
WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Gang of Four (GoF)Gang of Four (GoF)
OO Design Patterns

CS 446/646 ECE452
May 11th, 2011

IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark class discussions

CS446/646 ECE452 2WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Motivation
Object Oriented Analysis (OOA)
● domain problem designed as (domain) objects

– addresses the functional challenges
– what a system does
– provides guidance for implementation

Object Oriented Design (OOD)
● domain problem solved as (implementation) objects

– addresses the implementation challenges
– how a system realizes OOA

CS446/646 ECE452 3WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Motivation
How can we improve OOD
● identify common characteristics

– creation, structure, behaviour & interactions

● design patterns (design reuse)
– generic blueprints (micro architecture)
– language and implementation independent
– two main catalogues

● GoF: Gang of Four (Gamma, Helm, Johnson, Vlissides, 1995)
● POSA: Pattern Oriented Software Architecture (Buschmann, et

al.; Wiley, 1996)

CS446/646 ECE452 4WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Motivation
What is a Design Pattern
● common solution to a reoccurring problem in design

Anatomy
● name
● problem/motivation
● solution
● consequences & tradeoffs
● which ones are important for us?

CS446/646 ECE452 5WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Design Patterns Classification
GoF Design Patterns

Creational Structural Behavioral

class
scope

object
scope

CS446/646 ECE452 6WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Design Patterns Classification
GoF Design Patterns

Creational Structural Behavioral

Factory Method

Abstract Factory

Builder

Prototype

Singleton

Adaptor - class

Bridge

Composite

Decorator

Facade

Adaptor-object

Flyweight

Proxy

Interpreter

Chain of responsibility

Command

Iterator

Mediator

Template Method

Memento

Observer

State

Strategy

Visitor

class
scope

object
scope

CS446/646 ECE452 7WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Design Patterns Classification
“Purpose” based classification
● creational:

– concerns with creation process of objects & classes
● structural

– composition of classes & objects
● behavioral

– characterizes interaction & responsibility of objects &
classes

CS446/646 ECE452 8WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Design Patterns Classification
“Scope” based classification
● decided if the pattern applies to mainly classes or objects

Two categories
● class scope

– relationship between classes & subclasses
– statically defined at run-time

● object scope
– object relationships (what type?)
– can be manipulated at runtime (so what?)

CS446/646 ECE452 9WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Design Patterns Classification
Creational class
● defers object creation to

sub-classes (factory
method)

Structural class
● inheritance to compose

classes (adapter)

Behavioral class
● uses inheritance to

describe flow of control,
algorithms (template)

Creational object
● defers object creation to

other objects (abstract
factory)

Structural object
● deals with object

assembly (adapter)

Behavioral object
● group of objects working

together to carry out a
task (iterator)

CS446/646 ECE452 10WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton
Intent
● “ensure a class only has one instance, and provide a

global point of access to it.”

Construction

CS446/646 ECE452 11WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

 public class Singleton {
 private static final Singleton INSTANCE = new Singleton();

 // Private constructor prevents
 // instantiation from other classes
 private Singleton() {}

 public static Singleton getInstance() {
 return INSTANCE;
 }
 }

Singleton
Intent
● “ensure a class only has one instance, and provide a

global point of access to it.”

Construction

CS446/646 ECE452 12WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton
Advantages
● controlled access to the class instance(s)

– can dictate who, and when a client can access
● refinement of functionality

– via inheritance/subclass

CS446/646 ECE452 13WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton
Advantages
● variable number of instances

– the getInstance() method needs modification
– what else needs to change?

CS446/646 ECE452 14WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton
A closer look at Singleton
● reuse
● separation of concerns
● global presence
● stateful vs. stateless
● multiple instances
● life cycle

CS446/646 ECE452 15WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton – A Closer Look
Reuse
● coupling

– results in tighter coupling
– couples with the exact type of the singleton object
– pass by reference to reduce coupling?

CS446/646 ECE452 16WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton – A Closer Look
Reuse
● coupling

– results in tighter coupling
– couples with the exact type of the singleton object
– pass by reference to reduce coupling?

public void doSomething(){
 Worker worker = Worker.getInstance();
 worker.perform();
}

public void doSomething(Worker worker){
 worker.perform();
}

CS446/646 ECE452 17WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton – A Closer Look
Reuse
● inheritance

– easy to extend functionality in subclasses
– not easy to override the object instance in subclasses

CS446/646 ECE452 18WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton – A Closer Look
Separation of concerns
● singleton class responsible for creation

– acts as a builder/factory
● what if we were to separate the two concerns

– example
● database connection as a singleton
● system 1 uses a singleton to ensure only a single database

connection
● system 2 needs to connection pool of 10 databases connections

CS446/646 ECE452 19WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton – A Closer Look
Global presence
● provides a global access point to a service

– aren't global variables bad?
– can be accessed from anywhere

● violation of layered access
● not part of method signature

– dependency is not obvious
– requires code inspection

● a large system may require many singletons
– use a registry/repository

CS446/646 ECE452 20WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton – A Closer Look
Stateful singleton
● same as a global variable in principle

– aren't global variables bad?
● access concerns

– synchronization
– concurrency – multiple threaded using a singleton

● mutable vs. immutable state

Stateless singleton
● better then stateful
● can we have a stateless singleton?

CS446/646 ECE452 21WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton – A Closer Look
Multiple instances
● distributed systems

– is it possible to have a true singleton in a distributed
system?

– global registries/repositories
● language (Java) specific concerns

– initialization – has to be thread safe
– serialization
– class loaders

CS446/646 ECE452 22WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton – A Closer Look
Life-cycle & life span
● creation

– lazy initialization
● singletons are long lived

– as long as an application's life span
– registries can outlive applications
– unit testing requires short lived state

● language (Java) specific concern
– reloading singleton class (servlets)
– loss of state

CS446/646 ECE452 23WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Singleton
When can I use a singleton
● considerations[1]

– will every user use this class exactly the same way?
– will every applications ever need only one instance?
– should the clients be unaware of the application

● examples
– Java Math class (stateless – static class)
– top level GUI (window/frame)
– logging

[1] http://www.ibm.com/developerworks/library/co-single.html

CS446/646 ECE452 24WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter
Intent
● “convert the interface of a class into another interface...

Adapter lets classes work together that couldn't otherwise
because of incompatible interface”

● also known as “wrapper”
● boolean values can be represented by

– {1,0}, {true, false}, {yes, no}
– does this qualify as an adapter?

CS446/646 ECE452 25WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Motivation

Need to add “Text” capability to our drawing editor.

Consider an off the shelf TextView component

CS446/646 ECE452 26WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Motivation

Observations
● can be done in two ways

– object composition (shown above)
– inheritance

● Shape provides “interface” and TextView provides an
implementation

● Lets try to draw this?

CS446/646 ECE452 27WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter – Class
Requirement
● requires multiple inheritance

what about implementations that do not support multiple
inheritance (Java)?

CS446/646 ECE452 28WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter – Object
Requirement
● via object composition

CS446/646 ECE452 29WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter – Class vs. Object
Class
● commitment to a

concrete adaptee class
– not to its subclasses

(class hierarchy)
● allows for specialization

– how?
● static in nature

Object
● can use many adaptees

– including sub-classes
● harder to override the

adaptee behavior
– why?

CS446/646 ECE452 30WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter – Class vs. Object

CS446/646 ECE452 31WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter & Dependency Inversion

Client
layer

Business
 layer

Utility
 layer

Client
layer

Business
 layer

Utility
 Interface

Business
 Interface

Utility
 layer

Simple Layers Abstract Layers

Dependency Inversion (DI)
● decouple high level layer from lower level layer(s)

CS446/646 ECE452 32WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Dependency Inversion Example
Implications
● Button implementation

relies on Lamp
● any changes to Lamp will

impact Button
● what if we want to reuse

Button class with a
different component
– such as a motor

CS446/646 ECE452 33WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Dependency Inversion Example
Dependency Inversion to Rescue
● looks good (?)
● still a dependency left

CS446/646 ECE452 34WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Dependency Inversion Example
Observation
● adapter enhanced the design

– increased re-usability at the price of complexity

CS446/646 ECE452 35WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter
How much adaptation is reasonable?

CS446/646 ECE452 36WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Bridge
Intent
● “decouples an abstraction from its implementation so the

two can vary independently”

● does this not sounds like an adapter?
– will take a closer look later

CS446/646 ECE452 37WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Bridge

CS446/646 ECE452 38WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Bridge

Bridge

CS446/646 ECE452 39WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Bridge Example

Solution via inheritance

problem1: what if we have to
support another platform?

problem2: client code is tied to
an implementation.
For portable code, the client
should not refer to an
implementation

Problem

CS446/646 ECE452 40WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Bridge Example
Solution: Use bridge pattern to place abstraction and
implementation in two different hierarchies

CS446/646 ECE452 41WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Bridge Example
Solution: Use bridge pattern to place abstraction and
implementation in two different hierarchies

Bridge

CS446/646 ECE452 42WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Bridge
Features
● flexible binding between abstraction & implementation
● two class hierarchies
● clients are decoupled

CS446/646 ECE452 43WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter & Bridge
Common Elements
● flexibility via indirection
● request forwarding

CS446/646 ECE452 44WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Adapter & Bridge
Difference in intent
● adapter

– resolves incompatibilities between two existing interfaces
– two interfaces are independent and can evolve separately
– coupling is unforeseen
– adapts components after they have been designed

● bridge
– connects an abstraction and its many implementations
– evolution is in accordance with the base abstraction
– coupling between the abstraction and the implementations are

known

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

