
Game theory and AI: a unified approach to poker

games

Thesis for graduation as Master of Artificial Intelligence

University of Amsterdam

Frans Oliehoek

2 September 2005

ii

Abstract

This thesis focuses on decision making in partially observable card games and,
in particular, poker games. An attempt is made to outline both the game
theoretic, as an agent-centric approach to such games, analyzing differences and
similarities, as well as strong and weaker points and finally proposing a view to
make a tradeoff between these.

The game theoretic approach for this type of games would specify a Nash-
equilibrium, i.e., a pair of policies that are a best response to each other. Al-
though a policy found in this way guarantees a minimum payoff, it is conserva-
tive in the sense that it is unable to exploit any weaknesses the opponent might
have.

This motivates an agent-centric perspective, in which we propose modeling a
simple poker game as a Partial Observable Markov Decision Process (POMDP)
for a player who is playing against a fixed opponent whose policy is known (e.g.
by repeated play). The resulting deterministic policy is a best response against
the fixed opponent policy. Such a best-response policy does exploit weaknesses
in the opponent’s policy, thus yielding the maximum payoff attainable.

In order for the results obtained for such a simplified poker game to be of
significance for real-life poker games, various methods for dealing with large
(PO)MDPs are treated. These could be used to tackle larger games using the
best-response approach. We examine the application of one of these methods,
model minimization, on poker games in more detail. The result of this exami-
nation is that the reduction gained by direct application of model minimization
on poker games is bounded and that this bound prevents this method from
successfully tackling real-life poker variants.

Finally, in a coevolutionary framework, we try to unify the game theoretic
and agent-centric approach by making a tradeoff between the security the former
offers and the potential gain of the latter. A secondary goal in this approach is
examining efficient calculation of Nash-equilibria.

iii

iv

Acknowledgments

First, I would like to thank my supervisor, Nikos Vlassis. He has been great
in supporting me with his his feedback, insights and the discussions we had
about them, often stretching the afternoon well into the evening. Moreover,
without his high expectations and accompanying enthusiasm this thesis would
have never become into what it now is.

Second, Matthijs Spaan, deserves my thanks. Especially during the first half
of my graduation project he has been a big support by explaining concepts and
helping out during implementation. Also, I would like to thank him for the
work he put into what became my first publication.

Edwin de Jong is the last person I want to mention with name. He has been
very kind and helpful in sharing his knowledge on coevolution, which resulted
in chapter 7.

Finally, I’d like to thank my mother, brother, girlfriend and other friends for
putting up with me during this period. They never seized to support me and
my work, for which I am more than grateful.

v

Contents

1 Introduction 1

1.1 Games . 1
1.1.1 Why games? . 1
1.1.2 Types of games . 2
1.1.3 Outcomes and utilities . 3

1.2 Research on games . 3
1.3 Thesis focus . 4
1.4 Related work . 4
1.5 Two poker games . 5

1.5.1 8-Card poker . 5
1.5.2 Texas’ Hold-em . 5

1.6 Outline of thesis . 6

I Games and best-response play 9

2 Game theory 10

2.1 Representation . 10
2.1.1 Extensive form games . 10
2.1.2 POSGs . 11
2.1.3 Strategic form games . 12
2.1.4 Pure policies . 13

2.2 Solutions . 14
2.2.1 Nash equilibria . 14
2.2.2 Solving games . 14
2.2.3 Solving two-player zero-sum games 15
2.2.4 Properties of Nash equilibria 18

2.3 The exponential gap . 19
2.3.1 Gala language and generating the game tree 19
2.3.2 Sequences . 20
2.3.3 Realization weights . 21
2.3.4 Solving games in sequence form 22

2.4 Remaining problems . 24

3 MDPs & POMDPs 25

3.1 MDPs . 25
3.1.1 The MDP framework . 26
3.1.2 Solving MDPs . 27

vi

CONTENTS CONTENTS

3.2 POMDPs . 29

3.2.1 The POMDP framework 29

3.2.2 The relation between MDP and POMDP 30

3.2.3 Solving POMDPs . 31

3.3 From game to POMDP . 31

3.3.1 8-card poker as a POMDP 32

3.3.2 Best-response play: Solving the POMDP 33

3.3.3 Discussion . 34

4 Experimental results 35

4.1 The Gala system . 35

4.1.1 Modifications and additions 35

4.1.2 Description of resulting policy 35

4.1.3 Which are optimal policies? 36

4.1.4 Conclusions of verification 38

4.2 Best-response play . 38

4.2.1 8-card poker as a POMDP 39

4.2.2 Alternating learning . 40

II Scaling up: reduction and approximating methods 41

5 Representing large state spaces 42

5.1 State Representation . 42

5.1.1 Factored representations 43

5.1.2 Methods for factored MDPs 45

5.1.3 Finding reduced models 45

5.1.4 Other approaches . 46

5.2 Model Minimization . 47

5.2.1 Aggregation and partitions 47

5.2.2 Equivalence notions . 47

5.2.3 The Markov property . 48

5.2.4 Markov requirements . 49

5.2.5 Computing stochastic bisimilarity 51

5.2.6 Complexity and non-optimal splitting 53

6 Poker & aggregation 54

6.1 Implicit states . 54

6.2 Bisimilarity for poker . 55

6.2.1 1-action poker . 55

6.2.2 Optimal split for 1-action poker 57

6.2.3 Bound implications . 59

6.3 Bisimilarity revised . 61

6.3.1 Uniform distributions . 61

6.3.2 Future research . 62

vii

CONTENTS CONTENTS

III Unifying winnings and security 63

7 Coevolution and security 64

7.1 Coevolution . 64
7.1.1 Solution concepts . 65
7.1.2 Memory . 65

7.2 Nash equilibrium solution concept 65
7.2.1 Symmetric games and Nash equilibria 65
7.2.2 Components of the Nash-memory 66
7.2.3 The operation . 66

7.3 Coevolution for 8-card poker . 68
7.3.1 Asymmetric games . 68
7.3.2 Best-response heuristic . 69
7.3.3 The resulting algorithm 70

7.4 From mixed to stochastic policies 70
7.4.1 Problem and concepts . 70
7.4.2 Using realization weights 71
7.4.3 Calculating realization weights 73
7.4.4 Calculating the stochastic policy 75

7.5 Experiments . 76
7.5.1 8-card poker . 76
7.5.2 Some larger poker games 77
7.5.3 Security vs. best-response payoff 78

7.6 Discussion . 79

8 Conclusions 81

8.1 Future work . 81

A Gala system modifications 83

viii

Chapter 1

Introduction

Playing games is something that comes natural to humans. We easily under-
stand the rules and by playing against more experienced players we pick up the
subtleties and overcome difficulties for a particular game. In contrast, learning
a computer to play a game is a considerable more difficult process.

Especially when chance moves and partial observability are involved, as is
the case for games like poker, games quickly become intractable. An often
used solution for this problem is to have a computer play according to some
heuristics that are defined by human knowledge about a particular game. This
essentially comes down to programs playing a set of predetermined rules. The
major downside of this approach is that these type of programs have a very
limited capability to adjust their play and, therefore, are beaten rather easily
by human players or other program designed specifically to counter the heuristics
behind the rules.

In this thesis we will examine frameworks that give a fundamental basis
for games and are less vulnerable than rule-based programs based on human
expertise.

1.1 Games

In the last century a lot of research has been devoted to the study of games.
Before diving into the details of research on poker and games, we will first give a
brief overview of some of this research and answer the necessary question “Why
one would research games in the first place?”

1.1.1 Why games?

Probably the best reason for studying games is that games can be used to
model a lot of real-life situations. Because of this, game theory has been widely
applied in fields as economics, biology, (international) politics and law. Also in
computer science game theory has found more and more applications. Examples
of these are interface design, discourse understanding, network routing, load
sharing, resource allocation in distributed systems and information and service
transactions on Internet [35].

1

Chapter 1 Introduction 1.1 Games

full information partial information

deterministic Chess, Go Battleships
stochastic Backgammon, Monopoly Poker

Table 1.1: Examples of various game types characterize by the forms of uncer-
tainty.

This shows that games are useful for a large class of problems. Particularly
most situations in which multiple interacting entities have to make decisions
are suitable to be modeled as a game. In fact the interest in games has been
renewed by the research in multi-agent systems.

We should mention that the by ‘game’ we do not mean arcade computer-
games such as Doom. However, the ideas and techniques that are considered
here might also be employed in certain aspects of these types of computer-games.
This could also be of importance, as the computer-game industry is one of the
fastest growing sectors within the entertainment branch.

Apart from their relevance games also have some properties that make them
very suitable for research: Games have a set of clearly stated rules and they have
a specific goal. This makes it possible to test the success of different approaches
for a specific game. As an example, the research performed on chess brought
many scientific advances.

1.1.2 Types of games

Games can be characterized by various properties they embody. Some important
characteristics are induced by the type(s) of uncertainty present in a game [51].
One type of uncertainty is opponent uncertainty, meaning not knowing how your
opponent will play. This is a form of uncertainty is shared by most, if not all
multi-player games.

Another type of uncertainty is known as effect uncertainty: It is possible
that a player does not know all possible effects of an action, e.g. opening a box
in a role playing game. This type of uncertainty is not further considered as
this stretches the boundary of “a set of well defined rules”.

Both types of uncertainty discussed above are interesting on itself, but are
less useful for characterizing games. The following two different types of uncer-
tainty do provide important characteristics: The presence of chance moves in a
game and whether the players can fully observe the current state of the game.

Chance moves are caused by the presence of outcome uncertainty. Outcome
uncertainty occurs when all possible effects of an action and their probabilities
are known, for example when throwing a dice. Games with chance moves are
referred to as stochastic games, those without as deterministic.

When one or more players can’t fully observe the current state of the game,
the game exhibits state uncertainty. We say the player has partial or imperfect
information regarding the state and consequently speak of partial information
games.

Table 1.1 gives examples of games with the outcome and state uncertainty.

2

1.2 Research on games Chapter 1 Introduction

1.1.3 Outcomes and utilities

Another important factor in characterizing a game is what kind of outcomes
is has. In general an outcome of a game specifies a reward for each player
independently. This means that there may be outcomes that are good for all
players, outcomes that are bad for all players and outcomes that are good for
one, but bad for another player. This implies games can also be specified by
the type of preferences the players hold over the outcomes. One such type are
strictly competitive games: when the players in the game strictly prefer different
outcomes, the game is said to be strictly competitive.

Now, lets make the idea of preference more concrete. The preferences the
player holds over outcomes is expressed by a utility function, U . This is a
mapping from outcomes to real numbers in such a way that for all outcomes o1

and o2 it holds that, if the player prefers o1 over o2, then U(o1) > U(o2).

The utility of a certain outcome is also referred to as the payoff. When
the payoffs for all players sum to 0, we speak of a zero-sum game. Clearly, a
two-person zero-sum game is strictly competitive.

The games that are considered in this thesis are poker variants that have a
outcomes expressed in won or lost money. The amount of money won and lost
by the players sums to zero for these games.1 However, for the game to be zero-
sum, the utility payoffs should sum to one. Therefore we make the assumption
that the utility function for all players is equal to the amount of money won or
lost.

Also, when a game includes chance moves, the players must also have pref-
erences over different lotteries of outcomes. Strictly spoken this requires a well-
founded choice on the desired attitude towards taking risks. However, as most
games typically deal with only small winnings and losings, players are usually
considered risk neutral. Therefore we can simply use the expectation of these
lotteries.

The issues dealt with here belong to the field of utility theory. More infor-
mation can be found in [6].

1.2 Research on games

Although research on games has been mathematically formalized only relative
recently, related insights can be traced back to philosophers from ancient times.
As an example, at one point Socrates sketches the setting of a soldier waiting
with his comrades to repulse an enemy attack. He reasons that if the battle will
be won, the effort of the soldier is not needed and therefore he would better not
participate, avoiding risk of injury. On the other hand it the battle will be lost,
the soldiers chance of getting hurt are even higher and therefore, he should not
participate in the battle in this case either. This kind of reasoning is very much
related to ideas in current game theory.

In the first half of the twentieth century a lot of research was performed on
games. Important contributions were made by Zermelo, von Neumann, Mor-
genstern and Nash and others, leading to a formalization that could be called
the ‘classical game theory’.

1Unless played in the casino, where the house takes a percentage of the pot.

3

Chapter 1 Introduction 1.3 Thesis focus

With the advent of computers, again lots of games have been studied. Until
the late 90’s, most of the effort focused on fully observable games. An exam-
ple of a fully observable game on which computer science research focused is
backgammon. In 1992 TD-Gammon was introduced in [57]. The program was
able to compete with the world-class player winning some games losing some
others.

The most prominent, however, was the research performed on chess: the lit-
erature on chess is extensive including dedicated journals. This research resulted
many advances in computer science, especially search techniques. In 1997 for
the first time the world-champion at that time, Garry Kasparov, was defeated
by a computer, ‘Deep Blue’.

Since then more and more attention has shifted to partial information games.
Poker was identified as a next ‘benchmark’ problem for partial information
games [1, 5] and indeed more and more research has focused on poker in the
last decade. We will give a brief overview in section 1.4.

1.3 Thesis focus

In this thesis, the focus will be on frameworks for learning good policies for
partially observable card games, specifically poker variants. These are stochastic
games. As mentioned, we assume payoffs are equal to the amount of money won
or lost so that they are zero-sum and therefore strictly competitive in the two-
player case.

1.4 Related work

In this section we discuss some related work on partial observable card games
and poker in particular. It only gives a brief overview, as for a more detailed
description quite some knowledge is required in advance.

Probably one of the first to mathematically study poker was von Neumann
[58]. He created an abstract small poker game, still known as “von Neumann
poker”, which he studied in detail. A similar approach was taken by Kuhn [37],
who studied a simplified poker game very similar to ‘8-card poker’, which will
be use as an example throughout this thesis (see section 1.5 for a description).

More recently, poker received a lot of attention from the field of computer
science and artificial intelligence. The Gala system [35] provided a way to solve
partial observable games, like poker, of a higher order of magnitude than was
possible before. In [5, 4] a poker program called Loki is described that plays
the game of Texas’ Hold-em (also, see section 1.5) based on opponent modeling.
The successor of this program, Poki, [3] made it to a commercial product. In [36]
describes an approach based on Bayesian networks. A game theoretic approach
to a medium sized poker game called Rhode Island hold-em, is given in [51],
employing several techniques to make the size of the game manageable. A
similar approach for Texas’ Hold-em is given [2].

Finally, also some other partially observable card games received attention.
Before 1995 a lot of research focused on bridge [1]. More recently, the game of
hearts was investigated [22].

4

1.5 Two poker games Chapter 1 Introduction

1.5 Two poker games

As we will be discussing a lot of poker variants in this thesis, we will first describe
two poker variants to familiarize with some concepts. The first is a small game
from literature [35] called 8-card poker. The second is a real-life poker game,
used to determine the world-champion, called Texas’ Hold-em.

1.5.1 8-Card poker

In this thesis we will use a simple poker variant, 8-card poker, to illustrate
various concepts more clearly. An additional benefit is that the game is small
enough to be solved exactly, as we will in chapter 2. 8-Card poker is played by
two players: a dealer and a gambler, who both own two coins. Before the game
starts, each player puts one coin to the pot, the ante. Then both players are
dealt one card out of a deck of eight cards (1 suit, ranks 1–8).

After the players have observed their card, they are allowed to bet their
remaining coin, starting with the gambler. If the gambler bets his coin, the
dealer has the option to fold or call. If the dealer folds he loses the ante, and if
he calls showdown follows. If the gambler does not bet, the dealer can choose
to bet his coin. If the dealer does so, the gambler will have to decide whether
to fold or call. If the game reaches the showdown (neither player bets or the
bet is called), the player with the highest card wins the pot.

1.5.2 Texas’ Hold-em

Texas’ Hold-em is a real-life poker variant. In fact, it is not one particular poker
variant; there are several variants of Texas’ Hold-em as well. All of these are
played with anywhere from two to over ten players, although we will mostly
focus on the two player poker games.

The main difference between different variants of Texas’ Hold-em is the
amount of money that can be bet or raised. In this respect, there are limit,
no-limit and pot limit games. We will discuss limit Texas’ Hold-em here first.
The limit version of the game specifies two amounts, with the highest amount
usually being twice the lower amount, e.g.

�
4 /

�
8. The lower amount specifies

the value of a single bet or raise in the first two bet-rounds, the higher amount
for the last two bet-rounds.

As might be clear, bet-rounds, of which there are four in total, take a central
place in Texas’ Hold-em, therefore we will first describe how one bet-round is
played.

In a bet-round the first player to act has 2 options: check and bet. When he
checks, he doesn’t place a bet, when he bets does place a bet (of

�
4) thereby

increasing the stakes of the game. The second player has different options
depending on what the first player did. If the first player checked, the second
player has the same actions check and bet. If the first player bet, the second
player can fold, call or raise. Folding means that the player gives up, causing
the opponent to win.2 When a player calls a bet, he pays enough money to
the pot to match the opponent’s bet. Raising means that the player calls the

2Technically, the first player can also fold, as can the second player after the first player
checked. However, as at these point the player does not have to pay to stay in the game, this
action is dominated by checking.

5

Chapter 1 Introduction 1.6 Outline of thesis

name description

Royal flush A,K,Q,J,10 of the same suit
Straight flush five consecutive cards of the same suit
4-of-a-kind 4 cards of the same rank
full house 3-of-a-kind + one pair, e.g.: J,J,J,4,4

flush 5 cards of same suit
straight 5 consecutive cards, .e.g. 7,8,9,10,J

3-of-a-kind 3 cards of the same rank
2-pair 2 pairs, e.g. 6,6,4,4,J
pair 2 cards of same rank, e.g. 4,9,10,K,K

high-card the highest card, e.g. 2,5,7,8,Q off-suit

Table 1.2: Hand-types for Texas’ Hold-em.

opponent’s bet and places a bet on top of that. In this example, with a single
bet costing

�
4, raising comes down to placing

�
8 in the pot.

A bet-round is ended when no player increased the stakes of the game in his
last turn, i.e. both players checked or the last bet was called. Also, there is a
maximum of 4 bets, so

�
16 in this example, per player per bet-round.

Now the bet-round has been described, the structure of the whole game is
as follows. First the players in concern pay the ante which is called the blind
bet.3 After that all players receive two private card out of a standard deck of 52
cards. This is followed by a bet round. When the first bet-round ended, three
public cards are placed, face-up, on the table, this is called the flop. The second
bet-round follows and when ended a single public card is placed on the table.
This stage is called the turn. After the turn the third and before last bet-round
starts, this means that a single bet now costs

�
8 and therefore a maximum of

�
32 per player can be bet in this round. This third bet-round is followed be a

fifth and last public card placed on the table: the river. After the river the last
bet-round is played, also with a single bet of

�
8.

When both players didn’t fold up to this point, showdown follows and the
player that has the highest combination of five cards formed using his two private
cards and the table cards wins the pot.

The variants no-limit and pot-limit differ in the bets that can be placed. As
suggested by the name, in no-limit poker any amount can be betted or raised.
In pot-limit hold-em, the maximum bet is determined by the amount of money
that is currently in the pot.

1.6 Outline of thesis

This thesis is divided in 3 parts. In the first part we discuss games and best-
response play. First, game theoretic notions and solutions are introduced in
chapter 2 and we identify two weak points in the outlined game theoretic ap-
proach: the incapability of exploiting weaknesses of the opponent and the prac-
tical limitation on the size of problems that can be addressed. In chapter 3 we

3In Texas’ Hold-em only one or two, depending on the total number of players and the
exact variant, pay ante.

6

1.6 Outline of thesis Chapter 1 Introduction

present a method to calculate a best-response that exploits the weaknesses of
the opponent. At the end of the first part we provide experimental results for
both the game theoretic and best-response approach.

In the second part we discuss methods for handling bigger games using the
best-response approach. In chapter 5 an overview of relevant literature is pre-
sented. For some of the discussed methods, we analyze their applicability for
poker games in chapter 6.

Finally, in the last part, we examine a way of providing a tradeoff between
the security of the game theoretic solution and the potential winnings of best-
response play. This is done in a coevolutionary framework and discussed in
chapter 7. Chapter 8 concludes and summarizes directions for future research
identified throughout the thesis.

7

Chapter 1 Introduction 1.6 Outline of thesis

8

Part I

Games and best-response

play

9

Chapter 2

Game theory

As the name implies, game theory is the traditional approach for analyzing
games. It is usually divided in two parts: cooperative and non-cooperative
game theory. The cooperative game theory takes a looser approach and mostly
deals with bargaining problems. The non-cooperative game theory is based on
exact rules for games, so that solutions can be studied in detail. As the type
of games discussed in this thesis are strictly competitive, we will focus on the
non-cooperative part and leave the cooperative game theory untouched.

A natural first question to ask here is what it means to solve game? In other
words: What is a solution for a game? In general, a solution of a game is a
specification for each player how to play the game in each situation that can
arise. That is, it specifies the best strategy or policy for each player.1

In this chapter, we will first give an introduction in necessary concepts and
methods from game theory. This includes different ways games can be repre-
sented, approaches for solving games and properties of these ‘solutions’. Next
we will describe the Gala system presented in [35] and how it can be used to
solve games.

2.1 Representation

There are different types of representations for games. The most familiar of
which is a representation by the rules of the game. If someone explains how
to play a certain game this is the representation that would be used. The
descriptions in section 1.5 are good examples.

Although such representations by rules are the easiest way to describe games,
in order to perform reasoning about game dynamics and outcomes, more for-
mal representations are needed. In this section some commonly used formal
representations are discussed.

2.1.1 Extensive form games

A commonly used representation for games is the so-called extensive form. We
can model 8-card poker as an extensive form game with partial (imperfect)

1In game theory the term ‘strategy’ is usually adopted, while AI the term ‘policy’ is
generally used. In this thesis, we will use the term ‘policy’.

10

2.1 Representation Chapter 2 Game theory

4 42 6

Start

1 -1 2 1 2 -1 -1 -2 1 -2

pass/0 1/bet

Figure 2.1: The partial game-tree of 8-card poker for the deals (4, 2) and (4, 6).
Gambler’s decision nodes are black, dealer’s are grey. The diamond represent
the chance move at start. The payoffs are given for the gambler.

information [38]. The extensive form of a game is given by a tree, in which
nodes represent game states and whose root is the starting state. There are
two types of nodes: decision nodes that represent points at which agents can
make a move, and chance nodes which represent stochastic transitions ‘taken by
nature’. In 8-card poker, the only chance node is the starting state, in which two
cards are chosen at random from the 8-card deck and are dealt to the agents.

In a partial information game, an agent may be uncertain about the true
state of the game. In particular, an 8-card poker agent may not be able to
discriminate between some nodes in the tree. The nodes that an agent cannot
tell apart are grouped in information sets. From this perspective a game-tree
for a perfect information game can be seen as a special case in which each node
has a unique information set associated with it.

In Fig. 2.1 a part of the game-tree of 8-card poker is drawn. At the root
of tree (‘Start’ node) a card is dealt to each agent. At each decision node the
agents can choose between action 1 (bet), and action 0 (fold). The figure shows
two deals: in the first the dealer receives card 2, in the second he receives card
6. The gambler receives card 4 in both cases. Therefore the gambler cannot
discriminate between the two deals. This is illustrated by the information sets
indicated by ovals. The leaves of the tree represent the outcomes of the game
and the corresponding payoffs. In the figure only the payoff of the gambler is
shown, the payoff of the dealer is exactly the opposite, as 8-card poker is a
zero-sum game.

An assumption that usually is made with the analysis of extensive form
games it that of perfect recall. This assumption in fact is not a very strong one.
It embodies that at a certain node or phase in the game, the players perfectly
remembers the actions he took and observations he received.

2.1.2 POSGs

As mentioned in the introduction, much of the research in multi-agent systems
has renewed the interest in game theory. The framework that is often used in

11

Chapter 2 Game theory 2.1 Representation

t=1

t=2

Figure 2.2: Simultaneous actions in an extensive form game. By using infor-
mation sets, the first players move is hidden for the second player, modeling
simultaneous actions.

this field is that of Stochastic Games. The partially observable variant of this
is referred to as Partially Observable Stochastic Game(POSG) [27, 18].

POSGs are very similar to extensive form games. The major difference
is that in a POSG, actions are usually taken simultaneous by all players (or
agents). I.e., it specifies the space of joint actions A as the cross-product of
the individual actions: A = A1 × ... × An for n players. As in a multi-agent
environment agents usually take actions simultaneous, this framework is very
natural to describe such systems. However, in an extensive form game it is also
possible to model simultaneous actions, as illustrated in figure 2.2.

Another difference between the two frameworks are that in a POSG the
players receive explicit observations specified by an observation model versus
the implicit modeling of such observations through the use of information sets
in extensive form games.

A POSG is more general than an extensive form game. The latter can be
seen as a special case of the former with a tree-like structure.

2.1.3 Strategic form games

Another commonly used representation is the strategic- or normal form. A
strategic form two-player game is given by a matrix and is played by a row and
column player. The game is played by each player independently selecting a
row/column and the outcome is given by the corresponding matrix entry.

Example 2.1.1 In table 2.1 the game of ‘Chicken’ is shown. The story usually
told for this game concerns two teenagers who settle a dispute by driving head
on at each other. Both players have the action to drive on or to chicken out.
When the first player chooses to chicken out while the the second player chooses
to drive on, the payoff is 0 for the first player and 2 for the second player. When
both teenagers decide to drive on they will crash and therefore both receive a
payoff of -1. When both player chicken out the shame is less than when only
one decides to do so and both players receive a payoff of 1. ¤

The strategic form representation is in fact based on the notion of pure
policies. A pure policy for a player specifies exactly one action for each situation
that can occur. So rather than an action, ‘chicken out’ actually is a pure policy
for Chicken. We will elaborate on the notion of pure policy in section 2.1.4.

12

2.1 Representation Chapter 2 Game theory

D C

D -1, -1 2, 0
C 0, 2 1, 1

Table 2.1: The game ‘Chicken’. Both players have the option to (D)rive on or
(C)hicken out.

When all players have chosen a pure policy this determines the (expected)
outcome of the game.2 This outcome is the entry in the matrix for the respective
row and column corresponding to the chosen policies.

2.1.4 Pure policies

Here we will present a more precise definition of what we referred to as pure
policies.

Seen from the perspective of the extensive form, a pure policy for a player
specifies what action to take in each decision node for that player. Recall that
in a partial information game, a player can’t discriminate between the nodes
within the same information set. This means that the player will have to play
the same action in each of these nodes. This leads to the following definition.

Definition 2.1.1 In an extensive form game, a pure policy, also called deter-
ministic policy, is a mapping from information sets to actions. In a strategic
form game, a pure policy is a particular row or column.

As an example, in 8-card poker the dealer could follow the rule that he will
always bet after receiving card 5 and having observed that the gambler passes.
A collection of such rules for all combinations of cards and opponent actions
would make up one pure policy.

It is possible to convert an extensive form game to one in strategic form, by
enumerating all pure policies available for the players. In this transformation
all information regarding the structure of the game is eliminated: the resulting
normal form game only contains information regarding the outcomes. This
makes it more difficult to understand what the game is about. For example it is
not possible to derive who moves first from this representation. However, when
only interested in which outcomes certain policies can cause, it is very suitable.

Also, it is important to see that the number of pure policies grows expo-
nentially in the number of information sets: for each information set there are
number-of-actions choices. Therefore, if n denotes the number of information
sets for a player and a is the number of actions he can take at these nodes, the
number of pure policies the player has is an. This exponential blow-up prevents
methods for strategic form games to be applied to all but the simples games.

2When there are chance moves in the game, the expectation over the outcomes is deter-
mined.

13

Chapter 2 Game theory 2.2 Solutions

2.2 Solutions

In this section we make the notion of solution for a game more precise. First
the so-called Nash equilibria are explained. Next, some approaches to solving
games are briefly reviewed. For the special case of two-player zero-sum games
with partial information like poker the approach is explained in more detail.

2.2.1 Nash equilibria

The game theoretic solution of a game specifies how each player should play
given that the opponent also follows this advise, that is it provides an optimal
policy for each player. This solution of a game is given by one or more of its
Nash equilibria.

Definition 2.2.1 Let π = 〈π1, π2, ..., πN 〉 be a tuple of policies for N players
and let π−k = 〈π1, ..., πk−1, πk+1, ..., πN 〉 be the tuple of N−1 policies for player
k’s opponents. Also, let the expected payoff of a policy πk for player k be given
by Hk(πk, π−k).

A tuple of policies π = 〈π1, π2, ..., πN 〉 is a Nash equilibrium if and only if
for all players k = 1, ..., N :

∀π′

k
: Hk(πk, π−k) ≥ Hk(π′

k, π−k)

That is, for each player k, playing πk gives a reward equal or higher than
that obtained when playing some other policy π′

k given that all other players
do not deviate from their policies specified by π−k. So each πk ∈ π is a best
response for the opponents policies π−k.

For example, in the Chicken in table 2.1, (C, D) is a Nash equilibrium, as
chicken out is the first player’s best response to the second player’s policy to
drive on and vice versa. Likewise, (D, C) is also a Nash equilibrium.

2.2.2 Solving games

The question to answer now is what tuple of policies to recommend as the
solution. Clearly it should be a Nash equilibrium, as otherwise there would be a
better policy for one of the players and he would better use that. This presents
us with the question how to find a Nash equilibrium.

In extensive form games with perfect information we can find the equilibria
by using Zermelo’s backward induction algorithm [59]. For partial information
games, however, this algorithm doesn’t work because actions will have to be
chosen for information sets instead of nodes. Taking a certain action in one
node of the information set might give an outcome completely different than
obtained when performing that same action from another node in the same
information set.

For strategic form games we can use elimination of (strictly) dominated
policies. For a certain player we consider if there are policies for which all the
outcomes are (strictly) dominated by the outcomes for another policy. If this is
the case, this policy is removed, reducing the matrix. This is repeated, iterating
over the players, until no further reductions take place. Although this approach
will in most cases reduce the matrix, there is absolutely no guarantee that it

14

2.2 Solutions Chapter 2 Game theory

will result in exactly one policy for each player. Also, when deleting non-strictly
(weakly) dominated policies, equilibria may be lost.

In general, a Nash equilibrium might not exist in pure policies for games
with partial information. We overcome this by allowing randomized policies.
Randomized policies allow particular pure policies or actions to be played with
some probability. A famous result, by Nash [40] is that for a strategic form
game, there always exist at least one Nash equilibrium in randomized policies.
When combining this result with the equivalence between extensive form and
strategic form games [38], we obtain the following theorem:

Theorem 2.2.1 Any extensive-form game with perfect recall has at least one
Nash equilibrium in randomized policies.

As the intuitive description above already indicated, there are two kinds of
randomized policies: mixed policies and stochastic policies, which we will now
define.

Definition 2.2.2 A mixed policy, µ, is a non-empty set of pure policies together
with a probability distribution over these pure policies. The set of pure policies
to which µ assigns positive probability is also called the support of µ.3

Definition 2.2.3 A stochastic policy, µ, is a single policy that defines a map-
ping from information sets to probability distributions over actions. I.e. for
each information set, a stochastic policy defines what action to take with what
probability.

There is a relation between mixed and stochastic policies: for every mixed
policy, there is a stochastic policy that results in the same behavior and vice
versa.4 At this point, this exact relation is not important, but we will elaborate
on this in chapter 7, where we show how to convert a mixed policy to a stochastic
policy (7.4.2).

2.2.3 Solving two-player zero-sum games

In the previous section we briefly discussed solving games in general. Theorem
2.2.1 tells that there is at least one Nash equilibrium for every extensive form
game. In general, finding such an equilibrium is difficult [44]. For two-player
zero-sum games, however, things are easier.

In a zero-sum game, it is reasonable to assume that a player will try to
be as harmful as possible for the opponent, because his payoff will increase as
that of the opponent decreases. In the worst case an opponent will predict the
players move successfully and then act to minimize the latter’s payoff, thereby
maximizing his own. This gives lead to playing a security or maximin policy.

Definition 2.2.4 Let H1 be the payoff matrix for player 1 and let Π1,Π2 be
the policy spaces from which respectively player 1 and player 2 can choose a
policy. Then a policy π1 that satisfies:

3In this thesis, policies are indicated with π in general. The notation µ is used when the
policy can only be a randomized policy.

4This holds for games with a tree-like structure as the ones we focus on in this thesis. In
general, this might not hold (e.g. in POSGs without tree-like structure).

15

Chapter 2 Game theory 2.2 Solutions

π2 π′
2

π1 −1 +5
π′

1 +3 +2

Table 2.2: A simple zero-sum game in strategic form with 2 policies for each
player. Shown is the payoff for player 1.

arg max
π1∈Π1

min
π2∈Π2

H1(π1, π2)

is called a maximin policy for player 1. The maximin value given by:

v1 = max
π1∈Π1

min
π2∈Π2

H1(π1, π2)

is the payoff player 1 is guaranteed to obtain and is called the security value
for player 1. Therefore π1 is also called a security policy. Likewise, a policy π2

that maximizes:

v2 = max
π2∈Π2

min
π1∈Π1

H2(π1, π2) (2.1)

is a maximin policy for player 2 with payoff matrix H2. Note that for a
zero-sum game H1 = −H2 and therefore equation 2.1 can be rewritten to:

−v2 = min
π1∈Π1

max
π2∈Π2

H1(π1, π2).

Therefore −v2 is also referred to as the minimax value for player 1.

We will illustrate the preceding definition with an example here.

Example 2.2.1 In table 2.2, a simple strategic form game is displayed. When
player 1 assumes player 2 will predict his policy correctly, he will get −1 when
playing π1 and +2 when playing π′

1. His security policy is given by choosing the
largest of these: π′

1 giving a security payoff of +2, this is the maximin value for
player 1.

Similarly, player 2 will get a worst-case payoff of −5 when playing π2 and
−3 when playing π′

2. Therefore player 2’s security policy is π2 with a security
payoff of −3. This translates to a minimax value of +3 for player 1. ¤

In example 2.2.1 we restricted the policies that the players could pick to be
pure policies. That is, we defined Π1,Π2 from definition 2.2.4 to be the space of
pure policies. In pure policies the game has no Nash equilibrium and the security
values for the players are different. Theorem 2.2.1 tells that there should be an
equilibrium in randomized policies. For zero-sum games von Neumann already
showed this in his minimax theorem [58]:

Theorem 2.2.2 In a two-player zero-sum game, a policy pair π∗
1 , π∗

2 is in equi-
librium if and only if both:

• π∗
1 maximizes v1 = maxπ1∈Π1

minπ2∈Π2
H1(π1, π2)

16

2.2 Solutions Chapter 2 Game theory

0 0.2 0.4 0.6 0.8 1
PHΠ1L-1

0
1
2
3
4
5

Pa
yo

ff
pl

ay
er

1

Π2

Π2’H 1
������
7

,2
3
������
7

L

0 0.2 0.4 0.6 0.8 1
PHΠ2L-5

-4
-3
-2
-1

0
1

Pa
yo

ff
pl

ay
er

2 Π1

Π1’
H 3

������
7

,-2
3
������
7

L

Figure 2.3: Calculating maximin values using mixed policies.

• π∗
2 maximizes v2 = maxπ2∈Π2

minπ1∈Π1
H2(π1, π2),

where Π1,Π2 are the spaces of randomized policies. In this case v1 = −v2, i.e.
the maximin and minimax values are equal. This value is called the value of the
game.

Again, we will give an illustration of this using the example game from table
2.2.

Example 2.2.2 Let r be the probability that player 2 uses his first policy, π2.
As a consequence the probability that he uses his second policy, π′

2, is 1 − r.
Now player 1 can define the expected payoff of his policies as follows:

E1(π1) = r · (−1) + (1 − r) · 5

E1(π
′
1) = r · 3 + (1 − r) · 2.

Similarly, if t is the probability of the first player using his first policy, π1,
the expected payoff for the second player’s policies is given by:

E2(π2) = t · 1 + (1 − t) · (−3)

E2(π
′
2) = t · (−5) + (1 − t) · (−2).

Also note that, because the game is zero-sum the expectation of the outcome
for both players sum up to 0, i.e. E1(π2) = −E2(π2), etc. This allows us to
express the players’ expected outcome in terms of their own policy.

Figure 2.3 graphically shows the two situations. For player 1, π′
1 corresponds

with P (π1) = 0. The figure shows payoff he can expect for t = P (π1) against
both opponent’s policies. Now if player 1 assumes that player 2 will always
predict his policy and act to minimize his payoff, he will get the payoff indicated
by the thick line. In order to maximize this, player 1 should play his policy π1

with a probability of 0.14 (t = 1/7). This is the first players security policy,
obtaining a payoff of 2.42 which is the value of the game.

In a similar way, the second players security policy is playing π2 with a
probability of 0.43 (r = 3/7), this yields him a security level payoff of −2.42.

The pair of policies found make up a Nash-equilibrium in mixed policies. No
player can increase his profit by unilaterally deviating from his current policy,
so the policies are a best response to each other. ¤

17

Chapter 2 Game theory 2.2 Solutions

0 0.2 0.4 0.6 0.8 1
Player 2 policy: PHΠ2L0

0.2

0.4

0.6

0.8

1

Pl
ay

er
1

po
lic

y:
PHΠ 1L

Nash equilibrium

Figure 2.4: The best-response functions for the game of table 2.2. The best
response function for player 1 is given in black, that for player 2 in gray. It can
clearly be seen that a player is indifferent between its own policies when the
opponent plays the Nash policy.

This example, of course, is very simple: both players only have two policies
they can choose from. In the general case finding a solution is more difficult.
However, von Neumann and Morgenstern showed [58] that for every two-player
zero-sum game with a finite number of pure policies a solution can be found:

Theorem 2.2.3 The normal form of a two-player zero-sum defines a linear
program whose solutions are the Nash-equilibria of the game.

Loosely speaking, a linear program is a maximization problem under con-
straints. In a normal form game the matrix, A, gives the outcome of two pure
policies played against each other. Now consider the case that the players both
play a mixed policy. Let x denote the vector of probabilities with which the row
player selects its pure policies. Similarly y denotes the vector of probabilities
for the column player’s pure policies. Then, the outcome of these mixed policies
against each other is given by:

xT Ay

The vectors x and y should both sum to 1, giving constraints. Together with
the desire of both players to maximize their own payoff this can be transformed
to a linear program, which can be solved using linear programming. Linear
programming will be discussed in more detail in section 2.3.4.

2.2.4 Properties of Nash equilibria

As it is important to fully understand the concept Nash equilibrium, we will
summarize some of the important properties that have been discussed.

18

2.3 The exponential gap Chapter 2 Game theory

• In two-player zero-sum games, a Nash policy5 is a security policy and the
value of the game is the security value for player 1.

A security policy gives the rewards that a player can maximally obtain,
given that the opponent will predict his move and act to minimize this
reward. The resulting reward is the maximin or security value for the
player. In general, it is paranoid to assume the opponent will do this, as
other players are assumed to maximize their own rewards, not minimize
that of another. In a two-player zero-sum game, however, these goals are
identical.

• Nash equilibrium policies are best responses to each other.

In fact this was how the Nash equilibrium was defined. We repeat it here
to make the next point clear.

• A Nash policy is optimal given that the opponent(s) also play a Nash
policy.

When our opponent(s) do not play a policy from a Nash equilibrium,
playing a Nash policy is still secure, but not necessarily a best-response.

• At a randomized Nash equilibrium the players are indifferent among the
pure policies in the support of the Nash-policies.

Actually this is not a property specifically for a Nash equilibrium. In
general, a mixed policy is a best response to some opponent policy if and
only if each of the pure policies to which is assigns positive probability is a
best response to this opponent policy [6]. When this is the case, the player
is indifferent between these pure policies. This is illustrated in figure 2.4.

2.3 The exponential gap

The major problem with the method outlined in 2.2.3 is the exponential blow-up
when converting to strategic form. To overcome this problem Koller et al. [34]
introduced a different representation called sequence form, that is polynomial
in the size of the game tree. In [35] the Gala system was presented which makes
use of this sequence form representation in order to solve games efficiently.

In this section we give an overview of the Gala system, the sequence form
and exactly how to solve games using linear programming.

2.3.1 Gala language and generating the game tree

The Gala system takes as input a description of a game. This description
is defined according to the Gala language and consists of definitions for: the
‘name’ of the game, the ‘players’, ‘parameters’ for the game, ‘variables’ used in
the game, the ‘flow’ and optional modules references from within the game-flow.

The ‘players’ define which players participate in the game. In addition there
is a special player nature that accounts for all the chance moves. In principle,
there can be more than two players in a Gala game, but the procedure to solve
a game is only implemented for the two-player (zero-sum) case.

5For conciseness we will refer to a policy that is part of a Nash equilibrium as a Nash
policy.

19

Chapter 2 Game theory 2.3 The exponential gap

‘Parameters’ for the game directly influence the structure of the game, for
example how much stages the game does consist of, or which cards are in the
deck.

‘Variables’ used in the game are used to maintain values through the game
that for example determine the outcome or are revealed to one or more players.
For example Hand of player1 might be a variable in a poker game.

The ‘flow’ determines how the game is played. It typically invokes some
modules that represent stages of the game. For example (pay ante, deal cards,
bet round) could describe the flow for a simple poker game.

From this specification the Gala system generates the game-tree by following
the flow and generating nodes for each choice until the game ends. When this
happens the system backs up to the last node and tries whether there was
another choice available for the player to move at that node. If there is, that
choice is followed, if not it backs up further. In this way the full game-tree is
constructed in a depth-first manner.

2.3.2 Sequences

In order to avoid the the exponential blow-up induced when converting to normal
form, the Gala system uses a different representation: the sequence form. The
key observation is that pure policies result in particular paths in the game-
tree, therefore distributions over pure policies induce distributions over paths,
or sequences of moves. The probabilities of these paths can be expressed by
realization weights and can be conveniently related to stochastic policies.

We will start with the sequences. A sequence should be interpreted as a path
from the root of the game-tree to a particular node. Along this path, the edges
have labels corresponding with actions and observations. To give some intuition
we will first give two examples for 8-card poker: “pass on c”, is a sequence for
the gambler and “bet on c after seeing a pass”, is one for the dealer, where c
refers to observing a particular card. We give the following formal definition for
a sequence:

Definition 2.3.1 A sequence σk(p) for a player k is the concatenation of the
description of the previous decision node, dk, of that player and the action at
dk that leads to p.

The previous decision node, dk, for player k is the first decision node of
player k encountered when traversing from p to the root, excluding p itself.

The description of an decision node, dk, is the concatenation of the labels of
all edges encountered when traversing the path from root to dk. These labels
correspond with the observations and actions for player k.

By observations we mean observed actions of the opponent (e.g. ‘bet’, ‘pass’)
or nature (in the form of observed cards).

Example 2.3.1 We will give some examples of sequences for gambler using
figure 2.5 here. Let’s take a look at node 1 and determine σgambler(1). We
first look for the previous decision node for gambler: we go up in the tree and
immediately reach the root, therefore there is no previous decision node and
σgambler(1) = ∅.

20

2.3 The exponential gap Chapter 2 Game theory

’Q’

B

’b’

P

’b’

’p’’p’

P B

...other deals...

start

1

4

2 3

5 6 97 8 - end nodes

Figure 2.5: A partial game-tree for a simple poker variant from the perspective
of the gambler. His actions are P(ass) and B(et). The observations gambler
receives are quoted. Node 1 is some node in which the gambler received card
’Q’. 5–9 are end-nodes.

Next we examine node 4. When going up in the tree we find that the previous
decision node of gambler is node 1. The description of node 1 is ‘Obs(Q)’. The
action taken at node 1 to reach node 4 is ‘P’, therefore σgambler(4) =‘Obs(Q),P’.

Node 3, 8 and 9 all have the same previous decision node; also node 1.
The action taken at node 1 to reach them is also the same ‘B’. Therefore
σgambler(3) = σgambler(8) = σgambler(9) =‘Obs(Q),B’.

Finally for nodes 6 and 7, the previous decision node is 4. Node 4’s de-
scription is ‘Obs(Q),P,Obs(b)’, yielding σgambler(6) =‘Obs(Q),P,Obs(b),P’ and
σgambler(7) =‘Obs(Q),P,Obs(b),B’. ¤

Note that the definition of ‘description of the previous decision node’ results
in exactly the for player k observable labels. Therefore this description is in fact
equal to the description of all the nodes in the same information set. Viewed
in this way a sequence can also be seen as the description of an information set
concatenated with an action taken at that information set.

2.3.3 Realization weights

A pure policy for player k specifies an action to take at each information set,
therefore such a policy actually specifies a subset of all the nodes that can
be reached when player k uses this policy. Similarly, a randomized (either
stochastic or mixed) policy for player k specifies the contribution of player k in
the probability that a particular node, and thus sequence, is reached or realized.

Now suppose we want to represent a randomized policy µk using sequences6,
we define the realization weights as follows:

6The representation of a policy using realization weights over sequences is more closely re-
lated to its stochastic representation than its mixed representation, but we keep the discussion
general here.

21

Chapter 2 Game theory 2.3 The exponential gap

Definition 2.3.2 The realization weight of sequence σk, denoted as µk(σk) is
the probability that player k, playing according to µk will take the moves in σk,
given that the appropriate information sets are reached in the game.

For example, the realization weight of the sequence ‘bet on Q’ in figure 2.5 is the
probability the gambler bets at node 1. The realization weight of the sequence
σgambler(6): ‘pass after observing a bet after passing after observing Q’ is the
probability of passing at node 1 times the probability of passing at node 4.

Of course not all arbitrary assignments of sequence weights represent a ran-
domized policy. In particular, the realization weights of continuations of a
sequence must sum up to the probability of that sequence. Translated to figure
2.5 this means that µgambler(∅) = µgambler(σbet on Q) + µgambler(σpass on Q) = 1,
because ‘bet on Q’ and ‘pass on Q’ are continuations of the empty sequence.
These constraints can be put in a constraint matrix which will be used for
solving.

When all the realization weights for the set of sequences available to a player
satisfy the above condition they indeed do describe a randomized policy. There-
fore, when this is true for all players, a distribution over the outcomes of the
game is defined. To see this, note that the realization weights give a distribution
over conditional plans in the same way as the weights for full policies do in the
normal form of the game.

The constraints the realization weights must obey also indicate how a real-
ization weight representation of a policy can be converted to a stochastic policy.
Let σk(I) be a sequence for player k that can lead to a particular information
set I. Let σk(I) ◦ a1, ..., σk(I) ◦ an be sequences that are continuations of σk(I),
that specify taking action a1, ..., an at information set I. The constraints for
realization weights tell us that:

µk(σk(I)) = µk(σk(I) ◦ a1) + ... + µk(σk(I) ◦ an).

Therefore, when we know the realization weights of σk(I) and σk(I)◦ai, the
probability of taking action ai at information set I is:

P (ai|I, µk) =
µk(σk(I) ◦ ai)

µk(σk(I))
.

2.3.4 Solving games in sequence form

Here a brief overview on solving sequence form using linear programming is
given. For a more detailed coverage we refer to [34].

In order to solve a game we will have to formalize the outcomes over the
game. For a given tuple of randomized policies µ = 〈µ1, µ2, ..., µN 〉 the expected
payoff H for a player is given by:

H(µ) =
∑

leaves p

h(p) · β(p) ·
N
∏

k=1

µk(σk(p))

where h(p) is the payoff the player gets at leave p, and β(p) is the product
of the probabilities of the chance moves on the path to leave p.

For two player game this can be rewritten a formulation similar to that for
the normal form:

22

2.3 The exponential gap Chapter 2 Game theory

H(x,y) = xT Ay

where x = (x1, x2, ..., xm) is the vector of realization weights for player 1,
y, in the same way, is the vector of realization weight for player 2. A is the
matrix of which entry aij gives the outcome of playing σi

1 against σj
2 weighted

by the chance moves on the path(s). That is, A is a matrix of which the rows
correspond to the sequences for player 1 and the columns to sequences of player
2. Formally:

aij =
∑

p:σ1(p)=σi
1
, σ2(p)=σ

j
2

β(p) · h(p).

Here the summation is over all p that are consistent with sequences σi
1 and

σj
2. Of course only leave nodes, p, will have a nonzero value for h(p). Therefore

the matrix A will have a lot of zero entries.
Now we have all the tools to define the linear program. The best response

y to player 1’s policy x is the following linear program:

max
y

(xT B)y

subject to Fy = f , (2.2)

y ≥ 0.

Here B is the payoff matrix for player 2, F is the constraint matrix for the
assignment of realization weights y, so they satisfy the constraints mentioned
in the previous section and f is the column vector forcing them to add up to
the right number.7 This equation is the primal objective of the linear program.
The dual objective function is:

min
q

qT f

subject to qT F ≥ xT B. (2.3)

Equation 2.2 and 2.3 together define the complete linear program. The
optimal solution is for a pair y,q such that the primal and dual objective are
equal:

qT f = qT Fy = xT By.

In a similar way the best response for player 1 can be constructed. This is
optimized over a pair x,p when:

eT p = xT ET p = xT Ay (2.4)

Recall that an equilibrium in a game is the point where the players’ policies
are best responses to each other. Therefore, we now can construct a linear pro-
gram for an equilibrium for a zero-sum two player game. The primal objective
function is:

7When performing linear programming using normal form, the constraint matrices are a
single row, forcing the probability of the pure policies to sum up to 1 (i.e a scalar f). The rest
of the procedure is the same.

23

Chapter 2 Game theory 2.4 Remaining problems

min
y,p

eT p

subject to −Ay + ET p ≥ 0,

−Fy = −f , (2.5)

y ≥ 0.

Where A is the payoff function for player 1, so −A = B is the payoff function
for player 2. Also in this case the program has a dual objective function, which
performs a maximization over q and x. The solution of the linear program gives
a pair of optimal policies specified in randomization weights.

2.4 Remaining problems

In this chapter the game theoretic approach to solving games was described.
We discussed what the game theoretic notion of a solution for game is and how
to find such a solution. We explained how an exponential blow-up in size can
be avoided by making use of sequence form instead of strategic- or normal form.
The size of this sequence form is polynomial in the game-tree, allowing to tackle
bigger games.

Despite all this, we argue that there are two problems with this game theo-
retic approach:

1. Although sequence form is polynomial in the size of the game-tree, the
game-tree itself can be huge, rendering the approach less practical for
real-life games.

2. The Nash equilibrium solution concept is too conservative.

The first problem is one of computation. The size of a game-tree is usually
highly exponential in the size of its rule based description. As an example, for
two-player Texas’ Hold-em, which was discussed in the introduction, the game-
tree consist of O(1018) nodes [2]. Clearly, this is a magnitude that is beyond
the limits of computation.

The second problem directly relates to property discussed in section 2.2.4,
that expressed that a Nash policy is optimal given that the opponent also plays
a Nash policy. In a real-life game it is not very likely that an opponent actually
plays a Nash policy. This assumption is strengthened by the first problem. In
this case, we would want to exploit any weaknesses the opponent’s policy might
have.

This is the reason that an opponent-based approach for poker is taken in
[4, 3]. It is also indicated in the setting of multi-agent systems [48]. The authors
of the latter identify other problems with the usage of Nash-equilibria in [52]. In
this work they also propose an ‘AI Agenda’ for multi-agent settings, centering
around the question “how to best represent meaningful classes of agents, and
then use this representation to calculate a best response”.

24

Chapter 3

MDPs & POMDPs

In the previous chapter we outlined the game theoretic approach for solving
games like poker and argued that its solution concept, the Nash equilibrium is
too conservative for these type of games. In this chapter we switch from the
field of game theory to that of decision theoretic planning (DTP) and artificial
intelligence.

DTP studies the process of automated sequential decision making, in which
the major problem is planning under uncertainty: Planning what actions to take
in an uncertain environment in order to obtain the best result. This problem
has been studied in various fields of science (AI planning, decision analysis,
operations research, control theory, economics) and is complex. In general, the
first problem is determining what ‘obtaining the best result’ means, usually this
involves maximizing some performance measure. Luckily, for the poker-variants
investigated in this thesis, this is an easy task, as this performance measure is
given by the outcomes of the game.1

After that comes the harder task of formalizing the problem in concern
and solving it such that the obtained plan or policy indeed performs well with
respect to the performance measure. In this chapter, we will first introduce two
frameworks, that give such a formalization for planning problems.

In section 3.1 we first introduce the Markov Decision Process (MDP) which
has been adopted of one of the standard frameworks for planning in artificial
intelligence. After that, we introduce the Partially Observable Markov Decision
Process (POMDP) which extends the MDP.

Having explained the POMDP, in section 3.3, we show how we can convert
an extensive form game to a POMDP model for a single player under the as-
sumption of a fixed opponent, following the approach given in [42]. Finally we
show how we can use this model to calculate a best-response policy that exploits
the weaknesses of the opponent.

3.1 MDPs

Markov decision processes provide a formal basis to a great variety of planning
problems. The basic class of problems that can be modeled using MDPs are

1Indeed, this is exactly one of the reasons making games suitable for research.

25

Chapter 3 MDPs & POMDPs 3.1 MDPs

systems in which there is a decision maker (the agent) that can be modeled as
stochastic processes.

An MDP planning problem is given by: 1) the possible world states, 2) the
actions that can be performed at these states, 3) a transition probability model
describing the probability of transferring from one particular state to another
when a certain action is taken, and 4) the rewards that are assigned for certain
transitions.

The goal is controlling the dynamical stochastic system the MDP describes:
This system can be in one of the world states and which state changes in response
to events.

One of the great advantages of the MDP framework is its ability to deal with
outcome uncertainty; the uncertainty with respect of the outcome of an action.
Also, it allows for modeling uncertain exogenous events, i.e. events not caused
by actions of the agent, and multiple prioritized objectives. Finally, MDPs can
also be used to model and solve non-terminating processes.

It is for a great part because of this versatility and flexibility, that the MDP
framework has been adopted by most work on DTP and recent AI planning
[8, 26, 30, 50]. Also, it has served as a basis for much work on reinforcement
learning [56, 39, 50].

3.1.1 The MDP framework

Formally, a MDP is a tuple: 〈S,A, T,R〉, with S being the state-space, A the
set of actions available to the agent, T the transition model and R the reward
model. We will first elaborate on these elements of an MDP.

The state-space, S, is the collection of world states. At each time point t
the process can be in exactly one of these states s ∈ S.

At each time t the agent selects an action from the set of actions that is
available to him a ∈ A. These actions are the only means by which the agent
influences the process. Not all actions might be available in all states.

The transition model, T, specifies exactly how each action taken by the player
changes the current state. Formally it is a function, T : S × A → P (S;S,A),
mapping from states and actions to a probability distributions over states. With
some abuse of notation we will denote the probability of transitioning to s′ from
s when performing action a by P (s′|s, a).

In its most general form, the reward model, R, specifies the reward for a
particular transition. That is, is specifies a function R : S × A × S → R.
Usually, however, the reward model is given as:

R(s, a) =
∑

s′∈S

P (s′|s, a) · R(s, a, s′).

In some cases, the reward can also be specified as a function of only the
state, giving R(s). However, we will mostly use the common form R(s, a), to
preserve generality.

An important aspect of a MDP is that it respects the Markov property : the
future dynamics, transitions and rewards, depend only on the current state.
Formally:

P (st+1|st, at, st−1, at−1, ..., s0, a0) = P (st+1|st, at)

26

3.1 MDPs Chapter 3 MDPs & POMDPs

and

R(st, at|st−1, at−1, ..., s0, a0) = R(st, at).

In a MDP, a policy specifies what action to take in a state, so it is a mapping
from states to actions. In general, whether the MDP models a finite or infinite
process is relevant for the type of policy; the last action an agent takes in its life
will generally be a different one from the first action, even if the circumstances
(state) are the same. The number of actions the agent takes in a MDP is called
the horizon, h.

To model the fact that, when a MDP has a finite horizon, the preferable
actions for a certain state will probably differ for different times (or stages),
non-stationary policies are used for these type of MDPs. A non-stationary
policy is a sequence of action mappings πt(s), with t = 0, 1, ..., h [49].

For an infinite-horizon MDPs, it is known that they have an optimal station-
ary policy π(s). This corresponds with the intuition that the stage will make
no difference regarding what action to take at particular state.2

3.1.2 Solving MDPs

Now that the MDP model and the notion of policy within a MDP have been
explained, we turn to the question of how we can use a MDP to solve a planning
problem. It is clear that the goal is to find an optimal policy with respect to
some objective function. The most common objective function is that of the
expected cumulative (discounted) reward.

For a finite-horizon MDP of horizon h, the expected cumulative reward of a
policy, π, is simply the expected value of sum of the rewards:

E

[

h
∑

t=1

Rt

]

,

where Rt is the reward received at step t, which is given by:

Rt =
∑

st∈S

R(st, πt(st))P (st|st−1, πt−1(st−1)).

For this measure to be bounded in the case of an infinite horizon MDP, a
discount factor, 0 < γ < 1, is introduced. The expected cumulative discounted
reward is given by:

E

[

∞
∑

t=1

γtRt

]

.

Now we can inductively define the value of a state according to the stationary
policy π as follows:

Vπ(s) = R(s, π(s)) + γ
∑

s′

P (s′|s, π(s))Vπ(s′). (3.1)

2To understand why, observe that when the horizon is infinite, at each stage there are an
infinite number of actions still to be taken.

27

Chapter 3 MDPs & POMDPs 3.1 MDPs

For a finite horizon MDP with a non-stationary policy this definition be-
comes:

V t+1
π (s) = R(s, πt(s)) +

∑

s′

P (s′|s, πt(s))V t
π(s′), (3.2)

with V 0
π = 0. Equation 3.2 defines the so-called the t-steps-to-go value

function.
Another equation similar to the above two is:

V t+1
π (s) = R(s, π(s)) + γ

∑

s′

P (s′|s, π(s))V t
π(s′).

This equation can be used to approximate the value function for stationary
policies, equation 3.1, to arbitrary accuracy, because V n

π (s) → Vπ(s) as n →
∞.3This process is known as successive approximation.[9]

In the rest of this section we will focus on stationary policies. For non-
stationary policies similar results hold. Also note, that non-stationary policies
can be converted to stationary policies, by indexing states with their stage and
requiring all transitions to go to next stage. E.g. t′ 6= t + 1 ⇒ P (st′ |st, a) = 0.

Now the goal is to find an optimal policy. It is known that optimal policies
share a unique optimal value function, denoted V ∗. Given this optimal value
function an optimal policy, π∗ can be constructed greedily in the following way:

π∗(s) = arg max
a∈A

(

R(s, a) + γ
∑

s′

P (s′|s, a)V ∗(s′)

)

.

So if we can find V ∗ we have a way to solve the MDP. Here we discuss two
ways to tackle this problem.

The first is to solve the system of Bellman equations:

V (s) = max
a∈A

(

R(s, a) + γ
∑

s′

P (s′|s, a)V (s′)

)

,

for all states using linear programming. [49, 14, 25]
The second option is to use dynamic programming. By iteratively applying

the Bellman backup operator, H:

HV (s) = max
a∈A

(

R(s, a) + γ
∑

s′

P (s′|s, a)V (s′)

)

,

we can find the approximate optimal value function. In the light of non-
stationary policies, the t-th application of H gives the optimal t-step-to-go
value function:

V ∗
t+1 = HV ∗

t .

So for a MDP with horizon k, we can apply H k times to get (V ∗
t=0, ...,V

∗
t=k),

which can be used to extract an optimal non-stationary policy. For the infinite
horizon case, we are interested in the stationary policy V ∗ = V ∗

t=∞. Iteratively

3For a stationary policy, there are infinitely many steps to go.

28

3.2 POMDPs Chapter 3 MDPs & POMDPs

applying H will converge to V ∗ in finite time. This technique is also known as
value iteration.[56]

A different method we will not cover in detail is policy iteration. The basic
idea behind this is to interleave policy evaluation (e.g. successive approximation)
with policy improvement. In practice this converges in few iterations, although
the amount of work to be done per iteration is more.

3.2 POMDPs

In the previous section the MDP and its ability to deal with effect uncertainty
were presented. In this section the Partially Observable Markov Decision Pro-
cess (POMDP) is described. In addition to the representational capabilities of
the MDP, the POMDP model also allows for dealing with problems that exhibit
state uncertainty, i.e. the agent does not know what the current state is, but
only receives a hint regarding this true state through means of an observation.

As before we will first describe the framework. After that we will relate
MDPs and POMDPs and, at the end of the section we will describe how to
solve POMDPs.

3.2.1 The POMDP framework

As mentioned, in the POMDP framework the agent does not know the true
state, but instead receives an observation that gives a clue regarding this state
when transferring to it. To deal with this the formal description is expanded to
incorporate the observations and their probabilities.

A POMDP is a tuple 〈S,A,O, T,O,R〉, where S,A, T,R are as before. The
set O are the observations the agent can receive.

The observation model, O, is a function O : A × S → P (O;A,S) map-
ping from actions and states to probability distributions over O. We will write
P (o|a, s′) for the probability of observation o ∈ O when transferring to state
s′ ∈ S after action a ∈ A.

Note, that now the reward function R, can in principle also depend on the
observation. However, this can again be rewritten to R(s, a) in the following
way:

R(s, a) =
∑

s′∈S

∑

o∈O

P (s′|s, a) · P (o|a, s′) · R(s, a, s′, o).

As the agent can no longer observe the true state in a POMDP, a policy can’t
simply be a mapping from states to actions as for a MDP. Instead, at time t the
agent must base his policy on the observable history 〈(a0, o0), (a1, o1), ..., (at, ot)〉,
very much like a player in an extensive form game must base its policy on his
information sets.

Of course, maintaining such an history takes up a lot of space for POMDPs
with a large horizon and is impossible in the case of an infinite horizon. Also, this
would make the process non-Markovian. Luckily, it turns out that maintaining
a probability distribution that represents the belief over the states provides a
sufficient statistic of the history and thus a Markovian signal for the planning
task.

29

Chapter 3 MDPs & POMDPs 3.2 POMDPs

Figure 3.1: The ‘state-estimator’ view. (Image from [30])

A POMDP has an initial belief b0, which is a probability distribution over
the state space, with b0(s) defining the probability of starting in a state s. Every
time the agent takes an action this belief is updated using Bayes’ rule:

bo
a(s′) =

P (o|s′, a)
∑

s∈S P (s′|s, a)b(s)

P (o|a, b)
, (3.3)

where

P (o|a, b) =
∑

s′∈S

P (o|s′, a)
∑

s∈S

P (s′|s, a)b(s) (3.4)

is a normalization factor.

Now, returning back to the definition of a policy, a policy in a POMDP is a
mapping from beliefs to actions.

A nice intuitive interpretation is given by the ‘state-estimator’ view [12, 30],
which is depicted in figure 3.1. At some point in time, the agent has a particular
belief regarding the state of the world. He interacts with the world by taking an
action that is based on that belief, as a consequence the state changes and the
world gives back an observation. This observation is fed to the state-estimator
together with the previous belief and action. The state estimator produces an
updated belief which in turn is mapped to an action by the agent’s policy again,
etc.

3.2.2 The relation between MDP and POMDP

The MDP model as given in 3.1 sometimes is also referred to as fully observable
Markov decision process (FOMDP). In [8] the authors explain how a FOMDP
can interpreted as a special case of POMDP, namely a POMDP in which at
every state the observation received is the state itself.4

Seen in this way, both models are part of a bigger family of MDPs. At the
other end of the spectrum, there is the non-observable MDP (NOMDP). In this
model, no observation of any kind is received. Consequently, a policy in such a
model is an unconditional plan of actions.

4This is an idea is very similar to the view that a perfect information game can be modeled
by an extensive form game in which each node has its own information set.

30

3.3 From game to POMDP Chapter 3 MDPs & POMDPs

3.2.3 Solving POMDPs

In section 3.2.1 we saw that we could compactly represent the observable history
using beliefs and that a policy in a POMDP is a mapping from these beliefs to
actions. Now the question is how to find an optimal policy.

When proceeding along the same lines as before, we can define the value of
a particular belief, b, under a policy π as:

V π(b) = R(b, s) + γ
∑

o∈O

P (o|a, b)V π(bo
a),

where the reward, R(b, s) =
∑

s∈S R(s, a)b(s) 5 and the second part gives
the value of all successor beliefs weighted by the probability that they will be
realized when taking action a. That means that P (o|a, b) is as defined in equation
3.4.

In a similar way, we can also use dynamic programming to calculate the
optimal t-steps-to-go value function:

V ∗
t+1(b) = HV ∗

t (b),

where, H, the Bellman backup operator for POMDPs is given by:

V ∗(b) = max
a∈A

[

R(b, s) + γ
∑

o∈O

P (o|a, b)V ∗(bo
a)

]

. (3.5)

However, since beliefs are probability distributions, the belief space is con-
tinuous (a simplex with dimensionality equal to the number of states). In the
general case, the optimal value over the belief space can be represented by a
number of vectors (hyperplanes) that correspond to conditional plans, and the
value of a belief point is given by the maximum inner product of that belief with
each vector. In this way, the value function can be represented by those vectors
that are maximizing for some part of the belief space. Finding those vectors is
in general an intractable problem even in the finite horizon case [43], and exact
algorithms are heavily relying on linear programming, [53, 11, 30].

In recent years, a lot of attention has shifted to approximate solving of
POMDPs. Examples are the PEGASUS [41] algorithm which is a model-free
policy search method and PERSEUS [54] which is based on randomized point
based (approximate) value iteration.

3.3 From game to POMDP

Returning back to poker games, in this section we will show how we can rep-
resent such games as a POMDP and how solving a resulting POMDP yields
a non-conservative policy for the protagonist agent, i.e., one that exploits the
opponent.

5Note that at a certain belief b, b(s) is the actual probability of state s. In this sense the
word ‘belief’ can be slightly misleading.

31

Chapter 3 MDPs & POMDPs 3.3 From game to POMDP

4 42 6
Startpass/0 1/bet

1 -1 2 1 2 -1 -1 -2 1 -2

(a) Extensive form game.

(4)

1 -1 2 1 2 -1 -1 -2 1 -2

S_42 S_46

(Pass)

(Bet)

(4)

(Pass)

(Bet)(Bet) (Bet)

(Pass) (Pass)

bet / 1
pass / 0
get card

(observation)

S_42b S_46b

s_statename
Start

(b) POMDP model.

Figure 3.2: Conversion from extensive form for 8-card poker (left) to a POMDP
model for the gambler (right). The decision nodes for the protagonist agent
become states in the POMDP model. The deterministic choices of the opponent
become stochastic transitions.

3.3.1 8-card poker as a POMDP

The crucial assumption that lies at the foundation of this approach is that
the policy of the opponent is fixed and known. For example, estimated from
repeated play. Given this assumption we know probability of transitioning from
a particular decision node to a next decision (or outcome) node.

With this insight we can model all the decision nodes for the player in focus
together with the outcome nodes as states in a POMDP. In this POMDP, the
deterministic decisions of other players are converted to stochastic transitions for
the protagonist agent. This is illustrated in figure 3.2, which shows a POMDP
model for the gambler.

More formally, let the state-space for the POMDP, S, consist of the set of
nodes in the game-tree at which the protagonist agent select an action ai ∈
{pass, bet}, including the start state6, together with the outcome nodes, the
end-states.

For transitions from some state in S to another that does not involve a move
from the opponent, the transition model is clear. E.g. when the protagonist
agent folds the transition is not influenced by the opponent. In the case that
for a transition from s to s′ an opponent move is involved, we need to consider
the probabilities that he chooses his actions with.

Let T be the set of decision nodes for the opponent. These are all the nodes
from the game-tree not in S. At each opponent node t ∈ T he selects his action
aj according to a policy πj = P (aj |t). This leads to:

P (s′|s, ai) =
∑

aj

∑

t∈T

P (s′|t, aj)P (aj |t)P (t|s, ai), (3.6)

where P (t|s, ai) represents the probability induced by any chance moves before

6We will assume that the agent has to bet at the start node to pay the ante. In fact this
is a form of ‘dummy’ move.

32

3.3 From game to POMDP Chapter 3 MDPs & POMDPs

the opponent selects his action and P (s′|t, aj) that of any chance moves after
the opponent selected action aj . Also, because the transitions are over a tree,
we know that each node has a unique predecessor, thus equation 3.6 reduces to:

P (s′|s, ai) = P (s′|t, aj)P (aj |t)P (t|s, ai).

In this aj and t are exactly that action and opponent node that make s′

possible, i.e. P (s′|t, aj) > 0.
Having covered the construction of the transition model, we still need to

define the reward- and observation model. The reward model for poker games
is trivial. It is possible to use the simple version of the reward function: R(s).
For all the non-end-states R(s) = 0, the reward of the end-states is given by the
corresponding outcome nodes.

The observation model also is very simple. When a player reaches a certain
state he is certain to make the corresponding observation. E.g. when arriving
in state s 42 in figure 3.2b, he is certain to observe card ‘4’.

One point of attention is that the actions of the opponent are also obser-
vations for the protagonist agent, but these remain deterministic: when the
transitioning to state s 42b, the agent is certain the receive observation ‘bet’.
Therefore P (o|s′, a) is 1 for exactly one observation o ∈ O.

3.3.2 Best-response play: Solving the POMDP

In section 3.2.3 we described solving POMDPs, which illustrated that this is a
hard task in general. In this section we explain that for the special case of poker
games this task is relatively simple.

Recall from section 3.2.1 that a belief in fact is a compressed representation
of the observable history and that because of this, for an extensive form game,
there is one belief per information set.

Also observe the game-tree for the discussed poker games is finite. There-
fore the number of information sets and thus corresponding beliefs is finite.
Moreover, the horizon of these games is relatively low and the sets A and O
are relatively small, therefore the number of beliefs is not only finite, but also
small. A final observation is that the initial belief is fixed and known.

To solve the resulting POMDPs, we therefore simply generate all possible
beliefs and their transition probabilities, yielding a fully observable MDP. This
MDP is then solved using exact value iteration as described in 3.1.

The construction of this belief MDP is straightforward. The chance of reach-
ing a next belief is equal to the chance of receiving the observation that leads
to that belief, i.e.:

P (b′|b, a) = P (oi|ai, b),

where ai and oi are the action and observation leading to belief b′ and
P (oi|ai, b) is the change of receiving observation oi after action ai from belief b,
as defined in equation 3.4.

The reward of a particular belief b is also trivially defined as:

R(b) =
∑

s∈S

R(s)b(s),

giving us the complete description of the belief MDP.

33

Chapter 3 MDPs & POMDPs 3.3 From game to POMDP

3.3.3 Discussion

Although in this thesis we focus on two-player poker games, the method for
calculating a best-response policy as presented in principle works for any number
of opponents. However, with a large number of players, the game-tree grows
exponentially. Therefore the size of games with multiple players that can be
tackled using this technique will be practically bounded.

Another remark that should be made here is that it is also possible to use the
reward model that is dependent on both state and action R(s, a), this eliminates
the need to include end-states and end-state beliefs. As roughly half of the states
are end-states this would save considerable space. In fact this should be seen as
manually performing one backup step of value iteration.

A last issue is regarding our assumption of knowing the fixed opponent policy.
For this assumption to be justified, it is vital to have a good opponent model.
However, this is a separate topic of research and therefore not further treated
in this thesis. For research on opponent modeling we refer to [4, 13, 3]. In this
chapter we have shown that, given a perfect opponent model, we can calculate
best-response to that policy. Of course no opponent model will be perfect in
practice. We return to the issue of being more secure against errors that might
come from errors in the opponent model in chapter 7.

34

Chapter 4

Experimental results

4.1 The Gala system

4.1.1 Modifications and additions

At the time of writing it is seven years after the Gala system was published.
Therefore some modifications were needed to get everything to work. Most of
the changes involved the Gala systems code. Some other modifications were
necessary with respect to linear programming. These changes are described in
the appendix.

Because of the required modifications, it was necessary to verify whether the
Gala system indeed outputs optimal policies, as these will be used as a basis
throughout this thesis. In [35] the optimal policy is given for 8-card poker, so
this was used to compare to. In this section the resulting policies, a description
of the comparisons made and the conclusion of the verification are given.

4.1.2 Description of resulting policy

As expected, the Gala system provided a dealer and gambler policy. These
policies, however, are different from the optimal policy given in [35]. The only
modification made that would seem to explain this is the usage of a different LP
algorithm. This thought resulted in a second test: solving the dual of equation
2.5: which specifies optimization over the policy of the dealer (x).

This resulted in a third pair of of policies, different from both others. This
strengthens the assumption that the difference is caused using a different LP
algorithm: the algorithm gives different outcomes when switching the primal
and dual objective function, so finding a different optimal solution than another
algorithm seems more likely. The three pairs of policies are depicted in figure
4.1.

Observe that all encountered policies exhibit ‘bluffing’. I.e., all specify to
bet on the lowest one or two cards in some situation. In fact, bluffing is game
theoretically optimal, as already shown in [35].

Another striking observation was that the value resulting from the LP opti-
mization was +0.0625. When optimizing according to equation 2.5 , we minimize
eT p, which according to equation 2.4 is the payoff for player 1, which in the

35

Chapter 4 Experimental results 4.1 The Gala system

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Card received

P
ro

ba
bi

lit
y

of
 b

et
tin

g

Gambler strategy at start of game

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Card received

P
ro

ba
bi

lit
y

of
 b

et
tin

g

Gambler strategy after seeing a bet

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Card received

P
ro

ba
bi

lit
y

of
 b

et
tin

g

Dealer strategy after seeing a pass

LP normal optimized on x GALA paper

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Card received

P
ro

ba
bi

lit
y

of
 b

et
tin

g

Dealer strategy after seeing a bet

Figure 4.1: The three resulting policies

used Gala poker game is the dealer. Therefore this indicates that the value of
the game, is 0.0625 coin per game in the favor of the dealer.

4.1.3 Which are optimal policies?

As explained in the previous section solving the 8-card poker game using the
Gala system presented more questions. Out of three pairs of policies, which
are optimal? And, can it be correct that the value of the game is in favor of
the dealer? To answer these questions, the only viable approach seemed to do
simulations. For each pair of policies five runs of a million games were simulated
and the average payoff per deal was determined. By using the average outcomes
of different deals, we remove the effect of some deals appearing more frequent
then others, thereby influencing the average outcome.

The outcomes of these simulations are shown in figure 4.2a-c. Figure 4.2a
shows the results for policies found by our modified Gala implementation using
the new LP algorithm, which we will refer to as the ‘LP policies’. 4.2b shows
the ‘Gala paper policies’, i.e. those from [35]. As they were read from paper,
these are quite inaccurate. Figure 4.2c shows the results for the policies that
resulted from LP using the dual equation, i.e. ‘optimized on x’. And finally
4.2d shows the average over all simulations.

Although the average outcome for a particular deal is different for the three
policy pairs, the average over these different deals lie very close together. It
seems that if a combination of policies gives a higher payoff for a player for a
certain deal, this is compensated by a lower payoff in the same row/column.

36

4.1 The Gala system Chapter 4 Experimental results

dealers’ card

ga
m

bl
er

s’
 c

ar
d

Dealers’ expected profit for different deals

2 4 6 8

1

2

3

4

5

6

7

8
−1.5

−1

−0.5

0

0.5

1

1.5

Average over card combinations = 0.0625

(a) LP policies.

dealers’ card

ga
m

bl
er

s’
 c

ar
d

Dealers’ expected profit for different deals

2 4 6 8

1

2

3

4

5

6

7

8
−1.5

−1

−0.5

0

0.5

1

1.5

Average over card combinations = 0.062738

(b) GALA paper policies.

dealers’ card

ga
m

bl
er

s’
 c

ar
d

Dealers’ expected profit for different deals

2 4 6 8

1

2

3

4

5

6

7

8
−1.5

−1

−0.5

0

0.5

1

1.5

Average over card combinations = 0.062444

(c) LP policies optimized on x.

dealers’ card

ga
m

bl
er

s’
 c

ar
d

Dealers’ expected profit for different deals

2 4 6 8

1

2

3

4

5

6

7

8
−1.5

−1

−0.5

0

0.5

1

1.5

Average over card combinations = 0.062468

(d) Average over all simulations.

Figure 4.2: Outcomes for different policy-pairs, determined by simulating 5M
games

37

Chapter 4 Experimental results 4.2 Best-response play

µ σ

LP policies 6.2500e-02 6.7685e-04
Gala paper policies 6.2738e-02 5.0112e-04
LP policies optimization on x 6.2444e-02 2.2613e-04

Gala paper dealer vs LP gambler 6.2107e-02 4.1600e-04
Gala paper gambler vs LP dealer 6.2500e-02 4.9861e-04

LP gambler vs. ‘optimized on x’ dealer 6.2342e-02 4.0139e-04
LP dealer ‘optimized on x’ gambler 6.2644e-02 7.4739e-04

Over all simulations 6.2468e-02 5.1074e-04

Table 4.1: Mean (µ) and standard deviation (σ) of expected profit for the dealer
for the different simulations

For example look at the first row in figure 4.2 a and b: Although the gambler
has a higher payoff for card 2 and 3 in b compared to a, this is compensated by
a higher loss for cards 5-8.

The average over all deals is close to the +0.0625 coin/game predicted by
the LP algorithm, for all the policy pairs. This indicates that this is the true
value of the game.

Still these results didn’t allow us to point one pair of policies out as being the
optimal. Therefore we performed more verification by simulating games with a
dealer policy selected from one pair versus a gambler from another pair. Again
each simulation consisted of 5 runs of a million games. The results of this are
listed in table 4.1.

As the table shows, the results are very close for all the experiments, sug-
gesting that all policies are equally good. Moreover, the standard deviation
over all simulations is not significantly higher than those within the different
simulations. If some particular policies would actually be better than others,
one would expect the standard deviation for that the different experiments to
be lower than the over all standard deviation.

Therefore it is, in the author’s opinion, safe to conclude that all the found
policies are indeed optimal and that the value of the game is +0.0625 in favor
of the dealer.

4.1.4 Conclusions of verification

We found that the outcomes of the different policies are close enough to justify
that all are optimal. This means that the modifications, although they caused
finding different optimal policies, did no harm and we conclude that we can
safely use policies produced by the modified Gala implementation.

4.2 Best-response play

The procedure for calculating best-response policies as given in chapter 3 was
implemented. This section describes some performed experiments.

38

4.2 Best-response play Chapter 4 Experimental results

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Card received

P
ro

ba
bi

lit
y

of
 b

et
tin

g

Gambler strategy at start of game

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Card received

P
ro

ba
bi

lit
y

of
 b

et
tin

g

Gambler strategy after seeing a bet

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Card received

P
ro

ba
bi

lit
y

of
 b

et
tin

g

Dealer strategy after seeing a pass

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Card received

P
ro

ba
bi

lit
y

of
 b

et
tin

g
Dealer strategy after seeing a bet

POMDP GALA

Figure 4.3: Resulting POMDP policies. Obtained when trained against Nash
policies.

4.2.1 8-card poker as a POMDP

The first experiments were performed on 8-card poker. As for this game, optimal
policies and the corresponding value of the game was available, this made a good
test-bed for the best-response procedure.

We proceeded by calculating best-responses against the found Gala policies.
As expected, the POMDP approach was able the reach a payoff of −0.0625 and
+0.0625 for respectively gambler and dealer policies.

It turned out that when playing against the Nash-policies from Gala, there
are multiple best-response policies. This is in accordance with the fact that
a mixed policy is only a best response to a particular policy when all of the
pure policies it assigns positive support to are best-responses, as mentioned in
section 2.2.4. Figure 4.3 shows the resulting policies. For the cases that betting
and passing have the same expected value (corresponding with the indifference
between the different pure policies), the probability of betting is plotted as 0.5.

The figure clearly shows that when the Nash-policy specifies either bet or
pass with a probability of 1.0, then so does the POMDP policy. When the
Nash-policy specifies a both actions with some positive probability, the plot-
ted POMDP policy specifies 0.5, indicating indifference. In fact the Nash and
POMDP policies are very similar, only the latter is missing the particular ran-
domization that guarantees the security level payoff. The lacking of this ‘defen-

39

Chapter 4 Experimental results 4.2 Best-response play

sive capability’ becomes clear in the light of the assumption that the opponent’s
policy is fixed.

4.2.2 Alternating learning

After having experimentally established that the POMDP-approach to poker
games indeed provides a best-response policy, we performed some experiments
on alternating learning for 8-card poker. The idea is to start with a arbitrary
policy for one of the players, learn a best response to that policy, in turn take
the resulting policy and learn a best-response to that policy, etc.

It turned out that this didn’t lead to any kind of convergence. This result
is confirmed by theory [21], and tells us the game contains intransitive cycles.

An example of another game with such transitivities is Rock-Paper-Scissors.
As rock beats scissors, scissors beats paper and paper beats rock, clearly the
alternation of best-response policies will never converge.

40

Part II

Scaling up: reduction and

approximating methods

41

Chapter 5

Representing large state

spaces

In the previous part we showed that a partially observable card game can be
transformed to a POMDP. The assumptions that were necessary are that the
opponent is playing a fixed policy and that we know that fixed policy. In this
setting we can exactly solve the POMDP, yielding a best-response policy.

This approach overcomes one of the identified problems a Nash equilibrium
policy exhibits: being too conservative. The second problem remains. As men-
tioned, the POMDP representation described in section 3.3 has a state for every
decision node in the game-tree belonging to the modeled player. Therefore the
size of this representation is still of the same order as the full game-tree, which
for realistic games is intractable.

In this chapter, we present some methods for dealing with large state spaces.
First, the issue of representing state spaces for large MDPs and POMDPs is
covered. After which we will focus on reducing the size of the representation
through state aggregation. The idea is to reduce the effective size of the state
space by grouping together states that are equal with respect to some equiva-
lence notion as value and optimal action. In specific we focus on an approach
called model minimization.

5.1 State Representation

The size of state spaces for realistic problems is the main reason that MDPs
and POMDPs have not been frequently used to tackle them. As a consequence,
a lot of research has focused on dealing with these large spaces, especially for
the MDP framework. However, as noted in section 3.2, a POMDP can be seen
as an extension of a MDP, therefore most of these methods can be extended to
the POMDP framework as well.1

So far, we have presented the state space as an enumeration of all states,
S = {s1, s2, ..., sn}, this is called an extensional or explicit representation. It is
also possible to describe the state space without enumerating all of them, by

1For conciseness, in this chapter we will often use the term MDP to denote the general
family of Markov decision processes including the partial observable case.

42

5.1 State Representation Chapter 5 Representing large state spaces

factors denoted description

location Loc The robots location: (K)itchen or (O)ffice
hold coffee RHC Robot Holds Coffee?

coffee request CR Is there a unfilled coffee request?
tidy Tidy Is the office tidy?

actions denoted description

move M move from K to O or vice versa
pickup coffee PC pickup coffee
deliver coffee DC deliver coffee to the office

clean C make the office tidy again

events denoted description

mess Mess The office becomes a mess
request coffee Coffee! Someone wants: “Coffee!”

Table 5.1: The office robot’s world

talking about properties of states or sets of states. Such representations are
is called intensional or implicit representations. Often, the full state space is
thought to be the Cartesian product of several discrete properties or factors,
for this reason the term factored representations is also commonly used. A big
advantage of implicit representations is that can be much smaller.

Very much related to implicit representations are abstraction and aggrega-
tion. Abstraction is the process of removing properties of (particular) states
that are deemed irrelevant or of little influence. The term aggregation refers to
the process of grouping or aggregating states that are similar according to some
equivalence notion. The resulting aggregate states can then be used to represent
the grouped states in a reduced model.

In this section, first factored representations will be illustrated in more detail.
Next, methods working directly on these factored representations will be briefly
covered. After that, we will treat methods that separate model reduction from
solving. In the last subsection we will mention some other approaches of dealing
with large state spaces.

5.1.1 Factored representations

As mentioned, factored representations are based on the idea that a state can
be described with some properties or factors. Let F = {F1, F2, ..., Fk} be the
set of factors. Usually the factors are assumed to be boolean variables and easy
extention to the non-boolean case is claimed.2

Now, a state is represented by an assignment to the k factors and the state
space is formed by all possible assignments. This immediately illustrates the
fact that a factored representation is typically exponentially smaller than the
full state space.

Example 5.1.1 We will give a simplified example from [8] to illustrate the

2In the author’s opinion, this extention may very well be possible, but often is not ‘easy’
and far from clear.

43

Chapter 5 Representing large state spaces 5.1 State Representation

Figure 5.1: On the left, the 2TBN for action move, M, is shown. Also shown are
the CPTs for Loc and Tidy. For Tidy a decision tree representation is illustrated
on the right, indicating the probability Tidy is true after the action.

concept. Suppose we are designing a robot to help in out an office environment.
Its tasks are to deliver coffee when requested and to tidy the office if it’s messy.

The relevant state variables or factors are the robots location, whether it
holds coffee, whether there is a coffee request and whether the office is tidy or
not. Of course the robot will have several actions at its disposal: move from
the kitchen to the office and vice versa, pickup and deliver coffee and clean the
office.

Finally in his world there are two events that can take place, changing the
state of the world: the office can become a mess and someone in the office can
call for coffee. Table 5.1 summarizes ‘the office robot’s world’. ¤

In order for this presentation to be usable, we need a way to represent the
transition probabilities, the rewards and, in case of partially observability, the
observation probabilities. Also, we would like to find a way to do this without
explicitly enumerating all the combinations.

A way of doing this is by using two-stage temporal Bayes nets (2TBNs)
[10, 8]. A 2TBN consists of the set of factors F at time t and the same set at
time t + 1 and represents the influence of an action on the factors. Figure 5.1
depicts the 2TBN for the action move, M. The figure also depicts the conditional
probability table (CPT) for the post-action factors Loc and Tidy. Under the
action move Loc at time t + 1 is only dependent on Loc before the action. The
robot will successfully move to from the kitchen to the office (and vice versa)
with a probability of 90%. The variable Tidy at t+1 depends on two pre-action
factors: Tidy and RHC. When Tidy is false before move, it will remain false
after the move; moving does not get the office cleaner. When the office is tidy,
there is a standard probability of 5% that the office becomes a mess by the
people using it. However, when the robot moves while it holds coffee, there is
a chance of spilling the coffee, increasing the probability of the office not being
tidy after the move to 20%.

The 2TBN from this example contains no arrows between the post-action

44

5.1 State Representation Chapter 5 Representing large state spaces

factors. Such networks are called simple 2TBNs. When there are connections
between the post-action factors, this means they are correlated. In such a case
we speak of general 2TBNs. General 2TBNs require a more careful approach,
for more information we refer to [7] and [8].

When using a 2TBN for each action we can fully represent the transition
model compactly. Still, when the number of relevant pre-action factors increases,
the CPTs grow exponentially. To counter this, the CPTs can often be repre-
sented more compactly using decision trees. For example, figure 5.1, also shows
a decision tree for the CPT for Tidy. It illustrates that whether the robot has
coffee is not relevant when it is already a mess.

As described in [29] further reduction in size can be gained by using Algebraic
Decision Diagrams (ADDs) instead of decision trees. ADDs are an extention on
ordered binary decision diagrams (OBDDs) that have been successfully applied
to reduce the state space in the field of system verification. Other examples of
this approach are given in [55, 8].

Up to now the explanation focused on representing the transition model in a
factorized way. The extension to rewards and observation is quite simple though.
For rewards we can define a conditional reward table (CRT) for each action.
When dealing with POMDPs the same can be done for observations. In [19]
these are referred to as complete observation diagrams. Both the rewards and
observations can also be represented compactly using decision trees or ADDs.

In this section we briefly outlined factored representations based on 2TBNs.
There are also other approaches such as using probabilistic STRIPS represen-
tation. For more information we refer to [8].

5.1.2 Methods for factored MDPs

Above we discussed how to compactly represent large MDPs, but we did not
discuss how to solve these MDPs represented in such a way. Here we will give
a brief overview of methods working directly on factored representations.

As we saw the reward function as can be represented using a decision trees or
ADDs. Also note that the reward function specifies the initial value function, V1.
This has lead to various approaches that perform the bellman backup directly
on these data structures. Examples are structured successive approximation
(SSA) and structured value iteration (SVI). For a comprehensive overview, we
refer to [8, 9].

The referred works focus on MDP, but there are also some approaches specif-
ically for POMDPs. One example is a factored approach for POMDPs based on
the incremental pruning algorithm [11] described in [28] and an approximating
extension to it presented in [19].

5.1.3 Finding reduced models

In the previous subsection we mentioned some methods that solve factored
MDPs directly. A different approach is to try and find a smaller model through
state aggregation. This reduced model explicitly represents (enumerates) the
aggregate states, which in turn implicitly represent parts of the original state
space. The aggregate states correspond to a partition of the original state space.
If the reduced model is small enough it can be solved exactly and will induce a
policy for the original MDP.

45

Chapter 5 Representing large state spaces 5.1 State Representation

In [16, 24] a method model minimization is proposed, that guarantees the
optimal policy for the reduced model will induce an optimal policy for the
original MDP. This approach is extended in [17, 33] to find further reduced
models that induce an approximately optimal policy.

The advantage of this line of approach is that once the reduced model is con-
structed, we can use standard solving methods that are well understood. Also,
when the parameters of the model change (but not the structure of the partition
inducing the reduced model), we do not need to recalculate the reduction. Fur-
thermore, in [24] the authors discuss equivalences between this approach and
methods that operate directly on factored representations giving deeper insight
in how these methods work. We will treat the model minimization method in
more detail in section 5.2.

5.1.4 Other approaches

Of course, there are a lot of other approaches as well, some based on the above
approaches. In [20] a non-factored approach is presented using aggregate states
in the pruning phase of the incremental pruning algorithm it is based on. The
method, however, does rely on an explicit representation of the full state space
for performing the bellman backup.

A factored approach for POMDPs using basis functions to represent the
value function is presented in [26]. It is based on the assumption of additively
separable rewards, that is the assumption that different factors of the state
give different components of the reward. The total reward is the sum of these
components. The idea is that if rewards can be modeled additively, so can the
value functions.

Another family of methods for dealing with large (PO)MDPs are based on
sampling approaches. In section 3.2.3 two of these, PERSEUS [54] and PE-
GASUS [41] were already mentioned. The former is based on sampling belief
points that are typically encountered. Then a value function and thus policy is
calculated based on these belief points. The latter is based on the view that the
value of a state can be approximated by sampling a small number of trajecto-
ries through the state. PEGASUS combines this perspective with policy search.
Work based on a similar view is presented in [31, 32].

A final direction of recent work is that given in [46, 47]. Here the belief
space is compressed in such a way that information relevant to predict expected
future reward is preserved. This compression is combined with bounded policy
iteration to give the VDCBPI algorithm they propose for large POMDPs.

The alternative approaches listed in this section are also relevant in the
context of poker games and further research in this direction is required. Es-
pecially the trajectory sampling approaches look promising, as these guarantee
performance bounds independent of the number of states. We performed a few
experiments using PERSEUS for poker games, but this didn’t give immediate
results. Because the belief points are sampled randomly, relatively few beliefs
of games reaching showdown are sampled. Further investigation along this trail
might include methods that interleave sampling and policy calculation. I.e., in
a subsequent iteration, beliefs are sampled using the policy from the previous
iteration.

46

5.2 Model Minimization Chapter 5 Representing large state spaces

5.2 Model Minimization

Although the intuition of state aggregation is clear, formalizing it leads to the
introduction of quite a few concepts. Also, care has to be taken when grouping
states. In particular, when aggregating arbitrary states, the resulting aggregate
states and transition model will violate the Markov property.

In this section we will first formalize state aggregation by introducing the
various concepts. An important concept is that of equivalence notion. In par-
ticular, we will elaborate on the equivalence notion of stochastic bisimilarity,
which is the central concept in model minimization [16, 24]. By showing that
this state aggregation method preserves the Markov property, an intuition be-
hind its working is given. After that we turn our attention on actually computing
reduced models using stochastic bisimilarity and discuss some issues relevant in
this procedure.

5.2.1 Aggregation and partitions

As mentioned state aggregation reduces the effective size of the state space. The
result of aggregation is a partition, P , of the state space S = {s1, ..., sn} that
groups states together in aggregate states or blocks.3 I.e., P = {B1, B2, ..., Bm},
where the blocks Bi are disjoint subsets of S. The block Bi of P to which s
belongs is also denoted s/P .

A partition P ′ is a refinement of P if each block of P ′ is a subset of a block
of P . If one of its block is a proper subset, P ′ is finer than P. The other way
around, P ′ is called a coarsening of P if each block of P ′ is a superset of some
block(s) of P and P ′ is coarser than P if it is a coarsening of P and one of its
blocks is the union of some blocks in P .

In order to perform the aggregation an equivalence notion is used to deter-
mine what states are identical for the purposes under interest. An equivalence
notion in fact is an equivalence relation, E, that induces a partition, P , of the
state space: P = S/E. We use s/E to denote the equivalence class of s under
E. This equivalence class corresponds with the block s/P .

From an equivalence relation E and its induced partition S/E, we can con-
struct a reduced MDP. We will use M/E to denote this MDP that is defined
over the aggregate states.

5.2.2 Equivalence notions

[24] first introduces two simple equivalence notions. The first is action sequence
equivalence. Two states i ∈ M and j ∈ M ′ action sequence equivalent if and
only if for all possible sequences of actions, a1, a2, ..., an, of any length n that
start in i and j, the distribution over reward sequences, r1, r2, ..., rn, are the the
same. This also applies for two states in the same MDP, i.e. when M = M ′.

It is also shown that this notion is inadequate as it is not able to discriminate
between states with a different optimal value. This is because a policy for a
MDP defines a conditional plan, meaning it can respond to what transitions are
actually taken, while an action sequence can be seen as an unconditional plan.

3The term ‘block’ is used to refer a group of states in the partitioning process, while the
term ‘aggregate state’ is typically used to denote a block being used as state in a reduced
MDP.

47

Chapter 5 Representing large state spaces 5.2 Model Minimization

This observation immediately leads to the second equivalence notion, namely
optimal value equivalence. Under this notion, two states s ∈ M and t ∈ M ′

equivalent if they have the same optimal value. However, because the optimal
value of a state does not convey information regarding the dynamics at that
state, this notion is also found inadequate.

In [24] the authors pose that an adequate equivalence notion should be a
refinement of both action sequence equivalence and optimal value equivalence
and introduce stochastic bisimilarity for Markov decision processes.

Definition 5.2.1 Let M = 〈S,A, T,R〉 , M ′ = 〈S′, A, T ′, R′〉 be two MDPs
with the same actions. let E ⊆ S×S ′ be a relation. E is a stochastic bisimulation
if each s ∈ S (and t ∈ S′) is in some pair in E, and if for all pairs E(s, t), the
following holds for all actions a:

1. R(s/E) and R′(t/E) are well defined and equal to each other.

2. For states s′ ∈ M and t′ ∈ M ′, such that E(s′, t′) then P (s′/E|s, a) =
P (t′/E|s, a).

Two states s ∈ M and t ∈ M ′ are stochastically bisimilar if there is a
stochastic bisimulation that relates them. Again, this definition also applies
when M = M ′ and therefore for two states in the same MDP.

In [24] the authors prove many properties of stochastic bisimulations. We
will summarize some of them in the following theorem:

Theorem 5.2.1 Stochastic bisimilarity restricted to the states of a single MDP
is an equivalence relation that is a refinement of both action sequence equivalence
and optimal value equivalence. Moreover, for any equivalence relation E that is
a stochastic bisimulation, an optimal policy for M/E induces an optimal policy
for the original MDP M .

Proof For the proof we refer to [24]. We provide an intuition in section 5.2.3
and 5.2.4. ¤

5.2.3 The Markov property

This subsection shows that the Markov property may be violated when per-
forming aggregation on arbitrary states. Assume the current state is s ∈ Bi.
For a particular action a, we have that the probability of transferring to a state
in Bj when performing that action is given by:

P (Bj |s, a) =
∑

s′∈Bj

P (s′|s, a). (5.1)

Let p(·) be a distribution over all states in Bi. We refer to this as the
within block distribution of Bi and will also denote it pBi

(·) if there is a need
to disambiguate. This allows us to define the transition probability between Bi

and Bj in the following way:

P (Bj |Bi, p(·),a) =
∑

s∈Bi

p(s) · P (Bj |s, a)

=
∑

s∈Bi

∑

s′∈Bj

p(s) · P (s′|s, a). (5.2)

48

5.2 Model Minimization Chapter 5 Representing large state spaces

S1

S2

S3

Block jBlock i

.6

.6

.4

.2

Figure 5.2: A partition satisfying equation 5.5.

This shows that the transition between blocks is depend on the distribution
p(·). This distribution, however, can in general depend on the full history of
the (PO)MDP. The result is that the transition to a next block doesn’t solely
depend on the current block, but potentially on the full history, breaching the
Markov assumption.

For the reward4 and observation model we can derive in a similar way:

R(Bi, p(·), a) =
∑

s∈Bi

p(s) · R(s, a) (5.3)

and, for a certain observation o:

P (o|Bi, p(·), a) =
∑

s′∈Bi

p(s′) · P (o|s′, a). (5.4)

Which show that the reward and observation model depend on the full his-
tory in the general case.

5.2.4 Markov requirements

After having observed that arbitrary state aggregation in general does not pre-
serve the Markov property, we will now examine under what conditions this
property is preserved and show how this relates to stochastic bisimilarity.

To ensure that the transition model remains Markovian, we need to ensure
that for all blocks Bi, Bj and actions a the transition probability, P (Bj |Bi, a),
is independent of the state distribution within the blocks. A condition that will
satisfy this requirement is the following:

Theorem 5.2.2 Given a partition P . If for all Bi, Bj ∈ P and all actions a it
holds that:

∀s1,s2∈Bi

∑

s′∈Bj

P (s′|s1, a) =
∑

s′∈Bj

P (s′|s2, a)

 , (5.5)

4As mentioned in chapter 3, there are multiple ways to specify the reward and observation
model: R(s, a), R(s), O(o|s′, a), O(o|s). Although the POMDP models we consider can be
expressed with the simpler forms and that is also used in [24], we will use the more general
forms in this chapter.

49

Chapter 5 Representing large state spaces 5.2 Model Minimization

then the transition model for the reduced model induced by partition P sat-
isfies the Markov assumption.

Proof Let P (Bj |Bi, a) ≡
∑

s′∈Bj
P (s′|s1, a) for an arbitrary s1 ∈ Bi. Substi-

tuting in equation 5.2 gives:

P (Bj |Bi, p(·),a) = P (Bj |Bi, a)
∑

s∈Bi

p(s)

= P (Bj |Bi, a)

which is independent of the history and therefore satisfies the Markov as-
sumption. ¤

The condition is illustrated in figure 5.2. Note that it is exactly this condition
that is satisfied by point 2 in definition 5.2.1.

Next, we pose a condition that guarantees that the reward model that does
not depend on the within block distribution and thus on the history.

Theorem 5.2.3 If for all blocks Bi and all actions a, it holds that:

∀s1,s2∈Bi
R(s1, a) = R(s2, a).

That is, the states within all blocks have the same immediate reward with
respect to all actions. Then the reward model is not dependent on the within
state distribution.

Proof Let c1 be the immediate reward for the all states in some block Bi and
some action a, substitution in (5.3) gives:

R(Bi, p(·), a) =
∑

s∈Bi

p(s) · c1

= c1

concluding the proof. ¤

This says as much as “when taking an action from a state in Bi the reward
is always the same, no matter what the actual state is” and corresponds with
point 1 in definition 5.2.1.

The fact that definition 5.2.1 implicates theorems 5.2.3 and 5.2.3 means
that a reduced MDP M/E, where E is a stochastic bisimilation, will satisfy the
Markov property. This in turn implicates that any actions taken or rewards
received do not depend on the history and thus provides an intuition why the
action dynamics of such a reduced model are preserved and theorem 5.2.1.

Although definition 5.2.1 focuses on MDP and therefore does not mention
the observations, we will also give a similar condition for the observation model.
This will express as much as “when reaching a state in Bi the probability of
a particular observation is fixed and doesn’t depend on exactly what state is
reached”.

Theorem 5.2.4 If for all blocks Bi all observations o and all actions a, it holds
that:

∀s′

1
,s′

2
∈Bi

P (o|s′1, a) = P (o|s′2, a).

Then the observation model is not dependent on the within state distribution.

50

5.2 Model Minimization Chapter 5 Representing large state spaces

Proof Let c2 be the probability P (o|s′1, a) for an arbitrary s′1 ∈ Bi substitu-
tion in (5.4) gives the proof in the same way as above. ¤

5.2.5 Computing stochastic bisimilarity

Theorem 5.2.1 tells us any stochastic bisimulation can be used to perform model
reduction by aggregating the states that are equivalent under that bisimulation.
The smallest model is given by the coarsest bisimulation and is referred to as
the minimal model.

In [24] two type of approaches are given to find the coarsest bisimulation.
The first type is by finding the greatest fixed point of an operator I. However,
as this is done by iteratively applying I(E) starting on E0 = S × S, this type
of approach is infeasible for very large state spaces.

The other, more interesting approach, is based on defining a property called
stability that can be tested locally (between blocks), but assures bisimilarity
when it holds globally.

Definition 5.2.2 A block Bi ∈ P is stable with respect to another block Bj

if and only if for all actions a, the reward R(Bi, a) is well defined and it holds
that:

∀s1,s2∈Bi
P (Bj |s1, a) = P (Bj |s2, a).

A Block Bi ∈ P is called stable when it is stable with respect to all blocks
Bj ∈ P .

When all blocks in partition P are stable, then P is called homogeneous5.
In this case, the equivalence relation E that induces this partition is also called
stable and it is guaranteed to be a stochastic bisimulation.

Note that the formula in definition 5.2.2 is closely related to equation 5.5.
The difference is that the latter additionally requires the formula to hold for all
blocks B ∈ P . We therefore conclude that if a partition P is homogeneous, it will
satisfy the requirement of theorem 5.2.2 and therefore the transition model of a
reduced model based on this partition will not violate the Markov assumption.

The requirement that ‘the reward R(Bi, a) is well defined’ is related to the-
orem 5.2.3 in the same way. Therefore, the reward model of reduced model
M/E will respect the Markov assumption when the partition S/E it induces
is homogeneous. In [16] a definition of stability is given that does not include
the requirement on rewards. In this case, the model minimization algorithm
will need to be extended to guarantee that the requirement from theorem 5.2.3
holds.

To compute the coarsest homogeneous partition and thus the minimal model,
an operation P ′ = SPLIT (B,C, P) is used. SPLIT (B,C, P) takes a parti-
tion P and returns a partition P ′ in which block B is replaced by sub-blocks
{B1, ..., Bk} such that all Bi are maximal sub-blocks that are stable with respect
to block C.

The model minimization algorithm shown on the following page works by
iteratively checking if there are unstable blocks and splitting them until all
blocks are stable.

5Precisely stated, P possesses the property of stochastic bisimulation homogeneity.

51

Chapter 5 Representing large state spaces 5.2 Model Minimization

Algorithm 1 Model minimization

P = {S} //trivial one-block partition

While P contains blocks B, C s.t. B is not stable w.r.t. C

P = SPLIT(B,C,P)

end

return P //coarsest homogeneous partition

As mentioned, in [16] a stability notion is used that does not include any
requirement on the rewards. We will call this T-stability to emphasize it only
poses a requirement on the transition model. The version of SPLIT making use
of T-stability will be denoted SPLIT -T . We can adapt the model minimization
algorithm to use SPLIT -T by changing the initial partition it works on.

[16] defines the immediate reward partition, Pir, to be the coarsest partition
for which the requirement of theorem 5.2.3 holds. I.e., it groups together all the
states that have the same rewards for all actions. As the requirement of theo-
rem 5.2.3 holds for the immediate reward partition, clearly it should also hold
for any refinement of that partition. Also, repeated application of SPLIT -T
on a partition P is guaranteed to yield a partition that is a refinement of P .
Therefore it can be concluded that a modified version of model minimization
using SPLIT -T applied to the immediate reward partition yields the coarsest
homogeneous partition that satisfies the requirement of theorem 5.2.3.6

So far this section has focused on model minimization for fully observable
MDPs. Now we turn our attention to partial observable MDPs. The gen-
eralization of model minimization to POMDPs given in [16, 24] is based on
guaranteeing that the requirement stated in theorem 5.2.4 holds. It is done in
the same way as shown above for the requirement on the reward.

Let the observation partition, Po, be the coarsest partition that satisfies the
requirement of theorem 5.2.4, i.e., the partition that groups together all the
states that have the same observation probabilities for all actions.

Again, any refinement of the observation partition will also satisfy the re-
quirement of theorem 5.2.4. Now let the initial partition, P , be the coarsest
refinement of both the observation partition and the immediate reward parti-
tion, which we calculate as follows:

P = {Bi ∩ Bj | Bi ∈ Pir, Bj ∈ Po}

This initial partition satisfies the requirements of both theorem 5.2.3 and
5.2.4. Now performing model minimization by repeatedly applying SPLIT -T
will result in the coarsest homogeneous partition and it will satisfy the require-
ments of theorems 5.2.3, 5.2.4 and 5.2.2.7 The resulting algorithm is shown on
the next page.

Another approach would be to incorporate the requirement of theorem 5.2.4
in definition 5.2.2. That is, by adding “and the observation probability P (o|Bi, a)

6When using the notion of T-stability, the notion ‘homogenous’ also doesn’t include
the requirement on the rewards within blocks anymore. (Think of ‘homogeneous’ as ‘T-
homogeneous’ in this context.)

7The fact that it satisfies the requirement of theorem 5.2.2 follows trivially from the fact
that model minimization produces a homogenous partition.

52

5.2 Model Minimization Chapter 5 Representing large state spaces

Algorithm 2 Model minimization for POMDPs

Pr = immediate reward partition(S)

Po = observation partition(S)

P = coarsest refinement(Pr, Po)

While P contains blocks B, C s.t. B is not T-stable w.r.t. C

P = SPLIT(B,C,P)

end

return P //coarsest homogeneous partition

is well defined for all observations o and actions a”. Using this definition of sta-
ble it is possible to use the normal model minimization algorithm (shown on
the facing page).

5.2.6 Complexity and non-optimal splitting

The model minimization algorithm presented in the last paragraph runs in time
polynomial of the resulting number of blocks, assuming that SPLIT and the
stability test can be computed in constant time.

Unfortunately these assumptions generally do not hold and therefore model
minimization problem has been shown to be NP-hard in general. One of the
problems is that to represent arbitrary partitions, blocks have to be represented
as mutually inconsistent DNF formulas over the factors of the MDP. Manipu-
lating these formulas and maintaining the shortest description of the blocks is
hard. Although this complexity result seems very negative, this gives worst-case
behavior. Moreover, even if finding a reduced model is costly in terms of time,
it will probably still be preferable over solving the original MDP, as that might
be costly in terms of space.

To reduce the cost of manipulating and maintaining block descriptions,
[16, 24] introduce other block descriptions. These alternative partition rep-
resentations are cheaper to manipulate, but less powerful than unconstrained
DNF formulas. The result is that not all blocks and thus partitions can be
represented.

To deal with this, a non-optimal splitting procedure, SPLIT ′, is introduced.
Intuitively SPLIT ′ needs to split ‘at least as much’ as the optimal SPLIT ,
to guarantee a homogeneous partition as result. Formally, SPLIT ′ is called
adequate if SPLIT ′(B,C, P) is always a refinement of SPLIT (B,C, P).

Model minimization making use of an adequate SPLIT ′ operation is referred
to as adequate minimization. Clearly, adequate minimization typically doesn’t
find the minimal model, because it can’t represent it. From this perspective, a
tradeoff is made between ease of computation and the reduction that is achieved
in the resulting reduced model.

53

Chapter 6

Poker & aggregation

In the previous chapter various aspects of dealing with MDPs with large state
spaces were covered. In this chapter we will apply some of the methods men-
tioned to poker games. Specifically, the theory of aggregation is related to poker
games.

We show that the reduction gained by direct application of model mini-
mization for POMDPs to poker games is bounded and argue that this approach
therefore is of less practical value for these type of games. In our analysis we also
identify the bottleneck and suggest a direction for further research to alleviate
this problem.

6.1 Implicit states

As discussed in section 5.1 implicit or factored representations are often used to
describe large states spaces. Here, we will introduce factored representations for
poker games. To characterize a state in poker completely, we need to know: the
sequences of actions taken, the private card(s) of both players and, if applicable,
the first, second, third, etc. set of public (table) cards.

For example, for 8-card poker, we would get the following state representa-
tion:

factor description value

BS bet-sequence ‘01’
PC1 private card of player 1 7
PC2 private card of player 2 1

Table 6.1: Implicit state representation for 8-card poker.

which describes a state for gambler in which he observed a bet from the
dealer (1) after passing (0) himself at the start of the game.

It is clear that there are some restrictions to the assignment of the vari-
ables, e.g. a state that would assign the same card to PC1 and PC2 would not
correspond to a true state of the game.

Of course, the goal of an implicit representation is that it allows for reason-
ing about groups of states, the blocks for state aggregation, without explicitly

54

6.2 Bisimilarity for poker Chapter 6 Poker & aggregation

factor value

BS ‘01’
PC1 7-8
PC2 1-5

factor value

BS ‘01’
PC1 7 ∨ 8
PC2 1 ∨ 5

Table 6.2: Two ways of representing blocks for 8-card poker.

representing them. As an example, table 6.2 shows two ways we could represent
blocks for 8-card poker.

While the first representation is simpler, it is less powerful as it cannot
represent blocks that contain states with non-adjacent cards.

6.2 Bisimilarity for poker

In the previous section some ways of implicitly representing states and blocks
were discussed. So now we will investigate how we can use the methods from
chapter 5 to find a reduced model for poker games.

First, in section 6.2.1 we will introduce an example poker game called 1-
action poker. This will be used in section 6.2.2 to show that the reduction
in size gained by direct application of model minimization for POMDPs as
proposed in [24] is bounded. The reason is that this approach makes use of the
requirement from theorem 5.2.4 on the observation probabilities as explained in
section 5.2.5. We will argue that this bound is prohibitive for direct application
to real-life poker variants.

6.2.1 1-action poker

Here we will introduce 1-action poker. This is also a 2-player poker variant
player with a deck of 8 cards: 1–8. Both players have to pay 1 coin ante after
which they receive 2 private cards each. In contrast to 8-card poker, in the
betting round, the players do not have additional coins to bet. I.e the player
can only do one action: check (0).

In 1-action poker, there are three ‘bet’-rounds. At the end of the first two of
these bet-rounds, a public card is dealt, face-up, on the table. After the third
and last bet-round, the players show their cards and the player with the highest
private card wins.

This game is not very entertaining, but is useful for our explanation and is
closely related to real hold-em poker variants. The fact that the player with
highest private card wins, means that the table cards do not influence the out-
comes, but only serve as a clue.1

Figure 6.1 shows a part of the game-tree of 1 action poker. Indicated is that
the game consists of 3 rounds, at each of which both player take one action
(‘check’). Because the players can only take this one action, the only branching
points are the chance moves in the game. The first corresponding with the

1This is useful for clarity and does not affect the generality: the game could be altered to
let the table cards effect the outcomes as is usual in poker (pair, straight, etc.), although this
would also typically mean that the game should be played with a multi-suited deck.

55

Chapter 6 Poker & aggregation 6.2 Bisimilarity for poker

-1 -1 -1 -1 +1 +1 +1 +1

1,2/3,4 1,4/2,3

Start

66
...

...

Round

1

2

3

...

...

{P1/P2}

...

...

P1 node

P2 node

chance node

other chance
moves

{TC1}

{TC2}

7 8

Figure 6.1: A part of the game-tree of 1 action poker.

dealing of the private cards, the ones after that corresponding with the turning
of the public table cards.

Table 6.3 shows a factored state representation for a POMDP for the first
player (gambler) in 1-action poker. The valid values for factors PC1, PC2, TC1
and TC2 are in fact subsets of the deck, as is indicated by the brackets.

factor description

BS the bet-sequence
PC1 private cards player 1
PC2 “ 2
TC1 table card before round 2
TC2 “ 3

factor value

BS ‘00’
PC1 {7,1}
PC2 {5,4}
TC1 {3}
TC2 -

Table 6.3: The implicit representation for 1-action poker and an example state
for player 1 (gambler). BS ‘00’ means both players played action ’0’, therefore
it is the first player’s move again. At this point TC1 is revealed and round 2
starts. TC2 is unassigned at this phase of the game.

56

6.2 Bisimilarity for poker Chapter 6 Poker & aggregation

6.2.2 Optimal split for 1-action poker

Here we will use 1-action poker to make some claims on output produced by
the model minimization algorithm as presented in section 5.2.5.2 The focus
will be on the influence of requirement from theorem 5.2.4 on the observation
probabilities.

Lemma 6.2.1 When model minimization for POMDPs applied to a POMDP
for 1-action poker results in partition P . Then it holds that, for all blocks Bi ∈ P
and for all states s1, s2 ∈ Bi, BS(s1) = BS(s2)

Proof Notice that, there are only three bet-sequences in the game at which
a player takes an action. Let’s call these bsi with 1 ≤ i ≤ 3. Because there is
only one action the players can take, the bet-sequence changes deterministically.
Also, all end-states have the same bet-sequence (‘00,00,00’), which we will call
bsend.

Now, suppose, BS(s1) 6= BS(s2). That means that the bet-sequence of one
of the states has more steps to go to reach bsend. Let’s denote this BS(s1) >
BS(s2) and assume it holds. In this case there are two possibilities: either 1)
BS(s2) = bsend or 2) it is not.

In case 1) s2 is an end-state and s1 is not. This means that R(s1) 6= R(s2),
however this is in contradiction with the result that model minimization calcu-
lates a homogeneous partition P .

In case 2) BS(s1) and BS(s2) have deterministic successors: BS(s′1) and
BS(s′2) and it holds that BS(s′1) > BS(s′2). Again, there are two cases (s′2 is
an end-state and s′1 is not), inductively giving that s′1 and s′2 cannot be in the
same block. This in turn gives that block Bi is not stable, again contradicting
the result that model minimization calculates a homogeneous partition P . ¤

Intuitively, this lemma means that all blocks in the partition resulting from
model minimization are ‘located within the bet-rounds’.

Definition 6.2.1 The assigned cards specified by a state, s, is the set

AC(s) = PC1 ∪ PC2 ∪ TC1 ∪ TC2.

Lemma 6.2.2 When model minimization for POMDPs applied to a POMDP
for 1-action poker results in partition P . Then it holds, for all blocks Bi ∈ P
and for all states s1, s2 ∈ Bi, that:

1. For all observations, o, P (o|s1) = P (o|s2).

2. If block Bi is not located in the last bet-round, then AC(s1) = AC(s2).

Proof 1. Follows trivially from the fact the model minimization for POMDPs
satisfies the requirement from theorem 5.2.4. In the remainder we prove 2.

Suppose AC(s1) 6= AC(s2). Since Bi is not located in the last bet-round,
there will be another card observation. Now let c1 ∈ AC(s1)\AC(s2) be a card
assigned by s1 but not by s2 and o1 be the observation of that card. This means
that there is a transition from s2 to a state s′2 ∈ Bj such that P (o1|s

′
2) > 0. For

s1 there is not such a transition, because:

2Note that because there is only 1 action we will omit requirements ‘for all actions’ and
use R(s) and P (o|s) in most of this explanation.

57

Chapter 6 Poker & aggregation 6.2 Bisimilarity for poker

• by 1. P (o1|Bj) > 0 for all states in Bj , and

• as s1 already assigns card c1, there is no state s′1 it can transfer to such
that P (o1|s′1) > 0.

Therefore 0 = P (Bj |s1) 6= P (Bj |s2) > 0. Again, this contradicts that P is a
homogeneous partition. ¤

Using the lemmas above, we will show that the requirement on the observa-
tion model for use in optimal SPLIT for POMDPs severely limits the maximal
obtainable reduction.

To show this we first need to define some more concepts. First, let a round
be a stage in the game as indicated in figure 6.1. Round i, indicates that there
are i− 1 actions taken by the protagonist agent. As seen already, because there
is only one action, a round is associated with a specific bet-sequence. E.g. round
0 corresponds with the start of the game and round 4 with the end of the game:
bet-sequence ‘00,00,00’. Also, let the d be the size of the deck. Then we can
define:

• nac(i) - the number of assigned cards at round i.

• noc(i) - number of observed cards when reaching round i.

• nuac(i) = d!
(d−nac(i))! nac(i)!

- denotes the number of unique assigned card

combinations at round i. This is the number of unique nac(i) subsets of
a d-element set. E.g. at round 2 a total of five cards have been assigned
(2 · 2 private cards, plus one table card). So nuac(2) = 8!

3!5! = 56.

• nspuac(i) - the number of states per unique card combination at round i
. As there is only one bet-sequence per round, this is the number of ways
the nuac(i) cards can be assigned. E.g. nspuac(2) = 5!

2!2!1! = 30.

• s(i) = nuac(i) · nspuac(i) - the number of states at round i.

• nopuac(i) = nac(i)
(nac(i)−noc(i))!noc(i)!

- the number of possible observations per

unique assigned card combination when reaching round i. E.g. when
reaching round 2 there are nuac(2) = 56 unique card combinations, and
they assign nac(2) = 5 cards. When reaching one of these, we just observed
a single table card (= noc(2)), so we could have 5 observations.

Theorem 6.2.1 Let b(i) be the number of blocks, resulting from model mini-
mization for POMDPs as given in section 5.2.5, that lie within round i. Also
let nopuac(i) and nspuac(i) be as defined above. Then for i ≤ 2, i.e. blocks not
located in the last bet-round,

bmin(i) = nuac(i) · nopuac(i)

is a lower-bound for b(i) in 1-action poker.
As a consequence, the reduction in size obtainable for states in these rounds

is also bounded by:

b(i)

s(i)
≥

bmin(i)

s(i)
=

nopuac(i)

nspuac(i)
.

58

6.2 Bisimilarity for poker Chapter 6 Poker & aggregation

round, i noc(i) nac(i) nuac(i) nspuac(i) nopuac(i)
nopuac(i)
nspuac(i)

1 2 4 70 6 6 1
2 1 5 56 30 5 0.167
3 1 6 28 180 6 n/a

Table 6.4: Lower bounds for the maximal reduction obtainable with model
minimization for POMDPs per round. The quantities relevant for determining
this are also shown. For round 3, since it’s the last round, the bound does not
apply.

Proof We have a couple of things to prove. First we need to prove that all
blocks lie within the bet-rounds, so that b(i) is well-defined. This follows from
lemma 6.2.1 together with the observation that each bet-sequence determines
the round.

Next, we need to show that b(i) is bounded by bmin(i) for i ≤ 2. From
lemma 6.2.2 it follows that each block Bi must assign the same cards to all
states it clusters. Therefore there must be at least nuac(i) blocks. From the
same lemma it follows that the observations for all states in a block must be
equal. Therefore, bmin(i) = nuac(i) · nopuac(i) must be a lower bound for b(i).

Finally, we need to observe that:

bmin(i)

s(i)
=

nuac(i) · nopuac(i)

nuac(i) · nspuac(i)
=

nopuac(i)

nspuac(i)
,

immediately giving the bound on obtainable reduction. ¤

Table 6.4 shows the maximal reduction obtainable per round for 1-action
poker and the involved quantities. A striking observation is that for the first
round no reduction is obtained at all. This can be explained by noticing that for
all states in a set of states that assign the same cards, the observation received
is different. This is also illustrated in figure 6.1.

6.2.3 Bound implications

In the previous section a lower bound on the maximally obtainable compression
using model minimization for POMDPs as presented in section 5.2.5 was derived
for 1-action poker. For this derivation, only the requirement on the observation
model as specified by theorem 5.2.4 was considered. The actual reduction will
be lower as also the requirement on the reward model must be satisfied.3

Now we will argue that this bound indicates that the presented method of
model minimization for POMDPs is not suitable for real-life poker variants. We
will consider Texas’ Hold-em as an example here. Starting with an analysis
of the similarities and differences between 1-action poker with respect to the
derivation.

Lemma 6.2.2 is does not depend on the action dynamics of the game in
concern, therefore it is directly applicable to Texas’ Hold-em.

3The requirement on the transition model is trivially satisfied.

59

Chapter 6 Poker & aggregation 6.2 Bisimilarity for poker

i noc(i) nac(i) nuac(i) nspuac(i) nopuac(i)

1 2 4 52!
48!4! = 2.65 · 105 4!

2!2! = 6 4!
2!2! = 6

2 3 7 52!
45!7! = 1.33 · 108 7!

2!2!3! = 210 7!
4!3! = 35

3 1 8 52!
44!8! = 7.52 · 108 8!

2!2!3!1! = 1680 8!
7!1! = 8

4 1 9 52!
43!9! = 3.679 · 109 9!

2!2!3!1!1! = 15, 120 9!
8!1! = 9

Table 6.5: The relevant quantities for deriving a lower bound on obtained com-
pression applied to Texas’ Hold-em under assumptions as explained in the text.
i denotes the round.

In contrast lemma 6.2.1 is not directly applicable, it is very well possible that
two states with a different bet-sequence are stochastic bisimilar. For example,
consider a two states in the last bet-round that are equal in all respects (assigned
cards, money in the pot, etc.) except for the bet-sequence in the first round. In
this particular case it is possible, even likely, that our opponent will act the same
in these two states, inducing the same state dynamics. Therefore these states
can be stochastic bisimilar, even though the (full) bet-sequences are different.

Also, the number of states per unique assigned card combination for round
i, nspuac(i), is larger. This is because there are 19 bet-sequences starting in
the first round, giving multiple4 states in the first round for the same card
assignment. Nine out of these 19 bet-sequences transfer to the next round.
This mean that in round two there are a total of 9 ·19 = 171 bet-sequences, etc.

It is clear that an analysis similar to that of 1-action poker would become
very complex for Texas’ Hold-em. Therefore we make the following assumption:
we treat the game as if there is only one state per unique card assignment per
round.5 This means that within each round we collapse all the states that differ
only on their bet-sequence into one state. It should be clear that, in general, not
all these states can be collapsed in such a way while still producing a reduced
model inducing an optimal policy. E.g. this would suggest that, for a state
in which the opponent has raised at all occasions and another state in which
he only called, the optimal action is the same. In fact this suggests that the
opponent behavior specifies no information whatsoever and therefore would only
be correct for an opponent playing a uniform random policy.

Now we argue that even with this assumption, that is clearly over-estimating
the possible reduction, direct application of model minimization for POMDPs
still presents a bound on the obtainable reduction.

This is supported by table 6.5, which displays the relevant quantities based
on the assumption of one state per unique card assignment per round. As an
example, the maximum obtainable reduction for round 3 is 8

1680 ≈ 0.005. Al-
though this seems like a big reduction, the minimum number of blocks becomes
7.52 · 108 · 8 ≈ 6.02 · 109, which is still is impractical for computation.

4The exact number is 15 states for both players: 10 outcome nodes and 5 decision nodes.
5Note that this differs from nspuac(i) as this latter notion does not differentiate between

states that assign a particular card to a different player (or to one of the sets of table cards).

60

6.3 Bisimilarity revised Chapter 6 Poker & aggregation

6.3 Bisimilarity revised

As shown in section 5.2.3 aggregation of arbitrary states generally does not
preserve the Markov property, because the within block distribution can be de-
pendent on the full history. After that, conditions were posed on the transitions,
observations and rewards for states within blocks such that this within block dis-
tribution becomes irrelevant. As a result, the blocks and thus aggregate states
possess the Markov property. This gave the intuition behind why a stochastic
bisimulation induces a reduced model that can be used to calculate an optimal
policy for the original POMDP. Unfortunately, as shown in this chapter, the re-
quirement on the observation model puts a bound on the obtainable reduction,
that makes application for real-life poker games impractical.

6.3.1 Uniform distributions

Another approach would be not to pose conditions on the transitions, obser-
vations and rewards directly, but on the within block distributions itself. In
other words, the condition now is that the within block distribution, p(·), is not
dependent on the full history.

An obvious way to accomplish this is to require that for all blocks p(·) is
always uniform.6

Theorem 6.3.1 When a block Bi, for which the within state distribution p(·)
is uniform, is used as aggregate state, this state possesses the Markov property.

Proof We can simply replace p(s) by 1
|Bi|

in equations 5.2, 5.3 and 5.4, giving:

P (Bj |Bi, p(·),a) =
1

|Bi|

∑

s∈Bi

∑

s′∈Bj

P (s′|s, a)

R(Bi, p(·), a) =
1

|Bi|

∑

s∈Bi

R(s, a)

P (o|Bi, p(·), a) =
1

|Bi|

∑

s′∈Bi

P (o|s′, a).

All of these are history independent, concluding the proof. ¤

As a consequence, a partition for which all blocks satisfy the requirement of
uniform within block distribution, yields a reduced Markovian model. Of course,
guaranteeing this uniformity can in general be hard, but in very structured and
specifically tree-like MDPs as described in this thesis this can be easier.

Figure 6.2 depicts the problem. We want to guarantee that pBj
(·) for block

Bj is uniform, i.e., pBj
(s1) = pBj

(s2) = ... = 1
|Bi|

. A condition that jumps to

mind is that for all states sj ∈ Bj it should hold that
∑

s∈S P (sj |s, a) is equal
under all actions. This condition, however, is insufficient: it does not take into
account that the probabilities for reaching the predecessor states s ∈ S can be
different. Moreover, in general these probabilities can change over time.7

6Actually, the requiring that p(·), the within block distribution for the blocks Bi is only
fixed (not uniform), is enough. However, for clearness and ease of explanation we will assume
uniform within block distributions.

7As an example, consider the case that state s1 in figure 6.2 links back to one of its
predecessors.

61

Chapter 6 Poker & aggregation 6.3 Bisimilarity revised

S1

S2

S3

Block j

S1

S2

S3

Block j

Figure 6.2: The problem of guaranteeing a uniform within block distribution.
Left shows arbitrary predecessors. Right shows predecessors to be in the same
block, allowing to guarantee a uniform distribution for block j.

In order to guarantee that pBj
(·) is uniform, we pose the requirement that

all states s ∈ S that can transition to Bj are in the same block Bi with pBi
(·)

uniform and
∑

s∈Bi
P (sj |s, a) = c, for all sj ∈ Bj and some constant c.

In general, the requirement that a block has one unique predecessor block can
limit the applicability. For the special case where an MDP has a tree structure,
however, this requirement is less of a burden, because nodes in a tree have at
most one predecessor.

6.3.2 Future research

It is not trivially clear that, when changing the requirements as posed section
5.2.4 to the requirement specified in the previous section, the resulting reduced
MDP will still induce an optimal policy for the original MDP.

In fact it might be very well possible that the original constraints on the tran-
sition and reward model will need to be maintained. It is intuitively plausible,
however, that the constraint on the observation model from theorem 5.2.4 may
be dropped when, at the same time, the constraint specifying fixed within block
distributions is satisfied. This is because the actual dynamics of the POMDP
are not influenced by the observation model; observations only provide informa-
tion regarding what the true state is. Trying to prove this intuition would be a
first step for future work.

Of course, even if it is proven that it is possible to abandon the limiting obser-
vation constraint, there might be other bounds that limit model minimization’s
applicability for real-life problems. This would be a second step for research.

62

Part III

Unifying winnings and

security

63

Chapter 7

Coevolution and security

We have focused on best-response against a fixed opponent given that we know
how he plays. I.e., we assumed we had a perfect opponent model. Of course this
is, in general, not the case, which could make our calculated policy vulnerable.

In this chapter we will discuss coevolution. This technique can be used to find
policies that are more secure against multiple opponent policies. The general
idea is to find a policy that is secure against a certain group or population of
opponent policies, then to evolve that population and find a new policy that is
secure against the new population. By repeating this procedure, the final policy
will be secure against all opponent policies; converging to a Nash equilibrium.

The objective of this investigation is twofold. On one hand it describes
an alternative way of calculating a Nash-equilibrium. Although the two-player
zero-sum case can be solved in polynomial time using linear programming as
described in chapter 2, for large problems this remains expensive.

On the other hand, it tries to provide a way to compromise between secu-
rity and best-response payoff, thus unifying the game- and decision theoretic
perspectives.

7.1 Coevolution

The idea behind evolutionary algorithms is that there is population of individ-
uals that represent candidate solutions. By evaluating these candidates against
one or more tests their fitness is determined and the fittest produce the next
generation. Coevolutionary methods differ from evolutionary methods in the
way they treat the tests. Instead of having one evolving population of candi-
date solutions and a fixed set of tests, two evolving populations are maintained:
one for the candidate solution and one for the tests.

In the poker games discussed in this thesis, the population of candidate
solutions could consist of a number of policies for the gambler, in which case
the corresponding tests would be a set of policies for the dealer. How well one
of the gambler policies performs is measured by the outcome achieved against
all the tests.

64

7.2 Nash equilibrium solution concept Chapter 7 Coevolution and security

7.1.1 Solution concepts

For coevolution to have any meaning it must specify a goal or solution concept.
This can be expressed as a set of candidate solutions satisfying some require-
ments.

Formally, let C and T be the sets of respectively all possible candidate so-
lutions and tests. The the outcome of a particular candidate C ∈ C against a
test T ∈ T is given by the interaction function or game, G : C ×T → R. In the
presence of chance moves in this game G(C, T) is defined to be the expectation
of the outcome, E(C, T).

An example of a solution concept expressed using these variables is:

{C ∈ C|∀C′∈C ∀T∈T : G(C, T) ≥ G(C ′, T)}.

This solution concept is known as ‘simultaneous maximization of all out-
comes’. As it requires that there is a single solution that maximizes the out-
comes against all possible tests, this is a very strong strong solution concept,
but has limited application scope. In [15] an brief overview of various other
solution concepts is given, among which the Nash-equilibrium, which we will
treat in the next section.

7.1.2 Memory

An often encountered problem in coevolutionary approaches is that of forgetting
[21], i.e., certain components of behavior, or traits, are lost in a next generation
only to be needed again at a later stage. This is especially the case for games
with intransitive cycles, such as the Rock-Scissors-Paper game, discussed in
section 4.2.2.

In order to counter this forgetting of trades, memory mechanisms are em-
ployed. The idea is that in the coevolutionary path to the solution concepts
various traits will have to be discovered. Traits that constitute the solution will
have to be remembered by the memory.

7.2 Nash equilibrium solution concept

In this section we give an outline of a memory mechanism for reaching the Nash-
equilibrium solution concept for symmetric zero-sum games as presented in [21]
(“Nash-memory”).

7.2.1 Symmetric games and Nash equilibria

In a symmetric game the form of the policy for both players is identical: they
can take the same actions in the same information sets 1, as is the case in
Rock-Scissors-Paper. Put differently: both players select their (possibly mixed)
policy from the same set of pure policies available for the game.

Symmetric zero-sum game always have a value 0, because this is the expec-
tation of a policy played against itself: ∀π E(π, π) = 0 or, expressed in terms of

1This implies players take actions simultaneous.

65

Chapter 7 Coevolution and security 7.2 Nash equilibrium solution concept

Figure 7.1: One iteration of Nash-memory coevolution.

candidate solutions and tests: ∀π G(π, π) = 0. This means that a Nash equi-
librium policy provides a security-level payoff of 0 and that therefore we are
searching for a, usually mixed, policy π such that ∀π′ G(π, π′) ≥ 0.

Let S(π) denote the security set of policy π, i.e., S(π) = {π′|G(π, π′) ≥ 0}.
Now, the Nash-equilibrium solution concept can be expressed as:

{π|∀π′ : π′ ∈ S(π)}.

7.2.2 Components of the Nash-memory

Let N and M be two mutually exclusive sets of pure policies. N is defined
to be the support of mixed policy πN which will be the approximation of the
Nash-policy during the coevolution process. Therefore this is the candidate
solution.2

The policies that are not in N are not needed by πN to be secure against
all encountered policies. These unused policies are stored in the set M. The
fact that πN is secure against all policies means that N ∪ M ⊆ S(πN). Put
in coevolutionary terms, M holds those policies, that are currently not needed
to be secure against all encountered policies (N ∪ M), in order not to forget
particular traits they might embody.

Apart from the candidate solution πN and an additional memory M, the
Nash-memory mechanism specifies a search heuristic H. This is an arbitrary
heuristic that delivers new tests against which the candidate solution is evalu-
ated.

7.2.3 The operation

We now turn to the actual working of the Nash-memory. To start, M is ini-
tialized as the empty set and N is initialized as a set containing an arbitrary
pure policy and πN as the ‘mixed’ policy that assigns probability 1 to this pure
policy.3 Then the first iteration begins.

2An alternative view is that the Nash-memory maintains a ‘population’ of candidate solu-
tions consisting of one individual, which in turn consists of multiple of pure policies.

3In [21] the initialization is taken somewhat different, but this doesn’t affect the working
of the memory mechanism.

66

7.2 Nash equilibrium solution concept Chapter 7 Coevolution and security

Algorithm 3 Nash-memory mechanism
πN= initializePolicy

N = support(πN)

M = ∅
For iteration = 1:nr iterations

W = ∅
T = H() //set of tests from search heuristic

Forall t in T

If G(t,πN) > 0

W = W ∪ {t}
End

End
all policies = N ∪ M ∪ W

// Calculate a new policy secure against all policies with

// linear programming:

πN = LP(all policies)

N = support(πN)

M = all policies \ N // unused policies stored in M

End

Figure 7.1 shows one iteration of the Nash-memory. First, a set of test-
policies, T , is delivered by the search heuristic. The policies in this set are
evaluated against πN , to define the set of ‘winners’:

W = {π ∈ T |G(π, πN) > 0}.

When this set is non-empty, clearly πN is not a Nash-equilibrium policy, as
it is not secure against all policies, and therefore should be updated.

First a payoff matrix of all policies in M∪N ∪W played against each other
is constructed.4In this matrix the rows correspond to policies played by the first
player, the columns to those of the second player. The entry (i, j) gives the
(expected) outcome of policy i against j, G(πi, πj).

This matrix can than be used to define a linear program. Relating to section
2.2.3 and 2.3.4. the payoff matrix corresponds with A. Therefore this can be
solved as outlined in section 2.3.4. The result will be the new policy π′

N , the
policies to which it assigns positive weight is the new set N ′, the other policies
are stored in M′.

The full algorithm is shown on the current page. Because S(πN), the set
of pure policies against which πN is secure, grows monotonically with each
iteration, repeated application will converge to a Nash-equilibrium, provided
that the search heuristic is able to find policies that beat our current estimate
(that is, a non-empty W is found).

When resources are limited, it might not be feasible to store all policies
encountered. Therefore it is possible to limit the size of M, by discarding
policies that have not been recently used by πN using some heuristic. This,
however, might re-introduce the problem of forgetting and will therefore not be
considered any further in this thesis.

4Of course the outcomes of pure policies in M ∪ N against each other can be cached,
so only the outcomes of policies from W against other policies will have to be calculated to
construct this matrix.

67

Chapter 7 Coevolution and security 7.3 Coevolution for 8-card poker

7.3 Coevolution for 8-card poker

In this section we apply the Nash-memory mechanism on 8-card poker. In doing
so, we extend the Nash-memory for usage with asymmetric games.5 Secondly,
we use the method to calculate a best-response policy as described in chapter
3 to generate new tests. I.e., the search heuristic H we use is a procedure
bestResponse(π) that constructs and solves a POMDP model of the game played
against an opponent that uses policy π.

7.3.1 Asymmetric games

In order to apply the Nash-memory mechanism to 8-card poker, we need an
extension to allow tackling asymmetric games.

A simple solution is to create a new compound game consisting of two games
of 8-card poker; one played as gambler and one played as dealer. This compound

game is symmetric and a particular policy i is given by πi =
〈

πi
gambler, π

i
dealer

〉

.

We refer to this as naive symmetrization.

Using this new representation the Nash-memory mechanism can directly be
applied without further changes. However, it is clear that the flexibility with
which the new mixed policy is constructed is constrained: it is not possible to
put more weight on a particular gambler policy πi

gambler without putting the

same weight on the corresponding dealer policy πi
dealer.

In order to overcome this limitation we propose an extension of naive sym-
metrization. Observe that in algorithm 3 there are only two reasons why the
game must be symmetric: to determine whether a test policy beats the cur-
rent mixed policy, G(t, πN) > 0, and because the next Nash-approximation is
constructed from all encountered policies (M∪N ∪W).

To overcome this, the proposed symmetrization applies the Nash-memory
mechanism per player. I.e,. we maintain one sets Np,Mp,Wp, Tp and a Nash-
approximation, πp,N , for each player p = 1, 2 (gambler, dealer). If, without loss
of generality, we assume that the search heuristic delivers a single test policy for
both players, T1 and T2, we can test whether the compound policy T = 〈T2, T1〉

6

beats the compound policy πN = 〈π1,N , π2,N 〉, as:

G(T, πN) = G(T2, π2,N) + G(T1, π1,N).

If G(T, πN) > 0, then the current Nash-approximation, πN , is not secure
against compound policy T . In this case the components of T are taken to be
‘winners’: W1 = T2 and W2 = T1.

7

This results in two sets M1 ∪N1 ∪W1 and M2 ∪N2 ∪W2 with pure policies
for respectively gambler and dealer. By constructing the payoff matrix for these
pure policies and applying linear programming we calculate π′

1,N and π′
2,N , from

which M′
1,N

′
1,M

′
2 and N ′

2 are constructed. The compound policy:

π′
N =

〈

π′
1,N , π′

2,N

〉

,

5It is already indicated in [21] that such an extension is possible.
6Note that a test policy T1 for player 1, is a policy for his opponent, player 2, and vice

versa.
7The remark from note 6 applies here too.

68

7.3 Coevolution for 8-card poker Chapter 7 Coevolution and security

Algorithm 4 Asymmetric Nash-memory using bestResponse heuristic.

For p = 1,2 //for both players

πp,N = initializePolicy(p)

N(p) = support(πp,N)

M(p) = ∅
End

While !converged

For p = 1,2

N stoch(p) = mixed2StochasticPolicy(πp,N))

T(p) = bestResponse(N stoch(p))

End

G(T,πN) = G(T(1), π1,N) + G(T(2), π2,N))

If G(T,πN) > 0

For p = 1,2

W(modulo(p,2)+1) = T(p)

NMW(p) = N(p) ∪ M(p) ∪ W(p)

End

π1,N , π2,N = LP(NMW(1),NMW(2))

For p = 1,2

N(p) = support(πp,N)

M(p) = NMW(p) \ N(p)

End

Else

converged = true;

End

End

is secure against all combinations of gambler and dealer policies from M′
1,N

′
1,M

′
2

and N ′
2 in the compound game.

7.3.2 Best-response heuristic

The search heuristic is an important aspect for coevolutionary approaches. It
should be powerful enough to discover improvements to the current candidate
solution. Within the Nash-memory mechanism this means that it has to find
policies that beat the current Nash-approximation.

The approach as outlined in chapter 3 provides a suitable candidate: cal-
culating the best-response policies against the current Nash approximations,
π1,N , π2,N . The best-response policies obtain the highest payoff possible. A
desirable side effect is that this provides a convergence criterion: when the best-
response policies are not able to attain a positive payoff in the compound game,
i.e. G(T, πN) = 0, then πN is a Nash-policy.

However, using the approach from chapter 3 we can calculate a best response
against a stochastic policy. In contrast, the Nash-approximations, are mixed
policies. This means it is necessary to convert a mixed policy to a stochastic
policy. For now we assume this is done by a procedure mixed2StochasticPolicy.
How this procedure works will be covered in detail in section 7.4.

69

Chapter 7 Coevolution and security 7.4 From mixed to stochastic policies

policy information sets
number probability J Q K Jb Qb Kb

1 .2 1 1 1 1 1 1
2 .3 1 0 1 0 1 1
3 .5 0 0 1 0 0 1

Table 7.1: A mixed policy for the gambler in 3-card poker. Shown is the prob-
ability of betting (‘1’).

7.3.3 The resulting algorithm

The resulting algorithm is shown on the preceding page. Note that Mp,Np, Tp,Wp

are denoted M(p), N(p), T (p),W (p) with p = 1, 2 representing the player num-
ber.

The expression modulo(p, 2) + 1 assures that the assignments W1 = T2 and
W2 = T1 are performed as explained in section 7.3.1.

The procedure LP () constructs the payoff matrix for the two sets of policies
and solves the linear program defined. The entries in the payoff matrix can
be cached to prevent re-calculating outcomes between pairs of pure policies.
In particular, because only one pair of new policies is provided per iteration,
only the outcomes of these have to be evaluated against the policies already in
memory, i.e. W1 against M2,N2,W2 and vice versa.

7.4 From mixed to stochastic policies

In this section we explain how we can transform a mixed policy to a equivalent
stochastic policy. First we will re-introduce some relevant concepts and illustrate
the problem. Next, in section 7.4.2 we show that the realization weights are an
adequate tool to tackle this problem and after that we discuss computing them.

7.4.1 Problem and concepts

Recall a policy is a mapping from information sets to actions. A deterministic
or pure policy specifies exactly one action for each information set. A stochastic
policy, on the other hand, is a single policy that specifies a probability distribu-
tion over actions for each information set.

A mixed policy is a set of, usually pure, policies together with a probability
distribution over this set.8 Intuitively it is possible, at least for tree-like games,
to convert a mixed policy to a stochastic policy. Exactly how to do this is not
trivial, though.

We will make use of an example 3-card poker game. It is exactly like 8-card
poker only with three cards: J, Q and K. Table 7.1 shows a mixed policy for
the gambler for this game. Shown are the information sets the gambler has in
this game and the probability of betting in those information sets according to
3 policies. Also shown are the probabilities of playing each of the three policies.

A naive approach to convert the mixed policy shown would be to multiply
to the rows, i.e the probabilities of betting according to the policies, with the

8In general, the policies in the set can also be stochastic, but not mixed, policies themselves.

70

7.4 From mixed to stochastic policies Chapter 7 Coevolution and security

probability of the respective policy and add the results. This problem with this
approach, however, is that does not respect the fact that the chance of reaching
an information set also depends on the policy. Expressed differently, it does not
take into concern the probability that a policy realizes a certain move.

Example 7.4.1 As an example consider information set ‘Jb’ in table 7.1. When
applying the naive approach the probability of betting in the resulting stochastic
policy would become 0.2 · 1 + 0.3 · 0 + 0.5 · 0 = 0.2. In the original mixed
policy, however, policy number 1 would specify ‘bet’ (‘1’) after observing the
jack (information set ‘J’). Therefore information set ‘Jb’ would never be realized
using policy 1. As the other policies specify never to bet at ‘Jb’, the probability
of betting at ‘Jb’ in the stochastic policy is therefore 0. ¤

In the above the word ‘realizes’ is stressed with good reason. The problem
in concern is very much related to the sequence form and its realization weights.

Recall from section 2.3.2 that a sequence corresponds with a path from the
root of the game-tree to a node n. The sequence σk(n) for player k is the string
consisting of the concatenation of all labels of edges corresponding with player
k’s moves and observations. Equivalently, a sequence σk(n) corresponds with
an information set of player k concatenated with an action that can be taken
at that information set. As each node from the tree corresponds to exactly
one sequence, the number of sequences, m, is bounded. We also write σl

k, with
1 ≤ l ≤ m.

Also recall that the realization weight ρi
k(σl

k)9 of a sequence σl
k under policy

πi
k for player k, is defined as a conditional probability: ρi

k(σl
k) is the probability

that player k takes all the actions specified by σl
k given that all corresponding

information sets are reached.
In the next subsection, we will show that the realization weights are an

appropriate tool for our problem of converting a mixed policy µk for player k
to a stochastic one.

7.4.2 Using realization weights

Here we show that using realization weights, we can transform a mixed policy
to a stochastic policy that describes the same dynamics, i.e, induces the same
outcomes.

Formally, we want to find the probability of an action a at an information
set Ik, P (a|Ik, µk) corresponding to µk for player k. The crucial step in this
problem is that we have to weight the contribution to P (a|Ik, µk) of a policy
πi

k ∈ µk by the probability that information set Ik is actually realized by πi
k.

Theorem 7.4.1 To transform a mixed policy µk for player k to a stochastic
policy, realization weights for all policies πi

k ∈ µk are sufficient. For a particular
action a and information set Ik, the stochastic policy is given by:

P (a | Ik, µk) =

∑

i P (πi
k) · ρi

k(σk(I ′k))
∑

i P (πi
k) · ρi

k(σk(Ik))
, (7.1)

where σk(Ik) is the sequence that leads to information set Ik and σk(I ′k) is the
sequence that result from appending action a to σk(Ik).

9We denote the realization weight with ρ here.

71

Chapter 7 Coevolution and security 7.4 From mixed to stochastic policies

Proof When N players play policies (π1, ..., πN), the probability of reaching
a node n in the game-tree is given by:

P (n|π1, ..., πN) = β(n) ·
N
∏

k=1

ρk(σk(n)),

where β(n) is the product of all chance moves on the path from the root to
n. In order to discriminate between the probabilities of moves of the player in
concern and its opponents, this can be rewritten to:

P (n|π1, ..., πN) = ρ1(σ1(n)) · β(n) ·
N
∏

k=2

ρk(σk(n)),

in which k = 1 is an arbitrarily chosen player we focus on. Similarly, the actual
chance of reaching a particular information set I1 can be given as:

P (I1|π1, ..., πN) =
∑

n∈I1

(

ρ1(σ1(n)) · β(n) ·
N
∏

k=2

ρk(σk(n))

)

.

As player 1 can not discriminate between the nodes of I1, clearly his se-
quences for these nodes are the same and we write σ1(I1), giving:

P (I1|π1, ..., πN) = ρ1(σ1(I1)) ·
∑

n∈I1

(

β(n) ·
N
∏

k=2

ρk(σk(n))

)

.

Now let Popp =
∑

n∈Ij

(

β(n) ·
∏N

k=2 ρk(σk(n))
)

denote the opponent (and

nature) component of the realizing I1. When there are multiple policies πi
1 ∈ µ1,

each played with a probability of P (πi
k), the probability of realizing I1 becomes:

P (I1|µ1, Popp) = Popp ·
∑

i

P (πi
1) · ρ

i
1(σ1(I1)).

Next we turn our attention to realizing both I1 and the desired action a.
For a single policy πi

1 ∈ µ1, this probability is:

P (I1, a|π
i
1, Popp) = Popp · ρi

1(σ1(I1)) · P (a|πi
1, I1).

For the mixed policy µ1 this becomes:

P (I1, a|µ1, Popp) = Popp ·
∑

i

P (πi
1) · ρ

i
1(σ1(I1)) · P (a|πi

1, I1).

Finally we can give the probability of action a given I1 for mixed policy µ1:

P (a | I1, µ1, Popp) =
P (I1, a|µ1, Popp)

P (I1|µ1, Popp)

=
Popp ·

∑

i P (πi
1) · ρ

i
1(σ1(I1)) · P (a|πi

1, I1)

Popp ·
∑

i P (πi
1) · ρ

i
1(σ1(I1))

=

∑

i P (πi
1) · ρ

i
1(σ1(I1)) · P (a|πi

1, I1)
∑

i P (πi
1) · ρ

i
1(σ1(I1))

(7.2)

= P (a | I1, µ1).

72

7.4 From mixed to stochastic policies Chapter 7 Coevolution and security

Now note that the sequence σ1(I1) followed by action a defines a new se-
quence, let’s call this sequence σ1(I

′
1). The realization weight of this new se-

quence under policy i is ρi
1(I

′
1) = ρi

1(σ1(I1)) · P (a|πi
1, I1). Therefore we can

rewrite equation 7.2 totally in terms of priors and realization weights:

P (a | I1, µ1) =

∑

i P (πi
1) · ρ

i
1(σ1(I

′
1))

∑

i P (πi
1) · ρ

i
1(σ1(I1))

.

Now observing that the focus on player k = 1 was an arbitrary choice and
that this procedure can be extended for any information set and action proves
the theorem. ¤

7.4.3 Calculating realization weights

Having established that realization weights for the policies πi
k ∈ µk will give the

solution to the problem, the next goal is to determine them. In contrast to the
Gala system, we do not want to find realization weights that define an optimal
policy, but simply want to extract the realization weights from a policy πi

k.
Let σk be the sequence for reaching some node n where player k is to move.

Then the continuation σk ◦ a is also a sequence for player k and the realization
weights are given by the following recurrence relation:

ρi
k(σk ◦ a) = ρi

k(σk) · P (a|πi
k, n). (7.3)

Because P (a|πi
k, n) is a probability distribution that sums to 1 10, the total

realization weight of continuations of a sequence, σk, sum to the realization of
that sequence itself. I.e ρi

k(σk) = ρi
k(σk ◦ a1) + ... + ρi

k(σk ◦ an), exactly as was
required in section 2.3.3.

As ρi
k(root) = 1 for any policy i, starting at the root and iteratively applying

equation 7.3 while walking through the game-tree extracts all the realization
weights.

We can also formulate this slightly different. Recall that in the proof of
theorem 7.4.1, we wrote σk(Ik) for the sequence for player k for reaching any
node in Ik, an information set for that player. When using this notation for
equation 7.3, we get:

ρi
k(σk(Ik) ◦ a) = ρi

k(σk(Ik)) · P (a|πi
k, Ik).

Now, observe that the continuation σk(Ik) ◦ a will correspond with the se-
quence for all successor information sets, I ′

k, that can be reached from Ik when
action a is chosen. By formalizing this it is possible to express everything in
terms of information sets.

Definition 7.4.1 The realization weight of an information set Ik of player k
under a policy πi

k will be denoted ρi
k(Ik) and is defined as the realization weight

of the sequence of any node n ∈ Ik:

ρi
k(Ik) :≡ ρi

k(σk(n)).

Note, that the realization weight of an information set of another player, i.e.,
ρk(Il), k 6= l is undefined.

10In this setting where we considered pure policies πi
k
, P (a|πi

k
, n) is 1 for exactly one action.

In general, however, a mixed policy might also have stochastic policies in its support.

73

Chapter 7 Coevolution and security 7.4 From mixed to stochastic policies

Algorithm 5 Calculate information set realization weights(πk)

Forall IS in initial ISs(k)

rw(IS)=1

append(ISq,IS) //ISq is a queue

End

While !empty(ISq)

IS=pop(ISq)

Forall a in ACTIONS

Forall sucIS in successor ISs(IS,a,k)

rw(sucIS)=rw(IS)·P(a|IS,πk)

append(ISq,sucIS)

End

End

End

As above, let I ′
k be any information set for player k, that can be reached

from Ik when playing a. The recurrence relation now becomes:

ρi
k(I ′k) = ρi

k(Ik) · P (a|πi
k, Ik). (7.4)

This formulation expresses the close relation between information sets, action
probabilities and realization weights more naturally. Also it gives a further
formalization of the step taken to obtain equation 7.1 from equation 7.2. Using
definition 7.4.1, the latter can be rewritten as:

P (a | µk, Ik) =

∑

i P (πi
k) · ρi

k(Ik) · P (a|πi
k, Ik)

∑

i P (πi
k) · ρi

k(Ik)
, (7.5)

consecutively applying 7.4 gives:

P (a | µk, Ik) =

∑

i P (πi
k) · ρi

k(I ′k)
∑

i P (πi
k) · ρi

k(Ik)
.

Backwards substitution using definition definition 7.4.1, then immediately
gives equation 7.1.

The new recurrence relation (eq. 7.4) also defines an algorithm to find the
realization weights for information sets very naturally. This algorithm is shown
on the current page and consists of two phases: the first phase finds all initial
information sets for player k, that are the information sets in which the player
makes his first move of the game. The realization weights of these information
sets are initialized to 1.11 The second phase consists of a pass through the
game-tree finding successor information sets and calculating their realization
weights.

11The sequence of an initial information set, is the root sequence, ∅.

74

7.4 From mixed to stochastic policies Chapter 7 Coevolution and security

Q/J Q/K

Start0 1

1 -1 2 -1 -1 -2

PC1/PC2

Q

Qb

... ...

Figure 7.2: Partial game-tree for 3-card poker. The information sets Q and Qb
for the first player are clearly indicated.

7.4.4 Calculating the stochastic policy

At this point, calculating a stochastic policy from a mixed policy has become
almost trivial. Once the realization weights for the information sets are calcu-
lates, all one has to do is apply equation 7.5. We will give an example for the
mixed policy from table 7.1.

Example 7.4.2 Figure 7.2 shows a part of the game-tree for 3-card poker. It
shows 2 information sets: Q and Qb. In this example we will calculate the
stochastic policy for these information sets.

The first thing we need to do is calculating the realization weights of the
information sets under the different policies that make up the mixed policy
from table 7.1.

As the gambler makes its first move when in Q, this is an initial information
set and therefore its realization weight is 1 under all policies. In contrast Qb is
not an initial information set and its realization weight is given by:

ρi(Qb) = ρi(Q) · P (‘0’|πi, Q),

where ‘0’ indicates the action pass.12 This leads to the following table of
realization weights:

policy ρi(Q) ρi(Qb)

1 1 0
2 1 1
3 1 1

Table 7.2: Realization weight for the policies in the support of the mixed policy.

Now we can apply fill out equation 7.5 for Q, yielding:

12Note we omit the subscripts indicating the player (which is ‘gambler’ throughout this
whole example).

75

Chapter 7 Coevolution and security 7.5 Experiments

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Iteration

P
ay

of
f

Worst case payoff of mixed policy

total
player 1 policy
player 2 policy
0 − nash

Figure 7.3: Results for the Nash-memory approach to 8-card poker. The dashed
lines indicate the Nash-value.

P (‘1’ | µ,Q) =

∑

i P (πi) · ρi(Q) · P (‘1’|πi, Q)
∑

i P (πi) · ρi(Q)

=
0.2 · 1 · 1 + 0.3 · 1 · 0 + 0.5 · 1 · 0

0.2 · 1 + 0.3 · 1 + 0.5 · 1

=
0.2

1
= 0.2.

For Qb this gives:

P (‘1’ | µ,Qb) =

∑

i P (πi) · ρi(Qb) · P (‘1’|πi, Qb)
∑

i P (πi) · ρi(Qb)

=
0.2 · 0 · 1 + 0.3 · 1 · 1 + 0.5 · 1 · 0

0.2 · 0 + 0.3 · 1 + 0.5 · 1

=
0.3

0.8
= 0.375.

Concluding the example. ¤

7.5 Experiments

In this section we will describe some experiments performed using the Nash-
memory mechanism as outlined in this chapter.

7.5.1 8-card poker

Algorithm 4 was implemented and applied to 8-card poker. Figure 7.3 shows the
obtained results. It shows that it only takes a few iterations to obtain a policy
that is fairly secure. This is a nice property, as it indicates that this technique
might be applied for larger games to obtain an approximate Nash policy.

76

7.5 Experiments Chapter 7 Coevolution and security

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

Iteration

P
ay

of
f

Worst case payoff of mixed policy

total
player 1 policy
player 2 policy
0 − nash

0 50 100 150
−5

−4

−3

−2

−1

0

1

Iteration

P
ay

of
f

Worst case payoff of mixed policy

total
player 1 policy
player 2 policy
0 − nash

Figure 7.4: Two larger poker-games. Left: 4-bet 8-card poker. Right: 2-round,
3-bet-per-round 6-card poker.

It also indicates that only a relatively small number of policies is needed to
be secure. Further investigation made this even more plausible, as it turned out
that the number of pure policies used by the mixed policy is even lower than
the figure suggests: when reaching the Nash level (iteration 12) only 6 out of 12
pure policies are assigned weight for the both gambler and dealer policy.

Another observation that can be drawn from the figure is that, although
convergence to Nash equilibrium is monotonic, because with each iteration the
approximate Nash becomes secure against more policies13, the worst case payoff
does not increase monotonically. Apparently, a particular policy against which
it is not secure yet might become a best-response and do more damage.

7.5.2 Some larger poker games

After the encouraging results for 8-card poker some experiments were performed
on larger poker games. We show resulting curves for two of them here. The
first is an 8-card poker variant that allows up betting u to 4 coins bets, with
a maximum raise of 2 coins. The game-tree for this game contains nearly 4000
nodes and has 274 sequences for each player.

The second game is a 2 round poker game with a deck of 6 cards, both players
receive one card and play a bet-round, after which 1 public card appears face-up
on the table. Then a final bet-round is played. In both bet-rounds a maximum
of 3 coins coins can be betted per player. This game-tree for this game consists
of over 18,000 nodes and has 2162 sequences for both players.

For these games, the obtained results are shown in figure 7.4. As was the
case for 8-card poker, the Nash-memory is able to obtain a reasonable security
level in a relatively low number of iterations.

Also the small number of policies needed for the support of the mixed policy
was confirmed for these larger games. For 4-bet 8-card poker N contained 18
policies out of 100 on convergence. At iteration 150 for the 6-card poker game,
the number of policies with positive weight was 29.14

13More formal, the set S(πN) grows monotonically.
14The algorithm was not fully converged at this point, as the compound policy still received

77

Chapter 7 Coevolution and security 7.5 Experiments

0 5 10 15 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Iteration

P
ay

of
f

Worst−case (w.c.) and est. opp. model (e.o.m.) payoff − P1

w.c.
e.o.m.
0.15*w.c. + 0.85*e.o.m
Nash

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Iteration

P
ay

of
f

Worst−case (w.c.) and est. opp. model (e.o.m.) payoff − P2

w.c.
e.o.m.
0.15*w.c. + 0.85*e.o.m
Nash

Figure 7.5: The tradeoff between security and higher payoff for 8-card poker.
The estimated opponent model is uniform random.

For the larger games there seem to be more oscillations in worst-case payoff.
This can probably be explained in the following way: because the game-tree for
these games is larger and the horizon is deeper, more actions affect later stages
of the game. Therefore the relatively small adjustment of the mixed policy can
influence the realization weights of a lot of information sets. When a particular
set of information sets is given more weight, but the policy specified for this set
is not optimal, this can be exploited by the opponent.

7.5.3 Security vs. best-response payoff

As argued before, playing a Nash-equilibrium is too conservative, when the
opponent is not expected to play optimal. On the other hand playing a best-
response policy may present risks, as the opponent model may be inaccurate. In
this experiment a way to find a tradeoff between potential winnings and security
is examined.

The idea is as follows. The opponent model delivers two estimated opponent
policies, one gambler and one dealer policy.15 First, the best-response policies
against these estimated opponent policies are calculated. These best-response
policies are used to initialize the Nash-memory mechanism, which then is run
until convergence. The result is a series of mixed policies (for both gambler and
dealer), starting with the best-response against the estimated opponent policy
and ending with a Nash-equilibrium.

Each of these resulting mixed policies, however, can also be evaluated against
the estimated opponent policy. When we do this for all of them, we know the
worst-case payoff and the outcome against the estimated opponent model.

Figure 7.5 shows this evaluation for 8-card poker. It also shows a line that
is a weighted average between the worst-case payoff and that obtained against
the estimated opponent model. One should interpret the weights for this line
(0.85 : 0.15 in this case) as the amount of trust in the opponent model versus

a worst case payoff of -0.027 instead of 0.
15Expressed differently, it delivers an estimated opponent policy for the compound game.

78

7.6 Discussion Chapter 7 Coevolution and security

0 5 10 15 20
−0.5

0

0.5

Iteration

P
ay

of
f

Worst−case (w.c.) and est. opp. model (e.o.m.) payoff − P1

w.c.
e.o.m.
0.15*w.c. + 0.85*e.o.m
Nash

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Iteration

P
ay

of
f

Worst−case (w.c.) and est. opp. model (e.o.m.) payoff − P2

w.c.
e.o.m.
0.15*w.c. + 0.85*e.o.m
Nash

Figure 7.6: The security / potential winnings tradeoff for another estimated
opponent. Especially for player 2 there are no useful peak values between the
best-response and Nash-policy.

the amount of trust that the opponent plays a best-response against the mixed
policy.

Given such a trust ratio, any existing peeks in the weighted average identify
those mixed policies that have a beneficial estimated- and worst-case outcome
with respect to the amount of trust. As a consequence these policies should be
considered a candidate. We have not considered which of these mixed policies
should actually be used. One idea would be to randomly choose between them.

Unfortunately, whether these peek policies exist depends very much on the
estimated opponent model. An example in which these peeks are missing is
shown in figure 7.6. In particular the procedure seems to fail to identify useful
mixed policies, when the best-response (or some other ‘good’-response) against
the estimated opponent model is not in the support of a Nash equilibrium.

Another issue observed is that the payoff against the estimated opponent
is much larger for the first (best-response) policy than for any of the mixed
policies.

7.6 Discussion

When comparing the Nash-memory approach with solving the sequence form
(as in Gala) with respect to performance there are a couple of interesting dif-
ferences. At this point, calculating a Nash-equilibrium using the Nash-memory
approach consumes more time. However, it spends its time differently: mostly
on constructing and solving the POMDP models, to calculate the best response,
and determining outcomes between the encountered pure policies. Far less time
is spent on linear programming, as the size of the linear programs to be solved is
generally smaller. E.g. for the 2-round 6-card poker experiment the maximum
size of the matrix was 150 × 150 versus 2162 × 2162 for solving sequence form.
Also, the linear programs solved have a simpler constraint matrix (a row matrix,
forcing the weights of the pure policies to sum to 1).

We expect that considerable speed-up can be obtained by streamlining the of

79

Chapter 7 Coevolution and security 7.6 Discussion

implementation of POMDP model construction and solving. Moreover, approx-
imate methods could be used for both solving the POMDP and evaluating the
rewards. This might lead to this approach becoming competitive the sequence
form solving in terms of performance. The anytime nature of the Nash-memory
approach makes it even more appropriate for a lot of domains.

We will make a few remarks regarding the tradeoff as explained in section
7.5.3. Perhaps the best-response heuristic is not the most appropriate to use
during the operation of the Nash-memory with as goal to search for a suitable
candidate policy that trades off potential gain for security. There is a large gap
between a failing opponent model and the opponent predicting our policy acting
to minimize our profit. Put differently, perhaps the worst-case payoff is a too
negative measure and we need to search for a weaker form of security.

A direction for this could be to analyze the type and magnitude of errors
made by an opponent model. When this knowledge is available it could be
possible to generate other opponent policies that fall within the expected bounds
of error for the opponent model. The Nash-memory mechanism can than be
employed to construct policies that are secure against all of them.

A different question regarding the Nash-memory mechanism that needs more
research is the following. Currently the Nash memory is based on mixed policies.
Would it be possible to directly use stochastic policies, or policies expressed in
terms of realization weights? In this case we would not need to convert between
mixed and stochastic policies as explained in section 7.4.

Another direction of future research would be to try to avoid solving a linear
programming from the start in each iteration. There might be an approach
to adjust the weights of the mixed policy without solving a complete linear
program.

A final pointer is to focus on extending this approach to games with multiple
players or games that are not zero-sum. A form of symmetrization might also
be possible in this case. Calculating a best-response against two (or more) fixed
opponents can be done by transforming the game to a POMDP, finding a secure
mixture of policies could be done using any of the methods described in [45].
Perhaps an incremental weight-adjusting algorithm, as mentioned above, will
also provide opportunities for these directions.

80

Chapter 8

Conclusions

In this thesis we have addressed partially observable card games, specifically
poker games. In our covering of these games, we have shown two perspectives:
the game theoretic approach, that specifies a Nash-equilibrium that guarantees
a security level payoff and an agent centric (POMDP) approach, yielding a
best-response policy that exploits weaknesses of a given opponent policy. We
have experimentally shown that the POMDP approach was able to obtain the
maximum payoff, even against a Nash-policy.

Next, we presented an investigation of methods that allow for tackling large
POMDPs and thus larger poker games. In particular we discussed model mini-
mization for POMDPs and made plausible that direct application of this method
will not give enough reduction for real-life poker variants as Texas’ Hold-em.
We also identified the bottleneck and gave a pointer to a potential solution.

Finally, we considered an alternative way of calculating Nash-equilibria us-
ing a coevolutionary approach. This process also gives a natural way to identify
policies that make a beneficial tradeoff between security and potential gain. Al-
though it depends on the opponent policy and the used search heuristic whether
a policy giving a favorable tradeoff is found. This can be seen as a first step in
unifying the game theoretic and agent centric approach.

8.1 Future work

Most directions for future work were identified in the last two parts of this
thesis. As mentioned above, in the second part a modification for model min-
imization for POMDPs is suggested. Future research should focus on whether
this modification still allows for a equivalence notion that satisfies the original
bisimulation theorem (5.2.1). If this is possible, it would be interesting to see
whether such a new aggregation concept will alow for tackling real-life poker
games.

Apart from state aggregation such as model minimization, we also briefly
discussed other approaches for dealing with large (PO)MDPs. The most rel-
evant leads that were identified are the approximate methods. Especially the
trajectory sampling approaches seem promising, as they provide performance
bounds independent of the number of states.

Roughly speaking, we identified three types of future work in the last part.

81

Chapter 8 Conclusions 8.1 Future work

The first type would be to try and generalize the coevolutionary computation
of Nash equilibria to games with more than two players or games that are not
zero-sum. A second type would be to try to prevent solving a linear program
from start, by using some weight adjusting scheme. The last type would be to
focus on the tradeoff between worst-case (security) and best-case (best-response)
payoff. This direction would involve investigating different search heuristics that
present opponent policies that are closer to the estimated opponent model.

A more general question that would be interesting for future research is
whether the concept of realization weights can be generalized to arbitrary MDPs.
As illustrated in this thesis, sequence form and their realization weights allow for
more efficient operations in extensive form games. Therefore an extension of re-
alization weights to arbitrary MDPs or POSGs might also present opportunities
within these frameworks.

82

Appendix A

Gala system modifications

As mentioned in chapter 4, there were some changes necessary to get Gala up
and running. Here we will briefly document these changes. Gala is written
in SWI-prolog. Two of the changes were necessary to work with the current
version (v. 5.4.3).

The Gala function compare ranks (in poker.gl) needs to return ‘¡’, ‘¿’ or
‘=’, because this is what the build in function predsort now requires as return
arguments.

In the new versions of SWI-Prolog, operators are local to modules, therefore
it is necessary to define the operators with the user scope.

Another necessary change involved the solving of the linear program. The
Gala system included a Matlab file which used the deprecated lp function. This
has been changed to use the ‘linprog’ function available in current releases. This
new procedure takes its arguments in a different format. Also it was not clear
whether the algorithm the new function implemented changed.

Except for the modification, also some practical additions have been made.
These include a simulation module and various functions to extract policies and
translate to understandable language and modify these policies.

83

Bibliography

[1] D. Billings. Computer poker. Master’s thesis, University of Alberta, 1995.

[2] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Scha-
effer, Terence Schauenberg, and Duane Szafron. Approximating game-
theoretic optimal strategies for full-scale poker. In Proc. Int. Joint Conf.
on Artificial Intelligence, Acapulco, Mexico, August 2003.

[3] Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron.
The challenge of poker. Artif. Intell., 134(1-2):201–240, 2002.

[4] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Oppo-
nent modeling in poker. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth
national/tenth conference on Artificial intelligence/Innovative applications
of artificial intelligence, pages 493–499. American Association for Artificial
Intelligence, 1998.

[5] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Poker
as an experimental testbed for artificial intelligence research. In Proceedings
of AI’98, (Canadian Society for Computational Studies in Intelligence),
1998.

[6] K. Binmore. Fun and Games. D.C. Heath and Company, Lexington, MA,
1992.

[7] Craig Boutilier. Correlated action effects in decision theoretic regression.
In Geiger and Shenoy [23], pages 30–37.

[8] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic plan-
ning: Structural assumptions and computational leverage. Journal of Ar-
tificial Intelligence Research, 11:1–94, 1999.

[9] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochas-
tic dynamic programming with factored representations. Artif. Intell.,
121(1-2):49–107, 2000.

[10] Craig Boutilier and David Poole. Computing optimal policies for par-
tially observable decision processes using compact representations. In
AAAI/IAAI, Vol. 2, pages 1168–1175, 1996.

[11] Anthony Cassandra, Littman Michael, and Zhang Nevin. Incremental prun-
ing: A simple, fast, exact method for partially observable markov decision
processes. In Proceedings of the 13th Annual Conference on Uncertainty

84

BIBLIOGRAPHY BIBLIOGRAPHY

in Artificial Intelligence (UAI-97), pages 54–61, San Francisco, CA, 1997.
Morgan Kaufmann Publishers.

[12] Anthony Rocco Cassandra. Exact and approximate algorithms for partially
observable markov decision processes. PhD thesis, Brown University, 1998.
Adviser-Leslie Pack Kaelbling.

[13] A. Davidson. Opponent modeling in poker: Learning and acting in a hostile
environment. Master’s thesis, University of Alberta, 2002.

[14] D. de Farias and B. Van Roy. The linear programming approach to ap-
proximate dynamic programming, 2001.

[15] E. D. de Jong. The maxsolve algorithm for coevolution. In Proceedings of
the Genetic and Evolutionary Computation Conference, 2005.

[16] Thomas Dean and Robert Givan. Model minimization in markov decision
processes. In AAAI/IAAI, pages 106–111, 1997.

[17] Thomas Dean, Robert Givan, and Sonia M. Leach. Model reduction tech-
niques for computing approximately optimal solutions for markov decision
processes. In Geiger and Shenoy [23], pages 124–131.

[18] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian
Thrun. Approximate solutions for partially observable stochastic games
with common payoffs. In AAMAS ’04: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems,
pages 136–143, Washington, DC, USA, 2004. IEEE Computer Society.

[19] Z. Feng and E. Hansen. Approximate planning for factored pomdps. In
Sixth European Conference on Planning (ECP-01), 2001.

[20] Z. Feng and E. Hansen. An approach to state aggregation for pomdps.
In AAAI-04 Workshop on Learning and Planning in Markov Processes –
Advances and Challenges, pages 7–12. AAAI Press, 2004.

[21] Sevan G. Ficici and Jordan B. Pollack. A game-theoretic memory mecha-
nism for coevolution. In GECCO, volume 2723 of Lecture Notes in Com-
puter Science, pages 286–297. Springer, 2003.

[22] H. Fujita, Y. Matsuno, and S. Ishii. A reinforcement learning scheme for
a multi-agent card game. In IEEE International Conference System, Man.
and Cybernetics (IEEE SMC ’03), pages 4071–4078, 2003.

[23] Dan Geiger and Prakash P. Shenoy, editors. UAI ’97: Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, August 1-
3, 1997, Brown University, Providence, Rhode Island, USA. Morgan Kauf-
mann, 1997.

[24] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions
and model minimization in markov decision processes. Artif. Intell., 147(1-
2):163–223, 2003.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Carlos Guestrin. Planning Under Uncertainty in Complex Structured Envi-
ronments. PhD thesis, Stanford University, August 2003. Adviser-Daphne
Koller.

[26] Carlos Guestrin, Daphne Koller, and Ronald Parr. Solving factored
POMDPs with linear value functions. In Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI-01) workshop on Planning un-
der Uncertainty and Incomplete Information, pages 67 – 75, Seattle, Wash-
ington, August 2001.

[27] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic
programming for partially observable stochastic games. In Deborah L.
McGuinness and George Ferguson, editors, AAAI, pages 709–715. AAAI
Press / The MIT Press, 2004.

[28] Eric A. Hansen and Zhengzhu Feng. Dynamic programming for pomdps
using a factored state representation. In AIPS, pages 130–139, 2000.

[29] Jesse Hoey, Robert St-Aubin, Alan J. Hu, and Craig Boutilier. Spudd:
Stochastic planning using decision diagrams. In Kathryn B. Laskey and
Henri Prade, editors, UAI, pages 279–288. Morgan Kaufmann, 1999.

[30] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artif. In-
tell., 101(1-2):99–134, 1998.

[31] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate plan-
ning in large pomdps via reusable trajectories. In Advances in Neural
Information Processing Systems 12. MIT Press, 2000.

[32] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling
algorithm for near-optimal planning in large markov decision processes.
Mach. Learn., 49(2-3):193–208, 2002.

[33] Kee-Eung Kim and Thomas Dean. Solving factored mdps using non-
homogeneous partitions. Artif. Intell., 147(1-2):225–251, 2003.

[34] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Fast algo-
rithms for finding randomized strategies in game trees. In Proc. of the 26th
ACM Symposium on Theory of Computing (STOC), pages 750–759, 1994.

[35] Daphne Koller and Avi Pfeffer. Representations and solutions for game-
theoretic problems. Artificial Intelligence, 94(1-2):167–215, 1997.

[36] Kevin B. Korb, Ann E. Nicholson, and Nathalie Jitnah. Bayesian poker. In
Proc. 15th Conference on Uncertainty in Articial Intelligence, pages 343–
350, 1999.

[37] H.W. Kuhn. A Simplified Two-Person Poker, volume 1 of Contributions
to the Theory of Games. Princeton University Press, 1950.

[38] H.W. Kuhn. Extensive games and the problem of information. Annals of
Mathematics Studies, 28:193–216, 1953.

86

BIBLIOGRAPHY BIBLIOGRAPHY

[39] Tom M. Mitchell. Machine Learning. McGraw-Hill Sci-
ence/Engineering/Math, March 1997.

[40] J. F. Nash. Non-cooperative games. Annals of Mathematics, 54:286–295,
1951.

[41] Andrew Y. Ng and Michael I. Jordan. Pegasus: A policy search method
for large mdps and pomdps. In Craig Boutilier and Moisés Goldszmidt,
editors, UAI, pages 406–415. Morgan Kaufmann, 2000.

[42] Frans Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Best-response play
in partially observable card games. In Benelearn 2005: Proceedings of the
14th Annual Machine Learning Conference of Belgium and the Netherlands,
pages 45–50, February 2005.

[43] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of markov decision
processses. Mathematics of Operations Research, 12(3):441–450, 1987.

[44] Christos Papadimitriou. Algorithms, games, and the internet. In STOC
’01: Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 749–753, New York, NY, USA, 2001. ACM Press.

[45] Ryan Porter, Eugene Nudelman, and Yoav Shoham. Simple search methods
for finding a nash equilibrium. Games and Economic Behavior, (to appear).

[46] Pascal Poupart and Craig Boutilier. Value-directed compression of
POMDPs. In Advances in Neural Information Processing Systems 15, pages
1547–1554, 2002.

[47] Pascal Poupart and Craig Boutilier. VDCBPI: an approximate scalable al-
gorithm for large POMDPs. In Advances in Neural Information Processing
Systems 17, pages 1081–1088, 2004.

[48] Rob Powers and Yoav Shoham. New criteria and a new algorithm for
learning in multi-agent systems. In Lawrence K. Saul, Yair Weiss, and
Léon Bottou, editors, Advances in Neural Information Processing Systems
17. MIT Press, Cambridge, MA, 2005.

[49] M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, 1994.

[50] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[51] Jiefu Shi and Michael L. Littman. Abstraction methods for game theoretic
poker. In CG ’00: Revised Papers from the Second International Conference
on Computers and Games, pages 333–345. Springer-Verlag, 2002.

[52] Yoav Shoham, Rob Powers, and Teg Grenager. Multi-agent reinforcement
learning: a critical survey. Technical report, Computer Science Depart-
ment, Stanford University, 2003.

[53] E. J. Sondik. The optimal control of partially observable Markov decision
processes. PhD thesis, Stanford University, 1971.

87

BIBLIOGRAPHY BIBLIOGRAPHY

[54] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: randomized point-based
value iteration for POMDPs. Journal of Artificial Intelligence Research,
2005, In press.

[55] Robert St-Aubin, Jesse Hoey, and Craig Boutilier. Apricodd: Approximate
policy construction using decision diagrams. In Todd K. Leen, Thomas G.
Dietterich, and Volker Tresp, editors, NIPS, pages 1089–1095. MIT Press,
2000.

[56] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learning). The MIT
Press, March 1998.

[57] Gerald Tesauro. Practical issues in temporal difference learning. In John E.
Moody, Steve J. Hanson, and Richard P. Lippmann, editors, Advances in
Neural Information Processing Systems, volume 4, pages 259–266. Morgan
Kaufmann Publishers, Inc., 1992.

[58] J. von Neumann and O. Morgenstern. The Theory of Games and Economic
Behavior. Princeton University Press, 1947. 2nd edition.

[59] E. Zermelo. Uber eine anwendung der mengenlehre auf die theorie des
schachspiels. In E. W. Hobson and A. E. H. Love, editors, Proceedings
of the Fifth International Congress of Mathematicians II, pages 501–504.
Cambridge University Press, 1913.

88

