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Games

Deep Blue: 32 RISC processors + 256 VLSI chess engines
200 million positions per second, 16 plies

Deep Blue beats Gary Kasparov - 1997
(3 wins, 1 loss, 2 draws)

Saying Deep 
Blue doesn’t 
really think 
about chess 
is like saying 
an airplane 
doesn’t really 
fly because it 
doesn’t flap 
its wings. 
– Drew 
McDermott

I could feel – I 
could smell –
a new kind of 
intelligence 
across the 
table
- Gary 
Kasparov

Today

Game tree search (40 min)
Minimax
Alpha-Beta Pruning

Games of chance (30 min)

Tonight

Game tree search (40 min)
Group exercise: Reversi (50 min)
Reversi Tournament (20 min)
Games of chance (30 min)

Games in AI

In AI, “games” usually refers to 
deterministic, turn-taking, two-player, 
zero-sum games of perfect information

Deterministic:  next state of environment is 
completely determined by current state and 
action executed  by the agent (not 
probabilistic)
Turn-taking:  2 agents whose actions must 
alternate
Zero-sum games:  if one agent wins, the 
other loses
Perfect information:  fully observable 

Other Games

deterministic chance

perfect
information

chess, 
checkers, go, 

othello

backgammon, 
monopoly

imperfect 
information stratego

bridge, poker, 
scrabble, 

nuclear war

Games as Search

States:  
board configurations

Initial state:  
the board position and which player will move

Successor function:  
returns list of (move, state) pairs, each indicating a 
legal move and the resulting state

Terminal test:  
determines when the game is over

Utility function: 
gives a numeric value in terminal states  

(e.g., -1, 0, +1 for loss, tie, win)
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Mini-Max Properties

Complete?  
Optimal?  

Against an optimal opponent? 
Otherwise?                                                    

Time complexity? 
Space complexity?

Mini-Max Properties

Complete?  Yes, if tree is finite
Optimal?  

Against an optimal opponent? 
Otherwise? 

Time complexity?
Space complexity?

Mini-Max Properties

Complete?  Yes, if tree is finite
Optimal?  

Against an optimal opponent? Yes
Otherwise?  No: Does at least as well, but 
may not exploit opponent weakness

Time complexity? 
Space complexity? 

Mini-Max Properties

Complete?  Yes, if tree is finite
Optimal?  

Against an optimal opponent? Yes
Otherwise?  No: Does at least as well, but 
may not exploit opponent weakness

Time complexity?  O(bm)
Space complexity? O(bm)

Good Enough?

Chess:
branching factor b≈35
game length m≈100
search space bm ≈ 35100 ≈ 10154

The Universe:
number of atoms ≈ 1078

age ≈ 1018 seconds
108 moves/sec x 1078 x 1018 = 10104



5

Alpha-Beta Pruning max
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Do we need to check 
this node?

??
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X

No - this branch is guaranteed to be 
worse than what max already has

Alpha-Beta

MinVal(state, alpha, beta){

if (terminal(state)) 

return utility(state);

for (s in children(state)){

child = MaxVal(s,alpha,beta);

beta = min(beta,child);

if (alpha>=beta) return child;

}

return beta; } 

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path

Alpha-Beta

MaxVal(state, alpha, beta){

if (terminal(state)) 

return utility(state);

for (s in children(state)){

child = MinVal(s,alpha,beta);

alpha = max(beta,child);

if (alpha>=beta) return child;

}

return beta; } 

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
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α - the best value 
for max along the path

β - the best value
for min along the path
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α - the best value 
for max along the path

β - the best value
for min along the path
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X

α - the best value 
for max along the path

β - the best value
for min along the path
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β=∞

α=-∞
β=-43

α=-43
β=∞
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X

α - the best value 
for max along the path

β - the best value
for min along the path
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X X

α=-43
β=∞

α=-43
β=∞

α=-43
β=∞

α=-43
β=-21

α=-43
β=58

max
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α - the best value 
for max along the path

β - the best value
for min along the path

X X
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α=-43
β=∞

α=-43
β=-21

α=-43
β=-46

β < α
prune!

X

X X

X X X X

α - the best value 
for max along the path

β - the best value
for min along the path

Good Enough?

Chess:
branching factor b≈35
game length m≈100
search space bm/2 ≈ 3550 ≈ 1077

The Universe:
number of atoms ≈ 1078

age ≈ 1018 seconds
108 moves/sec x 1078 x 1018 = 10104

The universe 
can play chess 
- can we?

Alpha-Beta Properties

Still guaranteed to find the best move
Best case time complexity: O(bm/2)

Can double the depth of search!
Best case when best moves are tried first

Good static evaluation function helps!
But still too slow for chess...

Partial Space Search

Strategies:
search to a fixed depth
iterative deepening (most common)
ignore ‘quiescent’ nodes

Static Evaluation Function assigns a 
score to a non-terminal state 

max

max

min

min

Cutoff
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Evaluation Functions

Reversi
Number squares held?
Better: number of squares held that cannot

be flipped
Prefer valuable squares
NxN array w[i,j] of position values
Highest value: corners, edges
Lowest value: next to corner or edge
s[i,j] = +1 player, 0 empty, -1 opponent

,
[ , ] [ , ]

i j
score w i j s i j=∑

Evaluation Functions

Chess:
eval(s) = 

w1 * material(s) + 
w2 * mobility(s) + 
w3 * king safety(s) + 
w4 * center control(s) + ...

In practice MiniMax improves accuracy 
of heuristic eval function

But one can construct pathological 
games where more search hurts 
performance!  
(Nau 1981)

End-Game Databases

Ken Thompson - all 5 piece end-
games
Lewis Stiller - all 6 piece end-
games

Refuted common chess wisdom: many 
positions thought to be ties were really 
forced wins -- 90% for white
Is perfect chess a win for white?

The MONSTER

White wins in 255 moves
(Stiller, 1991)

Deterministic Games in Practice

Checkers:  Chinook ended 40 year reign 
of human world champion Marion Tinsley 
in 1994; used an endgame database 
defining perfect play for all positions 
involving 8 or fewer pieces on the board, a 
total of 443,748,401,247 positions (!)
Chess:  Deep Blue defeated human world 
champion Gary Kasparov in a 6 game 
match in 1997. 
Reversi:  human champions refuse to play 
against computers because software is 
too good

Deterministic Games in Practice

Go: human champions refuse to 
compete against computers, because 
software is too bad.  

Chess Go 
Size of board 8 x 8 19 x 19

Average no. of 
moves per game

100 300

Avg branching 
factor per turn

35 235

Additional 
complexity

Players can 
pass
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Nondeterministic  Games

Involve chance:  
dice, shuffling, etc.

Chance nodes:  
calculate the 
expected value
E.g.: weighted 
average over all 
possible dice rolls

In Practice...

Chance adds dramatically to 
size of search space

Backgammon:  number of distinct 
possible rolls of dice is 21
Branching factor b is usually around 
20, but can be as high as 4000 (dice 
rolls that are doubles)

Alpha-beta pruning is generally 
less effective
Best Backgammon programs 

use other methods

Imperfect Information

E.g. card games, where 
opponents’ initial cards are 
unknown
Idea: For all deals 

consistent with what you 
can see

compute the minimax value 
of available actions for each 
of possible deals
compute the expected value 
over all deals

Probabilistic STRIPS Planning

domain: Hungry Monkey
shake: if (ontable)

Prob(2/3) -> +1 banana
Prob(1/3) -> no change 

else
Prob(1/6) -> +1 banana
Prob(5/6) -> no change

jump: if (~ontable)
Prob(2/3) -> ontable

Prob(1/3) -> ~ontable
else

ontable

What is the expected reward?

[1] shake

[2] jump; shake

[3] jump; shake; shake;

[4] jump; if (~ontable){ jump; shake}

else { shake; shake }

ExpectiMax

node chance a isn  if )(ExpectiMax)(
nodemax  isn  if )}(children|)(ExpectiMaxmax{

node  terminala isn  if  )(
)(ExpectiMax

)(
∑

∈

∈

=

nchildrens
ssP

nss
nU

n
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Hungry Monkey: 2-Ply Game Tree
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Policies
The result of the ExpectiMax analysis is a 
conditional plan (also called a policy):

Optimal plan for 2 steps:  jump; shake
Optimal plan for 3 steps:
jump; if (ontable) {shake; shake}

else {jump; shake}

Probabilistic planning can be generalized 
in many ways, including action costs and 
hidden state
The general problem is that of solving a 
Markov Decision Process (MDP)
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Summary
Deterministic games

Minimax search
Alpha-Beta pruning
Static evaluation functions

Games of chance
Expected value
Probabilistic planning

Strategic games with large 
branching factors (Go)

Relatively little progress


