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Abstract

This honours seminar project will focus on some of the primary knowledge that is
associated with game theory. The research will be examining two-person zero-sum games
and non-zero sum games, as well as N-person games. Included will be some inspection
of basic matrix games in two-person zero-sum games. As well, both pure and mixed
strategies will be studied within these games along with some basic algorithms to find
said strategies. Another aspect of this thesis will be to look into Nash Equilibrium and
the importance it has related to game theory. Additionally there will be some study done
on the prisoner’s dilemma in both two-person non-zero sum games and N-person games.
Lastly, there will be some application to real world games throughout the paper.
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CHAPTER 1

Introduction

Historians give credit to John Von Neumann as the founder of Game Theory as a
mathematical discipline. His first paper, published in 1928, laid out the fundamental
theorem of two-person zero-sum games. John Von Neumann continued his research in
collaboration with Oskar Morgenstern and their work was published into the book entitled
Theory of Games and Economic Behaviour, which was published in 1944.

The aim of this project is to investigate and understand some of the basic knowledge of
Game Theory. This includes understanding both pure and mixed strategies within games
and how to apply some basic algorithms to find said strategies. In addition, this paper
will be studying Nash Equilibrium and the important role that it plays within Game
Theory. Game Theory is a branch of applied mathematics that analysis situations, both
mathematically and logically, in order to create strategies that a player should take into
action to ensure the best outcome for themself within a game.

Game Theory is primarily used within economics, political science and psychology.
When it was first introduced, Game Theory focused soley on two-person zero-sum games,
but has since evolved to encompass strategies and game play between more players. Dur-
ing the 1950s Game Theory was largely advanced by many scholars researching this area
of mathematics. For example in 1950, John Nash wrote a dissertation on non-cooperative
games which outlined what is now known as Nash Equlibrium. Nash equilibrium occurs
in non-cooperative games when two players have optimal game strategies such that no
matter how they change their strategy, or game play, they will not gain any benefit.
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CHAPTER 2

Preliminaries

In this section, we will present some of the important definitions and terms, which will
be used throughout this paper. The main sources for this chapter are [1] and [2]. First
and foremost, we need to begin by defining what we mean when we are talking about a
game.

Definition 2.1. We define a game, to be a situation in which

• There are two or more players
• Each player has a number of strategies that they may choose
• The strategies chosen by each player will determine the outcome of the game
• Each possible outcome of the game has a payoff to each player

An important thing to note is that we can represent our games in different forms. The
two forms that we will be looking at are normal form and characteristic function
form, the latter being discussed in Chapter 5 more intently. Games that are described as
in Definition 2.1 are called normal form and we usually represent these types of games
through the use of a payoff matrix game. The purpose of representing games through a
matrix game, is that players can more easily calculate the strategies that they should play
within a game, which we will be looking at within this paper. Additionally, it is assumed
that the players of games are rational thinkers hence the importance of forming a strategy
within the games.

To describe a payoff matrix game, assume we are playing a basic game and there are
two players involved. The payoff matrix will represent two players, their choices and their
payoffs. So, how does a matrix game represent these elements of the game? Well first
we have player one, who is also known as the row player. This player is known as the
row player because the rows are labelled with their choices/actions that they are able
to play within the game. We will label these as r1...ri in the matrix game that follows
for clarification. Next, we have player two, who is known as the column player. Player
two is called the column player because the columns of our game are labelled with the
choices/actions that the second player may choose within a game. We will label these as
c1...cj. Now the choices that each player makes will correlate with the payoffs each player
receives. Since we have two players, one and two, with player one having i number of
choices and player two having j number of choices, we will have i(j) number of outcomes
in the matrix. The elements in the matrix, aij represent the corresponding payoff for
player one, if player one chooses action i and player two chooses action j. In zero sum

3



Chapter 2. Preliminaries 4

games the matrix will always represent the payoff to the row player, but in non-zero sum
games both payoffs will be written in the corresponding aij spot. It is also important to
note for later when we are talking about zero-sum games that player twos payoff for the
game will be (−aij).

Table 1. Representing Normal Form Games in Matrix Games

Player 2

P
la

ye
r

1 c1 ... cj
r1 a1,1 ... a1,j
...

...
...

ri ai,1 ... ai,j

Games in normal form, for example the game in table 1 of Chapter 3 is of this form,
will include all of the strategies that can be played and the corresponding payoffs for these
actions, for each player. We will learn how to find many of these strategies, including
both pure and mixed strategies, within Chapter 3.

The next thing that we must define for the benefit of this paper is what we have in
mind when we are discussing strategies.

Definition 2.2. A players strategy is what actions or options a player can choose
within a game, or situation, where the outcome is dependent on that option. The outcome
is also dependent on the actions of the players opponent and their choice in the game. A
players strategy helps determine what action they are going to play within the game.

For example, if a player is playing the game rock-paper-scissors they have three possible
actions that they are able to play; rock, paper or scissors. If they are playing rock every
time this is called a pure strategy. If they are playing a mixture of actions with different
probabilities for each choice, this is known as a mixed strategy. So a player would play a
probability x for rock, a probability y for paper and a probability (1− x− y) for scissors
to play a mixed strategy.

Something to note, for later on in the paper is that every matrix game has a solution,
either in pure strategies or in mixed strategies.



CHAPTER 3

Two Person Zero Sum Games

The first type of game that we will be looking at are those that involve only two
players. This can be a game or situation that is between two humans, a human and a
computer or human versus nature. Whoever is involved in the game will not take away
from the main goal of the game, which is to play such that they are coming out with the
best possible outcome no matter the circumstances. This is why it is important when
playing a game, to play strategically. For the most part, players will be facing opponents
who are rational in game play and hence they need to evaluate the actions they are able
to take in a game. To create an optimal outcome, players need to look at their strategies.
There are two types of strategies that we will be studying, these include pure and mixed
strategies. It is important to understand the difference between these two types. In this
chapter, the primary sources used were [1], [3] and [4].

1. Pure strategies

First we will be looking at pure strategies, which are the most basic of the two types
and then we will continue on to mixed strategies.

Definition 3.1. A Pure Strategy defines the specific action a player takes, no
matter the situation of the game. Pure strategies are not random and the player does not
change their actions during the game.

Consider the situation where you are playing the simple game of rock, paper, scissors.
The rules are simple, each player has three choices to choose from in an attempt to defeat
their opponent; rock, paper or scissors. The outcomes of the game are; paper beats rock,
rock beats scissors and scissors beat paper. A player either wins, losses or ties. If a player
were to play a pure strategy of rock everytime it would most likely not be beneficial for
them in this type of game. As we have stated before, it is assumed that in a game we
are playing against a rational player. If you are playing rock every single turn, most
likely your rational opponent will catch on to this pure strategy and play accordingly,
hence choosing paper. In situations or games such as rock, paper, scissors it is benefi-
cial for a player to play a mixed strategy, which we will discuss in section 2 of this chapter.

There are different types of pure strategies that a player can use when playing a game.
The first of these pure strategies is dominant strategy.
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Chapter 3. Two Person Zero Sum Games 6

Definition 3.2. A dominant strategy is a pure strategy such that: a strategy S
dominates a strategy T if every outcome in S is at least as good as the corresponding
outcome in T , and at least one outcome in S is strictly better than the corresponding
outcome in T .

Lets look at a simple example of dominance. Assume that you are on a game show
and you have the choice to spin one of two wheels, A or B, as seen in figure 1.

Figure 1. Dominance Diagram

It should be clear that every outcome in wheel B is better than, or at least equal
to every outcome in wheel A. So we have that wheel B donimantes wheel A and when
making a choice on which wheel to spin, a rational player would choose wheel B. This
leads us to what is known as the dominance principle.

Definition 3.3. The Dominance principle states: A rational player should never
play a dominated strategy

The importance behind dominant strategies is that they are useful in ruling out other
strategies, or actions to play within a game. It would not be logical to play a strategy
that is inferior to another. One thing that readers should note is that there may not be a
dominant strategy within a game. The next type of pure strategy that we will be looking
at is called a saddle point strategy.

Definition 3.4. An outcome of a matrix game (with payoffs to the row player) is
called a saddle point if the entry at that outcome is both less than or equal to any entry
in its row, and greater than or equal to any entry in its column.

This strategy has players looking at what their best response would be to what their
opponent may play and also their own choices. If we have a payoff matrix game repre-
senting a normal form game, and we have found an element aij, where aij is the maximum
of all of the minimums of all the rows and it is also the minimum of all of the maximums
of the columns, then aij is a saddle point for the game.
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It is an easy process to find a saddle point within a game, if it does exist. A player
will begin by writing down the minimum entry for each row. From these minimum entries
choose the maximum entry, as done in the table Finding Saddle Points in a Game. This is
called the maximin. The next step is to look at the columns and write down the maximum
entry for each column. Next choose the minimum entry of these column maximums. This
is called the minimax. If the maximin of the rows and the minimax of the columns are
equal, then they appear at the saddle point strategies for the players. If the maximin and
minimax are not equal, then there is not a saddle point in the game. In the table Finding
Saddle Points in a game the saddle point occurs are the outcome AA.

Table 1. Finding Saddle Points in a Game

Player 2

P
la

ye
r

1 A B C Min
A 2 4 3 2
B 1 -10 5 -10
C -1 6 -8 -8

Max 2 6 5

When a game contains a saddle point, then along with it is an important principle
called the saddle point principle. It is also worthy to note that the saddle point will be the
same for both players, and hence why both players should play a strategy that involves
the saddle point if it does exist.

Definition 3.5. Saddle Point Principle: If a matrix game has a saddle point,
both players should play a strategy which contains it.

If a saddle point exists within a payoff matrix game, then this saddle point strategy
will find what is known as the value of the game.

1.1. Value of the Game, Pure strategy.

Definition 3.6. For any matrix game if there is a number v such that player A has a
strategy which guarantees that she will win at least v, and player B has a strategy which
guarantees that player A will win no more than v, then v is called the value of the
game.

If the value of the game exists, then a player can guarantee themselves an outcome of
at least v. If a player does not play the saddle point strategy they are risking an outcome
that is inferior to v and their opponent can possibly have an outcome with a value better
than v. In a non-zero sum game a player would obviously want their opponents outcome
to be at max v because if it is any higher than they are losing from their payoff of the game.

Note: It is possible for a game to have more than one saddle point, however the saddle
points will have the same value. These points will also appear in the corners of the
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rectangle that makes up the outcomes of the payoff matrix game. We will show this in
the theorem 3.7.

Theorem 3.7. Any two saddle points in a matrix game have the same value. Fur-
thermore, if player A and player B both play strategies containing a saddle point outcome,
the result will always be a saddle point.

Proof. Suppose that we have a matrix game with corner entries a, b, c and d, where
a and b are saddle points of the game as follows;

a ... c
...

...
d ... b

By our definition of a saddle point and the minmax theorem, we know that if a is a saddle
point of our game, then it is the smallest entry in its row and similarily if b is a saddle
point of our game then b is the largest entry in its column. This tells us that a ≤ c and c
≤ b. So we know that a ≤ c ≤ b, we denote this as (1). Similarly b is the smallest entry
is its row and a is the largest entry in its column. So we have b ≤ d and d ≤ a, giving us
b ≤ d ≤ a, we denote this as (2). Combing the inequalities (1) and (2) we get a = b, as
well as a = c = d = b. This implies that c and d must also be the largest entries in their
columns and the smallest entries in their rows, hence they too are saddle points and all
of the saddle points are equal. �

Again as a reminder, if we have that the minimax and maximin are not of the same
value, when examining if there is a saddle point in a game, then we are able to conclude
that there is no saddle point to the game.

2. Mixed Strategy

Until this point we have looked solely at pure strategies, but what if there is not a
saddle point strategy or dominant strategy to a game? Then a player will want to create
what is called a mixed strategy.

Definition 3.8. A plan, which involves playing a mixture of strategies according to
certain fixed probabilities is called a mixed strategy.

Instead of playing the same choice every turn, a player may want to play a mixture of
choices that will optimize their overall outcome and overall payoff while playing a game.
Now, let us suppose that we are looking at a basic 2 by 2 game, where there are no pure
strategies within the game. Hence, we want to find a mixed strategy for the game.

In games where a player is playing a mixed strategy, they want to play a choice x
percentage of the time, which they have calculated will have the best possible outcome of
their game and another choice x− 1 percentage of the time (For a basic 2 by 2 matrix).
How would we find this players mixed strategy, such that it is optimal in a payoff matrix
game? One way is to calculate the following algorithms;
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(2.1)

| (d− c)
(d− c) + (a− b)

| A, | (a− b)
(d− c) + (a− b)

| B [Player 1′s Optimal strategy]

(2.2)

| (a− c)
(a− c) + (b− d)

| A, | (b− d)

(a− c) + (b− d)
| B [Player 2′s Optimal strategy]

With the a, b, c and d values all corresponding to some payout in our basic matrix as
follows.

Table 2. Optimal Mixed Strategy

Player 2

P
la

ye
r

1 A B
A a b
B c d

These algorithms will give the player the percentages that they will want to play A
and the percentage they will want to play B. Let us take the following game as an example
of a matrix game we are playing;

Table 3. Optimal Mixed Strategy

Player 2

P
la

ye
r

1 A B
A a = 7 b = −2
B c = 3 d = 4

The first step is to check that the game does not have a dominant or saddle point pure
strategy, which this game does not. Next we want to use the above algorithms, (2.1),
(2.2), to calculate the optimal playing strategies for player 1 and player 2.
Player 1 Optimal Strategy:

(2.3) A =| (4− 3)

(4− 3) + (7− (−2))
|=| 1

10
|, B =| (7− (−2))

(4− 3) + (4− (−2))
|=| 9

10
|

Player 2 Optimal Strategy:

(2.4) A =| (7− 3)

(7− 3) + (4− (−2))
|=| 4

10
|, B =| (−2− 4)

(7− 3) + (4− (−2))
|=| 6

10
|

Subsitituting in our values for a, b, c and d we will get that player 1 should play 1
10
A,

and 9
10
B, for their optimal strategy, while player 2 should play 4

10
A and 6

10
B, for their

optimal strategy. These probabilities that we have found for the players to play will help
them to find what is known as their expected value of the game.
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Definition 3.9. The expected value of getting payoffs a1, a2, ..., ak with respective
probabilities p1, p2, ..., pk is a1p1 + a2p2 + ... + akpk. The expected value of a set of payoffs
is just the weighted average of those payoffs, where the weights are the probabilities that
each will occur.

Player one will have an expeted payoff of [ 1
10
×7]+ [ 1

10
× (−2)]+ [ 9

10
×3]+ [ 9

10
×4] = 68

10

and player two will have a payoff of [ 4
10
× (−7)] + [ 4

10
(−3)] + [ 6

10
× (2)] + [ 6

10
× (−4)] = −52

10
.

To summarize, the expected value of a game is basically the average value a player
should expect as their payoff, when playing their optimal mixed strategy over a period of
time. Next, consider the case in which you were able to figure out your opponents mixed
strategy. A rational player should be able to take the knowledge of their opponents
strategy and play their own strategy that will give them the highest payoff, with the
certain circumstances. This leads us to what is known as the expected value principle.

Definition 3.10. Expected value principle: If you know that your opponent is
playing a given mixed strategy, and will continue to play it regardless of what you do,
you should play your strategy which has the largest expected value.

If a player is unable to predict or find out the mixed strategy of an opponent, then
the expected value principle will not apply and the player will want to focus on creating
a mixed strategy that will ensure themself the best payoff not matter the situation they
are dealing with.

2.1. Value of the Game, Mixed Strategies.

Theorem 3.11. Minimax theorem: Every m × n matrix game has a solution.
That is there is a unique number v, called the value of the game, and there are optimal
(pure or mixed) strategies for player A and player B such that;

(i) if player A plays their optimal strategy, player A’s expected payoff will be ≥ v no
matter what player B does and

(ii) if player B plays their optimal strategy, player A’s expected payoff will be ≤ v, no
matter what player A does.

The minimax theorem, tells us that there is always a solution to be found in some
k × k subgame of an original m × n game. Another important thing to note for this
theorem is that the method of equalizing expectations will fail if the solution of a 3 × 3
game has a 1 × 1 or a 2 × 2 subgame. When working with games that are larger than
2 × 2, you should always check for a saddle point strategy or dominance strategy before
trying to equalize expectations. Additionally, one must be cautious about finding 2 × 2
subgames as there may be many of them in large m × n games. A graphing technique
exists, which can be used to find the 2 × 2 matrix that will provide the solution of the
game. For example, assume we are playing the following game;
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Table 4. Game for Graphing Techniques

Player 2

P
la

ye
r

1 A B Min
A 6 -3 -3
B 2 -1 -1
C -5 4 -5

Max 6 4

First, we are able to deduce that there is no saddle point strategy to the game.
Similarily, there are no dominant strategies. The next step when playing this game is to
find a mixed strategy for the game. To do this we can begin by drawing a figure such
as the one in figure 2, Using upper and lower envelopes to find subgames. On the left
axis of our graph, a player will plot all of the outcomes for player 1 with the criteria
that player 2 choose to play A ( Player 1 chooses option A, player 2 chooses option A,
we get the outcome AA which is 6, hence plot 6 on this axis). On the right axis of our
graph, the player will then plot player 1’s outcomes if player 2 played B. The next step
is to then connect the outcomes where player 1 played the same choice for each side. For
example, connect points AA and AB, where AA represents both players selecting A and
AB represents player 1 selecting A and player 2 selecting B (Player one made the choice
of A for each of these outcomes). The other connections are BA and BB, as well as CA
and CB.

Figure 2. Using Upper and Lower Envelopes to Find Subgames

The bolded section of the graph is called the upper envelope and player 1 would
want to play a strategy that plays this section to optimize their payoff. Also note the
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lowest point of this upper envelope is at the intersection of Player 1 playing A and C.
This tells us that in our mixed strategy for player 1, they would not want to play option
B. With this information, we can change the 3 × 2 game, into a simpler 2 × 2 subgame
and solve it with a mixed strategy.

Table 5. Game for Graphing Techniques

Player 2

P
la

ye
r

1 A B
A 6 -3
C -5 4

Through quick inspection, this game does not have a pure strategy, but the mixed
strategy for player one would be to play 1

2
A and 1

2
B.

3. Utility Theory

In this next section, we will be discussing games where the numerical payoffs in the
games are not given. Rather than knowing the players outcome as a numerical quantity or
unit, we will be considering their preference for that choice compared to the other options.
This will be done by assigning numbers to the outcomes, such that they coordinate with
the players preference to that outcome, compared to the other possible outcomes. We
simply number the outcomes from 1 to n, where n is the number of outcomes. This is
known as utility theory.

Definition 3.12. Utility theory is the science of assigning numbers to outcomes in
a way which reflects a player’s preferences.

When dealing with utility theory we want to look at two cases. The first is when the
game has a saddle point and the second is when we are using mixed strategy. Lets look
at the first case. Since we have a saddle point, this tells us that the player will prefer this
entry compared to the others in its coloumn. Similarily, the player will prefer any other
entry in the row compared to the saddle point. We are ordering the numbers that the
player prefers from most to least. Sometimes a player is unable to rank the payoffs, this
is called intransitive preference and no ordering is possible. For example, someone
may prefer the colour red to the colour green, and the colour green to the colour purple,
but still prefer the colour purple to the colour red. If ordering is possible in a zero-sum
matrix game, then the order of preferibility for player 1 will be the complete reverse for
player 2. These scales that we are creating are called ordinal scales.

Definition 3.13. A scale in which higher numbers represent more preferred outcomes
in such a way that only the order of the numbers matter, not their absolute or relative
magnitude, is called ordinal scale. Numbers determined from preferences in this way
are called ordinal utilities.
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Now we will look at the second case, mixed strategies. In this case we need to look at
the ratios of difference, which in the case of the table 3 game would be (d− c) : (a− b).

Definition 3.14. A scale on which not only the order of numbers, but also the ratios
of differences of the numbers is meaningful is called an interval scale. Numbers reflecting
preferences on an interval scale are called cardinal utilities.

In these situations a player may not know the outcomes from their game play, but
they have the distribution of probabilities for these outcomes. Let us then assume that
we have a game with four outcomes, a, b, c, and d and player 1 orders them as d, a, c and
b. We want to find the players utilities on a cardinal scale. To do this we use lotteries.
We will assign numbers to our d and b, the most and least prefered outcomes for the
player. First assign 0 to b and 100 to d (Step 1, Figure 3). The next step is to then ask
questions to the player, that break down the probabilities. So, we could ask player 1 if
they prefer c, or to play 1

2
d and 1

2
b? If they said they prefered c and due to the assigning

of 0 to b and 100 to d we know that c is somewhere between 50 and 100 on the scale (
1
2
× 100 + 1

2
0 = 50). If they did not prefer c, then we would know it lies somewhere on

the scale between 0 and 50 (Step 2, Figure 3). Assuming the ladder is the case we could
ask if the player prefers c or 1

4
d and 3

4
b (1

4
× 100 + 3

4
× 0 = 25). If they choose c then

c is between 25 and 50, but if they choose 1
4
d and 3

4
b then c is between 0 and 25 (Step

3, Figure 3). We can constantly change the lottery probabilities in order to get a better
understanding of where a lies on the scale. For example, do you prefer c to 3

4
d and 1

4
b,

to see if c will now lie between 50 and 75 on the scale or 75 and 100. Once the utility
for c was found, the same process can be used to find a on the scale. Using the players
preference we are able to assign a unit or worth to each of the choices for the game. The
scale that we created will represent the players cardinal utilities.

Figure 3. Dominance Diagram

Overall, a cardinal utility helps to preserve a players preference of the ordering of the
choices that they are able to choose within a game. It can also be noted that cardinal utili-
ies can be transformed by any positive linear function without changing the information
they are showing. Consider the following game;
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Table 6. Game A

Player 2

P
la

ye
r

1 A B
A (0 , 4) (12,−2)
B (14,−3) (10,−1)

We can observe that by transforming game A by the function g(x) = (x
2
− 4), we will

get a zero sum game. We will then be able to solve the new game B by zero sum game
methods.

Table 7. Game B

Player 2

P
la

ye
r

1 A B
A (−4 , 4) (2,−2)
B (3,−3) (1,−1)

It is important for players to determine if they are able to transform a game into a
zero sum game from a non-zero sum game, as it tells us whether or not cooperation is
available. Additionally, if a player knows they are strictly in opposition of their opponent
they will then play one of our zero-sum game strategies.

4. Analysis of strategies

In the previous sections we have either known, assumed or calculated what an oppo-
nents probabilities will be for each of their choices. Now what if you are not sure about the
assignment of probabilities and are unable to calculate them? This is actually a different
type of zero sum game that is called games against nature. When playing these games
a player may assume that all the actions ’nature’ will play are equally likely. Well then,
how will a player play optimally in this type of situation? There are four strategies that
a player may choose from to play; Laplace, Wald, Hurwicz and Savage.

Strategy 1 This first strategy, created by Pierre-Simon de Laplace, has the player
assume that all events are equally likely to occur and then apply the expected value
principle, which we discussed in Section 3, Definition 10. Overall, Laplace’s advice it to
”Choose the row with the highest average entry. Equivalently, choose the row with the
highest row sum.” It is a very basic strategy, where a player is soley looking at their own
payoffs and disregard their opponents.

Strategy 2 The second strategy is associated with Abraham Wald and this strategy
states that players should write down the lowest entry from each row and select the
row that has the largest minimum to play. This strategy is choosing the saddle point
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strategy in a game if it contains a saddle point. However in a game without a saddle
point this strategy is merely choosing a pure strategy, called the maximin strategy which
will actually not be the mixed strategy games solution. This strategy is assuming that
the worst situation will occur and attempts to create the best outcome in this type of
situation, which is known as the maximin principle.

Definition 3.15. The maximin principle assumes that the least favorable outcome
will happen in the game. The opposite of this principle is the maximax principle that
assumes the most favorable outcome will occur.

Strategy 3 The third strategy is named after Leonid Hurwicz. This strategy combines
the first two strategies to create a new approach. In this strategy a player chooses what
is called a ”coefficient of optimism.” This is usually denoted as α, where α, is between 0
and 1. Then for each row you are to compute the following;

(4.1) α(rowmaximum) + (1− α)(rowminimum)

After calculating this for each row, the player will chose the row which has the highest
weighted average.

Strategy 4 The fourth strategy to choose from, when making decisions dealing with
uncertain probabilities, comes from L. J. Savage. This strategy is designed to minimize
the maximum regret that a player may feel from a decision by creating a regret matrix.
”For the regret matrix, write down the largest entry in each row. Choose the row for
which this largest entry is smallest.” To create the regret matrix a player will take each
entry and subtract it from the highest entry in its column. If the entry is the highest entry
in a column then in the regret matrix the corresponding value will be 0. This strategy
is attempting to make the player feel as good as possible no matter the circumstances of
their game play.

Let us try and put these four strategies into practice. Begin by assuming we are
playing the following game;

Table 8. Example Game

Player 2

P
la

ye
r

1 A B C D
A 1 1 0 2
B 3 3 4 1
C 0 0 2 3
D 3 2 4 0

Applying each of the four strategies separately, we would get the following results. We
would want to play the strategy that has the best or optimal outcome/payoff.
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Laplace strategy: This is the easiet to compute of the four strategies. All we have to
do is write down the sums of each row. Doing this, we will get row one sum = 1+1+0+2
= 4, row two sum= 3+3+4+1=11, row three sum=0+0+2+3=5 and row four sum =
3+2+4+0=9. According to laplace strategy, because row 2 has the highest sum we would
want to play B.

Wald Strategy: This next strategy is also simple to compute. We begin by writing
down the lowest entry of each row. In row one we have, 1, 1, 0 and 2, with zero clearly
being the lowest. In row two we have 3, 3, 4, 1, with 1 begin the lowest. For row three we
have 0, 0, 2 and 3, with 0 being the lowest. Lastly, for row four we have 3, 2, 4 and 0 with
0 being the smallest entry. Row one=0, row two=1, row three=0 and row four=0. The
next step is we want to choose the highest of these minimum row entries. We see that
row two has the highest minimum, thus the Wald strategy tells us to play B, the largest
of the minimums.

Hurwicz Strategy: The first step in this strategy is to choose an α between 0 and 1,
that is our coefficient of optimism. Suppose we choose our α to be 0.6. We can then plug
this value into the Hurwicz equation,

(4.2) α(rowmaximum) + (1− α)(rowminimum)

and we will get our equations for each row for this game, to calculate the weighted
averages, according to our ”coefficient of optimism” to be;

(4.3) 0.6(rowmaximum) + (1− 0.6)(rowminimum)

For row 1,

(4.4) (0.6)(2) + (0.4)(0) = 1.2

For row 2,

(4.5) (0.6)(4) + (0.4)(1) = 2.8← Highest

For row 3,

(4.6) (0.6)(3) + (0.4)(0) = 1.8

and lastly for row 4,

(4.7) (0.6)(4) + (0.4)(0) = 2.4

From Hurwicz strategy, the weighted averages for each row are; Row one = 1.2, Row
two = 2.8, Row three = 1.8 and Row four = 2.4. We can clearly see that the second row
has the highest weighted average and we would want to play option B in this game.
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Savage strategy: For this strategy we need to create the least regret possible for the
player. To do this we calculate the regret matrix, as seen in figure 9.

Table 9. Regret Matrix

Player 2
P

la
ye

r
1 A B C D Row Max

A 2 2 4 1 4
B 0 0 0 2 2
C 3 3 2 0 3
D 0 1 0 3 4

How did we find these values for the regret matrix? Well, lets begin with column one
of our game matrix, we have the values, a1,1 = 1, a2,1 = 3, a3,1 = 0 and a4,1 = 3. Our
elements a2,1 and a4,1 both have the highest values in this column. We ill take this value
of 3 and subtract our ai1 values to get the first column of our regret matrix.

a21 - a11 = 3-1 = 2

a21 - a21 = 3-3 = 0

a21 - a31 = 3-0 = 3

a21 - a41 = 3-3 = 0

We do this procedure for each separate column to create the regret matrix. Once the
the regret matrix has been created we take the maximum of each row within this matrix
and choose the smallest value of these. Accordng to the Savage theory we would want to
play row two because it has the smallest row maximum. So, the strategy suggests that
the player plays B. They will never do more than 2 worse than the best they could have
done, compared to say row one where we could do 4 worse than the best. Obviously, a
player would have less regret doing only 2 worse compared to four.

Something to take into account is that when playing a game, a player may not want
to constantly evaluate each strategy to determine what is the best for their game play.
Additionally there are issues with each of these strategies depending on the criteria of the
game. So, before choosing which of the strategies to play, a player must evaluate them
according to six important axioms.

Axiom 1: Symmetry. Rearranging the rows or columns should not affect which strategy
is recommended as best.

Axiom 2: Strong Domination. If every entry in row X is larger than the corresponding
entry in row Y, a method should not recommend strategy Y.
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Axiom 3: Linearity. The recommended strategy should not change if all entries in the
matrix are multiplied by a positive constant, or if a constant is added to all entries.

Axiom 4: Column duplication. The recommended strategy should not change if we add
to the matrix a new column which is a duplicate of a column already in the matrix.

Axiom 5: Bonus Invariance. The recommended strategy should not change if a constant
is added to every entry in some column.

Axiom 6: Row Adjunction. Suppose a method chooses row X as the best strategy to
follow in a game against nature, and then a new row Z is added to the matrix. The
method should then choose either X or Z, but not some other row.

Note: Even though all four of the strategies will violate at least one of the six axioms,
we can either try to find a new strategy to play in the game or for certain types of games
against nature we can exclude one of the axioms. Obviously we must then evaluate the
axiom against the game and if it is important in relation to the game, then we would not
play one of the strategies that violate said axiom. For example the Savage strategy will
violate axiom number 6.



CHAPTER 4

Two Person Non-Zero Sum Games

1. Two person Non-zero sum games

In this chapter we will be looking at two person non-zero sum games. The primary
source used for research in this chapter was [1].

In zero sum games there was a straightforward set of outcomes, whatever one player
won the other player lost. When dealing with non-zero sum games this is not the case
and the payoffs must be written for both players in the payoff matrix to describe the
game. In this section, we will also be looking at the types of assumptions that we can and
cannot make when playing theses games. Players must ask themselves certain questions:
do players have no communication at all, can they talk to each other before choosing a
strategy or do they agree on cooperative strategies?

For example, assume two individuals both want to go to a movie. They decide they
either want to go to a war movie, or a romantic comedy. They both also prefer to go
to the movies together compared to going alone. The first individual prefers the war
movie, while the second prefers the romantic comedy. However, the first individual would
prefer going to the romcom, rather than go to the war movie by themself, and the second
individual would prefer going to the war movie, rather than to the romcom by themself.
We can put this into a game matrix.

Table 1. Movie Night: Non-Zero Sum

Individual 2

In
d
iv

id
u
al

1 War Movie Romcom

War movie (3, 2) (1, 1)

Romcom (1, 1) (2, 3)

This game is clearly not a zero sum game and to know each players payoff we must
write each within the game matrix. In zero-sum games, the preferences and interests of
each player were opposed. In non-zero sum games, this is not always the case, as seen
above. This can lead to cooperation. While looking at equilibrium in the next section,
we will be focusing on non-cooperative solutions. Another thing to note, is that the
dominance principle that we covered within zero-sum games also applies to non-zero sum
games, as do saddle points as we are about to see.

19
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2. Equilibrium

When playing a game, players want an outcome that will give them their largest payoff
and they usually play for themselves while not taking into account their opponents deci-
sions. Playing with a group of people that are always trying to guarantee themselves the
best payoff may lead to a payoff that is not desirable, so we take into account equilibrium.
For example, consider the following game;

Figure 1. Finding Equilibrium

The equilibrium outcomes in a non-zero sum game actually correspond to saddle points
in zero-sum games. To create an equilibrium chart we look at each players outcomes
individually. For the arrows that are vertical the arrow will point to the payoff that
player one prefers and for the horizontal arrows they point towards the payoff that player
two prefers. Note: Not every non-zero sum game will have an equilibrium outcome, just
like not every zero-sum game contains a saddle point. Similarily there can be more than
one equilibrium outcome in a game such as in the following example;

Figure 2. Multiple Equilibrium

For this game we have two equilibrium outcomes, one at AA and one at BB. (A
reminder when we say AA, this tells us that player one chooses option A and player two
chooses option A). In this specific example, player one would prefer the outcome AA,
while player two would prefer the outcome BB. This can cause problems within our game
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play. Player one will most likely play option A, while player two would most likely play
B. This gives us the outcome AB, giving player one a -2 outcome and player two a 0
outcome. Both players would prefer either of the two equilbrium, so communication and
cooperation are needed in this game.

Another interesting point is that there may be a different payoff choice from the
equilibrium outcome that is better than said equilibrium. If this is the case than our
outcome is known as non-pareto optimal.

Definition 4.1. An outcome of a game is non-pareto-optimal (or Pareto inferior
or Pareto inefficient) if there is another outcome which would give both players higher
payoffs, or would give one player the same payoff but the other player a higher payoff. An
outcome is Pareto-Optimal if there is no such other outcome.

If a game does have an equilibrium outcome, that is not inferior to any other choices
or options, then both players would not want to change their game play or strategy. If
they did change their actions in the game, they would not be playing optimally. It is also
important to note that if a single equilibrium is found within the game, this is called the
solution of the game and is known as the pareto principle.

Definition 4.2. Pareto principle: To be acceptable as a solution to a game, an
outcome should be pareto optimal.

By this principle, one must always check that the equilibrium solution is not inferior to
any other solution. An excellent example when the equilbrium is not the most acceptable
solution is in a special case called the prisoners dilemma, which we will be looking at more
in depth within chapter 6. Consider the following game;

Table 2. (Non)-Pareto Optimal

Player 2

P
la

ye
r

1 A B
A (3, 3) (5,−1)
B (−1, 5) (0, 0)

When creating a moving diagram, we find the equilibrium solution to be (0,0) at the
point BB. It is clear however that this is inferior to the point AA, which is (3,3). This
tells us that the equilibrium solution is non-pareto-optimal and both players would be
better off playing A.

2.1. Nash Equilibrium. One of the more interesting and important developments
of game theory is that of the Nash Equilibrium, founded by John Nash. He found that
in every single two-person game, zero-sum, or non-zero sum, we can find at least one
equilibrium (through pure or mixed strategies).
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Definition 4.3. Nash equilibrium is a solution concept of a game involving two
or more players, in which each player is assumed to know the equilibrium strategies of
each of the other players, and no player has anything to gain by changing only his or
her own strategy unilaterally. If each player has chosen a strategy and no player can
benefit by changing his or her strategy while the other players keep theirs unchanged,
then the current set of strategy choices and the corresponding payoffs constitute a Nash
equilibrium.

In more basic terms, Nash Equilibrium tells us that player one makes the best decision
that they can, while taking into consideration player two’s decision, and player two makes
their best decision, while taking into consideration player one’s decision.

The equilibrium we have been considering to this point have been pure strategies.
However just like in zero-sum games, we can create non-zero sum game mixed strategies.
To do this a player will look at their opponents payoffs only within the game. From the
following game, player one can use their opponents payoffs to create a mixed-strategy for
themselve, which is similar to what we do in the zero-sum case.

Figure 3. Mixed Strategy in Non-zero Sum Games

A: 3x+ 1(1− x) = 2x+ 1

B: 2x+ 3(1− x) = −x+ 2

Set A=B and solve for x, 2x + 1 = −x + 2 → x = 2/3. So player one should play
2
3
Aand 1

3
B. This is player one’s equalizing strategy. Player two would do the same pro-

cedure, but look at player ones payoffs.

Next we will be looking at a player’s prudential strategy. In this strategy a player
looks at their own payoffs and ignores their opponents.

Definition 4.4. In a non-zero-sum game, a player’s optimal strategy in their game
is called the player’s prudential strategy. The value of the player’s game is called the
player’s security level. If a player is playing their prudential strategy, they can assume
themselves at least their security level.



Chapter 4. Two Person Non-Zero Sum Games 23

Again lets look at the game in figure 3. Calculating players one mixed strategy we
will find;

A: −2x+ 3(1− x) = −5x+ 3

B: 4x+ 2(1− x) = 2x+ 2

Set A=B, we get −5x + 3 = 2x + 2 → x = 1
7
. So player one would play A 1

7
of the

time and B 6
7

of the time. This is player one’s prudential strategy. Playing this strategy,

they will have a security level of 16
7

.

Definition 4.5. In non-zero-sum game, a player’s counter-prudential strategy is
their optimal response to the opponents prudential strategy.

Obviously a player would want to play an option that counter-acts their opponents
prudential strategy as that would be rational play. As we should remember, the goal of
game theory is to play as strategically as we can in order to get an optimal payoff.

Definition 4.6. A two person game is solvable in the strict sense (or sss) if
i) there is at least one equilibrium outcome, which is pareto optimal, and
ii) if there is more than one pareto optimal equilibrium, all of them are equivalent and
interchangeable.

Let us now look at an example where a game is solvable in the strict sense.

Table 3. Solvable in the Strict Sense

Player 2

P
la

ye
r

1 A B C
A (3, 2) (2, 0) (1,−1)
B (1, 0) (3, 1) (2,−2)
C (0, 0) (2, 3) (1, 2)

From our game matrix we can create a equilibrium chart and a payoff polygon.

Figure 4. SSS Equilibrium and Payoff Polygon

We can see that we get two equilibrium at AA and BB. It is clear however when we
look at our payoff polygon on the right, when looking above or to the right of our point
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BB, there are choices that are better than this point BB, in particular AA. We know that
BB is not pareto optimal. On the other hand, our AA is pareto optimal because if we
were to switch to say CB, player 1 would be getting a worse payoff, even though player
2 is getting a better value for this choice. Remembering our definition of pareto-optimal,
this can not be the case. Hence this game has only one optimal equilibrium and is thus
solvable in the strict sense. We would encourage player 1 to play A and player 2 to play
A as well for an outcome of AA, (3,2).

The payoff polygon is just another tool that we are able to use to check that an option
is pareto-optimal. It is also good to note that what the players are told to play from this
above strategy may not give them there prudential strategy.



CHAPTER 5

N-Person Games

In the preceding chapters, we have been looking at games that involve only two players,
but more real world games and applications of game theory will involve more than 2
opponents. These are called n− person games where n ≥ 3. These games become much
more indepth, as we can introduce games that have coalitions, communication and side
payments. The sources used for this chapter were [1] and [2].

1. Characteristic Function Form

When looking at games with more than two players we can form what are called
coalitions. Coalitions occur when groups of players form together in a group, through
cooperative behaviour, and split the payoff from that grouping with the members of the
coalition. Coalitions that form may force other players to cooperate. These games are
then a contest between coalitions. Players can form coalitions with two or more players,
and all players can be in a coalition together.

Definition 5.1. A game in characteristic function form is a set of N players,
together with a function v, which for any subset S ⊆ N gives a number v(S). The
number v(S) called the value of S is to be interpreted as the amount that the players in
S could win if they formed a coalition. The function v is the characteristic function
of the game.

When we are looking at n-person games that allow cooperation, there are two questions
players need to ask;

(i) What coalitions can form within the game
(ii) How should a coalition which forms divide it’s winnings among its members.

Some other things to note are that v(∅) is the empty coalition. This means no players
formed a coalition together and it will always equal 0. Players will not join a coalition if
it does not benefit them in the game.

Any zero-sum game that is of normal form can be turned into a game that is in
characteristic function form by taking v(S) to be the security level of S. This means that
the players are assuming that coalition S forms, and then they play optimally under the
worst possible conditions. In this situation the worst possible conditions is that all other
players that oppose v(S) form a coalition, N −S and are playing to try and minimize the
payoff to S.

25
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(1.1) v(S) + v(S −N) = 0

Definition 5.2. A characteristic function form game (N, v) is called superadditive
of v(S ∪ T ) ≥ v(S) + v(T ) for any two disjoint coalition S and T .

Let us look at a game that is in characteristic function form. Note: Characteristic
function form games are not represented through payoff matrix games as normal form
games have been.

Game in Characteristic function form: Assume we have three telephone compa-
nies that are putting up cellular towers around Ontario. Company one will be labelled as
A, company two will be labelled as B and the third company will be labelled as C. The val-
ues of the coalitions can be calculated as; v(∅)=0, v(A)=4, v(B)=3, v(C)=2.1, v(AB)=9,
v(AC)=7.5, v(BC)=9.2 and v(ABC)=13.2. We can see if this game is superadditive,
remembering that superadditive means v(S ∪ T ) ≥ v(S) + v(T ).

v(A)+v(B)=4+3=7 ≤ v(ABC),

v(A)+v(C)=4+2.1=6.1 ≤ v(ABC),

v(B)+v(C)=3+2.1=5.2 ≤ v(ABC),

v(A)+v(B)+v(C)=4+3+2.1=9.1 ≤ v(ABC),

v(A)+v(BC)=4+9.2=13.2 = v(ABC)

v(B)+v(AC)=3+7.5=10.5 ≤ v(ABC),

v(C)+v(AB)=2.1+9=11.1 ≤ v(ABC).

Clearly we have that this game is superadditive because any coalitions that form will
always be less than or equal to v(ABC).

Note: if (N, v) arises from a normal form game by taking v(S) to be the security level
of S, then this characteristic function form game will always be superadditive.

2. Imputations, Domination, and Stable Sets

In this following section we will be looking at how to find solutions to games that are
in characteristic function form. To do this we must remember those two questions from
the previous section that every player must ask themselves, (i) what coalitions are able
to form within the game, and (ii) how should a coalition which forms divide its winnings
among the members of said coalition. In the forming of coalitions in games, it is important
to keep the second question in the forefront of one’s mind. Consider the example where a
player A can be involved in two coalitions, v(AD) or v(ABC). In order for these coalitions
to form player A must be willing to cooperate with the members involved in the coalitions.
Lets say that v(AD) = 10 units and v(ABC) = 12 units. Although the second coalition
has a larger payoff to split, player A must take into account that there are more players
in v(ABC). If players are dividing the payoffs equally, player A would be better off joing
the coalition with player D and getting a payoff of 5 units, (10/2), rather than the second
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coalition where they would get a payoff of 4 units, (12/3). Also, depending on the other
coalitions that can form, some players may have more pull within their coalition. For
example, perhaps D could form a separate coalition where they would get a payoff of at
least 7 units. Then player D would want to split the 10 units in such a way that they
get 7 units and player D would get 3 units, meaning player A would now be better off
joining coalition ABC. This brings us to two important terms, individual rationality and
collective rationality.

Definition 5.3. Individual rationality: xi ≥ v(i)∀i
Individual ratiionality basically tells us that if v(i) is the amount player i can assure
themself, without having cooperation with any one else in the game, they it would not be
rational player i to accept a payoff that is less than this.

As we stated in our preliminaries, we are assuming that everyone involved in game
play is a rational thinker. Being a rational thinker entails having ones best interest in
mind and having optimal game play. In the example that we were just discussing, it would
not be individually rational for player A to join the coalition AD and split the payoff 3
for A and 7 for D.

Definition 5.4. Collective rationality:
∑

i∈N xi = v(N) .

When dealing with collective rationality we are looking at games that are superaddi-
tive. This tells use that v(N) is the maximum amount that we can divide between the
players and hence we would not have that for each member of our coalition would do
better then joining the coalition,

∑
i∈N xi > v(N) . This tells us that we would not be

able to have
∑

i∈N xi < v(N) as each player would not have reason to join the coaltion as
they can do better in the game if they were to play individually.

Definition 5.5. A payoff n-tuple satisfying individual rationality and collective ra-
tionality is called an imputation for the game (N, v).

So, now in order to solve our characteristic function form games, we must try to
determine which imputations (or sets of imputations, depending on the coalitions that
form) that will result in rational play in the game. This can be a very difficult task.

Definition 5.6. A superadditive n-person game (N, v) is inessential if
∑

i∈N v(i) =
v(N). Otherwise it is essential.

In superadditive n-person games, if
∑

i∈N v(i) = v(N) then any coalition can only
assure each one of its members the value that they could get on their own, hence it would
not make sense for them to form a coalition.

Definition 5.7. Two games (N, v) and (N,w) are strategically equivalent if we
can change v into w by;

(i) adding a constant ci to the payoff of some player i (and hence to the value of any
coalition containing player i) and

(ii) multiplying all payoffs by a positive constant.
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This is basically tell us that two games (N, v) and (N,w) are strategically equivalent
if we have contants c1, c2, ..., cn and a value x ≥ 0 such that;

w(S) = x[v(S)+
∑

i∈S ci ] for all S ⊆ N.

Lets take the following two games and see if they are equivalent;

game v: v(A) = −3, v(B) = −2, v(C) = −4,
v(AB) = 4, v(AC) = 2, v(BC) = 3, v(ABC) = 0,
game w: w(A) = w(B) = w(C) = 0,
w(AB) = 18, w(AC) = 18, w(BC) = 18, w(ABC) = 18.

Assume we are looking at gave v first. If we add a constant c1 = 3 to player A, a
constant c2 = 2 to player B and a constant c3 = 4 to player C and then have a value
positive constant 2 as our x, we get that these to games are strategically equivalent and
w(S) = x[v(S)+

∑
i∈S ci ] for all S ⊆ N. How? Well lets look at v(AB)=4 for example. If

we add our c1andc2 to this value and multiply it by our x=2, we get 2[v(AB) + c1 + c2] =
2[4 + 3 + 2] = 18 = w(AB)

Definition 5.8. An imputation x = (x1, x2, ..., xn) dominates an imputation y =
(y1, y2, ..., yn) if there is some coalition S, such that;

(i) x1 ≤ y1 for all i in S and
(ii)

∑
i∈s xi ≤ v(s)

If we have that an imputation x dominates an imputation y, then it is expected that
a coaltion S would want to have x played rather than y. There are three properties of
domination;

(1) If we are given two imputations, x and y, then it may be the case that neither of
these two imputations dominates the other.

(2) It is possible to have cycles of domination. This means that we can have three
imputations, x,y and z such that x dom y, y dom z and z dom x.

(3) It is possible that every imputation is dominated by some other imputation.

A great example for property number two and three would be the game Divide the
Dollar. In this game we have three players who are dividing a dollar between themselves.
Player 1 would begin by suggesting that the three players divide the dollar into three even
thirds and then figuring out some other way to assign the last penny. However, player
2, wanting a better outcome, may suggest that player 1 and player 2 divide the dollar
evenly and player 3 is left out of the coalition. Obviously player three will not appreciate
this coalition and propose to player 1 that they split the dollar 60-40, where player 1 gets
60 cents and player 3 gets 40 cents. Player 2 will now counter offer and say player 1 and
player 2 should spit the dollar, 70-30, where player 1 gets 70 cents and player 2 gets 30
cents, after saying this player 2 will realize they are getting less then the orginal plan of
splitting the penny in equal thirds and will offer that player 2 and player 3 split the dollar
50-50. Obviously this argument will continue on and they will not reach an equal division
of the dollar.
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Definition 5.9. A stable set for a game G is a set J of imputations such that;

(i) J is internally stable: no imputation in J is dominated by any other imputation
in J, and

(ii) J is externally stable: every imputation not in J is dominated by some imputation
in J.

A set is called symmetric stable if it treats all of its n players symmetrically.

3. The Core

In this next section we will be discussing briefly what the core is.

Definition 5.10. The core of a game in characteristic function from is the set of
all undominated imputations. i.e. the set of all imputations (x1, ..., xn) such that for all
S ⊆ N,

∑
i∈S xi ≥ v(s).

It is important to note that when we have distributions, where a player is receiving
less than they could obtain on their own, without the use of cooperation, it is not an
acceptable way to play the game. They are not playing individually rational. This implies
that imputations are efficient and individually rational.

An imputation will be in the core of a game if the members of any coalition S are
getting, in total, at least as much as S could guarantee them. There is however the case
that the core could be empty of imputations, and is then the empty set for any essential
constant sum game.

The core cannot be improved on from any other subset of coalitions. So an imputation
will have the property of being in the core if there is no other coalition that can improve
the core. The basic property of the core is that there is cooperation between the players
in a game that cannot be broken, if every coalition S ⊂ N receives as least the value that
they can get in the game, v(S) (collective and individual rationality).

So how exactly do we describe the core? Well, in order to do so the game will have
the following properties. (Note xA, xB, xC are all imputations in the game.)

xA, xB, xC ≥ 0

xA + xB ≥ v(AB)

xA + xC ≥ v(AC)

xB + xBC ≥ v(BC)

The last three inequalities must fold for the core. Let us look at an example of a game
that has a core and how to find it.

Example 5.11. v(A) = v(B) = v(C) = 0, v(AB) = 1/2, v(AC) = 3/4.v(BC) = 1/2,
v(ABC) = 1 Our next step is to use the above properties of the core to find our xA, xB, xC
imputations of the game. Once we have found these imputations we will create is what
is known as an imputation diagram which will give us our core.
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Our first imputation: xA + xB ≥ v(AB) = 1/2 this tells us that xC ≤ 1/2

Because we had the above inequality, to create our imputation diagram we move half
way from point A to point C and move half way from point B to point C and mark these
points. Then we conntected those points and that is our imputation xC .

Our second imputation: xB + xC ≥ v(BC) = 3/4, this tells us that xA ≤ 1/4

We followed the same reasoning as above to add our next imputation, xA = 1/4 to
our imputation diagram.

Our third imputation: xA+xC ≥ v(AC) = 1/2, this tells us that xB ≤ 1/2. Again, we
can now go half way from A to B and half way from C to B to graph our final imputation,
xB.

We can notice that when we graphed all of our imputations they have a non-empty
intersection, which is filled with grey in the image. This is our core of the game.



CHAPTER 6

Prisoner’s Dilemma

One of the most widely recognized and contemplated games is that of the prisoner’s
dilemma. We will be looking at two-person prisoner dilemma games, but it can also be
applied to n-person games. The prisoner’s dilemma shows us how we can have a unique
equilibrium outcome within our game, but it does not satisfy the pareto-optimal criteria.
It is also an example of where two rational players may not cooperate, although it is in
their best interest. We will now give a brief description of the prisoner’s dilemma game.

There are two individuals who are arrested for the exact same crime. Now, the au-
thorities do not want the two criminals to communicate with one another so they are put
into solitary confinement. Next, they are each offered the exact same options for what
they want to do in this situation. They can either remain silent, or they can betray the
other prisoner. From this we get the following results;

i If prisoner 1 and 2 both betray each other they will each serve two years in jail
ii If they both remain silent, they will serve only one year in jail

iii If prisoner 1 betrays prisoner 2, and prisoner 2 remains silent (or the other way
around) then the betrayer will be set free and the silent prisoner will serve 3 years

We can thus create the following game matrix with this information (S stands for
silent, B stands for betray).

Figure 1. Mixed Strategy in Non-zero Sum Games

When we create our equilibrium chart we see that there is an equilibrium at BB. This
equilibrium is non-pareto-optimal since both of the prisoners would do better if they both
did not say anything and we get the outcome SS. However since we are dealing with
rational thinkers who have their own best interest in mind and they would rather spend
no time in jail then one year, so each player believes they are better off to confess no
matter what they believe their opponent to do (if they did not betray their partner This
however leads both players to confessing, and we are back to the BB putcome of out game,

31



Chapter 6. Prisoner’s Dilemma 32

and they are both worse off had they both kept quiet. This is creating a conflict between
individual rationailty, dominance and group rationality.

The general form of the prisoners dilemma is as follows;

Table 1. General form of Prisoners Dilemma

Player 2

P
la

ye
r

1 C D
C (R,R) (S, T )
D (T, S) (U,U)

Labels- C: Cooperate, D: Defect, R: Reward for cooperation, S: Sucker Payoff, T: Temp-
tation payoff, U: Uncooperative payoff

Conditions T ≤ R ≤ U ≤ S and R ≤ (S+T )
2

This prisoner’s dilemma is an interesting game, as it can be used to model many
different situations that involve cooperation. The prisoners dilemma illustrates the conflict
that occurs between individual rationality and group rationality and many people have
tried to solve this game with arguments that will somehow lead players to playing the
cooperative strategy even though it is not a dominating choice in the game. Additionally,
the outcome of the prisoners dilemma and game play will depend on if the game is being
played once or repeatedly and can be played with N players as well.



CHAPTER 7

Conclusion

In this paper, we examined two types of games that are involved within game theory,
two-person and n-person games. In both of these games we studies zero-sum and non-
zero sum games and some of the strategies that we may apply to games to have the best
outcome in our play. We studied rational play between two players and concluded that
players should play their pure or mixed strategy that will give them the value of the
game. We then applied some of these strategies, such as the dominance and saddle point
strategies, into basic games and were able to find the value of the games through the
use of algorithms and basic steps. Next, we researched games where we were not playing
games against a rational opponent, but rather games against nature. New strategies
were introduced for these types of games and they included, Laplace, Hurwicz, Wald and
Savage strategies.

Following this, we studied equilibrium and more importantly Nash Equilbrium, from
which we can take away the ability to apply mathematics with the study of human in-
teractions. Additionally we researched some important terms such as pareto optimal and
non-pareto-optimal and in order for the equilibrium to be a solution to the game it must
have been pareto-optimal.

Until the point of equilibrium, we had focused solely on two-person games. We then
expanded our research into n-person games and characteristic function form. Within this
part of our studying we looked at imputations, domination and stable sets. Lastly in
n-person games we studied the solution concept of the core. This told us that if we can
find an imputation within our core that does not have any imputation or coalition that
dominates it then this is the solution to our game.
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