

Gantt Control Developer
Reference

.NET Language Guide
VERSION 1.00 – JULY 2009

Vordruckverlag Weise GmbH
Bamberger Str. 1
01187 Dresden
Germany

http://www.gantt-komponente.de/
http://www.gantt-component.com/

Gantt Control Developer Reference .NET 2

Gantt Control Developer Reference .NET 3

Table of content

Gantt Control…………………………………………………………………………... 5

Set up the Gantt Control Component…………………………………………………………………. 5

Set up new columns…………………………………………………………………………………….. 6

Accessing single cells values…………………………………………………………………………... 8

Row operations………………………………………………………………………………………….. 8

Hierarchical structuring of rows………………………………………………………………………… 9

Adding bars and objects to the gantt chart…………………………………………………………… 10

Task bars…………………………………………………………………………………………………. 11

Progress bars……………………………………………………………………………………………. 15

Milestones………………………………………………………………………………………………… 16

Images……………………………………………………………………………………………………. 16

Text bars………………………………………………………………………………………………….. 17

Time scales and time mode... 18

Working and non working times.. 18

Critical Path... 21

Connection between bars.. 22

DataSource (xmlDataSource).. 24

Pert chart diagram... 25

Adding pert bars.. 27

Accessing pert bars... 28

Connecting pert bars...

28

Print Preview...

28

Setting up the print preview... 28

Page setup dialog.. 29

Legend... 31

Localization.. 32

Events..

32

Gantt Control Developer Reference .NET 4

This developer reference guide describes the software component GANTT CONTROL .NET for the
Microsoft .NET Platform. For most of the code examples and references the software development
language C# is used.

Installation

 To install the GANTT CONTROL .NET component you require the GanttControl.dll file.

For Microsoft Visual Studio 2008, please select the “Choose Toolbox Items… ” from the
“Tools ” Menu. After that, please activate the first tab sheet “.NET Framework Components” of
the dialog that should appear now.

Now click on the “Browse… ” button and select the GanttControl.dll file . The table below
shows the components that are now available as new .NET Framework Components.

COMPONENT NAMESPACE
GanttControl VVW.GanttControl
PrintPreview VVW.GanttControl.GanttPrintPreview
XmlDataSource VVW.GanttControl.GanttDataSource

Gantt Control Developer Reference .NET 5

GANTT CONTROL

The Gantt Control is an interactive user interface component that contains a tree grid on the
left side and a gantt chart diagram on the right side. The gantt control combines both the
usability of typical grid components of having easy accessible columns and rows and also the
possibility to structure the content hierarchically as it is know from common tree components.

To identify most of the elements and objects of the gantt control please see the following list.

Set up the Gantt Control Component

In order to set up the component for your application, please place the GanttControl
component from your component tool box onto your win form. You should be able to see now
an empty gantt chart diagram.

■ Insert a new XMLDataSource component from the tool box on the form and
connect the GanttControl component with the XMLDataSource. To do so,
please select the GanttControl component.

Please note, if you click on the component itself, it may be possible that the
sub-panels (panel1 and panel2) of the GanttControl component are selected
instead of the GanttControl component itself. If you have any problems, to
select the GanttControl, then please activate the “Document Outline view”
[CTRL + W, U] of Visual Studio.

Element Element
1 TreeGrid
2 Chart Diagram
3 Splitter
4 TaskBar
5 TimeScales[0..2]
6 Column
7 Collapsed Node
8 Tree Cell

Gantt Control Developer Reference .NET 6

■ If the GanttControl component is selected, please open its “Properties-Dialog”
[CTRL + W, P] and assign the XMLDataSource for the DataSource property.

If you have accomplished those two steps you can compile and run your .NET Windows Form
Application. However the GanttControl component does not contain any rows or columns, so
at the moment you are yet unable to interact with the component.

Set up new columns

By default the tree of the gantt graph does not contain any columns. When adapting the gantt
control to your specific requirements its necessary to add columns to the tree. There are two
different types of columns – predefined columns and user defined columns . Predefined
columns are columns that are handled completely by the logic of the gantt control component
itself. Predefined columns are used to display information to the end user and are not editable,
as the cell content is determined and calculated by the component itself.

Predefined Column Description
TreeAutoCellNumber The auto cell number column displays the current number of the row. There are two

different display formats for the row number. If the boolean property
ContinuousNumbering of the column is set to true the rows are numbered in a
continuously way, otherwise in a hierarchically way.

TreeAutoCellStartDate The auto cell start date column displays the earliest start date of all bars for each row.

TreeAutoCellEndDate The auto cell end date column displays the latest end date of all bars for each row.

TreeAutoCellTaskName If a pert bar has been defined for a row the name of the pert bar is displayed in the
auto cell task name column.

User defined columns are editable columns that are defined by the developer. There are
different types of user defined columns, providing the editing of different data types. The
following table shows all user defined columns and their description.

User defined column Description
TreeSimpleTextCell The simple text column is used to edit/display one single line of text.

TreeMultilineTextCell The multiline text column is used to edit/display a multi-line text block, including word
wraps.

TreeDateTimeCell The date time column is used to edit/display date and/or time values.

TreeSpinCell The Spin column can be used to display and edit numeric values.

TreeCurrencyCell The currency column is used to edit and display currency values.

TreeComboCell The combo column provides an editable drop down combo box.

Gantt Control Developer Reference .NET 7

TreeImageComboCell The image combo column provides an editable combo box including an additional
image.

TreeButtonEditCell The button edit column is a composition of an editable text field and an additional
button.

■ The following code sample demonstrates how to add a column to the GanttControl

component. The columns constructor used in this example requires the xmlDataSource,
the columns type and the caption of the column as parameters. The xmlDataSource
provides access to the columns array. Please add the
VVW.GanttControl.GanttDataSource namespace to your project, in order to use the
column constructor as shown below.

(1)

using VVW.GanttControl.GanttDataSource;
…
xmlDataSource1.Columns.Add(new Column (xmlDataSource1, typeof (TreeAutoCellNumber), "Nr."));

Based on this proceeding all other types of columns can be added to the GanttControl.
Depending on the columns type, specific properties can be accessed for each column type.
The example below shows how to set some column specific properties.

■ After having added an auto cell number column, a combo box column is added. After that

the ContinousNumbering property of the auto cell number column is set to false and some
items are defined for the combo column.

(2)

using VVW.GanttControl.GanttDataSource;
…
…
xmlDataSource1.Columns.Add(new Column (xmlDataSource1, typeof (TreeAutoCellNumber), "Nr."));
xmlDataSource1.Columns.Add(new Column (xmlDataSource1, typeof (TreeComboCell), "Combo"));

xmlDataSource1.Columns[0].GetTreeCell< TreeAutoCellNumber >().ContinuousNumbering = false ;

List <string > content = new List <string >();
content.Add("item_00");
content.Add("item_01");
content.Add("item_02");
xmlDataSource1.Columns[1].GetTreeCell< TreeComboCell >().Content = content;
xmlDataSource1.Columns[1].GetTreeCell< TreeComboCell >().DropDownStyle = ComboBoxStyle .DropDown;
…

The TreeEditButtonCell column provides an additional button for each cell. If you want to
access the ButtonClick event of those cells, the best way would be to create a new class that
inherits from the TreeComboCell class and overwrite the ButtonClick event handler.

■ As explained above, we create a new class MyTreeButton and overwrite the ButtonClick

event within this class.

(3)

public class MyTreeButton : TreeButtonEditCell
 {
 public MyTreeButton(DataSource dataSource)
 : base (dataSource)
 {
 }

 public override void ButtonClick(object sender, EventArgs e)
 {
 // Buttons on click event ...
 }
}

■ After that, we can create the TreeButtonEditColumn by using the column constructor

shown below:

(4)

xmlDataSource1.Columns.Add(new Column (xmlDataSource1, typeof (TreeButtonEditCell), "Column" ,
new MyTreeButton (xmlDataSource1)));

Gantt Control Developer Reference .NET 8

Accessing single cells values

For setting and retrieving cell values the gantt control component provides the methods
SetCellContent and GetCellContent.

■ The sample below demonstrate how to use the SetCellContent and the GetCellContent

methods.

(5)

ganttControl1.TreeGrid.SetCellContent(0, 1, "value");
String value = ganttControl1.TreeGrid.GetCellContent(0, 1);

Row operations

All data-sensitive operations (like adding a row) are performed by using the XMLDataSource
component. So the XMLDataSource provides methods for adding, deleting and structuring
rows. For accessing single rows the XMLDataSource provides the Rows [] array.

■ For adding new rows use the RowAppend() method.

(6)

…
xmlDataSource1.RowAppend();
…

If you want to add multiple rows at once you can specify the number of rows you want to add
to the GanttControl component.

■ The RowAppend(..) method is used to add multiple rows at once.

(7)

…
xmlDataSource1.RowAppend(5);
…

■ To delete an existing row you can use the RowDelete(..) function. The Index specifies

the row index; the topmost row has an index of 0.

(8)

…
xmlDataSource1.Delete(1);
…

■ If you want to delete only the content of a single row (this means deleting all cell values of

a row as well as all bars that are linked to this row) you can use the RowClear(..)
method.

(9)

…
xmlDataSource1.RowClear(1);
…

■ If you want to insert a row at a given position you can use the RowInsert(..) function.

This will insert a new empty row object at the given position.

(10)

…
xmlDataSource1.RowInsert(1);
…

Hierarchical structuring of rows

Gantt Control Developer Reference .NET 9

The tree of the GanttControl component allows it, to create a hierarchical structure. The
XMLDataSource provides different methods to apply a hierarchical tree-like structure.

■ You can group a range of rows and increase their nesting level by using the RowsGroup

method. The range is determined by the parameters startIndex and endIndex.

(11)

…
xmlDataSource1.RowsGroup(0,2);
…

Grouping the first three rows by using the
RowsGroup(0,2) statement – the structure of
the tree will alter as it is visualized in the
pictogram on the left side. After grouping the
first 3 rows a new row will be inserted as
parent row.

Please note that it is not possible to add task bars in a parent row (also called as summary
row), as the parent row calculates its duration itself and will be automatically updated, based
on the duration of its child rows.

■ Use the RowChildInsert(..) method to add a new child row for the specified row.

The example below adds a new child to the first row.

(12)

…
xmlDataSource1.RowChildInsert(0);
…

■ To delete all childs from a row you can use the BranchDelete(..) function:

(13)

…
xmlDataSource1.BranchDelete(0);
…

■ The parent row of a set of child rows can be reassigned by using the

RowsChangeParent(..) method. The range of rows, that’s parent index will be
reassigned is defined by the startIndex and the endIndex.

(14)

…
xmlDataSource1.RowsChangeParent(1,2,0);
…

Basically there are two different modes how the hierarchical structure is visualized in the
predefined tree auto cell number column. By default the “No”-column displays the hierarchical
level as a recursive aggregation of its number and its sub-number (e.g. “1.1”; “2.1.1”). You can
also apply a continuous numbering (“1”, “2”, …) display format by setting the
ContinuousNumbering property to true.

Additionally you can increase and decrease the nesting level of single rows, if you use the
IncreaseLevelOfRow and the DecreaseLevelOfRow of the XMLDataSource.

The example on the left side shows how the
GanttControl changes after a
IncreaseLevelOfRow(1) has been
applied. Please note, that a new parent row
has been added for the child row. If you want
to reverse the changes made through the
increase of the level you need to call the
DecreaseLevelOfRow(2) method.

Gantt Control Developer Reference .NET 10

Whenever (child)-rows are modified (deleted or added) the value of the tree auto cell number
column will be updated automatically.

When accessing rows of a tree grid that has already any child rows, you have to be carefully
to use the correct row index as parameter for row operations. If you use an absolute index for
accessing a row, you have to use the GetRowAtAbsoluteIndex method. The example below
shows what rows are accessible by using different methods.

xmlDataSource1.Rows[2]

xmlDataSource1.GetRowAtAbsoluteIndex(2)

Adding bars and objects to the gantt chart

 The gantt graph contains different types of bars and objects – see the following table:

Bar / Object Description
TaskBar

The taskbar is the main element of the gantt chart. It is used to visualize a single
(planned/target) activity. Taskbars can be linked together in form of a single
connection. Taskbars are basically defined and determined by their StartDate,
their EndDate as well as the row in which they are displayed.

ProgressBar

A progressbar is commonly used to visualize the effective progress of a task.
Therefore it is displayed below a task bar in the same row as the task bar. Please
note that a progressbar is not limited to be located within the range of a taskbar.
Progressbars cannot be linked together with connections and they contain no
internal progress status as it is the case for task bars.

ChartImage

ChartImages can visualize any image.

ChartTextBar

Any textual information can be visualized by using the ChartTextBar.

The end user is able to create new bars, if he holds down the left mouse button and drags a
new object into a row of the gantt chart. By default all new bars that are created this way (by
the user) are task bars.

If you set the TaskMode property of the Graph to false (ganttControl1.Graph.TaskMode
= false;) the component will create progress bars instead of task bars, as described
above.

Use the methods AddTaskBar and AddProgressBar if you want to add task bars and
progress bars via code.

■ The sample below adds a new task bar in the first row. The task bar starts on the current

day and has a total duration of 3 days. After that a progress bar is added directly below
the task bar in the same row. The progress bar lasts one day longer than the task bar.
Please note in a typical task scheduling context the task bar always represent a planned
activity as the progress bar visualizes the actual progress of an activity. In this short

Gantt Control Developer Reference .NET 11

example the task has a total delay of one day.

(15)

…
xmlDataSource1.Rows[0].AddTaskBar(new TaskBar (xmlDataSource1, DateTime .Now,
DateTime .Now.AddDays(3)));

xmlDataSource1.Rows[0].AddProgressBar(new ChartProgressBar (xmlDataSource1, DateTime .Now,
DateTime .Now.AddDays(4)));
…

If you want to add ChartImage and ChartTextBar objects you have to add those objects to
the xmlDataSource.ChartObjects array. The example below shows how this could be
done.

■ Use the Add method of the ChartObjects class to add ChartImages and

ChartTextBars.

(16)

…
int selectedLine = ganttControl1.Graph.SelectedLine;

ChartImage chi = new ChartImage (xmlDataSource1, ganttControl1.Graph.StartingDate.A ddDays(3),
xmlDataSource1.Rows.RowAtAbsoluteIndex(selectedLine));
chi.EndDate = ganttControl1.Graph.StartingDate.AddD ays(6);
chi.AutoStretch = false ;

chi.ChartGraphic = pictureBox3.Image; //reference to an image object
chi.Tag = 0;
xmlDataSource1.ChartObjects.Add(chi);
…

Task bars

As shown above, the GanttGraph provides four bar types. The most important – as this is the
basic bar of gantt diagrams – is the taskbar. This chapter concentrates mainly on the
properties of the task bars and the possibility to change the layout of a task bar. This chapter
concentrates mainly on the properties of the task bars and the possibilities to change the
layout of a task bar. If you want to know how to add a task bar or how to access a task bar –
please have a look at the prior chapter.

A task bar is defined by its start and end date. Use the StartDate or EndDate property to
assign a new value or to read out the current value. Please note that when assigning a new
time range for task bars the EndDate must always been larger than the StartDate. The
Duration of a task bar can be obtained by read-out the Duration property of task bars.

In most cases you probably have defined some non working dates in the underlying calendar
of the GanttGraph, respectively they are already defined by default, e.g. weekends. If so – you
can directly get the time, the task bar fits to working times using the EffectiveDuration
property.

To demonstrate the interaction between non-working times and effective duration, please have
a look at the following graphic. Here the weekends are defined as non working times,
therefore the second bar (2) has an effective duration of 7 days and the first bar (1) has an
effective duration of 5 days.

If you want to highlight the beginning and/or the ending of a bar you can use buffer times. In its
original meaning buffer times have been implemented to visualize reserved time ranges,

Gantt Control Developer Reference .NET 12

where no other task can occupy the time of the buffer time, for a given task bar. To clarify this,
please imagine the following scenario, where the usage of a buffer time may be wise. You
want to schedule the allocation of different machines. Every time you allocate a new machine,
the machine needs some reserved time to be built up and to be adjusted. So one way to
visualize a machine that has an initial “setup time” of 2 days and a “working time” of 3 days
can be done as shown in the following picture, where the bar has a left buffer time of two days
and an overall duration of 5 days.

Buffer times are visualized using a pattern. If you want to assign a buffer time you can use the
both properties DateTime BufferLeftTime and BufferRightTime. There are some
restrictions that you have to keep in mind when using BufferTimes:

 ■ BufferLeftTime should always be smaller than BufferRightTime

■ BufferLeftTime and BufferRightTime should always be larger than the
 StartDate and smaller than the EndDate of the task bar.

The following table summarizes the described properties concerning the time scheduling of a
task bar as well as buffer times.

Property Description
DateTime StartDate The start date of a task bar.
DateTime EndDate The end date of a task bar
int Duration (read only) The overall duration of the task bar.
int EffectiveDuration The duration of working time, based upon the calendar settings, of the task bar.
DateTime BufferLeftTime The buffer time for the start of the task bar
DateTime BufferRightTime The buffer time for the end of the task bar.

For each task that is visualized by a task bar, you are able to assign and display the progress
of this task, within a range from 0% to 100%. The progress of the task bar is displayed as a
small bar within the task bar. The picture below shows a task bar where the progress was set
to 50 percent.

If you want to assign the internal task bar progress use the InternalProgress property with
a value range from 0 to 100.

In most cases it can be useful to link further textual information to a task bar. For this purpose
task bars (like other bar objects) provide the InfoLabel property. You can assign five text
strings to a task bar, differing in their position. The following table gives a brief summary of all
properties.

Property Description
string InfoLabel.LeftText A text – on the left side of a task bar.
string InfoLabel.TopText A text – on the top side of a task bar.
string InfoLabel.RightText A text – on the right side of a task bar.
string InfoLabel.BottomText A text displayed below the task bar.
string InfoLabel.CenterText A text displayed inside the task bar.

If you want to adjust the layout of the text of a taskbar you have to use the
InfoLabel.TextFont property that provides parameters for adjusting the font of the text.
In the rest of this chapter we will focus more on how to adjust the visual appearance of task
bars.

Gantt Control Developer Reference .NET 13

There are different styles that can be applied to draw a task bar. First there is a solid fill style
(1) a gradient fill style (2) a three dimensional drawing style (3) and a draw style using a
pattern (4).

If you want to change the draw style of the task bar please assign a value shown in the
following table to the Style property.

Style Description

(1) Solid

Solid fill style

(2) Gradient Gradient (vertical or horizontal) fill style
(3) D3Look Three dimensional draw style
(4) Pattern Pattern draw style.

According to the draw style that you have selected for the task bar, there are different
properties that are used when the task bar is drawn.

Solid or D3Look Style
Property Description
BackgroundColor Specifies the background color of the bar

Gradient Style
Property Description
GradientStartColor Specifies the start color of the gradient fill
GradientEndColor Specifes the end color of the gradient fill
GradientStyle Specifies the gradient mode (BackwardDiagonal,

ForwardDiagonal, Horizontal, Vertical)

Pattern Style
Property Description
BackgroundColor Specifies the background color of the pattern.
PatternColor Specifies the foreground color of the pattern.
PatternStyle The style of the pattern.

When the (end)user adds a new task bar to the gantt graph or a task bar is added by program
logic, its layout parameters are defined by default settings. You can override any of these
settings to specify the default layout for task bars, so that it fits the needs of your application.
Please see the following list for all parameters that specify the default layout of task bars.

Property Description
DefaultTaskBarBackgroundColor Default background color of the bar
DefaultTaskBarBackgroundNonWorkingColor Default color when the bar is over non working time
DefaultTaskBarBorderColor Default border color of the task bar
DefaultTaskBarBorderThickness Default border thickness
DefaultTaskBarGradientStartColor Default gradient start color for gradient style bars
DefaultTaskBarGradientEndColor Default gradient end color for gradient style bars
DefaultTaskBarGradientStyle Default gradient style
DefaultTaskBarHeight Default height of a task bar

Gantt Control Developer Reference .NET 14

DefaultTaskBarPatternColor Default pattern foreground color of task bars
DefaultTaskBarPatternStyle Default pattern style
DefaultTaskBarProgressColor Default color of the InternalProgress
DefaultTaskBarStyle Default drawing style of task bars.

Another way to adapt the layout of task bars is, to use the BarAdded(object sender)
event of the GanttControl component.

■ After adding a new bar, the BarAdded event of the GanttControl component will be

raised. First we test here, if the added bar is a task bar – if so, we will change some layout
parameters of the task bar. To edit the BarAdded event handler, please select the
GanttControl component, select the “events” tab page and double click on the Bar Added
event.

(17)

…
private void ganttControl1_BarAdded(object sender)
 {
 if (sender.GetType() == typeof (TaskBar))
 {
 ((TaskBar)(sender)).Height = 33;
 ((TaskBar)(sender)).Style = TaskBarStyle .Gradient;
 ((TaskBar)(sender)).GradientStartColor = Color .Yellow;
 ((TaskBar)(sender)).GradientEndColor = Color .Red;
 ((TaskBar)(sender)).InfoLabel.RightText = "task bar" ;
 }
 }
…

After adding text and changing the layout of a task bar, it is shown now how to add images to
a task bar. Each task bar can own a small glyph that will be displayed inside the task bar at
the start (StartGlyph) and/or at the end (EndGlyph) of the bar.

■ The code sample below extends the BarAdded event and adds a StartGlyph to the

bar that is loaded from a file at runtime.

(18)

…
private void ganttControl1_BarAdded(object sender)
 {
 if (sender.GetType() == typeof (TaskBar))
 {
 ((TaskBar)(sender)).Height = 33;
 ((TaskBar)(sender)).Style = TaskBarStyle .Gradient;
 ((TaskBar)(sender)).GradientStartColor = Color .Yellow;
 ((TaskBar)(sender)).GradientEndColor = Color .Red;
 ((TaskBar)(sender)).StartGlyph = Image .FromFile("D:/startglyph.bmp");
 }
 }
…

Gantt Control Developer Reference .NET 15

Besides the properties that have been mentioned already, the task bar provides some other
properties, as listed in the table below:

Property Description
Color BackgroundNonWorkingColor The color that is used when the bar is placed over non working time.
Color BorderColor The color value for the border of the bar.
int BorderThickness The thickness in number of pixels that is applied for the bars border.
bool CriticalElement Returns true if the bar is part of the critical path
int Height Specifies the total height in pixel of the task bar
Row ParentRow Returns the row object that belongs to the task bar

Progress bars

Progress bars can be used to visualize the actual progress a task has made. For a better
comparison they are directly drawn under the task bar, so they may be applicable for any kind
of target-performance comparisons, as the user can see the planned time for an activity and
the actual time the task has needed.

When creating a progress bar you are not restricted in any way – you can create as many
progress bars for each row as you want. The amount of progress bars does not depend on the
amount of task bars, nor is a progress bar in anyway linked to a task bar. If you want to know
how to add a progress bar or how to access a progress bar – please have a look at the prior
chapter.

As well as the task bar, the progress bar is defined by its StartDate and its EndDate. Use
the StartDate and EndDate properties to define the length and the position of the progress
bar.

Property Description
DateTime StartDate The start date of a progress bar
DateTime EndDate The end date of a progress bar

As it has been shown for task bars, progress bars can display textual information to. You can
assign five text strings to a progress bar, differing in their position. The following table gives a
summary of all properties.

Property Description
string InfoLabel.LeftText A text – on the left side of a progress bar
string InfoLabel.TopText A text – on the top side of a progress bar
string InfoLabel.RightText A text – on the right side of a progress bar
string InfoLabel.BottomText A text displayed below the progress bar
string InfoLabel.CenterText A text displayed inside the progress bar.

If you want to adjust the layout of the text of a progress bar, you have to use the
InfoLabel.TextFont property that provides parameters for adjusting the font of the text.

For the rest of this chapter we will focus on properties that define the layout of the progress
bar. In comparison to task bars, progress bars do only have one solid fill draw style
implemented. If you want to change the color of a progress bar use the BackgroundColor
property.

The other relevant properties for progress bars are shown in the table below:

Property Description
int Height The height of a progress bar in pixel.
Color BorderColor The color value of the border of the progress bar.
int BorderThickness The value of the thickness of the border in pixel.

Gantt Control Developer Reference .NET 16

■ The following code example shows how to add a progress bar and change some of its

properties. Please note that the code for adding and formatting progress bars is placed
between a BeginUpdate() and EndUpdate() statement.

Whenever you plan to manipulate a lot of data, e.g. adding a lot of rows, its recommend
to place the operation(s) between a BeginUpdate() and an EndUpdate() statement to
enhance the performance of your software application. The second code of line scrolls
the visible range of the gantt chart to the current date. So that the added progress bar
became visible.

(19)

…

 xmlDataSource1.BeginUpdate();
 ganttControl1.Graph.Calendar.SetStartingDate(DateTime .Now);
 xmlDataSource1.Rows[0].AddProgressBar(new ChartProgressBar (xmlDataSource1, DateTime .Now,
DateTime .Now.AddDays(4)));

 xmlDataSource1.Rows[0].ProgressBars[0].InfoLabel. RightText = "progress bar" ;
 xmlDataSource1.Rows[0].ProgressBars[0].Background Color = Color .Yellow;
 xmlDataSource1.Rows[0].ProgressBars[0].Height = 2 0;
 xmlDataSource1.Rows[0].ProgressBars[0].BorderColo r = Color .Red;
 xmlDataSource1.Rows[0].ProgressBars[0].BorderThic kness = 2;
 xmlDataSource1.EndUpdate();

…

Milestones

Milestones represent a special date in your project, so for example a specific deadline. They
are visualized as a small glyph.

■ The following code example shows how to add a milestone to the GanttControl

component and assign an image to it.

(20)

…
ChartMilestone chms = new ChartMilestone (xmlDataSource1,
 DateTime .Now, xmlDataSource1.Rows[1]);
chms.ChartGraphic = Image .FromFile("D:/milestone.bmp");
xmlDataSource1.ChartObjects.Add(chms);
…

As already known from the other bars the chart milestone object has also the InfoLabel
property.

Property Description
string InfoLabel.LeftText A text – on the left side of a milestone chart object
string InfoLabel.TopText A text – on the top side of a milestone chart object
string InfoLabel.RightText A text – on the right side of a milestone chart object
string InfoLabel.BottomText A text displayed below the milestone chart object.
string InfoLabel.CenterText A text displayed inside the milestone chart object.

Images

If you want to display a graphic within the GanttControl component you can add a ChartImage
object to the XMLDataSource. Please keep in mind that you are unable to display images (and
milestones too) within the left part (tree) of the GanttControl component. Please have a look at
the following code snippet, to see how a ChartImage is added to the gantt chart.

If you want to display a graphic within the GanttControl component you can add a ChartImage
object to the XMLDataSource.

Gantt Control Developer Reference .NET 17

■ The following code example shows how to add a chart image to the GanttControl
component and assign an image to it.

(21)

…
 ChartImage chi = new ChartImage (xmlDataSource1, DateTime .Now, xmlDataSource1.Rows[1]);
 chi.ChartGraphic = Image .FromFile("D:/chart_image.bmp");
 xmlDataSource1.ChartObjects.Add(chi);
…

ChartImage objects do have – as all other types of bars – the InfoLabel property, allowing
them to display some text inside/beside the image.

Property Description
string InfoLabel.LeftText A text – on the left side of a image chart object
string InfoLabel.TopText A text – on the top side of a image chart object
string InfoLabel.RightText A text – on the right side of a image chart object
string InfoLabel.BottomText A text displayed below the image chart object.
string InfoLabel.CenterText A text displayed inside the image chart object.

Text bars

Text bars can be used to display larger text information within the GanttGraph. A Chart text
bar as well as image bars can cover more than one row of the GanttGraph. When creating a
chart text bar object its horizontal dimensions are defined by the StartDate and the
EndDate. To define the vertical dimension you have to use the Size property of the Chart text
bar that specifies the height of the text bar in pixel. To assign some text to the text bar use the
Text property.

The following code example demonstrates how to create a text bar.

■ The following code example shows how to add a chart image to the GanttControl

component and assign an image to it.

(22)

…
 ChartTextBar chtb = new ChartTextBar (xmlDataSource1, DateTime .Now, xmlDataSource1.Rows[1]);
 chtb.Text = "text of a text bar" ;
 chtb.EndDate = chtb.StartDate.AddDays(6);
 xmlDataSource1.ChartObjects.Add(chtb);
…

 The following table shows further properties of text bars:

Property Description
Font TextFont Specifies the font of the text bar
Color BackgroundColor The background color of the text bar. The color is applied only when

Transparent is set to false.

StringAlignment HAlignment

The horizontal alignment of the text. The following sub-table shows the
possible values and their corresponding alignments.

Value Alignment
Near Left
Far Right
Center Center

StringAlignment VAlignment

The vertical alignment of the text. The following sub-table shows the
possible values and their corresponding alignment.

Value Alignment
Near Top
Far Bottom
Center Center

bool Transparent The text bar will be displayed transparent if set to true.

Gantt Control Developer Reference .NET 18

Time scales and time mode

The gantt chart diagram provides three time scale objects, each with a different time mode.
The time mode of the time scales is defined by the global time mode of the calendar. Use the
SetTimeMode(Calendar . TimeModes timeMode) property of the Graph to change the
time mode. The following table shows all possible values for the time mode:

Value Scheduling mode
Hour Hourly view mode
Day Daily view mode
Week Weekly view mode
Month View mode for months
Quarter View mode for quarters
Year View mode for years
Decade View mode for decades

■ The next line of code changes the global time mode of the calendar to a weekly mode.

(22)

…
ganttControl1.Graph.SetTimeMode(Calendar . TimeModes .Week);
…

Please note, the content of date specific strings, such as day names or month names is based
on the global language settings of the system.

Working and non working times

The GanttControl component contains the logic of an internal calendar that can be used to
define and visualize special (working or non working) date exceptions. However when you
define dates within the calendar, they are applied to the overall Gantt Graph. Please note, that
it is not possible to define different date exceptions for different rows.

Please have a look at the following picture that symbolizes the architecture of the Calendar.

As you can see the XMLDataSource holds a list of date categories
xmlDataSource1.DaysCategories. For each DaysCategory special dates can be
defined.

Gantt Control Developer Reference .NET 19

The appearance and the behaviour of a single date exception is defined by its DaysCategory.
The DaysCategory specifies whether its date exception defines working or non working times.
Also the visibility and the color that is used to visualize the date exception can be specified
within the date category. The following table summarizes the properties of a date category.

Property Description
Brush BrushFormat The brush that is used when the date exceptions of this DaysCategory are drawn.
int DaysCount Returns the total number of date exceptions that are defined within this DayCategory
string Name The name of the DaysCategory. Note: This name is just for the purpose to identify the

DayCategory.

bool Visible Specifies whether date exceptions of this DaysCategory are displayed or not.
bool Working Specifies whether date exceptions of this DaysCategory should be handled as working

dates/times or not.

Additionally the DaysCategory holds several methods for managing the date exceptions of a
DaysCategory:

Method Description
void Clear() Clears all date exceptions of the DaysCategory.

bool ContainDate(DateTime date)

Returns true if the DaysCategory contains an entry for the specified
date

void
RemoveDate(DaysCategory . DayCategory
dayCategory)

Removes the date exceptions entry from the DaysCategory.

If you want to add new dates to a DaysCategory the component provides the method
AddDate(…) that can be called using different parameter lists.

void AddDate(DateTime date);

■ This method adds a DateException, defined by its DateTime value, to the
DaysCategory.

void AddDate(DaysCategory.DayCategory dayCategory);

■ This method adds a DateException, defined by a DayCategory object, to the
DaysCategory.

void AddDate(DateTime date, Calendar.TimeModes repeatMo de);

■ This method is used to add recurring DateExceptions, defined by a DateTime
value and the repeatMode to the DaysCategory. Please see the following list for
the possible values for repeatMode:

Calendar.TimeModes

Hour
Day
Week
Month
Quarter
Year
Decade
None

void AddDate(DateTime date, Calendar.TimeModes repeatMo de, int repeatAfter);

■ This method is used to add recurring DateExceptions, defined by the DateTime
value and the repeatMode. The repeatAfter parameter specifies the time the
DateException is repeated after. For example; if the repeatAfter is set to 2, the
DateException will repeat after 2 times the repeatMode.

Gantt Control Developer Reference .NET 20

void AddDate(DateTime date, Calendar.TimeModes repeatMo de, int repeatAfter,
DateTime rangeStart, DateTime rangeEnd);

■ This method is used to add recurring DateExceptions, as described above.

Additionally you can set up a time range. So that only valid DateExceptions that
are inside the time range are created.

 If there are date exceptions in different DaysCategories that overlap or share the same date, it
is important to consider the order of the categories in the categories list. The date exceptions
of the category that is the last in the category list will be displayed topmost within the gantt
chart. Generally you should try to avoid assigning the same date to different categories, as it is
possible that there are contrary properties (working and non-working) for each category.

The DaysCategory list can be accessed throughout the XMLDataSource. The object holds
several useful methods for adding, deleting or changing the priority of DaysCategories as
shown in the table below:

Method Description
void Add(DaysCategory dayCategory) Adds a new DaysCategory object to the list.
void Clear() Clears the list of DaysCategories.
DaysCategory
DaysCategoryOfDay(DateTime day)

Returns the Dayscategory that fits to a specific day

void MoveDown(string name) Moves the DaysCategory, specified by the name, one position down.
void MoveUp(string name) Moves the DaysCategory, specified by the name, on position up.
void Remove(DaysCategory
dayCategory)

Removes the specified DaysCategory.

void Remove(int index) Removes the specified DaysCategory.
void Remove(string name) Removes the specified DaysCategory.

■ In the following code example, we will show how to add a new date category and how to

add a fixed date exception to it. A fixed date exception would be the first choice to
visualize a single date/day. If you want to define recurring date exceptions please have a
look at the next code example.

(23)

…
DaysCategory fixedException = new DaysCategory (xmlDataSource1, "non working day" , false);
fixedException.BrushFormat = new SolidBrush (Color .Yellow);
fixedException.AddDate(new DateTime (2009, 6, 20));
xmlDataSource1.DaysCategories.Add(fixedException);

ganttControl1.Graph.Calendar.SetStartingDate(new DateTime (2009, 6, 20));
…

■ The code example below shows, how recurring (repeating) date exceptions can be

added. As we use another version of the AddDate(..) function as above, we can specify
that the recurring time period for the date exception is saturday every second week.

(24)

…
DaysCategory fixedException = new DaysCategory (xmlDataSource1, "saturday" , false);
fixedException.BrushFormat = new SolidBrush (Color .Yellow);
fixedException.AddDate(new DateTime (2009, 6, 20),
 VVW.GanttControl.GanttGr aph. Calendar . TimeModes .Week, 2);
xmlDataSource1.DaysCategories.Add(fixedException);

ganttControl1.Graph.Calendar.SetStartingDate(new DateTime (2009, 6, 20));
…

As you may have noticed, as soon as a task bar is over a non working date exception, the
GanttControl component uses a different color to visualize that there is a non working area
within the task bar. You can use the task bar property BackgroundNonWorkingColor to
specify the color that should be used for drawing this/these day(s).

Gantt Control Developer Reference .NET 21

Critical Path

The Gantt Control component includes the calculation of the critical path. The calculation of
the critical path determines which tasks are critical and non-critical. When a task is critical any
delay of this task will result in a delay of the entire project. The critical path is the sequence of
all critical tasks. Note that there can be more critical paths than one.

A typical critical path contains usually a set of connected bars. As soon as the first task, that is
represented by the first bar, is delayed the second connected bar will be rescheduled, finally
resulting in the rescheduling of the project end date.

The following image displays a gantt chart that contains two critical paths (1,2,3) and (5) –
visualized by a red frame. In this example you can see that the only bar that will not
reschedule the project end is bar (4) and therefore it is not part of the critical path.

The visualization and the calculation of the critical path can be enabled/disabled if you use the
bool UpdateCriticalPath property of the graph. The color that is used for highlighting the
critical path can be specified if you use the Color CriticalPathColor property of the
graph.

Property Description
bool ganttControl1.Graph.UpdateCriticalPath Enables or disables the calculation of the critical path
Color ganttControl1.Graph.CriticalPathColor Specifies the color that is used to draw the critical path

By default the critical path is not enabled. However please note that if the critical path is
enabled and a new bar is added the bar became automatically part of the critical path (and will
be highlighted therefore) if it is the last bar of the project, as the last bar is interpreted as the
project end. This may irritate the end user if he is not aware of the fact that the critical path is
displayed within the gantt chart diagram.

To decide whether an object is part of the critical path or not you can access the boolean
property bool CriticalElement of a task bar. The property is read- and writeable,
although it is recommended to not change the value as it is calculated internally by the gantt
component itself.

Gantt Control Developer Reference .NET 22

Property Description
DateTime ESTime A DateTime property defining the earliest possible start time of a task/bar. The earliest

starttime depends on the connection ending at the bar. The task cannot start earlier
because other tasks have to be finished / started first.

DateTime LFTime A DateTime property defining the latest possible finish time of a pert bar. The latest possible
finish time of a task is calculated by the latest possible start time and its duration.

double LBTime A double property defining the free buffer of a task. The free buffer is the number of
intermediate days between this bar and the earliest connected followed bar.

double GBTime A double property defining the global puffer of a task. The global buffer is the number of
days that a task can delay without influencing the final project end time. If the global buffer
is 0 then any delay or this bar / task would extend the overall project time. If the global
buffer is zero, then the according task / bar is part of the critical path.

DateTime EFTime A DateTime property defining the earliest finish time of a task. The earliest possible finish
time of a task is calculated by the earliest possible starttime and its duration.

DateTime LSTime A DateTime property defining the latest possible start time of a task bar. The latest start
time depends on the connection starting from the bar. If the bar would be moved only one
day later then the whole project ending date would be delayed.

Those dates can be accessed throughout the row object.

■ In the next code sample we will show how you can access the time scheduling specific

properties, listed in the table above. Please not that the dates shown above are read only
values. The following code example assigns the earliest start of the second row to the
variable earliestStart.

(25)

…
 DateTime earliestStart = xmlDataSource1.Rows[1].ESTime;
…

Connection between bars

For modeling temporal and causal relationships between two tasks / activities you can connect
two bars with each other and create a connection. Connections are represented as
Connection objects.

There are two different ways to create a connection between
two bars. First you can create a connection at runtime via
user interface interaction. To do so, please move the mouse
cursor over the start or the end of a task bar, hold down the
[Shift] key and press the left mouse button down, move the
mouse cursor to the start or the end of another taskbar and
release the mouse button. After that a new connection will be
established between those two bars. If necessary the
connected bars will be rescheduled according to the type and
the causal relationship of the connection.

Also you can create a Connection at runtime, to do so you have to create a Connection
object and add it to the Connections list.

Basically there are four different types of connections, describing different causal relationships
between two bars.

Gantt Control Developer Reference .NET 23

Connection (Example) Restriction ConnectionType
Finish – Finish (FF)

Task (#2) ends always after
the end of task (#1).

FinishFinish

Finish – Start (FS)

Task (#2) starts always after
the end of task (#1).

FinishStart

Start – Finish (SF)

Task (#2) ends always after
the start of task (#1)

StartFinish

Start – Start (SS)

Task (#2) starts always after
the start of task (#1)

StartStart

■ The following code example creates a new finish-start connection between the first bar in

the first row and the first bar in the second row and adds it to the list of connections. If you
want to reproduce this code example, you have to make sure that the rows and their bars
exist. After we have created and added the connection, we reschedule the bars based on
the type of the connection, by calling the ResolveConnectionDistanceViolations
statement.

(25)

…
 xmlDataSource1.BeginUpdate();
 Connection xConn = new Connection (xmlDataSource1, Connection . ConnectionType .FinishStart,
 xmlDataSource1.R ows[0].TaskBars[0], // start bar
 xmlDataSource1.R ows[1].TaskBars[0], // end bar
 0); // minimal distance
 xmlDataSource1.Connections.Add(xConn);
 xmlDataSource1.ResolveConnectionDistanceViolations (xConn, true);
 xmlDataSource1.EndUpdate();
…

Besides the type of the connection, the connection holds other properties, which are listed in
the table below:

Property Description
ConnectionType ConnType Specifies the type of the connection. See the table above.
bool CriticalElement Returns true if the connection is part of the critical path
bool DistanceFixed Specifies whether the distance between the two connected bars should stay fix

when scheduling one of the connected bars.

double Duration The distance between two bars.
int MinDistance The minimal distance between the two connected Bars in days.
TaskBar Origin The task bar where the connection starts from.
TaskBar Target The task bar where the connection ends.

DataSource (xmlDataSource)

Gantt Control Developer Reference .NET 24

The DataSource component provides methods and functionalities to modify the data of the
GanttControl component. The GanttControl and the PrintPreview component must be linked to
the DataSource. The DataSource also holds an UndoRedoManager that makes it possible to
undo/redo certain operations.

The following table shows a list of all operations provided by the DataSource component:

Property Description
BeginUpdate Call this statement, if you intend to make a lot of changes to the GanttControl

component, e.g. adding bars, rows. Do not forget to call the EndUpdate statement
after that.

BranchDelete Removes a row, including all childs rows from the GanttControl component.

ClearAll Clears the entire GanttControl component. There is a boolean parameter that
makes it possible to prevent the columns from deleting.

DecreaseLevelOfRow Decreases the nesting level of a row.

EffectiveDaysInBar Returns the effective (working) days of a task bar.

EndUpdate Finally update the GanttControl component. A BeginUpdate statement should be
called before.

FilePath Here you should specify the xml file that is used for loading and saving.

GetAbsoluteIndexOfRow Returns the absolute index of a row.

GetRowAtAbsoluteIndex Returns the Row object for the given absolute index.

GetRowsInterval Returns a set of rows, specified by the startindex and the endindex of the row.

IncreaseLevelOfRow Increases the nesting level of a row.

Load Loads the content of the GanttControl from an xml file.

ReNumberRows

Renumbers the cell values for the TreeAutoCellNumber columns. Normally this
function is uses only internally be the component.

ResolveConnectionDista
nceViolations

Reschedule the bars, based on the restrictions of the connection.

RowAppend Adds one (or more) rows to the GanttControl component.

RowChildInsert Adds a new child row to a specified parent row.

RowClear Clears the content (bars, cell values, ...) of a single row object.

RowDelete Removes a row.

RowInsert Inserts a new row at a specified index position.

RowsChangeParent Changes the parent row for a set of child rows.

RowsGroup Groups a set of rows.

Save Saves the content of the GanttControl component to an xml file.

TotalCountOfRows Returns the total number of rows.

The DataSource holds references to other classes. See the following table for an overview of
classes that are accessible.

Property Description
ChartObjects All chart images, chart text bars are stored in this collection.
Columns A collection that holds all columns.
Connections A collection that holds all connections.
DaysCategories A collection that holds all DaysCategories.
Rows A collection that holds all Row objects

Gantt Control Developer Reference .NET 25

Pert chart diagram

The Pert graph diagram is another view mode that can be used instead of the gantt chart
diagram. Unlike the gantt chart the pert chart visualizes single tasks as pert bars. There can
be a maximum of one pert bar for each row. The pert chart area does neither have a time
scale nor is it structured in rows. Two pert bars can be connected to each other.

As the pert graph is just another view mode for the same data, all data manipulating actions
(adding/deleting rows, bars) are reflected in both view modes. For example; if someone
deletes a pert bar in the pert chart diagram, the component automatically deletes the
corresponding task bars for the gantt chart diagram.

To model existing structures of a project, pert bars can be used too. Each pert bar is divided
into three segments and an optional list displaying additional items. Note: You can use the pert
chart for structuring and segmenting projects. Higher level projects aims, sub ordinate project
aims and work packages can be visualized and modeled as elements of the pert chart. For
example pert bars that represent work packages can be extended by a list of responsible
employees. For modeling relations between aims and working packages the pert chart
supports connecting pert bars with each other. Please have a look at the following picture for
an example of hierarchical project structuring using pert bars.

Note: All pert bars shown (referred as type I) in the example above do not display any critical
time requirements. Therefore the TypeTimeSpan property of the pert bars is set to false.

If you intend to use the pert bars for displaying critical time requirements, as the earliest start
date, the earliest end date, the latest start date and the latest end date of a task, you have to
set the TypeTimeSpan property to true.

Pert bar (Type I – TypeTimeSpan = false)

The pert bar type I is divided into four different segments. These are (1) TopSection, (2)
MainSection, (3) BottomSection and (4) AdditionalSections.

Gantt Control Developer Reference .NET 26

Pert bar (Type II – TypeTimeSpan = true)

The pert bar type II displays additional time span information as shown in the picture below, as
well as the task name and the overall progress of the task. The table below describes all parts
of the pert bar.

(1) The according row number of the pert bar

(2) The overall duration of the pert bar

(3) The number of the parent row

(4) The name of the task

(5) A visualization of the progress of the pert bar

(6) The numeric value of the pert bars progress

(7) The earliest start of the pert bar

(8) The latest start of the pert bar

(9) The earliest finish/end of the pert bar

(10) The latest finish/end of the pert bar

(11) The local free buffer time (in days) of a pert bar

(12) The global free buffer time (in days) of a pert bar.

The following table shows the properties of a pert bar:

Property Description
AdditionalSections A list that holds all additional section objects for this pert bar
AdditionalSectionsFont The font that is used for the additional sections
AdditionalSectionsStringFormat The string format that is used for the additional sections of the pert bar.
BackgroundColor The background color for the pert bar.

Gantt Control Developer Reference .NET 27

BackgroundSummaryColor The color used to visualize the progress of the pert bar
BorderColor The color used for drawing the inner and outer lines of the pert bar
BorderThickness The thickness of the lines in pixel.
BottomSection A reference to the bottom section object.
BottomSectionFont The font that is used for bottom section.
BottomSectionStringFormat The string format that is used for the bottom section.
Detailed If the TypeTimeSpan property has been set to true; the lower

information panel (6-12) can be hidden if Detailed is set to false; if
Detailed is true the lower information panel is visible.

Height The overall height of the pert bar in pixel.
MainSection A reference to the main section object of the pert bar
MainSectionFont The font that is used for the main section.
MainSectionStringFormat The string format that is used for the main section of the pert bar.
ParentRow The row object for the pert bar.
TextColor The color that is used when drawing the text of the pert bar.
TimeSpanFont The font for the time span
TimeSpanStringFormat The string format for the time span
TopSection A reference to the top section object.
TopSectionFont The font for the top section object.
TopSectionStringFormat The string format for the top section of the pert bar.
TypeTimeSpan If the TypeTimeSpan is set to false the pert bar shows the top-, main-,

bottom- and additional sections. If a pert bar is in this mode, it is most
customizable. If the TypeTimeSpan is set to true the pert bar shows
time scheduling specific information, such as the earliest start and
earliest finish etc.

Width The overall with of the pert bar in pixel.
X The x-position of the pert bar.
Y The y-position of the pert bar.

Adding pert bars

There are different ways how to add a pert bar. Please keep in mind that pert and task bars
are only different visual entities of the same task. This means whenever you have add a task
bar to the gantt component by program logic or via user interface the corresponding pert bar
will be created automatically.

When adding a pert bar, please keep in mind that there can only be one pert bar for each row.
So if you add a new pert bar to a row that already has a pert bar, nothing will happen.

As it is the case for the GanttGraph the end user is able to create new bars by holding the left
mouse button down and dragging a new object into the pert chart.

The code snippet below shows how to add a pert bar to the control:

■ First we make a ChangeRightPart() statement that will force the component to turn

into the pert view. If the gantt chart is already in the pert view mode, than
ChangeRightPart() should not be called. After that, we create a new pert bar and specify
the required parameters for the constructor. Finally, we do call the Refresh() method, to
force the component to repaint itself.

(26)

…
ganttControl1.ChangeRightPart();

xmlDataSource1.Rows[1].PertBar = new PertBar (xmlDataSource1, // Datasource
 true , // TypeTimeSpan
 true , // Detailed
 new Font ("Arial" , 9), // TimeSpanFont
 new StringFormat (), // String Format
 200, 175, // Width, Height
 System.Drawing. Color .Black, // Border Color
 1, // Border Thickness
 System.Drawing. Color .Beige, //Background Color
 System.Drawing. Color .Blue, //Background Summ. Color
 System.Drawing. Color .Blue); //Text Color

ganttControl1.Refresh();
…

Gantt Control Developer Reference .NET 28

Accessing pert bars

Pert bars can be accessed throughout the row object of the xmlDataSource as shown in the
example below:

■ In this example we access the pert bar of the first row and set the parameter Detailed

to true.

(27)

…
xmlDataSource1.Rows[0].PertBar.Detailed = true ;
…

Connecting pert bars

 You can connect two pert bars by using the user interface interaction.

To do so, please move the mouse cursor over a pert bar,
hold the [Shift] key down and press the left mouse button,
move the mouse cursor to another pert bar and release the
mouse button. After that, a new connection will be
established.

For each pert bar you create - a task bar will be automatically added. Therefore you can
simply connect the two referring task bars in order to connect two pert bars as it is shown in
the chapter (connection between bars).

Print Preview

In the final stage of the workflow process it is often required to present and print out the
created chart diagrams. A flexible print preview that is highly adaptable to the user’s needs,
allows the specification of lots of parameters (zoom, pagination, page title, background
image).

Also a legend that is segmented into rows and columns can be attached to a diagram. Each
cell can contain text or images. Furthermore the printing preview provides defining a header
and footer –row, which is segmented into three areas.

Setting up the print preview

To set up the printing preview, please place a new PrintPreview component on you form. After
that you have to connect the PrintPreview component with the datasource and link the
treegrid, the gantt chart and the calendar to the print preview component. The following listing
shows the necessary steps:

■ In order to use the print preview, you have to link the xmlDataSource; the Graph; the

Calendar and the TreeGrid to the print preview as shown here:

(28)

…
 printPreview1.DataSource = xmlDataSource1;
 printPreview1.GanttChart = ganttControl1.Graph;
 printPreview1.Calendar = ganttControl1.Graph.Calen dar;
 printPreview1.TreeGrid = ganttControl1.TreeGrid;
…

■ To invoke the printing preview just use the ShowDialog() statement.

(29)

…
printPreview1.ShowDialog();
…

Gantt Control Developer Reference .NET 29

The following picture shows an overview of the printing preview. The tool buttons in the area
(#1) are used to navigate throughout the pages of the print preview. The tool buttons referred
in the area (#2) are used to set up and format the content of the print preview. These are in
detail from left to right: “Page caption”, “Background”, “Border”, “Page header and footer” and
“Gantt chart options”. A click on each of those buttons shows a sub dialog, where the user can
set up the layout options according to the buttons category. The tool button (#3) is used to
print the content of the print preview. To show the page settings dialog you have to click on the
tool button (#4). You can adjust a zoom factor for the preview by using the drop down combo
box (#5). Please note that this zoom factor is only for the preview itself and does not have any
effect on the printed results. The print preview also provides the usage of print profiles. Here
you can store all settings in a print profile. The tool buttons in the area (#6) are used to
manage print profiles, here you can create new profiles, delete and rename existing profiles or
apply an existing print profile to the settings of the print preview. The content of the print
preview is shown in the area (#7) and a thumbnail view of the containing pages in the area
(#8). The page borders (#9) are displayed on the main view area of the print preview.

Page setup dialog

Here you can see the selected printer, the
format and its orientation. Also you can specify
whether the content should be stretched to fit
one page (Fit to page) or if a zoom factor
should be applied (Zoom factor) for printing.
Please note, that this zoom factor affects the
resulting print-out unlike the zoom factor
affects only the print preview as it was shown
above.

Also the user can specify the page borders at
the bottom of the dialog. It is also possible to
set up a global printing offset that shifts the
print out according to the specified values to
the right and/or to the bottom.

Gantt Control Developer Reference .NET 30

It is possible to print a border that surrounds
the entire content. A color and the width of the
border can be specified here.

Here the user can define a background for the
gantt chart or pert chart diagram. A
background can be drawn using a solid fill
background defined by its color.

Also it is possible to select an image file that is
used as the background. If the user selects an
image as the background he can select the
referring draw mode (stretched, centered and
tiled).

At this point the page header and the page
footer can be defined. Header and footer are
divided into three sections. At the top of the
dialog is a preview of the header and footer.

For each segment of the header or footer you
can either type in some text or load an image
that is displayed inside the segment. Also you
can insert auto text fields into single
segments. Auto text fields are responsible for
displaying the current page number, the
current time and so on.

Gantt Control Developer Reference .NET 31

The last section of the page setup dialog is
only visible if you print a gantt chart. If so, you
can specify the time range used for printing.

Also it’s possible to select columns that are
printed on each page (if there exists more
than one page).

Legend

To display any textual and graphical information you can create a legend. The legend will be
displayed below the GanttGraph or the PertGraph. The architecture of a legend is based on a
grid-like structure, including a set of rows (#1) and cells (#2) that are added to a row as shown
in the picture below. The legend object is a list of rows, each row is a list of cells.

There are two different cell types that can be added to a row. The LegendImageCell (#3) can
contain images and the LegendTextCell (#4) stores text information. Please note that a row
does not need to have cells at all, also each row can own a different amount of legend cells.

The following table shows the most relevant operations and properties of the legend. The
legend object can be access by the printpreview.

Property Description
Count Returns the total number of rows
Size Returns the size in pixels of the legend
BackgroundColor The background brush(!) for the legend
BorderColor The border brush(!) for the legend
BorderWidth The width in pixel of the border
Render() This will finally render the legend
Add(..) Adds a new legend row to the legend
Clear() Clears all rows of the legend

Gantt Control Developer Reference .NET 32

Insert(...) Inserts a new legend row for the specified position
Remove(...) Removes a legend row

The rows objects provides the following properties and functions:

Property Description
Count Returns the total number of cells for this row
Add(..) Adds a new cell to the row of the legend
Width Returns the width of the row
Height Returns the height of the row
Clear() Clears all cells of this row
Insert(...) Inserts a new cell to this row
Remove(...) Removes a cell from the legend row

The legend cell objects provide the properties and functions shown below:

Property Description Legend cell type
Alignment The Alignment of the cell within the row
Width The cells width
Font The cells font LegendTextCell
Text Text text that is displayed for the cell LegendTextCell
TextAlignment The alignment for the legend text cell LegendTextCell
Image The image for the legend image cell LegendImageCell

The following code creates a very small legend.

■ Please note, that we have added the namescape

VVW.GanttControl.GanttPrintPreview.Legend first. After that, we create a new
LegendBoard object and add a new row to it. Finally we add a LegendTextCell to the
LegendRow.

(28)

using VVW.GanttControl.GanttPrintPreview.Legend;
…

LegendBoard legende = new LegendBoard ();

legende.BorderColor = new SolidBrush (Color .Black);
legende.BackgroundColor = new SolidBrush (Color .Red);

LegendRow row1 = new LegendRow(legende);
LegendTextCell cell1 = new LegendTextCell (row1, "text");

printPreview1.Legend = legende;

…

Localization

Currently the Gantt Component is available for the both languages German and English.
There are some parts of the gantt control component that are very language specific, such as
the print preview. The print preview has a lot of user interface elements such as buttons,
menus, labels etc. Therefore it might be necessary first to specify the language that should be
used when showing the print preview.

To localize the print preview you have to specify the CurrentUICulture. It is necessary to
set up the CurrentUICulture before(!) the print preview component is created. The following
code shows how to set up the CurrentUICulture scheme for English.

Gantt Control Developer Reference .NET 33

■ After we have set up the new culture scheme, we have to recreate the print preview.

(28)

using System.Threading;
…

Thread .CurrentThread.CurrentUICulture = new System.Globalization. CultureInfo ("en");
//Thread.CurrentThread.CurrentUICulture = new Syste m.Globalization.CultureInfo("de");

if (printPreview1 != null)
 printPreview1.Dispose();

printPreview1 = new VVW.GanttControl.GanttPrintPreview. PrintPreview ();

…

Another part, where the gantt control component needs to be localized is the language specific
date format used in the time scale. The picture below shows some example where a hard
coded string (“.KW”, “.CW”) needs to be reassigned.

In order to do so, you have to use the method SetDateStringFormat(..) of the Calendar.
The first parameter specifies the string format and the second parameter specifies the time
mode (day, week, month, etc.) for the string format.

■ The code sample below changes the string for calendar weeks from “.CW” into “.KW”.

(28)

…
ganttControl1.Graph.Calendar.SetDateStringFormat("{0} .KW" , Calendar . TimeModes .Week);
…

By default the DateStringFormat uses the following values:

StringFormat TimeMode

"HH" Hour

"ddd d" Day

"{0} .CW" Week

"MMMM" Month

"{0}. Quarter" Quarter

"yyyy" Year

"{0} - {1}" Decade

Events

The Gantt Control component defines several events that are accessible through your
Development Environment. To access an event, please select the GanttControl component or
the XMLDataSource. After that, open the “Properties-Dialog” [CTRL + W, P] and double click
on the event to implement its event handler.

The following list shows all events of the GanttControl component:

GanttControl.Ba rAdded
The BarAdded event is raised as soon as the user adds a new bar. The event will be raised for task bars and
progress bars.

GanttControl. BarDoubleClick
The BarDoubleClick event is raised when a user double clicks on a progress or a task bar.

GanttControl. BarMouseDown
The BarMouseDown event is raised when a user clicks a progress or a task bar.

Gantt Control Developer Reference .NET 34

GanttControl. ChartImageDoubleClick
The ChartImageDoubleClick event is raised when a user double clicks on a chart image.

GanttControl. ChartTextBarDoubleClick
The ChartTextBarDoubleClick event is raised when a user double clicks on a text bar.

The following list shows the events of the XMLDataSource.

RowActionStart
Before a row-operation is executed the RowActionStart event is raised. A row-operation is one of the following
operations: (RowAppend, RowClear, RowInsert, RowDelete, IncreaseLevelOfRow, DecreaseLevelOfRow,
BranchDelete, RowChildInsert, RowsGroup and RowsChangeParent)

RowActionEnd
After a row-operation is executed the RowActionEnd event is raised. A row-operation is one of the following
operations: (RowAppend, RowClear, RowInsert, RowDelete, IncreaseLevelOfRow, DecreaseLevelOfRow,
BranchDelete, RowChildInsert, RowsGroup and RowsChangeParent)

Update
Whenever changes are made to the GanttControl the Update event will be fired. The event holds the parameter
EventArgs that can be used to retrieve the internal method that has fired the Update event.

