Gases, Liquids and Solids

David A. Katz

Department of Chemistry Pima Community College

States of Matter

The fundamental difference between states of matter is the distance between particles.

Gas

Total disorder; much empty space; particles have complete freedom of motion; particles far apart

Cool Heat

Liquid

Disorder; particles or clusters of particles are free to move relative to each other; particles close together

Crystalline solid

Ordered arrangement; particles are essentially in fixed positions; particles close together

States of Matter

Gas

Total disorder: much

freedom of motion;

particles far apart

have complete

empty space; particles

Because in the solid and liquid states particles are closer together, we refer to them as condensed phases.

Liquid

Disorder; particles or clusters of particles are free to move relative to each other; particles close together

Crystalline solid

Ordered arrangement; particles are essentially in fixed positions; particles close together

The States of Matter

		• -
Gas	Assumes both the volume and shape of its container	Th
	Is compressible	
	Flows readily	att
	Diffusion within a gas occurs rapidly	the
Liquid	Assumes the shape of the portion of the container it occupies	
1	Does not expand to fill container	
	Is virtually incompressible	
	Flows readily	
	Diffusion within a liquid occurs slowly	
Solid	Retains its own shape and volume	
	Is virtually incompressible	
	Does not flow	
	Diffusion within a solid occurs extremely slowly	

- The state a substance is in at a particular temperature and pressure depends on two antagonistic entities
 - The kinetic energy of the particles
 - The strength of the attractions between the particles

Pressure

• Pressure is the amount of force applied to a unit of area.

 $P = \frac{F}{A}$

• Atmospheric pressure is the weight of air per unit of area.

Pressure

 most commonly measured in millimeters of mercury (mm Hg), atmospheres (atm), and torr.

1 atm = 760 mm Hg = 760 torr = 101,325 pascals = 28.96 in. Hg

- Pressure is measured using a barometer
- Difference in pressure is measured using a manometer

Gas Pressure

- In chemistry we use mm Hg or torr
 - These units based on the height of a mercury column in a barometer.
 - The mercury barometer was invented by Evangelista Torricelli about 1643

Manometer

Used to measure the difference in pressure between atmospheric pressure and that of a gas in a vessel.

The pressure is the atmospheric pressure ± the difference in heights, measured in mm (h), of two connected columns of mercury.

$$P_{\text{gas}} = P_{\text{atm}} + P_h$$

Standard Pressure

• Normal atmospheric pressure at sea level:

1.00 atm
760 torr (760 mm Hg)
101.325 kPa

• Standard temperature and pressure, designated as STP, is 1.00 atm and 0°C

Robert Boyle, 1662

The volume of a fixed quantity of gas at constant temperature is inversely proportional to the pressure.

As P and V are inversely proportional

A plot of *V* versus *P* results in a curve.

Since PV = k

V = k (1/P)

This means a plot of V versus 1/P will be a straight line.

Boyle's Law

$$P_1V_1 = P_2V_2$$

Where:

- P_1 = initial pressure
- V_1 = initial volume
- P_2 = final pressure
- V_2 = final volume

Pressure can be in atm, torr or kPa Volume can be in L or mL Units must be the same on both sides of the equation

Jacques Charles, 1787

The volume of a fixed amount of gas at constant pressure is directly proportional to its absolute temperature.

Charles' Law

Charles observed that the volume of a gas changed by 1/273rd of its volume at 0°C for each 1°C change in temperature

Charles' Law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Where:

- V_1 = initial volume
- **T**₁ = initial temperature
- V_2 = final volume
- T₂ = final temperature

Volume can be in L or mL Temperature MUST be in K

Units must be the same on both sides of the equation

Gas Law

• Gay-Lussac's Law: for a fixed mass of gas at constant volume, the pressure is directly proportional to the temperature in kelvins (K).

$$\frac{P}{T}$$
 = a constant or $\frac{P_1}{T_1}$ = $\frac{P_2}{T_2}$

• in summary:

Name	Expression	Constant
Boyle's law	$\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$	Τ
Charles's Law	$\frac{\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{V}_2}{\mathbf{T}_2}$	Р
Gay-Lussac's law	$\frac{\mathbf{P}_1}{\mathbf{T}_1} = \frac{\mathbf{P}_2}{\mathbf{T}_2}$	V

The Combined Gas Law

 Boyle's, Charles', and Gay-Lussac's Laws can be combined in a single equation

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

Gas Laws

Problem: a gas occupies 3.00 L at 2.00 atm.
 Calculate its volume when the pressure is 10.15 atm at the same temperature.

Initial: $P_1 = 2.00 \text{ atm}$ $V_1 = 3.00 \text{ L}$

Final: $P_2 = 10.15$ atm $V_2 = ?$

• because the temperature is constant $T_1 = T_2$

 $V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{(2.00 \text{ atm})(3.00 \text{ L})}{10.15 \text{ atm}} = 0.591 \text{ L}$

Avogadro's Law

- Amadeo Avogadro, 1811
- The volume of a gas at constant temperature and pressure is directly proportional to the number of moles of the gas.
 Mathematically, this V = kn

Mathematically, this
 means

Gas Laws

- Avogadro's law: equal volumes of gas at the same temperature and pressure contain the same numbers of molecules.
 - The actual temperature and pressure at which we compare two or more gases does not matter.
 - For convenience in making comparisons, chemists have selected one pressure as a standard pressure, and one temperature as a standard pressure.
 - The standard temperature and pressure (STP) selected are 0°C (273 K) and 1 atm pressure.

Gas Laws

- All gases at STP or any other combination of pressure and temperature contain the same number of molecules in a given volume. But how many is that?
- One mole contains 6.022 x 10²³ formula units; what volume of gas at STP contains this many molecules?
- This volume has been measured and found to be 22.4 L.
- Thus, one mole of any gas at STP occupies 22.4 L

Ideal Gas Law

- Avogadro's law allows us to write a gas law that is valid not only for any P, V, and T but also for any mass of gas.
- Ideal gas law:

PV = nRT

- **P** = pressure of the gas in atmospheres (atm)
- V = volume of the gas in liters (L)
- n = moles of the gas (mol)
- T = temperature in kelvins (K)
- R = ideal gas constant (a constant for all gases)

Ideal Gas Law

 We find the value of R by using the fact that 1.00 mol of any gas at STP occupies 22.4 L

$$R = \frac{PV}{nT} = \frac{(1.00 \text{ atm})(22.4 \text{ L})}{(1.00 \text{ mol})(273 \text{ K})} = 0.0821 \frac{L \cdot \text{ atm}}{\text{mol} \cdot \text{ K}}$$

- Problem: 1.00 mol of CH₄ gas occupies 20.0 L at 1.00 atm. What is the temperature of the gas in kelvins?
- Solution: solve the ideal gas law for T and plug in the given values:

$$T = \frac{PV}{nR} = \frac{(1.00 \text{ atm})(20.0 \text{ L})}{(1.00 \text{ mol})(0.0821 \text{ L} \cdot \text{ atm} \cdot \text{ mol}^{-1} \cdot \text{ K}^{-1})} = 244 \text{ K}$$

Gas Laws

 Dalton's law of partial pressures: the total pressure, P_T, of a mixture of gases is the sum of the partial pressures of each individual gas:

$P_{T} = P_{1} + P_{2} + P_{3} + \cdots$

- Problem: to a tank containing N_2 at 2.0 atm and O_2 at 1.0 atm we add an unknown quantity of CO_2 until the total pressure in the tank is 4.6 atm. What is the partial pressure of CO_2 ?
- Solution: 4.6 atm = 2.0 atm + 1.0 atm + 1.6 atm Total Partial Partial Partial Partial pressure pressure pressure pressure of N_2 of O_2 of CO_2

Kinetic Molecular Theory

- Assumptions of the kinetic molecular theory:
 - 1. Gases consist of particles constantly moving through space in random directions and with various speeds.
 - 2. Gas particles have no volume (compared with the volume of the gas).
 - 3. Gas particles have no attraction between them.
 - The average kinetic energy (KE) of gas particles is proportional to the temperature in kelvins.

Kinetic Molecular Theory

- Assumptions of the kinetic molecular theory (continued):
 - 5. Molecular collisions are elastic; when molecules collide, they may exchange KE but the total KE remains constant.
 - 6. Molecules collide with the walls of their container; these collisions constitute the pressure of the gas.

Kinetic Molecular Theory

Ideal gas:

- Behave according to the six assumptions of the Kinetic Molecular Theory
- Real gases
 - their atoms or molecules do occupy some volume.
 - there are forces of attraction between their atoms or molecules.
- In reality, no gases are ideal
 - at pressures above 1 to 2 atm and temperatures well above their boiling points, most real gases behave in much the same way as predicted by the KMT.

Intermolecular Forces

- The strength of attractive forces between molecules determines whether any sample of matter is a gas, liquid, or solid.
 - At or near STP, the forces of attraction between molecules of most gases are so small that they can be ignored.
 - When T decreases or P increases or both, the forces of attraction become important to the point that they cause condensation (gases to liquids) and ultimately solidification (liquids to solids).

Intermolecular Forces

In order to understand the properties of liquids and solids, we must look at the nature of the intermolecular forces of attraction.

Example	Typical Energy (kcal/mol)
Na^+ IIIIII Cl ⁻ , Mg^{2+} IIIII O ²⁻	170–970
C-C $C=C$ $C=C$ $O-H$	80–95 175 230 90–120
$ \begin{array}{c} H \\ O \\ H \\ H \end{array} $ $ \begin{array}{c} \delta^{+} \\ H \\ H \end{array} $ $ \begin{array}{c} \theta^{+} \\ H \\ H \end{array} $	2–10
$\begin{array}{c} H_{3}C & \delta^{-} & H_{3}C & \delta^{+} \\ C = 0 & 0 & C = 0 \\ H_{3}C & H_{3}C & H_{3}C \end{array}$	1–6
NellillNe	0.01–2.0
	Na ⁺ IIIII Cl ⁻ , Mg ²⁺ IIIII O ²⁻ C-C C=C C=C O-H H $H_{0}^{\delta^{-}} = 0^{+}$ H $H_{0}^{\delta^{-}} = 0^{+}$ H $H_{3}^{\delta^{-}} = 0^{+}$ $H_{3}^{\delta^{-}} = 0^{+}$ $H_{3}^{\delta^{-}} = 0^{+}$ $H_{3}^{\delta^{-}} = 0^{+}$ $H_{3}^{\delta^{-}} = 0^{+}$ $H_{3}^{\delta^{-}} = 0^{+}$ $H_{3}^{\delta^{-}} = 0^{+}$

Table 6.2 Forces of Attraction Between Molecules and lons

© 2007 Thomson Higher Education

Intermolecular Forces

Ionic Bonds: Electrostatic attraction between positive and negative ions

Covalent Bonds: Sharing electrons between atoms

		Typical Energy	
Attractive Force	Example	(kcal/mol)	
Ionic bonds	$Na^{+}IIIIII Cl^{-}, Mg^{2+}IIIIIIO^{2-}$	170–970	
Single, double, and triple covalent bonds	C-C $C=C$ $C=C$ $O-H$	80–95 175 230 90–120	
Hydrogen bonding	$ \begin{array}{c} H \\ O \\ H \\ H \end{array} $ $ \begin{array}{c} \delta^{+} \\ H \\ H \end{array} $ $ \begin{array}{c} \theta^{+} \\ H \\ H \end{array} $	2–10	
Dipole-dipole interaction	$\begin{array}{c} H_{3}C & \delta^{-} & H_{3}C & \delta^{+} \\ C = 0 & 0 & C = 0 \\ H_{3}C & H_{3}C & H_{3}C \end{array}$	1–6	
London dispersion forces	Nellin	0.01–2.0	

© 2007 Thomson Higher Education

London Dispersion Forces

 London dispersion forces are the attraction between temporary induced dipoles.

London Dispersion Forces

- London dispersion forces exist between all atoms and molecules.
- They are the only forces of attraction between atoms and nonpolar molecules.
- They range in strength from 0.01 to 2 kcal/mol depending on mass, size, and shape of the interacting molecules.
- In general, their strength increases as the mass and number of electrons in a molecule increases.
- Even though these forces are very weak, they contribute significantly to the attractive forces between large molecules because they act over large surface areas.

Dipole-Dipole Interactions

- Dipole-dipole interactions; the electrostatic attraction between positive and negative dipoles.
 - consider butane and acetone, compounds of similar molecular weight

 $CH_3 CH_2 CH_2 CH_3$ $O_{H_3} CH_3 - C - CH_3$ ButaneAcetone(bp 0.5°C)(bp 58°C)

- Butane is a nonpolar molecule; the only interactions between butane molecules are London forces.
- Acetone is a polar molecule; its molecules are held together in the liquid state by dipole-dipole interactions.

Hydrogen Bonds

- Hydrogen bond: a special case of dipole-dipole interactions
 - Occurs when the molecule contains a hydrogen bonded to an atom of high electronegativity, most commonly O, N, or F
 - Bond is between the hydrogen and the partial negative charge on a nearby O or N.

Hydrogen Bonds

- The strength of hydrogen bonds ranges from 2 to 10 kcal/mol.
- In liquid water bond strength is approximately 5.0 kcal/mol
- By comparison, the strength of an O-H covalent bond in a water molecule is 119 kcal/mol.
- Hydrogen bonding in liquid water has an important effect on the physical properties of water.
 - The relatively high boiling point of water is due to hydrogen bonding between water molecules; extra energy is required to separate a water molecule from its neighbors.
 - The high surface tension of water
 - The effectiveness of water as a solvent

Liquids

- As pressure increases in a real gas, its molecules come closer and closer with the result that attractions between molecules become important.
- When distances decrease so that almost all molecules touch or almost touch, a gas condenses to a liquid.
- In liquids, there is very little space between molecules; consequently, liquids are difficult to compress.
- The density of liquids is much greater than that of gases because the same mass occupies a much smaller volume in the liquid state.
- The position of molecules in a liquid is random and there is irregular space between them into which other molecules can slide; this causes liquids to be fluid.

Surface Tension

- Surface tension: the layer on the surface of a liquid produced by uneven intermolecular attractions at its surface:
 - Molecules in the interior of a liquid have equal intermolecular forces in all directions.
 - Molecules at the liquid-gas interface experience a greater attraction toward the interior of the liquid than toward the gas phase above it.
 - Therefore, there is preferential pull of molecules on the surface toward the interior of the liquid.
 - This preferential pull crowds the molecules on the surface, and creates a thin elastic skin-like layer.
 - Surface tension is directly related to strength of the intermolecular attraction between molecules.

Evaporation/Condensation

- An important property of liquids is that they evaporate:
 - In a liquid there is a distribution of kinetic energies (KE) among its molecules.
 - Some have high KE and move rapidly; others have low KE and move more slowly.
 - If a molecule at the surface is moving slowly (has a low KE), it cannot escape from the liquid because of the attractions of neighboring molecules.
 - If, however, it is moving more rapidly (has a higher KE) and moving upward, it can escape the liquid and enter the gaseous space above it.

Evaporation/Condensation

- If the container is open, this process continues until all molecules escape.
- If the container is closed, molecules remain in the air space above the liquid.
- At equilibrium, molecules continue to escape from the liquid while an equal number are recaptured by it.
- The partial pressure of the vapor in equilibrium with the liquid is called the vapor pressure of the liquid.
- Vapor pressure is a function of temperature.
- Vapor pressure increases with temperature until it equals the atmospheric pressure.
- Boiling point: the temperature at which the vapor pressure of a liquid equals the atmospheric pressure.

Evaporation/Condensation

• Normal boiling point: the temperature at which the vapor pressure of a liquid equals the atmospheric

pressure.

Boiling Point

		Molecular	Boiling
	Molecular	Weight	Point
Name	Formula	(amu)	(°C)
Chloroform	CHCI ₃	120	62
Hexane	$CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$	3 86	69
Ethanol	CH ₃ CH ₂ OH	46	78
Water	H ₂ O	18	100
Acetic acid	CH ₃ COOH	60	118

 Boiling points of covalent compounds depend primarily on two factors: (1) the nature and strength of intermolecular forces and (2) molecular size and shape.

Boiling Points

- Intermolecular forces
 - Consider CH₄ (MW 16, bp -164°C) and H₂O (MW 18, bp 100°C). The difference in boiling points between them is due to the greater strength of hydrogen bonding in water compared with the much weaker London dispersion forces in methane.
 - Consider methane, CH₄ (MW 16, bp -164°C), and hexane C₆H₁₄ (MW 86, bp 69°C). Because of its larger surface area, London dispersion forces are stronger between hexane molecules than between methane molecules.

Boiling Points

- Molecular shape
 - when molecules are similar in every way except shape, the strength of London forces determines boiling point

- Both are C₅H₁₂ and have the same molecular weight.
- 2,2-dimethylpropane is roughly spherical while pentane is a linear molecule.
- Pentane has the higher boiling point because it has the larger surface area and stronger London dispersion forces between its molecules.

Solids

- When liquids are cooled, their molecules come so close together and attractive forces between them become so strong that random motion stops and a solid is formed.
- Crystallization (solidification): formation of a solid from a liquid.

Types of Solids

Туре	Made up of	Characteristics	Examples
Ionic	Ions in a crystal lattice	High melting points	NaCl, K ₂ SO ₄
Molecular	Molecules in a crystal lattice	Low melting points	Ice, aspirin
Polymeric	Giant molecules; can be crystalline, semicrystalline, or amorphous	Low melting points or cannot be melted; soft or hard	Rubber, plastics, proteins
Network	A very large number of atoms connected by covalent bonds	Very hard; very high melting or cannot be melted	Diamond, quartz
Amorphous	Randomly arranged atoms or molecules	Mostly soft, can be made to flow, but no melting point	Soot, tar, glass

- Phase: any part of a system that looks uniform throughout.
 - examples: solid water (ice), liquid water, and gaseous water (steam)
- Phase change: a change from one physical state (gas, liquid, or solid) to another.

• Figure 6.17 The heating curve of ice

 Calculation of energy required to heat 1.0 gram of solid water from -20°C to 120°C

	Energy	Basis for Calculation of
Physical change	(cal/g)	Energy Required*
warm ice from -20°C to 0°C	9.6	SH of ice = 0.48 cal/g•°C
melt ice; temp = $0^{\circ}C$	80	Heat of fusion of ice = 80 cal/g
warm water from 0°C to 100°C	100	SH of liquid water = 1.0 cal/g•°C
boil water; temp = 100°C	540	Heat of vaporization = 540 cal/g
warm steam from 100°C to 120°C	9.6	SH of steam = 0.48 cal/g•°C

***SH = specific heat**

 All phase changes for any substance can be shown on a phase diagram

