Gas Flow Measurement

What will you experience with gas rig?

- Response time
- Low flow limitation
- Impact of energy and pressure loss
- Impact on flowmeters installation
- Impact of the flow profile
- Impact of moisture
- Pressure and temperature simulation
- Impact of setting errors

Measuring Principles for Gas Measurement

Nominal diameters: DN 1 to 350 (1/24 to 14")

Thermal Mass

Nominal diameters: DN 15 to 1500 (1/2 to 60")

Vortex

Nominal diameters: DN 15 to 300 (1/2 to 12")

Differential Pressure

Nominal diameters: DN 10 to >DN1000

Ultrasonic (Biogas only)

Nominal diameters: DN 50 to 200 (2 to 8")

Slide 3 19/11/2012 SW Lim

Conversion of Volume Flow to Mass Flow

Simple Ideal Gas Equation:

$$m = \rho . V$$

Real Gas Equation:

$$m = \rho.V = \frac{p}{p_{ref}}.\frac{T_{ref}}{T}.\frac{Z_{ref}}{Z}.\rho_{ref}.V$$

m = mass flow

p = pressure

 p_{ref} = reference pressure (typically 1013 mbar or 14.696 psi)

T = temperature

 T_{ref} = reference temperature (typically 0 °C or 70 °F)

Z = compressibility

 Z_{ref} = compressibility at reference conditions

 ρ_{ref} = density at reference conditions

V = volume

Real Gas Compressibility Factor - Z

	1 bar a	5 bar a	10 bar a	20 bar a	40 bar a
Air @ 20 °C	0.9997	0.9986	0.9972	0.9944	0.9889
Air @ 100 °C	1.0001	1.0007	1.0013	1.0027	1.0053
CO2 @ 20 °C	0.9945	0.9727	0.9453	0.8906	-
CO2 @ 100 °C	0.9978	0.9892	0.9785	0.9570	0.9140
He @ 20 °C	1.0002	1.0012	1.0024	1.0048	1.0096
He @ 100 °C	1.0002	1.0009	1.0019	1.0038	1.0076
Ammonia @ 100°C	0.9959	0.9797	0.9593	0.9187	0.8374
Chlorine @ 100 °C	0.9939	0.9697	0.9395	0.8789	-
Argon @ 20 °C	0.9993	0.9966	0.9933	0.9866	0.9731

Endress + Hauser 🖾

Corrected Volume – Nm³ or Sm³??

Normal cubic meter (Nm³) and Standard cubic meter (Sm³) both are corrected volume term

$$Corrected\ Volume, v_{ref} = \frac{Mass, m}{Reference\ Density, \rho_{ref}}$$

- Corrected volume is **NOT** a volume term, but a mass term
- They refer to the same reference pressure but to *different reference* temperatures

Endress + Hauser

Special Application: Oxygen

1. Wetted part material. Note: Titanium and Zicronium should be avoided

2. Cleaning – All oxygen equipment must be cleaned from oil & grease

Traceability chain of Endress+Hauses

±0,000001%

Standard Kilo at (BIPM) Paris

Measuring uncertainty = +/- 0.000001% +/- 10 microgram

±0,0001%

National Standard Kilo of METAS

Measuring uncertainty = +/- 0.0001% +/- 0.5g/500 kg, duplicate No 38

±0,0016%

Gravimetric scale of E+H Flowtec

Traceable weights of OIML class F2 +/-0.8g/50 kg = 0.0016%

±0,015%

PremiumCal rigs in Reinach and Greenwood

Measuring Uncertainty +/- 0.015% accredited acc. to ISO 17025

Meter accuracy

Promass 83/84F DN 08 – 400 Premium Calibration +/-0.05%

Calibration

- Calibration with Air
- Repeatable and stable ambient conditions
- Controlled temperature (24°C +/- 0.5°C) and humidity (40% Rel)
- Undisturbed, fully developed flow profile
- Automated positioning of the Device Under Test
- Mass flow range: 0.05kg/h ... 10'000kg/h
- Measurement uncertainty ±0.3 % o.r.
- DIN17025 and ISO/IEC 17025 accredited

Calibration with Water for Gas Application?

PTB Custody Transfer Approval mentioned if a gas device is calibrated with Water:

Bei der Prüfung eines Gerätes mit Wasser betragen die zulässigen Fehlergrenzen:

If a device is tested with water, the maximum permissible errors are:

```
- \pm 1 % für / for Q_{min} \leq Q < Q_t - \pm 0,3 % für / for Q_t \leq Q \leq Q_{max}.
```

 External 3rd Party tested with different condition and different fluid the measuring performance is within the measuring error limit for both calibration with gas and water (Refer to White paper)

Coriolis

Coriolis Measuring Principle

• $\Delta \phi$ = Phase shift

m = Mass flow

 $\Delta \phi \sim m$

 $f_R \sim \rho$

 $O \sim T$

• f_R = Resonance frequency

 ρ = Density

• Ω = Resistance (PT1000)

■ T = Temperature

Overview of calculated values

- V = Volume flow $V = m/\rho$
- $V_N = Standard volume flow = Volume flow at fixed p and T$ $<math>V_N = m/\rho_N$ (note: ρ_N is a fixed value for each fluid)
- c = ConcentrationConcentration can be calculated from density
- μ,η = Viscosity
 Viscosity can be calculated from oscillation damping. Viscosity measurement is only available with the Promass 83I.

Installation Guidelines

- Coriolis flowmeters DO NOT require straight inlet or outlet runs
- Elbow, valves or pumps upstream do not affect the performance of coriolis

SW Lim

Sizing of Coriolis Flowmeter

Sizing is the compromise of:

Accuracy at minimum flow rate vs.

Pressure loss at maximum flow rate

For a reliable sizing the following information must be available:

- The measured fluid
- Flowmeter model to be sized
- Minimum and maximum flow rate to be measured
- The process condition (min. and max. pressure / temperature)
- Observe possible velocity limitations

Accuracy vs. Pressure Loss Promass 83F DN50

Full Flowmeter Measuring Range

Accuracy vs. Pressure Loss for Ideal DN

Best compromise solution

Accuracy vs. Pressure Loss for DN 40

Optimized solution for high accuracy

Endress + Hauser

Accuracy vs. Pressure Loss for DN 80

Optimized solution for low pressure loss

Advantages and Limitations

Advantages

- Direct massflow measurement
- Independent of gas properties
- Independent of process conditions
- Independent of installation

Limitation

- Pressure loss
- Size max DN 350

Thermal Mass Flow

Thermal Mass Flowmeter Measuring Principle

- Mass flow measurement base on thermal dispersion
- A heated body in a flowing gas stream gives off heat to the flowing gas due to the cooling affect of the gas molecules and mass velocity
- The amount of heat convected away by the *qas* is directly related to the mass flow rate
- Direct mass flow measurement

SW Lim

What influences the cooling rate of sensor?

Velocity

Gas Properties

Slide 25 19/11/2012

SW Lim

Influence of Pressure and Temperature

- The thermal properties of gases changes as pressure and temperature changes
- The influence is different for different gases
- i.e. Air is more temperature depending where CO₂ is more affected by changing pressure
- The influence can be compensated for by applying a correction factor

Pressure and Temperature influence of CO₂

As the process pressure increases the gas shows an increased specific heat absorption. To compensate for this effect the output must be corrected by applying a multiplication factor

Influence of Moisture

- Moist gas will increase the cooling effect on the sensors
- This influence is minimal as long as condensation is avoided
- In case of condensation the influence is NOT predictable
- Typically the meter will read 30 to 50% too much if the gas is condensing

Slide 28

19/11/2012

SW Lim

t-mass for Industrial Gases Measurement

t-mass 150

- Measures Compressed Air, Nitrogen, Carbon Dioxide & Argon
- Measuring accuracy up to ± 3.0% o.r.

t-mass 65

- •Integrated Gas Engine with list of 20 gases. Specific gas mixtures can be programmed up to 8 components
- Measuring accuracy up to ± 1.5% o.r.

Fits everywhere

Insertion version Cost-efficient gas flow measurement in large diameter pipes.

Insertion version with optional 'Hot Tap' mounting tool For inserting or removing the device under process condition

What gas can be measured with t-mass?

Application recommended within the range of t-mass specification

Air Oxygen Nitrogen N_2 Carbon Dioxide CO_2 Argon Ar Methane CH₄

Biogas

Natural gas

Hydrogen Helium

Butane

Propane

 H_2

He

CH₃CH₂

 C_3H_8

Temperature

Composition

Moisture

Flow rates

Customer expectations

Other gases: i.e. Ammonia Chlorine

Get expert support for all gases not listed above!

Installation requirement

Insertion sensor

t-mass Insertion Installation Guide

Advantages and Limitations

Advantages

- Wide turndown ratio, 100:1
- Very low pressure loss (<2 mbar)
- Direct mass flow measurement

Limitations

- Not suitable for undefined gas mixtures
- Not recommended for condensate and dirty gases

Vortex

Vortex Measuring Principle

Differential Switched Capacitor Sensor

Minimum flow requirement

- Physical limits based on principle (→ Karman street)
- 1) Depending on density

Prowirl 200 Standard

Example: Water

$$V_{\min} = \frac{6}{\sqrt{\rho}} = \frac{6}{\sqrt{1000}} = 0.19 m/s$$

Example: Air @ 0°C, 1.013 bara

$$V_{min} = \frac{6}{\sqrt{\rho}} = \frac{6}{\sqrt{1.3}} = 5.3 m/s$$

Minimum flow requirement

2) Depending on Reynolds-Number

$$Re = \frac{4 \cdot \dot{V} \cdot \rho}{\pi \cdot d_I \cdot \mu} \ge 5000$$

V: Volume flow [m³/s]

 ρ : Density [kg/m³]

 d_I : Diameter [m]

 μ : kinematic viscosity [Pa · s]

- Question: What happens with the min. flow if the fluid viscosity is increasing? Min. flow decrease (-) or increase (+)?
- NOTE: linear measuring range starts at Re=20'000!

Applicator Sizing does the job

- Operating range Vortex starts to measures at Reynolds number
 5,000 and above
- Linear Range Reynolds Number 20,000 and above with measuring uncertainty ±0.75% o.r.

Endress + Hauser 🖾

Prowirl Sensor: Volume or Mass

Integrated Temperature Sensor

The same type of sensor is used for all meter sizes means cost reduction of spare part handling

Slide 41 19/11/2012 SW Lim Endress + Hauser

Prowirl 200 with "Gas Engine"

Prowirl 200 features recognised calculation methods for gas parameters to enable an accurate gas flow measurement!

Endress + Hauser 🖾

Prowirl 200 offers multivariable solutions!

World's first vortex flowmeter with current input

enables fully compensated mass-/standard volume flow or delta heat measurement

Endress+Hauser 4

Common Vortex Installation

About 70% of all vortex installations require a reduction of line size, including:

- 1. reducer
- 2. min. 15 DN straight run (inlet)
- 3. Vortex
- 4. min. 5 DN straight run (outlet)
- 5. expander

All of this is replaced now – by one flow meter! with the same specifications...

DN100 to DN50

Prowirl R 200 sensor DN100/4" S Style super reduced by two line sizes to DN50/2"

DN100 to DN80 Prowirl F sensor DN100/4" R Style reduced by one line size to DN80/3"

DN100

Prowirl F sensor DN100/4" standard

SW Lim 19/11/2012

Installation requirement

Endress + Hauser 🔣

Flow conditioner to reduce inlet run

Endress+Hauser 🖽

Vortex Installation with Pressure & Temperature Compensation

A0019205

- PT Pressure transmitter
- TT Temperature transmitter

Advantages and Limitation

Advantages

- High pressure range
- Suitable for gas, steam and liquids
- High temperature range
- Independent of gas properties

Limitations

- Volumetric measurement
- Sizes max. DN 300
- Min. flow limitation

Endress+Hauser 🔣

Slide 49 19/11/2012

Differential Pressure

Principle - Restriction Type Primary Elements

Endress + Hauser 🖽

Flow Equation

$$Q_{m} = \begin{bmatrix} 0.5961 + 0.0261 \cdot \beta^{2} - 0.216 \cdot \beta^{8} + 0.000521 \left(\frac{10^{6} \cdot \beta}{\text{Re}_{xxx}} \right)^{0.7} + \left(0.0188 + 0.0063 \left(\frac{19000 \cdot \beta}{\text{Re}_{xxx}} \right)^{0.8} \right) \cdot \beta^{3.5} \left(\frac{10^{6}}{\text{Re}_{xxx}} \right)^{0.3} \\ + \left(0.043 + 0.08 \cdot e^{-10 \cdot L_{1}} - 0.123 \cdot e^{-7 \cdot L_{1}} \right) \left(1 - 0.11 \left(\frac{19000 \cdot \beta}{\text{Re}_{xxx}} \right)^{0.8} \right) \cdot \frac{\beta^{4}}{1 - \beta^{4}} \\ - 0.031 \cdot \left(\frac{2 \cdot L_{2}}{1 - \beta} - 0.8 \left(\frac{2 \cdot L_{2}}{1 - \beta} \right)^{1.1} \right) \cdot \beta^{1.3} + X_{\beta 2} \left[0.011(0.75 - \beta) \left(2.8 - \frac{D}{0.0254} \right) \right] \right] \\ \cdot \left[1 - \left(0.351 + 0.256 \, \beta^{4} + 0.93 \, \beta^{8} \right) \cdot \left[1 - \left(\frac{p_{r_{-nom}} - \Delta p_{r_{-max}}}{p_{r_{-nom}}} \right)^{1/\kappa} \right] \right]^{X_{\beta 1}} \cdot \frac{\pi}{4} \cdot \frac{(D \cdot \beta)^{2}}{\sqrt{1 - \beta^{4}}} \cdot \sqrt{2 \cdot \Delta p_{r_{-max}} \cdot \rho_{nom}} \\ Q_{m} = C \cdot \varepsilon \cdot \frac{d^{2} \pi}{4} \cdot \frac{1}{\sqrt{1 - \beta^{4}}} \cdot \sqrt{2 \cdot \Delta p} \cdot \rho_{nom} \\ Q_{m} = K \cdot \sqrt{2 \cdot \Delta p \cdot \rho_{nom}} \\ Q_{m} \approx \sqrt{\Delta p}$$

Simplified flow equation

$$\approx \neq =$$

SW Lim

Flow measurement with primary devices

ISO 5167-4: Venturi tube and Venturi nozzle

Flow measurement with primary devices

Pitot tube

$$q_m = K \cdot \sqrt{2 \cdot \Delta p \cdot \rho}$$

$$q_v = K \cdot \sqrt{2 \cdot \Delta p \cdot 1/\rho}$$

According to calculations of manufacturer

Installation: Inlet/Outlet Run – How long?

dp Flow: Compensation according to ISO 5167

Temperature and pressure compensation

Separate process connections

Two additional probes are required for temperature and pressure compensation:

- An absolute pressure sensor
 According to ISO 5167, this probe must always be mounted on the upstream side of the orifice.
- A temperature probe
 In order to avoid disturbances of the flow profile,
 this probe must be mounted on the downstream
 side of the orifice.

1: upstream length; 2: downstream length;

a: 90° bend; b: valve, open; c: 2x90° bend

PO1-DOxxxxx-15-xx-xx-xx-010

- 1: Absolute pressure sensor
- 2: orifice and differential pressure transmitter
- 3: temperature probe
- 4: evaluation unit

Endress + Hauser 🖾

Advantages and Limitations

Advantages

- Tradition and experience
- Wide application area
- Low cost for large DN

Limitations

- Low turndown
- High maintenance required

Slide 58 19/11/2012

Ultrasonic (Biogas)

Prosonic B200 for Biogas Measurement

Why Measure Biogas?

- Rate of gas produced by the digester is an indicator of the health of the digester. Decreasing output is a warning of a failing process.
- Rate of gas as input into engines, boilers or for diversion to storage
- Totalization of biogas diverted to flare
- Totalization of biogas production for accounting purposes

Prosonic B200

- For wet biogas, landfill or digester gas
- Direct measurement of the methane content (CH4) in the pipe
- Process Temperature: 0 to +80°C
- Nominal diameters: DN 50 to 200 (2" to 8")
- High accuracy: ±1.5% o.r.

How does Prosonic B200 Measure Methane?

- The Prosonic B 200 measures the time taken for the ultrasonic pulse to travel through the gas.
- As the path length is know the speed of sound in the gas can be accurately determined. As the speed of sound in a gas is dependent on the gas composition the B 200 can use the sound speed to calculate the methane content of the biogas.

Seou Wei

100% CH₄@ 40 °C

The speed of sound in 100% Methane at 40 °C is 458.5 m/s

Temperature	Methane	Carbon dioxide	Speed of sound
°C	CH ₄	CO ₂	m/s
40	0.0%	100.0%	274.7
40	10.0%	90.0%	284.1
40	20.0%	80.0%	294.5
40	30.0%	70.0%	306.0
40	40.0%	60.0%	319.0
40	50.0%	50.0%	333.8
40	60.0%	40.0%	350.8
40	70.0%	30.0%	370.7
40	80.0%	20.0%	394.2
40	90.0%	10.0%	422.8
40	100.0%	0.0%	458.5

Endress+Hauser 🔣

Slide 63 19/11/2012 Seou Wei

100% CO₂ @ 40 °C

The speed of sound in 100% Carbon dioxide at 40 °C is 274.7 m/s

Temperature	Methane	Carbon dioxide	Speed of sound
°C	CH ₄	CO ₂	m/s
40	0.0%	100.0%	274.7
40	10.0%	90.0%	284.1
40	20.0%	80.0%	294.5
40	30.0%	70.0%	306.0
40	40.0%	60.0%	319.0
40	50.0%	50.0%	333.8
40	60.0%	40.0%	350.8
40	70.0%	30.0%	370.7
40	80.0%	20.0%	394.2
40	90.0%	10.0%	422.8
40	100.0%	0.0%	458.5

Endress+Hauser 🖽

Seou Wei

Biogas 60% CH₄ 40% CO₂ @ 40 °C

The speed of sound in biogas $(60\% \text{ CH}_4 40\% \text{ CO}_2)$ at $40 ^{\circ}\text{C}$ is 350.8 m/s

Temperature	Methane	Carbon dioxide	Speed of sound
°C	CH ₄	CO ₂	m/s
40	0.0%	100.0%	274.7
40	10.0%	90.0%	284.1
40	20.0%	80.0%	294.5
40	30.0%	70.0%	306.0
40	40.0%	60.0%	319.0
40	50.0%	50.0%	333.8
40	60.0%	40.0%	350.8
40	70.0%	30.0%	370.7
40	80.0%	20.0%	394.2
40	90.0%	10.0%	422.8
40	100.0%	0.0%	458.5

Endress+Hauser 🔣

Slide 65 19/11/2012 Seou Wei

Field trial – Agrikracht NV BE

Methane measurement

- Pronova SSM 600 is a gas analyzer designed specifically for biogas applications.
- The methane concentration is measured using infra-red technology, the manufactures state the accuracy to be 0.1%Vol.

The B 200's methane measurement differs by only 0.39%

Application of Prosonic B200 in Malaysia

Installation Location: Poultry farm biogas plant at Negeri Sembilan, Malaysia

Prosonic B200 Features:

- Wet biogas measurement
- Direct measurement of methane, CH₄
 content in the pipe

Prosonic B200 Benefits:

- Continuous, around-the-clock monitoring of gas quantity and quality
- Fast and targeted reaction in case of interference in the fermentation process

Slide 67 19/11/2012

SW Lim

Best Fit for Gas Measurement?

Consider:

- Installation requirement
- Measuring accuracy
- Pressure loss
- Turndown
- Influence of moisture
- Changing pressure
- Changing temperature

Turndown

Measuring Principle	Turndown
Thermal	100: 1
Coriolis	15:1
Vortex	13:1
DP	6:1

• For DP, the turndown can be increased by using the split-range functionality of RMC621.

Endress+Hauser 🖽

SW Lim

Pressure Loss

Instrument	Measuring Principle	Pressure loss
Deltatop Orificeplate DN50	Differential Pressure	95 mbar
Promass 83F DN50	Coriolis	45 mbar
Prowirl 72F DN50	Vortex	25 mbar
t-mass 65F DN50	Thermal	<2 mbar

Endress+Hauser 🖽

Any Question

Endress + Hauser
People for Process Automation

Thank you very much for your attention

Slide 72

19/11/2012

SW Lim

