Unit 2 Packet: Gas Laws Introduction to Gas Laws Notes:

Major Objectives: At the end of this unit, you should be able to:

1. Describe the Kinetic Theory particularly as it relates to gases.
2. Relate kinetic energy and temperature.
3. Convert ${ }^{\circ} \mathrm{C}$ to K .
4. Describe what is meant by pressure as it relates to gases.
5. Convert between the various pressure units; atm, KPa, mm Hg.
6. Describe what is meant by STP and be able to use this information to do calculations.
7. Distinguish between the various gas laws - Boyle's, Charles', Gay-Lussac's, Combined, and Dalton's.
8. Relate the information studied to laboratory exercises.

Abbreviations
atm-atmosphere
mm Hg - millimeters of mercury
torr - another name for $\mathbf{m m ~ H g}$
Pa - Pascal (kPa = kilo Pascal)
K - Kelvin
${ }^{\circ} \mathrm{C}$ - degrees Celsius

Items to KNOW

0 STP = Standard Temperature and Pressure $\left(0.00{ }^{\circ} \mathrm{C}=273 \mathrm{~K}\right.$ and 1 atm)
o Standard Temperature $=0.00^{\circ} \mathrm{C}=273 \mathrm{~K}$
0 Standard Pressure $=1.00 \mathbf{~ a t m}=101.3 \mathrm{kPa}=760 \mathrm{mmHg}=760$ torr
o ${ }^{0} \mathrm{C}+\mathbf{2 7 3}=\mathrm{K}$

Unit 2 Packet: Gas Laws Introduction to Gas Laws Notes:

- In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume, and temperature. These laws show how a change in one of these properties affects the others. The gas laws in chemistry are: Boyle's Law, Charles' Law, the Combined Gas Law, Avogadro's Law, and the Ideal Gas Law.

- Gas Variables and Definitions:

- Pressure (P) - The force per unit area on a surface. Gas molecules exert force, and therefore pressure, on any surface, sides of container, with which they collide.
- Temperature (T) - Temperature is measured in the Kelvin scale; it is an index of gas motion and not a measure of heat. Absolute zero, $K=0^{\circ}$, all motion stops!
- Volume (V) - Volume is the quantity of three-dimensional space occupied by a liquid, solid or gas. Common units used to express volume include liters and cubic meters.
- Moles (n) - A mole is the amount of pure substance containing the same number of chemical units as there are atoms in exactly $\mathbf{1 2}$ grams of carbon12 (i.e., 6.023×10^{23}).
- Standard Temperature and Pressure (STP): Standard temperature is defined as zero degrees Celsius ($0{ }^{0} \mathrm{C}$), which translates to 32 degrees Fahrenheit ($32{ }^{0} \mathrm{~F}$) or 273.15 degrees Kelvin. Standard pressure is $101.325 \mathrm{kPa}, 1 \mathrm{atmosphere}(1 \mathrm{~atm})$ or 760 millimeters in a mercurial barometer $(760 \mathbf{m m H g})$ or 760 torrs.

Equations Representing Relationships:

$\mathbf{P}_{\text {total }}=\mathbf{P}_{1}+\mathbf{P}_{2}+\mathbf{P}_{3} \ldots$	Dalton's Law of Partial Pressure
$\mathbf{P}_{1} \mathbf{V}_{1}=\mathbf{P}_{2} \mathbf{V}_{2}$	Boyle's Law
$\mathbf{V}_{1} / \mathbf{T}_{1}=\mathbf{V}_{2} / \mathbf{T}_{2}$	Charles' Law
$\mathbf{P}_{1} / \mathbf{T}_{1}=\mathbf{P}_{2} / \mathbf{T}_{2}$	Gay-Lussac's Law
$\mathbf{P}_{1} V_{1} / \mathbf{T}_{1}=\mathbf{P}_{2} \mathbf{V}_{2} / \mathbf{T}_{2}$	Combined Gas Law

Pressure and Kinetic Molecular Theory Notes

What is pressure?

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

What is force? You can think of it like weight or like a push. How much does your body push on the floor? How much do you have to push to move something across the floor?

Liquids and solids exert pressure.
Ex: Diving, your body is under more pressure when under water than when above it.
If you are trapped under a piece of furniture you feel the pressure of the furniture on you.
What does area have to do with it?
Could you sleep on a bed of nails? How about just one nail?
Carpenters...why are screws pointy at the end instead of flat?
The same force over a smaller area results in a higher pressure.

Gas pressure is similar but hard to visualize.

KINETIC MOLECULAR THEORY

1. Gases have a very small_attraction to each other_
2. Gases are constantly in motion__at high speeds in random but straight line paths
3. Gases experience no real attractions between other gas molecules.
a. All collisions between particles in a gas are perfectly elastic.
i. No attractive or repulsive forces
ii. No transfer of Kinetic Energy
iii. The average Kinetic Energy is dependent only on temperature_
4. The speed of a gas molecule is directly proportional to its mass and speed.
a. As the temperature increases, the speed of the gas molecule increases.

These assumptions are good for IDEAL gases and are used quite often with little error. However, when one needs to be exact that you must account for the fact that REAL gases

- Have volume
- Experience electrostatic attractions

For Introductory Chemistry, though, we will just deal with Ideal gases.

Pressure is the sum of all the forces of all the gas molecules colliding with a surface.
Gas particles are in constant random motion exerting pressure as they collide with the walls of the container. Therefore, the __more _ collisions, the higher the pressure.

Gases have certain properties that can be explained by the KMT.

1. Low Density they have small volume because the molecules are moving at a high rate of speed and are not held back by electrostatic attractions as well as being spread out, they have low density.
2. Compressibility, they can be easy to compress because the molecules have space between them, unlike liquids and solids where there is little space between the molecules
3. Expansion, they will _spread__ given the opportunity because the molecules are moving at a high rate of speed.
4. Diffusion they will spread out, again because the molecules are moving at a high rate of speed,
a. Example: perfume diffusing through air
b. Example: Liquids also diffuse: food coloring in water

Diffusion is the mixing of gas molecules by random motion under conditions where molecular collisions occur.

Effusion is the escape of a gas through a pinhole into a vacuum without molecular collisions.
5. Effusion, molecules moving at a high rate of speed will eventually "collide" with a hole and escape.
a. Effusion is gas escaping through a hole,
b. Example: air escaping through a hole in your tire
6. The word kinetic comes from a Greek word that means "to move." The kinetic molecular theory is based upon the assumption that particles of matter (atoms or molecules) are in constant \qquad
7. Of the three states of matter, which one has the most kinetic energy? \qquad gas
8. Which state of matter has particles that are separated by the largest distance? \qquad

9. A scientific theory is an explanation of some type of natural phenomena. Theories are normally developed from careful study of the way the world behaves. Let's look at how gases behave and see if the kinetic molecular theory makes sense.
10. Compared to liquids and solids, gases tend to have \qquad lower_densities. This can be explained because the particles of gas are _far apart in constant motion__.

Units of pressure

- Kilopascals $=$ SI units of pressure, named after scientist Pascal
- Torr $=$ named after scientist Torricelli
- $\underline{\mathbf{m m H g}}=$ millimeters of mercury, comes from old way of measuring pressure by the height of a column of mercury open to atmosphere
- $\underline{\mathbf{a t m}}=$ atmosphere, unit most often used in chemistry. One atmosphere is what we feel experience every day. It is the standard pressure on earth.
- $\quad \mathbf{p s i}=$ pounds per square inch. Most often used in real life (tire pressure)

Gas Law Problems

Steps to Solve any Gas Law Problem:

o Step 1: Write everything you are given in the problem.
o Step 2: Which law do you want to use? (What remains constant?)
o Step 3: Do your units match? If not, convert. (Temperature must always be in Kelvin)
o Step 4: Plug in your values and solve.

Proportional

Indirectly

Boyle's Law

Directly

Charles Law

Directly

Gay-Lussac's Law

- Boyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

o As the pressure decreases, the volume increases.
o Indirectly proportional
o Temperature remains constant
Example Problem: A balloon contains 30.0 L of helium gas at 1 atmosphere, and it rises to an altitude where the pressure is only 0.25 atm , assuming the temperature remains constant, what is the volume of the balloon at its new pressure?

\[

\]

- Charles' Law

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

o Lower temperature leads to a lower volume
o Higher temperature leads to a higher volume
o Directly proportional
o Temperature must be converted to Kelvin
o Pressure remains constant
Example Problem: A balloon inflated in a room at $24^{\circ} \mathrm{C}$ has a volume of 4.00 L . The balloon is then heated to a temperature of $58^{\circ} \mathrm{C}$ what is the new volume if the pressure remains constant?

$$
\begin{array}{ll}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& \\
& \frac{4.00 \mathrm{~L}}{297 \mathrm{~K}}=\frac{X}{331 \mathrm{~K}} \\
& \mathrm{X}=4.46 \mathrm{~L}
\end{array}
$$

- Gay-Lussac's Law

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{1}}=4.00 \mathrm{~L} \\
& \mathbf{T}_{\mathbf{1}}=24^{\circ} \mathrm{C}+273=297 \mathrm{~K} \\
& \mathbf{V}_{\mathbf{2}}=\mathbf{x} \\
& \mathbf{T}_{\mathbf{2}}=58^{\circ} \mathrm{C}+273=331 \mathrm{~K}
\end{aligned}
$$

o Temperature always in Kelvin Scale
o Volume remains constant
Example Problem: Aerosol cans carry labels warning not to store them above a certain temperature. The gas in a used aerosol can is at a pressure of 1atm at $25^{\circ} \mathrm{C}$. If the can is thrown into a fire, what will the pressure be when the temperature reaches $1201^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \frac{\underline{P}_{1}}{T_{1}}=\frac{\boldsymbol{P}_{2}}{T_{2}} \\
& \frac{1 \mathrm{~atm}}{298 \mathrm{~K}}=\frac{\mathrm{x}}{1474 \mathrm{~K}} \\
& \mathbf{P}_{1}=1 \mathrm{~atm} \\
& \mathbf{T}_{\mathbf{1}}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K} \\
& \mathrm{P}_{2}=\mathbf{x} \\
& \mathrm{T}_{2}=1201^{\circ} \mathrm{C}+273=1474 \mathrm{~K} \\
& \frac{(1474 \mathrm{~K})(1 \mathrm{~atm})}{(298 \mathrm{~K})}=\frac{(298 \mathrm{~K}) \mathrm{x}}{(298 \mathrm{~K})} \\
& 4.95 \mathrm{~atm}=\mathrm{x}
\end{aligned}
$$

- The Combined Gas Law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

o No variable remains constant
o Temperature always in Kelvin Scale
Example Problem: The volume of a gas filled balloon is 30.0 L at 313 K and has a pressure of 153 kPa . What would the volume be at standard temperature and pressure (STP)?

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \frac{(153 \mathrm{kPa})(30.0 \mathrm{~L})}{313 \mathrm{~K}}=\frac{(101.325 \mathrm{kPa})(\mathrm{x})}{273 \mathrm{~K}} \\
& \mathbf{P}_{\mathbf{1}}=153 \mathrm{kPa} \quad \mathbf{V}_{\mathbf{2}}=\mathbf{x} \\
& \mathbf{T}_{1}=313 \mathrm{~K} \quad \mathrm{~T}_{2}=273 \mathrm{~K} \\
& \mathbf{V}_{\mathbf{1}}=30.0 \mathrm{~L} \\
& \mathbf{P}_{2}=101.325 \mathrm{kPa}
\end{aligned}
$$

- Dalton's Law of Partial Pressures

Dalton's Law of Partial Pressures In a closed system of gases, the \qquad pressure exerted by the mixture of gases is equal to the \qquad of the partial pressure of each gas.

Example - Air contains $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Ar}, \mathrm{CO}_{2}$, the sum of which makes up the air pressure around us at any time.

$$
\mathbf{P}_{\text {Total }}=\mathbf{P}_{\text {Gas } 1}+\mathbf{P}_{\text {Gas } 2}+\mathbf{P}_{\text {Gas } 3} \ldots
$$

What is the air pressure at sea level if $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Ar}, \mathrm{CO}_{2}$, have the following pressures 78.1 $\mathrm{kPa}+20.9 \mathrm{kPa}+1.28 \mathrm{kPa}+0.97 \mathrm{kPa}+0.05 \mathrm{kPa}$?

$$
\begin{gathered}
\mathrm{N}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Ar}+\mathrm{CO}_{2}=\mathrm{Air} \\
78.1 \mathrm{kPa}+20.9 \mathrm{kPa}+1.28 \mathrm{kPa}+0.97 \mathrm{kPa}+0.05 \mathrm{kPa}=101.3 \mathrm{kPa}
\end{gathered}
$$

Gas Laws Practice:

1) A chemist collects 59.0 mL of sulfur dioxide gas on a day when the atmospheric pressure is 0.989 atm . On the next day, the pressure has changed to 0.967 atm . What will the volume of the SO_{2} gas on the second day?

$$
\begin{gathered}
\mathbf{P}_{1} V_{1}=P_{2} V_{2} \\
(0.989 \mathrm{~atm})(0.0590 \mathrm{~L})=(0.967 \mathrm{~atm}) x \\
0.0603422958 \mathrm{~L}=x \\
0.0603 \mathrm{~L}=x \text { or } 60.3 \mathrm{~mL}
\end{gathered}
$$

2) A can contains a gas with a volume of 56 mL and $20.0^{\circ} \mathrm{C}$. What is the volume in the can if it is heated to $50.0^{\circ} \mathrm{C}$?

$$
\begin{gathered}
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\underline{V}_{2}}{\mathrm{~T}_{2}} \\
\frac{0.056 \mathrm{~L}}{293 \mathrm{~K}}=\frac{x}{323 \mathrm{~K}} \\
0.0617337884 \mathrm{~L}=\mathrm{x} \\
0.062 \mathrm{~L}=\mathrm{x} \text { or } 62 \mathrm{~mL}
\end{gathered}
$$

3) A gas with a volume of 4.0 L at a pressure of 90.0 kPa is allowed to expand until the pressure drops to 20.0 kPa . What is the new volume?

$$
\begin{gathered}
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
(90.0 \mathrm{kPa})(4.0 \mathrm{~L})=(20.0 \mathrm{kPa}) \mathrm{x} \\
18 \mathrm{~L}=\mathrm{x}
\end{gathered}
$$

4) At a winter carnival, a balloon is filled with 5.00 L of helium at a temperature of 273 K . What will be the volume of the balloon when it is brought into a warm house at 295 K ?

$$
\begin{gathered}
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
\frac{5.00 \mathrm{~L}}{273 \mathrm{~K}}=\frac{\mathrm{x}}{295 \mathrm{~K}} \\
5.40 \mathrm{~L}=\mathrm{x}
\end{gathered}
$$

5) The initial temperature of a 1.00 liter sample of argon is $20.0^{\circ} \mathrm{C}$. The pressure is decreased from 720 mm Hg to 360 mm Hg and the volume increases to 2.14 liters. What was the change in temperature of the argon?

$$
\frac{\mathbf{P}_{1} V_{1}}{T_{1}}=\frac{\mathbf{P}_{2} V_{2}}{T_{2}}
$$

$$
\frac{(720 \mathrm{~mm} \mathrm{Hg})(1.00 \mathrm{~L})}{293 \mathrm{~K}}=\frac{(360 \mathrm{~mm} \mathrm{Hg})(2.14 \mathrm{~L})}{x}
$$

$$
310 K=x
$$

6) 2.2 L of hydrogen at 6.5 atm pressure is used to fill a balloon at a final pressure of 1.15 atm . What is its final volume?

$$
\begin{gathered}
\mathbf{P}_{1} \mathbf{V}_{1}=\mathbf{P}_{2} \mathbf{V}_{2} \\
(6.5 \mathrm{~atm})(2.2 \mathrm{~L})=(1.15 \mathrm{~atm}) \mathrm{x} \\
12 \mathrm{~L}=\mathrm{x}
\end{gathered}
$$

7) The pressure in an automobile tire is $200 . \mathrm{kPa}$ at a temperature of $25^{\circ} \mathrm{C}$. At the end of a journey on a hot sunny day the pressure has risen to 223 kPa . What is the temperature of the air in the tire?

$$
\begin{gathered}
\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \\
\frac{200 \cdot \mathrm{kPa}}{298 \mathrm{~K}}=\frac{223 \mathrm{kPa}}{\mathbf{3 3 0}} \\
\mathrm{~K}_{\mathrm{K}}=\mathrm{x}
\end{gathered}
$$

8) A sample of argon has a volume of 5.00 L and the pressure is 0.920 atm . If the final temperature is $30.0^{\circ} \mathrm{C}$, the final volume is 5.7 L , and the final pressure is $800 . \mathrm{mm} \mathrm{Hg}$, what was the initial temperature of the argon?

$$
\frac{\mathbf{P}_{1} \mathbf{V}_{1}}{\mathbf{T}_{1}}=\frac{\mathbf{P}_{2} \mathbf{V}_{2}}{\mathbf{T}_{2}}
$$

** must have the same units for pressure! Remember $\mathbf{1} \mathbf{~ a t m}=\mathbf{7 6 0} \mathbf{~ m m H g}$
so 800 mm Hg $\left\lvert\, \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}} \quad=1.05 \mathrm{~atm}\right.$
$(0.920 \mathrm{~atm})(5.00 \mathrm{~L})=(1.05 \mathrm{~atm})(5.7 \mathrm{~L})$
$x \quad 303 \mathrm{~K}$

$$
x=230 \mathrm{~K}
$$

Gas Law Practice - Worksheet

1. Why does air come out of a bicycle tire when you open the valve, even if the valve is pointing up?

Effusion occurs because the pressure inside the bicycle tire is greater than outside the tire.
2. Why do aerosol cans come with the warning, "Contents under pressure. Do not heat."?

Because pressure is directly proportional to temperature and the can will rupture if heated.

Dalton's Law Worksheet

1) A metal tank contains three gases: oxygen, helium, and nitrogen. If the partial pressures of the three gases in the tank are 35 atm of $\mathrm{O}_{2}, 5 \mathrm{~atm}$ of N_{2}, and 25 atm of He , what is the total pressure inside of the tank?

$$
35 \mathrm{~atm}+5.0 \mathrm{~atm}+25 \mathrm{~atm}=65 \mathrm{~atm}
$$

2) Blast furnaces give off many unpleasant and unhealthy gases. If the total air pressure is 0.99 atm , the partial pressure of carbon dioxide is 0.05 atm , and the partial pressure of hydrogen sulfide is 0.02 atm , what is the partial pressure of the remaining air?

$$
\begin{aligned}
0.99 \mathrm{~atm}= & 0.05 \mathrm{~atm}+0.02 \mathrm{~atm}+P_{\text {remaining }} \\
& P_{\text {remaining }}=0.92 \mathrm{~atm}
\end{aligned}
$$

Charles' Law Worksheet

1) The temperature inside my refrigerator is about 40 Celsius. If I place a balloon in my fridge that initially has a temperature of 220 C and a volume of 0.5 liters, what will be the volume of the balloon when it is fully cooled by my refrigerator?

$$
\begin{gathered}
\begin{array}{c}
\mathrm{T}_{1}=22+273=295 \mathrm{~K} \\
\frac{5 \mathrm{~L}}{295 \mathrm{~K}}=\underset{1}{29} \underline{\mathrm{X}} \\
\mathrm{X}=.5 \mathrm{~K}
\end{array} \\
\mathrm{X}=0.47 \mathrm{~L}
\end{gathered}
$$

2) A man heats a balloon in the oven. If the balloon initially has a volume of 0.4 liters and a temperature of 20.0C, what will the volume of the balloon be after he heats it to a temperature of 250.0C?

$$
\begin{aligned}
& \mathrm{T}_{1}=20+273=239 \mathrm{~K} \quad \mathrm{~V}_{1}=0.4 \mathrm{~L} \quad \mathrm{~T}_{2}=250+273=523 \mathrm{~K} \quad \mathrm{~V}_{2}=\mathrm{x} \\
& \frac{0.4 \mathrm{~L}}{293 \mathrm{~K}}=\frac{\mathbf{x}}{523} \quad \text { cross multiply and divide } \\
& \mathrm{X}=0.71 \mathrm{~L}
\end{aligned}
$$

Combined Gas Law Problems

1) If I initially have a gas at a pressure of 12 atm, a volume of 23 liters, and a temperature of 200 K , and then I raise the pressure to 14 atm and increase the temperature to 300 K , what is the new volume of the gas?

$$
\begin{aligned}
& P_{1}=12 \mathrm{~atm} \mathrm{~T}_{1}=200 \mathrm{~K} \mathrm{~V}_{1}=23 \mathrm{~L} \\
& \mathrm{P}_{2}=14 \mathrm{~atm} \mathrm{~T}_{2}=300 \mathrm{~K} \mathrm{~V} \mathrm{~V}_{2}=\mathbf{x} \\
& \frac{12 \mathrm{~atm} \mathrm{x} \mathrm{23} \mathrm{~L}}{200 \mathrm{~K}}=\frac{14 \mathrm{~atm} \mathrm{x}}{300 \mathrm{~K}} \\
& \mathbf{V}_{2}=27.6 \mathrm{~L} \quad V_{2}=28 \mathrm{~L}
\end{aligned} \quad \text { cross multiply and divide }
$$

2) A gas takes up a volume of 17 liters, has a pressure of 2.3 atm , and a temperature of 299 K . If I raise the temperature to 350 K and lower the pressure to 1.5 atm , what is the new volume of the gas?

$$
\begin{aligned}
& \mathrm{P}_{1}=2.3 \mathrm{~atm} \mathrm{~T}_{1}=299 \mathrm{~K} \mathrm{~V}_{1}=17 \mathrm{~L} \\
& \mathrm{P}_{2}=1.5 \mathrm{~atm} \mathrm{~T}_{2}=350 \mathrm{~K} \mathrm{~V}_{2}=\mathrm{x} \\
& \underline{2.3 \mathrm{~atm} \times 17 \mathrm{~L}}=\underline{\mathbf{1 . 5 ~ a t m ~ x}} \mathbf{3 5 0 \mathrm { K }} \quad \text { cross multiply and divide } \\
& 299 \text { K } 350 \text { K } \\
& \mathrm{V}_{2}=32.512 \mathrm{~L} \quad \mathrm{~V}_{2}=33 \mathrm{~L}
\end{aligned}
$$

Boyle's Law

1. A gas occupies 12.3 liters at a pressure of 40.0 mm Hg . What is the volume when the pressure is increased to 60.0 mm Hg ?

$$
\begin{gathered}
(40.0 \mathrm{mmHgg})(12.3 \text { liters })=(60.0 \mathrm{mmHg})(x) \\
x=8.20 \mathrm{~L}, \text { note three significant figures }
\end{gathered}
$$

2. If a gas at $25.0^{\circ} \mathrm{C}$ occupies 3.60 liters at a pressure of 1.00 atm , what will be its volume at a pressure of 2.50 atm ?

$$
\begin{gathered}
(1.00 \mathrm{~atm})\left(\begin{array}{c}
3.60 \text { liters }) \\
x= \\
x
\end{array} .44 \mathrm{~L}\right.
\end{gathered}
$$

3. A gas occupies 1.56 L at 1.00 atm . What will be the volume of this gas if the pressure becomes 3.00 atm ?

$$
\begin{gathered}
(1.56 \mathrm{~L})(1.00 \mathrm{~atm})=(3.00 \mathrm{~atm})(\mathrm{x}) \\
X=0.520 \mathrm{~L}
\end{gathered}
$$

4. A gas occupies 11.2 liters at 0.860 atm . What is the pressure if the volume becomes 15.0 L ?

$$
\begin{gathered}
(11.2 \text { liters })(0.860 \mathrm{~atm})=(x)(15.0 \mathrm{~L}) \\
x=0.642 \mathrm{~atm}
\end{gathered}
$$

- Atmospheric pressure is measure using a

Barometer

- The pressure of a gas is measured using a Manometer
- As you increase in elevation the atmospheric pressure decreases (Olympic Training in Denver).

o A Manometer is a device to measure the pressure of an enclosed gas sample. A common simple manometer consists of a U shaped tube of glass filled with some liquid. Typically the liquid is mercury because of its high density.
o The height difference determines the pressure.

(b)

Avogadro's Law: under the same condition of Temperature and Pressure, equal volumes of all gases contain the same number of particles.

Calculate the pressure inside each flask, given an atmospheric pressure of 760 mmHg .

The gas in the flask has a higher pressure than 760 mmHg . The pressure is $760 \mathrm{mmHg}+200 \mathrm{mmHg}=960 \mathrm{mmHg}$.

The gas in the flask has a lower pressure than 760 mmHg . The pressure is $760 \mathrm{mmHg}-350 \mathrm{mmHg}=410 \mathrm{mmHg}$.

Kinetic Molecular Theory Worksheet

1. The word kinetic comes from a Greek word that means "to move." The kinetic molecular theory is based upon the assumption that particles of matter (atoms or molecules) are in constant random motion.
2. Of the three states of matter, which one has the most kinetic energy? Gas
3. Which state of matter has particles that are separated by the largest distance? Gas

Solid

Liquid

Gas
4. A scientific theory is an explanation of some type of natural pnenomena. ineories are normally developed from careful study of the way the world behaves. Let's look at how gases behave and see if the kinetic molecular theory makes sense.
5. Compared to liquids and solids, gases tend to have lower_ densities. This can be explained because the particles of gas are in constant motion.
6. If you apply pressure to a sample of gas, it is fairly easy to compress its volume (think about what would happen to a balloon if you squeeze it gently). This can be explained because there is a lot of empty space between gas particles.
7. If someone sprays perfume in one corner of the room, eventually a person on the other side of the room can smell it. This can be explained because gas particles move quick and random. In general, we would expect lighter gas particles to travel faster than heavier gas particles.
8. When two gases mix together or move through each other, this process is known as diffusion. When gas particles escape out of a tiny hole in a container, this process is known as effusion. You should know the difference between these two words so you can avoid any confusion!
9. Kinetic molecular theory can be summarized as follows:
a. Gas particles are in constant motion.
b. Gas particles are separated by relatively large distances.
c. When gas particles collide, they do not transfer kinetic energy.
d. Gas particles have no attractive or repulsive forces between them.
e. The kinetic energy of a gas is dependent on the temperature of the gas.

Unit 2 Review: Gas Laws See Separate Key

