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Preface to the English 
Edition 

This book is a translation of the second edition of my German book 
Algebra fiir Einsteiger: Von der Gleichungsauflosung zur Galois-Theo-
rie, Vieweg, 2004. The original German edition has been expanded 
by the addition of exercises. The goal of the book is described in 
the original preface. In a few words it can be sketched as follows: 
Galois theory is presented in the most elementary way, following the 
historical evolution. The main focus is always the classical application 
to algebraic equations and their solutions by radicals. I am grateful 
to David Kramer, who did more than translate the present book, 
having also offered several suggestions for improvements. My thanks 
are also directed to Ulrike Schmickler-Hirzebruch, of Vieweg, who 
first proposed a translation to the American Mathematical Society, 
and to Edward Dunne, of the AMS, for managing the translation. 

Jorg Bewersdorff 

Translator's Note 

I wish to express my appreciation to Jorg Bewersdorff for his helpful 
collaboration on the translation and to the following individuals at 
the American Mathematical Society: Edward Dunne for entrusting 

vn 
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me with this project, Barbara Beet on for her friendly and intelligent 
Tf^Xnical support, and Arlene O'Sean for her careful copyediting of 
the translation. 

David Kramer 



Prefaces to the German 
Editions 

Math is like love; a simple idea, but it can get complicated. 
— R. Drabek 

Preface to the First German Edition 

The subject of this book is the history of a classical problem in alge­
bra. We will recount the search for formulas describing the solutions 
of polynomial equations in one unknown and how a succession of fail­
ures led finally to knowledge of a quite unexpected sort, and indeed, 
of fundamental importance in mathematics. 

Let us look briefly at the object that enticed many of the world's 
best mathematicians over a period of three centuries. Perhaps, dear 
reader, you recall from your school days quadratic equations of the 
form 

x2 - 6x + 1 = 0 

as well as the "quadratic formula" 

V , [v2 

for the solution of the "general" quadratic equation 

x2 + px + q = 0. 

ix 
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If we apply this formula to our example, we obtain the two solu­
tions 

xi = 3 + 2\/2 and x2 = 3 - 2\/2. 

If you are interested in a numerical solution, you can pull out 
your handy pocket calculator (or perhaps you know how to com­
pute square roots by hand) and obtain the decimal representations 
x\ — 5.828427... and x2 = 0.171572 — You could also use your cal­
culator to verify that these values are in fact solutions to the original 
equation. A skeptic who wished to verify that the solutions derived 
from the formula are the exact solutions would have to substitute 
the expressions containing the square roots into the equation and 
demonstrate that the quadratic polynomial x2 — 6x + 1 = 0 actually 
vanishes—that is, assumes the value zero—at the values x = x\ and 
x = x2-

The Solution of Equations of Higher Degree. It has long been 
known how to solve cubic equations such as 

x3 - 3x2 - 3x - 1 = 0 

by means of a formula similar to the quadratic formula. Indeed, 
such formulas were first published in 1545 by Cardano (1501-1576) 
in his book Ars Magna. However, they are quite complicated, and 
have little use for numerical calculation. In an age of practically 
unlimited computing power, we can do without such explicit formulas 
in practical applications, since it suffices completely to determine the 
solutions by means of numeric algorithms. Indeed, for every such 
equation in a single variable there exist approximation methods that 
iteratively, that is, step by step, compute the desired solution more 
and more precisely. Such a procedure is run until the solution has 
reached an accuracy suitable for the given application. 

However such iterative numeric procedures are unsuitable when 
not only the numerical value of a solution is sought, such as x\ — 
3.847322... in the previous example, but the "exact" value 

x1 = 1 + ^ 2 + ^ 4 . 

It is not only that such an algebraic representation possesses a certain 
aesthetic quality, but in addition, a numeric solution is insufficient if 
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one hopes to derive mathematical knowledge and principles from the 
solution of the equation. Let us hypothesize, for example, based on 
numeric calculation, the following identities: 

^ 2 - 1 = ^ ( ^ 3 - ^ 6 + ^ 1 2 ) , 

e7rvT63 = 262537412640768744, 

and 

2TT 
2 cos —— 

17 
\ + \y/YI+\\lu-2y/YI 

+ J y 17 + 3\/l7 - ^ 3 4 - 2v/17 - 2^34 + 2VT7. 

Without going into detail, it seems plausible that behind such 
identities, if indeed they are correct, lie some mathematical laws. 
A direct check to determine whether they are in fact correct or are 
merely the result of chance numeric approximation would be difficult.1 

But back to Cardano. In addition to the solution for cubic equa­
tions, Cardano published in his Ars Magna a general formula for 
quartic equations, that is, equations of the fourth degree, also known 
as biquadratic equations. Using such formulas, the equation 

x4 - Sx + 6 = 0 

I will reveal that only the first and third identities are correct. The first was 
discovered by the Indian mathematician Ramanujan (1887-1920) and can be easily 
checked. The third, which will be discussed in Chapter 7, contains within it a proof that 
the regular heptadecagon (seventeen-sided polygon) can be constructed with straight­
edge and compass. 

The second equation is not exact. The actual value of the right-hand side is 

262537412640768743.9999999999992501 

However, this approximate identity is more than mere chance. It is based on some 
deep number-theoretic relationships. For more on this, see Philip J. Davies, Are there 
coincidences in mathematics? American Mathematical Monthly 88 (1981), pp. 311— 
320. 



X l l Prefaces to the German Editions 

can be shown to have the solution 

4 + 2 \ /2+ V 4 - 2 > / 2 

+ V - V^4 + 2 v ^ - \ /4 - V2 + 2v/2 ^ 3 + 2 ^ + 2 ^ 3 - 2^3 - 2 

With the almost simultaneous discovery of formulas for solving 
third- and fourth-degree equations came the inevitable problem of 
finding similar formulas for equations of higher degree. To accomplish 
this, the techniques that were used for the cubic and quartic equations 
were systematized, already in Cardano's time, so that they could be 
applied to equations of the fifth degree. But after three hundred years 
of failure, mathematicians began to suspect that perhaps there were 
no such formulas after all. 

This question was resolved in 1826 by Niels Henrik Abel (1802-
1829), who showed that there cannot exist general solution formulas 
for equations of the fifth and higher degree that involve only the usual 
arithmetic operations and extraction of roots. One says that such 
equations cannot be solved in radicals. The heart of Abel's proof is 
that for the intermediate values that would appear in a hypothetically 
existing formula, one could prove corresponding symmetries among 
the various solutions of the equation that would lead to a contradic­
tion. 

Galois Theory. A generalization of Abel's approach, which was ap­
plicable to all polynomial equations, was found a few years later by 
the twenty-year-old Evariste Galois (1811-1832). He wrote down the 
results of his researches of the previous few months on the evening 
before he was killed in a duel. In these writings are criteria that allow 
one to investigate any particular equation and determine whether it 
can be solved in radicals. For example, the solutions to the equation 

x5 - x - 1 = 0 

cannot be so expressed, while the equation 

x5 + 15x - 44 = 0 
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has the solution 

xx = ^ - l + v^-h \ / 3 + 2>/2 + ^ 3 - 2 ^ / 2 + y/-l - V2. 

Of much greater significance than such solutions is the method 
that Galois discovered, which was unorthodox, indeed revolutionary, 
at the time, but today is quite usual in mathematics. What Galois 
did was to establish a relationship between two completely different 
types of mathematical objects and their properties. In this way he 
was able to read off the properties of one of these objects, namely 
the solvability of a given equation and the steps in its solution, from 
those of the corresponding object. 

But it was not only the principle of this approach that benefited 
future mathematics. In addition, the class of mathematical objects 
that Galois created for the indirect investigation of polynomial equa­
tions became an important mathematical object in its own right, one 
with many important applications. This class, together with similar 
objects, today forms the foundation of modern algebra, and other 
subdisciplines of mathematics have also progressed along analogous 
paths. 

The object created by Galois that corresponds to a given equa­
tion, called today the Galois group, can be defined on the basis of 
relations between the solutions of the equation in the form of iden­
tities such as x\ = X2 + 2. Concretely, the Galois group consists of 
renumberings of the solutions. Such a renumbering belongs to the 
Galois group precisely if every relationship is transformed by this 
renumbering into an already existing relationship. Thus for the case 
of the relation x\ = X2 + 2 in our example, the renumbering corre­
sponding to exchanging the two solutions x\ and X2 belongs to the 
Galois group only if the identity x\ — x\ + 2 is satisfied. Finally, 
every renumbering belonging to the Galois group corresponds to a 
symmetry among the solutions of the equation. Moreover, the Galois 
group can be determined without knowledge of the solutions. 

The Galois group can be described by a finite table that is ele­
mentary but not particularly elegant. Such a table is called a group 
table, and it can be looked upon as a sort of multiplication table, in 
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which each entry is the result of operating on two elements of the Ga­
lois group in succession. An example is shown in Figure 0.1. What is 
significant about the Galois group, and its corresponding group table, 
is that it always contains the information about whether, and if so, 
how, the underlying equation can be solved in radicals. To be sure, 
the proof of this in a concrete application can be quite involved; nev­
ertheless, it can always be accomplished in a finite number of steps 
according to a fixed algorithm. 

A B C D E F G H I J 
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Figure 0.1. The Galois group of the equation x5 — 5x + 12 is 
represented as a table by means of which the solvability in rad­
icals can be determined by purely combinatorial means. This 
equation will be considered in detail in Section 9.17. Equa­
tions of the fifth degree that are not solvable in radicals have 
tables of size 60 x 60 or 120 x 120. 

Today, Galois's ideas are described in textbooks in a very ab­
stract setting. Using the class of algebraic objects that we previously 
mentioned, it became possible at the beginning of the twentieth cen­
tury to reformulate what has come to be called Galois theory, and 
indeed in such a way that the problem itself can be posed in terms 
of such objects. More precisely, the properties of equations and their 
solution can be characterized in terms of associated sets of numbers 
whose common characteristic is that they are closed under the four 
basic arithmetic operations. These sets of numbers are called fields. 
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Thus starting with a given equation 

xn + cin-ix71'1 H h a\x + a0 = 0, 

one forms the smallest set of numbers that contains all quantities, 
such as 

a2 2 . 

ax + a0, 
a0 

that can be obtained from the coefficients of the equation using suc­
cessive basic arithmetic operations. Then one obtains an enlarged set 
of numbers that is of particular use in studying the given equation 
by allowing in one's calculations, in addition to the coefficients of 
the equation, the solutions #i, X2, . . . . This set is therefore formed of 
all numbers that can be obtained from expressions of the form, for 
example, 

ao 2 , 
—xx - a2x2 + ai . 
a2 

If it is now possible to represent the solutions of the given equation by 
nested expressions involving radicals, then one can obtain additional 
fields of numbers by allowing in addition to the coefficients some of 
these nested radicals. Thus every solution of an equation corresponds 
to a series of nested fields of numbers, and these can be found, accord­
ing to the main theorem of Galois theory, by analysis of the Galois 
group. Thus by an analysis of the Galois group alone, one can answer 
the question whether the solutions of an equation can be expressed 
in radicals. 

£ J~-*~ *—~, y~~J <~ y~*~ ~ ~*~* ^/*T*/* 

/ - # ~ fr<» cites c,U-» *« <f£~»J~- *~ r- <  ^^.AS,  ̂ ** rr 

Figure 0.2. Evariste Galois and a fragment from his last let­
ter. In this passage he describes how a group G can be de­
composed with the help of the subgroup H. See Section 10.4. 
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This abstraction achieved at the beginning of the twentieth cen­
tury and today basically unchanged marks both the end of a historical 
process during which interest in the problem that we have described 
has shifted in focus: For Cardano and his contemporaries the main 
problem was to find concrete solutions to explicit problems using pro­
cedures of general applicability. But soon the point of view shifted and 
the focus was on the important properties of the equations. Begin­
ning with Galois, but in full force only after the turn of the twentieth 
century, the focus shifted drastically. Now abstract classes of objects 
such as groups and fields became the basis for the formulation of a 
host of problems, including those that inspired the creation of these 
objects in the first place.2 

About This Book. In order to reach as wide an audience as possible 
(assumed is only general knowledge obtained from college courses in 
mathematics), no attempt has been made to achieve the level of gen­
erality, precision, and completeness that are the hallmarks of mathe­
matical textbooks. The focus will be rather on ideas, concepts, and 
techniques, which will be presented only insofar as they are applicable 
to some concrete application and make further reading in the exten­
sive literature possible. In such a presentation, complicated proofs 
have no place. However, proofs are without doubt the backbone of 
any serious engagement with mathematics. In the spirit of compro­
mise, difficult proofs, except those in the last chapter, are set off from 
the main text so that gaps in the logic can be avoided without the 
flow of the narrative being interrupted. 

Considerable emphasis is placed on the historical development of 
the subject, especially since the development of modern mathematics 
in recent centuries is much less well known than that of the natu­
ral sciences, and also because it can be very interesting to be able 
to give a time-lapse view of false starts and important discoveries. 

2In particular, many important applications have been found in modern infor­
mation theory, in particular in cryptography, as in, for example, the public key codes 
realized in 1978. In these asymmetric encryption procedures, the key for encoding is 
made public without creating the risk of unauthorized decoding. The mathematical 
basis for such public key encryption algorithms as RSA and ElGamal is computations 
carried out in special algebraic objects with a very large—but finite—number of el­
ements (precisely, the objects are residue class rings and elliptic curves defined over 
finite fields). An introduction to this subject can be obtained from Johannes Buch-
mann, Introduction to Cryptography, Springer, 2004. 
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And furthermore, a presentation that follows the historical develop­
ment has the advantage of making many mathematical abstractions 
seem the natural consequence of individual investigations, so that one 
never gets the impression of starting with an unmotivated definition 
somehow descended from heaven in a completely arbitrary manner. 
At the same time, we are able to leave out a great deal of material 
that would be necessary to include in a work seeking great generality. 
However, we must mention a significant drawback to our approach: 
Many complicated calculations will be necessary, even if they are of 
an elementary nature, whose results would be more simply derived 
from a qualitative point of view on the basis of general principles. 

In order to make this book as distinct as possible from mathe­
matical textbooks, I have chosen the same style of presentation as in 
my book Luck, Logic, and White Lies. Every chapter begins with a 
simple, usually more or less rhetorical, question that gives the reader 
an idea of the nature and level of difficulty of the chapter ahead, even 
if the chapter usually goes far beyond simply answering the ques­
tion posed. This structure should also offer the more mathematically 
sophisticated reader, for whom the overview offered here will often 
be too superficial and incomplete, a quick way of determining which 
parts of the book are of particular interest, after which the references 
to the literature will indicate a path of additional reading. 

The topics of the individual chapters are too closely woven to­
gether to make it possible to read the chapters independently of one 
another. Nevertheless, the reader who is interested in only a partic­
ular aspect of the subject is encouraged to plunge directly into the 
relevant chapter. Even if one then encounters a reference to another 
chapter, at least the details of the calculations carried out there will 
be unnecessary for an understanding of the following chapters. Of 
course, the beginning of every chapter offers the opportunity to start 
over if the details of the previous chapter became too difficult. 

The reader who wishes to keep the very abstract passages at a 
greater distance might adhere to the following plan: 

• In Chapters 1 through 6 the proofs in the set-off sections may 
be skipped. 
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• For understanding the following chapters, the only part of Chap­
ter 7 that is necessary is the first part, which deals with the 
regular heptadecagon (17-gon). 

• Chapter 8 can be omitted entirely. 

• In Chapter 9 the set-off sections at the end of the chapter may 
be skipped. 

• Chapter 10 and the epilogue may also be omitted. 

Readers who wish to follow a typical "Algebra I" course should 
place Chapters 9 and 10, which deal with Galois theory, as well as 
the epilogue, at the center of their reading. For a deep understanding 
of the subject the following are of particular importance: the main 
theorem on symmetric polynomials (Chapter 5), the factorization of 
polynomials (Chapter 6), and the ideas around cyclotomy (the divi­
sion of the circle) (Chapter 7). How much relative attention should 
be given to the remaining chapters depends on the reader's interests 
and prior knowledge. 

Following the historical development of the subject, the presen­
tation on the solvability of equations is divided into three parts: 

• Classical methods of solution, based on more or less complicated 
equivalent reformulations of equations, were used historically for 
deriving the general formulas for quadratic, cubic, and quartic 
equations (Chapters 1 through 3). 

• Systematic investigation of the discovered solution formulas be­
comes possible when one expresses the intermediate results of 
the individual calculational steps in terms of the totality of the 
solutions being sought (Chapters 4 and 5). This leads to the 
solution of equations in special forms, namely, those that are 
less complex than those in the general form in that they exhibit 
particular relationships among the solutions that can be formu­
lated as polynomial identities. In addition to equations that can 
be broken down into equations of lower degree (Chapter 6), the 
so-called cyclotomic equations xn — 1 = 0 are examples of such 
less-complex equations (Chapter 7). Finally, in this part should 
be included the attempt, described in Chapter 8, at finding a 
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general solution formula for fifth-degree equations, the result of 
which is a formula that works only in special cases. 

• Based on systematic attempts at finding solution formulas, we 
finally arrive at the limits of solvability of equations in radicals. 
These limits, as recognized and investigated by Abel and Ga­
lois, are dealt with, aside from a brief preview in Chapter 5, in 
Chapters 9 and 10. The focus here is on Galois groups. 

With the investigation of Galois groups we reach a level 
of difficulty well beyond that of the first chapters. Therefore, 
two different presentations are given. In Chapter 9 a relatively 
elementary overview is given, supplemented by numerous exam­
ples, in which the scope of the concepts introduced is reduced as 
much as possible. The resulting holes are filled in Chapter 10, 
which leads to the main theorem of Galois theory, which involves 
the mathematical objects called fields referred to earlier, which 
are closed under the four basic arithmetic operations. The dis­
cussion of these objects will be limited to those aspects relevant 
to Galois theory. 

The reader who wishes to deepen his or her understanding of Ga­
lois theory beyond what is contained in this book can move on to any 
textbook on modern algebra. One might mention as representatives 
of these books the two classics Algebra, by Bartel Leendert van der 
Waerden (1903-1996), and Galois theory, by Emil Artin (1898-1962), 
whose first editions appeared in 1930 and 1948. But conversely, the 
present book can be seen as an extension of the usual algebra text­
books in the direction of providing examples and historical motiva­
tion. 
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Epilogue 

In the end was the beginning. Both historically and in relation to the 
thematic framework of this introduction, the end result creates a new 
beginning: Although the problem of solving polynomial equations in 
radicals posed by Cardano and Ferrari was able to be answered, the 
objects involved in the solution, groups and fields, raise many new 
questions about their general properties, and not only in the sense of 
"art for art's sake." The knowledge that these objects, and the as­
sociated applications and techniques, are applicable in many fields of 
inquiry has allowed algebra, that is, the subfield of mathematics that 
deals with basic arithmetic operations, to establish itself as a major 
mathematical discipline. In the field of abstract algebra, the objects 
jf consideration are defined and "classified" in the broadest possi­
ble generality and categorized according to their basic structure. To 
io this with maximum efficiency, general classifications are refined 
is needed, for example, groups and fields with their subcategories 
ibelian groups and finite fields; and such classifications are also gen­
eralized, for example, with the definition of a commutative ring, which 
satisfies all the requirements of a field except for the invertibility of 
multiplication.1 

The best-known examples of rings t ha t are not fields are the integers, the set of 
>olynomials in one or several variables, and the set of residue classes Z / n Z for n not a 
>rime. 

165 
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There are several advantages to developing mathematical objects 
by such an axiomatic method: 

• Mathematics becomes more transparent. In particular, one can 
recognize fundamental properties in a collection of various math­
ematical objects that exhibit a number of properties in common. 

• Mathematics becomes liberated from fundamental "truths" taken 
for granted once it has been freed from particular interpretations 
and applications. Thus, for example, it was with the generaliza­
tion of the parallel postulate to non-Euclidean geometries that 
it became possible to establish the unprovability of the parallel 
axiom, a problem that had been festering since antiquity. 

• Such an approach is more economical, at least with respect to 
mathematics as a whole, since important facts do not have to 
be proved over and over in different situations. Moreover, these 
general principles, which in fact are of central interest in mathe­
matics, can often be derived as special cases from more generally 
valid theorems. 

Although such an axiomatically constituted mathematics diverges 
from the descriptive natural sciences in being only indirectly con­
nected with our physical perception of the world, one should note 
that classification plays an important role in those sciences as well, 
from the Linnaean taxonomic system of biological classification to the 
periodic table of the elements to the classification of symmetries of 
fundamental particles. 

If this book employed such a structural approach only in the last 
chapter, and perhaps half-heartedly but pragmatically in the chapter 
before that, the reason was to minimize the difficulties for the in­
terested nonmathematician. The multiplicity of definitions and con­
cepts that seem opaque on first contact presents an almost insuperable 
barrier to the nonmathematician. Perhaps some readers of the last 
chapter will have received such an impression, despite the contrary 
intention of the author. 

To avoid unnecessary complications, some things were deliber­
ately excluded, some of which are related to polynomials. We tacitly 
accepted, without a formal definition, a polynomial as a formal sum 
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of products of one or more variables X, Y, . . . , and coefficients taking 
values in some fixed set. Generally, this set was a particular field, but 
one could also have taken the ring of integers or indeed the set of all 
polynomials in additional variables. 

Such formal polynomials are to be distinguished from the func­
tions that such polynomials define when the variables are replaced 
by concrete values a, 6, . . . from some set of numbers. Now one 
can calculate both with polynomials themselves, taking their sums 
and products, and with their functional values. It is clear that the 
two forms of calculation are compatible, for example that one has 
(/ " 9)(a) — f(a) ' 9{°)' However, one should prove that this is the 
case. 

The simplification of our presentation also serves the purpose of 
specializing the discussion to subfields of the complex numbers. It 
was clear, on account of the fundamental theorem of algebra, that a 
splitting field exists for every polynomial with complex coefficients. 
Despite the practicality of such an approach, and despite the impor­
tance of the fundamental theorem of algebra, the form of argumenta­
tion has little to do with algebra. It is not only that the fundamental 
theorem is proved using mathematical analysis (calculus), an argu­
ment involving estimates of distance and intermediate values, which 
renders the theorem's appellation a historical artifact. It is also that a 
generalization to other cases, for example that of finite fields, cannot 
be carried out by such methods. 

For these reasons it is understandable that in algebra a com­
pletely different tack is generally taken for constructing the splitting 
fields that are crucial to Galois theory. Beginning with a field K 
and a polynomial irreducible over K, a field extension containing the 
elements that solve the corresponding equation 

xn + an__ixn_1 + an-2x
n~2 H h axx + a0 = 0 

is constructed in a completely formal way. One does this by the 
adjunction of a formal value a, where in calculating with expressions 
of the form 

k0 + ki& + k2a
2 H h kma 
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with &o, • • • ? km G K, we employ the simplification 

an = - a n _ i a n - 1 - a n _ 2 a n - 2 a\ot - a0, 

so that it always can be achieved that m < n — 1. One can then show 
that the set 

K[a] = { fc0 + fci<* + ^2^2 + • • • + /c n _ia n _ 1 | k3; e K } 

forms a field that clearly contains a solution, namely a, of the given 
equation.2 What is tricky here is the proof that the set K[a] is closed 
under division.3 

If the polynomial is then factored over the field K[a] into irre­
ducible factors, one can proceed with additional adjunction steps. In 
this way, one finally obtains a completely algebraically constructed 
splitting field.4 It is uniquely determined, as can be shown, in that 
every other splitting field is isomorphic to this one, that is, that the el­
ements are related by a one-to-one correspondence that is compatible 
with the basic arithmetic operations.5 

With the formulation thus described, the general equation can 
now be made amenable to treatment by Galois theory in terms of 
purely algebraic methods. We have seen the general equation in 
Chapter 5 as the equation in which formal variables xi,...,xn in 

2 From a formal point of view, this approach is similar to t ha t of a quotient group 
from a normal subgroup. It is an example of a ring of residue classes, which can be 
constructed from a ring and a subset of a ring called an ideal. It is such methods 
of construct ing new objects t h a t requires the axiomatic definition of such objects as 
groups and fields, not jus t as subgroups of the symmetric group, as we were always 
able to do in the case of finite groups, and subfields of the complex numbers. 

3Essentially, the arguments from Section 10.9 can be easily extended. T h a t is, 
one investigates the linear system of equations t h a t corresponds to multiplication by 
the inverse of an element of jFC[a]. However, it is also necessary for the considerations 
of Section 10.9 to prove tha t the product of two nonzero elements is again nonzero. 

4 Thi s purely algebraic construction can in fact be used to prove the fundamental 
theorem of algebra using complete induction. (The induction is over the highest power 
of 2 t h a t divides the degree of the equation.) Analytic arguments enter the picture only 
in the form of t h a t fact, provable by the intermediate value theorem, t ha t every odd-
degree polynomial with real coefficients has a real zero. See Jean-Pierre Tignol, Galois' 
theory of Algebraic Equations, Singapore, 2001, pp. 119, 121-122, and Exercise 5 at 
the end of this chapter. 

A field automorphism is simply an isomorphism of a field with itself. 
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the associated elementary symmetric polynomials 

si(xu.. .,xn) = xi + x2 H h x n , 

s2{xi,... ,x n ) = xix2 + X1X3 H hx n _ ix n , 

•^nV^l? • • • 5 *^n/ X^X2 * " * %rn 

are to be determined. 

In the language of field extensions, this corresponds to the sit­
uation in which beginning with a field K of polynomial coefficients, 
one is to investigate the extension of the field K(si,..., sn) to the 
field K(xi,... ,xn). Due to the uniqueness theorem for symmet­
ric polynomials (see the section on this topic in Chapter 5), one 
may treat the elementary symmetric polynomials in K{s\,..., sn) 
as though they were formal variables with no formal polynomial re­
lations among them (one speaks of algebraically independent quan­
tities). One thereby obtains an additional, fully equivalent, inter­
pretation of the general equation, in which now the equation's coeffi­
cients ao, a i , . . . , an_i are variables for which, as described, a splitting 
field can be constructed. Since the solutions have no relations among 
themselves—in the first place by definition and in the second place 
by the equivalence6—the Galois group of the general equation is the 
full symmetric group. 

Theorem E. l . The Galois group of the general nth-degree equation 
is the symmetric group Sn; that is, it contains all permutations of the 
n solutions a?i,... , x n . 

As a consequence, the results for the general equation, as first dis­
covered by Lagrange, appear as a special case of Galois theory. Here 

Of course, a direct proof is also possible: Beginning with a given polynomial 
h(X\, . . . , Xn) with h(x±, . . . , xn) = 0, one forms the product 

g(Xu-..,Xn)= [ J h{Xa{lh...,X(T{n)). 
a G S n 

Since the polynomial g is symmetric in the variables X±, . . . , Xn, it can be expressed as 
a polynomial in the elementary symmetric polynomials in these variables. There is thus 
a polynomial u(Yi, . . . , Yn) such that the polynomial g(Xi, . . . , Xn) can be expressed 
in the form g{X\, . . . , Xn) = u {s\ (X\, . . . , Xn), . . . , sn(Xi, . . . , Xn)). If one substi­
tutes the solutions x i , . . . , x n into this identity, then one obtains 0 = g(xi, . . . , xn) = 
u(an-i, . . . , ao). This shows immediately that u — 0. The previous polynomial iden­
tities finally show that g = 0 and h = 0. 
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every intermediate field is generated by polynomials in the variables 
xi,... jXn that remain unchanged under the automorphisms of the 
associated group of permutations. Furthermore, it naturally follows 
that the solvability of the general equation of a particular degree n is 
equivalent to the solvability of the symmetric group Sn. Abel's im­
possibility theorem thus corresponds to the following group-theoretic 
theorem. 

Theorem E.2. The symmetric group Sn is not solvable for n > 5. 

In textbooks, this proof of a group-theoretic theorem usually is 
used to derive Abel's theorem. A proof is possible with arguments 
similar to those used by Ruffini (see the section on this topic at the 
end of Chapter 5). To this end, one first proves the following theorem. 

Theorem E.3. If G is a subgroup of the symmetric group Sn for 
n > 5 containing all three-cycles, that is, all cyclic permutations of 
the form a —» b —> c —> a of three distinct elements a, 6, c, and if N is 
a normal subgroup of G with commutative quotient group G/N, then 
this normal subgroup also contains all the three-cycles. 

To prove this preparatory theorem one represents an arbitrary 
three-cycle a - ^ 6 - > c - ^ o a s the product 

(d -» b -> a -> <i)_1 o (a —̂  e -> c -> a ) - 1 

o (d -± b -^ a —> d) o (a —> e —>• c —)• a ) , 

where d and e are arbitrary distinct elements that are also distinct 
from a, 6, c. Since the quotient group is commutative, the product 
must lie in the coset that represents the identity, that is, in N. As 
asserted, then, every three-cycle belongs to the normal subgroup N. 

On the basis of the theorem just proved, it can now be deduced 
step by step that every group in an ascending chain corresponding to 
a solution of the symmetric group Sn must contain all three-cycles. 
The chain can therefore not end in the trivial group containing a 
single element, and so the symmetric group cannot be solvable. 

Moreover, the same argument can be applied to the alternating 
group An, defined as the group of all even permutations. With refer­
ence to the alternating group An, we note that it is a normal subgroup 



Epilogue 171 

of the symmetric group Snj since the quotient group is a commutative 
two-element group. In the case of the general equation, the alternat­
ing group corresponds to the intermediate field that arises through 
adjunction of the square root of the discriminant. 

To the extent that the base field K for the general equation is a 
subfield of the complex numbers, the implicitly assumed possibility 
of extending Galois theory and its applications to radical extensions 
is unproblematic. In an extension of Galois theory to arbitrary fields, 
however, two additional complicating factors need to be considered: 

• The generalization works only if every irreducible polynomial 
possesses distinct zeros. Otherwise, not every automorphism of 
the splitting field is associated uniquely with a permutation of 
the zeros, and moreover, the construction of Galois resolvents 
can be problematic. Nevertheless, fields of characteristic zero 
and finite fields cause no problems in this respect. 

• The characterization of radical extensions in terms of Lagrange 
resolvents assumes that one can divide by the degree of the field 
extension (see the end of the proof in Section 10.14). In fields 
with finite characteristic this is not necessarily possible.7 

Another hole in the preceding chapter relates to finite fields, 
which we have used only indirectly, other than giving some exam­
ples in Chapter 10, namely, in the form of fields of residue classes 
modulo a prime. In particular, we made use of the existence of a 
primitive root modulo n, so that the cyclotomic equation could be 
solved using suitable sums of roots of unity, that is, the periods. Thus 
for prime numbers n we assumed the existence of an integer g such 
that the numbers gl,g2,... , # n _ 1 represent distinct nonzero residue 
classes 1, 2 , . . . , n — 1. 

Using algebraic structures, this fact can be formulated in slightly 
greater generality. 

Theorem E.4. Every finite subgroup of the multiplicative group of a 
field is cyclic. 

7 Indeed, the general quadrat ic equation over the two-element field Z/2Z, for ex­
ample, is not solvable in radicals. See B. L. van der Waerden, Algebra /, Section 62. 
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The application of interest here, relating to subgroups of a finite 
field Z/pZ, was first proved, in a formulation as a statement about 
residue classes, by Legendre (1752-1833). Earlier proofs by Euler 
must be considered incomplete. Although a proof can be given based 
on extensive computations in residue classes,8 we would like to offer 
a proof of the generalized theorem, which is shorter and more easily 
understood. 

We begin with an investigation of Euler's phi function, which 
associates with a natural number d the number of integers in the set 
{ 1, 2 , . . . , d} relatively prime to d. For example, (f(6) = 2, since 1 
and 5 are the only integers between 1 and 6 relatively prime to 6; and 
(p(S) = 4, with 1,3,5,7 relatively prime to 8. Euler's phi function 
satisfies the relation 

]T <p(d) = n. 
d\n 

We will first justify this formula, where the sum is over all divisors d of 
n. To this end, consider for each residue class j modulo n, represented 
for example by the n integers 0 , 1 , . . . , n — 1, its order d as an element 
of the group Z/nZ . Each such order d must be a divisor of n, and 
the residue class j will have order d precisely when it is represented 
by an integer m • ̂ , so that j must lie in the subgroup generated by 
the residue class associated with ^. This subgroup is cyclic of order 
d, and thus isomorphic to Z/dZ, and therefore contains precisely (f(d) 
elements of order d. The partition of the n-element group Z/nZ thus 
obtained corresponds precisely to the summation formula. 

After these preparations we can address the actual content of the 
theorem, namely, a finite subgroup U of the multiplicative group of 
a field. If d is a natural number such that there is an element x in U 
for which the group generated by x is the group { 1, x, x 2 , . . . , xd~x } 
of d elements, then according to Section 10.4, d is a divisor of |Z7|, the 
number of elements in U. Since xd — 1, every element of this group 
is a zero of the polynomial Xd — 1. Since we know from Section 4.2 
that for each zero of a polynomial we may split off a linear factor, 
and thus this polynomial can have at most d zeros, there cannot exist 
an element of U outside of the subgroup { l ,a : ,x 2 , . . . , x d _ 1 } that 

See, for example, Jay R. Goldman, The Queen of Mathematics, Wellesley, 1998, 
Chapter 10. 
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generates a cZ-element subgroup. Therefore, in the group U there is 
either no element that generates a d-element subgroup or there are 
(f(d) of them. If one again decomposes the group U as we earlier de­
composed the group Z/nZ according to the size of the subgroup that 
each element generates, then for n = \U\ we obtain the summation 
formula 

d\n 

where each of the numbers 6d is either 0 or 1. One then sees immedi­
ately a similarity to the previously derived summation formula, that 
for divisors d of n we must always have Sd = 1. In particular, there 
are <p(n) elements of U that generate an n-element subgroup, that is, 
the entire group U. The group U is therefore cyclic. 

Exercises 

(1) Prove Fermat's little theorem: For a prime number n and a 
positive integer a relatively prime to n, the number a n _ 1 — 1 is 
divisible by n. 

(2) Prove Wilson's theorem: For a prime number n, the number 
(n — 1)! -f 1 is divisible by n. Then conclude from this that a 
natural number n > 2 is prime if and only if (n — 1)! + 1 is 
divisible by n. 

(3) Prove the generalization of Fermat's little theorem that for a 
natural number n and a natural number a relatively prime to n, 
the number a^^ — 1 is divisible by n. Hint: First show that the 
residue classes in Z/nZ represented by integers relatively prime 
to n form a group under multiplication. 

(4) Prove that if n = pq is a product of two distinct prime numbers 
p and q and if u and v are two natural numbers such that uv — 1 
is divisible by (p — l)(q — 1), then for every natural number a, 
the number auv — a is divisible by n.9 In such a case, the pairs 
(w, n) and (v, n) can serve as cryptographic keys, where one is 

The significance of this exercise is t ha t the two residue class mappings x t->• xu 

and x i—y xv of Z/nZ into itself are inverses of each other. Such a construction is used 
in cryptography, in the RSA encryption procedure. Here very large primes, t h a t is, 
of several hundred digits each, are used, so t ha t determining two such prime numbers 
p, q given their product n = pq would be impossible even after millions of years of 
computat ion on today ' s fastest computers . 
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used for encryption, the other for decryption. One speaks of an 
asymmetric cryptographic algorithm. In contrast to symmetric 
algorithms, in which encryption and decryption use a single key, 
with the RSA algorithm one of the keys, that for encoding, say, 
can be published without fear that unauthorized persons will be 
able to decode encrypted messages. One therefore refers to the 
RSA algorithm as public key encryption. Hint: The assertion can 
be reduced to that of Exercise 3. To include the case in which a 
is divisible by p or g, one might demonstrate the divisibility of 
auv — a by p and by q separately. 

(5) Prove the fundamental theorem of algebra in an algebraic way by 
proving that for a nonconstant polynomial f(X) with complex 
coefficients, if one factors f(x) into linear factors as 

f(X)^(X-x1)'-(X-xn) 

in some algebraic extension field of C (which is always possible 
via an algebraic construction), one in fact has that x 1 ? . . . , xn G 
C. First show the following: 

• The theorem holds for quadratic polynomials f(X) (see also 
Exercise 1 in Chapter 2). 

• It suffices to prove the existence of a single complex solution 
Xj. Moreover, one can restrict attention to polynomials 
with real coefficients. 

Now the proof can be carried out using mathematical in­
duction on the highest power of 2 that divides the degree of 
the polynomial. For the base step of the induction, one uses 
the version of the theorem for real polynomials of odd degree, 
which is proved using mathematical analysis (calculus). For the 
induction step, one investigates polynomials of the form 

9c{X) = Y[ (X - {xi + Xj + cXiXj)) 

for a suitably chosen parameter c. 

(6) For a prime number m and a natural number a relatively prime 
to m, the Legendre symbol is defined as follows: 

/ a \ J +1 if a = s2 + km for suitable integers s and /c, 

\m/ 1—1 if a does not have such representation. 
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The Legendre symbol therefore tells whether the residue 
class represented by a is a square in the multiplicative group 
of residue classes Z/raZ — {0}. Even though the value of the Le­
gendre symbol can be determined by finite trial and error, one 
is naturally interested in a direct calculation. Therefore, show 
first that 

a(m-l)/2 _ (±\ 

is divisible by m. 
Other properties of the Legendre symbol can be obtained 

with the use of roots of unity. For a second prime number n > 3 
we again let £ denote the nth root of unity £ — cos (^f) + 
i sin ( ^ ) , while the periods of length (n — l) /2 (see Section 7.2) 
are denoted by 770 = P(n-i)/2(C) a n d m = p(n-i)/2{(g), where 
the integer g again represents a primitive root modulo n. Show 
that 

0?o - r?i)m - ( ^ ) (ryo - 771) = m (a0 + aiC + • • • + an_2Cn _ 2) 

with integers a0, a i , . . . , an_2- Show also (if you have not already 
done so in Exercise 2 of Chapter 7) that 

(%-m)2 = (-i)(n"1)/2«-
Finally, show how the resulting identity 

(Vo ~ Vi m/ V n . 

with integers 60, 6 1 , . . . , &n-2, yields the law of quadratic reci­
procity10 

(™W(-i)W(-). 
V n J \mJ 

(7) For a group G whose number of elements \G\ is divisible by a 
prime number p, one defines the mapping 

V(9u92,>--'>gp) = (#2, . . . , ft» 0i) 

The law of quadratic reciprocity was first proved by Carl Friedrich Gauss on 
April 8, 1796, as documented by an entry in his diary. It is a fundamental result 
of number theory with many ramifications. Furthermore, using the law of quadratic 
reciprocity together with some other elementary properties of integers, one can compute 
the values of arbitrary Legendre symbols rather quickly. 
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for #1, #2> • • • > ft> £ G, as well as the set 

x = {(9u92,--,9P) € Gp | 9x92'"9V = e } , 

where e again denotes the group identity. 
Prove the following: 

• \X\ = \G\P-\ 

• The mapping (p maps the set X into itself. 
• If the identity (pk(x) = x holds for an element x G Gp and 

an integer k not divisible by p, then all the coordinates of 
x are equal. 

• Every orbit { x, (f(x), <^2(:r),... }, where x £ Gp, consists of 
either one element or p elements. 

• The number of one-element orbits in X is divisible by p. 
Assuming that there exists an element x G X with a one-

element orbit, conclude that there exists at least one other ele­
ment with a one-element orbit, and thereby prove the existence 
of an element of G of order p (Cauchy's theorem).11 

Cauchy's theorem is usually formulated in a more general form, which is named 
after Ludwig Sylow (1832—1918). The Sylow theorems make assertions about subgroups 
of a group of order the power of a prime. 
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