Objectives
• Be able to derive a class from an existing class
• Be able to define a class hierarchy in which methods are overridden and fields

are hidden
• Be able to use derived-class objects
• Implement a copy constructor

Introduction

In this lab, you will be creating new classes that are derived from a class called
BankAccount. A checking account is a bank account and a savings account is a bank
account as well. This sets up a relationship called inheritance, where BankAccount is
the superclass and CheckingAccount and SavingsAccount are subclasses.

This relationship allows CheckingAccount to inherit attributes from BankAccount
(like owner, balance, and accountNumber, but it can have new attributes that are spe-
cific to a checking account, like a fee for clearing a check. It also allows
CheckingAccount to inherit methods from BankAccount, like deposit, that are univer-
sal for all bank accounts.

You will write a withdraw method in CheckingAccount that overrides the withdraw
method in BankAccount, in order to do something slightly different than the original
withdraw method.

You will use an instance variable called accountNumber in SavingsAccount to hide
the accountNumber variable inherited from BankAccount.

Gaddis_516907_Java 4/10/07 2:10 PM Page 97

The UML diagram for the inheritance relationship is as follows:

98 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

BankAccount

CheckingAccount SavingsAccount

-FEE:double

+CheckingAccount(name:String,
amont:double)

+withdraw (amount:double):boolean

-rate:double
-savingsNumber:int
-accountNumber:String

+SavingsAccount(name:String,amount:double)
+SavingsAccount(oldAccount:SavingsAccount,

amont:double)
+postInterest():void
+getAccountNumber():String

-balance:double
-owner:String
-accountNumber:String
#numberOfAccounts:int

+BankAccount()
+BankAccount(name:String,amount:double)
+BankAccount(oldAccount:BankAccount,amount:double)
+deposit(amount:double):void
+withdraw(amount:double):boolean
+getBalance():double
+getOwner():String
+getAccountNumber():String
+setBalance(amount:double):void
+setAccountNumber(newAccountNumber:String):void

Gaddis_516907_Java 4/10/07 2:10 PM Page 98

Task #1 Extending BankAccount

1. Copy the files AccountDriver.java (code listing 11.1) and BankAccount.java
(code listing 11.2) from www.aw.com/cssupport or as directed by your instruc-
tor. BankAccount.java is complete and will not need to be modified.

2. Create a new class called CheckingAccount that extends BankAccount.

3. It should contain a static constant FEE that represents the cost of clearing one
check. Set it equal to 15 cents.

4. Write a constructor that takes a name and an initial amount as parameters. It
should call the constructor for the superclass. It should initialize
accountNumber to be the current value in accountNumber concatenated
with –10 (All checking accounts at this bank are identified by the extension
–10). There can be only one checking account for each account number.
Remember since accountNumber is a private member in BankAccount, it
must be changed through a mutator method.

5. Write a new instance method, withdraw, that overrides the withdraw method in
the superclass. This method should take the amount to withdraw, add to it the
fee for check clearing, and call the withdraw method from the superclass.
Remember that to override the method, it must have the same method heading.
Notice that the withdraw method from the superclass returns true or false
depending if it was able to complete the withdrawal or not. The method that
overrides it must also return the same true or false that was returned from the
call to the withdraw method from the superclass.

6. Compile and debug this class.

Chapter 11 Lab Inheritance 99

Gaddis_516907_Java 4/10/07 2:10 PM Page 99

Task #2 Creating a Second Subclass

1. Create a new class called SavingsAccount that extends BankAccount.

2. It should contain an instance variable called rate that represents the annual
interest rate. Set it equal to 2.5%.

3. It should also have an instance variable called savingsNumber, initialized to
0. In this bank, you have one account number, but can have several savings
accounts with that same number. Each individual savings account is identified
by the number following a dash. For example, 100001-0 is the first savings
account you open, 100001-1 would be another savings account that is still part
of your same account. This is so that you can keep some funds separate from
the others, like a Christmas club account.

4. An instance variable called accountNumber that will hide the
accountNumber from the superclass, should also be in this class.

5. Write a constructor that takes a name and an initial balance as parameters and
calls the constructor for the superclass. It should initialize accountNumber
to be the current value in the superclass accountNumber (the hidden
instance variable) concatenated with a hyphen and then the savingsNumber.

6. Write a method called postInterest that has no parameters and returns no
value. This method will calculate one month’s worth of interest on the balance
and deposit it into the account.

7. Write a method that overrides the getAccountNumber method in the super-
class.

8. Write a copy constructor that creates another savings account for the same per-
son. It should take the original savings account and an initial balance as para-
meters. It should call the copy constructor of the superclass, assign the
savingsNumber to be one more than the savingsNumber of the original
savings account. It should assign the accountNumber to be the
accountNumber of the superclass concatenated with the hypen and the
savingsNumber of the new account.

9. Compile and debug this class.

10. Use the AccountDriver class to test out your classes. If you named and created
your classes and methods correctly, it should not have any difficulties. If you
have errors, do not edit the AccountDriver class. You must make your classes
work with this program.

11. Running the program should give the following output:

Account Number 100001-10 belonging to Benjamin Franklin
Initial balance = $1000.00
After deposit of $500.00, balance = $1500.00
After withdrawal of $1000.00, balance = $499.85

100 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 100

Account Number 100002-0 belonging to William Shakespeare
Initial balance = $400.00
After deposit of $500.00, balance = $900.00
Insuffient funds to withdraw $1000.00, balance = $900.00
After monthly interest has been posted, balance = $901.88

Account Number 100002-1 belonging to William Shakespeare
Initial balance = $5.00
After deposit of $500.00, balance = $505.00
Insuffient funds to withdraw $1000.00, balance = $505.00

Account Number 100003-10 belonging to Isaac Newton

Chapter 11 Lab Inheritance 101

Gaddis_516907_Java 4/10/07 2:10 PM Page 101

Code Listing 11.1 (AccountDriver.java)

import java.text.*; // to use Decimal Format

/**Demonstrates the BankAccount and derived classes*/

public class AccountDriver

{

public static void main(String[] args)

{

double put_in = 500;

double take_out = 1000;

DecimalFormat myFormat;

String money;

String money_in;

String money_out;

boolean completed;

// to get 2 decimals every time

myFormat = new DecimalFormat("#.00");

//to test the Checking Account class

CheckingAccount myCheckingAccount =

new CheckingAccount ("Ben Franklin", 1000);

System.out.println ("Account Number "

+ myCheckingAccount.getAccountNumber() +

" belonging to " + myCheckingAccount.getOwner());

money = myFormat.format(

myCheckingAccount.getBalance());

System.out.println ("Initial balance = $" + money);

myCheckingAccount.deposit (put_in);

money_in = myFormat.format(put_in);

money = myFormat.format(

myCheckingAccount.getBalance());

System.out.println ("After deposit of $" + money_in

+ ", balance = $" + money);

completed = myCheckingAccount.withdraw(take_out);

money_out = myFormat.format(take_out);

Code Listing 11.1 continued on next page.

102 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 102

Chapter 11 Lab Inheritance 103

money = myFormat.format(

myCheckingAccount.getBalance());

if (completed)

{

System.out.println ("After withdrawal of $" +

money_out + ", balance = $" + money);

}

else

{

System.out.println ("Insuffient funds to " +

" withdraw $" + money_out +

", balance = $" + money);

}

System.out.println();

//to test the savings account class

SavingsAccount yourAccount =

new SavingsAccount ("William Shakespeare", 400);

System.out.println ("Account Number "

+ yourAccount.getAccountNumber() +

" belonging to " + yourAccount.getOwner());

money = myFormat.format(yourAccount.getBalance());

System.out.println ("Initial balance = $" + money);

yourAccount.deposit (put_in);

money_in = myFormat.format(put_in);

money = myFormat.format(yourAccount.getBalance());

System.out.println ("After deposit of $" + money_in

+ ", balance = $" + money);

completed = yourAccount.withdraw(take_out);

money_out = myFormat.format(take_out);

money = myFormat.format(yourAccount.getBalance());

if (completed)

{

System.out.println ("After withdrawal of $" +

money_out + ", balance = $" + money);

}

else

{

Code Listing 11.1 continued on next page

Gaddis_516907_Java 4/10/07 2:10 PM Page 103

104 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

System.out.println ("Insuffient funds to " +

"withdraw $" + money_out +

", balance = $" + money);

}

yourAccount.postInterest();

money = myFormat.format(yourAccount.getBalance());

System.out.println ("After monthly interest " +

"has been posted," + "balance = $" + money);

System.out.println();

// to test the copy constructor of the savings account

//class

SavingsAccount secondAccount =

new SavingsAccount (yourAccount,5);

System.out.println ("Account Number "

+ secondAccount.getAccountNumber()+

" belonging to " +

secondAccount.getOwner());

money = myFormat.format(secondAccount.getBalance());

System.out.println ("Initial balance = $" + money);

secondAccount.deposit (put_in);

money_in = myFormat.format(put_in);

money = myFormat.format(secondAccount.getBalance());

System.out.println ("After deposit of $" + money_in

+ ", balance = $" + money);

secondAccount.withdraw(take_out);

money_out = myFormat.format(take_out);

money = myFormat.format(secondAccount.getBalance());

if (completed)

{

System.out.println ("After withdrawal of $" +

money_out + ", balance = $" + money);

}

else

{

Code Listing 11.1 continued on next page

Gaddis_516907_Java 4/10/07 2:10 PM Page 104

System.out.println ("Insuffient funds to " +

"withdraw $" + money_out +

", balance = $" + money);

}

System.out.println();

//to test to make sure new accounts are numbered

//correctly

CheckingAccount yourCheckingAccount =

new CheckingAccount ("Isaac Newton", 5000);

System.out.println ("Account Number "

+ yourCheckingAccount.getAccountNumber()

+ " belonging to "

+ yourCheckingAccount.getOwner());

}

}

Chapter 11 Lab Inheritance 105

Gaddis_516907_Java 4/10/07 2:10 PM Page 105

Code Listing 11.2 (BankAccount.java)

/**Defines any type of bank account*/

public abstract class BankAccount

{

/**class variable so that each account has a unique

number*/

protected static int numberOfAccounts = 100001;

/**current balance in the account*/

private double balance;

/** name on the account*/

private String owner;

/** number bank uses to identify account*/

private String accountNumber;

/**default constructor*/

public BankAccount()

{

balance = 0;

accountNumber = numberOfAccounts + "";

numberOfAccounts++;

}

/**standard constructor

@param name the owner of the account

@param amount the beginning balance*/

public BankAccount(String name, double amount)

{

owner = name;

balance = amount;

accountNumber = numberOfAccounts + "";

numberOfAccounts++;

}

/**copy constructor creates another account for the same

owner

@param oldAccount the account with information to copy

Code Listing 11.2 continued on next page.

106 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 106

Chapter 11 Lab Inheritance 107

@param the beginning balance of the new account*/

public BankAccount(BankAccount oldAccount, double amount)

{

owner = oldAccount.owner;

balance = amount;

accountNumber = oldAccount.accountNumber;

}

/**allows you to add money to the account

@param amount the amount to deposit in the account*/

public void deposit(double amount)

{

balance = balance + amount;

}

/**allows you to remove money from the account if

enough money is available,returns true if the transaction

was completed, returns false if the there was not enough

money.

@param amount the amount to withdraw from the account

@return true if there was sufficient funds to complete

the transaction, false otherwise*/

public boolean withdraw(double amount)

{

boolean completed = true;

if (amount <= balance)

{

balance = balance - amount;

}

else

{

completed = false;

}

return completed;

}

Code Listing 11.2 continued on next page

Gaddis_516907_Java 4/10/07 2:10 PM Page 107

/**accessor method to balance

@return the balance of the account*/

public double getBalance()

{

return balance;

}

/**accessor method to owner

@return the owner of the account*/

public String getOwner()

{

return owner;

}

/**accessor method to account number

@return the account number*/

public String getAccountNumber()

{

return accountNumber;

}

/**mutator method to change the balance

@param newBalance the new balance for the account*/

public void setBalance(double newBalance)

{

balance = newBalance;

}

/**mutator method to change the account number

@param newAccountNumber the new account number*/

public void setAccountNumber(String newAccountNumber)

{

accountNumber = newAccountNumber;

}

}

108 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 108

Chapter 12 Lab
Exceptions and Advanced File I/O

Objectives
• Be able to write code that handles an exception
• Be able to write code that throws an exception
• Be able to write a custom exception class

Introduction

This program will ask the user for a person’s name and social security number. The
program will then check to see if the social security number is valid. An exception will
be thrown if an invalid SSN is entered.

You will be creating your own exception class in this program. You will also create
a driver program that will use the exception class. Within the driver program, you will
include a static method that throws the exception. Note: Since you are creating all the
classes for this lab, there are no files on www.aw.com/cssupport.

Gaddis_516907_Java 4/10/07 2:10 PM Page 109

Task #1 Writing a Custom Exception Class

1. Create an exception class called SocSecException. The UML for this class is
below.

The constructor will call the superclass constructor. It will set the message associated
with the exception to “Invalid social security number” concatenated with the error
string.

2. Create a driver program called SocSecProcessor.java. This program will have a
main method and a static method called isValid that will check if the social
security number is valid.

+main(args:String[]):void
+isValid(ssn:String):boolean

SocSecProcessor

+SocSecException(String error):

SocSecException

110 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 110

Task #2 Writing Code to Handle an Exception

1. In the main method:
a) The main method should read a name and social security number from the

user as Strings.
b) The main method should contain a try-catch statement. This statement tries

to check if the social security number is valid by using the method isValid.
If the social security number is valid, it prints the name and social security
number. If a SocSecException is thrown, it should catch it and print out the
name, social security number entered, and an associated error message indi-
cating why the social security number is invalid.

c) A loop should be used to allow the user to continue until the user indicates
that they do not want to continue.

2. The static isValid method:
a) This method throws a SocSecException.
b) True is returned if the social security number is valid, false otherwise.
c) The method checks for the following errors and throws a SocSecException

with the appropriate message.
i) Number of characters not equal to 11. (Just check the length of the

string)
ii) Dashes in the wrong spots.
iii) Any non-digits in the SSN.
iv) Hint: Use a loop to step through each character of the string, checking

for a digit or hyphen in the appropriate spots.

3. Compile, debug, and run your program. Sample output is shown below with
user input in bold.

OUTPUT (boldface is user input)
Name? Sam Sly
SSN? 333-00-999
Invalid the social security number, wrong number of charac-
ters
Continue? y
Name? George Washington
SSN? 123-45-6789
George Washington 123-45-6789 is valid
Continue? y
Name? Dudley Doright
SSN? 222-00-999o
Invalid the social security number, contains a character
that is not a digit
Continue? y

Chapter 12 Lab Exceptions and I/O Streams 111

Gaddis_516907_Java 4/10/07 2:10 PM Page 111

Name? Jane Doe

SSN? 333-333-333

Invalid the social security number, dashes at wrong positions

Continue? n

112 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 112

Chapter 13 Lab
Advanced GUI Applications

Objectives
• Be able to add a menu to the menu bar
• Be able to use nested menus
• Be able to add scroll bars, giving the user the option of when they will be seen.
• Be able to change the look and feel, giving the user the option of which look

and feel to use

Introduction

In this lab we will be creating a simple note taking interface. It is currently a working
program, but we will be adding features to it. The current program displays a window
which has one item on the menu bar, Notes, which allows the user 6 choices. These
choices allow the user to store and retrieve up to 2 different notes. It also allows the
user to clear the text area or exit the program.

We would like to add features to this program which allows the user to change how
the user interface appears. We will be adding another choice on the menu bar called
Views, giving the user choices about scroll bars and the look and feel of the GUI.

Gaddis_516907_Java 4/10/07 2:10 PM Page 113

Task #1 Creating a Menu with Submenus

1. Copy the file NoteTaker.java (code listing 13.1) from www.aw.com/cssuport or
as directed by your instructor.

2. Compile and run the program. Observe the horizontal menu bar at the top
which has only one menu choice, Notes. We will be adding an item to this
menu bar called Views that has two submenus. One named Look and Feel and
one named Scroll Bars. The submenu named Look and Feel lets the user
change the look and feels: Metal, Motif, and Windows. The submenu named
Scroll Bars offers the user three choices: Never, Always, and As Needed.
When the user makes a choice, the scroll bars are displayed according to the
choice.

3. We want to logically break down the problem and make our program easier to
read and understand. We will write separate methods to create each of the verti-
cal menus. The three methods that we will be writing are createViews(),
createScrollBars(), and createLookAndFeel(). The method
headings with empty bodies are provided.

4. Let’s start with the createLookAndFeel() method. This will create the
first submenu shown in figure 1. There are three items on this menu, Metal,
Motif, and Windows. We will create this menu by doing the following:
a) Create a new JMenu with the name Look and Feel.
b) Create a new JMenuItem with the name Metal.
c) Add an action listener to the menu item (see the createNotes() method

to see how this is done).
d) Add the menu item to the menu.
e) Repeat steps b through d for each of the other two menu items.

5. Similarly, write the createScrollBars() method to create a JMenu that
has three menu items, Never, Always, and As Needed. See figure 2.

6. Now that we have our submenus, these menus will become menu items for the
Views menu. The createViews() method will make the vertical menu
shown cascading from the menu choice Views as shown in figure. We will do
this as follows
a) Create a new JMenu with the name Views.
b) Call the createLookAndFeel() method to create the Look and Feel

submenu.
c) Add an action listener to the Look and Feel menu.
d) Add the look and feel menu to the Views menu.
e) Repeat steps b through d for the Scroll Bars menu item, this time calling

the createScrollBars() method.

7. Finish creating your menu system by adding the Views menu to the menu bar
in the constructor.

114 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 114

Task #2 Adding Scroll Bars and Editing the Action Listener

1. Add scroll bars to the text area by completing the following steps in the con-
structor
a) Create a JScrollPane object called scrolledText, passing in theText.
b) Change the line that adds to the textPanel, by passing in scrolledText

(which now has theText.)

2. Edit the action listener by adding 6 more branches to the else-if logic. Each
branch will compare the actionCommand to the 6 submenu items: Metal,
Motif, Window, Never, Always, and As Needed.
a) Each Look and Feel submenu item will use a try-catch statement to set the

look and feel to the appropriate one, displaying an error message if this was
not accomplished.

b) Each Scroll Bars submenu item will set the horizontal and vertical scroll
bar policy to the appropriate values.

c) Any components that have already been created need to be updated. This
can be accomplished by calling the
SwingUtilities.updateComponentTreeUI method, passing a reference to
the component that you want to update as an argument. Specifically you
will need to add the line

SwingUtilities.updateComponentTreeUIgetContentPane());

to each branch that you just added to the logic structure.

Figure 1

Chapter 13 Lab Advanced GUI Applications 115

Gaddis_516907_Java 4/10/07 2:10 PM Page 115

Figure 2

Figure 3

116 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 116

Code Listing 13.1 (NoteTaker.java)

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class NoteTaker extends JFrame

{

//constants for set up of note taking area

public static final int WIDTH = 600;

public static final int HEIGHT = 300;

public static final int LINES = 13;

public static final int CHAR_PER_LINE = 45;

//objects in GUI

private JTextArea theText; //area to take notes

private JMenuBar mBar; //horizontal menu bar

private JPanel textPanel; //panel to hold scrolling text area

private JMenu notesMenu; //vertical menu with choices for notes

//****THESE ITEMS ARE NOT YET USED.

//****YOU WILL BE CREATING THEM IN THIS LAB

private JMenu viewMenu; //vertical menu with choices for views

private JMenu lafMenu; //vertical menu with look and feel

private JMenu sbMenu; //vertical menu with scroll bar
option

private JScrollPane scrolledText;//scroll bars

//default notes

private String note1 = "No Note 1.";

private String note2 = "No Note 2.";

/**constructor*/

public NoteTaker()

{

//create a closeable JFrame with a specific size

super("Note Taker");

setSize(WIDTH, HEIGHT);

setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

Code Listing 13.1 continued on next page.

Chapter 13 Lab Advanced GUI Applications 117

Gaddis_516907_Java 4/10/07 2:10 PM Page 117

//set layout of the window

setlayout (new BorderLayout());

//creates the vertical menus

createNotes();

createViews();

//creates horizontal menu bar and

//adds vertical menus to it

mBar = new JMenuBar();

mBar.add(notesMenu);

//****ADD THE viewMenu TO THE MENU BAR HERE

setJMenuBar(mBar);

//creates a panel to take notes on

textPanel = new JPanel();

textPanel.setBackground(Color.BLUE);

theText = new JTextArea(LINES, CHAR_PER_LINE);

theText.setBackground(Color.WHITE);

//****CREATE A JScrollPane OBJECT HERE CALLED scrolledText

//****AND PASS IN theText, THEN

//****CHANGE THE LINE BELOW BY PASSING IN scrolledText

textPanel.add(theText);

add(textPanel, BorderLayout.CENTER);

}

/**creates vertical menu associated with Notes

menu item on menu bar*/

public void createNotes()

{

notesMenu = new JMenu("Notes");

JMenuItem item;

item = new JMenuItem("Save Note 1");

item.addActionListener(new MenuListener());

notesMenu.add(item);

Code Listing 13.1 continued on next page.

118 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:23 PM Page 118

item = new JMenuItem("Save Note 2");

item.addActionListener(new MenuListener());

notesMenu.add(item);

item = new JMenuItem("Open Note 1");

item.addActionListener(new MenuListener());

notesMenu.add(item);

item = new JMenuItem("Open Note 2");

item.addActionListener(new MenuListener());

notesMenu.add(item);

item = new JMenuItem("Clear");

item.addActionListener(new MenuListener());

notesMenu.add(item);

item = new JMenuItem("Exit");

item.addActionListener(new MenuListener());

notesMenu.add(item);

}

/**creates vertical menu associated with Views

menu item on the menu bar*/

public void createViews()

{

}

/**creates the look and feel submenu*/

public void createLookAndFeel()

{

}

/**creates the scroll bars submenu*/

public void createScrollBars()

{

Code Listing 13.1 continued on next page.

Chapter 13 Lab Advanced GUI Applications 119

Gaddis_516907_Java 4/10/07 2:10 PM Page 119

}

private class MenuListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

String actionCommand = e.getActionCommand();

if (actionCommand.equals("Save Note 1"))

note1 = theText.getText();

else if (actionCommand.equals("Save Note 2"))

note2 = theText.getText();

else if (actionCommand.equals("Clear"))

theText.setText("");

else if (actionCommand.equals("Open Note 1"))

theText.setText(note1);

else if (actionCommand.equals("Open Note 2"))

theText.setText(note2);

else if (actionCommand.equals("Exit"))

System.exit(0);

//****ADD 6 BRANCHES TO THE ELSE-IF STRUCTURE

//****TO ALLOW ACTION TO BE PERFORMED FOR EACH

//****MENU ITEM YOU HAVE CREATED

else

theText.setText("Error in memo interface");

}

}

public static void main(String[] args)

{

NoteTaker gui = new NoteTaker();

gui.setVisible(true);

}

}

120 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 120

Chapter 14 Lab
Applets and More

Objectives
• Be able to write an applet
• Be able to draw rectangles, circles, and arcs
• Be able to override the paint method
• Be able to use a timer

Introduction

In this lab we will create an applet that changes the light on a traffic signal. The applet
that you create will draw the outside rectangle of a traffic signal and fill it in with yel-
low. Then it will draw three circles in one column, to resemble the red, orange, and
green lights on the traffic signal. Only one circle at a time will be filled in. It will start
will green and cycle through the orange, red, and back to green to start the cycle again.
However, unlike a traffic signal, each light will remain on for the same amount of time.
To accomplish this cycle, we will use
a timer object.

When you have finished your
applet should appear as shown in fig-
ure 1, but with the filled in circle
cycling up from green to orange to
red and starting over in a continuous
changing of the traffic light.

Gaddis_516907_Java 4/10/07 2:10 PM Page 121

Task #1 Create an Applet

1. Copy the file TrafficApplet.java (see code listing 14.1) from
www.aw.com/cssupport or as directed by your instructor.

2. This class currently has all the constants you will need to be able to you’re your
traffic signal. It doesn’t have anything else. You will need to change the class
heading so that it extends JApplet.

122 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 122

Task #2 The Timer

1. An applet does not have a constructor or a main method. Instead, it has a
method named init that performs the same operations as a constructor. The
init method accepts no arguments and has a void return type. Write an init
method.

2. Inside the init method, create a timer object passing in the TIME_DELAY
constant and a new TimerListener (We will be creating the listener class next).

3. Call the start method with the timer object to generate action events.

Chapter 14 Lab Applets and More 123

Gaddis_516907_Java 4/10/07 2:10 PM Page 123

Task #3 The TimerListener Class

1. Write a private inner class called TimerListener which implements
ActionListener.

2. Inside this class, write an actionPerformed method. This method will check the
status variable to see whether it is currently red, orange, or green. Since we
want the lights to cycle as a traffic signal, we need to cycle in the order: green,
orange, red, green, orange, red, … Once the status is determined, the status
should then be set to the next color in the cycle.

3. Redisplay the graphics components (to be created next) by calling the
repaint method.

124 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 124

Task #4 Drawing Graphics

1. Draw the traffic signal by overriding the paint method. For all graphics, use the
named constants included in the class.

2. Call the method that is being overridden in the parent class.

3. Create a yellow rectangle (solid color) for the traffic signal. The constants
X_TRAFFICLIGHT, Y_TRAFFICLIGHT, TRAFFICLIGHT_WIDTH, and
TRAFFICLIGHT_HEIGHT have already been defined for your use.

4. Create round lights of red, orange, and green for the signals. These should be
outlines of these colors. The constants X_LIGHTS, Y_REDLIGHT,
Y_GREENLIGHT, Y_ORANGELIGHT, and LIGHT_DIAMETER, have
already been defined for your use. Only one light will be filled in at a time,
when the status indicates that one has been chosen. You will need to check the
status to determine which light to fill in. Remember, the status is changed only
in the actionPerformed method (already defined) where the repaint method
is also called.

5. Put the shade hoods above the lights by drawing black arcs above each light.
The constants HOOD_START_ANGLE and HOOD_ANGLE_SWEPT have
already been defined for your use.

6. Try out your applet. If time permits, create a web page on which you can dis-
play your applet.

Chapter 14 Lab Applets and More 125

Gaddis_516907_Java 4/10/07 2:10 PM Page 125

Code Listing 14.1 (TrafficApplet.java)

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class TrafficApplet

{

public final int WIDTH = 300;

public final int HEIGHT = 400;

public final int X_TRAFFICLIGHT = WIDTH/3;

public final int Y_TRAFFICLIGHT = HEIGHT/7;

public final int TRAFFICLIGHT_WIDTH = WIDTH/2;

public final int TRAFFICLIGHT_HEIGHT = HEIGHT*3/5;

public final int LIGHT_DIAMETER = TRAFFICLIGHT_HEIGHT/5;

public final int HOOD_START_ANGLE = 20;

public final int HOOD_ANGLE_SWEPT = 140;

public final int X_LIGHTS =

TRAFFICLIGHT_WIDTH/3 + X_TRAFFICLIGHT;

public final int Y_REDLIGHT =

TRAFFICLIGHT_HEIGHT/10 + Y_TRAFFICLIGHT;

public final int Y_ORANGELIGHT =

TRAFFICLIGHT_HEIGHT*4/10 + Y_TRAFFICLIGHT;

public final int Y_GREENLIGHT =

TRAFFICLIGHT_HEIGHT*7/10 + Y_TRAFFICLIGHT;

public final int TIME_DELAY = 1000;

private String status = "green"; //start with the green

//light

private Timer timer; //will allow lights to cycle

}

126 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 126

Chapter 15 Lab
Recursion

Objectives
• Be able to trace recursive function calls
• Be able to write non-recursive and recursive methods to find geometric and har-

monic progressions

Introduction

In this lab we will follow how the computer executes recursive methods, and will write
our own recursive method, as well as the iterative equivalent. There are two common
progressions in mathematics, the geometric progression and the harmonic progression.
The geometric progression is defined as the product of the first n integers. The har-
monic progression is defined as the product of the inverses of the first n integers.
Mathematically, the definitions are as follows

Geometric

Harmonic

Let’s look at examples. If we use the geometric progression would be
and the harmonic progression would be

1 *
1
2 *

1
3 *

1
4 =

1
24 = 0.04166 Á

1 * 2 * 3 * 4 = 24,
n = 4,

(n) = q
n

i = 1
 1i =

1
i * q

n - 1

i = 1
 1i

(n) = q
n

i = 1
 i = i * q

n - 1

i = 1
 i

Gaddis_516907_Java 4/10/07 2:10 PM Page 127

Task #1 Tracing recursive methods

1. Copy the file Recursion.java (see code listing 15.1) from www.aw.com/cssup-
port or as directed by your instructor.

2. Run the program to confirm that the generated answer is correct. Modify the
factorial method in the following ways:
a) add these lines above the first ‘if’ statement

int temp;
System.out.println(
"Method call — calculating Factorial of: " + n);

b) remove this line in the recursive section at the end of the method
return (factorial(n-1) *n);

c) add these lines in the recursive section
temp = factorial(n-1);
System.out.println(
"Factorial of: " + (n-1) + " is " + temp);
return (temp * n);

3. Rerun the program and note how the recursive calls are built up on the run-time
stack and then the values are calculated in reverse order as the run-time stack
“unwinds”.

128 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 128

Task #2 Writing Recursive and Iterative Versions of a
Method

1. Copy the file Progression.java (see code listing 15.2) from www.aw.com/cssup-
port or as directed by your instructor.

2. You need to write class (static) methods for an iterative and a recursive version
each of the progressions. You will have 4 methods, geometricRecursive,
geometricIterative, harmonicRecursive, and
harmonicIterative. Be sure to match them to the method calls in the
main method.

Chapter 15 Lab Recursion 129

Gaddis_516907_Java 4/10/07 2:10 PM Page 129

Code Listing 15.1 (Recursive.java)

public class Recursion

{

public static void main(String[] args)

{

int n = 7;

//Test out the factorial

System.out.println(n + " factorial equals ");

System.out.println(Recursion.factorial(n));

System.out.println();

}

public static int factorial(int n)

{

int temp;

if (n==0)

{

return 1;

}

else

{

return (factorial(n-1) *n);

}

}

}

130 Lab Manual to Accompany Starting Out with Java 5: From Control Structures to Objects

Gaddis_516907_Java 4/10/07 2:10 PM Page 130

Code Listing 15.2 (Progression.java)

import java.util.Scanner;

public class Progression

{

public static void main(String [] args)

{

Scanner keyboard = new Scanner (System.in);

System.out.println("This program will calculate " +

"the geometric and ");

System.out.println("harmonic progression for the " +

"number you enter.");

System.out.print("Enter an integer that is " +

"greater than or equal to 1: ");

int input = keyboard.nextInt();

int geomAnswer = geometricRecursive (input);

double harmAnswer = harmonicRecursive (input);

System.out.println("Using recursion:");

System.out.println("The geometric progression of " +

input + " is " + geomAnswer);

System.out.println("The harmonic progression of " +

input + " is " + harmAnswer);

geomAnswer = geometricIterative (input);

harmAnswer = harmonicIterative (input);

System.out.println("Using iteration:");

System.out.println("The geometric progression of " +

input + " is " + geomAnswer);

System.out.println("The harmonic progression of " +

input + " is " + harmAnswer);

}

}

Chapter 15 Lab Recursion 131

Gaddis_516907_Java 4/10/07 2:10 PM Page 131

Gaddis_516907_Java 4/10/07 2:10 PM Page 132

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

