

Today

Game tree search (40 min)
Minimax
Alpha-Beta Pruning
Games of chance (30 min)

- Games in AI

In AI, "games" usually refers to deterministic, turn-taking, two-player, zero-sum games of perfect information Deterministic: next state of environment is completely determined by current state and action executed by the agent (not probabilistic)
Turn-taking: 2 agents whose actions must alternate
Zero-sum games: if one agent wins, the other loses
Perfect information: fully observable

- Mini-Max Properties

Complete?
-Optimal?
Against an optimal opponent?
Otherwise?
-Time complexity?
-Space complexity?

- Mini-Max Properties

Complete? Yes, if tree is finite Optimal?

Against an optimal opponent?
Otherwise?
Time complexity?
Space complexity?

- Mini-Max Properties

Complete? Yes, if tree is finite Optimal?
Against an optimal opponent? Yes
Otherwise? No: Does at least as well, but may not exploit opponent weakness
Time complexity?
Space complexity?

Mini-Max Properties
Complete? Yes, if tree is finite
Optimal?
Against an optimal opponent? Yes
Otherwise? No: Does at least as well, but
may not exploit opponent weakness
Time complexity? O(bm)
Space complexity? O(bm)

○ • Alpha-Beta

```
MinVal(state, alpha, beta){
    if (terminal(state))
        return utility(state);
        for (s in children(state)){
        child = MaxVal(s,alpha,beta);
        beta = min(beta,child);
        if (alpha>=beta) return child;
    }
    return beta; }
```

 alpha \(=\) the highest value for MAX along the path
 beta \(=\) the lowest value for MIN along the path

- Alpha-Beta Properties

Still guaranteed to find the best move
Best case time complexity: $\mathrm{O}(\mathrm{bm} / 2)$

- Can double the depth of search!

Best case when best moves are tried first - Good static evaluation function helps!

But still too slow for chess...

Partial Space Search
Strategies:
search to a fixed depth
iterative deepening (most common)
ignore 'quiescent' nodes
- Static Evaluation Function assigns a
score to a non-terminal state

Evaluation Functions

Reversi

Number squares held?
Better: number of squares held that cannot be flipped
Prefer valuable squares

- NxN array w[i,j] of position values
eHighest value: corners, edges
Lowest value: next to corner or edge
-s $[i, j]=+1$ player, 0 empty, -1 opponent

$$
\text { score }=\sum_{i, j} w[i, j] s[i, j]
$$

Chess:
eval(s) =
w 1 * material(s) + w2 * mobility(s) + w3 * king safety(s) + w4 * center control(s) + ...
In practice MiniMax improves accuracy of heuristic eval function

But one can construct pathological games where more search hurts performance!
(Nau 1981)

Evaluation Functions
 \bigcirc

End-Game Databases

Ken Thompson - all 5 piece endgames
Lewis Stiller - all 6 piece endgames

Refuted common chess wisdom: many positions thought to be ties were really forced wins -- 90\% for white
Is perfect chess a win for white?

○ The MONSTER

White wins in 255 moves
(Stiller, 1991)

Deterministic Games in Practice

Checkers: Chinook ended 40 year reign of human world champion Marion Tinsley in 1994; used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of $443,748,401,247$ positions (!)
Chess: Deep Blue defeated human world champion Gary Kasparov in a 6 game match in 1997.

- Reversi: human champions refuse to play against computers because software is too good

- In Practice...

Chance adds dramatically to size of search space
 Backgammon: number of distinct possible rolls of dice is 21
Branching factor b is usually around 20, but can be as high as 4000 (dice rolls that are doubles)
Alpha-beta pruning is generally less effective
Best Backgammon programs use other methods

Imperfect Information
E.g. card games, where opponents' initial cards are unknown
Idea: For all deals consistent with what you can see compute the minimax value of available actions for each of possible deals compute the expected value over all deals

Summary
Deterministic games
Minimax search
Alpha-Beta pruning
Static evaluation functions
Games of chance
Expected value
OProbabilistic planning
Strategic games with large
behing factors (Go)

