GATE: Graphic Approach To Epidemiology

The Krebs Cycle

The GATE frame:

- Graphic Appraisal Tool for Epidemiological studies - a framework for appraising studies
- Graphic Architectural Tool for Epidemiological studies - a framework for designing studies

Presentation outline

1. a framework for study design
2. a framework for study analysis
3. a framework for study error
4. a framework for practicing EBP

1 picture, 2 formulas \& 3 acronyms

1. GATE: design of epidemiological studies: the picture \& $1^{\text {st }}$ acronym: PECOT

every epidemiological study can be hung on the GATE frame ${ }_{\text {o }}$

GATE Frame picture

British doctors
smoking status measured

Longitudinal (cohort) study

Observational studies: allocated by measurement

$1^{\text {st }}$ acronym: PECOT

smoking status measured

GATE Frame picture $\& 1^{\text {st }}$ acronym

Randomly allocated to aspirin or placebo

Heart attack

Randomised Controlled Trial
RCT: allocated to E \& C by randomisation process

GATE Frame picture $\& 1^{\text {st }}$ acronym

Middle-aged American women
Receive Mammogram screening Test

Mammogram negative

Diagnostic (prediction) study

GATE Frame picture $\& 1^{\text {st }}$ acronym

Cross-sectional (prevalence) study

GATE Frame picture \& $1^{\text {st }}$ acronym

GATE Frame picture \& $\mathbf{1}^{\text {st }}$ acronym

Middle-aged Americans
Body Mass Index (BMI) measured

High BMI

Blood glucose

Cross-sectional study
2. GATE: analysis of epidemiological studies: the $1^{\text {st }}$ formula: outcomes \div population

The numbers in every epidemiological study can be hung on the GATE frame
$1^{\text {st }}$ formula: the Occurrence of outcomes $=$ number of outcomes \div number in the population

* a Group is a sub-population
$1^{\text {st }}$ formula: occurrence $=$ outcomes \div population

Exposed Group
smokers

Outcomes yes
Lung cancer

Comparison Group non-smokers

Exposed Group Occurrence (EGO) = a/EG
= number of outcomes (a) \div number in exposed population (EG)
$1^{\text {st }}$ formula: occurrence $=$ outcomes \div population

Exposed Group smokers

Outcomes yes
Lung cancer

Comparison Group Occurrence (CGO) = b/CG
= number of outcomes (b) \div number in comparison population (CG)

The goal of all epidemiological studies is to measure (\& compare) the occurrence of outcomes in (different) populations (EGO compared with CGO)

smoking status measured

EGO:
Occurrence (risk) of cancer in smokers

CGO:
Occurrence of cancer in non-smokers

The goal of all epidemiological studies is to measure (\& compare) the occurrence of outcomes in (different) populations (EGO compared with CGO)

Randomly allocated to aspirin or placebo

EGO:
Occurrence of MI if taking aspirin

Heart attack (MI)

CGO:
Occurrence of MI if not taking aspirin

The goal of all epidemiological studies is to measure (\& compare) the occurrence of outcomes in (different) populations (EGO compared with CGO)

Middle-aged American women

Receive Mammogram screening Test

The goal of all epidemiological studies is to measure (\& compare) the occurrence of outcomes in (different) populations (EGO compared with CGO)

Middle-aged Americans

Body Mass Index (BMI) measured

$E G O=$ sum of all glucose levels in $E G \div$ number in $E G$

Comparing EGO \& CGO

- Risk Ratio or Relative Risk (RR) $=\mathrm{EGO} \div$ CGO
- Risk Difference (RD) = EGO - CGO
- Number Needed to Treat/'expose' (NNT)
$=1 \div \mathrm{RD}$

its all about EGO and CGO

Measures of occurrence include: risk; rate; likelihood; probability; average; incidence; prevalence
3. GATE: identifying where errors occur in epi studies: the $\mathbf{2 d}^{\text {nd }}$ acronym: RAMboMAN

7n,18:1
 EnMimit

Recruitment
Allocation

Maintenance
blind objective Measurements

ANalyses
the GATE frame with RAMboMAN can be used to identify risk of error in most/all epidemiological studies

RAMboMAN

Enigible population recruitment proqess

were Recruited participants

 relevant to the study objectives? who are the findings applicable to?RAMboMAN: how well were participants Allocated to exposure \& comparison groups?

RCT: Allocated by randomisation
(e.g to drugs)

Cohort: Allocated by measurement (e.g. smoking)

ra MboMan

How well were Participants
Maintained in the groups they were allocated to (i.e. to EG \& CG) throughout the study?

Compliance

Contamination
Co-interventions
Completeness of follow-up

RAMboMan

RambOMAN

Were outcomes measured Objectively?

RAMBOMAN

Were the Analyses done appropriately?

Adjustment for confounding

RAMBOMAN

Were the Analyses done appropriately?

Intention to treat?

the $2^{\text {nd }}$ formula:

random error = 95\% confidence interval

EGO $\pm 95 \%$ CI

CGO $\pm 95 \%$ CI
There is about a 95\% chance that the true value of EGO \& CGO (in the underlying population) lies somewhere in the $95 \% \mathrm{Cl}$ (assuming no non-random error)

the $3^{\text {rd }}$ acronym: FAITH

Critically appraising a systematic review

- Find - were all potentially relevant studies found?
- Appraise - were studies appraised for validity?
- Include - were only appropriate studies included in the final analyses?
- Total-up - were studies pooled appropriately?
- Heterogeneity - were studies too heterogeneous (i.e. too different) to pool?

4. GATE : a framework for the 4 steps of EBP

The steps of EBP:

1. Ask
2. Acquire
3. Appraise
4. Apply
[5. AUDIT your practice]

EBP Step 1: ASK - turn your question into

 a focused 5-part PECOT question
2. Exposure
4. Outcomes

T】 5. Time

EBP Step 2: ACQUIRE the evidence - use PECOT to help choose search terms

1. Participants

2. Exposure
3. Comparison
4. Outcome
5. Time frame

EBP Step 3: APPRAISE the evidence with the picture, acronyms \& formulas

Occurrence $=$ outcomes \div population Random error = 95\% Confidence Interval

EBP Step 4: APPLY the evidence by AMALGAMATING the relevant information \& making an evidence-based decision:' the X-factor

X-factor: making evidence-based decisions

Practitioner e $X_{\text {pertise: ' 'putting it all together' - the art of practice }}$

Excel CATs \& pdf Gate-lites

Extra slides

Why do we need to use evidence efficiently?

EBP: informing decisions with the best up-to-date evidence

The epidemic of evidence

About 1/2 of 'valid' evidence today is out of date in 5 years

About $1 / 2$ of valid evidence is not implemented

GATE Frame picture \& $\mathbf{1}^{\text {st }}$ acronym

Observational study: allocated by measurement

GATE Frame picture $\& 1^{\text {st }}$ acronym

Middle-aged American women
Measured with 'gold standard' for breast cancer

Diagnostic test accuracy study

The goal of all epidemiological studies is to measure (\& compare) the occurrence of outcomes in (different) populations (EGO compared with CGO)

Middle-aged American women

Measured with gold standard for breast cancer Breast cancer EG CG

$1^{\text {st }}$ formula (with time):

occurrence $=($ outcomes \div population $) \div$ Time

$\mathrm{EGO}=(\mathrm{a} \div \mathrm{EG})$ during time T (a measure of cumulative incidence) $\mathrm{EGO}=(\mathrm{a} \div \mathrm{EG}) \div \mathrm{T}$ (a measure of incidence rate)

$1^{\text {st }}$ formula (with time):

occurrence $=($ outcomes \div population $) \div$ Time

Middle-aged American women

Receive Mammogram screening Test

$\mathbf{E G O}=(\mathrm{a} \div \mathrm{EG})$ at time T (a measure of prevalence)

