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The goal of these notes is to understand the following situation. Suppose we have a
field K, and a Galois extension L/K. Suppose we have some object A “over K”, such as
a K-vector space, a K-algebra, a K-scheme, an algebraic K-group, etc. By “tensoring up”
to L, we obtain a L-object of the same type, typically denoted AL. Given a K-object A,
an L/K-form of A is a K-object B such that AL ∼= BL. We would like to understand the
following.

1. Given a L-object (or L-morphism), when does it come from aK-object (orK-morphism)?

2. How to determine if an object B is an L/K-form of A.

3. What does the set of all L/K-forms of A look like?

4. How is the set of L/K-forms of A related to the Galois group Gal(L/K)?

The last question is the most interesting, since it turns out that Gal(L/K) and some associ-
ated group cohomology groups are in bijection with L/K-forms of A. This relationship and
the various associated theory and proof techniques are known as Galois descent.

Let’s consider a motivating example. Let K = R, L = C. Let A = M2(R) be the R-
algebra of 2× 2 matrices with real entries, and let B = H be the Hamilton quaternions. We
can write B as

B = {a+ bi+ cj + dij : a, b, c, d ∈ R}

subject to the multiplication relations

i2 = j2 = −1 ij = −ji

Both A and B are 4-dimensional algebras over R. They both have a unit, both are non-
commutative, and both are “central” and “simple” algebras, whatever that means. We claim,
however, that they are NOT isomorphic as R-algebras. The simplest way to see this is that
H is a division algebra, while M2(R) is not. To see that M2(R) is not a division algebra, it
suffices to exhibit one non-invertible nonzero matrix. For example,

x =

(
0 1
0 0

)
∈M2(R)
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is not invertible. On the other hand, every nonzero element of H is a unit. I’ll omit the
details, but if q = a+ bi+ cj + dij ∈ H and q 6= 0, the inverse is given by

q−1 =
q

N(q)
=
a− bi− cj − dij
a2 + b2 + c2 + d2

So at this point we have two non-isomorphic 4-dimensional R-algebras, A and B. Using the
extension C/R, we can tensor both up to C/R.

AC = M2(R)⊗R C ∼= M2(C)

BC = H⊗R C

AC is straightforward - tensoring a matrix algebra up to a bigger field just gives the matrix
algebra over the bigger field. However, BC is somewhat more mysterious. It would take some
theory to explain why, but the upshot is that as a C-algebra,

BC = H⊗R C ∼= M2(C)

Essentially, this happens because H contains an isomorphic copy of C, given by the elements
a+bi. The two algebras A and B which were not isomorphic over R became isomorphic after
extending scalars. In general, this may happen - two different objects over a smaller field
may collapse into a single isomorphism class after extension. So while tensoring up to a field
extension is always possible, “descending” is harder, because there may be more than one
object below. For example, the C-algebra M2(C) does not “lie above” a unique R-algebra,
since both M2(R) and H lie below it. This example raises questions like

1. Given the C-algebra M2(C), can we recover the collection of all R-algebras A such that
AC ∼= M2(C)?

2. What is the relationship between M2(R) and H which makes them the same after ⊗C?

These and other questions are the goal of these notes to explore.
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Note on notation

Throughout K is a field, and L/K is usually a Galois extension. Sometimes we require L/K
to be finite, but we want all of our main results to hold when L/K is infinite as well. By a
vector space over K, we always mean a finite dimensional vector space over K. Many results
still hold for infinite dimensional vector spaces, but not all.

1 Group cohomology

1.1 Discrete groups acting on abelian groups

Let G be a group and A be a G-module (a module over the group ring Z[G]). The fixed
point functor A 7→ AG from G-modules to abelian groups is left exact, so we may form its
right derived functors, which are denoted H i(G,−). In particular,

H0(G,A) = AG

There is also an interpretation of H i(G,A) in terms of something called cochains, which
allows for more concrete interpretations of the abelian group H i(G,A) in terms of functions
from a product of copies of G to A satisfying certain properties. In particular, H1(G,A) can
be identified with “crossed homomorphisms” G→ A modulo some equivalence.

Definition 1.1. Let G be a group and A a G-module. A crossed homomorphism is a
map f : G→ A satisfying

f(gh) =
(
f(g)

)
+
(
g · f(h)

)
for all g, h ∈ G. Note that + denotes addition in A and · denotes the action of G on A.
Crossed homomorphisms are also sometimes called 1-cocycles. The set of 1-cocycles is
denoted Z1(G,A).

Z1(G,A) =
{
f : G→ A | f(gh) =

(
f(g)

)
+
(
g · f(h)

)
, ∀g, h ∈ G

}
Note that Z1(G,A) forms an abelian group under pointwise addition.

Definition 1.2. Let G be a group and A a G-module. For any a ∈ A, the function

f : G→ A g 7→ g · a− a

is a crossed homomorphism, as the calculation below demonstrates.

f(gh) = (gh) · a− a = (gh) · a− g · a+ g · a− a = g · (h · a− a) + g · a− a = g · f(h) + f(g)

Such a map is called a trivial crossed homomorphism, or a 1-coboundary. The set of
1-coboundaries is denoted B1(G,A).

B1(G,A) = {f : G→ A | ∃a ∈ A, f(g) = ga− a,∀g ∈ G}

Note that B1(G,A) forms a subgroup of Z1(G,A).
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Definition 1.3. Two crossed homomorphisms G → A are equivalent or cohomologous
if their difference is a trivial crossed homomorphism. The equivalence class of a crossed
homomorphism is called its cohomology class.

Proposition 1.4. H1(G,A) is isomorphic to the quotient group of crossed homomorphisms
modulo trivial crossed homomorphisms, that is, the set of cohomology classes.

H1(G,A) ∼=
Z1(G,A)

B1(G,A)
=
{f : G→ A | f(gh) = f(g) + gf(h),∀g, h ∈ G}
{f : G→ A | ∃a ∈ A, f(g) = ga− a,∀g ∈ G}

Example 1.5. Let K be a field, and L/K a Galois extension with Galois group G =
Gal(L/K). We may view L as an additive group and a G-module, or view L× as a multi-
plicative group, also as a G-module. In these cases, the fixed points are K,K× respectively.

H0(G,L) = K

H0(G,L×) = K×

One version of a classical result known as Hilbert’s Theorem 90 says that

H1(G,L) = 0

H1(G,L×) = 0

1.2 Profinite groups acting on abelian groups

Now suppose G is a profinite group, and A is a topological G-module, meaning that A is a
topological abelian group and the G-action map G × A → A is continuous with respect to
the topology on A and the profinite topology on G. Sometimes we refer to such an A as a
continuous G-module.

Definition 1.6. Let G be a profinite group and A a topological G-module. A is a discrete
topological G-module if the map G×A→ A is still continuous if we replace the topology on
A with the discrete topology. Equivalently, the stabilizer of each a ∈ A is an open subgroup
of G.

Definition 1.7. Let G be a profinite group and A a topological G-module. In parallel with
the discrete case, define

H0
cts(G,A) = AG

We may also define the continuous 1-cocycles and continuous 1-coboundaries as

Z1
cts(G,A) =

{
f : G→ A continuous | f(gh) =

(
f(g)

)
+
(
g · f(h)

)
, ∀g, h ∈ G

}
B1

cts(G,A) = {f : G→ A continuous | ∃a ∈ A, f(g) = ga− a,∀g ∈ G}

Then we define H1
cts(G,A) to be the set of cohomology classes.

H1
cts(G,A) =

Z1
cts(G,A)

B1
cts(G,A)

These are once again abelian groups, H1 being a group under pointwise addition. In a mild
abuse of notation, when G is profinite and A is a topological G-module, we will drop the
subscript cts and just write H0(G,A), H1(G,A) for these groups.
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Example 1.8. Let L/K be an infinite Galois extension, with Galois group G = Gal(L/K).
Then G is a profinite group, and both L (as an additive group) and L× (as a multiplica-
tive group) are discrete continuous G-modules. The computations are mostly the same as
previously.

H0(G,L) = K

H0(G,L×) = K×

H1(G,L) = 0

H1(G,L×) = 0

Remark 1.9. Let K be a field and G = Gal(Ksep/K) be the absolute Galois group and let
A be a continuous G-module. So we have associated cohomology groups

H0(G,A) H1(G,A)

Since this situation arises so commonly and G is entirely determined by K, the notation
frequently substitutes K for G. So the groups above are denoted

H0(K,A) H1(K,A)

This is not meant to imply in any way that k acts as a group (either additively or multi-
plicatively) on A, but is just a shorthand for H1(G,A).

1.3 Discrete groups acting on nonabelian groups

Definition 1.10. Let G be a group. A G-group is a group A with a group action G×A→ A
such that elements of G act by automorphisms. If A is an abelian group, then we recover
the notion of a G-module.

Definition 1.11. Let G be a group and let A,B be G-groups. A morphism of G-groups
is a group homomorphism φ : A→ B such that

φ(ga) = gφ(a)

for all g ∈ G, a ∈ A. In other words, for every g ∈ G, the following diagram commutes.

A B

A B

g

φ

g

φ

Definition 1.12. Let G be a group and let A be a G-group. Paralleling the definitions
above, define

H0(G,A) = AG

Note that this is a subgroup of A.
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Definition 1.13. Let φ : A → B be a morphism of G-groups. Then φ|AG : AG → B has
image which lands in BG, since

gφ(a) = φ(ga) = φ(a)

for a ∈ AG. Thus φ induces a map on H0, which is just φ|AG . We denote it by φ0.

φ0 : H0(G,A)→ H0(G,B)

This makes H0(G,−) into a covariant functor.

Definition 1.14. Let G be a group and A be a G-group. A crossed homomorphism or
1-cocycle is a map f : G→ A satisfying

f(gh) =
(
f(g)

)
∗
(
g · f(h)

)
∀g, h ∈ G

where · denotes the G-action on A and ∗ denotes the operation in A. Once again, we denote
the set of such 1-cocycles by Z1(G,A).

Z1(G,A) =
{
f : G→ A | f(gh) =

(
f(g)

)
∗
(
g · f(h)

)
, ∀g, h ∈ G

}
Note that Z1(G,A) is no longer necessarily a group under the pointwise operation in A.
Nevertheless, Z1(G,A) is a set, and it is always non-empty, since it contains the constant
map G → A, g 7→ 1 where 1 is the identity element of A. This constant map is called the
unit cocycle.

Notation. Since the parentheses are starting to get somewhat unwieldy in the notation
above, we describe an alternative notation for 1-cocycles in the nonabelian case. Let G be a
group and A a G-group. For a 1-cocycle f : G→ A, we use the notation

fσ := f(σ)

and for a ∈ A and σ ∈ G, we use the notation

σa := σ · a

In this notation, the usual relations for G acting on A by automorphisms are expressed as

σ1 = 1 (σa)(σb) = σ(ab) ∀a, b ∈ A, σ ∈ G

and the requirement that a map φ : A→ B be a morphism of G-groups is expressed as

σ(φa) = φ(σa)

Using this notation, the cocycle condition translates to

f(στ) =
(
σ · f(τ)

)
∗
(
f(σ)

)
 fστ = fσ ∗ σfτ = fσ

σfτ

So we can write
Z1(G,A) = {f : G→ A | fστ = fσ

σfτ , ∀σ, τ ∈ G}

7



Definition 1.15. Let φ : A → B be a morphism of G-groups, and let f ∈ Z1(G,A) be a
crossed homomorphism. Then consider the composition

φ ◦ f : G→ B

We claim that this is also a crossed homomorphism. Let g, h ∈ G. Then

(φ ◦ f)στ = φ (fστ ) = φ (fσ
σfτ ) = φ(fσ)φ(σfτ ) = φ(fσ)σφ(fτ ) = (φ ◦ f)σ

σ(φ ◦ f)τ

Thus φ ◦ f ∈ Z1(G,B) is a crossed homomorphism. Hence post-composition with φ induces
a map

φ̃ : Z1(G,A)→ Z1(G,B) f 7→ f ◦ φ

Definition 1.16. Let G be a group and A be a G-group. The notion of 1-coboundaries does
not quite generalize to the nonabelian setting, so instead of an analog for B1(G,A), we have
to replace it by a suitable equivalence relation on Z1(G,A), which accomplishes the same
task. Let α, β ∈ Z1(G,A) be 1-cocycles. They are equivalent or cohomologous if there
exists c ∈ A such that

βσ = c−1ασ
σc

for all σ ∈ G.

Remark 1.17. The above is an equivalence relation, as we now verify. Reflexivity is clear,
take c = 1, and note that g1 = 1 since G acts by automorphisms. If α ∼ β with

βσ = c−1ασ
σc ∀σ ∈ G

then
ασ = cβσ(σc)−1 = (c−1)−1βσ

σ(c−1) ∀σ ∈ G

hence β ∼ α, so the relation is symmetric. If α ∼ β and β ∼ γ, we have c, d ∈ A such that

ασ = c−1βσ
σc, βσ = d−1γσ

σd ∀σ ∈ G

Then
ασ = c−1(d−1γσ

σd)σc = c−1d−1γσ
σdσc = (dc)−1γσ

σ(dc)

hence α ∼ γ, so the relation is transitive.

Definition 1.18. Let G be a group and A be a G-group. We define H1(G,A) to be the
set of equivalence classes under the above relation on Z1(G,A). Note that H1(G,A) is not
a group, merely a set. The equivalence classes are called cohomology classes.

Remark 1.19. If A is abelian, the previous definition recovers the definition of H1(G,A)
as the quotient Z1/B1. In particular, in this situation, H1(G,A) is an abelian group.

Definition 1.20. Let φ : A → G be a morphism of G-groups, with induced map on 1-
cocycles,

φ̃ : Z1(G,A)→ Z1(G,B) f 7→ f ◦ φ
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We claim that this descends to a map H1(G,A) → H1(G,B). It is clear that we can

compose φ̃ with the quotient map Z1(G,B) → H1(G,B). The question then becomes
whether equivalent cocycles in H1(G,A) get mapped to equivalent cocycles in H1(G,B).

To verify this, we need to show that if α, β ∈ Z1(G,A) are equivalent, then φ◦α, φ◦α are
equivalent (represent the same class in H1(G,B)). Suppose α, β ∈ Z1(G,A) are equivalent.
Then there exists c ∈ A such that

βσ = c−1ασ
σc

for all σ ∈ G. Then

(φ ◦ β)σ = φ(βσ)

= φ(c−1ασ
σc)

= φ(c−1)φ(ασ)φ(σc)

= φ(c)−1(φ ◦ α)σ
σφ(c)

This holds for all σ ∈ G, so φ ◦ β and φ ◦ α are equivalent using d = φ(c) ∈ B. The upshot
of all of this is that a morphism φ : A→ B of G-groups induces a map

φ1 : H1(G,A)→ H1(G,B) φ1[f ] = [φ ◦ f ]

where the brackets represent equivalence/cohomology classes.

Definition 1.21. A pointed set is a pair (X, x0) where X is a set and x0 ∈ X is an element,
usually called the distinguished element.

Definition 1.22. Let G be a group and A a G-group, not necessarily abelian. Recall that
inside Z1(G,A) we have the unit cocycle G → A, g 7→ 1. The class of the unit cocycle is
called the distinguished element of H1(G,A). This makes H1(G,A) into a pointed set,
which is all the structure we can ascribe to it in the situation where A is nonabelian.

Definition 1.23. Let (X, x0) and (Y, y0) be pointed sets. A morphism of pointed sets
is a set map ψ : X → Y such that ψ(x0) = y0. The image of ψ is the pointed set
(ψ(X), ψ(x0) = y0). Then kernel of ψ is the pointed set (ψ−1(y0), x0).

Definition 1.24. Let ψ : (X, x0) → (Y, y0) and φ : (Y, y0) → (Z, z0) be morphisms of
pointed sets. The sequence

(X, x0)
ψ−→ (Y, y0)

φ−→ (Z, z0)

is exact if the image of ψ is equal to the kernel of φ. More concretely, if we just think of
ψ : X → Y and φ : Y → Z as set maps, exactness means that ψ(X) = ψ−1(z0).

Remark 1.25. Let φ : A→ B be a morphism of G-groups. It is clear that the induced map
ψ̃ : Z1(G,A) → Z1(G,B) maps the unit cocycle to the unit cocycle, so the induced map
ψ1 : H1(G,A)→ H1(G,B) maps the distinguished element of H1(G,A) to the distinguished
element of H1(G,B), so ψ1 is a morphism of pointed sets.
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Proposition 1.26. Let G be a group and suppose we have a short exact sequence of G-
modules.

1→ A
a−→ B

b−→ C → 1

Then there is an exact sequence of pointed sets

1→ AG
a0−→ BG b0−→ CG δ−→ H1(G,A)

a1−→ H1(G,B)
b1−→ H1(G,C)

Proof. Omitted.

Remark 1.27. We think of AG as a pointed set with distinguished element 1 ∈ AG, and it
is clear that a0 is then a map of pointed sets AG → BG.

1.4 Profinite groups acting on nonabelian groups

As in the case of abelian cohomology, we have a profinite version of nonabelian cohomology.

Definition 1.28. Let G be a profinite group. A topological G-group is a topological
group A which is also a G-group, such that the map G×A→ A is continuous. A topological
G-group A is discrete if the stabilizer of each a ∈ A is an open subgroup of G.

Definition 1.29. A morphism of topological G-groups or G-morphism is a morphism
of G-groups which is also continuous with respect to the topology on A.

Definition 1.30. Let G be a profinite group and A be a discrete topological G-group. Define

H0
cts(G,A) = H0(G,A) = AG

to be the fixed points of the G-action. Also define

Z1
cts(G,A) = {f : G→ A, continuous | fgh = fg

gfh, ∀g, h ∈ G}

We define a relation on Z1
cts(G,A) by the same formula as in the discrete case.

α ∼ β ⇐⇒ ∃c ∈ A, βg = c−1αg
gc, ∀g ∈ G

As in the discrete case, this is an equivalence relation, and we define H1
cts(G,A) to be the set

of equivalence classes. We will abuse notation and just write this as H1(G,A). As before,
this is not a group if A is nonabelian, but it is has a distinguished element given by the class
of the unit cocycle. (The unit cocycle is continuous because A is discrete.)

Definition 1.31. As before, a morphism of topological G-groups φ : A→ B induces maps
of pointed sets

φ0 : H0
cts(G,A)→ H0(G,B)

φ1 : H1
cts(G,A)→ H1(G,B)

Remark 1.32. The exact sequence from before also has a profinite version, when the G-
groups involved are discrete. That is, if

1→ A→ B → C → 1

is a short exact sequence of discrete topological G-groups, there is an associated exact se-
quence of pointed sets

1→ H0
cts(G,A)→ H0

cts(G,B)→ H0
cts(G,C)→ H1

cts(G,A)→ H1
cts(G,B)→ H1

cts(G,C)
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1.5 Twisted actions

Definition 1.33. Let G be a group and let A be a G-group. Let X be a G-set and an A-set,
that is, both G and A act on X. The actions are compatible if for all x ∈ X, a ∈ A, σ ∈ G,

σ · (a · x) = (σ · a) · (σ · x)

In the above, · is used for all of the actions, of G on A, G on X, and A on X. If X is a G-set
and A-set with compatible actions, we also call X a (G,A)-set.

Definition 1.34. Let K/k be a finite Galois extension with Galois group G. Let W be a
K-vector space, and suppose we have an action of G on W . If this action is compatible with
the G-action on K and the K-action on W , we say that the action of G is semilinear.

Example 1.35. Let K/k be a Galois extension and G = Gal(K/k). G acts on K in the
usual way, since elements of G are by definition automorphisms of K.

G×K → K σ · λ = σ(λ)

Let V be a k-vector space, and consider the tensor product VK = V ⊗kK, which is a K-vector
space. As a K-vector space, it has a K-action in the obvious way.

K × VK → VK µ · (v ⊗ λ) = v ⊗ µλ

where µ, λ ∈ K, v ∈ V . VK also has a convenient G-action.

G× VK → VK σ · (v ⊗ λ) = v ⊗ σλ

where σ ∈ G, v ∈ V, λ ∈ K. These actions are compatible, that is, G acts semilinearly on
VK . Said another way, VK is a (G,K)-set.

σ · (µ · (v ⊗ λ)) = σ · (v ⊗ µλ) = v ⊗ σ(µλ) = σ(µ)(v ⊗ σλ) = (σ · µ) · (σ · (v ⊗ λ))

Definition 1.36. Let G be a group, A a G-group, and X a (G,A)-set, and let · denote all
of the involved actions. Let a ∈ Z1(G,A) be a 1-cocycle. We define the twisted action by
the cocycle a of G on X via

G× aX → aX (σ, x) 7→ σ ∗ x = aσ · (σ · x)

where aX is the same as the set X, just notated differently, and σ ∈ G, x ∈ X. We now
verify that this is in fact a group action: for σ, τ ∈ G and x ∈ X,

(στ) ∗ x = aστ ·
(

(στ) · x
)

=
(
aσ(σ · aτ )

)
·
(
σ · (τ · x)

)
= aσ · (σ · aτ ) ·

(
σ · (τ · x)

)
= aσ ·

(
σ ·
(
aτ · (τ · x)

))
= σ ∗

(
aτ · (τ · x)

)
= σ ∗ (τ ∗ x)

The second equality uses the cocycle property of a, and the first equality of the second line
uses the compatibility of the G,A-actions on X. This verifies that ∗ gives a group action
on X. In such a situation, we use the notation aX to denote the set X with the twisted
G-action.
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Remark 1.37. Let X be a (G,A)-set, and a ∈ Z1(G,A) a 1-cocycle. If X is a group, and G
and A act on it by automorphisms, then the twisted action on aX is also by automorphisms.
Similarly, if X is a vector space over somefield k, and G,A act by automorphisms, then the
twisted action is by automorphisms.

Remark 1.38. The twisted action above does not descend to the level of cohomology classes.
That is, the twisted action depends on the cocycle, not just on the cohomology class of the
cocycle.

Example 1.39. Let L/K be a finite Galois extension and G = Gal(L/K). Let A = GLn(L)
and X = GLn(L). G acts on A,X by applying an automorphism σ ∈ G to each entry of a
matrix a ∈ A or x ∈ X. A acts on X by conjugation,

A×X → X (b, x) 7→ bxb−1

These actions are compatible, since for σ ∈ G,

σ · (b · x) = σ · (bxb−1) = (σ · b)(σ · x)(σ · b−1) = (σ · b) · (σ · x)

Consider the unit cocycle 1 : G → A, σ 7→ 1. Twisting by this cocycle gives the same
G-action on X.

G× 1X → 1X (σ, x) 7→ σ ∗ x = 1 · (σ · x) = σ · x

That is, 1X has the same G-action as X. On the other hand, choose a 1-cocycle a : G→ A
such that for some τ ∈ G, aτ is not central in A, that is, aτ is not a scalar matrix. We omit
the justification, but such a cocycle exists. Then consider the G-twisted action on aX.

G× aX → aX (σ, x) 7→ σ ∗ x = aσ · (σ · x)

We claim this is not the same as the original G-action on X. Since aτ is not central in
GLn(L), choose x ∈ X = GLn(L) so that τ · x does not commute with aτ . Then

τ ∗ x = aτ · (τ · x) = aτ (τ · x)a−1
τ 6= τ · x

Hence the action is not the same. Finally, we do not spend the time or space to justify it
here, but it is known that H1(G,A) is trivial; in particular, a is cohomologous to the unit
cocycle. Hence we have two cocycles which represent the same cohomology class, but induce
distinct twisted actions.

Lemma 1.40. Let X be a (G,A)-set, and let a ∈ Z1(G,A) be a cocycle. Let G act on aX
via the twisted action, and let A act on aX in the same way as A acting on X. If A is
abelian, then this makes aX into a (G,A)-set, which is to say, the twisted action and the
A-action on X are compatible.
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Proof. Since there are are approximately one million 1 actions floating around, let’s set a
bunch of notation to try to be as clear as possible. We denote the various actions as follows.

G×X → X (σ, x) 7→ σ · x
A×X → X (b, x) 7→ b� x
G× A→ A (σ, b) 7→ σ � b
G× aX → aX (σ, x) 7→ σ ∗ x = aσ � (σ · x)

A× aX → aX (b, x) 7→ b� x
A× A→ A (b, c) 7→ b+ c

Using this notation, the fact that the G,A-actions on X are compatible is written

σ · (b� x) = (σ � b)� (σ · x)

The fact that A acts on X as a group says that

b� (c� x) = (b+ c)� x

We wish to show that the G,A-actions on aX are compatible, which amounts to showing
the equality

σ ∗ (b� x) = (σ � b)� (σ ∗ x)

We work with each side.

LHS = σ ∗ (b� x)

= aσ �
(
σ · (b� x)

)
= aσ �

(
(σ � b)� (σ · x)

)
=
(
aσ + (σ � b)

)
� (σ · x)

RHS = (σ � b)� (σ ∗ x)

= (σ � b)�
(
aσ � (σ · x)

)
=
(

(σ � b) + aσ

)
� (σ · x)

So if A is abelian, then aσ + (σ � b) = (σ � b) + aσ, in which case these expressions are equal,
so the actions are compatible as claimed.

Remark 1.41. I suspect that the previous proof could be wrangled a bit to show that A is
abelian if and only if the actions considered are compatible, but it isn’t necessary to prove
this for later so I haven’t tried. Suffice it to say, if A is not abelian, we should not expect
the actions to be compatible.

1Five is approximately one million in situations like this.
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1.6 Some cohomology facts without proof

Proposition 1.42. Let G be a finite cyclic group of order n with generator σ. Let A be a
G-module (A is abelian). Let

NG =
∑
τ∈G

τ

be the norm element in Z[G], which gives a map NG : A→ A. The group cohomology groups
H i(G,A) are

H i(G,A) =


AG i = 0

kerNG/(σ − 1)A i = 1, 3, . . .

AG/NGA i = 2, 4, . . .

14



2 Descent for vector spaces

2.1 Semilinear Γ-modules

Definition 2.1. Let K/k be a Galois extension with Galois group G = Gal(K/k), and let
M be a K-vector space. Suppose we have a k-linear action of G on M .

G×M →M (σ,m) 7→ σ(m)

By k-linear, we mean that if µ ∈ k, then σ(µm) = µσ(m). Such an action is semilinear if
it satisfies

σ(λm) = (σλ)(σm)

for all σ ∈ G, λ ∈ K,m ∈M .

Definition 2.2. Let K/k be a Galois extension with Galois group G. A semilinear G-
modules is a K-vector space M with semilinear G-action as defined above. A semilinear
G-module M is continuous if for every m ∈M , the stabilizer subgroup

stab(m) = {σ ∈ G : σm = m}

is open with respect to the Krull topology on G. Suppose M,N are continuous semilinear G-
modules. A morphism of G-modules is a K-linear map M → N which is also a G-module
homomorphism, that is, the map commutes with any σ ∈ G.

Definition 2.3. Let K/k be a Galois extension with Galois group G = Gal(K/k) and let V
be a k-vector space. Then

G× VK → VK σ(v ⊗ λ) = v ⊗ σλ

where σ ∈ G, v ∈ V, λ ∈ K is a semilinear action. It is also continuous, assuming the Krull
topology on G and the discrete topology on VK . Given a morphism φ : V → W of k-vector
spaces, the induced map

φK : VK → WK

is a morphism of G-modules, since

φK(σ(v ⊗ λ)) = φK(v ⊗ σλ) = φ(v)⊗ σλ = σ(φ(v)⊗ λ)

All this to say, the assignment V  VK is a covariant functor from the category Veck of
k-vector spaces to the category ModG of continuous semilinear G-modules.

Conversely, if we start with a continuous semilinear G-module M , we can take the G-fixed
points MG.

MG = {m ∈M : σm = m,∀σ ∈ G}

We then regard MG as a k-vector space. It is clear that MG is closed under addition; it is
also closed under the k-action since if m ∈MG and λ ∈ k and σ ∈ G, then

σ(λm) = σ(λ)σ(m) = λσ(m) = λm
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where σ(λ) = λ because λ is the fixed field of Gal(K/k) = G. Given a morphism f : M → N
of continuous semilinear G-modules, the image of MG lands in NG, so we have a map

fG = f |MG : MG → NG

which is k-linear. Hence M  MG is a covariant functor ModG → Veck.

Lemma 2.4. Let K/k be a Galois extension with Galois group G and V be a k-vector space.
Then every element of (VK)G is of the form v ⊗ 1 for some v ∈ V . That is, we get an
identification

(VK)G ∼= V

Proof. Choose a k-basis {ei}i∈I for V . Then {ei ⊗ 1}i∈I is a K-basis for VK . Let x ∈ VK ,
and write it in terms of this basis.

x =
∑
i∈I

xi(ei ⊗ 1) =
∑
i

ei ⊗ xi

where xi ∈ K are uniquely determined by x. Suppose x ∈ (VK)G. Then for σ ∈ G,∑
i

xi(ei ⊗ 1) = x = σx =
∑
i

ei ⊗ σxi =
∑
i

(σxi)(ei ⊗ 1)

Since {ei ⊗ 1}i∈I is a K-basis, the coefficients are equal, which is to say, σxi = xi for all
σ ∈ G. That is, xi ∈ k for all i. So

x =
∑
i

ei ⊗ xi =
∑
i

(xiei)⊗ 1 =

(∑
i

xiei

)
⊗ 1

Thus x ∈ (VK)G is of the required form.

Later on we’ll need a slight generalization of this lemma where we replace VK by a q-fold
tensor product (VK)⊗q. The proof is basically the same.

Definition 2.5. Let V be a k-vector space and K/k a Galois extension with Galois group
G. We can extend the G-action on VK to a G-action on (VK)⊗q where q ∈ Z≥1.

G× (VK)⊗q → (VK)⊗q σ(x1 ⊗ · · · ⊗ xq) = (σx1)⊗ · · · ⊗ (σxq)

Lemma 2.6. Let K/k be a Galois extension with Galois group G and V be a k-vector space.
Let q ∈ Z≥0. Then every element of ((VK)⊗q)G is a k-linear combination of elements

(v1 ⊗ 1)⊗ · · · ⊗ (vq ⊗ 1)

for some v1, . . . , vq ∈ V ⊗q. That is, we get an identification

((VK)⊗q)G ∼= (VK)⊗q
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Proof. Choose a k-basis {ei}i∈I for V . Then {fi = ei ⊗ 1}i∈I is a K-basis for VK . Then{
fi1 ⊗ · · · ⊗ fiq : i1, . . . , iq ∈ I

}
is a K-basis for (VK)⊗q. Let x ∈ (VK)⊗q, and write it in terms of this basis.

x =
∑

(i1,...,iq)∈Iq
x(i1,...,iq)(fi1 ⊗ · · · ⊗ fiq)

where xi ∈ K are uniquely determined by x. Suppose x ∈ ((VK)⊗q)G. Then for σ ∈ G,∑
(i1,...,iq)∈Iq

x(i1,...,iq)(fi1 ⊗ · · · ⊗ fiq) = x = σx =
∑

(i1,...,iq)∈Iq
(σx(i1,...,iq))(fi1 ⊗ · · · ⊗ fiq)

Since these are coefficients when written in terms of a basis, they are equal. That is,
σx(i1,...,iq) = x(i1,...,iq) for all multi-indices (i1, . . . , iq), which is to say, the coefficients are
all in k.

Lemma 2.7 (Conrad 1.6). Let K/k be a field extension. Let V be a K-vector space, and
W ⊂ V be a nonzero k-vector subspace of V . The following are equivalent.

1. Any k-basis of W is a K-basis of V .

2. Some k-basis of W is a K-basis of V .

3. The K-linear map
W ⊗k K → V w ⊗ a 7→ aw

is an isomorphism of K-vector spaces.

Proof. (1) =⇒ (2) obvious.
(2) =⇒ (3) Suppose {ei} is a k-basis of W which is also an K-basis of V . Then the

K-linear map
W ⊗k K → V w ⊗ a 7→ aw

sends 1⊗ ei to ei. That is, it sends the K-basis {1⊗ ei} of W ⊗k K to the K-basis {ei} of
V , so it is an isomorphism.

(3) =⇒ (1) Suppose the map is an isomorphism. Given a k-basis {ei} of W , {1⊗ ei} is
a K-basis of W ⊗k K, so under the isomorphism the image {1ei} of {1⊗ ei} is a K-basis of
V .

Lemma 2.8 (Conrad 2.11). Let K/k be a Galois extension with Galois group G. Let V
be a K-vector space with a semilinear G-action, and let V ′ ⊂ V be a K-subspace which is
preserved (setwise) by G. Then the quotient space V/V ′ has a semilinear G-action given by

G× V/V ′ → V/V ′ σ(v + V ′) = σ(v) + V ′

Proof. This is mostly just checking well-defined-ness.
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Lemma 2.9 (Conrad 2.13). Let K/k be a finite Galois extension with Galois group G. Let
V be a K-vector space with a semilinear G-action. Define

Tr : V → V Tr(v) =
∑
σ∈G

σv

Then

1. Tr(V ) ⊂ V G.

2. If v ∈ V and v 6= 0, then there exists a ∈ K such that Tr(av) 6= 0.

3. If V 6= 0, then V G 6= 0.

Proof. (1) Let τ ∈ G. Then

τ Tr(v) = τ
∑
σ∈G

σv =
∑
σ∈G

τσv = Tr(v)

The last equality is because left multiplication by τ is an automorphism of G.
(2) We prove the contrapositive. Assume for some fixed v ∈ V , Tr(av) = 0 for all a ∈ K.

Then
0 =

∑
σ∈G

σ(av) =
∑
σ∈G

σ(a)σ(v)

for all a ∈ K. By linear independence of characters, the characters σ(a) of V are linearly
independent, so the equality above implies that each σ(v) = 0. In particular, for σ = IdK ,
we get v = 0.

(3) If V 6= 0, choose v 6= 0. Then by (2), Tr(av) 6= 0 for some v, and Tr(av) ∈ V G.

Lemma 2.10 (part of Conrad 2.14). Let K/k be a Galois extension with Galois group G.
Let V be a K-vector space with a semilinear G-action. If {wi} is a collection of k-linearly
independent vectors in V G, then they are K-linearly independent in V .

Proof. Suppose the result is false, which is to say, there exists a set {wi} of k-linearly
independent vectors in V G which are K-linearly dependent. That is, we have a relation

n∑
i=1

aiwi = 0

with ai ∈ K, and the ai’s are not all zero. We may assume the relation above is minimal
in length among such all such relations. Then every ai is nonzero, every wi is nonzero, so
n ≥ 2. By scaling, we may assume an = 1. Now let σ ∈ G, and apply it to the relation.

0 = σ(0) = σ
n∑
i=1

aiwi =
n∑
i=1

σ(ai)σ(wi) =
n∑
i=1

σ(ai)wi

Subtracting these relations, we get

0 =
n∑
i=1

(ai − σ(ai))wi
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Since an = σ(an) = 1, this is a relation of length at most n − 1. Since the original relation
was minimal in length among nontrivial relations, this new relation must be a trivial one,
which is to say, ai − σ(ai) = 0 for all i. Since this happened for every σ ∈ G, this tells
us that ai ∈ KΓ = k. But this contradicts the initial assumption that {wi} was k-linearly
independent. So we reach a contradiction, and the original claim is true.

Note: Finiteness of the extension is pretty necessary for the following lemma, at least for
the proof given. It doesn’t seem likely that this extends to infinite extensions, as stated.

Lemma 2.11 (Speiser’s lemma, CSAGC 2.3.8). Let K/k be a finite Galois extension with
Galois group G = Gal(K/k), and let M be a semilinear G-module. The map

εM : (MG)K →M m⊗ λ 7→ λm
∑
i

mi ⊗ λi 7→
∑
i

λimi

is a natural isomorphism of Γ-modules. Here, naturality means that if ψ : M → N is a
morphism of semilinear Γ-modules, then the following diagram commutes.

(MG)K M

(NG)K N

(ψ|
MG )⊗IdK

εM

ψ

εN

Proof. Let us verify that εM is a G-module homomorphism. For σ ∈ G,

εM

(
σ
∑
i

mi ⊗ λi

)
= εM

(∑
i

mi ⊗ σ(λi)

)
=
∑
i

σ(λi)mi (2.1)

=
∑
i

σ(λimi) = σ
∑
i

λimi = σεM

(∑
i

mi ⊗ λi

)
(2.2)

Hence εM commutes with any σ ∈ G, so it is a G-module homomorphism. Now we verify
that the required diagram commutes. Let ψ : M → N be a G-module homomorphism. In
particular, ψ is K-linear.

εN ◦ (ψ|MG ⊗ IdK)

(∑
i

mi ⊗ λi

)
= εN

(∑
i

ψ(mi)⊗ λi

)

=
∑
i

λiψ(mi) =
∑
i

ψ(λimi) = ψ

(∑
i

λimi

)
= ψ ◦ εM

(∑
i

mi ⊗ λi

)

Hence the required diagram commutes, so ε is a natural transformation. It remains to show
that εM is an isomorphism. Lemma 2.10 says that εM is injective, so all we need is surjectivity.
Consider the image im εM ⊂ V , which is an L-subspace. By the algebra in equation 2.1, the
image is (setwise) invariant under G. Then by lemma 2.8, the quotient space

M = M/ im εM
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inherits a semilinear G-action from M , which we write as σ(m) = σ(m). Let Tr : M → M
be the trace map defined in lemma 2.92. We also have the trace map Tr : M → M . For
m ∈M , we have

Tr(m) =
∑
σ∈G

σ(m) =
∑
σ∈G

σ(m) = Tr(m)

By lemma 2.9, for any m ∈M , Tr(m) ∈MG, and it is clear that MG ⊂ im εM , so

Tr(m) = Tr(m) = 0 ∈M

That is to say, Tr : M → M is the zero map, which by part (2) of lemma 2.9 tells us that
M = 0. That is, M = im εM , which is to say, εM is surjective.

Remark 2.12. Unfortunately, the previous proof does not explicitly describe the inverse
map to εM . However, now that we know the result is true, we can say the following.

For any k-basis {mi} of MG, {mi ⊗ 1} is a K-basis of (MG)K . Then the isomorphism
εM takes the K-basis {mi ⊗ 1} to the set {mi} in M , so it must also be a K-basis of M .
This is just a rephrasing of lemma 2.7.

Hence the inverse map to εM may be described as folllows. Pick a K-basis of M which
is also a k-basis of MG, call it {mi}. Then the inverse map is

ε−1
M : M → (MG)K

∑
i

λimi 7→
∑
i

mi ⊗ λi

2.2 Equivalence of categories Veck ∼= ModG

This proof attempts to establish the equivalence by directly describing natural isomorphisms
of functors. It is incomplete. The natural transformations are constructed, the problem that
remains is to show that they are isomorphisms on objects.

Note that the assumption of finiteness for the Galois extension is only used in one step
- the surjectivity of εM . The result actually does extend to the infinite case, which we’ll
hopefully describe later.

Proposition 2.13 (Conrad 2.14, or Milne A.64, or Milne 3.36). Let K/k be a finite Galois
extension with Galois group G. Let Veck be the category of k-vector spaces, and let ModG be
the category of continuous semilinear G-modules. The covariant functors

F : Veck → ModG V 7→ VK

H : ModG → Veck M 7→MG

are quasi-inverses, hence give a covariant equivalence of categories.

Proof. We need to construct natural isomorphisms ε : FH → IdModG
and η : IdVeck → HF .

We start with η. We need, for every V ∈ ob(Veck), an isomorphism (in Veck)

ηV : V → HF (V ) = H(VK) = (VK)Γ

such that for any k-linear map φ : V → W , the following diagram commutes.

2Here is where we are using the fact that K/k is finite.
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V HF (V )

W HF (W )

ηV

φ HF (φ)

ηW

We define ηV by
ηV : V → (VK)G η(v) = v ⊗ 1

This has image in (VK)G, since if σ ∈ G,

σ(v ⊗ 1) = v ⊗ σ(1) = v ⊗ 1

It is also clearly k-linear. Now we verify that the required square commutes. Let v ∈ V .
Then

ηW (φ(v)) = φ(v)⊗ 1 = φK(v ⊗ 1) = H(φK)(v ⊗ 1) = HF (φ)(v ⊗ 1) = HF (φ) ◦ ηV (v)

so the square commutes, and η is a natural transformation. It remains to show that ηV is
an isomorphism. It is clear that ηV has trivial kernel, so it is injective. By Lemma 2.4, ηV
is surjective. So it is an isomorphism.

The natural isomorphism ε is defined and all necessary properties established in lemma
2.11.

Remark 2.14. Let’s connect this with our original goals. In this setting, our k-objects are
just k-vector spaces, and the associated K-objects are semilinear G = Gal(K/k)-modules.

1. Every K-object comes from a k-object, since V  VK is essentially surjective.

2. V,W are K-forms of each other ⇐⇒ VK ∼= WK ⇐⇒ V ∼= W .

3. (2) above says that the only K-form of V is V itself (up to isomorphism).

4. Since K-forms of V have no structure (the set is just a point) it’s not clear how it’s
related to the Galois group directly. Despite this, the Galois group was critically
important in understanding this correspondence, since the quasi-inverse to V  VK
was M  MG.

2.3 Alternate approach (Milne)

The next proof follows Milne’s proof in Appendix A, A.64. He also only gives a proof for
the case where K/k is finite Galois, and only really addresses that the functor is essentially
surjective.

Definition 2.15. Let A,B be associative, unital rings (not necessarily commutative). Let
S be an A-B-bimodule, which means A acts on S on the left, and B acts on S on the right,
and the actions commute. Given a left B-module M , the tensor product

S ⊗B M
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is a left A-module via

A× (S ⊗B M)→ S ⊗B M a(s⊗m) = as⊗m

So the assignement
LMod(B)→ LMod(A) M  S ⊗B M

gives a covariant functor from the category of left B-modules to the category of left A-
modules. If this functor is an equivalence of categories, we say that A and B are Morita
equivalent through S.

Example 2.16. Let k be a field and let D be a finite dimensional division algebra over k.
Let A = Mn(D) be the matrix algebra over D. Let S = Dn, thought of as column vectors,
and let B = D. A acts on S on the left by matrix multiplication, and B = D acts on S on
the right by right multiplication, and these two actions commute, so S is an A-B-bimodule.

From the theory of simple algebras we know that S is a simple A-module, and every (left)
A-module is a direct sum of copies of S (up to isomorphism). Since D is a division algebra,
every (left) D-module is direct sum of copies of D, so the functor

LMod(D)→ LMod(A) M ∼= Dm  Dn ⊗D Dm ∼= Dmn

is essentially surjective. It is not too hard to see that it is fully faithful, so it is an equivalence
of categories, which is to say, A and D are Morita equivalent through S = Dn.

Theorem 2.17 (A.64). Let K/k be a finite Galois extension with Galois group G. The
functor V  VK gives a covariant equivalence of categories between k-vector spaces and
continuous semilinear G-modules.

Proof. We start by assuming K/k is a finite extension, and let n = [K : k] = dimkK. In this
case, the proof is mostly just a special case of example 2.16 where k = D, and S = K ∼= kn.
Let A = Mn(k) ∼= Endk(K). By the example,

LMod(k)→ LMod(A) V  VK = V ⊗k K

is an equivalence of categories from the category of k-vector spaces to the category of left
Endk(K)-modules. Now let K[G] be the K-algebra with K-basis given by elements of G,
and multiplication given by(∑

σ∈G

aσσ

)(∑
τ∈G

bττ

)
=
∑
σ,τ∈G

aσσ(bτ )(στ)

where aσ, bτ ∈ K. The algebra K[G] acts k-linearly on K by

K[G]×K → K

(∑
σ∈G

aσσ

)
c =

∑
σ∈G

aσσ(c)

By linear independence of characters, the homomorphism (of k-vector spaces)

K[G]→ Endk(K) ∼= MdimkK(k)
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is injective. Their dimensions over k are

dimkK[G] = (dimkK)|G| = [K : k]2 = dimkMdimkK(k) = dimk Endk(K)

Since the dimensions are equal and finite and the map is injective, it is an isomorphism. Since
K[G] ∼= Endk(K), their respective categories of modules are equivalent. But obviously, the
category of left K[G]-modules is precisely the category of continuous semilinear G-modules.
This completes the proof.

2.4 Extending the result to K/k infinite

Corollary 2.18. Theorem 2.13 holds when K/k is an infinite extension as well, provided
that Veck only includes finite dimensional k-vector spaces and ModG only includes modules
which are finite dimensional K-vector spaces.

Proof. Let K/k be an infinite extension with Galois group G = Gal(K/k), and let M be
a continuous semilinear G-module, which is finite-dimensional as a K-vector space. Let
n = dimKM . Let {m1, . . . ,mn} be a K-basis of M . For each i, define

Gi = stab(mi) = {σ ∈ G : σvi = vi} ⊂ G

Since M is a continuous G-module, Gi ⊂ G is an open subgroup (hence has finite index).
Then define

H =
n⋂
i=1

Gi

which is also an open, finite index subgroup of G. By construction, H acts trivially on M .
Hence by the Galois correspondence, H = Gal(L/k) for some finite extension L/k. Then
define

H̃ =
⋂
σ∈G

σHσ−1

which is also an open, finite index subgroup of G, which has fixed field L̃, where L̃ is the
Galois closure of L. Since it is contained in H, H̃ also acts trivially on H. The diagram
below depicts the situation of the corresponding subgroups and fixed fields under the Galois
correspondence.

e = Gal(k/k) K = K{e}

H̃ = Gal(K/L̃) L̃ = KH̃

H = Gal(K/L) L = KH

G = Gal(K/k) k = KΓ

finite index

finite, Galois over k

finite, not necesarily Galois
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We can record roughly the same data in the following short exact sequence

1 Gal(K/L̃) Gal(K/k) Gal(L̃/k) 1

H̃ G G/H̃

res

As noted previously, H̃ acts trivially on M , so the G-action factors through the quotient
G/H̃ = Gal(L̃/k). This puts us back in the situation of a finite Galois extension L̃/k, where
we have the equivalence of categories from the previous result.

That is to say, we know that M is isomorphic (as a continuous semilinear H̃-module) to
VL̃ for some k-vector space V , but then tensoring up to K gives an isomorphism M ∼= VK
as (continuous, semilinear) G-modules.

We are being a bit sloppy here and not writing down the natural isomorphisms, but this
does at least show that V  VK is essentially surjective, which is interesting part of the
extension to the infinite case. That this functor is faithful is relatively obvious, that it is full
is less so but we omit it.

3 Descent for tensors of type (p, q)

3.1 Tensors

Fix a base field k.

Definition 3.1. Let V be a k-vector space. Fix p, q ∈ Z≥0. A tensor of type (p, q) on V
is an element Φ ∈ Homk(V

⊗q, V ⊗p).

Example 3.2. If q = 2 and p = 0, then a tensor is just a k-linear map

Φ : V ⊗ V → k = V ⊗0

which is to say, Φ is a bilinear form on V .

Example 3.3. If q = 2 and p = 1, then a tensor is just a k-linear map

Φ : V ⊗ V → V

which is to say, Φ gives V the structure of a k-algebra (not necessarily unital or associative).

Remark 3.4 (CSAGC 2.3.1). The setting of tensors is very broad and general, since it
includes:

1. Φ = 0 and (p, q) are arbitrary, which is the case where V is just a k-vector space
without additional structure.

2. (p, q) = (1, 1) which is the case where Φ is a k-linear endomorphism of V .

3. (p, q) = (0, 2) which is where Φ : V ⊗k V → k is a bilinear form on V .
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4. (p, q) = (1, 2) which is where Φ : V ⊗k V → V , which is to say, Φ can be thought of
as a multiplication map for a k-algebra structure on V . This multiplication need not
even be associative or unital, so this case contains the entire theory of k-algebras.

There is another way to think of tensors, which other people (e.g. CSAGC) seem to prefer,
but seems excessively confusing to me. It starts with the following lemma.

Lemma 3.5 (CSAGC pg27). Let V,W be k-vector spaces. Then the map below is an iso-
morphism.

V ∗ ⊗k W
∼=−→ Homk(V,W ) α⊗ w 7→ (v 7→ α(v)w)

where V ∗ = Homk(V, k) denotes the dual space.

Remark 3.6 (CSAGC pg27). Let V be a k-vector space and p, q ∈ Z≥0. Using the previous
lemma with W = V ⊗p and V = V ⊗q, we get an isomorphism

V ⊗p ⊗k (V ∗)⊗q ∼= Homk(V
⊗q, V ⊗p)

Using this isomorphism along with the isomorphism

(V ∗)⊗q ∼= (V ⊗q)∗

we may think of a tensor of type (p, q) as an element Φ ∈ V ⊗p ⊗k (V ∗)⊗q.

3.2 k-objects and k-morphisms

Definition 3.7. Fix p, q ∈ Z≥0 and a field k. A k-object is a pair (V,Φ) where V is a
k-vector space and Φ ∈ Hom(V ⊗q, V ⊗p) is a tensor of type (p, q) on V .

From now own, when we speak about k-objects, there are fixed integers p, q ∈ Z≥0 lying in
the background.

Definition 3.8. Fix (p, q) and let (V,Φ) and (W,Ψ) be k-objects. A morphism of k-
objects or k-morphism is a k-linear map f : V → W such that the following diagram
commutes.

V ⊗q W⊗q

V ⊗p W⊗p

f⊗q

Φ Ψ

f⊗p

As one would expect, k-objects with their morphisms form a category. We denote this
category C(p,q)

k or just Ck if (p, q) are understood from context.

Definition 3.9. If there is an isomorphism of k-objects (V,Φ) ∼= (W,Ψ), we say they are
k-isomorphic and call such an isomorphism a k-isomorphism.

Remark 3.10 (CSAGC pg28). In terms of thinking of tensors as elements of V ⊗p⊗k (V ∗)⊗q,
a morphism is a k-linear map f : V → W such that the induced map

f⊗p ⊗
(
(f ∗)−1

)⊗q
: V ⊗p ⊗k (V ∗)⊗q → W⊗p ⊗k (W ∗)⊗q

takes Φ to Ψ.
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3.3 Extension of scalars

Fix (p, q). All k-objects will be those with a tensor of type (p, q).

Definition 3.11. Let (V,Φ) be a k-object and let K/k be a field extension. We want to
define an associated K-object (VK ,ΦK). For the vector space, we just tensor with K.

VK = V ⊗k K

For the tensor, we just tensor with the identity function. That is, given

Φ : V ⊗q → V ⊗p

we form the tensor
ΦK : (VK)⊗q → (VK)⊗p

We try to describe this as concretely as possible. Given a simple tensor

x1 ⊗ · · · ⊗ xq = (v1 ⊗ λ1)⊗ · · · ⊗ (vq ⊗ λq) ∈ (VK)⊗q

where xi ∈ VK , vi ∈ V, λi ∈ K, the tensor ΦK acts on it by

ΦK

(
(v1 ⊗ λ1)⊗ · · · ⊗ (vq ⊗ λq)

)
= λ1 · · ·λqΦ(v1 ⊗ · · · ⊗ vq)

This doesn’t cover everything, since not every element of V ⊗q is of this form, but every
element is a K-linear combination of such elements, so we then extend ΦK by K-linearity.

Definition 3.12. Let f : (V,Φ)→ (W,Ψ) be a k-morphism, and let K/k be a field extension.
Then we get an associated K-morphism fK : (VK ,ΦK)→ (WK ,ΨK), which is just

fK = f ⊗ IdK : VK → WK fK(v ⊗ λ) = f(v)⊗ λ

We need to verify that fK makes the following diagram commute.

(VK)⊗q (WK)⊗q

(VK)⊗p (WK)⊗p

(fK)⊗q

ΦK ΨK

(fK)⊗p

This is relatively obvious from the definitions, but we include it to be sure. Let v1, . . . , vq ∈ V
and λ1, . . . , λq ∈ K. Then

(fK)⊗p ◦ ΦK

(
(v1 ⊗ λ1)⊗ · · · ⊗ (vq ⊗ λq)

)
= (fK)⊗p

(
λ1 · · ·λqΦ(v1 ⊗ · · · ⊗ vq

)
= λ1 · · ·λqf⊗p ◦ Φ(v1 ⊗ · · · ⊗ vq)
= λ1 · · ·λqΨ ◦ f⊗q(v1 ⊗ · · · ⊗ vq)

= λ1 · · ·λqΨ
(
f(v1)⊗ · · · ⊗ f(vq)

)
= ΨK

((
f(v1)⊗ λ1

)
⊗ · · · ⊗

(
f(vq)⊗ λq

))
= ΨK

(
fK(v1 ⊗ λ1)⊗ · · · ⊗ fK(vq ⊗ λq)

)
= ΨK ◦ (fK)⊗q

(
(v1 ⊗ λ1)⊗ · · · ⊗ (vq ⊗ λq)

)
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As before we note that not every element of (VK)⊗q is of this form, but having the same
value on such elements forces (fK)⊗p ◦ ΦK = ΨK ◦ (fK)⊗q because of K-linearity.

Remark 3.13. The previous two definition give us a covariant functor

C(p,q)
k → C(p,q)

K (V,Φ) 7→ (VK ,ΦK), f 7→ fK

3.4 Twisted forms

Definition 3.14. Let (V,Φ) and (W,Ψ) be k-objects. We say they are K-isomorphic or
become isomorphic over K if there is a K-isomorphism (VK ,ΦK) ∼= (WK ,ΨK). In such
a situation, we say that (W,Ψ) is a K/k-twisted form of (V,Φ), or just a twisted form
of (V,Φ).

Fixing a k-object (V,Φ), we may consider allK/k-twisted forms of (V,Φ). A k-isomorphism
(V,Φ) ∼= (W,Ψ) induces a K-isomorphism (VK ,ΦK) ∼= (WK ,ΨK), so we want to consider
K/k-twisted forms of (V,Φ) which are not already k-isomorphic. That is, we want to con-
sider two such forms the same if they are already k-isomorphic. We denote the set of
k-isomorphism classes of K/k-twisted forms of (V,Φ) by

TFK(V,Φ)

This is a pointed set, with distinguished point given by the class of (V,Ψ) itself.

Definition 3.15. Let (V,Φ) be a k-object and K/k an extension. We denote the set of K-
automorphisms of (VK ,ΦK) by AutK(Φ). That is, AutK(Φ) is the set of K-isomorphisms

(VK ,ΦK)
∼=−→ (VK ,ΦK). It forms a group under composition.

Remark 3.16. We are finally in a position to discuss our original motivating questions with
the right definitions in hand, and more precisely reformulate them. We fix (p, q) and an
extension K/k.

1. Given a K-object (W,Ψ), when is it in the essential image of the functor of extension
by scalars, Ck → CK , (V,Φ) 7→ (VK ,ΦK)? That is, when is there a k-object (V,Φ) such
that (VK ,ΦK) ∼= (W,Ψ)? (For answer, see proposition 3.26.)

2. Given k-objects (V,Φ) and (W,Ψ) and a K-morphism g : (VK ,ΦK)→ (WK ,ΨK), when
does this morphism come from a k-morphism? That is, when is there a k-morphism
f : (V,Φ)→ (W,Ψ) such that fK = g? (For answer, see proposition 3.23.)

3. Given two k-objects (V,Φ) and (W,Ψ), when is there a K-isomorphism (VK ,ΦK) ∼=
(WK ,ΨK)? It may be that there is a K-isomorphism even if they are not k-isomorphic.

4. How can we describe the set of all K/k forms of a k-object (V,Φ)? (For answer, see
theorem 3.40.)

5. In the case when K/k is Galois, how are the above questions related to the Galois
group Gal(K/k) and various associated cohomology groups?
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Although the questions are well-posed even when K/k is not Galois, we do not attempt any
answers except when it is. The fact that these questions have meaningful answers in this
scenario is precisely where the name “Galois descent” comes from, especially the first two
questions.

We think of extension of scalars (V,Φ)  (VK ,ΦK) as “ascending,” and the reverse
process as “descending.” As we have already described, ascent is not very hard - you just
tensor everything with K. The hard part is descent, hence the name for the subject. The
heart of the theory is deciding, based on interactions with the Galois group Gal(K/k), when

a morphism or object in C(p,q)
K “descends” to an object in C(p,q)

k .
We will give full and descriptive answers to questions 1,2, and 5. Questions 3 and 5 are

less concrete, although they motivate a lot of what happens. In particular, the answer to
question 5 is not so much any particular result, but in the fact that in answering questions
1,2,5 all the answers involved the Galois group Gal(K/k) acting on some set and associated
cohomology groups.

Remark 3.17. Let’s take a moment to revisit remark 2.14 in light of our more precise
phrasings of questions above. That remark, and the previous big result, covered the case
where Φ = 0 is the trivial tensor, or alternatively the case where (p, q) = 0 and all tensors
are trivial, and the extension K/k is Galois (even infinite Galois).

1. The functor of extension by scalars is essentially surjective, so every K-object descends.

2. The functor of extension by scalars is fully faithful, so every K-morphism descends.

3. Two k-objects are k-isomorphic if and only if they are K-isomorphic after extension
by scalars.

4. The set of k-isomorphism classes of twisted K/k-forms of (V,Φ) is a set with only one
element.

5. The most significant relationship between Gal(K/k) and the above questions is that
it provides the means of a quasi-inverse functor to ascent. That is, the method of
descending from a K-object M to the associated k-object is just by taking G-invariants,
which is to say, the cohomology group H0(G,M).

3.5 Galois action on K-morphisms

Definition 3.18. Let V be a k-vector space and K/k a Galois extension. Given σ ∈
Gal(K/k), there is an induced map

1⊗ σ : VK → VK v ⊗ λ 7→ v ⊗ σ(λ)

where v ∈ V, λ ∈ K. We sometimes abuse notation and denote this map also by σ : VK → VK .
Note that an arbitrary element of VK is not of the form v ⊗ λ. However, if we fix a k-basis
{ei} of V , then we get a K-basis {ei ⊗ 1} of VK , so every element of VK can be uniquely
written as a K-linear combination

y =
∑
i

λi(ei ⊗ 1) =
∑
i

ei ⊗ λi
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where λi ∈ K. Then 1⊗ σ acts on such an element as

(1⊗ σ)(y) = (1⊗ σ)
∑
i

ei ⊗ λi =
∑
i

ei ⊗ σλi

Remark 3.19. Let (V,Φ) be a k-object, and K/k a Galois extension. We claim that
1 ⊗ σ : VK → VK is a K-morphism. We just need to verify that the following diagram
commutes.

(VK)⊗q (VK)⊗q

(VK)⊗p (VK)⊗p

ΦK

(1⊗σ)⊗q

ΦK

(1⊗σ)⊗p

The following calculations verifies this commutativity.

(1⊗ σ)⊗p ◦ ΦK

(
(v1 ⊗ λ1)⊗ · · · ⊗ (vq ⊗ λq)

)
= (1⊗ σ)⊗p

(
λ1 · · ·λqΦ(v1 ⊗ · · · ⊗ vq

)
= σ(λ1 · · ·λq)Φ(v1 ⊗ · · · ⊗ vq)
= σ(λ1) · · ·σ(λq)Φ(v1 ⊗ · · · ⊗ vq)

= ΦK

((
v1 ⊗ σ(λ1)

)
⊗ · · · ⊗

(
vq ⊗ σ(λq)

))
= ΦK ◦ (1⊗ σ)⊗q

(
(v1 ⊗ λ1)⊗ · · · ⊗ (vq ⊗ λq)

)
where vi ∈ V, λi ∈ K, σ ∈ G. Remember that elements of this form are not all of (VK)⊗q,
but they generate (VK)⊗q in K-linear combinations so this is sufficient.

Definition 3.20. Let K/k be a Galois extension, and let V,W be k-vector spaces. Then we
define a group action of G on HomK(VK ,WK) 3 as follows.

G× HomK(VK ,WK)→ HomK(VK ,WK)

(σ, f) 7→ σ(f) = (1⊗ σ) ◦ f ◦ (1⊗ σ−1) = σ ◦ f ◦ σ−1

For obvious reasons, we call this the conjugation action of the Galois group. To spell it
out in more detail, σ(f) acts on a simple tensor v ⊗ λ ∈ VK by

v ⊗ λ 7→ (1⊗ σ) ◦ f ◦ (1⊗ σ−1)(v ⊗ λ) = (1⊗ σ) ◦ f(v ⊗ σ−1λ)

where v ∈ V, λ ∈ K. Note that if f is an isomorphism, σ(f) is an isomorphism.

Remark 3.21. We claim that the above action also gives an action of G on morphisms of K-
objects. That is, if (V,Φ) and (W,Ψ) are k-objects, and f : VK → WK is a K-morphism, then
σ(f) is a K-morphism. This is immediate from remark 3.19, since σ(f) is the composition

σ(f) = (1⊗ σ) ◦ f ◦ (1⊗ σ−1)

and the outer maps are K-morphisms from remark 3.19. Hence we have an action of G =
Gal(K/k) on HomC(p,q)K

(VK ,WK).

3By HomK(VK ,WK) we just mean K-linear maps, which need not be morphisms of K-objects.
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Remark 3.22. Since the G-action described above takes isomorphisms to isomorphisms,
we have a G-action on K-automorphisms of (VK ,ΦK). Furthermore, this action interacts
favorably with composition in AutK(Φ). Given σ ∈ G, f, g ∈ AutK(Φ), we have

σ(f ◦ g) = σfgσ−1 = σfσ−1σgσ−1 = σ(f) ◦ σ(g)

That is to say, G acts by automorphisms on AutK(Φ), so it is a G-group. Hence we may
consider its nonabelian cohomology H1(G,AutK(Φ)).

Proposition 3.23. Fix (p, q), let K/k be a Galois extension, and let (V,Φ), (W,Ψ) be k-
objects. Let g : (VK ,ΦK)→ (WK ,ΨK) be a K-morphism. The following are equivalent.

1. There exists a k-morphism f : V → W such that fK = g.

2. σ(g) = g for all σ ∈ G. That is,

g ∈ HomCK (VK ,WK)G = H0
(
G,HomCK (VK ,WK)

)
3. The map g : VK → WK is a morphism of G-modules, which is to say, for every σ ∈ G,

the following diagram commutes.

VK WK

VK WK

g

1⊗σ 1⊗σ

g

Proof. (1) =⇒ (2) If g = fK and σ ∈ G, then

σ(g) = σ(fK) = (1⊗ σ) ◦ (f ⊗ 1) ◦ (1⊗ σ−1) = f ⊗ (σ ◦ σ−1) = f ⊗ 1 = fK = g

Hence σ(g) = g.
(2) =⇒ (3) Take the equality σ(g) = g, and compose on the right by 1⊗ σ.

(1⊗ σ) ◦ g ◦ (1⊗ σ−1) = g =⇒ (1⊗ σ) ◦ g = g ◦ (1⊗ σ)

So the diagram commutes. (Similarly we could prove (3) =⇒ (2) by composing on the
right by 1⊗ σ−1.)

(3) =⇒ (1) If x ∈ (VK)G, then for σ ∈ G,

(1⊗ σ) ◦ g(x) = g ◦ (1⊗ σ)(x) = g(x)

That is to say, the commutative diagram in (3) implies that restricting g to (VK)G lands in
(WK)G, where G acts on VK and WK as in definition 2.3. So we get

g : (VK)G → (WK)G

By lemma 2.4, we make the identifications (VK)G = V and (WK)G = W . So we have a
k-linear map f = g|(VK)G : V → W . But then since g is a K-morphism, f is a k-morphism.
(Think through the commutative diagrams, this is not terribly complicated.) And also
g = fK is clear.

Remark 3.24. The previous proposition gives a fairly complete answer to question 2 of
remark 3.16. It tells us that the K-morphisms (VK ,ΦK) → (WK ,ΨK) which come from
k-morphisms are precisely the fixed points of the Galois group acting on morphisms by
conjugation.
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3.6 Galois action on tensors

Definition 3.25. Let V be a k-vector space, and K/k a Galois extension with Galois group
G = Gal(K/k). Fix (p, q). Let H = HomK((VK)⊗q, (VK)⊗p) be the set of tensors of type
(p, q) on VK . We define an action of G on H as follows.

G×H → H (σ,Ψ) = σ(Ψ) = (1⊗ σ)⊗p ◦Ψ ◦ (1⊗ σ−1)⊗q

We will call this the conjugation action. Hopefully it will be clear from context which
conjugation we are talking about, since this is an action on a different (but related) set than
the conjugation action in definition 3.20.

Proposition 3.26. Fix (p, q). Let K/k be a Galois extension with Galois group G =
Gal(K/k), let V be a k-vector space, and let Ψ be a tensor of type (p, q) on VK. The
following are equivalent.

1. There exists a tensor Φ of type (p, q) on V such that ΦK = Ψ.

2. σ(Ψ) = Ψ for all σ ∈ G. That is,

Ψ ∈ HomK((VK)⊗q, (VK)⊗p)G = H0(G,HomK

(
(VK)⊗q, (VK)⊗p

)
3. For every σ ∈ G, the following diagram commutes.

(VK)⊗q (VK)⊗p

(VK)⊗q (VK)⊗p

Ψ

(1⊗σ)⊗q (1⊗σ)⊗p

Ψ

Proof. (1) =⇒ (2) Suppose ΦK = Ψ, and let σ ∈ G. Basically, since ΦK only acts on the
V part and 1⊗ σ only acts on the K part, they commute. We include the details below.

σ(ΦK)
(

(v1 ⊗ λ1)⊗ · · · ⊗ (vq ⊗ λq)
)

= (1⊗ σ)⊗p ◦ ΦK ◦ (1⊗ σ−1)⊗q
(

(v1 ⊗ λ1)⊗ · · · ⊗ (vq ⊗ λq)
)

= (1⊗ σ)⊗p ◦ ΦK

(
(v1 ⊗ σ−1λ1)⊗ · · · ⊗ (vq ⊗ σ−1λq)

)
= (1⊗ σ)⊗p

(
(σ−1λ1) · · · (σ−1λq)Φ(v1 ⊗ · · · ⊗ vq)

)
= (σσ−1λ1) · · · (σσ−1λq)Φ(v1 ⊗ · · · ⊗ vq)
= λ1 · · ·λqΦ(v1 ⊗ · · · ⊗ vq)

= ΦK

(
(v1 ⊗ λ1)⊗ · · · (vq ⊗ λq)

)
The previous calculation shows that σ(ΦK) = ΦK .

(2) =⇒ (3) Take the equality σ(Ψ) = Ψ and compose on each side by (1⊗ σ)⊗q.

σ(Ψ) = (1⊗ σ)⊗p ◦Ψ ◦ (1⊗ σ)⊗q = Ψ =⇒ (1⊗ σ)⊗p ◦Ψ = Ψ ◦ (1⊗ σ)⊗q
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So the diagram commutes. (Similarly we could easily prove (3) =⇒ (2) by composing with
(1⊗ σ−1)⊗q.)

(3) =⇒ (1) Recall that G acts on VK on the K-part.

G× VK → VK σ(v ⊗ λ) = v ⊗ (σλ)

So we also get an action of G on (VK)⊗q (or replace q with p).

G× (VK)⊗q → (VK)⊗q σ(x1 ⊗ · · · ⊗ xn) = (σx1)⊗ · · · ⊗ (σxn)

By lemma 2.6, we identify the fixed points of this action with V ⊗q. The commutative diagram
in (3) implies that restricting Ψ to the fixed points V ⊗q = ((VK)⊗q)G always outputs fixed
points. So we obtain a tensor of type (p, q) on V , which we call Φ.

Φ = Ψ|((VK)⊗q)G : V ⊗q → V ⊗p

The manner of the identification V ⊗q ∼= ((VK)⊗q)G then makes it clear that ΦK = Ψ.

Remark 3.27. In particular, in the implication (3) =⇒ (1), the proof constructs the tensor
Φ as just the restriction of Ψ to fixed points.

Remark 3.28. The previous proposition answers question 1 of remark 3.16. Given a K-
object (W,Ψ), we know that there is always a k-vector space V such that VK ∼= W (isomor-
phism of K-vector spaces, or even of Γ-modules using Theorem 2.17). Then the proposition
gives the criterion that (VK ,Ψ) descends to a k-object (V,Φ) if and only if Ψ is fixed by the
conjugation action of Gal(K/k) on tensors.

3.7 Classifying twisted forms via cohomology

Throughout this whole section, we fix the following notation: K/k is a finite Galois extension
with Galois group G = Gal(K/k). We fix p, q ∈ Z≥0, and a k-object (V,Φ). The group of K-
automorphisms of (V,Φ) is A = AutK(Φ). The twisted K/k-forms of (V,Φ) are TFK(V,Φ).

3.7.1 Going from twisted forms to cohomology classes

Definition 3.29. Let (W,Ψ) be a K/k-twisted form of (V,Φ). Let B be the set of K-
isomorphisms (VK ,ΦK)→ (WK ,ΨK). We describe a map

β : B → Z1(G,A)

Given a K-isomorphism g, the image is the cocycle

a = β(g) : G→ A σ 7→ aσ = (g−1)σg = g−1 ◦ σ(g)

We can verify this is a cocycle, as follows. For all σ, τ ∈ G, a satisfies

aστ = g−1 ◦ σ(τ(g)) = g−1 ◦ σ(g) ◦ σ(g−1) ◦ σ(τ(g)) = aσ ◦ σ(g−1 ◦ τ(g)) = aσ
σaτ

hence a is a 1-cocycle, a ∈ Z1(G,A).
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Lemma 3.30. Let (W,Ψ) be a K/k-twisted form of (V,Φ), and let β be the map above.

1. If g, h ∈ B, then β(g) and β(h) are cohomologous. That is, im β is contained in a
single cohomology class.

2. If a, b ∈ Z1(G,A) are cohomologous and a ∈ im β, then b ∈ im β.

3. The image of β is precisely one cohomology class in Z1(G,A).

Proof. (1) Let g, h ∈ B, and let a = β(g), b = β(h).

a : G→ A a 7→ aσ = (g−1)σg

b : G→ A b 7→ bσ = (h−1)σh

Then let c = h−1g ∈ A, and compute

c−1bσ
σc = (h−1g)−1bσ

σ(h−1g) = g−1hh−1σ(h)σ(h)−1σ(g) = gσ(g) = aσ

Thus a, b are cohomologous.
(2) Let a, b ∈ Z1(G,A) be cohomologous and suppose a = β(g), so aσ = (g−1)σσ(g) for

all σ ∈ G. Then there exists c ∈ A such that

bσ = c−1aσ
σc = c−1g−1 ◦ σ(g)σc = ((gc)−1)σgc

hence b = β(gc).
(3) This is just a rephrasing of the combination of (1) and (2).

Definition 3.31. Let β : B → Z1(G,A) be the map above. We now describe a map

β̃ : TFK(V,Φ)→ H1(G,A)

Given a K/k-twisted form (W,Ψ) of (V,Φ), we want to obtain a cocycle class in H1(G,A).
Given (W,Ψ), choose a K-isomorphism g ∈ B, then let a = β(g). Then define

β̃(W,Ψ) = [a] = [β(g)]

By the previous lemma, the choice of isomorphism g does not affect the cohomology class of
β(g), so this assignment rule does not depend on g, only on the twisted form (W,Ψ). Note
that the cocycle a = β(g) is dependent on g, only the cohomology class is independent of
the choice of g.

Remark 3.32. Both TFK(V,Φ) and H1(G,A) are pointed sets. The basepoint in TFK(V,Φ)
is the k-isomorphism class of (V,Φ) itself, and the basepoint in H1(G,A) is the cohomology
class of the unit cocycle. We claim that under the map above, the basepoint is sent to the
basepoint.

We are free to choose any isomorphism (VK ,ΦK) ∼= (VK ,ΦK), so we may choose the
identity g = Id : VK → VK . Then for σ ∈ G,

aσ = Id−1 ◦σ(Id) = Id ◦ Id = 1 ∈ A

That is, a is the unit cocycle. Thus under our map, (V,Φ) gets sent to the cohomology class
of the unit cocycle, which is the basepoint of H1(G,A).

Actually, we don’t even need to choose the identity map on VK . As long as we choose any
k-morphism (V,Φ)→ (V,Φ) and then tensor it up to a K-morphism (VK ,ΦK)→ (VK ,ΦK),
it will commute with σ ∈ G, and we will get the unit cocycle.
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3.7.2 Going from cohomology classes to twisted forms

Our next major goal is to prove that the map TFK(V,Φ) → H1(G,A) is an isomorphism
(of pointed sets). Since we already know it preserves basepoints, this is just a fancy way
of saying it is a bijection. We’ll get there by constructing the inverse map, using twisted
actions.

Remark 3.33. We have actions of G and A on VK , and an action of G on A, and these are
compatible actions, as we now verify. The actions are

G× VK → VK σ · x = (1⊗ σ)(x)

A× VK → VK f · x = f(x)

G× A→ A σ · f = (1⊗ σ) ◦ f ◦ (1⊗ σ−1)

For σ ∈ G, f ∈ A, x ∈ VK ,

(σ · f) · (σ · x) = (1⊗ σ) ◦ f ◦ (1⊗ σ−1) ◦ (1⊗ σ)(x) = (1⊗ σ) ◦ f(x) = σ · (f · x)

Thus the actions are compatible.

Definition 3.34. Let α ∈ H1(G,A), and choose a representative cocycle a ∈ Z1(G,A), so
α = [a]. Since G,A act compatibly on VK , we can form the twisted action of definition 1.36.

G× aVK → aVK σ ∗ x = aσ(σx)

Let W = (aVK)G be the G-invariants of this action.

W = (aVK)G = {x ∈ VK : σ ∗ x = x,∀σ ∈ G} = {x ∈ VK : aσ(σx) = x,∀σ ∈ G}

For any σ ∈ G, both aσ and σ act on A as k-linear maps, so W is a k-vector subspace of VK .
(It is not necessarily a K-vector subspace, since σ is not K-linear.) We call W the twisted
form of (V,Φ) associated to α.

Remark 3.35. It is not clear at this point if W depends on the choice of a (and not just
on α), or that W is a twisted form of (V,Φ), so our next priority is to address these issues.
Regarding the second issue, the question doesn’t even make sense at this point since we
haven’t defined a tensor on W .

Remark 3.36. Let α, a,W be as above. Let’s consider the following map from lemma 2.11.

f : WK =
(

(aVK)G
)
K

∼=−→ VK x⊗ λ 7→ λx

The lemma says that the map f above gives an isomorphism of G-modules IF we replace
the VK on the right by aVK , but since VK and aVK have different actions, our map f is NOT
necessarily a morphism of G-modules.

In fact, f should only be a morphism of G-modules when the twisting cocycle a is trivial.
Let’s do some calculations to try and understand this. Given σ ∈ G, let’s compare f and
σf .
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Let’s fix a k-basis {ei} for V . We obtain the associated K-basis {ei ⊗ 1} for VK . We
want to write an arbitrary element of WK in terms of this basis. Let’s also fix a k-basis {wj}
for W , which gives us a K-basis {wj ⊗ 1} of WK . By lemma 2.7 and remark 2.12, we can
choose the basis {wi} so that it is also a K-basis of VK .

We want to write an arbitrary element of WK in terms of the ei’s. We can write each
wj ∈ W ⊂ VK uniquely in terms of the K-basis {ei ⊗ 1}.

wj =
∑
i

λij(ei ⊗ 1) =
∑
i

ei ⊗ λij

where λij ∈ K. That is, (λij) is the transition matrix from the K-basis {wj} of VK to the
K-basis {ei ⊗ 1} also of VK . We can now write an arbitrary x ∈ WK in terms of the K-basis
{wi ⊗ 1}.

x =
∑
j

xj(wj ⊗ 1) =
∑
j

wj ⊗ xj

where xj ∈ K. Then we can rewrite x as

x =
∑
j

(∑
i

ei ⊗ λij

)
⊗ xj

Applying f to x in this form, we get

f(x) = f

(∑
j

(∑
i

ei ⊗ λij

)
⊗ xj

)
=
∑
j

xj
∑
i

ei ⊗ λij

=
∑
i,j

ei ⊗ xjλij

Now we try applying σf to x.

σf(x) = (IdV ⊗σ) ◦ f ◦ (IdW ⊗σ−1)

(∑
j

(∑
i

ei ⊗ λij

)
⊗ xj

)

= (IdV ⊗σ) ◦ f

(∑
j

(∑
i

ei ⊗ λij

)
⊗ σ−1(xj)

)

= (IdV ⊗σ)

(∑
i,j

ei ⊗ λijσ−1(xj)

)
=
∑
i,j

ei ⊗ σ(λijσ
−1xj)

=
∑
i,j

ei ⊗ σ(λij)xj
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Comparing these, we see that f(x) = σf(x) if and only if, when written in terms of this
basis, all the elements λij are fixed by σ. That is to say, f = σf for every σ if and only if
every λij ∈ k, which is to say, there is a basis {ei} of V such that {ei ⊗ 1} is a k-basis of W .

Now le’ts try to understand f−1 and σ(f−1). We can write each ei ⊗ 1 in terms of the
K-basis {wj} of VK .

ei ⊗ 1 =
∑
j

γijwj

That is, (γij) = (λij)
−1 is the transition matrix from the K-basis {ei ⊗ 1} to the basis {wj}.

We write an arbitrary y ∈ VK in terms of the K-basis {ei ⊗ 1}.

y =
∑
i

ei ⊗ yi =
∑
i

yi(ei ⊗ 1) =
∑
i

yi

(∑
j

γijwj

)
=
∑
i,j

yiγijwj

with yi ∈ K. Then

f−1(y) =
∑
i,j

f−1(yiγijwj) =
∑
i,j

wj ⊗ yiγij

Being a bit more sloppy with notation, we can write this as

f−1(ei) = f−1(ei ⊗ 1) =
∑
j

wj ⊗ γij

With σ(f−1), we get

σ(f−1)(y) = (IdW ⊗σ) ◦ f−1 ◦ (IdV ⊗σ−1)(y)

= (IdW ⊗σ) ◦ f−1 ◦ (IdV ⊗σ−1)

(∑
i

ei ⊗ yi

)

= (IdW ⊗σ) ◦ f−1

(∑
i

ei ⊗ σ−1yi

)

= (IdW ⊗σ) ◦ f−1

(∑
i,j

σ−1(yi)γijwj

)

= (IdW ⊗σ)

(∑
i,j

wj ⊗ σ−1(yi)γij

)
=
∑
i,j

wj ⊗ yiσ(γij)

Using a bit more sloppy notation, we can write this as

σ(f−1)(ei) =
∑
j

σ(γij)wj

This is analogous to what happened with f , since it also demonstrates that f−1 = σ(f−1) for
all σ if and only if all of the coefficients γij are in k. But since (γij) = (λij)

−1 (this equality
is in GLn(k) where n = dimk V ), this is equivalent to all the λij lying in k.
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Definition 3.37. Let α, a,W be as above. Our goal is to define a tensor Ψ on W to make
it a k-object. Using lemma 2.11, the following is an isomorphism of K-vector spaces.

f : WK =
(

(aVK)G
)
K

∼=−→ VK x⊗ λ 7→ λx

Keep in mind the previous remark, which tells us that f is not generally a morphism of
G-modules.

We have the tensor ΦK on VK , so using the above isomorphism we can transfer it to a
tensor Φ̃K on WK in such a way that f : (WK ,ΦK)→ (VK ,ΦK) is a morphism of K-objects.
To be more concrete, set

Φ̃K = (f−1)⊗p ◦ ΦK ◦ f⊗q

which then immediately makes the required diagram commute for f to be a morphism of
K-objects.

(WK)⊗q (VK)⊗q

(WK)⊗p (VK)⊗p

f⊗q

Φ̃K ΦK

f⊗p

So we have a K-object (WK , Φ̃K), which we would like to say descends to a k-object (W,Ψ).
By the criterion in proposition 3.26, this happens precisely if ΦK is fixed by the action of G.
For a proof of this, see a very long and hard to follow calculation in the appendix, proposition
5.1.

Assuming the lemma, Φ̃K is fixed by G, so by proposition 3.23 it descends to a k-tensor
Ψ on W . To be more specific, using the remark following proposition 3.23, the tensor Ψ is
just the restriction of Φ to W . So we have a k-object (W,Ψ). Following the terminology in
definition 3.34, we call (W,Ψ) the twisted form of (V,Φ) associated to α.

Lemma 3.38. Let α ∈ H1(G,A) and let (W,Ψ) the associated twisted form of (V,Φ). Then

1. (W,Ψ) is a twisted K/k-form of (V,Φ).

2. The k-isomorphism class of (W,Ψ) does not depend on the choice of cocycle a, only on
the cohomology class α ∈ H1(G,A).

Proof. (1) This is immediate from the construction of Ψ. To be more precise, in definition
3.37, the map

f : WK → VK x⊗ λ 7→ λx

was an isomorphism of K-vector spaces, and by construction of Ψ, we have ΨK = Φ̃K , and
by construction of Φ̃K , f : (WK , Φ̃K) → (VK ,ΦK) is an isomorphism of K-objects. Hence
(W,Ψ) is a twisted K/k-form of (V,Φ).

(2) Let a, b ∈ Z1(G,A) both be cocycles representing α ∈ H1(G,A), and let (W a,Ψa)
and (W b,Ψb) be the respective associated twisted forms of (V,Φ).

W a = (aVK)G

W b = (bVK)G
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We need to give a k-isomorphism (W a,Ψa) ∼= (W b,Ψb). By definition, [a] = [b] = α means
that there exists c ∈ A = AutK(Φ) such that

aσ = c−1bσ
σc

for all σ ∈ G. We can rewrite this as

bσ
σc = caσ

Then we claim that c : VK → VK restricts to a map W a → W b. If x ∈ W a, then aσσx = x
for all σ ∈ G. Then

bσσ(cx) = bσσcσ
−1σx = bσ

σcσx = caσσx = cx

for all σ ∈ G, hence cx ∈ W b, so c : W a → W b as claimed. Hence c : W a → W b is a bijective
k-linear map. It just remains to verify that it is a morphism of k-objects. Since c : VK → VK
is a K-morphism, the following diagram commutes.

(aVK)⊗q (bVK)⊗q

(aVK)⊗p (bVK)⊗p

c⊗q

ΦK ΦK

c⊗p

Then restricting to G-invariants we obtain

(W a)⊗q (W b)⊗q

(W b)⊗p (W b)⊗p

c⊗q

Ψa Ψb

c⊗p

hence c : W a → W b is the needed k-isomorphism.

Remark 3.39. As a consequence of the previous lemma, we have a well defined map

H1(G,A)→ TFK(V,Φ) [a] 7→
(
(aVK)G,Ψ

)
3.7.3 Main correspondence

Theorem 3.40 (CSAGC 2.3.3). Let (V,Φ) be a k-object and K/k a finite Galois extension
with Galois group G = Gal(K/k), and let A = AutK(Φ). The maps defined above

TFK(V,Φ)→ H1(G,A) (W,Ψ) 7→ [a]

H1(G,A)→ TFK(V,Φ) [a] 7→
(
(aVK)G,Ψ

)
are mutual inverses, so they give a basepoint-preserving bijection.
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Proof. We already know the map preserves basepoints, by remark 3.32. We just need to
verify that the two compositions are the respective identity maps.

First, start with a twisted K/k-form (W,Ψ). We choose a K-isomorphism f : WK → VK ,
and obtain the associated cocycle b = β(f−1) ∈ Z1(G,A),

b : G→ A bσ = fσ(f−1)

Then the associated cohomology class is [b] ∈ H1(G,A). To return to twisted forms, we set
W b = (bVK)G, and get a tensor Ψb on W b by restricting ΦK to W b. So we have obtained
a twisted K/k-form (W b,Ψb). We need to verify that (W b,Ψb) is k-isomorphic to (W,Ψ).
Consider the composition

W b = (bVK)G ↪→ VK
f−1

−−→ WK

Clearly this is a K-morphism. We claim that the image is precisely (WK)G. If x ∈ W b, then
for every σ ∈ G,

x = σ ∗ x = bσσx = (f)σ(f−1)σx = fσf−1σ−1σx = fσf−1x =⇒ f−1x = σf−1x

Thus f−1x ∈ (WK)G. Since W b and (WK)G have equal k-dimension, the image is precisely
(WK)G. Thus f−1 restricts to an isomorphism of k-vector spaces W b → (WK)G. Using
lemma 2.4 we identify (WK)G with W using the isomorphism

(WK)G → W w ⊗ 1 7→ w

hence f−1 gives an isomorphism of k-vector spaces W b → W . Since Ψb is just the restriction
of ΦK to W b and f−1 takes ΦK to ΨK (since f−1 is a K-morphism), the restriction of f−1

to W b is a k-morphism, that is, f−1 gives the needed k-isomorphism (W b,Ψb) → (W,Ψ).
Hence the composition

TFK(Φ)→ H1(G,A)→ TFK(Φ)

is the identity.
Now we consider the other composition. Start with a cohomology class α ∈ H1(G,A), and

choose a representative cocycle a ∈ Z1(G,A). We then obtain the associated twisted form
(W a,Ψa) where W a = (aVK)G and Ψ is the restriction of ΦK to W . This process comes via
a K-isomorphism fa : W a

K → VK , as in definition 3.37. To return to cohomology classes (as
in definition 3.31), we use the isomorphism f−1

a to obtain a cocycle b = β(f−1
a ) ∈ Z1(G,A).

b : G→ A bσ = fa
σ(f−1

a )

We just need to prove that a and b are cohomologous. Let W b = (bVK)G be the twisted form
of (V,Φ) associated to the cocycle b. Using the previous case, under the composition

W b ↪→ VK
f−1
a−−→ W a

K

the image of f−1
a is precisely (W a

K)G, which we identify with W a using the isomorphism from
lemma 2.11.

(W a
K)G → W a x 7→ x⊗ 1

By the previous case, f−1
a then gives a k-isomorphism W b → W a. So we have the following

commutative diagram.
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bVK W a
K =

(
(aVK)G

)
K

aVK

W b = (bVK)G W a = (aVK)G

f−1
a ε

x⊗λ 7→λx

f−1
a

with the ε map coming from Speiser’s lemma 2.11. That is to say, εf−1
a commutes with the

G-actions, since it descends to a k-morphism (using proposition 3.23). Let c = εf−1
a

4. The
fact that c commutes with G-actions means that for all x ∈ aVK ,

c(σ ∗ x) = σ ∗ (cx) =⇒ cbσσx = aσσcx =⇒ cbσσ = aσσc =⇒ bσ = c−1aσ
σc

Thus a, b are cohomologous cocycles. This proves that the composition

H1(G,A)→ TFK(Φ)→ H1(G,A)

is the identity.

3.8 Families of tensors

This section is based on Remark 2.3.10 of CSAGC, which says that we can generalize theorem
3.40 to the situation of a family of tensors.

Definition 3.41. Let V be a k-vector space. Let {Φi} be a family of tensors of type (pi, qi)
on V . The pair (V,Φi) is a generalized k-object.

Definition 3.42. A morphism of generalized k-objects is a k-linear map V → W
which preserves all the tensors, which is to say, each tensor makes the appropriate diagram
commute.

Remark 3.43. Why would we need more than one tensor to track the structure on V ? Well,
for example, suppose we wanted to study algebras of a particular type. A tensor Φ1 of type
(p1, q1) = (1, 2) gives V the structure of a k-algebra, but does not say anything about the
properties of this multiplication map.

If we want to also require that the algebras be associative, unital, central, or simple, we
can encode whatever property in some appropriate commutative diagrams, and turn that
data into some kind of tensor on V . Then our morphisms of k-objects will have to respect
all the structural properties of our algebras.

Remark 3.44. Given our definitions of generalized k-objects and their morphisms, the rest
of the development of the theory generalizes immediately. Extension of scalars, twisted
forms, Galois actions, and K-automorphism groups are defined as one would expect.

Theorem 3.45 (Generalized theorem 3.40). Let (V,Φi) be a generalized k-object and K/k a
finite Galois extension with Galois group G = Gal(K/k), and let A = AutK(Φi). The maps

TFK(V,Φi)→ H1(G,A) (W,Ψi) 7→ [a]

H1(G,A)→ TFK(V,Φi) [a] 7→
(
(aVK)G,Ψi

)
are mutual inverses, so they give a basepoint-preserving bijection.

4I’m not exactly sure why c ∈ AutK(Φ), but it feels like it really should be. I don’t have the energy to
figure out why right now.

40



3.9 Infinite extensions

The main correspondence generalizes to case where K/k is an infinite Galois extension. The
basic gist of this is that G = Gal(K/k) acts on A = AutK(Φ) continuously, so it always
acts through a finite quotient. So the profinite cohomology group H1(G,A) is not a scary
or complicated as it could be.

Alternatively, one can try to obtain the finite case from the infinite case by using direct
and inverse limits. There is some discussion of this in Platonov-Rapinchuk, but the details
there are not particularly spelled out, nor do I feel the need to work them out myself and
record them here.
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4 Examples and applications

In this section, we consider what the main corespondence says in a few special cases with
small p, q values. Sometimes we can compute H1(G,A), and it tells us about twisted forms.
Sometimes we can describe the twisted forms, and it tells us about H1(G,A).

4.1 Revisiting vector spaces (p, q) = 0

When (p, q) = (0, 0) a k-object (V,Φ) is just the vector space V with no additional structure,
and morphisms (V,Φ) → (W,Ψ) of k-objects are merely k-linear maps. We have already
fully described what happens in this case in proposition 2.13, remark 2.14, and remark 3.17.

To reiterate those remarks, in this situation TFK(Φ) is just a single point set containing
the k-isomorphism class of (V,Φ) itself. So by the main correspondence 3.40, H1(G,A) is
only one cohomology class. That is to say, every cocycle is cohomologous to the trivial
cocycle.

Also, because everyK-automorphism (VK ,ΦK)→ (VK ,ΦK) comes from a k-automorphism
(V,Φ)→ (V,Φ), it is fixed by every σ ∈ G. That is to say, G acts trivially on A = AutK(Φ).
So

H0(G,A) = AG = A

4.2 (p, q) = (1, 0)

In this case, Φ is a k-linear map k → V . Since Φ is determined by Φ(1), a k-object (V,Φ)
is really just a vector space V with a distinguished element v0 = Φ(1). We may as well
assume Φ is nonzero, although we won’t actually need this assumption. Then Φ is just an
embedding of k into V , and the image is a 1-dimensional subspace spanned by v0.

A k-morphism f : (V,Φ)→ (V ′,Φ′) is a k-linear map f : V → V ′ such that fΦ = Φ′. In
other words, if we let v0 = Φ(1) and v′0 = Φ′(1), then f(v0) = v′0.

k k

V V ′

f⊗0=Id

Φ Φ′

f

Suppose (W,Ψ) is a twisted K/k-form of (V,Φ), so we get a K-isomorphism g : VK → WK .
This just means g is K-linear and g(v0 ⊗ 1) = w0 ⊗ 1.

K K

VK WK

Id

ΦK ΨK

g

We know that g descends to a k-linear map f : V → W where fK = g, though f may not
be a morphism of k-objects.
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V W

VK WK

f

v 7→v⊗1 w 7→w⊗1

g=fK

This implies
f(v0)⊗ 1 = fK(v0 ⊗ 1) = g(v0 ⊗ 1) = w0 ⊗ 1

But this implies f(v0) = w0, which is to say, f is a k-morphism. Thus every K-isomorphism
from VK descends to a k-isomorphism, meaning TFK(Φ) is trivial. Hence H1(G,A) is also
trivial.

4.3 (p, q) = (0, 1)

In this case, Φ is a k-linear map V → k. That is, Φ is a linear functional on V , an element
of the dual space V ∗. A k-morphism f : (V,Φ)→ (V ′,Φ′) is just a k-linear map f : V → V ′

such that Φ′f = Φ.

V V ′

k k

f

Φ Φ′

Id

Example 4.1. Let k = R, K = C, V = R2. Let Φ : R2 → R be the projection onto the first
coordinate.

Φ : R2 → R (x1, x2) 7→ x1

We have isomorphisms (of C-vector spaces)

R2 ⊗R C (R⊗R C2) C2

(x1, x2)⊗ z (x1 ⊗ z, x2 ⊗ z) (x1z, x2z)

∼= ∼=

How to describe ΦC? It is

ΦC : R2 ⊗R C→ R⊗R C (x1, x2)⊗ z 7→ x1 ⊗ z

Using the previous isomorphisms, we can write it more usefully as the projection map onto
the first coordinate.

ΦC : C2 → C (z1, z2) 7→ z1

The Galois group is G = Z/2Z with complex conjugation being the lone nontrivial element.
We denote it by σ, and just write σ(z) = z. A K-automorphism of V is a C-linear map
g : C2 → C2 such that the diagram below commutes.

C2 C2

C C

g

ΦC ΦC

Id

43



That is to say, g acts as the identity on the first component of C. So we can write it as

g : C2 → C2 g(z1, z2) = (z1, λgz2)

for some λg ∈ GL1(C) = C×. Any λg ∈ C× gives rise to such a g, so we may identify
A = AutC(Φ) with C×. To describe the G-action on this, it suffices to describe what
complex conjugation does. Given (z1, z2) ∈ C2 and g ∈ A,

σg(z1, z2) = σgσ(z1, z2) = σg(z1, z2) = σ(z1, λgz2) =
(
z1, λgz2

)
=
(
z1, λgz2

)
So G acts on A = C× as you would expect, just restricting the usual action of the Galois
group on C. So the fixed points are λg ∈ C× which are fixed by complex conjugation, which
is to say,

H0(G,A) = R×

By Hilbert’s theorem 90, H1(G,C×) = 0. By our main correspondence, this tells us that
every twisted C/R-form of (V,Φ) is already R-isomorphic to (V,Φ).

Example 4.2. Let k = R, K = C, V = R2. Let Φ : R2 → R be the usual multiplication
map of R.

Φ : R2 → R Φ(x, y) = xy

After extending scalars to C, we see that ΦC is the multiplication map for C.

ΦC : C2 → C ΦC(w, z) = wz

Thus the group AutK(Φ) is the group of C-linear automorphisms of VC = C2 which preserve
this multiplication.

C2 C2

C C

g

ΦC ΦC

Id

Since g is C-linear, we can think of it as an element of GL2(C). So if g = (gij),

g(w, z) = (g11w + g12z, g21w + g22z)

The diagram above says that if g = (gij) and (w, z) ∈ C2, then

wz = Φ(w, z) = Φg(w, z) = (g11w+g12z)(g21w+g22z) = g11g21w
2+(g11g22+g12g21)wz+g12g22z

2

Since this holds for all w, z ∈ C, this implies

g11g12 = g12g22 = 0 g11g22 + g12g21 = 1

Since g ∈ GL2(C), we also know g11g22−g12g21 6= 0. The first equations above say that g has
a zero in each row. Then the second equation says that g11g22 = 1 or g12g21 = 1, whichever
is nonzero. So g has one of the following forms.(

x 0
0 x−1

)
,

(
0 x
x−1 0

)
x ∈ C×
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So the automorphism group AutK(Φ) is identified with this subgroup of GL2(C).

AutK(Φ) ∼=
{(

x 0
0 x−1

)
,

(
0 x
x−1 0

)
: x ∈ C×

}
The Galois group acts on these entrywise. Perhaps there would be more I could say at this
point if I knew the classification of real bilinear forms better.

Example 4.3. 5 We generalize the previous example. Let L/K be a quadratic extension in
char 6= 2, so L = K(

√
c) for some non-square c ∈ K×. Let Γ = Gal(L/K) ∼= Z/2Z with

generator/unique nontrivial element τ . Let V = K2, and let Φ be the quadratic form on K
just given by multiplication.

Φ : V → K (x, y) 7→ xy

Then VL = L2 with ΦL also just given by multiplication. Rather than describe the group
of L-automorphisms of VL, we just construct a nontrivial twisted form of (V,Φ) using a
particular cocycle. Let A = AutL(VL), and define a cocycle b ∈ Z1(Γ, A) by

b : Γ→ A be = Id bτ =
(

(x, y) 7→ (y, x)
)

The regular action of Γ on VL is just acting by Γ on each entry of VL = L2. The twisted
action is

Γ× bVL → bVL σ ∗ v = bσ(σv)

In the case of the nontrivial element τ , it acts as

τ ∗ v = τ ∗ (v1, v2) = (τv2, τv2)

To get a twisted form of V , we take the Γ-fixed points of the twisted action. Since τ is the
only nontrivial element, the Γ-fixed points are just points fixed by τ .

W = (bVL)Γ =
{

(x, y) ∈ VL = L2 : (x, y) = (τy, τx)
}

=
{

(x, τx) ∈ L2 : x ∈ L
}

Projecting onto the first component, we can identifyW with L. However, W is not necessarily
isomorphic to L as a K-algebra, because the “multiplication” in W is

(x, τx) 7→ x · τx = NmL
K(x)

To summarize: we have the K-algebra V = K2 viewed as a K-algebra with the tensorΦ being
the usual multiplication in K. We constructed the K-algebra W which is identified with L
as a set, but the tensor on W captures the field norm NmL

K . To be even more concrete,

V → K (x, y) 7→ xy

W → K x+ y
√
c 7→ x2 − cy2

Although V,W are isomorphic as K-vector spaces (both are 2-dimensional) they are not
isomorphic as K-algebras.

5Inspired by example 2 on page 69 of Platonov-Rapinchuk.
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4.4 Vector space with fixed endomorphism (p, q) = (1, 1)

In this case, Φ is just a k-linear map V → V . A k-morphism (V,Φ) → (V ′,Φ′) is a linear
map f : V → V ′ such that Φ′f = fΦ.

V V ′

V V

f

Φ Φ′

f

The group of K-automorphisms is

A = AutK(Φ) = {f ∈ GL(VK) : fΦ = Φf}

So A is just the centralizer of Φ in GL(V ). Note that Φ may itself not be in GL(V ), but it
is at least in EndK(V ).

Example 4.4. Let k = R, K = C, V = R2. Fix θ ∈ R, and let Φ : R2 → R2 be the rotation
through a angle θ about the origin, and assume θ 6= 0 and θ 6= π. That is, Φ is given by the
following matrix in the standard basis {e1 = (1, 0), e2 = (0, 1)} of R2.

Φ =

(
cos θ − sin θ
sin θ cos θ

)
Φ

(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
Then ΦC : C2 → C2 is given by the same matrix in terms of the C-basis {(1⊗ 1, 0), (0, 1⊗ 1)}
for VC. However, if instead we use the basis {e1 ⊗ 1 + e2 ⊗ i, e1 ⊗ 1− e2 ⊗ i} for VC, in terms
of this basis ΦC has the matrix

ΦC =

(
eiθ 0
0 e−iθ

)
(For an explicit calculation of this, see example 4.20 of my notes for my summer class on
algebraic groups with Rajesh Kulkarni.) In these terms, a K-automorphism of (V,Φ) is
g ∈ GL2(C) which commutes with Φ. A quick calculation shows that the matrices(

a b
c d

)
,

(
eiθ 0
0 e−iθ

)
commute if and only if beiθ = be−iθ and ceiθ = ce−iθ. This only happens when θ = 0 or
θ = π or b = c = 0. Since we ruled out the first two to start, b = c = 0, which is to say,
g ∈ GL2(C) is a diagonal matrix. So we have an identification of A with C×2. Again, σ ∈ G
acts as usual on the C-parts of A, so

H0(G,A) = R×2

and using additivity of cohomology and Hilbert 90,

H1(G,A) = H1(G,C×2) = H1(G,C×)⊕H1(G,C×) = 0⊕ 0 = 0

I’m not sure if this is right.
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4.5 Bilinear forms (p, q) = (0, 2)

In this case, Φ is a bilinear form V ⊗ V → k.

Example 4.5. Assume k does not have characteristic 2. Let n = dimV and Φ be a
nondegenerate symmetric bilinear form on V . The AutK(Φ) is the groupOn(K) of orthogonal
matrices with respect to Φ, and the correspondence says that there is a bijection

TFK(V,Φ) ∼= H1(G,On(K))

According to CSAGC example 2.3.5, ”this bijection is important for the classification of
quadratic forms.”

Example 4.6. Let k = R, K = C, V = Rn. The Galois group is G = Gal(C/R) ∼= Z/2Z.
Let Φ be the usual dot product on Rn.

Φ : Rn ⊗R Rn → R Φ ((x1, . . . , xn)⊗ (y1, . . . , yn)) =
n∑
i=1

xiyi

The extension of Φ to ΦC : Cn ⊗C Cn → C has the same formula as the above. The
automorphism group AutC(V,Φ) is the orthogonal group On(C).

On(C) =
{
x ∈ GLn(C) : xxt = 1

}
From the correspondence,

TFR(V,Φ) ∼= H1(Z/2Z, On(C))

It is known that over C, all nondegenerate symmetric bilinear forms are equivalent to Φ.
Hence the nondegenerate symmetric bilinear forms on Rn are classified by the cohomology
group H1(G,On(C)).

4.6 Algebras (p, q) = (1, 2)

In this case, Φ is a multiplication map for a (possibly nonassociative) algebra on V .

Φ : V ⊗ V → V

This is where our generalization to a family of tensors starts to play a useful role. Instead
of arbitrary algebras, we would like to consider associative, unital, central, simple algebras.
Therefore, in addition to the multiplication map, we need to include some other tensors on
V which encode these properties. For the moment, we suppress any details of how to do
this, but perhaps it will be included later. For now, we just assume that we can encode all
of this data into a family of tensors without much trouble.

Example 4.7. Let K/k be a Galois extension with Galois group G. For this example,
assume all algebras are associative, unital, central, and simple.

Let (V,Φi) be the k-algebra Mn(k), where Φi includes a structure map for multiplication,
along with some tensors to encode the fact that it is an associative, unital, central, simple
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algebra. Over K, it is (VK , (Φi)K) = Mn(K). So TFK(V,Φi) is the k-isomorphism classes
of central simple k-algebras which become isomorphic to Mn(K) after tensoring up to K.
These are precisely the central simple k-algebras of dimension n2 which become isomorphic
to Mn(K) after extending scalars.

The automorphism group AutK(Φi) is K-algebra automorphisms of Mn(K). By the
Skolem-Noether theorem, all such automorphisms are inner, so we may realize each such
automorphism with an element of GLn(K), which then acts on Mn(K) by conjugation.
Since any scalar matrix is central and acts trivially, this action factors through the quotient
PGLn(K). That is, AutK(Φi) ∼= PGLn(K). Using our main correspondence, we get

TFK(V,Φi) ∼= H1(G,PGLn(K))

This is used, for example in CSAGC, as motivation and construction of the relative Brauer
group Br(K/k), and its identification with H2(G,K×). Without proof, we mention that

Br(K/k) ∼= H1(G,PGL∞)

This is mostly useful in the situation where K = ksep is the separable closure, in which case
we obtain the absolute Brauer group.

Br(k) = Br(ksep/k) ∼= H1(G,PGL∞) ∼= H2(G, (ksep×))

Note that here we are using profinite cohomology.

Example 4.8. Let k be a field with trivial Brauer group, for example, k = Fq a finite field
with q elements. Let K/k be a Galois extension with Galois group G. Since Br(k) = 0,
the relative Brauer group Br(K/k) is also trivial. Let (V,Φ) be the k-algebra Mn(k), where
Φ encodes the multiplication map, and the fact that it is central simple (and unital and
associative).

From the previous example, TFK(V,Φ) consists of k-isomorphism classes of central simple
k-algebras of dimension n2, which represent Brauer classes of the relative Brauer group
Br(K/k). Since this group is trivial, all such algebras are Brauer equivalent. Since they also
all have the same dimension, they are all already k-isomorphic. So TFK(V,Φ) is just one
point. Using the correspondence, this tells us that

H1(G,PGLn(K))

is trivial.

Example 4.9. For this entire example, all algebras are assumed to be associative, unital,
central, and simple. Let k = R, K = C. Let (V,Φ) be the R-algebra M2(R), and let (W,Ψ) be
the Hamilton quaternion algebra. That is, W = R4 with basis {1, i, j, ij} and multiplication

i2 = j2 = −1 ij = −ji

We know from the theory of central simple algebras and Brauer groups that after tensoring
up to the separable closure C, these algebras are isomorphic. That is to say, (W,Ψ) is a
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twisted C/R-form of (V,Φ). We also know that they are NOT isomorphic R-algebras. Hence
(W,Ψ) is a nontrivial twisted form of (V,Φ). So we know to expect H1(G,A) 6= 0.

Let’s try to describe AutK(Φ). A K-automorphism of (V,Φ) is a C-algebra automorphism
of M2(C). By the Skolem-Noether theorem, every such automorphism is inner, which is to
say, is of the form

M2(C)→M2(C) x 7→ gxg−1

for some g ∈ GL2(C). Since any scalar g ∈ GL2(C) acts trivially, the action factors
through the quotient PGL2(C), hence we identity A with PGL2(C). The Galois group
G = Gal(C/R) ∼= Z/2Z 〈σ〉 acts on M2(C) entry-wise, so given g ∈ GL2(C), σg is the
automorphism

σg : M2(C)→M2(C) x 7→ gxg−1 = gxg−1

Thus σg = g, which is to say, G acts entry-wise on A = PGL2(C). Now the question is, what
can we say about H1(G,A) or TFK(V,Φ)? There is a relatively easy calculation of H1(G,A)
in the case where G is cyclic and A is abelian, but in our situation A is not abelian.

Alternatively, perhaps we can use our knowledge of central simple algebras and the Brauer
group to understand TFK(V,Φ). A twisted form of M2(R) is a (unital, associative) central
simple R-algebra U such that U ⊗R C ∼= M2(C). Now we are in a position to use our
full knowledge of the Brauer group. We know that Br(R) ∼= Z/2Z, which is to say, there
are precisely two isomorphism classes of unital, associative, central R-division algebras: R
and the Hamilton quaternions. Combining this with Wedderburn’s theorem, the only unital
associative, central R-algebras are M2(R) and the Hamilton quaternions. Hence TFK(V,Φ)
is a set with two elements, the distinct classes of (V,Φ) and (W,Ψ).

4.7 Descent for affine algebraic groups

4.7.1 Equivalence with Hopf algebras

The category of affine algebraic k groups is equivalent to the category of Hopf k-algebras,
using spec.

{Hopf k-algebras} spec−−→ {affine algebraic k-groups}
The quasi-inverse is given by taking global sections. Alternatively, thinking of affine al-
gebraic k-groups as representable functors Algk → Gp, every affine algebraic k-group has
a representing algebra, and the multiplication and inversion maps induce a Hopf algebra
structure on the representing algebra. Conversely, given a Hopf algebra A, the functor

GA : Algk → Set B 7→ Homk(A,B)

describes an algebraic k-group, using the Hopf algebra structure of A to make Homk(A,B)
into a group.

4.7.2 Forms of algebraic groups

Definition 4.10. Let G be an affine algebraic k-group. Let K/k be an extension. A K/k-
form of G is an algebraic group H such that HK

∼= GK as algebraic K-groups.

Definition 4.11. Let G be an affine algebraic k-group. The set of k-isomorphism classes of
K/k-forms of G is denoted TFK(G).
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4.7.3 Application of main correspondence

Let G be an affine algebraic k-group with representing Hopf k-algebra OG. Let K/k be a
Galois extension (possibly infinite) with Galois group Γ. Let (V,Φ) be the Hopf algebra
OG, where Φ is a family of tensors encoding multiplication, comultiplication, unit, counit,
and antipode maps. Let A = AutK(Φ). By the main correspondence, we have a basepoint
preserving bijection

TFK(OG) ∼= H1(Γ, A)

By our equivalence of categories, K-automorphisms of (OG)K which preserve ΦK are in
natural bijection with K-automorphisms of GK as an algebraic K-group. Similarly, since
the equivalence of categories commutes with extension of scalars, K/k-forms of OG are in
natural bijection with K/k-forms of G. So the bijection above turns into

TFK(G) ∼= H1(Γ,AutK(GK))

There is probably some amount of details to check regarding how naturality supports this
assertion, but this does not interest me at this time.

Example 4.12. Let K be a field with charK 6= 2, and let L/K be a quadratic extension, so
L = K(

√
c) for some non-square c ∈ K×. The Galois group is then Γ = Gal(L/K) ∼= Z/2Z,

and we let σ be the generator/unique nontrivial element. Let G = Gm, viewed as an
algebraic K-group. The twisted L/K forms of G are classified by cohomology using our
main correspondence.

TFL(G) ∼= H1 (Γ,AutL(GL))

The L-automorphisms of GL = (Gm)L = Gm are just the power maps, so AutL(GL) ∼= Z.
The Galois group action on this copy of Z is determined by how σ acts. The only possibilities
are that it act by +1 or −1. I claim that σ acts as −1. Let αn ∈ AutL(GL) be the nth power
map, x 7→ xn. The Γ-action is given by by conjugating.

σ · αn = (1⊗ σ) ◦ αn ◦ (1⊗ σ)−1 ∈ AutL(GL)

Let’s just look at the action on K-points of GL, which is L×. Let x ∈ GL(K) = L×, and
write x as x = a+ b

√
c, with a, b ∈ K. Then σx = a− b

√
c. Note that σ = σ−1.

(σ·αn)(x) = σαnσ
−1(x) = σαn(a−b

√
c) = σ(a−b

√
c)n = σ

(
an − an−1b

√
c+ · · ·+ (−1)nb

√
c
)

When σ is applied to this, it changes all of the
√
c terms by a sign, but this does is not equal

to αn(x) = (a + b
√
c)n, in general. So σ does not act as the identity, hence it must act as

−1. So we get the cohomology group H1(Z/2Z,Z) with nontrivial action. By a standard
calculation of cohomology for cyclic groups, this is

H1(Z/2Z,Z) ∼= kerN/(σ − 1)Z

where N : Z→ Z is the norm map, which in this case is is the map 1 + σ = 0, so

H1(Z/2Z,Z) ∼= Z/2Z

Thus there are precisely two K-isomorphism classes of twisted forms of Gm. One is Gm

itself. The other is the norm torus, which we describe more explicitly via twisting in the
next example.
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Example 4.13. 6 Let L/K be a quadratic extension in char 6= 2, L = K(
√
c),Γ = Gal(L/K)

as above, with σ the generator (and only nontrivial element) of Γ. Let G = Gm, viewed as
a K-group. The extension of G to L is (Gm)L.

GL = (Gm)L

The corresponding Hopf algebra is Laurent polynomials overK in one variable, and extending
to L just gives Laurent polynomials over K.

OG = K[t, t−1]

OGL
= L[t, t−1]

Let V = OG, VL = OGL
and let A = AutL(GL) ∼= AutL(OGL

). The Galois action of Γ on VL
is by acting on the L-coefficients.

Γ× VL → VL τ
(∑

ant
n
)

=
∑

τ(an)tn τ ∈ Γ

From the previous example, we know that H1(Γ, A) has exactly one nontrivial cohomology
class, so let us describe it in terms of an explicit cocycle. Define a cocycle a ∈ Z1(Γ, A) by

a : Γ→ A ae = Id aσ = Inv

where Inv is the inversion map on GL, or alternatively the map t 7→ t−1 on OGL
. Now let’s

construct the twisted algebra associated to the cocycle a. The twisted action of Γ on aVL is

Γ× aVL → aVL τ ∗ f = aτ (τf)

This is only interesting when τ = σ, so we describe that even more explicitly.

σ ∗ f = aσ(σf) = Inv(σf) = σf(t−1)

Then we take the Γ-invariants of the action to get our twisted form. To be fixed by Γ, it is
enough to be fixed by σ.

W = (aVL)Γ

=
{
f ∈ L[t, t−1] : f(t) = σ ∗ f(t) = σf(t−1)

}
=

{∑
n∈Z

ant
n : an = σ(a−n),∀n ∈ Z

}

We can describe W even better than this using the following isomorphism. Recall that
L = K(

√
c). Define

L[u, v]→ W u 7→ t+ t−1

2
v 7→ t− t−1

2
√
c

6Copied from example 1 on pages 69-69 of Platonov-Rapinchuk.
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We claim this is a surjection of L-algebras whose kernel is the principal ideal (u2− cv2− 1).
There is nothing to check regarding being a map of L-algebras, since we have only defined
it on L-algebra generators, and it clearly lands in W .

It’s not hard to see that this is surjective, since W is generated by elements of the form
t + t−1 and t −

√
ct−1, which are just scalar multiples of the images of u, v. The fact that

u2 − cv2 − 1 lies in the kernel is just a calculation.(
t+ t−1

2

)2

− c
(
t− t−1

2
√
c

)2

− 1 =

(
t2 + 2 + t−2

4

)
− c

(
t2 − 2 + t−2

4c

)
− 1

=
t2 + 2 + t−2 − t2 + 2− t−2

4
− 1 =

4

4
− 1 = 0

We omit justification that the kernel is generated by u2 − cv2 − 1, but it is. Hence by the
1st isomorphism theorem, the mapping above induces an isomorphism (of L-algebras)

W ∼= L[u, v]�(u2 − cv2 − 1)

Remember what we were doing - we started with the algebraic K-group Gm, translated to
the associated Hopf algebra V , and extended scalars to VL. Then we twisted the Γ-action
and took Γ-invariants to obtain a twisted K-algebra W , which is an L/K-form of V . So if we
translate the Hopf algebra W back to an algebraic K-group, we obtain a twisted L/K-form
of Gm. That is, we have the algebraic K-group

H = specW

which is an L/K-twisted form of Gm. To be more precise, the K-points of H are the following
subgroup of SL2(L).

H(L) ∼=
{(

u vc
v u

)
: u, v ∈ L, u2 − cv2 = 1

}
⊂ SL2(L)

The group H is better known as the norm torus RL/KGm. As H is an L/K-twisted form of
Gm, the L-points of H are the same as the L-points of Gm.

H(L) ∼= Gm(L) = L×
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5 Appendix

5.1 A very long computational lemma

Lemma 5.1. Let K/k,G, (V,Φ), α, aW, f, Φ̃K be as in definition 3.37. For σ ∈ G, σ · Φ̃K =

Φ̃K, hence it descends to a k-tensor Ψ on W .

Proof. As in definition 3.36, fix a k-basis {ei} of V and a k-basis {wj} of W so that {wj}
is also a K-basis of VK . Let λij, γij be as in that definition as well, that is, the transition
coefficients between the K-bases {wj} and {ei ⊗ 1} of VK .

wj =
∑
i

ei ⊗ λij ei ⊗ 1 =
∑
j

γijwj

Also we know that Φ : V ⊗q → V ⊗p is determined by the images of the basis elements
ei1 ⊗ · · ·⊗ eiq . Let’s just name the coefficients involved in the image. That is, for (`1, . . . , `p)
with 1 ≤ `i ≤ dimk V , define φ(`1,...,`p) ∈ k by

Φ(ei1 ⊗ · · · ⊗ eiq) =
∑

(`1,...,`p)

φ(`1,...,`p)(e`1 ⊗ · · · ⊗ e`p)

Let σ ∈ G. Then

σ · Φ̃K = (1⊗ σ)⊗p ◦ Φ̃K ◦ (1⊗ σ−1)⊗q = (1⊗ σ)⊗p ◦ (f−1)⊗p ◦ ΦK ◦ f⊗q ◦ (1⊗ σ−1)⊗q

It suffices to verify that σ · Φ̃K = Φ̃K on simple tensors in (WK)⊗q, so take such a simple
tensor.

x̃ = x1 ⊗ x2 ⊗ · · · ⊗ xq ∈ (WK)⊗q

Write each xk as

xk =
∑
jk

(∑
ik

eik ⊗ λ(ik,jk)

)
⊗ xjk
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Let’s start by applying Φ̃K to x̃.

Φ̃K(x̃) = (f−1)⊗p ◦ ΦK ◦ f⊗q
(
x1 ⊗ · · · ⊗ xq

)
= (f−1)⊗p ◦ ΦK ◦ f⊗q

(
· · · ⊗

(∑
jk

(∑
ik

eik ⊗ λ(ik,jk)

)
⊗ xjk

)
⊗ · · ·

)

= (f−1)⊗p ◦ ΦK

(
· · · ⊗

(∑
ik,jk

eik ⊗ xjkλ(ik,jk)

)
⊗ · · ·

)

= (f−1)⊗p ◦ ΦK

 ∑
(i1,...,iq)
(j1,...,jq)

(
· · · ⊗

(
eik ⊗ xjkλ(ik,jk)

)
⊗ · · ·

)

= (f−1)⊗p

 ∑
(i1,...,iq)
(j1,...,jq)

ΦK

(
· · · ⊗

(
eik ⊗ xjkλ(ik,jk)

)
⊗ · · ·

)

= (f−1)⊗p

 ∑
(i1,...,iq)
(j1,...,jq)

(
q∏

k=1

xjkλ(ik,jk)

)
Φ
(
· · · ⊗ eik ⊗ · · ·

)

= (f−1)⊗p

 ∑
(i1,...,iq)
(j1,...,jq)

(
q∏

k=1

xjkλ(ik,jk)

) ∑
(`1,...,`p)

φ(`1,...,`p)(· · · ⊗ e`k ⊗ · · · )



= (f−1)⊗p


∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(
q∏

k=1

xjkλ(ik,jk)

)
φ(`1,...,`p)(· · · ⊗ e`k ⊗ · · · )


=

∑
(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(
q∏

k=1

xjkλ(ik,jk)

)
φ(`1,...,`p)

(
· · · ⊗

(∑
mk

wmk
⊗ γ(`k,mk)

)
⊗ · · ·

)
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=
∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(
q∏

k=1

xjkλ(ik,jk)

)
φ(`1,...,`p)

 ∑
(m1,...,mp)

(
· · · ⊗

(
wmk
⊗ γ(`k,mk)

)
⊗ · · ·

)

=
∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(m1,...,mp)

(
q∏

k=1

xjkλ(ik,jk)

)
φ(`1,...,`p)

(
· · · ⊗

(
wmk
⊗ γ(`k,mk)

)
⊗ · · ·

)

=
∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(m1,...,mp)

(
q∏

k=1

xjkλ(ik,jk)γ(`kmk)

)
φ(`1,...,`p) (· · · ⊗ (wmk

⊗ 1)⊗ · · ·)

On the other hand, when we apply σ · Φ̃K to x̃, we get something slightly different, with σ
acting on some of the λ and γ coefficients.

σ · Φ̃K(x̃) = (1⊗ σ)⊗p ◦ (f−1)⊗p ◦ ΦK ◦ f⊗q ◦ (1⊗ σ−1)⊗q
(
x1 ⊗ · · · ⊗ xq

)
= (1⊗ σ)⊗p ◦ (f−1)⊗p ◦ ΦK ◦ f⊗q

(
· · · ⊗

(∑
jk

(∑
ik

eik ⊗ λ(ik,jk)

)
⊗ σ−1(xjk)

)
⊗ · · ·

)

= (1⊗ σ)⊗p ◦ (f−1)⊗p ◦ ΦK

(
· · · ⊗

(∑
ik,jk

eik ⊗ σ−1(xjk)λ(ik,jk)

)
⊗ · · ·

)

= (1⊗ σ)⊗p ◦ (f−1)⊗p ◦ ΦK

 ∑
(i1,...,ik)
(j1,...,jk)

(
· · · ⊗

(
eik ⊗ σ−1(xjk)λ(ik,jk)

)
⊗ · · ·

)

= (1⊗ σ)⊗p ◦ (f−1)⊗p

 ∑
(i1,...,iq)
(j1,...,jq)

ΦK

(
· · · ⊗

(
eik ⊗ σ−1(xjk)λ(ik,jk)

)
⊗ · · ·

)

= (1⊗ σ)⊗p ◦ (f−1)⊗p

 ∑
(i1,...,iq)
(j1,...,jq)

(
q∏

k=1

σ−1(xjk)λ(ik,jk)

)
Φ
(
· · · ⊗ eik ⊗ · · ·

)

= (1⊗ σ)⊗p ◦ (f−1)⊗p

 ∑
(i1,...,iq)
(j1,...,jq)

(
q∏

k=1

σ−1(xjk)λ(ik,jk)

) ∑
(`1,...,`p)

φ(`1,...,`p)(· · · ⊗ e`k ⊗ · · · )
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= (1⊗ σ)⊗p ◦ (f−1)⊗p


∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(
q∏

k=1

σ−1(xjk)λ(ik,jk)

)
φ(`1,...,`p)(· · · ⊗ e`k ⊗ · · · )



= (1⊗ σ)⊗p


∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(
q∏

k=1

σ−1(xjk)λ(ik,jk)

)
φ(`1,...,`p)(· · · ⊗ f−1e`k ⊗ · · · )



Recall from previous work that we can describe f−1 by

f−1(e`k) =
∑
mk

wmk
⊗ γ(`k,mk)

So continuing our calculation,

σ · Φ̃K(x̃) = (1⊗ σ)⊗p


∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(
q∏

k=1

σ−1(xjk)λ(ik,jk)

)
φ(`1,...,`p)(· · · ⊗ f−1e`k ⊗ · · · )



= (1⊗ σ)⊗p


∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(
q∏

k=1

σ−1(xjk)λ(ik,jk)

)
φ(`1,...,`p)

(
· · · ⊗

(∑
mk

wmk
⊗ γ(`k,mk)

)
⊗ · · ·

)

= (1⊗ σ)⊗p


∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(
q∏

k=1

σ−1(xjk)λ(ik,jk)

)
φ(`1,...,`p)

 ∑
(m1,...,mp)

(
· · · ⊗

(
wmk
⊗ γ(`k,mk)

)
⊗ · · ·

)


= (1⊗ σ)⊗p


∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(m1,...,mp)

(
q∏

k=1

σ−1(xjk)λ(ik,jk)

)
φ(`1,...,`p)

(
· · · ⊗

(
wmk
⊗ γ(`k,mk)

)
⊗ · · ·

)
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=
∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(m1,...,mp)

(
q∏

k=1

σσ−1(xjk)σ(λ(ik,jk))

)
φ(`1,...,`p)

(
· · · ⊗

(
wmk
⊗ σ(γ(`k,mk))

)
⊗ · · ·

)

=
∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(m1,...,mp)

(
q∏

k=1

xjkσ(λ(ik,jk))

)
φ(`1,...,`p)

(
· · · ⊗

(
wmk
⊗ σ(γ(`k,mk))

)
⊗ · · ·

)

=
∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(m1,...,mp)

(
q∏

k=1

xjkσ(λ(ik,jk)γ(`k,mk))

)
φ(`1,...,`p) (· · · ⊗ (wmk

⊗ 1)⊗ · · ·)

Let’s compare this side to side.

Φ̃K(x̃) =
∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(m1,...,mp)

(
q∏

k=1

xjkλ(ik,jk)γ(`kmk)

)
φ(`1,...,`p) (· · · ⊗ (wmk

⊗ 1)⊗ · · ·)

σ · Φ̃K(x̃) =
∑

(i1,...,iq)
(j1,...,jq)
(`1,...,`p)

(m1,...,mp)

(
q∏

k=1

xjkσ(λ(ik,jk)γ(`k,mk))

)
φ(`1,...,`p) (· · · ⊗ (wmk

⊗ 1)⊗ · · ·)

These are equal if σ acts trivially on the λ, γ coefficients. These lie in K, so in general
this does not happen. However, recall that (λij) and (γij) are inverse transition matrices
by definition, and in the sums/products above, we’re basically multiplying those transition
matrices together. Whether we apply σ before or after multiplying the transition matrices,
the resulting matrix is the idenity, and all of the entries in that matrix are in k, hence fixed
by σ. So the two expressions above should be equal, hence Φ̃K descends to a k-tensor on
W .
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