GAM Run 10-030 MAG

by Mr. Wade Oliver

Texas Water Development Board Groundwater Availability Modeling Section (512) 463-3132 June 22, 2011

Cynthia K. Ridgeway is the Manager of the Groundwater Availability Modeling Section and is responsible for oversight of work performed by employees under her direct supervision. The seal appearing on this document was authorized by Cynthia K. Ridgeway, P.G. 471 on June 22, 2011.

This page is intentionally blank.

EXECUTIVE SUMMARY:

The estimated total pumping from the Ogallala Aquifer that achieves the desired future conditions adopted by the members of Groundwater Management Area 2 declines from approximately 2,367,000 acre-feet per year to 1,307,000 acre-feet per year between 2010 and 2060. This is summarized by county, regional water planning area, and river basin as shown in Table 2. The corresponding total pumping from the Edwards-Trinity (High Plains) Aquifer declines from approximately 96,000 acre-feet per year to 23,000 acre-feet per year over the same time period (Table 3). The estimated managed available groundwater, the amount available for permitting, for the groundwater conservation districts within Groundwater Management Area 2 for the Ogallala and Edwards-Trinity (High Plains) aquifers declines from approximately 2,368,000 acre-feet per year to 1,266,000 acre-feet per year between 2010 and 2060 (Table 9). The pumping estimates were extracted from Groundwater Availability Modeling Task 10-023, Scenario 3, which Groundwater Management Area 2 used as the basis for developing their desired future conditions.

REQUESTOR:

Mr. Jason Coleman of South Plains Underground Water Conservation District on behalf of Groundwater Management Area 2

DESCRIPTION OF REQUEST:

In a letter dated August 10, 2010 and received August 13, 2010, Mr. Jason Coleman provided the Texas Water Development Board (TWDB) with the desired future conditions of the Ogallala and Edwards-Trinity (High Plains) aquifers adopted by the members of Groundwater Management Area 2. Below are the desired future conditions for the Ogallala and Edwards-Trinity (High Plains) aquifers in the northern portion of the management area as described in Resolution No. 2010-01 and adopted August 5, 2010:

[T]he members of [Groundwater Management Area] #2 adopt the desired future condition of 50 percent of the saturated thickness remaining after 50 years for the Northern Portion of [Groundwater Management Area] #2, based on GAM Run 10-023, Scenario 3...

As described in Resolution No. 2010-01, the northern portion of Groundwater Management Area 2 consists of Bailey, Briscoe, Castro, Cochran, Crosby, Deaf Smith, Floyd, Hale, Hockley, Lamb, Lubbock, Lynn, Parmer, and Swisher counties.

For the southern portion of Groundwater Management Area 2, desired future conditions for the Ogallala and Edwards-Trinity (High Plains) aquifers were stated as average water-level declines (drawdowns) over the same time period. The average drawdowns specified as desired future conditions for the southern portion of Groundwater Management Area 2 are: Andrews–6 feet, Bordon–3 feet, Dawson–74 feet, Gaines–70 feet, Garza–40 feet, Howard–1 foot, Martin–8 feet, Terry–42 feet, and Yoakum–18 feet.

In response to receiving the adopted desired future conditions, the Texas Water Development Board has estimated the managed available groundwater for each of the groundwater conservation districts within Groundwater Management Area 2 for the Ogallala and Edwards-Trinity (High Plains) aquifers.

Although not explicitly stated in the adopted desired future conditions statement, drawdown estimates for the Edwards-Trinity (High Plains) Aquifer associated with Scenario 3 of GAM Task 10-023 are shown in Table 1 below.

Table 1. Average drawdown in feet in the Edwards-Trinity (High Plains) Aquifer by county in Scenario 3 of GAM Task 10-023.

C4		Ave	rage dra	wdown (feet)	
County	2010	2020	2030	2040	2050	2060
Bailey	0	1	2	4	4	5
Borden	0	1	1	2	3	4
Cochran	-1	0	3	6	9	11
Dawson	3	21	37	50	60	67
Floyd	3	16	29	41	52	61
Gaines	6	28	42	53	61	67
Garza	2	10	18	26	33	40
Hale	1	8	15	22	29	36
Hockley	1	7	13	19	24	28
Lamb	0	1	1	2	3	3
Lubbock	1	8	14	20	25	29
Lynn	0	7	14	21	27	32
Terry	2	14	25	32	37	40
Yoakum	1	6	10	13	15	17

For purposes of developing total pumping and managed available groundwater numbers, it was assumed that by referencing Scenario 3 of GAM Task 10-023, the groundwater conservation districts in Groundwater Management Area 2 intended to fully incorporate the drawdown and pumping estimates of the Edwards-Trinity (High Plains) Aquifer. Thus, this analysis included those pumping numbers.

METHODS:

Groundwater Management Area 2, located in the Texas Panhandle, contains a portion of the Ogallala Aquifer and the entire Edwards-Trinity (High Plains) Aquifer. The location of Groundwater Management Area 2, the Ogallala and Edwards-Trinity (High Plains) aquifers, and the groundwater availability model cells that represent the aquifers are shown in Figure 1.

The Texas Water Development Board previously completed several predictive groundwater availability model simulations of the Ogallala and Edwards-Trinity (High Plains) aquifers to assist the members of Groundwater Management Area 2 in developing desired future conditions.

As stated in Resolution No. 2010-01 and the narrative of the methods used for developing desired future conditions provided by Groundwater Management Area 2, the simulation on which the desired future conditions above are based is Scenario 3 of GAM Task 10-023 (Oliver, 2010). The estimated pumping for Groundwater Management Area 2 presented here, taken directly from the above scenario, has been divided by county, regional water planning area, river basin, and groundwater conservation district. These areas are shown in Figure 2.

PARAMETERS AND ASSUMPTIONS:

The parameters and assumptions for the model run using the groundwater availability model for the southern portion of the Ogallala Aquifer and the Edwards-Trinity (High Plains) Aquifer are described below:

- The results presented in this report are based on "Scenario 3" in GAM Task 10-023 (Oliver, 2010). See GAM Task 10-023 for a full description of the methods, assumptions, and results for the groundwater availability model run.
- Version 2.01 of the groundwater availability model for the southern portion of the Ogallala Aquifer and the Edwards-Trinity (High Plains) Aquifer (Blandford and others, 2008) was used for this analysis. This model is an expansion on and update to the previously developed groundwater availability model for the southern portion of the Ogallala Aquifer described in Blandford and others (2003). See Blandford and others (2008) and Blandford and others (2003) for assumptions and limitations of the groundwater availability model.
- The model includes four layers representing the southern portion of the Ogallala and Edwards-Trinity (High Plains) aquifers. The units comprising the Edwards-Trinity (High Plains) Aquifer (primarily Edwards, Comanche Peak, and Antlers Sand formations) are separated from the overlying Ogallala Aquifer by a layer of Cretaceous shale, where present.
- The mean absolute error (a measure of the difference between simulated and measured water levels during model calibration) for the Ogallala Aquifer in 2000 is 33 feet. The mean absolute error for the Edwards-Trinity (High Plains) Aquifer in 1997 is 25 feet (Blandford and others, 2008).
- Cells were assigned to individual counties, river basins, regional water planning areas, and groundwater conservation districts as shown in the August 3, 2010 version of the file that associates the model grid to political and natural boundaries for the southern portion of the Ogallala Aquifer and the Edwards-Trinity (High Plains) Aquifer. Note that some minor corrections were made to the file to better reflect the relationship of model cells to political boundaries.
- The recharge used for the model run represents average recharge as described in Blandford and others (2003).

Determining Managed Available Groundwater

As defined in Chapter 36 of the Texas Water Code, "managed available groundwater" is the amount of water that may be permitted. The pumping output from groundwater availability models, however, represents the total amount of pumping from the aquifer. The total pumping includes uses of water both subject to permitting and exempt from permitting. Examples of exempt uses include domestic, livestock, and oil and gas exploration. Each district may also exempt additional uses as defined by its rules or enabling legislation.

Since exempt uses are not available for permitting, it is necessary to account for them when determining managed available groundwater. To do this, the Texas Water Development Board developed a standardized method for estimating exempt use for domestic and livestock purposes based on projected changes in population and the distribution of domestic and livestock wells in the area. Because other exempt uses can vary significantly from district to district, and there is much higher uncertainty associated with estimating use due to oil and gas exploration, estimates of exempt pumping outside domestic and livestock uses have not been included. The districts were also encouraged to evaluate the estimates of exempt pumping and, if desired, provide updated estimates. Once established, the estimates of exempt pumping were subtracted from the total pumping output from the groundwater availability model to yield the estimated managed available groundwater for permitting purposes.

RESULTS:

The estimated total pumping from the Ogallala Aquifer in Groundwater Management Area 2 that achieves the above desired future conditions declines from approximately 2,367,000 acre-feet per year in 2010 to 1,307,000 acre-feet per year in 2060. This pumping has been divided by county, regional water planning area, and river basin for each decade between 2010 and 2060 for use in the regional water planning process (Table 2). The corresponding estimated total pumping from the Edwards-Trinity (High Plains) Aquifer declines from approximately 96,000 acre-feet per year to 23,000 acre-feet per year over the same time period (Table 3).

The total pumping estimates for the combined Ogallala and Edwards-Trinity (High Plains) aquifers are also summarized by county, regional water planning area, river basin, and groundwater conservation district as shown in tables 4, 5, 6, and 7, respectively. In Table 7, the total pumping both excluding and including areas outside of a groundwater conservation district is shown. Table 8 contains the estimates of exempt pumping for the Ogallala and Edwards-Trinity (High Plains) aquifers by groundwater conservation district. The managed available groundwater, the difference between the total pumping in the districts (Table 7, excluding areas outside of a district) and the estimated exempt use (Table 8) is shown in Table 9. The total managed available groundwater for the Ogallala and Edwards-Trinity (High Plains) aquifers in Groundwater Management Area 2 declines from approximately 2,368,000 acre-feet per year to 1,266,000 acre-feet per year between 2010 and 2060.

LIMITATIONS:

Managed available groundwater numbers included in this report are the result of subtracting the estimated future exempt use from the estimated total pumping that would achieve the desired

GAM Run 10-030 MAG Report June 22, 2011 Page 7 of 15

future condition adopted by the groundwater conservation districts in the groundwater management area. These numbers, therefore, are the result of (1) running the groundwater model to estimate the total pumping required to achieve the desired future condition and (2) estimating the future exempt use in the area.

The groundwater model used in developing estimates of total pumping is the best available scientific tool that can be used to estimate the pumping that will achieve the desired future condition. Although the groundwater model used in this analysis is the best available scientific tool for this purpose, it, like all models, has limitations. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to develop estimates of total pumping is the need to make assumptions about the location in the aquifer where future pumping will occur. As actual pumping changes in the future, it will be necessary to evaluate the amount of that pumping as well as its location in the context of the assumptions associated with this analysis. Evaluating the amount and location of future pumping is as important as evaluating the changes in groundwater levels, spring flows, and other metrics that describe the condition of the groundwater resources in the area that relate to the adopted desired future condition.

In addition, certain assumptions have been made regarding future precipitation, recharge, and streamflow in developing these total pumping estimates. Those assumptions also need to be considered and compared to actual future data when evaluating compliance with the desired future condition.

In the case of TWDB's estimates of future exempt use, key assumptions were made as to the pattern of population growth relative to the need for domestic wells or supplied water, per capita use from domestic wells, and livestock uses of water. In the case of district estimates of future exempt use, including exempt use associated with the exploration of oil and gas, the assumptions are specific to that district. In either case, these assumptions need to be considered when reviewing future data related to exempt use.

Given these limitations, users of this information are cautioned that the total pumping numbers should not be considered a definitive, permanent description of the amount of groundwater that can be pumped to meet the adopted desired future condition. Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor future groundwater pumping as well as whether or not they are achieving their desired future conditions. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine these managed available groundwater numbers given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future.

REFERENCES:

- Blandford, T.N., Blazer, D.J., Calhoun, K.C., Dutton, A.R., Naing, T., Reedy, R.C., and Scanlon, B.R., 2003, Groundwater availability of the southern Ogallala aquifer in Texas and New Mexico—Numerical simulations through 2050: Final report prepared for the Texas Water Development Board by Daniel B. Stephens & Associates, Inc., 158 p.
- Blandford, T.N., Kuchanur, M., Standen, A., Ruggiero, R., Calhoun, K.C., Kirby, P., and Shah, G., 2008, Groundwater availability model of the Edwards-Trinity (High Plains) Aquifer in Texas and New Mexico: Final report prepared for the Texas Water Development Board by Daniel B. Stephens & Associates, Inc., 176 p.
- National Research Council, 2007. Models in Environmental Regulatory Decision Making. Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p.
- Oliver, W., 2010, GAM Task 10-023: Texas Water Development Board, GAM Task 10-023 Report, 27 p.
- Texas Water Development Board, 2007, Water for Texas 2007—Volumes I-III; Texas Water Development Board Document No. GP-8-1, 392 p.

Table 2. Estimated total annual pumping for the Ogallala Aquifer in Groundwater Management Area 2. Results are in acre-feet per year and are divided by county, regional water planning area, and river basin.

Courts	Danian	Dagin			Ye	ear		
County	Region	Basin	2010	2020	2030	2040	2050	2060
Andrews	F	Colorado	17,584	15,085	13,678	12,014	10,016	7,377
Andrews	Г	Rio Grande	54	50	41	41	41	41
Bailey	O	Brazos	62,538	41,283	34,907	30,064	24,021	21,429
Borden	F	Brazos	292	292	292	292	292	292
Dorden	1	Colorado	107	107	107	107	107	107
Briscoe	O	Red	33,622	26,457	19,722	14,220	13,037	11,933
Castro	O	Brazos	90,367	90,367	90,367	90,367	88,630	84,458
Casilo	O	Red	37,055	36,936	36,141	35,449	34,650	33,540
Cochran	0	Brazos	16,324	7,707	6,556	4,770	4,410	4,179
Cocilian	O	Colorado	32,021	28,501	27,085	25,926	23,674	21,192
Crooky	0	Brazos	133,239	133,058	133,058	133,058	133,058	133,058
Crosby	О	Red	1,624	1,624	1,624	1,624	1,624	1,624
Downson	0	Brazos	5,350	5,350	5,350	5,138	4,075	1,099
Dawson	U	Colorado	196,260	192,758	180,531	156,477	131,379	92,681
Deaf Smith	О	Red	129,167	118,166	106,868	97,057	80,382	65,931
Florid	0	Brazos	95,488	93,749	92,041	90,930	86,458	84,300
Floyd	О	Red	59,482	55,617	53,320	47,453	43,351	40,061
Gaines	О	Colorado	350,369	240,110	175,175	130,951	97,498	71,544
Garza	О	Brazos	19,203	19,073	18,942	18,812	18,032	17,121
Holo	0	Brazos	130,097	129,291	127,492	125,488	119,612	111,734
Hale	О	Red	525	525	525	525	525	525
Hooklay	0	Brazos	87,712	84,378	80,285	76,847	69,445	60,771
Hockley	U	Colorado	8,256	8,004	8,004	7,571	7,324	7,009
Howard	F	Colorado	3,075	3,075	2,731	2,731	2,731	2,703
Lamb	О	Brazos	147,368	137,304	125,466	111,509	95,696	85,190
Lubbock	О	Brazos	124,519	120,044	115,348	108,699	100,762	91,073
Lynn	0	Brazos	98,003	97,740	96,954	94,600	86,945	78,543
Lynn	O	Colorado	6,020	6,020	6,020	6,020	6,020	5,925
Martin	F	Colorado	13,570	13,570	13,570	13,140	12,299	12,277
Dormor	0	Brazos	50,258	45,572	39,624	35,624	29,978	27,692
Parmer	O	Red	18,436	17,493	16,960	16,525	15,642	13,289
Cyrrichon	0	Brazos	28,248	28,248	26,603	19,889	14,084	8,304
Swisher	О	Red	82,677	79,158	74,399	64,929	59,764	55,994
Т.		Brazos	13,342	13,342	13,342	9,793	5,348	4,092
Terry	О	Colorado	192,317	182,880	121,267	77,305	48,557	29,555
Yoakum	О	Colorado	82,297	59,745	43,575			20,040
	Total		2,366,866	2,132,679	1,907,970	1,699,827	1,496,184	1,306,683

Table 3. Estimated total annual pumping for the Edwards-Trinity (High Plains) Aquifer in Groundwater Management Area 2. Results are in acre-feet per year and are divided by county, regional water planning area, and river basin.

Community	Danian	Dagin	Year							
County	County Region	Basin	2010	2020	2030	2040	2050	2060		
Bailey	О	Brazos	279	279	279	279	279	279		
Borden	F	Brazos	65	65	65	65	65	65		
Dorden	1	Colorado	41	41	41	41	41	41		
Cochran	0	Brazos	137	137	137	137	137	137		
Cocinan	U	Colorado	127	127	127	127	127	127		
Dawson	0	Brazos	0	0	0	0	0	0		
Dawson		Colorado	1,103	1,103	1,103	1,103	1,103	1,103		
Floyd	0	Brazos	521	521	521	518	505	499		
Floyu		Red	695	695	695	695	695	683		
Gaines	О	Colorado	85,058	46,202	30,316	22,997	16,523	12,904		
Garza	0	Brazos	18	18	18	18	18	18		
Garza		Colorado	0	0	0	0	0	0		
Hale	О	Brazos	3,523	3,523	3,523	3,523	3,523	3,419		
Hockley	0	Brazos	96	96	96	96	96	96		
Hockiey	U	Colorado	0	0	0	0	0	0		
Lamb	О	Brazos	164	164	164	164	164	164		
Lubbock	О	Brazos	690	690	690	690	690	690		
Lynn	0	Brazos	221	221	221	221	221	221		
Lynn		Colorado	9	9	9	9	9	9		
Torry	0	Brazos	23	23	23	23	23	23		
Terry O		Colorado	959	959	922	922	922	922		
Yoakum	О	Colorado	2,532	1,893	1,757	1,642	1,642	1,524		
	Total		96,261	56,766	40,707	33,270	26,783	22,924		

Table 4. Estimated total annual pumping for the Ogallala and Edwards-Trinity (High Plains) aquifers summarized by county in Groundwater Management Area 2 for each decade between 2010 and 2060. Results are in acre-feet per year.

C4		Year										
County	2010	2020	2030	2040	2050	2060						
Andrews	17,638	15,135	13,719	12,055	10,057	7,418						
Bailey	62,817	41,562	35,186	30,343	24,300	21,708						
Borden	505	505	505	505	505	505						
Briscoe	33,622	26,457	19,722	14,220	13,037	11,933						
Castro	127,422	127,303	126,508	125,816	123,280	117,998						
Cochran	48,609	36,472	33,905	30,960	28,348	25,635						
Crosby	134,863	134,682	134,682	134,682	134,682	134,682						
Dawson	202,713	199,211	186,984	162,718	136,557	94,883						
Deaf Smith	129,167	118,166	106,868	97,057	80,382	65,931						
Floyd	156,186	150,582	146,577	139,596	131,009	125,543						
Gaines	435,427	286,312	205,491	153,948	114,021	84,448						
Garza	19,221	19,091	18,960	18,830	18,050	17,139						
Hale	134,145	133,339	131,540	129,536	123,660	115,678						
Hockley	96,064	92,478	88,385	84,514	76,865	67,876						
Howard	3,075	3,075	2,731	2,731	2,731	2,703						
Lamb	147,532	137,468	125,630	111,673	95,860	85,354						
Lubbock	125,209	120,734	116,038	109,389	101,452	91,763						
Lynn	104,253	103,990	103,204	100,850	93,195	84,698						
Martin	13,570	13,570	13,570	13,140	12,299	12,277						
Parmer	68,694	63,065	56,584	52,149	45,620	40,981						
Swisher	110,925	107,406	101,002	84,818	73,848	64,298						
Terry	206,641	197,204	135,554	88,043	54,850	34,592						
Yoakum	84,829	61,638	45,332	35,524	28,359	21,564						
Total	2,463,127	2,189,445	1,948,677	1,733,097	1,522,967	1,329,607						

Table 5. Estimated total annual pumping for the Ogallala and Edwards-Trinity (High Plains) aquifers summarized by regional water planning area in Groundwater Management Area 2 for each decade between 2010 and 2060. Results are in acre-feet per year.

Regional Water	Year								
Planning Area	2010	2020	2030	2040	2050	2060			
F	34,788	32,285	30,525	28,431	25,592	22,903			
0	2,428,339	2,157,160	1,918,152	1,704,666	1,497,375	1,306,704			
Total	2,463,127	2,189,445	1,948,677	1,733,097	1,522,967	1,329,607			

Table 6. Estimated total annual pumping for the Ogallala and Edwards-Trinity (High Plains) aquifers summarized by river basin in Groundwater Management Area 2 for each decade between 2010 and 2060. Results are in acre-feet per year.

Dogin	Year										
Basin	2010	2020	2030	2040	2050	2060					
Brazos	1,108,085	1,052,535	1,012,364	961,614	886,567	818,946					
Colorado	991,705	800,189	626,018	492,965	386,689	287,040					
Red	363,283	336,671	310,254	278,477	249,670	223,580					
Rio Grande	54	50	41	41	41	41					
Total	2,463,127	2,189,445	1,948,677	1,733,097	1,522,967	1,329,607					

Table 7. Estimated total annual pumping for the Ogallala and Edwards-Trinity (High Plains) aquifers summarized by groundwater conservation district (GCD) in Groundwater Management Area 2 for each decade between 2010 and 2060. Results are in acre-feet per year. UWCD refers to Underground Water Conservation District.

Groundwater	Year								
Conservation District	2010	2020	2030	2040	2050	2060			
Garza County UWCD	19,221	19,091	18,960	18,830	18,050	17,139			
High Plains UWCD No. 1	1,421,975	1,343,554	1,282,656	1,208,126	1,109,582	1,019,597			
Llano Estacado UWCD	435,427	286,312	205,491	153,948	114,021	84,448			
Mesa UWCD	202,713	199,211	186,984	162,718	136,557	94,883			
Permian Basin UWCD	16,403	16,403	16,099	15,669	14,828	14,795			
Sandy Land UWCD	84,829	61,638	45,332	35,524	28,359	21,564			
South Plains UWCD	207,257	197,820	136,170	88,659	55,466	35,208			
Total (excluding non-	2 387 825	2 124 029	1 891 692	1,683,474	1 476 863	1 287 634			
district areas)	2,307,023	2,124,027	1,071,072	1,005,474	1,470,003	1,207,054			
No District	75,302	65,416	56,985	49,623	46,104	41,973			
Total (including non- district areas)	2,463,127	2,189,445	1,948,677	1,733,097	1,522,967	1,329,607			

Table 8. Estimates of annual exempt use for the Ogallala and Edwards-Trinity (High Plains) aquifers in Groundwater Management Area 2 by groundwater conservation district (GCD) for each decade between 2010 and 2060. Results are in acre-feet per year. UWCD refers to Underground Water Conservation District.

Groundwater	Commo	Year					
Conservation District	Source	2010	2020	2030	2040	2050	2060
Garza County UWCD	TA	68	71	69	67	64	59
High Plains UWCD No. 1	D	15,482	16,253	16,712	16,925	17,087	17,043
Llano Estacado UWCD	D	2,242	2,332	2,397	2,443	2,435	2,420
Mesa UWCD	TA	542	558	573	582	566	545
Permian Basin UWCD	TA	575	596	605	608	605	599
Sandy Land UWCD	TA	366	402	424	448	436	422
South Plains UWCD	TA	502	537	569	601	603	599
Total	19,777	20,749	21,349	21,674	21,796	21,687	

TA = Estimated exempt use calculated by TWDB and accepted by the district

Table 9. Estimates of managed available groundwater for the Ogallala and Edwards-Trinity (High Plains) aquifers in Groundwater Management Area 2 by groundwater conservation district (GCD) for each decade between 2010 and 2060. Results are in acre-feet per year. UWCD refers to Underground Water Conservation District.

Groundwater	Year							
Conservation District	2010	2020	2030	2040	2050	2060		
Garza County UWCD	19,153	19,020	18,891	18,763	17,986	17,080		
High Plains UWCD No. 1	1,406,493	1,327,301	1,265,944	1,191,201	1,092,495	1,002,554		
Llano Estacado UWCD	433,185	283,980	203,094	151,505	111,586	82,028		
Mesa UWCD	202,171	198,653	186,411	162,136	135,991	94,338		
Permian Basin UWCD	15,828	15,807	15,494	15,061	14,223	14,196		
Sandy Land UWCD	84,463	61,236	44,908	35,076	27,923	21,142		
South Plains UWCD	206,755	197,283	135,601	88,058	54,863	34,609		
Total	2,368,048	2,103,280	1,870,343	1,661,800	1,455,067	1,265,947		

D = Estimated exempt use calculated by the district

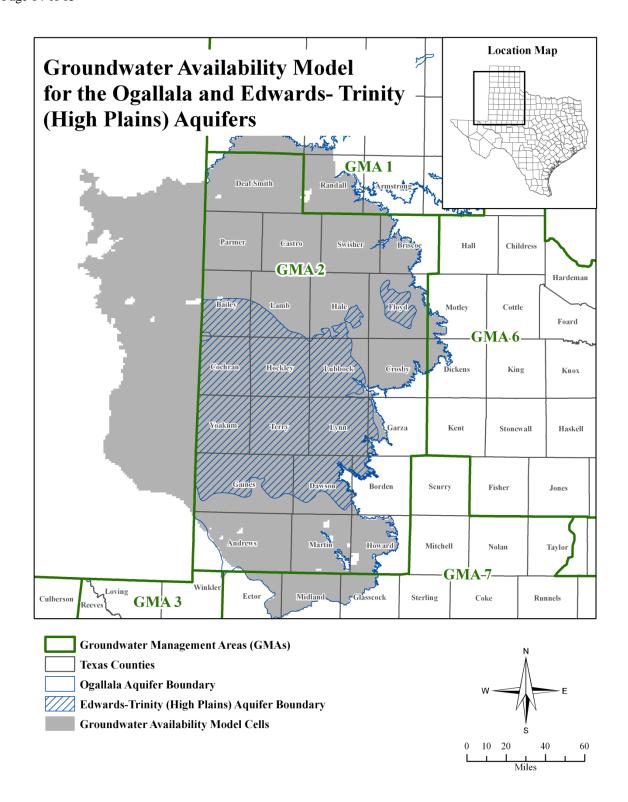


Figure 1. Map showing the areas covered by the groundwater availability model for the southern portion of the Ogallala Aquifer and the Edwards-Trinity (High Plains) Aquifer.

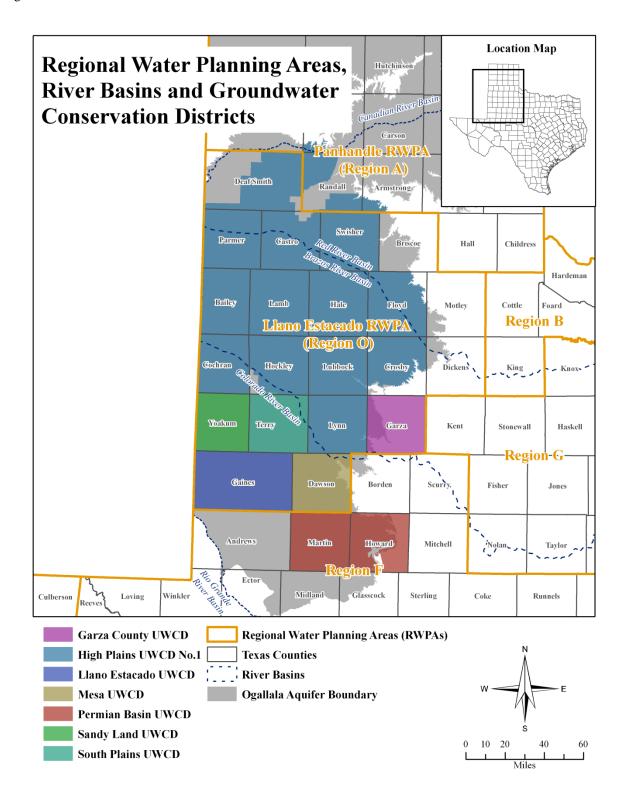


Figure 2. Map showing regional water planning areas (RWPAs), groundwater conservation districts (GCDs), counties, and river basins in Groundwater Management Area 2. UWCD refers to Underground Water Conservation District.