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1 Introduction: Gates, states, and circuits

1 Introduction: Gates, states, and circuits
We shouldn’t be asking ‘where do quantum speedups come from?’ we should
say ‘all computers are quantum, [...]’ and ask ’where do classical slowdowns
come from?’ — Charlie Bennett [0]

It appears that very rapid progress is now being made on the fundamentals of
quantum computing. It is well to keep in mind, though, that many basic issues
of the realization of quantum computers remain unsolved or very difficult. —
David P. Diviencero [13]

1.1 Additional reading
The canonical textbook for quantum computing and information remains Michael
A. Nielsen’s and Isaac L. Chuang’s classic “Quantum Computation and Quantum
Information” (affectionately know as Mike and Ike) [18]. If you have any serious
interest in quantum computing, you should own this book1. These notes are going
to take a different cut through the subject, with more detail in some places, some
newer material, but neglecting other areas, since it is not necessary to repeat what
Mike and Ike have already so ably covered. John Preskill’s lecture notes [15] are
another excellent (If perennially incomplete) treatment of the subject.

For a basic introduction to quantum mechanics, see “Quantum Mechanics: The
Theoretical Minimum” by Leonard Susskind and Art Friedman [39]. The tradi-
tional quantum mechanics textbooks are not so useful, since they tend to rapidly
skip over the fundamental and informational aspects, and concentrate on the de-
tailed behavior of light, and atoms, and cavities, and what have you. Such physical
details are important if you’re building a quantum computer, obviously, but not so
much for programming one, and I think the traditional approach tends to obscure
the essentials of quantum information and how fundamentally different quantum
is from classical physics. But among such physics texts, I’d recommend “Modern
Quantum Mechanics” by J. J. Sakurai [31].

For gentler introductions to quantum computing see “Quantum Computing: A
Gentle Introduction” by Eleanor G. Rieffel and Wolfgang H. Polak [37]. Another
interesting take is “Quantum Country” by Andy Matuschak and Michael Nielsen.
This is an online introductory course in quantum computing, with builtin spaced
repetition [48]. Scott Aaronson’s “Quantum Computing since Democritus” [33] is
also a good place to start, particularly for computational complexity theory.

Mathematically, quantum mechanics is mostly applied linear algebra, and you
can never go wrong learning more linear algebra. For a good introduction see “No
Bullshit Guide to Linear Algebra” by Ivan Savov [55], and for a deeper dive “Linear
Algebra Done Right” by Sheldon Axler [38].

For a deep dives into quantum information, both “The Theory of Quantum In-
formation” by John Watrous [45] and “Quantum Information Theory” by Mark
M. Wilde [43] are excellent, if weighty, tombs.

And if you have very young children, start them early with Chris Ferrie and
whurely’s “Quantum Computing for Babies” [44].

1And Mike and Ike.
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2 Bloch sphere representation of a qubit

2 Bloch sphere representation of a qubit
We’ll begin by considering the action of a quantum gate on a single quantum bit.
A single classical bit (cbit) is relatively boring; either it’s in a zero state, or a one
state. In contrast a quantum bit is a much richer object that can exist in a quantum
superposition of zero and one. This state can be conveniently visualized as a point
on the surface of a 3-dimensional ball, generally called the Bloch sphere [2, 0]. The
action of a 1-qubit gate is to rotate this sphere around some axis.

x̂

ŷ

ϕ

ẑ

•
|ψ⟩

θ

|ψ⟩ ≃ cos( 1
2θ) |0⟩+ e

iϕ sin( 1
2θ) |1⟩

n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)

Figure 2.1: Bloch sphere representation of single qubit states.

Ultimately, a qubit is a physical system with two distinct states, which we con-
ventionally label zero and one. The state of the qubit |ψ⟩ can be written as a super-
position of zero states |0⟩, and one states |1⟩.

|ψ⟩ = a |0⟩+ b |1⟩ , |a|2 + |b|2 = 1 (1)

where the coefficients a and b are complex numbers. We can rewrite this as

|ψ⟩ =eiα
(
cos( 1

2θ) |0⟩+ e
iϕ sin( 1

2θ) |1⟩
)

(2)

whereα, θ, andϕ are real numbers. The phase factor eiα has no observable physical
effect and can be ignored. It is merely an artifact of the mathematical representa-
tion. (If we use a density matrix representation then the phase factor disappears
altogether.)

|ψ⟩ ≃ cos( 1
2θ) |0⟩+ e

iϕ sin( 1
2θ) |1⟩ (3)

We’ll use ≃ to indicate that two states (or gates) are equal up to a phase factor.
The parameters θ and ϕ, can be interpreted as spherical coordinates of a point

on the surface of a unit sphere, where θ is the colatitude with respect to the ẑ-axis
and ϕ the longitude with respect to the x̂-axis, and 0 ⩽ θ ⩽ π and 0 ⩽ ϕ < 2π.
In cartesian coordinates the point on the 3-dimensional unit sphere is given by the
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2 Bloch sphere representation of a qubit

x̂|+⟩

|−⟩

•

•

ŷ•• |+i⟩|−i⟩

ẑ
•

•

|0⟩

|1⟩

Figure 2.2: Location of standard basis states on the Bloch sphere.

Bloch vector n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ).
Note that the zero state, by convention, is located at the top of the Bloch sphere,

and the one state at the bottom. States on opposite sides of the sphere are orthog-
onal, and any pair of such states provides a basis in which any state of a qubit can
be represented. The other basis states located along the cartesian axes are common
enough to have notation of their own.

X basis |+⟩ = 1√
2 (|0⟩+ |1⟩) n̂ = (+1, 0, 0)

|−⟩ = 1√
2 (|0⟩− |1⟩) n̂ = (−1, 0, 0)

Y basis |+i⟩ = 1√
2 (|0⟩+ i |1⟩) n̂ = (0,+1, 0)

|−i⟩ = 1√
2 (|0⟩− i |1⟩) n̂ = (0,−1, 0)

Z basis |0⟩ n̂ = (0, 0,+1)
|1⟩ n̂ = (0, 0,−1)

Generically we’ll call these the X, Y, and Z bases. The Z-basis is also called the com-
putational or standard basis, is the one we label with zero and ones, and is generally
the only basis in which we can make measurements of the system. The X-basis is
also called the Hadamard basis, since it can be generated from the computational
basis with a Hadamard transform (§3.5).

Unfortunately, there aren’t any real-space geometric representations of multi-
qubit systems. The geometric representation of 1-qubit states by the Bloch sphere
only works because of a mathematical accident that doesn’t generalize.

7



3 Standard 1-qubit gates

3 Standard 1-qubit gates
Classically, there are only 2 1-bit reversible logic gates, identity and NOT (And 2
irreversible gates, reset to 0 and reset to 1). But in quantum mechanics the zero and
one states can be placed into superposition, so there are many other interesting
possibilities.

3.1 Pauli gates
The simplest 1-qubit gates are the 4 gates represented by the Pauli operators, I, X, Y,
and Z. These operators are also sometimes notated as σx, σy, σz, or with an index
σi, so that σ0 = I, σ1 = X, σ2 = Y, σ3 = Z.

We will explore the algebra of Pauli operators in more detail in chapter (§11).
But for now, note that the Pauli gates are all Hermitian, σ†i = σi, square to the
identity σ2

i = I, and that the X, Y, and Z gates anti-commute with each other.

XY = −YZ = iZ

YZ = −ZY = iX

ZX = −ZX = iY

XYZ = iI

Pauli-I gate (identity):

I =

[
1 0
0 1

]
(4)

I

The trivial no-operation gate on 1-qubit, represented by the identity matrix. Acting
on any arbitrary state, the gate leave the state unchanged.

I = |0⟩⟨0|+ |1⟩⟨1|
I |0⟩ = |0⟩
I |1⟩ = |1⟩

Pauli-X gate (X gate, bit flip)

X =

[
0 1
1 0

]
(5)

X

The X-gate generates a half-turn in the Bloch sphere about the x axis.

x̂

ŷ

ẑ

X

x̂

ŷ

ẑ
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3 Standard 1-qubit gates

With respect to the computational basis, the X gate is equivalent to a classical
NOT operation, or logical negation. The computation basis states are interchanged,
so that |0⟩ becomes |1⟩ and |1⟩ becomes |0⟩.

X = |1⟩⟨0|+ |0⟩⟨1|
X |0⟩ = |1⟩
X |1⟩ = |0⟩

However, the X-gate is not a true quantum NOT gate, since it only logically negates
the state in the computational basis. A true quantum logical negation would re-
quire mapping every point on the Bloch sphere to its antipodal point. But that
would require an inversion of the sphere which cannot be generated by rotations
alone. There is no general quantum NOT operation that would negate an arbitrary
qubit state.

Pauli-Y gate (Y-gate):

Y =

[
0 −i

i 0

]
(6)

Y

A useful mnemonic for remembering where to place the minus sign in the matrix
of the Y gate is “Minus eye high” [0]. In some older literature the Y-gate is defined
as iY = [ 0 1

−1 0 ] (e.g. [37]), which is the same gate up to a phase.
The Pauli-Y gate generates a half-turn in the Bloch sphere about the ŷ axis.

x̂

ŷ

ẑ

Y

x̂

ŷ

ẑ

The Y-gate can be thought of as a combination of X and Z gates, Y = −iZX.
With respect to the computational basis, we interchange the zero and one states
and apply a relative phase flip.

Y = i |1⟩⟨0|− i |0⟩⟨1|
Y |0⟩ = +i |1⟩
Y |1⟩ = −i |0⟩

Pauli-Z gate (Z-gate, phase flip)

Z =

[
1 0
0 −1

]
(7)

Z

HZ = −π 1
2 (1 − Z)

9



3 Standard 1-qubit gates

The Pauli-Z gate generates a half-turn in the Bloch sphere about the ẑ axis.

x̂

ŷ

ẑ

Z

x̂

ŷ

ẑ

With respect to the computational basis, theZ gate flips the phase of the |1⟩ state
relative to the |0⟩ state.

Z = |0⟩⟨0|− |1⟩⟨1|
Z |0⟩ = + |0⟩
Z |1⟩ = − |1⟩

3.2 Rotation gates
The three Pauli-rotation gates2 Rx, Ry, and Rz rotate the state vector by an arbitrary
angle about the corresponding axis in the Bloch sphere, Fig. 3.1. They are generated
by taking exponentials of the Pauli operators.

A useful identity to keep in mind is that given an operatorA that squares to the
identity A2 = I then

exp(iθA) = cos(θ) I+ i sin(θ) A (8)

This is a generalization of the usual Euler’s formula eix = cos x+ i sin x. We expand
the exponential as a power series, and gather the even powers into the cosine term,
and the odd powers into the sin term.

exp(iθA) = I+ iθA− θ2

2! I− i
θ3

3! A− θ4

4! I− i
θ5

5! A++ · · ·

=
(

1 − θ2

2! + θ4

4! − · · ·
)
I+

(
θ− θ3

3! + θ5

5! − · · ·
)
A

= cos(θ) I+ i sin(θ) A

Rx gate [14] Rotate θ radians anti-clockwise about the x̂ axis of the Bloch sphere.

Rx(θ) = e
−i

1
2θX (9)

= cos( 1
2θ)I− i sin(

1
2θ)X

=

[
cos( 1

2θ) −i sin( 1
2θ)

−i sin( 1
2θ) cos( 1

2θ)

]
HRx

= 1
2θX

The Rx gate is represented by the following circuit diagram.

Rx(θ)

or, if we want to specify a generic Rx gate, and not a specific angle, we can drop the
theta argument.

Rx

2The 1-qubit rotation gates are typically verbalized as arr-ex, arr-why, arr-zee, and arr-en.
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3 Standard 1-qubit gates

Ry gate [14] Rotate θ radians anti-clockwise about the ŷ axis of the Bloch sphere.

Ry(θ) = e
−i

1
2θY (10)

= cos( 1
2θ)I− i sin(

1
2θ)Y

=

[
cos( 1

2θ) − sin( 1
2θ)

sin( 1
2θ) cos( 1

2θ)

]

Ry(θ)

HRy
= 1

2θY

Rz gate [14] Rotate θ radians anti-clockwise about the ẑ axis of the Bloch sphere.

Rz(θ) = e
−i

1
2θZ (11)

= cos( 1
2θ)I− i sin(

1
2θ)Z

=

e−i
1
2θ 0

0 e+i
1
2θ


Rz(θ)

HRz
= 1

2θZ

Consecutive rotations about the same axis can be merged, with the total angle
being the sum of angles.

Rx(θ0) Rx(θ1) = Rx(θ0 + θ1)

Ry(θ0) Ry(θ1) = Ry(θ0 + θ1)

Rz(θ0) Rz(θ1) = Rz(θ0 + θ1)

Let us demonstrate that the Rz gate generates rotations about the ẑ axis. Recall
the definition of the Bloch vector of an arbitrary state |ψ⟩, (§2).

Rz(θ
′) |ψ⟩ =

(
e−i

1
2θ′

|0⟩⟨0|+ e+i
1
2θ′

|1⟩⟨1|
)(

cos( 1
2θ) |0⟩+ e

iϕ sin( 1
2θ) |1⟩

)
= e−i

1
2θ′
(
cos( 1

2θ) |0⟩+ e
i(θ′+ϕ) |1⟩

)
≃ cos( 1

2θ) |0⟩+ e
i(θ′+ϕ) |1⟩ (12)

In the last line we drop an irrelevant phase. We can see that the Rz gate has left the
elevation angle unchanged, but added θ ′ to the azimuth angle, which corresponds
to a rotation about the ẑ-axis.

We can do the same exercise for the RX and RY gates, although the trigonometry
is slightly more involved.
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3 Standard 1-qubit gates

Rx(θ)
Ry(θ)

Rz(θ)

Figure 3.1: Pauli rotations of the Bloch Sphere

Rn⃗ gate A rotation of θ radians anti-clockwise about an arbitrary axis in the Bloch
sphere.

Rn⃗(θ) = e
−i

1
2θ(nxX+nyY+nzZ) (13)

= cos( 1
2θ)I− i sin(

1
2θ)(nxX+ nyY + nzZ)

=

[
cos( 1

2θ) − inz sin( 1
2θ) −ny sin( 1

2θ) − inx sin( 1
2θ)

ny sin( 1
2θ) − inx sin( 1

2θ) cos( 1
2θ) + inz sin( 1

2θ)

]

Rn⃗(θ)

Every 1-qubit gate can be represented as a rotation gate (up to phase) with some
coordinate (θ nx, θ ny, θ nz), where n2

x + n2
y + n2

z = 1 and θ runs between π and
−π. The Pauli gates are the rotations around the principal axes.

Rx(θ) = Rn⃗(θ), n⃗ = (1, 0, 0)
Ry(θ) = Rn⃗(θ), n⃗ = (0, 1, 0)
Rz(θ) = Rn⃗(θ), n⃗ = (0, 0, 1)

This representation provides a convenient visualization of 1-qubit gates: The 1-
qubit gates form a spherical ball of radius θ. See figures 3.2 and 3.3. This sphere-
of-gates is distinct from the Bloch sphere of states, although the underlying mathe-
matical structures are related.

You might reasonably be wondering why there is a factor of half in the defini-
tions of the rotation gates. A 1-qubit gate is represented by an element of the group
SU(2) (the group of 2×2 unitary matrices with unit determinate). Each element is a
rotation in a 2-dimensional complex vector space. But we are visualizing the effect
of these gates as rotations in 3-dimensional Euclidean space, which are elements of
the special orthogonal group SO(3). We can do this because there is an accidental
correspondence between these two groups that allows us to visualize 1-qubit gates
as rotations in 3-space. We can map two elements of SU(2) (differing by only a -1

12



3 Standard 1-qubit gates

phase) to each element of SO(3) while keeping the group structure. In the jargon,
SU(2) is a double cover of SO(3). Because of this doubling up, a rotation of θ radi-
ans in the Bloch sphere corresponds to a rotation of only 1

2θ in the complex vector
space. We have to go twice around the Bloch sphere, θ = 4π, to get back to the
same gate with the same phase.

3.3 Pauli-power gates
It turns out to be useful to define powers of the Pauli-gates. This is slightly tricky be-
cause non-integer powers of matrixes aren’t unique. Just as there are 2-square roots
of any number, a diagonalizable matrix with n unique eigenvalue has 2n unique
square roots. We circumvent this ambiguity by defining the Pauli power gates via
the Pauli rotation gates. We note that a π rotation is a Pauli gate up to phase, e.g.

RX(π) = e
−i

π
2 X = −iX (14)

and define powers of the Pauli matrices as

Xt = e−i
π
2 t(X−I) ≃ Rx(πt) , (15)

and similarly for Y and Z rotations. With this definition the Pauli-power gates spin
states in the same direction around the Bloch sphere as the Pauli-rotation gates.

The Pauli rotation-representation is more natural from the point of view of pure
mathematics. But the Pauli-power representation has computational advantages.
In quantum circuits we most often encounter rotations of angles ±π/2n for some
integer n. Whereas it is easy to spot that Z0.125 is a T gate, for example, it is less
obvious thatRz(0.78538 . . .) is the same gate up to phase. Moreover binary fractions
have exact floating point representations, whereas fractions of π inevitably suffer
from numerical round-off error.

X power gate

Xt = e−i
π
2 t(X−I) = ei

π
2 tRx(πt) (16)

= ei
π
2 t

[
cos(π2 t) −i sin(π2 t)

−i sin(π2 t) cos(π2 t)

]

Xt

Y power gate

Yt = e−i
π
2 t(Y−I) = ei

π
2 tRy(πt) (17)

= ei
π
2 t

[
cos(π2 t) − sin(π2 t)
sin(π2 t) cos(π2 t)

]

Yt

13



3 Standard 1-qubit gates

θ nx

θ ny

θ nz

Figure 3.2: Spherical ball of 1-qubit gates (13). Each point within this sphere repre-
sents a unique 1-qubit gate (up to phase). Antipodal points on the surface represent
the same gate. The Pauli rotation gates lie along the three principal axes.

I

Z

S

T

S†

T †

X

V

V†

H

Yh†h

Figure 3.3: Coordinates of common 1-qubit gates (13).
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3 Standard 1-qubit gates

Z power gate

Zt = e−i
π
2 t(Z−I) = ei

π
2 tRz(πt) (18)

= ei
π
2 t

[
e−i

π
2 t 0

0 e+i
π
2 t

]
=

[
1 0
0 e+iπt

]

Zt

Phase shift gate [0] The name arrises because this gate shifts the phase of the |1⟩
state relative to the |0⟩ state.

P(θ) =

[
1 0
0 eiθ

]
(19)

= e−i
1
2θ Rz(θ)

= Z
θ
π

Sometimes favored over the Rz gate because special values are exactly equal
to various other common gates. For instance, Rπ = Z, but Rz(π) = −iZ. The
CPhase gate (65) is a controlled phase shift. The phase shift gate also appears when
considering the construction of controlled unitary gates (§7.5).

This gate is also commonly notated as Rθ, but I have adopted the notation P(θ)
(which is also used in qiskit and QASM [0]), in an attempt to reduce confusion with
all the other “R-subscript” gates. Note that historically ‘P’ was also used for the S
gate, e.g. [0]

Fractional phase shift gate [0] Discrete fractional powers of the Z gate have their
own notation. They most notably appear as controlled operations in the quantum
Fourier transform (§??).

Pk =

[
1 0
0 ei2π/2k

]
(20)

= P(2π/2k) = Z21−k

P1 = Z

P2 = S

P3 = T

Thus P1 is a half turn in the Bloch sphere, P2 a quarter turn, P3 an eighth turn, and
so on. Most often notated as Rk, or sometimes as Zk, here, as with the phase shift
gate, I’ve adopted Pk is a vain hope of reducing ambiguity.
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3 Standard 1-qubit gates

3.4 Quarter turns
V gate [0, 0] Square root of the X-gate, VV = X.

V = X
1
2 (21)

= 1
2

[
1 + i 1 − i

1 − i 1 + i

]
= HSH

≃ Rx(+π
2 )

V or
X

1
2

A quarter turn anti-clockwise about the x̂ axis.

x̂

ŷ

ẑ

V

x̂

ẑ

ŷ

Inverse V gate Since the V-gate isn’t Hermitian, the inverse gate, V†, is a distinct
square root of X.

V† = X−
1
2 (22)

= 1
2

[
1 − i 1 + i

1 + i 1 − i

]
= HS†H

≃ Rx(−π
2 )

V† or
X− 1

2

A quarter turn clockwise about the x̂ axis.

x̂

ŷ

ẑ

V†

x̂

ẑ

ŷ

Pseudo-Hadamard gate [56, 20]: Inverse square root of the Y-gate.

h =
√

2
1+i
Y−

1
2 (23)

= 1√
2

[
1 1

−1 1

]

16



3 Standard 1-qubit gates

h or
Y−

1
2

A quarter turn clockwise about the ŷ axis.

x̂

ŷ

ẑ

Y−
1
2

ẑ

ŷ

x̂

This square-root of the Y-gate is called the pseudo-Hadamard gate as it has the
same effect on the computational basis as the Hadamard gate.

h |0⟩ = |+⟩
h |1⟩ = |−⟩

Inverse pseudo-Hadamard gate Principle square root of the Y-gate. Unlike the
Hadamard gate, the pseudo-Hadamard gate is not Hermitian, and therefore not its
own inverse.

h† =
1√
2

[
1 −1
1 1

]
(24)

=
√

2
1+i
Y

1
2

h† or
Y

1
2

A quarter turn anti-clockwise about the ŷ axis.

x̂

ŷ

ẑ

Y
1
2

ẑ

ŷ

x̂

S gate (Phase, P, “ess”) Square root of the Z-gate, SS = Z.

S = Z
1
2 (25)

=

[
1 0
0 i

]
≃ Rz(+π

2 )

S

Historically called the phase gate (and denoted by P), since it shifts the phase
of the one state relative to the zero state. This is a bit confusing because we have
to make the distinction between the phase gate and applying a global phase. Often
referred to as simple the S (“ess”) gate in contemporary discourse.
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3 Standard 1-qubit gates

x̂

ŷ

ẑ

S

ŷ

x̂

ẑ

Inverse S gate Hermitian conjugate of the S gate, and an alternative square-root
of Z, S†S† = Z.

S† = Z−
1
2 (26)

=

[
1 0
0 −i

]
≃ Rz(−π

2 )

S†

A quarter turn clockwise about the ẑ axis.

x̂

ŷ

ẑ

S†

ŷ

x̂

ẑ

Can be generated from the S gate, SSS = S†.

3.5 Hadamard gates
Hadamard gate The Hadamard gate is one of the most interesting and useful of
the common gates. Its effect is a π rotation (half turn) in the Bloch sphere about the
axis 1√

2 (x̂+ ẑ). In a sense the Hadamard gate is half way between the Z and X gates
(Fig. ??).

H = 1√
2

[
1 1
1 −1

]
(27)

≃ Rn⃗(π), n⃗ = 1√
2 (1, 0, 1)

H

In terms of the Bloch sphere, the Hadamard gate interchanges the x̂ and ẑ axes,
and inverts the ŷ axis.

x̂

•

ŷ

ẑ

H

ẑ

ŷ

x̂

18



3 Standard 1-qubit gates

A Hadamard similarity transform interchanges X and Z gates,

HXH = Z, HYH = −Y, HZH = X

HRx(θ)H = Rz(θ), HRy(θ)H = Ry(−θ), HRz(θ)H = Rx(θ)

One reason that the Hadamard gate is so useful is that it acts on the computation
basis states to create superpositions of zero and one states. These states are common
enough that they have their own notation, |+⟩ and |−⟩.

H |0⟩ = 1√
2 (|0⟩+ |1⟩) = |+⟩

H |1⟩ = 1√
2 (|0⟩− |1⟩) = |−⟩

The square of the Hadamard gate is the identity HH = I. This is easy to show
with some simple algebra, or by considering that the Hadamard is a 180 degree
rotation in the Bloch sphere, or by noting that the Hadamard matrix is both Hermi-
tian and unitary, so the Hadamard must be its own inverse. As a consequence, the
Hadamard converts the |+⟩, |−⟩ Hadamard basis back to the |0⟩, |1⟩ computational
basis.

H |+⟩ = |0⟩
H |−⟩ = |1⟩

The Hadamard gate is named for the Hadamard transform (Or Walsh-Hadamard
transform), which in the context of quantum computing is the simultaneous applica-
tion of Hadamard gates to multiple-qubits. We will return this transform presently
(§??). The Hadamard gate is also the 1-qubit quantum Fourier transform (§??)

It is also worth noting a couple of useful decompositions (up to phase).

H ≃ Z Y
1
2

x̂

ŷ

ẑ

Z

x̂

ŷ

ẑ

Y
1
2

ẑ

ŷ

x̂

H ≃ S V S

x̂

ŷ

ẑ

S

ŷ

x̂

ẑ

V

ŷ

ẑ

x̂

S

ẑ

ŷ

x̂

Here, V is the square-root of the X gate, and S is the square-root of Z, each of
which is a quarter turn in the Bloch sphere.

Hadamard-like gates If we peruse the sphere of 1-qubit gates, Fig. 3.3, we can see
that there are 6 different Hadamard-like gates that lie between the main x̂, ŷ, and ẑ
axes. (Recall that gates on opposite sides of the sphere’s surface are the same up to
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3 Standard 1-qubit gates

θ nx

θ ny

θ nz

H

VHV†

SHS†

Y
1
2HY- 1

2

V†HV

S†HS

Figure 3.4: Coordinates of the 6-Hadamard like gates.

phase.) Each of these gates can be obtained from straightforward transform so the
Hadamard gate. For instance, HYZ = SHS† is the Hadamard-like gate between the
Z and Y gates, which interchanges the ŷ and ẑ axies, and flips the x̂-axis.

x̂

ŷ

ẑ

••

SHS†

x̂

ẑ

ŷ

This particular Hadamard-like gate takes the computational Z-basis to the Y-
basis.

SHS† |0⟩ = 1√
2 (|0⟩+ i |1⟩) = |+i⟩

SHS† |1⟩ = 1√
2 (|0⟩− i |1⟩) = |−i⟩

The coordinates of all 6 Hadamard-like gates are shown in Fig. 3.5, and listed in
Table 12.1 in the same block as the Hadamard gate.

3.6 Axis cycling gates
Another interesting, but rarely discussed3 class of gates are those that interchange
three axes. These gates have periodicity 3 and represent 120 degree rotations of the
Bloch sphere.

3Period 3 axis cycling gates are widely discussed abstractly in the context of Clifford gates (§??). I’ve
borrowed the explicit realization and nomenclature from Craig Gidney’s stim python package, a simu-
lator for quantum stabilizer circuits. https://github.com/quantumlib/Stim [53]
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3 Standard 1-qubit gates

C gate [53]

C = 1
2

[
+1 − i −1 − i

+1 − i +1 + i

]
(28)

= Rn(
2
3π), n = ( 1√

3 , 1√
3 , 1√

3 )

A right handed period 3 axis cycling gate, cycling the axes in the permutation x̂→
ŷ→ ẑ→ x̂

C Xt C† = Yt

C Yt C† = Zt

C Zt C† = Xt

Note that this is a third root of the identity, C3 = I, and that the square gives the
inverse gate C2 = C† which cycles in the opposite direction.

There are 8 distinct axis cycling gates, which are all also Clifford gates, and listed
in the last block of table 12.1. Each such gate can be broken down into a combination
of two quarter turns, e.g. C = SV .

x̂

ŷ

ẑ

V

x̂

ẑ

ŷ

S

ẑ

x̂

ŷ

3.7 T gates
All the of preceding discrete 1-qubit gates (Pauli gates, quarter turns, Hadamard
and Hadamard-like gates, and axis cycling gates) are examples of a special class of
gates called Clifford gates. Although important, the Clifford gates have the notable
restricting that they aren’t universal – you can’t build an arbitrary qubit rotation
from Clifford gates alone. The is because the Clifford gates always map the x̂, ŷ and
ẑ axes back onto themselves. In order to be computational universal, it is necessary
to have at least one non-Clifford gate in our gate set, and the most common choice
for that non-Clifford gate is the T gate, one eighth of a rotation anti-clockwise about
the z axis. A gate set consisting of all Cliffords (including multi-qubit Cliffords) and
the T gate is often written as “Clifford+T”.

T gate (”tee”, π/8) Forth root of the Z gate, T4 = Z.

T = Z
1
4 (29)

=

[
1 0
0 ei

π
4

]

T

The T gate has sometimes been called the π/8 gate since we can extract a phase
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3 Standard 1-qubit gates

and write the T gate as

T = ei
π
8 π

[
e−i

π
8 0

0 e+i
π
8

]

An eight turn anti-clockwise about the ẑ axis.

x̂

ŷ

ẑ

T †

x̂

ŷ

ẑ

Inverse T gate Hermitian conjugate of the T gate.

T † = Z− 1
4 (30)

=

[
1 0
0 e−i

π
4

]
≃ Rz(pi4 )

T †

An eighth turn clockwise about the ẑ axis.

x̂

ŷ

ẑ

T

x̂ ŷ

ẑ

3.8 Global phase
Global phase gate (phase-shift) [14, 0, 0]

Ph(α) = eiαI (31)

=

[
eiα 0
0 eiα

]

Ph(α)

To shift the global phase we multiply the quantum state by a scalar, so it is not
necessary to assign a phase shift to any particular qubit. But on those occasions
where we want to keep explicit track of the phase in a circuit, it is useful to assign
a global phase shift to a particular qubit and temporal location, e.g.

Rx(θ) = Ph(−θ
2 ) X

θ
π

This gate was originally called the phase-shift gate [14], but unfortunately the 1-
qubit gate that shifts the phase of the 1 state relative the the zero state is also called
the phase-shift gate (19), which is potentially confusing.
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3 Standard 1-qubit gates

Omega gate [0, 0]

ωk = Ph(π4 k) (32)

=

[
ei

π
4 k 0
0 ei

π
4 k

]
An alternative parameterization of a global phase shift. Note that this gate is an
eight root of the identity, ω8 = I. This gate, with integer powers, crops up when
constructing the 1-qubit Clifford gates from Hadamard and S gates, since SHSHSH =

ω (see p. 66).
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4 Decomposition of 1-qubit gates

4 Decomposition of 1-qubit gates
A general 1-qubit gate corresponds to some 2 by 2 unitary matrix,

U = eiα
[
a −b∗

b a∗

]
(33)

where a and b are complex with |a|2 + |b|2 = 1, and α is real. Given such a generic
unitary, we would like to represent this gate using standard parameterized gates.

The first step to deke4 a gate is to extract the phase factor α,

V = eiαU (34)

so that V is a special unitary matrix with detV = 1. In general, if we multiply a
special unitary matrix by a complex phase c then det cU = ck where k is the rank
of the matrix, i.e. k = 2n for n qubits. This follows since the determinate is the
product of the eigenvalues, and multiplying a matrix by a constant multiplies each
eigenvalue by that constant. Thus the determinate ofU is detU = ei2α, and we can
extract the phase factor αwith some trigonometry.

α = 1
2 arctan2

(
Im(detU), Re(detU)

)
(35)

The two-argument arctangent function arctan2(y, x) returns the angle θ between
x-axis and the ray from the origin to (x,y). In contrast the single argument arctan-
gent function arctan(y/x) only gives the correct answer for x > 0 since it can’t
distinguish between (x,y) and (−x,−y).

(x,y)

r

θ = arctan2(y, x)

For a complex number x + iy = reiθ, the modulus (or magnitude) r =
√
x2 + y2

and the phase (or argument) is θ = arctan2(y, x).

4.1 Z-Y-Z decomposition
Any 1-qubit gate can be decomposed as a sequence of Z, Y, and Z rotations, and a
phase [14]5.

U = eiα Rz(θ2) Ry(θ1) Rz(θ0) (36)

Or in circuit notation.

U = Rz(θ0) Ry(θ1) Rz(θ2) Ph(α)

4 deke —dek— verb — To decompile, deconstruct, or decompose.
1995 Neal Stephenson The Diamond Age “We gotta deke all this stuff now” Easy come, easy go.

5The Z-Y decomposition is of ancient origin, long know in the theory of light polarization [? ]
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4 Decomposition of 1-qubit gates

Note that we have numbered the three angles in chronological order, and recall that
time runs right-to-left in operator notation, but left-to-right in circuit notation.

If multiply out the circuit, then we get the following universal 1-qubit gate.

U = eiα

+e+i(+
1
2θ2+

1
2θ0) cos( 1

2θ1) −e−i(−
1
2θ2+

1
2θ0) sin( 1

2θ1)

+e+i(+
1
2θ2−

1
2θ0) sin( 1

2θ1) +e−i(+
1
2θ2+

1
2θ0) cos( 1

2θ1)

 (37)

The first step in the decomposition is to extract the phase using Eq. (35), leaving a
special unitary matrix V = e−iαU. The value of θ1 can be calculated from the ab-
solute value of either the diagonal or off-diagonal elements, provided those entries
aren’t close to zero. For instance, the Z-gate has zero off-diagonal entries, whereas
the X-gate has zeros on the diagonal. But the diagonal and off-diagonal entries
can’t approach zero at the same time. So to calculate θ1 with greatest numerical
accuracy, we use whichever element has the largest absolute value.

θ1 =

{
2 arccos(|V00|), |V00| ⩾ |V01|

2 arcsin(|V01|), |V00| < |V01|
(38)

Having extracted θ1, we can now calculate the sum θ0 + θ1 from V11 using the
arctan2 function.

θ0 + θ2 = 2 arctan2
(

Im(
V11

cos( 1
2θ1)

), Re( V11

cos( 1
2θ1)

)

)
. (39)

except if cos( 1
2θ1) = 0 then θ0 + θ2 = 0.

Similarly we can extract the difference θ0 − θ2 from V10.

θ0 − θ2 = 2 arctan2
(

Im(
V10

sin( 1
2θ1)

), Re( V10

sin( 1
2θ1)

)

)
(40)

again with an exception that if sin( 1
2θ1) = 0 then θ0 − θ2 = 0. Taking the sum and

differences of (39) and (40) yields θ0 and θ2, which completes the decomposition.
Instead of rotation gates, we could express the same decomposition as Pauli-

power gates with a reparameterization.

U =eiα
′
Zt2 Yt1 Zt0 (41)

α ′ = α− (θ0 + θ1 + θ2)/π

t0 = θ0/π

t1 = θ1/π

t2 = θ2/π

4.2 V-Z decomposition
For some superconducting qubit architectures the natural 1-qubit gates are Z-rotations
Rz and V (22)6 the square root of X [0]. There isn’t direct access to Ry rotations or
generalRx rotations, but this is only a minor inconvenience sinceRz(θ) = V†Ry(θ)V ,

6Note that here V refers to a specific 1-qubit gate, the square-root of the X gate, whereas elsewhere V
is used to denote a general unitary or special unitary matrix. Such notational ambiguities are inevitable
since there’s only so many squiggles to go around [0].
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4 Decomposition of 1-qubit gates

Table 4.1: Euler decompositions

Euler decomposition Similarity transform to Z-Y-Z
X-Y-X h†

X-Z-X C

Y-X-Y C†

Y-Z-Y VHV†

Z-X-Z S†

Z-Y-Z I

(§??) and we can therefore decompose 1-qubit gates to a 5-gate sequence,

U = eiα Rz(θ2) V
† Rz(θ1) V Rz(θ0) . (42)

4.3 General Euler angle decompositions
Instead of a Z-Y-Z decomposition, we might instead desire a different decomposi-
tion, for example X-Y-X.

U = Rx(θ2)Ry(θ1)Rx(θ0) (43)

The trick is to perform a similarity transform that takes us back to the Z-Y-Z decom-
position that we already know how to perform.

V = CUC† = CRy(θ2)C
† CRz(θ1)C

† CRy(θ0)C
† (44)

= Rz(θ2)Ry(θ1)Rz(θ0)

Here we want the single qubit gate C that moves the +ŷ axis to +x̂, but leaves the
ẑ axis alone. Consulting page ?? we see that the required gate is S†. Therefore to
find the parameters of a X-Y-X decomposition we carry out the similarity transform
V = S† U S and then perform a Z-Y-Z decomposition.

There are 6 distinct proper-Euler decompositions, and the appropriate similar-
ity transforms to Z-Y-Z are listed in Table 4.1. These are all 1-qubit Clifford gates
(Table 12.1).

4.4 Bloch rotation decomposition
Finally lets consider the decompositions of 1-qubit gates into single rotations about
a particular axis (13).

Rn⃗(θ) =

[
cos( 1

2θ) − inz sin( 1
2θ) −ny sin( 1

2θ) − inx sin( 1
2θ)

ny sin( 1
2θ) − inx sin( 1

2θ) cos( 1
2θ) + inz sin( 1

2θ)

]
(45)
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4 Decomposition of 1-qubit gates

Assuming that we have already extracted the phase and therefore V is a 1-qubit
special unitary matrix, we can proceed as follows.

N =
√
(ImV0,1)2 + (ReV0,1)2 + (ImV0,0)2 (46)

nx = − ImV0,1/N

ny = −ReV0,1/N

nz = − ImV0,0/N

s = sin( 1
2θ) = − ImV0,0/nz

c = cos( 1
2θ) = ReV0,0

θ = 2 arctan2(s, c)

The one ambiguous edge case that needs to be accounted for is that the identity can
be represented as a zero-radians rotation about any axis.

4.5 Decomposition of Bloch rotation
A rotation about an arbitrary axis in the Bloch sphere can be analytically decom-
posed into a sequence of five Rz and Ry gates [30].

Rn⃗(θ) = Rz(+α)Ry(+β)Rz(θ)Ry(−β)Rz(−α) (47)
α = arctan2(ny,nx)

β = arccos(nz)
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5 The canonical gate

5 The canonical gate
The canonical gate is a 3-parameter quantum logic gate that acts on two qubits [0,
0, 0].

Can(tx, ty, tz)

= exp
(
−i
π

2
(txX⊗ X+ tyY ⊗ Y + tzZ⊗ Z)

)
(48)

Recall that X = ( 0 1
1 0 ), Y = ( 0 -i

i 0 ), and Z = ( 1 0
0 -1 ) are the 1-qubit Pauli matrices, and

that

X⊗ X =

[ 0 0 0 +1
0 0 +1 0
0 +1 0 0
+1 0 0 0

]
,

Y ⊗ Y =

[ 0 0 0 −1
0 0 +1 0
0 +1 0 0
−1 0 0 0

]
, and

Z⊗ Z =

[
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

]
.

Other parameterizations of the canonical gate are common in the literature. Of-
ten the sign is flipped, or the π

2 factor is absorbed into the parameters, or both. The
parameterization used here the nice feature that it corresponds to powers of direct
products of Pauli operators (up to phase) (see (62),(63),(64)).

Can(tx, ty, tz) ≃ XXtx YYty ZZtz

Here we use ’≃’ to indicate that two gates have the same unitary operator up to a
global (and generally irrelevant) phase factor.

The canonical gate is, in a sense, the elementary 2-qubit gate, since any other 2-
qubit gate can be decomposed into a canonical gate, and local 1-qubit interactions [0,
0, 23, 26, 28, 36].

U0 ≃
K1

Can(tx, ty, tz)
K3

K2 K4

We will discuss the numerical decomposition of 2-qubit gates to canonical gates
in section (§7.2). For know it is sufficient to now that the non-local properties of
every 2-qubit gate can be characterized by the 3-parameters of the corresponding
canonical gate. We’ll use ’∼ ′ to indicate that two gates are locally equivalent, in that
they can be mapped to one another by local 1-qubit rotations.

The parameters of the canonical gate are periodic with period 4, or period 2 if
we neglect a −1 global phase factor. Thus we can constrain each parameter to the
range [−1, 1). Since X⊗ X, Y ⊗ Y, and Z⊗ Z all commute, the parameter space has
the topology of a 3-torus.
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5 The canonical gate

By applying local gates we can decrement any one of the canonical gate’s pa-
rameters,

Y
Can(tx, ty, tz)

Z

Y Z

= Can(tx − 1, ty, tz) ,

we can flip the signs on any pair of parameters,

Z
Can(tx, ty, tz)

Z
= Can(−tx,−ty, tz) ,

or we can swap any pair of parameters,

S
Can(tx, ty, tz)

S†

S S†

= Can(ty, tx, tz) .

Because of these relations the canonical coordinates of any given 2-qubit gate
are not unique since we have considerable freedom in the prepended and appended
local gates. To remove these symmetries we can constraint the canonical parameters
to a “Weyl chamber” [0, 0].

( 1
2 ⩾ tx ⩾ ty ⩾ tz ⩾ 0) ∪ ( 1

2 ⩾ (1 − tx) ⩾ ty ⩾ tz > 0) (49)

This Weyl chamber forms a trirectangular tetrahedron. All gates in the Weyl cham-
ber are locally inequivalent (They cannot be obtained from each other via local 1-
qubit gates). The net of the Weyl chamber is illustrated in Fig. A.1, and the coordi-
nates of many common 2-qubit gates are listed in table 5.1.

There is an additional symmetry across the bottom face of the chamber. Gates
located at Can(tx, ty, 0) are locally equivalent to Can(1−tx, ty, 0), since we can now
flip the sign of tx without changing the other parameters.

Can(tx, ty, 0)
Z Y

Y Z

= Can(1 − tx, ty, 0)

29



5 The canonical gate

Swap

√
Swap

√
Swap†

I

I

CNot
CV

CV

iSwap
B

ECP QFT

√
iSwap

√
iSwap

tx

ty

tz

Figure 5.1: Location of the 11 principal 2-qubit gates in the Weyl chamber. All
of these gates have coordinates of the form Can( 1

4kx, 1
4ky, 1

4kz), for integer kx, ky,
and kz. Note there is a symmetry on the bottom face such that Can(tx, ty, 0) ∼

Can(1 − tx, ty, 0).

Neighboring canonical gates can be merged by summing the parameters.

Can(sx, sy, sz) Can(tx, ty, tz) = Can(sx + tx, sy + ty, sz + tz)

Taking the Hermitian conjugate of the canonical gate simple inverts the parameters
Can(tx, ty, tz)† = Can(−tx,−ty,−tz), and more generally powers of the canonical
gate multiply the parameters, Can(tx, ty, tz)c = Can(ctx, cty, ctz).
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5 The canonical gate

Table 5.1: Canonical coordinates of common 2-qubit gates
Gate tx ty tz t ′x t ′y t ′z

⩽1
2 ¿ 1

2

I2 0 0 0 1 0 0

CNot / CZ / MS 1
2 0 0

iSwap / DCNot 1
2

1
2 0 3

4
1
2 0

Swap 1
2

1
2

1
2

CV 1
4 0 0 3

4 0 0
√

iSwap 1
4

1
4 0 3

4
1
4 0

DB 3
8

3
8 0 5

8
3
8 0

√
Swap 1

4
1
4

1
4

√
Swap† 3

4
1
4

1
4

B 1
2

1
4 0

ECP 1
2

1
4

1
4

QFT2
1
2

1
2

1
4

Sycamore 1
2

1
2

1
12

Ising / CPhase t 0 0

XY t t 0 t 1-t 0

Exchange / Swapα t t t t 1-t 1-t

PSwap 1
2

1
2 t

Special orthogonal tx ty 0

Improper orthogonal 1
2 ty tz

XXY t t δ t 1-t δ

δ t t δ t t
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6 Standard 2-qubit gates
There are four unique 2-qubits gates in the Clifford group (up to local 1-qubit Clif-
fords): the identity, CNot, iSwap, and Swap gates.

6.1 Identity
Identity gate The trivial no-operation gate on 2-qubits, represented by a 4x4 iden-
tity matrix. Acting on any arbitrary state, the gate leaves the state unchanged.

I2 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
= I⊗ I (50)

= Can(0, 0, 0)

6.2 Controlled-Not gates
Controlled-Not gate (CNot, controlled-X, CX, Feynman) [0, 0]

CNot =
(

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
(51)

∼ Can( 1
2 , 0, 0)

HCNot =
1
2 (I− Z)⊗HX

= −π
4 (I− Z)⊗ (I− X)

Typically represented by the circuit diagrams

or
X

.

The CNot gate is not symmetric between the two qubits. But we can switch
control • and target ⊕ with local Hadamard gates.

=
H H

H H

=

(
1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 0

)

In classical logic a controlled-NOT has unambiguous control and target bits. The
control bit influences the state of the target bit, and the target bit has no influence
on the state of the control bit. But in quantum logic we can switch the apparent
target and control with a local change of basis, which is essentially just a change in
perspective as to which quantum states count as zero and one. In quantum logic
there are no pure control operations per se. There is no unambiguous distinction
between control and target. Joint operations on qubits create entanglement, and
every action has a back reaction.

Controlled-Y gate

CY =

( 1 0 0 0
0 1 0 0
0 0 0 −i
0 0 +i 0

)
(52)

∼ Can( 1
2 , 0, 0)
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6 Standard 2-qubit gates

Commonly represented by the circuit diagram:

Y

The CY gate is locally equivalent to CNot.

Y

≃
S† S

The CY gate is not encountered often, with the CNot (CX) and CZ gates being fa-
vored7.

Controlled-Z gate (CZ, controlled-sign, or CSign)

CZ =

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
(53)

∼ Can( 1
2 , 0, 0)

Commonly represented by the circuit diagrams

or
Z

or Z

Note that the controlled-Z gate is invariant to permutation of the qubits. So al-
though we may conceive of this gate as a controlled operation, there is absolutely
no distinction between control and target qubits.

The CZ gate is locally equivalent to the CNot gate.

≃
H H

The intuition is that the CNot gate applies an X gate to the ⊕ target qubit, and
HXH = Z.

The CZ gate is frequently used as the elementary 2-qubit gate in circuit decom-
positions instead of the CNot gate. The CNot gate has the advantage that it directly
corresponds to a classical reversible gate. On the other hand the CZ gate is in-
trinsically quantum (and therefore may be harder to reason about), but it has the
advantages of being invariant to swapping qubits, and of being diagonal in the
computational basis, which makes commutation relations easier to understand.

Controlled-Hadamard gate (CH) [? 35]

CH =


1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2 −

1√
2

 (54)

7Probably for no better reasons than that the CX and CZ gate operators don’t feature imaginary
numbers.
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6 Standard 2-qubit gates

Occasionally turns up in applications, such as the decomposition of the W gate (??).

H

≃
S H T T † H S†

Mølmer-Sørensen gate (MS) [17, 57]

MS =
1√
2

( 1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1

)
(55)

= Can(− 1
2 , 0, 0)

∼ Can( 1
2 , 0, 0)

∼ CNot

Proposed as a natural gate for laser driven trapped ions. Locally equivalent to
CNot. The Mølmer-Sørensen gate, or more exactly its complex conjugate MS† =

Can( 1
2 , 0, 0) is the natural canonical representation of the CNot/CZ/MS gate fam-

ily. (Note that Mølmer-Sørensen is also sometimes taken to be equivalent to the XX
gate)

Magic gate (M) [0, 0, 0, 25]

M =
1√
2

[ 1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

]
(56)

∼ Can( 1
2 , 0, 0) (57)

The magic gate transforms to the magic basis, which has a number of useful proper-
ties. See (§7.2). Locally equivalent to CNot.

M ≃
S

S H

6.3 iSwap locally equivalent gates
iSwap (imaginary swap) gate [0, 0, 0] iSwap

iSwap =

( 1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

)
(58)

≃ Can(− 1
2 ,− 1

2 , 0)

fSwap (fermionic swap) gate [0]fSwap

fSwap =

( 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

)
(59)

∼ Can( 1
2 , 1

2 , 0)

The fermionic swap gate swaps adjacent fermionic modes in the Jordan-Wigner
representation. A qubit in a zero state represents a fermion (typically an electron)
in an orbital, and a zero state represents a hole. Since the qubits are representing
identical fermions, swapping two particles has to apply a −1 phase to the state.
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6 Standard 2-qubit gates

Double Controlled NOT gate (DCNot)[21, 26]

DCNot =
[

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

]
(60)

∼ Can( 1
2 , 1

2 , 0)

A CNot gate immediately followed by another CNot with control and target inter-
changed. The DCNot gate is in the iSwap locality class.

≃
H S†

iSwap
S† H

Note that unlike iSwap, action of DCNot is not invariant to the interchange of qubits.

6.4 Swap gate
A gate that swaps the state of two-qubits, located at the apex of the Weyl chamber [0,
0].

Swap =

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
(61)

≃ Can( 1
2 , 1

2 , 1
2 )

HSwap = π
4 (X⊗ X+ Y ⊗ Y + Z⊗ Z+ I⊗ I)

Swap gates are needed in physical realizations of quantum computers to move
qubits into physical proximity so other gates can be performed between neighbors.
In some cases this can be achieved by physically moving qubits. For example Hon-
eywell’s ion trap architecture can physically shift ions around the trap [0]. But in
many cases physically moving qubits isn’t possible. Swap gates can be synthesized
from other quantum gates, most notable 1 Swap requires 3 CNot gates.

=

6.5 Ising gates
Gates in the Ising class have coordinates Can(t, 0, 0), which forms the front edge of
the Weyl chamber. This includes the identity and CNot gates, and also all 2-qubit
controlled unitary gates of the form

U

=

[ 1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11

]
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6 Standard 2-qubit gates

Ising gates

ZZ (Ising) gate

ZZ(t) = e−iπ
2 tZ⊗Z (62)

=

(
e−i π

2 t 0 0 0
0 e+i π

2 t 0 0
0 0 e+i π

2 t 0
0 0 0 e−i π

2 t

)
= Can(0, 0, t)
∼ Can(t, 0, 0)

ZZt

XX gate

XX(t) = e−iπ
2 tX⊗X (63)

=

 cos(π
2 t) 0 0 −i sin(π

2 t)

0 cos(π
2 t) −i sin(π

2 t) 0
0 −i sin(π

2 t) cos(π
2 t) 0

−i sin(π
2 t) 0 0 cos(π

2 t)


= Can(t, 0, 0)

XXt

YY gate

YY(t) = e−iπ
2 tY⊗Y (64)

=

 cos(π
2 t) 0 0 +i sin(π

2 t)

0 cos(π
2 t) −i sin(π

2 t) 0
0 −i sin(π

2 t) cos(π
2 t) 0

+i sin(π
2 t) 0 0 cos(π

2 t)


= Can(0, t, 0)
∼ Can(t, 0, 0)

YYt

Notable the XX, YY and ZZ gates all commute with one another. This is because
Pauli operators of different types anti-commute, but here we have pairs of Pauli’s
acting on separate qubits, so the gates commute.
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6 Standard 2-qubit gates

CPhase (Controlled phase) gate [0, 41]

CPhase(θ) =
[ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 eiπθ

]
(65)

∼ Can(− θ
2π , 0, t)

Controlled phase shift gate (??)

HCPhase = −θ
4 (I+ Z0 ⊗ Z1 − Z0 − Z1) (66)

P(θ)
≃

ZZ− θ
2π

Z
θ

2π

Z
θ

2π

The QUIL quantum programming language [41, 0] defines several variants of
the CPhase gate. Instead of the phase change occurring when both qubits are 1,
instead the phase shift happens for qubits in the 00, 01, or 11 states. Each of these
variants is closely related to the standard CPhase gate, and aren’t explicitly used
much in practice.

CPhase00(θ) =

[
eiπθ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

]
=

X X

X P(θ) X

CPhase01(θ) =

[ 1 0 0 0
0 eiπθ 0 0
0 0 1 0
0 0 0 1

]
=

X X

P(θ)

CPhase10(θ) =

[ 1 0 0 0
0 1 0 0
0 0 eiπθ 0
0 0 0 1

]
=

X P(θ) X

CT CS CZ CTCS

Controlled rotation gate [0] A controlled unitary represented as a rotation Rn⃗(θ)
(13) around an arbitrary vector in the Bloch sphere.

CRn⃗(θ) = e
−i

1
2θ(I−Z)⊗(nxX+nyY+nzZ) (67)

Rn⃗(θ)
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6 Standard 2-qubit gates

Locally equivalent to Can( θ
2π , 0, 0). The controlled-rotation is a convenient starting

point for the decomposition of controlled unitaries. See (§7.5).

Barenco gate [12]: A 2-qubit gate of historical interest.

Barenco(ϕ,α, θ) =

( 1 0 0 0
0 1 0 0
0 0 eiα cos(θ) −iei(α−ϕ) sin(θ)
0 0 −iei(α+ϕ) sin(θ) eiα cos(θ)

)
(68)

Barenco [12] showed that the 3-qubit Deutsch gate, which had previously been
shown to be computationally universal, can be decomposed into 5 Barenco gates
(See p. 55), demonstrating that 2-qubit gates can be computational universal for
quantum logic. (In contrast, reversible classical logic requires 3-bit gates for com-
putational universality (§??).)

The Barneco gate is locally equivalent to the XX gate, which can in turn be de-
composed into two CNot gates.

Barenco(ϕ,α, θ) ≃ Z
ϕ
π
−0.5 Y

1
2 Z−1

XX
θ
π

Y
1
2 Z

α
π
−ϕ

π
+1.5

Z−ϕ
π
+0.5 Y

1
2 Z

3
2 Z− 1

2 Y−
θ
π
+0.5 Z

ϕ
π
−1.5

Controlled-V gate (square root of CNot gate):

CV =

( 1 0 0 0
0 1 0 0
0 0 1+i

2
1−i

2
0 0 1−i

2
1+i

2

)
(69)

∼ Can( 1
4 , 0, 0)

Commonly represented by the circuit diagram

V

The CV gate is a square-root of CNot, since the V-gate is the square root of the
X-gate

V V

=

Note that the inverse CV† is a distinct square-root of CNot. However CV and CV†

are locally equivalent, which is a consequence of the symmetry about tx = 1
2 on

the bottom face of the Weyl chamber.
The CV gate can be built from two-CNot gates.

V

≃
T T †

H T H

6.6 XY gates
Gates in the XY class form two edges of the Weyl chamber with coordinates Can(t, t, 0)
(for t ⩽ 1

2 ) and Can(t, 1−t, 0) (for t > 1
2 ). This includes the identity and iSwap gates.
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6 Standard 2-qubit gates

XY-gate [0, 49] Also occasionally referred to as the piSwap (or parametric iSwap)
gate [? ].

XY(t) = e−iπ
2 t(X⊗X+Y⊗Y) (70)

=

[
1 0 0 0
0 cos(πt) −i sin(πt) 0
0 −i sin(πt) cos(πt) 0
0 0 0 1

]
= Can(t, t, 0)
∼ Can(t, 1 − t, 0)

Here we have defined the XY gate here to match the parameterization of the
canonical gate. An alternative parameterization is XY(θ) where θ = −2πt [49? ].

Givens gate [58]

Givens(θ) = exp(−iθ(Y ⊗ X− X⊗ Y)/2)

=

[
1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

]
(71)

∼ Can(θ
π

, θ
π

, 0)

Occurs in quantum computational chemistry.

Givens(θ) ≃ T †

XY
θ
π

T

T T †

Dagwood Bumstead (DB) gate [51] Of all the gates in the XY class, the Dagwood
Bumstead-gate makes the biggest sandwiches. [51, Fig. 4]

DB =

[ 1 0 0 0
0 cos( 3π

8 ) −i sin( 3π
8 ) 0

0 − sin( 3π
8 ) cos( 3π

8 ) 0
0 0 0 1

]
(72)

= XY( 3
8 )

= Can( 3
8 , 3

8 , 0)

DB

6.7 Isotropic exchange gates
Includes the identity and Swap gates.
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6 Standard 2-qubit gates

Swap-alpha gate [? 28] Powers of the Swap gate Target

Swapα = e+
π
2 α

 e−i π
2 α 0 0 0

0 cos(π
2 α) i sin(π

2 α) 0
0 i sin(π

2 α) cos(π
2 α) 0

0 0 0 e−π
2 α

 ≃ Can(α2 , α
2 , α

2 ) (73)

Swap
√

Swap
√

Swap†

I

I

Isotropic exchange gates

√
Swap-gate [28]

√
Swap =

 1 0 0 0
0 1

2 (1+i)
1
2 (1−i) 0

0 1
2 (1−i)

1
2 (1+i) 0

0 0 0 1

 (74)

= Can( 1
4 , 1

4 , 1
4 )

The square root of the Swap gate.

Inverse
√

Swap-gate

√
Swap

†
=

 1 0 0 0
0 1

2 (1−i)
1
2 (1+i) 0

0 1
2 (1+i)

1
2 (1−i) 0

0 0 0 1

 (75)

= Can( 3
4 , 1

4 , 1
4 )

Because of the symmetry around tx = 1
2 on the base of the Weyl chamber, the CNot

and iSwap gates only have one square root. But the Swap has two locally distinct
square roots, which are inverses of each other.

6.8 Parametric swap gates
The class of parametric Swap (PSwap) gates forms the back edge of the Weyl cham-
ber, Can( 1

2 , 1
2 , tz), connecting the Swap and iSwap gates. These gates can be decom-

posed into a Swap and ZZ gate, a combination that occurs naturally when consider-
ing Swap networks for routing QAOA style problems (§??).

Can( 1
2 , 1

2 , tz) ≃
ZZtz−

1
2
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6 Standard 2-qubit gates

QFT

iSwap

Swap

Sycamore

pSwap gates

The Sycamore gate is discussed under XXY gates (84).

pSwap gate (parametric swap) [41] The parametric swap gate as originally defined
in the QUIL quantum programming language.

pSwap(θ) =
( 1 0 0 0

0 0 eiθ 0
0 eiθ 0 0
0 0 0 1

)
(76)

∼ Can( 1
2 , 1

2 , 1
2 − θ

π
)

pSwap(θ) ≃
Y

Can(t, t, 1
2 − θ

π
)

Y

≃
ZZ

1
2− θ

π

Y Y

Quantum Fourier transform (QFT) [0] We will discuss the quantum Fourier
transform (QFT) in detail latter (§??). The QFT can be applied to any number of
qubits, and for 2-qubits, the QFT gate is in the PSwap class, half way between Swap
and iSwap.

QFT2 = 1
2

[ 1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

]
(77)

∼ Can( 1
2 , 1

2 , 1
4 )

QFT ≃
H

H

6.9 Orthogonal gates
An orthogonal gate, in this context, is a gate that can be represented by an orthog-
onal matrix (up to local 1-qubit rotations.) The special orthogonal gates have rep-
resentations with determinant +1 and coordinates Can(tx, ty, 0), which covers the
bottom surface of the canonical Weyl chamber.
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6 Standard 2-qubit gates

Special orthogonal gates

The improper orthogonal gates have representations with determinant −1 and
coordinates Can( 1

2 , ty, tz), which is a plane connecting the CNot, iSwap, and Swap
gates.

Improper orthogonal gates

The line of gates locally equivalent to Can( 1
2 , ty, 0) are in both the special and

improper orthogonal local equivalency classes. Theses are know as special perfect
entangling (SPE) gates [27? ? ], or super-controlled gates [? ? ]).

Special perfect entangling gates

By way of illustration, these three orthogonal operators are all in the CNot local
equivalency class, but have determinate of −1, −1, and 1, respectively.[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] [ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] [ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

]
These are a CNot, a CZ, and a CNot followed by a CZ.

B (Berkeley) gate [59] Located in the middle of the bottom face of the Weyl cham-
ber.

B =

 cos(π
8 ) 0 0 i sin(π

8 )

0 cos( 3π
8 ) i sin( 3π

8 ) 0
0 i sin( 3π

8 ) cos( 3π
8 ) 0

i sin(π
8 ) 0 0 cos(π

8 )

 (78)

=

√
2−

√
2

2

 1+
√

2 0 0 i

0 1 i(1+
√

2) 0
0 i(1+

√
2) 1 0

i 0 0 1+
√

2


= Can(− 1

2 ,− 1
4 , 0)
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6 Standard 2-qubit gates

The B-gate, as originally defined, has canonical parameters outside our Weyl
chamber due to differing conventions for parameterization of the canonical gate.
But of course it can be moved into our Weyl chamber with local gates.

B ≃
Z

Can( 1
2 , 1

4 , 0)
Y

Y Z

The B-gate is half way between the CNot and DCNot (∼ iSwap) gates, and thus it
can be constructed from 3 CV (square root of CNot) gates.

B ∼
V

V V

ECP-gate [51]

ECP =
1
2

( 2c 0 0 −i2s
0 (1+i)(c−s) (1−i)(c+s) 0
0 (1−i)(c+s) (1+i)(c−s) 0

−i2s 0 0 2c

)
(79)

c = cos(π8 ) =
√

2+
√

2
2

s = sin(π8 ) =
√

2−
√

2
2

= Can( 1
2 , 1

4 , 1
4 )

The peak of the pyramid of gates in the Weyl chamber that can be created with a
square-root of iSwap sandwich. Equivalent to Can( 1

2 , 1
4 , 1

4 ).

ECP ≃ √
iSwap†

S Y
1
2 √

iSwap†
Y−

1
2 S†

S Y
1
2 Y−

1
2 S†

B

ECP

B and ECP gates, and the ECP pyramid

W-gate [0] A 2-qubit orthogonal and Hermitian gate (and therefore also symmet-
ric) W† = W, that applies a Hadamard gate to a duel-rail encoded qubit.

W =


1 0 0 0
0 1√

2
1√
2 0

0 1√
2 −

1√
2 0

0 0 0 1

 (80)

∼ ECP = Can( 1
2 , 1

4 , 1
4 )
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6 Standard 2-qubit gates

W ≃
H

ThisW gate is locally equivalent to ECP,

W ≃ T † H

ECP
H S T

T † S† H H T

and thus three CNot gates are necessary (and sufficient) to generate the gate.

W ≃ S† H T † T H S

TheW gate has the useful property that it diagonalizes the swap gate [0].

W W =

[ 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

]

A-gate [47, 50]8 A 2-qubit 2-parameter gate in the improper-orthogonal local-
equivalency class.

A(θ,ϕ) =

[ 1 0 0 0
0 cos(θ) e+iϕ sin(θ) 0
0 e−iϕ sin(θ) − cos(θ) 0
0 0 0 1

]
(81)

∼ Can( 1
2 , θ

π
, θ
π
)

This gate is notable in that it conserves the number of 1s (versus 0s) in the compu-
tational basis [47, 50]. This has utility in VQE (§??) ansatzs as a particle-conserving
mixer.

In the Weyl chamber, the A-gates span the line connecting the CNot and Swap
gates [50].

A gates

The W and Swap gates are special cases, and A(0, 0) is locally equivalent to CNot.

A(0, 0) ∼ CNot
A(π4 , 0) = W
A(π2 , 0) = Swap

8Open problem: Find the analytic, Pauli basis decomposition of the A-gate Hamiltonian in terms of
ϕ and θ.
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6 Standard 2-qubit gates

The A-gate requires a 3-CNot decomposition [50].

A(θ,ϕ) ≃
Rz(−ϕ− π) Ry(−θ−

π
2 ) Ry(θ+

π
2 ) Rz(ϕ+ π)

≃ Z
1
2

Can(θ
π

, θ
π

, 1
2 )

Z−ϕ
π Z

ϕ
π
−0.5

6.10 XXY gates
The remaining faces of the Weyl chamber are the XXY family. Thanks to the Weyl
symmetries, this family covers all three faces that meet at the Swap gate.

XXY(t, δ) = Can(t, t, δ) (82)

FSim (Fermionic Simulator) gate [0]

FSim(θ,ϕ) =

[ 1 0 0 0
0 cos(θ) −i sin(θ) 0
0 −i sin(θ) cos(θ) 0
0 0 0 e−iϕ)

]
(83)

∼ Can(θ
π

, θ
π

, ϕ
2π )

Sycamore (Syc) gate [? 54] The native 2-qubit gate on Google’s Sycamore trans-
mon quantum computer architecture. A carefully tuned instance of the fermionic
simulator gate that for reasons that have to do with the details of the hardware can
be performed particularly fast and with relatively low error [? ].

Syc =

[
1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 e−i π

6

]
(84)

≃ FSim(π2 , π
6 )

∼ Can( 1
2 , 1

2 , 1
12 )

In the Weyl chamber the sycamore gate is located 1
6 of the way up the back edge,

between iSwap and the 2-qubit Quantum Fourier transform (See the Weyl chamber
figure in (§6.8)).
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6 Standard 2-qubit gates

Sycamore ≃ Can( 1
2 , 1

2 , 1
12 )

Z− 1
12

Z− 1
12

Synthesizing other gates from sycamore gates is mathematically somewhat involved [?
? 54]. Two sycamores are required to build CNot [? ], B [0], or any gate in the Ising
(CPHASE) class [54], and three for iSwap or Swap [54] or any gate not in the special-
orthogonal locality class. One approach to general gate synthesis is to build B gates
from pairs of Sycamores and then any 2-qubit gate from B gate sandwiches ??, al-
though this requires a total of 4 sycamore gates [? ].

6.11 Perfect entanglers

Perfect entanglers
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7 Decomposition of 2-qubit gates

7 Decomposition of 2-qubit gates
A general 2-qubit gate corresponds to some 4 by 4 unitary matrix, with 16 free pa-
rameters. We can (as per usual) factor out an irrelevant phase (???), but that still
leaves a rather unwieldy 15 parameters. Fortunately, the Kraus and Cirac demon-
strated that any 2-qubit gate can be decomposed into a canonical gate, plus 4 local
1-qubit gates [0, 0, 0, 0]. The local gates account for 4 × 3 = 12 parameters, which
leaves just the 3 parameters of the canonical gate. The canonical gate can be further
decomposed into CNot gates, or other sets of 2-qubit gates as desired.

7.1 Kronecker decomposition
We’ll first consider a simpler decomposition problem that we will use as a sub-
algorithm of the full decomposition. Suppose we have two 1-qubit gates, A and B,
acting on separate qubits, but we are given only the full 2-qubit unitary operator C.
Our task is to recover the two 1-qubit gates.

Mathematically, C is the Kronecker product of the two 1-qubit gates.

C = A⊗ B (85)

=

[
A11B11 A11B12 A12B11 A12B12
A11B21 A11B22 A12B21 A12B22
A21B11 A21B12 A22B11 A22B12
A21B21 A21B22 A22B21 A22B22

]

We will undo the Kronecker product using the Pitsianis-Van Loan algorithm[8,
19]. If the matrixC isn’t constructed from a single Kronecker product, the algorithm
still guarantees that A ⊗ B is the closest Kronecker product to C in the Frobenius
norm.

The trick is to first viewC as 4th order 2×2×2×2 tensor. The Kronecker product
can then be written as the outer product of A and B, followed by a transpose of the
last index of A and the first index of B.

Cmpnq = Amn ⊗ Bpq = [Amn Bpq]
Tn↔p (86)

If we flatten the matrices, we have a normal outer product of vectors, which can be
undone with a singular-value decomposition.

In code, the algorithm can be expressed as follows.

import numpy as np
def nearest_kronecker_product(C):

C = C.reshape(2, 2, 2, 2)
C = C.transpose(0, 2, 1, 3)
C = C.reshape(4, 4)

u, sv, vh = np.linalg.svd(C)

A = np.sqrt(sv[0]) * u[:, 0].reshape(2, 2)
B = np.sqrt(sv[0]) * vh[0, :].reshape(2, 2)

return A, B

We first shape C to a 4th order tensor, so that in the next line we can undo the
axes transposition, before reshaping to a matrix. The singular value decomposition
takes this matrix apart, and we retain the rank-one approximation, retaining only
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7 Decomposition of 2-qubit gates

the largest singular value and corresponding left and right singular vectors. We
reshape the singular vectors to matrices to obtain our desired result.

7.2 Canonical decomposition
Any 2-qubit gate can expressed as a canonical gate (??) plus 4 local 1-qubit gates [0].

U ≃
K1

Can(tx, ty, tz)
K3

K2 K4

Decomposition to the canonical gate is also known as the magic-, Kraus-Cirac- [0],
or KAK-decomposition.

The trick to decomposing a 2-qubit gate unitary to the canonical representation
is a similarity transform to the magic basis.

V =MUM† (87)

M =
1√
2

[ 1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

]
HereM is the magic gate (56). The magic basis has two remarkable properties. The
first is that if U is a special orthogonal matrix (Real, UT = U, and detU = 1), then
in the magic basis U is the Kronecker product of two 1-qubit gates.

V =MUM† = A⊗ B if U ∈ SO(4) (88)

For a sussinct proof see [].
The second useful property is thatM diagonalizes the canonical gate.

Can(tx, ty, tz) =MDM† (89)

D = diag(ei
1
2 (+tx−ty+tz), ei

1
2 (−tx+ty+tz), ei

1
2 (+tx+ty−tz), ei

1
2 (−tx−ty−tz))

With these two properties we can decompose any 2-qubit gate. We’ll assume
that the phase (??) has already been extracted and thatU is therefore special unitary.
We write U as a decomposition into the canonical gate, and Kronecker products of
local gates before and after.

U = (K3 ⊗ K4) Can(tx, ty, tz) (K1 ⊗ K2) (90)

We then make the transform to the magic basis, to give us a diagonal matrix D
sandwiched between two special orthogonal matrices, Q1 and Q2.

V =MUM†

=M(K3 ⊗ K4)M
† M Can(tx, ty, tz)M† M(K1 ⊗ K2)M

†

= Q2 D Q1

The next trick is to take a transpose of V . This inverts the orthogonal matrices,
but leaves the complex diagonal matrix unchanged. The product VTV is therefore
a similarity transform of the diagonal matrix D squared.

VTV = QT
1DQ

T
2 Q2DQ1 = QT

1D
2Q1

An eigen-decomposition of VTV yields the square eigenvalues ofD, andQ1 as the
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7 Decomposition of 2-qubit gates

matrix of eigenvectors. We can then extract the canonical gate coordinates from the
eigenvalues, and undo the magic basis transform to recover the local gates. These
Kronecker products of local gates can be decomposed into separate 1-qubit gates
using the Kronecker decomposition (§7.1) and then further into elementary gates
using a 1-qubit decomposition (§4.1).

7.3 CNot decomposition
The elementary 2-qubit gate is most often taken to be the CNot gate. In general we
can build any canonical gate from a circuit of 3 CNots [? ? 25].

Can(tx, ty, tz) ≃ Ztz−0.5 S†

S Ytx−0.5 Y0.5−ty

Gates on the bottom surface of the Weyl chamber (special orthogonal local equiv-
alency class (§??)) require only 2 CNot gates [? 25? ].

Can(tx, ty, 0) ≃
Z V† Xtx V Z

Z V† Zty V Z

Gates in the improper orthogonal equivalency class (§??) require 3 CNot gates,
or 2-CNots and 1 Swap [25].

Can( 1
2 , ty, tz) ≃

H V† Xtz−0.5 V H

H V† Zty−0.5 V H

Clearly gates locally equivalent to CNot ∼ Can( 1
2 , 0, 0) require only one CNot

gate,

Can( 1
2 , 0, 0) ≃

H S H

H S H

and those locally equivalent to the identity I2 = Can(0, 0, 0) require none.

7.4 B-gate decomposition
The canonical gate can be decomposed in to a B-gate sandwich [59].

Can(tx, ty, tz) ≃
K
†
3

B

Y−tx

B

K
†
1

K
†
4 Zsz Ysy Zsz K

†
2

where

sy = + 1
π

arccos
(
1 − 4 sin2 1

2πty cos2 1
2πtz

)
(91)

sz = − 1
π

arcsin
√

cosπty cosπtz
1 − 2 sin2 1

2πty cos2 1
2πtz
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7 Decomposition of 2-qubit gates

Notably two B-gates are sufficient to create any other 2-qubit gate (whereas we need
3 CNOTs in general).

To recover the local gates Kn we perform another canonical decomposition on
the B gate sandwich sans the terminal local gates [? ]9.

B

Y−tx

B

Zsz Ysy Zsz

≃
K1

Can(tx, ty, tz)
K3

K2 K4

The B-gate is not a native gate on any extant quantum computer, and thus the B-
gate decomposition isn’t used for gate synthesis directly. But the B-gate sandwich
has been used as a compilation strategy for Google’s Sycamore architecture [? ]. The
native sycamore gate (84) is locally equivalent to Can( 1

2 , 1
2 , 1

12 ). A sycamore-gate
sandwich can generate a subset of gates in the special-orthogonal local equivalency
class, including CNOT, the entire Ising class, and B (but notable not iSwap) [? 54].
A B-gate sandwich can then be used to synthesis any other gate using 4-sycamores.

7.5 ABC decomposition
A 2-qubit controlled-unitary gate has an arbitrary 1-qubit unitaryU that acts on the
target qubit if the control qubit is in the one state.

U

=

[ 1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11

]

Controlled-unitaries are all in the Ising gate class (as we’ll show), and can be imple-
mented with at most 2 CNot gates.

The trick is to express the 1-qubit unitary U as an ABC decomposition [14],

U = eiα A X B X C (92)

where the gates A, B, and C are chosen such that ABC = I. We can then express
the controlled unitary as

U

=
C B A Ph(α)

Note that this one situation that the phase of the gate actually matters. A controlled
Z gate is not the same as a controlled-Rz(π) because the 1-qubit unitary had differ-
ent phases. Happily, a ”controlled-global-phase” reduces to a 1 qubit phase shift
gate (19).

Ph(α)
=

[ 1 0 0 0
0 1 0 0
0 0 eiα 0
0 0 0 eiα

]
=
[ 1 0

0 eiα

]
⊗ [ 1 0

0 1 ] =
Rα

The result is a decomposition of a 2-qubit controlled unitary into 5 1-qubit uni-
9Open problem: Zang et al.[59] derived the analytic decomposition of the canonical gate to a B-gate

sandwich only up to local gates. Derive an analytic formula for the necessary local gates to complete
the canonical to B-gate sandwich decomposition.
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7 Decomposition of 2-qubit gates

taries and 2 CNOT gates.

U

=
Rα

C B A

If the control bit is set we apply the desired gate, and if not nothing happens since
ABC = I.

We can construct an ABC decomposition by a rearrangement of a Z-Y-Z decom-
position (§4.1).

U = eiα Rz(θ2) Ry(θ1) Rz(θ0) (93)
= eiαRz(θ2) Ry(

1
2θ1) Ry(+

1
2θ1) Rz(+

1
2θ0 +

1
2θ2) Rz(

1
2θ0 −

1
2θ2)

= eiαRz(θ2) Ry(
1
2θ1) X Ry(−

1
2θ1) X X Rz(−

1
2θ0 −

1
2θ2) X Rz(

1
2θ0 −

1
2θ2)

= eiα A X B X C

where

A = Rz(θ2) Ry(
1
2θ1) ,

B = Ry(−
1
2θ1) Rz(−

1
2θ0 −

1
2θ2) ,

C = Rz(
1
2θ0 −

1
2θ2) .

Note that X Rz(θ) X = Rz(−θ) and X Ry(θ) X = Ry(−θ). We can understand these
relations by looking at the Bloch sphere. The X gate is a half turn rotation about the
x̂ axis, so the ẑ and ŷ axes are inverted, and the respective rotation gates induce an
anti-clockwise rather than clockwise rotations relative to the original axes.

Another approach is to deke U into a general 1-qubit rotation gate.

U

=
Rα

Rn⃗(θ)

The rotation gateRn⃗(θ) can be analytically decomposed into a 5 gate sequence (??),
which can be rearranged into an ABC decomposition.

Rn⃗(θ) = Rz(+α)Ry(+β)Rz(θ)Ry(−β)Rz(−α) (94)
= AXBXC

where

A = Rz(+α)Ry(+β)Rz(
θ
4 ) ,

B = Rz(−
θ
2 ) ,

C = Rz(
θ
4 )Ry(−β) .

Thus a controlled-rotation gate can be expressed as

Rn⃗(θ)
=

Rz(−α) Ry(−β) Rz(
θ
4 ) Rz(−

θ
2 ) Rz(

θ
4 ) Ry(+β) Rz(+α)

Note that the parameters α and β do not depend on rotation angle θ. If we compare
to the CNot decompositions of the canonical gate (§??), we can see that a controlled-
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7 Decomposition of 2-qubit gates

rotation gate Rn⃗(θ) is locally equivalent to Can( θ
2π , 0, 0). Not only does this demon-

strate that controlled-unitaries are in the Ising gate class, but we also see that the
position of the gate along the front edge of the Weyl chamber is directly propor-
tional to the controlled-unitary’s angle of rotation in the Bloch sphere.
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8 Standard 3-qubit gates

8 Standard 3-qubit gates
Regrettable there doesn’t appear to be an easy way to characterize and visualizes
the space of 3-qubit gates in the same way there is for 1-qubit (Bloch ball) and 2-
qubit gates (Weyl chamber). Which is perhaps not surprising since a general 3-qubit
gate has (23)2 = 64 parameters.

Fortunately there are only a few specific 3-qubit gates that show up in practice,
most of which are directly related to the Toffoli (or controlled-controlled-not) gate.

Toffoli gate (controlled-controlled-not, CCNot) [3, 5, 14] A 3-qubit gate with
two control and one target qubits. Originally studied in the context of reversible
classical logic, where 3-bit gates are necessary for universal computation [3? ]. The
target bit flips only if both control bits are one. We often encounter this gate when
converting classical logic circuits to quantum circuits.

CCNot =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 =

HCCNot = −π
8 (I0 − Z0)(I1 − Z1)(I2 − X2) (95)

= π
2


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 1
0 0 0 0 0 0 1 -1


The CCNot can be decomposed into a circuit of at least 6 CNots [18].

≃

T

T T †

H T † T T † T H

The above circuit assumes that we can apply CNot gates between any of the 3 qubits.
If we are instead restricted to CNots between adjacent qubits, then we can decom-
pose into 8 CNot gates, which is fewer than if we added explicit Swap operations.

≃

T

T T †

H T T T † T † H

This depth 9 decomposition requires 7 CNots [34]. Since more gates can be applied
at the same time, the gate depth is less despite more 2-qubit gates.

≃
T T †

T T † T †

H T T H
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8 Standard 3-qubit gates

Another decomposition requires 3 CV and 2 CNot gates [0].

≃

V V† V

Fredkin gate (controlled-swap, CSwap) [4, 0]

CSwap =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

 =

A controlled swap gate. Another logic gate for reversible classical computing.

HCSwap = −π
8 (I0 − Z0)(X1X2 + Y1Y2 + Z1Z2 − I1I2) (96)

= π
2


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 -1 1 0
0 0 0 0 0 1 -1 0
0 0 0 0 0 0 0 0


A CSwap can be built from 2 CNot gates and 1 CCNot (or 8 CNots in total).

≃

An adjacency respecting decomposition of the CSwap can be formed with 10 CNots
if the target is the first qubit [0],

≃

T

T T † V V

H S† T † T T † T † S V†

or 12 CNots if the target is between the two swapped qubits [0].

≃
T † T V

T V†

H T T T † T † H S†

CCZ gate (controlled-controlled-Z) [0, 0]

CCZ =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 -1

 =

Z
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8 Standard 3-qubit gates

HCCZ = −π
8 (I0 − Z0)(I1 − Z1)(I2 − Z2) (97)

= π
2


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1


The CCNot gate can be converted to the CCZ gate by conjugating the target qubit
with Hadamard gates (in the same way that we can convert a CNot to CZ)

Z

≃

H H

Peres gate [6, 24] Another gate that is universal for classical reversible computing.

Peres =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

 (98)

The Peres gate is equivalent to a Toffoli followed by a CNot gate, and decomposes
into 5 CNots (compared to 6 for Toffoli gates).

The Peres gate is a reversible half-adder. (Recall that a half-adder sums two bits,
whereas a full-adder sums three bits) If we feed a zero bit into the third position,
then the output of the second bit is the sum (mod 2) of the first two bits, and the
third bit is the carry.

⊚•

A A

B sum

0 carry

The above diagram is seen occasionally, where the middle bit of the Peres gate is
denoted by a fisheye.

Deutsch gate [7, 12, 46] Mostly of historical interest, since this was the first quan-
tum gate to be shown to be computationally universal [7].

Deutsch(θ) =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 i cos(θ) sin(θ)
0 0 0 0 0 0 sin(θ) i cos(θ)

 (99)
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8 Standard 3-qubit gates

Examining the controlled unitary sub-matrix, the Deutsch gate can be thought of
as a controlled-controlled-iRx

2(θ) gate.

Deutsch(θ) =

iR2
x(θ)

Barenco [12] demonstrated a construction of the Deutsch gate from 2-qubit “Barenco”
gates, demonstrating that a single type of 2-qubit gate is sufficient for universality.

iR2
x(θ)

≃ Bar(0, π
2 , π

2 ) Bar(0, π
2 , π

2 )

Bar(0, π
4 , θ

2 ) Bar(0, π
4 , θ

2 ) Bar(π,−π
4 , θ

2 )

CCiX gate [60? , 61] A doubly controlled iX gate.

CCiX =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 i
0 0 0 0 0 0 i 0

 (100)

HCCiX = −
π

8
X2(1 − Z1)(1 − Z0)

Can be decomposed into 4 CNot gates,

iX

≃

H T T † T T † H

or 8 CNots respecting adjacency [60, 35].

iX

≃
T † T

T

H T † H

CiSwap gate A controlled iSwap gate.

CiSwap =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 i 0 0
0 0 0 0 0 0 0 1

 (101)

HCiSwap = π
8 (Z0X1X2 + Z0Y1Y2 − X1X2 − Y1Y2)
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8 Standard 3-qubit gates

Can be decomposed into a 2 CNots and a doubly controlled-iX gate (100) [? ].

iSwap
≃

iX

Rasmussen and Zinner (2020) [52] discuss possible implementations using super-
conducting circuits.

Margolus gate [11, 14, 16, 22, 61, 42] A“simplified” Toffoli gate, that differs from
the Toffoli only by a relative phase, in that the |101⟩ state picks up a −1 phase. In
certain circuits Toffoli gates can be replaced with such relative phase Toffoli gates,
leading to lower overall gate counts [61].

Margolus =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 (102)

HMargolus =
π
8 (1 − Z0)(−2 − Z1X2 + Z1Z2 + X2 + Z2)

The Margolus gate is equivalent to a Toffoli gate plus a CCZ gate,

X X

Z

and can be implemented with only 3 CNot gates.

V† T † V V† T † V V† T V V† T V

Note that this decomposition is often expressed in terms of Ry(π4 ), which is the
same as VTV† up to phase, e.g. Nielsen and Chuang [18, Ex 4.26]. This is a T-like
gate: a counter-clockwise eighth turn of the Bloch sphere about the ŷ-axis.
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9 Controlled unitary gates

9.1 Anti-control gates

9.2 Alternative axis control
⊖

⊕

⊘

⊗

|−⟩

|+⟩

|−i⟩

|+i⟩

|0⟩

|1⟩

U

=

√
Y
† √

Y

√
Y

√
Y
†

V† V

V V†

X X

U

9.3 Conditional gates

9.4 Multiplexed gates
A multiplexed [0, 0, 0] gate (also called is a uniformly controlled gate [0, 0]) is a
generalization of the conditional unitary gate with an arbitrary number of control
qubits. For each different bitwise configuration of the control qubits, a different
unitary operator is applied to the target qubits.

If we place the control qubits first, then the matrix of a multiplexed gate has a
block diagonal structure, here illustrated for 3 control qubits.

Mux({U}) =



U000

U001

U010

U011

U100

U101

U110

U111


(103)

Each block U is a unitary operator acting on the same number of qubits. Here
each block is labelled with the corresponding control state (where we are using our
standard tensor conventions (§??)), e.g. The operator U011 acts on the target qubits
when the controls are in the |011⟩ state.

In circuit diagrams the control qubits are typically represents as half-filled cir-
cles, or as boxes.

U

or

□

□

□

U

With C controls, a multiplex gate corresponds to 2C controlled-unitary gates,
one for each possible control-bit configuration.
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9 Controlled unitary gates

U

=

U000 U001 U010 U011 U100 U101 U110 U111

This decomposition provides an intuitive picture of the function of a multiplexed
gate, but we’ll describe a more efficient decomposition below.

9.5 Demultiplexing a multiplexed-Rz gate
We can systematically demultiplex a multiplexed-Rz gate, splitting anN qubit gate
into two N− 1 qubit multiplexed-Rz gates, and two CNots.

Rz

=

Rz Rz

[TODO: WHY THIS WORKS] [TODO: Explicit parameters]

Rz

=

Rz Rz

=

Rz Rz Rz Rz

The trick here is that we have reversed the order of the last decomposition, so that
we can place two CNot gates in juxtaposition, separated only by another CNot with
a different control qubit. Since CNot gates with different controls commute (§??) we
can cancel these juxtaposed CNots.

=

Rz Rz Rz Rz

This trick extend all the way to the final decomposition of 2-qubit conditional-Rz
gates, which would normally require 2 CNots apiece, but instead require only 2 per
pair. The net upshot is that the decomposition of an N qubit multiplexed-Rz gate
required 2N−1 CNot gates and 2N−1 Rz gates.
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10 Decomposition of multi-qubit gates
Let us now consider the problem of decomposing an arbitrary multi-qubit gate,
without necessarily any special structure, into a circuit of 1 and 2 qubit gates. Such
a genericN-qubit quantum gate is represented by a 2N by 2N unitary matrix, with
22N = 4N free parameters (one of which is the phase). The (classical) computational
resources needed to specify such a gate rapidly becomes prohibitive with qubit
count (e.g. a 10 qubit gate has over a million parameters), but decomposition of
gates with a dozen qubits or so is quite feasible.

10.1 Quantum Shannon decomposition
The key to quantum Shannon decomposition is the sine-cosine decomposition, a
standard relation from linear algebra [0]. Any unitary matrix can be written in a
2x2 block structure, and then decomposed into the following form,U00 U01

U10 U11

 =

B0 0

0 B1

 C −S

+S C

A0 0

0 A1

 (104)

where the A’s and B’s are unitary, and C and S are diagonal matrices with C2 +

S2 = I. It follows that we can write C = diag(cos(θ0), cos(θ1), . . .), and S =

diag(sin(θ0), sin(θ1), . . .), wherefore the name of this decomposition10.
The initial and final blocks are equivalent to conditional gates, with a single con-

trol qubit, and potentially many target qubits. The central block is a multiplexed-
Ry gate with the first qubit as target. We can spot this pattern because the overall(

C −S
+S C

)
block structure has the same relationship between parameters as the RY

gate. (Although the θ parameters of the RY gates and those of the cosine-sine de-
composition differ by a factor of 2, for the usual reasons [0])

U =

Ry

A B

A0 0

0 A1

 =

W 0

0 W

D 0

0 D†

V 0

0 V

 (105)

A

=

Rz

V W

10This is a special case of the fully general cosine-sine decomposition, but sufficient for our purposes.
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U =

Rz Ry Rz

U U U U

U =

Rz H Rz H Rz

U U U U

10.2 Decomposition of diagonal gates
A diagonal gate is any gate whose matrix representation is diagonal in the compu-
tation basis. Examples we have already encountered include the identity, Z, CZ,
and CCZ gates. We’ll notate a generic diagonal gate with a delta ‘∆’.

∆

A diagonal gate can be thought of as a multiplexed gate. In particular, if we take the
last qubit as the target, then a diagonal gate on N qubits is a multiplex gate with
N-1 control qubits, and 2N−1 conditional unitaries, each of which is an arbitrary
diagonal 1-qubit gate.

∆ =

U

We can deke a diagonal 1-qubit gate into a Rz gate and a global phase. (this is
one of those situations where we can’t ignore the phase.)

U =
[
u00 0

0 u11

]
=
[
e−ih00 0

0 e−ih11

]
= Rz(θ)Ph(α) (106)

h = i lnu
θ = 1

2 (h11 + h00)

α = −(h11 − h00)

A diagonal gate is therefore equivalent to a multiplexed-Rz gate, and a “multiplexed-
phase”. Each sub-block of the “multiplexed-phase” has the same two values, so the
“multiplexed-phase” breaks apart into a diagonal gate on the N-1 control qubits,
and an identity on the target qubit. (This is the same effect as when a 2-qubit
“controlled-global-phase” gate reduces to a 1-qubit phase shift gate. (§??)) [0]
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10 Decomposition of multi-qubit gates

Ph

= ∆

The net upshot is that a diagonal gate reduces to a multiplexed-Rz gate, and
another diagonal gate on one fewer qubits. We can then recurse the diagonal gate
decomposition, and deke a diagonal gate into a series of multiplexed-Rz gates[62].

∆ =
∆

Rz

=

Rz

Rz

Rz

Rz

Since eachN qubit multiplexed gate requires 2N−1 CNot gates, a generalN qubit
diagonal gate requires 2N−1 + 2N−2 + · · ·+ 2 = 2N − 2 CNot gates.

10.3 Decomposition of controlled-unitary gates

U+ 1
2 U− 1

2 U+ 1
2

10.4 Two-level decomposition
A 2-level unitary is a unitary operation that acts non-trivially on only 2-states. Any
controlled 1-qubit unitary gate is 2-level, e.g. for a single qubit gate U = [ a c

b d ] and
2 control qubits

CCU =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 a c
0 0 0 0 0 0 b d

 (107)

But the active states need not be the last two. Any permutation of a two-level uni-
tary gate is also a two-level unitary, such as

a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d

 . (108)

Similarly any multi-controlled 2x2 unitary, or permutation of the same, is a 2-level
unitary.

⊕ ⊕

⊕ ⊕

U
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10 Decomposition of multi-qubit gates

A d-dimensional unitary operator can be decomposed into a product of, at most,
1
2d(d− 1) 2-level unitaries [10, 0, 0].

We’ll use a 2-qubit gate A as illustration, with dimension d = 22 = 4.

A =

[
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

]
(109)

The trick is that we can set any off-diagonal entry to zero by multiplying by a care-
fully constructed 2-level unitary. Lets start with the (1, 0) entry.

B = U10A =

[
1 b01 b02 b03
0 b11 b12 b13

b20 b21 b22 b23
b30 b31 b32 b33

]
U10 =

 a∗
00
w

a∗
10
w

0 0
a10
w

−a00
w

0 0
0 0 1 0
0 0 0 1

 w =
√

|a00|+ |a10|

Following through the matrix multiplication, we see thatb10 = (a10a00−a00a10)/w =

0, and b00 = (a∗00a00 − a
∗
10a10)/w = w/w = 1

We can now set (2, 0) to zero using the same procedure,

C = U20B =

[ 1 c01 c02 c03
0 c11 c12 c13
0 c21 c22 c23

c30 c31 c32 c33

]
U20 =

 b∗
00
w

0
b∗

20
w

0
0 1 0 0

b20
w

0 −b00
w

0
0 0 0 1

 w =
√

|b00|+ |b20|

and then set (3, 0) to zero.

D = U30C =

[
1 0 0 0
0 d11 d12 d13
0 d21 d22 d23
0 d31 d32 d33

]
U30 =

 c∗
00
w

0 0
c∗

20
w

0 1 0 0
0 0 1 0

c20
w

0 0 −c00
w

 w =
√
|c00|+ |c20|

Once we have set all the off diagonal elements of the left column to zero, then the
off-diagonal elements of the top row must also be zero.

Once we repeat this procedure 1
2d(d−1) times, setting all the lower off-diagonal

entries to zero, we are left with the identity matrix.

I = U32U31U21U30U20U10A (110)

Inverting this circuit, we obtain the original unitary as a product of 2-level unitaries.

A = U†
10U

†
20U

†
30U

†
21U

†
31U

†
32 (111)
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11 Pauli Group and Pauli Algebra
Recall the 4 1-qubit Pauli operators: I = [ 0 0

0 1 ], X = [ 0 1
1 0 ], Y = [ 0 −i

i 0 ], Z = [ 1 0
0 −1 ].

X2 = Y2 = Z2 = I (112)
XY = −YX = iZ

ZX = −XZ = iY

YZ = −ZY = iX

Every pair of Pauli matrices either commutes or anti-commutes.
The Pauli group of 1 qubit operators consists of the 4 Pauli operators multiplied

by factors of±1 or±i. This extra phase ensures that these 16 elements form a group
under matrix multiplication. The Pauli group Pn ofn qubit operators contains 4n+1

elements is formed from the 4 phase factors and tensor products of 1-qubit Pauli
matrices,

Pn = {±1,±i}× {I,X, Y,Z}⊗n (113)
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12 Clifford Gates

12 Clifford Gates
The Clifford gates are an important subgroup of quantum gates. Familiar examples
include the Pauli gates (I, X, Y, Z), phase (S), Hadamard (H), controlled-Z (CZ),
controlled-not (CNOT), and swap. Common non-Clifford gates include T, B, and
Toffolli (CCNOT).

The Clifford group Cn of gates acting on n qubits consists of those gates that
normalize the corresponding Pauli group Pn. In the context of groups, normalize
means that if p is an element of the Pauli group, and V is a Clifford gate, then
p ′ = VpV† is also an element of the Pauli group.

Cn = {V ∈ U2n | VPnV
† = Pn} (114)

The Clifford gates are defined this way because of important applications in
quantum error correcting, which we will come to presently. An alternative ap-
proach is to define the Clifford group as all gates that can be constructed from S, H,
and CNOT. This is the same group, up to phase.

12.1 Single qubit Clifford gates
Consider the X gate as a Clifford acting on the X, Y, and Z single-qubit Pauli ele-
ments.

XXX† = [ 0 1
1 0 ][

0 1
1 0 ][

0 1
1 0 ] = [ 0 1

1 0 ] = +X

XYX† = [ 0 1
1 0 ]
[ 0 −i
i 0

]
[ 0 1

1 0 ] = [ 1 0
0 −1 ] = −Z

XZX† = [ 0 1
1 0 ][

1 0
0 −1 ][

0 1
1 0 ] =

[ 0 −i
i 0

]
= −Y

For every Pauli element we recover another Pauli element when conjugated with
the X gate, and therefore we can confirm that X gate is a Clifford gate.

Similarly we can consider the action of the Hadamard gate on the Pauli basses.

HXH† = 1
2 [

1 −1
1 1 ][ 0 1

1 0 ][
1 −1
1 1 ] = [ 1 0

0 −1 ] = +Z

HYH† = 1
2 [

1 −1
1 1 ][ 0 −i

i 0 ][ 1 −1
1 1 ] = [ 0 i

−i 0 ] = −Y

HZH† = 1
2 [

1 −1
1 1 ][

1 0
0 −1 ][

1 −1
1 1 ] = [ 0 1

1 0 ] = +X

Note that we only ever pick up a ±1 phase, and never an imaginary phase. This
is because any element of the Pauli group with ±1 phase is Hermitian, and the
transformed gate UpU† must also be Hermitian.

On the other hand, if we look at these transformations for a non-Clifford gate
such as the T gate, we do not recover Pauli elements.

TXT † = [ 1 0
0 e+i π

4 ][ 0 1
1 0 ][

1 0
0 e−i π

4 ] = [ 0 e+i π
4

e−i π
4 0

]

TYT † = [ 1 0
0 e+i π

4 ][ 0 −i
i 0 ][ 1 0

0 e−i π
4 ] = −[ 0 e+i π

4

e−i π
4 0

]

TZT † = [ 1 0
0 e+i π

4 ][ 1 0
0 −1 ][

1 0
0 e−i π

4 ] = [ 1 0
0 −1 ] = Z

We need only consider the action of the Clifford element on each of the 4n sin-
gle qubit Pauli gates, because the Pauli group elements are tensor products acting
independently on separate qubits. Up to phase, a Clifford gate is completely de-
termined by the transformation of these Pauli elements [TODO: Why?]. Moreover,
the action of the identity is trivial, and the action on Y can be determined by that
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12 Clifford Gates

on X and Y, since VYV† = −iVXZV† = −i VXV† VZV†. For single qubit Cliffords,
X can map to 6 possibilities, {±X,±Y,±Z}, leaving 4 possibilities for the action on
Z. This gives a total of 6 × 4 = 24 distinct 1-qubit Clifford groups.

The 24 1-qubit Clifford gates are isomorphic to the group of rotations of an octa-
hedron. The coordinates Rn(θ) of these are listed in table 12.1, along with the Pauli
mappings. If we think of the Pauli gates X, Y, Z as the 3 cartesian axes x,y, z, then
the elements of the Clifford group correspond to rotations that map axes to axes.
We have 3 elements that rotate 180◦ about vertices (X, Y, Z); 6 elements (the square
roots of X, Y, and Z) that rotate 90◦ or 270◦ degrees around vertices; 6 Hadamard
like gates that rotate 180◦ about edges; 8 gates elements that rotate 120◦ or 240◦ de-
grees around faces; and the identity. This is a subgroup of the full octahedral group
(which includes inversions), and also equal(??) to S4, the group of permutations of
4 objects.

x

z

y

All 24 single qubit Clifford gates can be generated from just 2 elements, tradi-
tionally chosen to be S and H. For instance X = HSSH. Since (SH)3 = e2πi/8I = ω

(32) we can generate each Clifford gate with 8 different phases. This is why you’ll
sometimes see the number of 1-qubit Clifford gates reported as 8×24 = 192, which
includes in the possible Clifford gates integers powers of a phase ωk = e2πik/8,
k = 0, 1, . . . , 7.

12.2 Two qubit Clifford gates
Lets now consider the action of the 2-qubit CNOT gate on the X and Z single-qubit
Pauli elements. Recall that CNOT is its own inverse. We can commute an X gate
past the CNOT target, and a Z past the CNOT control, which leads to 2 trivial cases.
But the other 2 cases are more interesting. An X gate acting on the control qubit
becomes a pair of X gates, and a Z on the target qubit becomes a pair of Z gates.

X =
X

X

Z =
Z

I

X

=
I

X Z

=
Z

Z

For a CZ gate, the action on Z gates is trivial, but the action on X generates an
extra Z gate.

X =
X

Z

Z =
Z

I
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12 Clifford Gates

Table 12.1: Coordinates of the 24 1-qubit Clifford gates.

Gate θ nx ny nz X Y Z

I 0 +X +Y +Z

X π 1 0 0 +X −Y −Z

Y π 0 1 0 −X +Y −Z

Z π 0 0 1 −X −Y +Z

V 1
2π 1 0 0 +X +Z −Y

V† − 1
2π 1 0 0 +X −Z +Y

h† 1
2π 0 1 0 −Z +Y +X

h − 1
2π 0 1 0 +Z +Y −X

S 1
2π 0 0 1 +Y −X +Z

S† − 1
2π 0 0 1 −Y +X +Z

π 1√
2

1√
2 0

H π 1√
2 0 1√

2 +Z −Y +X

π 0 1√
2

1√
2

π − 1√
2

1√
2 0

π 1√
2 0 − 1√

2

π 0 − 1√
2

1√
2

C 2
3π

1√
3

1√
3

1√
3 +Y +Z +X

C† − 2
3π

1√
3

1√
3

1√
3 +Z +X +Y

2
3π − 1√

3
1√
3

1√
3

− 2
3π − 1√

3
1√
3

1√
3

2
3π

1√
3 − 1√

3
1√
3

− 2
3π

1√
3 − 1√

3
1√
3

2
3π

1√
3

1√
3 − 1√

3

− 2
3π

1√
3

1√
3 − 1√

3
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Table 12.2: Clifford tableaus for select 2-qubit gates

Gate qubit X Z Gate qubit X Z

I 0 +X⊗ I +Z⊗ I

1 +I⊗ X +I⊗ Z

CNOT 0 +X⊗ X +Z⊗ I CZ 0 +X⊗ Z +Z⊗ I

1 +I⊗ X +Z⊗ Z 1 +Z⊗ X +I⊗ Z

iSWAP 0 −Z⊗ Y +I⊗ Z DCNOT 0 +X⊗ X +I⊗ Z

1 −Y ⊗ Z +Z⊗ I 1 +X⊗ I +Z⊗ Z

SWAP 0 +I⊗ X +I⊗ Z

1 +X⊗ I +Z⊗ I

X

=
Z

X Z

=
I

Z

The CNOT and CZ gate are locally equivalent, and are interrelated by 1-qubit
Clifford gates.

≃
H H

Up to local equivalence there are only 4 classes of 2-qubit Clifford gates: the 2-
qubit identity; the CNOT/CZ class, iSwap/DCNOT class, and SWAP. In canonical
coordinates these are CAN(0, 0, 0), CAN( 1

2 , 0, 0), CAN( 1
2 , 1

2 , 0), and CAN( 1
2 , 1

2 , 1
2 ).

Any canonical gate with integer or half integer arguments is a Clifford, and can be
converted to the archetype of one of the classes with 1-qubit Cliffords.

12.3 Clifford tableau
A Clifford gate can be uniquely specified by the gate’s actions on the Pauli matrices
(this follows from the definition of the Clifford gates as the group that normalizes
the Pauli group). And for an n qubit gate we only need to consider the action on
each of the The X and Z Paulis on each of the n qubits. This is because we can
deduce the action on Y from that on X and Z, and the Pauli group factorizes as
a direct product of single qubit Pauli. Some examples of such Clifford tableaus for
two-qubit gates are shown fig. 12.2.

The Clifford tableau representation is redundant, because there are additional
restraints: The resultant Pauli product can’t be the identity, and the X and Z actions
must anti-commute (???). But the redundancy isn’t large. For an n qubit gate we
need to specify the action on 2n Paulis, each of which requires 2 bits for the 4 pos-
sibilities (I, X, Y, Z) on each qubit, plus a sign bit. So the number of bits needed to
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12 Clifford Gates

Table 12.3: Number of Clifford gates |Cn| for n qubits [0]

|Cn| = 2n2+2n
∏

j=1,n
4j − 1

n |Cn| log2 |Cn| 2n(2n+1)

1 24 4.58 6

2 11520 13.49 20

3 92897280 26.47 42

4 12128668876800 43.46 72

5 25410822678459187200 64.46 110

6 852437556169034724016128000 89.46 156

7 457620995529680351512370381586432000 118.46 210

specify a Clifford is at most 2n(2n + 1) ≈ 4n2. The exact number of Clifford gates
for given n is

|Cn| = 2n2+2n
∏

j=1,n
4j − 1 (115)

The minimum number of bits required to uniquely specific a Clifford is asymptot-
ically 2n2, so the Clifford tableau redundancy is no more than a factor of 2. See
table 12.3 for the first few numerical values.
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A Weyl Chamber
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Can(tx, ty, tz) = exp
(
−iπ2 (txX⊗ X+ tyY ⊗ Y + tzZ⊗ Z)

)

Instructions:
(1) Print
(2) Cut along outside edges
(3) Fold along Ising, XY, Exchange, and PSwap edges
(4) Paste tabs

Source code: https://github.com/gecrooks/weyl
Background: https://threeplusone.com/gates

Figure A.1: The Weyl chamber of canonical non-local 2 qubit gates. (Print, cut, fold,
and paste)
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Index
|+i⟩, 7
|+⟩, 7, 19
|−i⟩, 7
|−⟩, 7, 19
|0⟩, 7
|1⟩, 7
∼, locally equivalent gates, 28
π/8 gate , see T gate21
σx, 8
σy, 8
σz, 8
≃, equal up to global phase, 6, 28

A gate, 44
ABC decomposition, 50, 51
arctan2, 24, 25
axis cycling gates, 20

B gate, 30, 31, 43
B gate sandwich, 46
B-gate decomposition, 49
B-gate sandwich, 49, 50
babies, 5
Barenco gate, 38, 56
bit flip, see Pauli-X gate
Bloch rotation decomposition, 26
Bloch sphere, 6
Bloch vector, 7

C gate, see axis cycling gates
canonical coordinates, 30, 31
canonical decomposition, 48
canonical gate, 28
cbit, 6
CCiX gate, 56
CCNot gate, 53
CCZ gate, 54
CH gate, see Controlled-Hadamard gate
CiSwap gate, see controlled iSwap gate,

56
Clifford gates, 21, 32, 65

1 qubit, 65, 67
2 qubits, 66, 68

Clifford group, 65
Clifford tableau, 68
Clifford+T, 21
CNot decomposition, 49
CNot gate, 30–32
CNot gate sandwich, 49
computational basis, see Z basis, 7, 19
conditional gates, 58
controlled iSwap gate, 56
controlled phase gate, see CPhase gate
controlled rotation gate, 37, 51
Controlled sign gate , see CZ gate

controlled unitary, 50
controlled-controlled-not gate, see

CCNot gate
controlled-controlled-Z, see CCZ gate
Controlled-Hadamard gate, 33
Controlled-Not gate, see CNot gate
controlled-swap gate, 54
Controlled-V gate, see CV gate
controlled-X, see CNot gate
controlled-Y gate, see CY gate
Controlled-Z gate, see CZ gate
CPhase gate, 37
CPhase00 gate, 37
CPhase01 gate, 37
CPhase10 gate, 37
CRn⃗(θ), see controlled rotation gate
CSign gate , see CZ gate
CSwap gate, see controlled-swap gate
CV gate, 30, 31, 38
CX gate, see CNot gate
CY gate, 32
CZ gate, 31, 33

Dagwood Bumstead gate, 31, 39
DB gate, see Dagwood Bumstead gate
DCNot gate, 31, 35
deke, 24
Deutsch gate, 38, 55
Double Controlled NOT gate, see DCNot

gate
doubly controlled iX gate, see CCiX gate

ECP gate, 30, 31, 43
ECP pyramid, 43

fermionic swap gate, see fSwap gate
Feynman gate, see CNot gate
fractional phase shift gate, 15
Fredkin gate, see controlled-swap gate
fSwap gate, 34

Givens gate, 39
Givens rotation, 39
global phase gate, 22, 23

H, see Hamiltonian
H gate, see Hadamard gate
Hadamard basis, see X basis, 7, 19
Hadamard gate, 18
Hadamard transform, 19
Hadamard-like gates, 19, 66

I gate, see identity gate
identity gate

1-qubit, 8
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2-qubits, 30–32
imaginary swap gate, seeiSwap gate34
inverse pseudo-Hadamard gate, 17
inverse S gate, 18
inverse square-root Swap gate, 30, 31
inverse T gate, 22
inverse V gate, 16
Ising gates, 35–38, 52
isotropic exchange gates, 39
iSwap gate, 30, 31, 34

Jordan-Wigner representation, 34

KAK decomposition, see canonical
decomposition

Kraus-Cirac decomposition, see
canonical decomposition

Kronecker decomposition, 47
Kronecker product, 47

local equivalence, 28
logical negation, 9

M gate , see magic gate
magic basis, 34, 48
magic decomposition, see canonical

decomposition
magic gate, 34, 48
Margolus gate, 57
minus eye high, 9
MS gate , see Mølmer-Sørensen gate
multiplexed gates, 58
Mux gate, see multiplexed gate
Mølmer-Sørensen gate, 34

NOT gate, 9

octahedral group, 66
omega gate, 23, 66

P gate, see phase shift gate, S gate, see S
gate

parametric iSwap gate, see XY gate
parametric swap gate, see pSwap gate
Pauli algebra, 64
Pauli gates, 8

commutation relations, 8
Pauli group, 64, 65
Pauli operators, 64
Pauli-power gates, 13

decomposition, 25
Pauli-rotation decomposition, 24, 26
Pauli-X gate, 8
Pauli-Y gate, 9
Pauli-Z gate, 9
Peres gate, 55
perfect entanglers, 46

permutation group, 66
phase, 6, 22, 28, 50
phase flip, see Pauli-Z gate
Phase gate, see S gate
phase shift gate, 15, 22, 50
piSwap gate, see XY gate
Pitsianis-Van Loan algorithm, 47
principal 2-qubit gates, 30
problems, 50
pseudo-Hadamard gate, 16
pSwap gate, 41

QFT, see quantum Fourier transform
quantum Fourier transform, 30, 31

1-qubit, 19
2-qubits, 41

quantum pirate gates, 10

recursion, 78
relative phase Toffoli gate, 57
Rn⃗ gate, see rotation gate
rotation gate, 11
Rotation gates, 10
Rx gate, 10
Ry gate, 11
Rz gate, 11

S gate, 17
simplified Toffoli gate, see Margolus gate
SPE gates, see special perfect entangling

gates
special perfect entanglers, 46
special perfect entangling gates, 42
square root of CNot gate, see CV gate
square root Swap gate, 40
square-root iSwap gate, 30, 31
square-root NOT, see V gate
square-root Swap gate, 30, 31
square-root Y-gate, 16, 17
standard basis, see Z basis, 7
super-controlled gates, see special perfect

entangling gates
Swap gate, 30, 31, 35, 40
Swap-alpha gate, 40
Syc gate , see Sycamore gate45
Sycamore gate, 45
sycamore-gate sandwich, 50

T gate, 21
T-like gate, 57
Toffoli gate, see CCNot gate

uniformly controlled gate, 58

V gate, 16
V-Z decomposition, 25

W gate, 43
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Walsh-Hadamard transform, see
Hadamard transform

Weyl chamber, 29–31, 70

X, see Pauli-X gate
X basis, 7
X power gate, 13
XX gate, 36
XY gate, 39

Y basis, 7

Y gate, see Pauli-Y gate
Y power gate, 13
YY gate, 36

Z basis, 7
Z gate, see Pauli-Z gate
Z power gate, 13
Z-Y decomposition, 51
ZYZ decomposition, 24
ZZ gate, 36
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