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Introduction 

Game Theory is the mathematical study of possible choices that players can make in games 

in order to win. Psychologists call it the theory of social interaction because it attempts to 

consider the choices that one player can make against another in a competitive setting. 

Although game theory is focused around board games, cards, and other competitive games, 

it can also be applied to military strategy in war. This project will demonstrate how Linear 

Algebra matrix computations can be used as a powerful tool to solve Game Theory 

problems. 

Key Terms 

First, there are some key terms that are needed to fully understand Game Theory problems: 

➢ Player: A person or object that competes with other persons or objects and has a 

specific set of choices they can make. 

➢ Game: A problem or situation in which the choices made by one player can affect all 

players involved. 

➢ Risk: How much the player can lose if they make a negative choice. 

➢ Reward: How much the player can gain if they make a positive choice. 

➢ The Nash Equilibrium: Attempts to predict what choices will be made if multiple players 

are making decisions simultaneously. Its main objective is to maximize a player’s payoff 

while reducing an opponent’s. This makes the resulting sum of player’s choices equal to 

zero. 

o Mathematically, we have two players A and B, each with their own choices A = n 

and B = m. We also have a function P, which can be calculated as A ✕ B. The 

resulting matrix is known as the “Payoff Matrix”. 

➢ Zero Sum Game: A type of Nash Equilibrium in which a player’s risks or rewards are 

diametrically opposed to their opponent’s. This is typically seen in two-player games. 

➢ Reduction by Dominance: Check whether a row or column in the matrix is dominated 

by (i.e. larger than) another row or column in the matrix and remove the dominated row 

or column. Repeat this until there are no dominated rows or columns left.  

o Dominance is defined as a choice having either equal or even better rewards 

than the next best choice. It eliminates other choices in order to present the best 

choice to a player so they can gain the most amount of reward. 

o Always start with the first row. Each number in a row must be greater than (or 

less than) other numbers in opposing rows. Otherwise, both rows and columns 

dominate each other. 

 

 



Examples 

➢ The Prisoner’s Dilemma 

The Prisoner’s Dilemma is a classic Game Theory problem and is most commonly used to 

introduce the ideas of it. 

The Problem: 

The police arrest two criminals, Rob and Bill, for selling drugs. The cases are open and shut, 

and both will go to jail for two years. They have never met, have no connections to each 

other, and consequently have no loyalties to each other. However, the police notice that 

they look like two criminals who had committed a bank robbery together two weeks earlier 

and want to press for a confession from the prisoners. They offer both a deal: 

1. If both deny they committed the bank robbery, they will go to jail for two years for 

selling drugs, just like they were supposed to. 

2. If Rob confesses to the bank robbery but Bill does not, then Rob will only go to jail 

for one year while Bill will go to jail for ten years. 

3. Likewise, if Bill confesses to the bank robbery but Rob does not, then Bill will only go 

to jail for one year while Rob goes away for ten years. 

4. If both confess to the bank robbery, then both Rob and Bill will go to jail for three 

years. 

Which is the mostly likely choice that Rob and Bill will make? 

The Math: 

The deal made by the police can be laid out in a chart. 

 

 Confess Deny 

Confess 3,3 1,10 

Deny 10,1 2,2 

 

Each number represents the amount of years either Rob or Bill will go away for. The most 

rational choice to make in this case would be to deny the robbery since it has the least 

amount of risk. However, this game demonstrates that the most rational decision isn’t 

always the choice that people will take. It may be more beneficial for Rob and Bill if they 

confess on the chance that the other does not because they would only get less time in jail. 

Since both Rob and Bill have two choices, confess or deny, we can calculate the payoff using 

the Nash Equilibrium. Thus, 

Rob 

Bill 



n = m = 2 

Rob = Bill = {Confess, Deny} 

Representation: Confess = “0”; Deny = “1” 

This produces two-dimensional vectors for each of the possible choices. Now we can 

calculate the cross product of each of the choices, or simply find the determinant of the 

matrix created since the matrix is two-dimensional. 

If Rob confesses but Bill does not, 

Rob ✕ Bill = [
0 1
1 0

] = -1. 

If Rob denies but Bill confesses, 

Rob ✕ Bill = [
1 0
0 1

] = 1. 

If both Rob and Bill deny, 

Rob ✕ Bill = [
0 1
0 1

] = 0. 

And finally, if both Rob and Bill confess, 

Rob ✕ Bill = [
1 0
1 0

] = 0. 

Here we can see the Nash Equilibrium come into play to decide which option is better. It is 

shown that if one prisoner confesses while the other denies, the resulting determinant does 

not equal zero. This makes sense because one prisoner only gets one year in jail while the 

other gets ten, and neither prisoner would want to deny and take this risk. This leads into 

the other two choices where both confess, or both deny. The determinant of these choices 

is zero, which means that these choices are more beneficial to the prisoners for getting less 

jail time. 

Now the prisoners must decide if they trust each other. They have no contact with each 

other, so there is no way to coordinate a similar choice. It would be optimistic to say that 

both would deny they committed the bank robbery and get the regular two years. The 

prisoners take on a lot of risk if they were to deny since it would be the difference between 

two years and ten years in jail. Thus, to get the most reward, the most likely option to get 

the least amount of jail time would be to confess, since it is the difference between one 

year and three years in jail. 

 

 



➢ Rock, Paper, Scissors 

Rock, Paper, Scissors is a simple example of a Zero Sum Game. A Payoff Matrix can be 

determined the same way as the Prisoner’s Dilemma’s payoff, but this time produces a 

more symmetrical result. For example, we count the scores of two players over multiple 

games. For every win, a player adds one point, for every loss, a player subtracts a point, and 

for every tie neither adds nor subtracts a point from the score. The Payoff Matrix would 

look like this: 

n = m = 3 

P1 = P2 = {Rock, Paper, Scissors} 

P1 ✕ P2 = [
0       1 − 1
−1    0       1
1   − 1      0

]. 

This matrix is akin to a skew-symmetric matrix, which means that the game itself is 

symmetrical. If one player wins a point, the other player loses a point. If both players tie, 

then both players neither receive nor lose a point. This is the essence of a Zero Sum Game: 

for every positive choice a player makes toward a reward another player makes a negative 

choice that diametrically opposes it. 

➢ Football Strategies 

Different from the Nash Equilibrium and Zero Sum Games is the theory of Dominance, or 

more specifically Reduction by Dominance. This method uses dominant rows or columns in 

a Payoff Matrix to determine the highest reward out of different choices a player can make. 

This gets straight to the point, and most of the time is used to find absolute rewards in 

certain situations. For example, football teams use this method to decide which play to use 

against another team during a game to improve their chances of winning. 

The Problem: 

You are a coach for a football team that is currently playing offense. You want to break 

through the opposing team’s defense and have five plays to choose from. However, you 

know the opposing team has three plays that they can choose from to try and stop you. 

Your team also has gathered information during the season on which plays gained the most 

yardage. Which strategy should you choose? 

 

 

 

 



The Math: 

The info the team has gathered is arranged in a five by three matrix: 

[
 
 
 
 

0     − 1         5
7        5        10
15    − 4    − 5
5         0        10

−5    − 10     10]
 
 
 
 

. 

It is arranged so that it can compare your team’s five plays to the opposing team’s three 

plays. We start by eliminating rows one, four, and five since the rewards are significantly 

larger no matter what the opposing team chooses for their strategy. 

[
7        5        10
15    − 4    − 5

]. 

Now we move onto the columns. We now try to find the lowest reward for our team, but 

also try to guess which play the opposing team might choose since it will be our weakest 

play. We remove column one since it is dominated by column two and are left with a more 

refined offense against the opposing team. 

[
5        10
−4    − 5

]. 

Moving back to rows, we find that row one dominates row two and remove it from the 

matrix. 

[5        10]. 

Finally, looking at columns again we remove column two since it is dominated by column 

one, and get our play for advancing past the opposing team. 

[5]. 

Thus, our team should pick the second play to gain the most yardage against the opposing 

team. 
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