
1

Games

Deep Blue: 32 RISC processors + 256 VLSI chess engines
200 million positions per second, 16 plies

Deep Blue beats Gary Kasparov - 1997
(3 wins, 1 loss, 2 draws)

Saying Deep
Blue doesn’t
really think
about chess
is like saying
an airplane
doesn’t really
fly because it
doesn’t flap
its wings.
– Drew
McDermott

I could feel – I
could smell –
a new kind of
intelligence
across the
table
- Gary
Kasparov

Today

Game tree search (40 min)
Minimax
Alpha-Beta Pruning

Games of chance (30 min)

Tonight

Game tree search (40 min)
Group exercise: Reversi (50 min)
Reversi Tournament (20 min)
Games of chance (30 min)

Games in AI

In AI, “games” usually refers to
deterministic, turn-taking, two-player,
zero-sum games of perfect information

Deterministic: next state of environment is
completely determined by current state and
action executed by the agent (not
probabilistic)
Turn-taking: 2 agents whose actions must
alternate
Zero-sum games: if one agent wins, the
other loses
Perfect information: fully observable

Other Games

deterministic chance

perfect
information

chess,
checkers, go,

othello

backgammon,
monopoly

imperfect
information stratego

bridge, poker,
scrabble,

nuclear war

Games as Search

States:
board configurations

Initial state:
the board position and which player will move

Successor function:
returns list of (move, state) pairs, each indicating a
legal move and the resulting state

Terminal test:
determines when the game is over

Utility function:
gives a numeric value in terminal states

(e.g., -1, 0, +1 for loss, tie, win)

2

Intuition Mini-Max

© Patrick Winston

max

max

min

min

© Patrick Winston

max

max

min

min

© Patrick Winston

max

max

min

min

© Patrick Winston

max

max

min

min

3

© Patrick Winston

max

max

min

min

© Patrick Winston

max

max

min

min

© Patrick Winston

max

max

min

min

© Patrick Winston

max

max

min

min

© Patrick Winston

max

max

min

min

© Patrick Winston

max

max

min

min

4

max

max

min

min

© Patrick Winston

Mini-Max Properties

Complete?
Optimal?

Against an optimal opponent?
Otherwise?

Time complexity?
Space complexity?

Mini-Max Properties

Complete? Yes, if tree is finite
Optimal?

Against an optimal opponent?
Otherwise?

Time complexity?
Space complexity?

Mini-Max Properties

Complete? Yes, if tree is finite
Optimal?

Against an optimal opponent? Yes
Otherwise? No: Does at least as well, but
may not exploit opponent weakness

Time complexity?
Space complexity?

Mini-Max Properties

Complete? Yes, if tree is finite
Optimal?

Against an optimal opponent? Yes
Otherwise? No: Does at least as well, but
may not exploit opponent weakness

Time complexity? O(bm)
Space complexity? O(bm)

Good Enough?

Chess:
branching factor b≈35
game length m≈100
search space bm ≈ 35100 ≈ 10154

The Universe:
number of atoms ≈ 1078

age ≈ 1018 seconds
108 moves/sec x 1078 x 1018 = 10104

5

Alpha-Beta Pruning max

max

min

min

max

max

min

min

max

max

min

min

© Patrick Winston

max

max

min

min

max

max

min

min

Do we need to check
this node?

??

6

max

max

min

min

X

No - this branch is guaranteed to be
worse than what max already has

Alpha-Beta

MinVal(state, alpha, beta){

if (terminal(state))

return utility(state);

for (s in children(state)){

child = MaxVal(s,alpha,beta);

beta = min(beta,child);

if (alpha>=beta) return child;

}

return beta; }

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path

Alpha-Beta

MaxVal(state, alpha, beta){

if (terminal(state))

return utility(state);

for (s in children(state)){

child = MinVal(s,alpha,beta);

alpha = max(beta,child);

if (alpha>=beta) return child;

}

return beta; }

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path

max

max

min

min α=-∞
β=84

α=-∞
β=∞

α=-∞
β=∞

α=-∞
β=∞

α - the best value
for max along the path

β - the best value
for min along the path

max

max

min

min α=-∞
β=-29

α=-29
β=∞

α=-∞
β=∞

α=-∞
β=∞

α=-29
β=∞

α - the best value
for max along the path

β - the best value
for min along the path

max

max

min

min α=-∞
β=-29

α=-29
β=∞

α=-∞
β=∞

α=-∞
β=∞

α=-29
β=-37

α - the best value
for max along the path

β - the best value
for min along the path

7

max

max

min

min α=-∞
β=-29

α=-29
β=∞

α=-∞
β=∞

α=-∞
β=∞

α=-29
β=-37

β < α
prune!

X

α - the best value
for max along the path

β - the best value
for min along the path

max

max

min

min α=-∞
β=-29

α=-29
β=∞

α=-∞
β=-29

α=-∞
β=∞

α=-29
β=-37

X

α=-∞
β=-29

α=-∞
β=-29

α - the best value
for max along the path

β - the best value
for min along the path

max

max

min

min

X

α=-∞
β=-29

α=-29
β=∞

α=-∞
β=-29

α=-∞
β=∞

α=-29
β=-37

α=-∞
β=-29

α=-∞
β=-29

α - the best value
for max along the path

β - the best value
for min along the path

max

max

min

min

X

α=-∞
β=-29

α=-29
β=∞

α=-∞
β=-29

α=-∞
β=∞

α=-29
β=-37

α=-43
β=-29

α=-∞
β=-43

α=-43
β=-29

α - the best value
for max along the path

β - the best value
for min along the path

max

max

min

min

X

α=-∞
β=-29

α=-29
β=∞

α=-∞
β=-29

α=-∞
β=∞

α=-29
β=-37

α=-43
β=-29

α=-∞
β=-43

α=-43
β=-75

β < α
prune!

X

α - the best value
for max along the path

β - the best value
for min along the path

max

max

min

min

X

α=-∞
β=-29

α=-29
β=∞

α=-∞
β=-43

α=-43
β=∞

α=-29
β=-37

α=-43
β=-29

α=-∞
β=-43

α=-43
β=-75

X

α - the best value
for max along the path

β - the best value
for min along the path

8

X X

α=-43
β=∞

α=-43
β=∞

α=-43
β=∞

α=-43
β=-21

α=-43
β=58

max

max

min

min

α - the best value
for max along the path

β - the best value
for min along the path

X X

max

max

min

min

α=-43
β=∞

α=-43
β=-46

α=-43
β=∞

α=-43
β=-21

α=-43
β=-46

β < α
prune!

X

X X

X X X X

α - the best value
for max along the path

β - the best value
for min along the path

Good Enough?

Chess:
branching factor b≈35
game length m≈100
search space bm/2 ≈ 3550 ≈ 1077

The Universe:
number of atoms ≈ 1078

age ≈ 1018 seconds
108 moves/sec x 1078 x 1018 = 10104

The universe
can play chess
- can we?

Alpha-Beta Properties

Still guaranteed to find the best move
Best case time complexity: O(bm/2)

Can double the depth of search!
Best case when best moves are tried first

Good static evaluation function helps!
But still too slow for chess...

Partial Space Search

Strategies:
search to a fixed depth
iterative deepening (most common)
ignore ‘quiescent’ nodes

Static Evaluation Function assigns a
score to a non-terminal state

max

max

min

min

Cutoff

9

Evaluation Functions

Reversi
Number squares held?
Better: number of squares held that cannot

be flipped
Prefer valuable squares
NxN array w[i,j] of position values
Highest value: corners, edges
Lowest value: next to corner or edge
s[i,j] = +1 player, 0 empty, -1 opponent

,
[,] [,]

i j
score w i j s i j=∑

Evaluation Functions

Chess:
eval(s) =

w1 * material(s) +
w2 * mobility(s) +
w3 * king safety(s) +
w4 * center control(s) + ...

In practice MiniMax improves accuracy
of heuristic eval function

But one can construct pathological
games where more search hurts
performance!
(Nau 1981)

End-Game Databases

Ken Thompson - all 5 piece end-
games
Lewis Stiller - all 6 piece end-
games

Refuted common chess wisdom: many
positions thought to be ties were really
forced wins -- 90% for white
Is perfect chess a win for white?

The MONSTER

White wins in 255 moves
(Stiller, 1991)

Deterministic Games in Practice

Checkers: Chinook ended 40 year reign
of human world champion Marion Tinsley
in 1994; used an endgame database
defining perfect play for all positions
involving 8 or fewer pieces on the board, a
total of 443,748,401,247 positions (!)
Chess: Deep Blue defeated human world
champion Gary Kasparov in a 6 game
match in 1997.
Reversi: human champions refuse to play
against computers because software is
too good

Deterministic Games in Practice

Go: human champions refuse to
compete against computers, because
software is too bad.

Chess Go
Size of board 8 x 8 19 x 19

Average no. of
moves per game

100 300

Avg branching
factor per turn

35 235

Additional
complexity

Players can
pass

10

Nondeterministic Games

Involve chance:
dice, shuffling, etc.

Chance nodes:
calculate the
expected value
E.g.: weighted
average over all
possible dice rolls

In Practice...

Chance adds dramatically to
size of search space

Backgammon: number of distinct
possible rolls of dice is 21
Branching factor b is usually around
20, but can be as high as 4000 (dice
rolls that are doubles)

Alpha-beta pruning is generally
less effective
Best Backgammon programs

use other methods

Imperfect Information

E.g. card games, where
opponents’ initial cards are
unknown
Idea: For all deals

consistent with what you
can see

compute the minimax value
of available actions for each
of possible deals
compute the expected value
over all deals

Probabilistic STRIPS Planning

domain: Hungry Monkey
shake: if (ontable)

Prob(2/3) -> +1 banana
Prob(1/3) -> no change

else
Prob(1/6) -> +1 banana
Prob(5/6) -> no change

jump: if (~ontable)
Prob(2/3) -> ontable

Prob(1/3) -> ~ontable
else

ontable

What is the expected reward?

[1] shake

[2] jump; shake

[3] jump; shake; shake;

[4] jump; if (~ontable){ jump; shake}

else { shake; shake }

ExpectiMax

node chance a isn if)(ExpectiMax)(
nodemax isn if)}(children|)(ExpectiMaxmax{

node terminala isn if)(
)(ExpectiMax

)(
∑

∈

∈

=

nchildrens
ssP

nss
nU

n

11

Hungry Monkey: 2-Ply Game Tree

0 0 1 0 0 0 1 0 1 1 2 1 0 0 1 0

jump

jump jump
jump

jump

shake

shake shake shakeshake

2/3

2/3 2/3 2/3 2/3 2/3

1/3

1/3 1/3 1/3 1/3 1/3

1/6 5/6

1/6 1/61/6 5/6 5/6 5/6

ExpectiMax 1 – Chance Nodes

0 2/3

0 0 1 0

0 1/6

0 0 1 0

1 7/6

1 1 2 1

0 1/6

0 0 1 0

jump

jump jump
jump

jump

shake

shake shake shakeshake

2/3

2/3 2/3 2/3 2/3 2/3

1/3

1/3 1/3 1/3 1/3 1/3

1/6 5/6

1/6 1/61/6 5/6 5/6 5/6

ExpectiMax 2 – Max Nodes

2/3

0 2/3

0 0 1 0

1/6

0 1/6

0 0 1 0

7/6

1 7/6

1 1 2 1

1/6

0 1/6

0 0 1 0

jump

jump jump
jump

jump

shake

shake shake shakeshake

2/3

2/3 2/3 2/3 2/3 2/3

1/3

1/3 1/3 1/3 1/3 1/3

1/6 5/6

1/6 1/61/6 5/6 5/6 5/6

ExpectiMax 3 – Chance Nodes

1/2 1/3

2/3

0 2/3

0 0 1 0

1/6

0 1/6

0 0 1 0

7/6

1 7/6

1 1 2 1

1/6

0 1/6

0 0 1 0

jump

jump jump
jump

jump

shake

shake shake shakeshake

2/3

2/3 2/3 2/3 2/3 2/3

1/3

1/3 1/3 1/3 1/3 1/3

1/6 5/6

1/6 1/61/6 5/6 5/6 5/6

ExpectiMax 4 – Max Node

1/2

1/2 1/3

2/3

0 2/3

0 0 1 0

1/6

0 1/6

0 0 1 0

7/6

1 7/6

1 1 2 1

1/6

0 1/6

0 0 1 0

jump

jump jump
jump

jump

shake

shake shake shakeshake

2/3

2/3 2/3 2/3 2/3 2/3

1/3

1/3 1/3 1/3 1/3 1/3

1/6 5/6

1/6 1/61/6 5/6 5/6 5/6

Policies
The result of the ExpectiMax analysis is a
conditional plan (also called a policy):

Optimal plan for 2 steps: jump; shake
Optimal plan for 3 steps:
jump; if (ontable) {shake; shake}

else {jump; shake}

Probabilistic planning can be generalized
in many ways, including action costs and
hidden state
The general problem is that of solving a
Markov Decision Process (MDP)

12

Summary
Deterministic games

Minimax search
Alpha-Beta pruning
Static evaluation functions

Games of chance
Expected value
Probabilistic planning

Strategic games with large
branching factors (Go)

Relatively little progress

