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IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark class discussions
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Motivation
Object Oriented Analysis (OOA)
● domain problem designed as (domain) objects

– addresses the functional challenges
– what a system does
– provides guidance for implementation

Object Oriented Design (OOD)
● domain problem solved as (implementation) objects

– addresses the implementation challenges
– how a system realizes OOA
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Motivation
How can we improve OOD
● identify common characteristics

– creation, structure, behaviour & interactions

● design patterns (design reuse)
– generic blueprints (micro architecture)
– language and implementation independent
– two main catalogues

● GoF: Gang of Four (Gamma, Helm, Johnson, Vlissides, 1995)
● POSA: Pattern Oriented Software Architecture (Buschmann, et 

al.; Wiley, 1996)
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Motivation
What is a Design Pattern
● common solution to a reoccurring problem in design

Anatomy
● name
● problem/motivation
● solution
● consequences & tradeoffs
● which ones are important for us?
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Design Patterns Classification
GoF Design Patterns

Creational Structural Behavioral

class
scope

object
scope
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Design Patterns Classification
GoF Design Patterns

Creational Structural Behavioral

Factory Method

Abstract Factory

Builder

Prototype

Singleton

Adaptor - class

Bridge

Composite

Decorator

Facade

Adaptor-object

Flyweight

Proxy

Interpreter

Chain of responsibility

Command

Iterator

Mediator

Template Method

Memento

Observer

State

Strategy

Visitor

class
scope

object
scope
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Design Patterns Classification
“Purpose” based classification
● creational: 

– concerns with creation process of objects & classes
● structural

– composition of classes & objects
● behavioral

– characterizes interaction & responsibility of objects & 
classes
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Design Patterns Classification
“Scope” based classification
● decided if the pattern applies to mainly classes or objects

Two categories
● class scope

– relationship between classes & subclasses
– statically defined at run-time

● object scope
– object relationships (what type?)
– can be manipulated at runtime (so what?)



CS446/646 ECE452 9WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Design Patterns Classification
Creational class
● defers object creation to 

sub-classes (factory 
method)

Structural class
● inheritance to compose 

classes (adapter)

Behavioral class
● uses inheritance to 

describe flow of control, 
algorithms (template)

Creational object
● defers object creation to 

other objects (abstract 
factory)

Structural object
● deals with object 

assembly (adapter)

Behavioral object
● group of objects working 

together to carry out a 
task (iterator)
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Singleton
Intent
● “ensure a class only has one instance, and provide a 

global point of access to it.”

Construction
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 public class Singleton {
   private static final Singleton INSTANCE = new Singleton();
 
   // Private constructor prevents 
   // instantiation from other classes
   private Singleton() {}
 
   public static Singleton getInstance() {
      return INSTANCE;
   }
 }

Singleton
Intent
● “ensure a class only has one instance, and provide a 

global point of access to it.”

Construction
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Singleton
Advantages
● controlled access to the class instance(s)

– can dictate who, and when a client can access
● refinement of functionality

– via inheritance/subclass
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Singleton
Advantages
● variable number of instances

– the getInstance() method needs modification
– what else needs to change?
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Singleton
A closer look at Singleton
● reuse
● separation of concerns
● global presence
● stateful vs. stateless
● multiple instances
● life cycle
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Singleton – A Closer Look
Reuse
● coupling

– results in tighter coupling
– couples with the exact type of the singleton object
– pass by reference to reduce coupling?
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Singleton – A Closer Look
Reuse
● coupling

– results in tighter coupling
– couples with the exact type of the singleton object
– pass by reference to reduce coupling?

public void doSomething(){
  Worker worker = Worker.getInstance();
  worker.perform();
}

public void doSomething(Worker worker){
  worker.perform();
}
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Singleton – A Closer Look
Reuse
● inheritance

– easy to extend functionality in subclasses
– not easy to override the object instance in subclasses
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Singleton – A Closer Look
Separation of concerns
● singleton class responsible for creation

– acts as a builder/factory
● what if we were to separate the two concerns

– example
● database connection as a singleton
● system 1 uses a singleton to ensure only a single database 

connection
● system 2 needs to connection pool of 10 databases connections
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Singleton – A Closer Look
Global presence
● provides a global access point to a service

– aren't global variables bad?
– can be accessed from anywhere

● violation of layered access
● not part of method signature

– dependency is not obvious 
– requires code inspection 

● a large system may require many singletons
– use a registry/repository
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Singleton – A Closer Look
Stateful singleton
● same as a global variable in principle

– aren't global variables bad?
● access concerns

– synchronization
– concurrency – multiple threaded using a singleton

● mutable vs. immutable state

Stateless singleton
● better then stateful
● can we have a stateless singleton?
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Singleton – A Closer Look
Multiple instances
● distributed systems

– is it possible to have a true singleton in a distributed 
system?

– global registries/repositories
● language (Java) specific concerns

– initialization – has to be thread safe
– serialization
– class loaders
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Singleton – A Closer Look
Life-cycle & life span
● creation

– lazy initialization
● singletons are long lived

– as long as an application's life span
– registries can outlive applications
– unit testing requires short lived state

● language (Java) specific concern
– reloading singleton class (servlets)
– loss of state
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Singleton
When can I use a singleton
● considerations[1]

– will every user use this class exactly the same way?
– will every applications ever need only one instance?
– should the clients be unaware of the application

● examples
– Java Math class (stateless – static class)
– top level GUI (window/frame)
– logging

[1] http://www.ibm.com/developerworks/library/co-single.html
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Adapter
Intent
● “convert the interface of a class into another interface... 

Adapter lets classes work together that couldn't otherwise 
because of incompatible interface”

● also known as “wrapper”
● boolean values can be represented by

– {1,0}, {true, false}, {yes, no}
– does this qualify as an adapter?
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Motivation

Need to add “Text” capability to our drawing editor.

Consider an off the shelf TextView component
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Motivation

Observations
● can be done in two ways

– object composition (shown above)
– inheritance

● Shape provides “interface” and TextView provides an 
implementation

● Lets try to draw this?
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Adapter – Class
Requirement
● requires multiple inheritance

what about implementations that do not support multiple
inheritance (Java)?
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Adapter – Object
Requirement
● via object composition
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Adapter – Class vs. Object
Class
● commitment to a 

concrete adaptee class
– not to its subclasses 

(class hierarchy)
● allows for specialization

– how?
● static in nature

Object
● can use many adaptees

– including sub-classes
● harder to override the 

adaptee behavior
– why?
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Adapter – Class vs. Object
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Adapter & Dependency Inversion

Client 
layer

Business
 layer

Utility
 layer

Client 
layer

Business
 layer

Utility
 Interface

Business
 Interface

Utility
 layer

Simple Layers Abstract Layers

Dependency Inversion (DI)
● decouple high level layer from lower level layer(s) 



CS446/646 ECE452 32WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Dependency Inversion Example
Implications
● Button implementation 

relies on Lamp
● any changes to Lamp will 

impact Button
● what if we want to reuse 

Button class with a 
different component
– such as a motor
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Dependency Inversion Example
Dependency Inversion to Rescue
● looks good (?)
● still a dependency left
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Dependency Inversion Example
Observation
● adapter enhanced the design

– increased re-usability at the price of complexity
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Adapter
How much adaptation is reasonable?
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Bridge
Intent
● “decouples an abstraction from its implementation so the 

two can vary independently”

● does this not sounds like an adapter?
– will take a closer look later
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Bridge
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Bridge

Bridge
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Bridge Example

Solution via inheritance

problem1: what if we have to 
support another platform?

problem2: client code is tied to 
an implementation.  
For portable code, the client 
should not refer to an 
implementation

Problem
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Bridge Example
Solution: Use bridge pattern to place abstraction and 
implementation in two different hierarchies
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Bridge Example
Solution: Use bridge pattern to place abstraction and 
implementation in two different hierarchies

Bridge
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Bridge
Features
● flexible binding between abstraction & implementation
● two class hierarchies
● clients are decoupled
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Adapter & Bridge
Common Elements
● flexibility via indirection
● request forwarding 
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Adapter & Bridge
Difference in intent
● adapter 

– resolves incompatibilities between two existing interfaces
– two interfaces are independent and can evolve separately
– coupling is unforeseen
– adapts components after they have been designed

● bridge
– connects an abstraction and its many implementations
– evolution is in accordance with the base abstraction
– coupling between the abstraction and the implementations are 

known
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