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Chapter 1

Introductory material

. Related references

. Course material

. Software

. Course evaluation
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1.2 Course material

• Copies of the course notes: Toledo

• Data sets analysed in the course: Toledo

• Books:

. Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for
Longitudinal Data. Springer Series in Statistics. New-York: Springer.

. Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal
Data. New York: Springer-Verlag.
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1.3 Software

• Many software packages nowadays allow fitting of mixed or multilevel models

• In this course, SAS will be used:

. PROC MIXED

. PROC GLIMMIX

. PROC NLMIXED

• SAS is the most flexible in terms of models that can be fitted

• SAS is most up to date with the statistical literature
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1.4 Course evaluation

• Take-home assignment

• Data analysis and reporting in teams

• Report submitted before final examination

• Oral defense of the report
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Chapter 2

Course motivation

. Hierarchical data

. Correlated data

. Overview of model families
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2.1 Hierarchical data

Hierarchical data are obtained when the sample is
taken at multiple, hierarchically ordered, levels.

• Examples:

. Measurements taken on patients, at multiple visits after their treatment

. Growth curves of children, animals, plants, . . .

. Survey in which all members from each of a sample of families are questioned

. Survey in which 10 habitants from each of a sample of cities are questioned

. Exam results from students from a sample of schools

. . . .
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• These are examples of two-level data structures, but extensions to multiple levels
are possible:

10 cities
→ In each: 5 schools
→ In each: 2 classes
→ In each: 5 students
→ Each student given the test twice

• Terminologies:

. Repeated measures

. Longitudinal data

. Multilevel data

. . . .
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2.2 Correlated data

2.2.1 Example: Longitudinal body weight example

• Consider a body weight experiment in which body weight is measured on a daily
basis, for a sample of participants

• It is natural to assume body weights from different subjects to be independent
from each other

• Body weights measured on the same subject are expected to be correlated

Should this correlation be accounted for in analysis ?
If yes, how ?
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2.2.2 Example: Comparing BMI between males and females

• Suppose interest is in comparing the average BMI between males and females,
based on 100 observations from each population

• Natural analysis: Two-sample, unpaired t-test

• Suppose the 100 males and 100 females are married couples

• The BMI of spouses is likely to be correlated

• Natural analysis: Paired t-test
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2.2.3 Conclusion

• Hierarchical data structures often yield data which cannot be assumed independent

• From a statistical perspective, the key issue in modelling hierarchical data is how
to account for the association between observations

• Alternative terminology:

. Repeated measures

. Longitudinal data

. Multilevel data

. Correlated data

. . . .
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2.3 Overview of model families

• Since hierarchical data are correlated, all traditional models in statistics need a
counterpart for correlated data

• Many different models have been proposed in the statistical literature

• We focus on mixed models which explicitly model the various levels in the data
structure

Cross-sectional data −→ Hierarchical data

Linear regression models −→ Linear mixed models

Generalized linear models −→ Generalized linear mixed models

Non-linear regression models −→ Non-linear mixed models
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Part II

Linear Mixed Models
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Chapter 3

The Captopril data

. Example

. Paired t-test

. Paired versus unpaired t-test

. Conclusion
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3.1 Example

• 15 patients with hypertension

• The response of interest is the supine blood pressure, before and after treatment
with CAPTOPRIL

• Research question:

How does treatment affect BP ?

Introduction to Biostatistics 20



• Dataset ‘Captopril’

Before After

Patiënt SBP DBP SBP DBP

1 210 130 201 125

2 169 122 165 121

3 187 124 166 121

4 160 104 157 106

5 167 112 147 101

6 176 101 145 85

7 185 121 168 98

8 206 124 180 105

9 173 115 147 103

10 146 102 136 98

11 174 98 151 90

12 201 119 168 98

13 198 106 179 110

14 148 107 129 103

15 154 100 131 82

Average (mm Hg)

Diastolic before: 112.3

Diastolic after: 103.1

Systolic before: 176.9

Systolic after: 158.0
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3.2 Paired t-test

• Let’s focus on the analysis of the diastolic BP:

Average (mm Hg)

Diastolic before: 112.3

Diastolic after: 103.1

• There is an average decrease of more than 9 mmHG

• The classical analysis of paired data is based on comparisons within subjects:

∆i = Yi1 − Yi2, i = 1, . . . , 15
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• A positive ∆i corresponds to a decrease of the BP, while a negative ∆i is
equivalent to an increase.

• Testing for treatment effect is now equivalent to testing whether the average
difference µ∆ equals zero.

• Statistica output:

• Hence, the average change in BP is significantly different from zero (p = 0.001).

Introduction to Biostatistics 24



3.3 Paired versus unpaired t-test

• What if the Captopril data were analysed using an unpaired t-test ?
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• Results from unpaired and paired t-tests, respectively:

. Unpaired:

. Paired:

• Although both tests lead to a significant result, there is a serious difference in
p-values, showing that ignoring the paired nature of the data can lead to wrong
conclusions.
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3.4 Conclusion

15 × 2 measurements 6= 30 × 1 measurement

• The correlation cannot be ignored in the analyses

• In the paired t-test, the correlation problem is circumvented by taking
within-subject differences ∆i = Yi1 − Yi2, i = 1, . . . , 15

• How to extend this to:

. multiple measurements per subject ?

. include covariate information ?

. multiple levels in the data structure ?
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Chapter 4

The lizard data

. Example

. Two-way ANOVA

. Mixed models

. Fitting mixed models in SAS

. The hierarchical versus marginal model
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4.1 Example

• Data on 102 lizards

• Response of interest: Number of dorsal shells

• Research question:

Is number of dorsal shells gender-related ?
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• Graphically:

• Two-sample t-test:
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• Hence, the small observed difference is not significant (p = 0.1024).

• A typical aspect of the data is that some animals have the same mother.

• We have 102 lizards from 29 mothers

• Mother effects might be present

• Hence a comparison between male and female animals should be based on
within-mother comparisons.
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• Graphically:

• Observations:

. Much between-mother variability

. Often, males (considerably) higher than females

. In cases where females higher than males, small differences
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• Hence the non-significant t-test result may be due to the between-mother
variability

• This is an example of clustered data: Observations are clustered within mothers

• It is to be expected that measurements within mothers are more alike than
measurements from different mothers.

• We expect correlated observations within mothers and independent observations
between mothers.

• How to correct for differences between mothers ?
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4.2 Two-way ANOVA

• An obvious first choice to test for a ‘sex’ effect, correcting for ‘mother’ effects, is
2-way ANOVA with factors ‘sex’ and ’mother’.

• The mother effect then represents the variability between mothers.

• Let Yijk be the kth outcome in the jth gender group for the ith mother.

• Our two-way ANOVA model then equals:

Yijk = µ + αi + βj + εijk,
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• Parameter interpretation:

. Overall mean µ

. Gender effect βj

. Mother effect αi

• The parameter of interest is β2 − β1, the average difference between males and
females

• Since the model is overparameterized, restrictions are needed, e.g.,
∑

i αi = ∑
j βj = 0

• Residual distribution: εijk ∼ N (0, σ2
res)

Introduction to Biostatistics 35



• In order to better reflect the multilevel nature of the data, we will use an
alternative parameterization of the same model, with one index for each level
in the data structure.

• Let Yij be the jth measurement on the ith mother, and let xij be 0 for males and
1 for females.

• The model then equals:

Yij = µ + αi + βxij + εij

• The parameter of interest is β, the average difference between males and females

• We still need restrictions on the parameters αi, e.g., ∑
i αi = 0

• Residual distribution: εij ∼ N (0, σ2
res)
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• Graphically:

i i∗ i′

Mother number

DORS

•

•

•

◦

◦

◦average mother i ←

average mother i∗ ←

→ average mother i′

• SAS program:

proc glm data = lizard;

class mothc;

model dors = sex mothc;

run;
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• Relevant SAS output:

Class Level Information

Class Levels Values

MOTHC 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30

Dependent Variable: DORS

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 29 268.4685062 9.2575347 3.98 <.0001

Error 72 167.3746310 2.3246477

Corrected Total 101 435.8431373

R-Square Coeff Var Root MSE DORS Mean

0.615975 4.351352 1.524680 35.03922
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Source DF Type III SS Mean Square

SEX 1 16.7253690 16.7253690

MOTHC 28 256.9378690 9.1763525

Source F Value Pr > F

SEX 7.19 0.0091

MOTHC 3.95 <.0001

• Note the highly significant mother effect.

• We now also obtain a significant gender effect.

• Many degrees of freedom are spent to the estimation of the mother effect, which
is not even of interest.
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4.3 Mixed models

• Note the different nature of the two factors:

. SEX: defines 2 groups of interest

. MOTHER: defines 29 groups not of real interest. A new sample would imply
other mothers.

• In practice, one therefore considers the factor ‘mother’ as a random factor.

• The factor ‘sex’ is a fixed effect.

• Thus the model is a mixed model.

• In general, models can contain multiple fixed and/or random factors.
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• The model is still of the form:

Yij = µ + αi + βxij + εij

• But the fact that mothers can be assumed to be randomly selected from a
population of mothers is reflected in the additional assumption

αi ∼ N (0, σ2
moth)

• Note that we still have that the αi have mean zero. Before, we had the restriction
∑

i αi = 0

• The normality assumption for the αi is natural and mathematically convenient,
but not necessarily realistic.

• Finally, all αi and εij are assumed independent.
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4.4 Fitting mixed models in SAS

• Mixed model with ‘sex’ as fixed and ‘mother’ as random effect:

proc mixed data = lizard;

class mothc;

model dors = sex / solution;

random mothc;

run;

• Fixed effects are specified in the MODEL statement.

• Random effects are specified in the RANDOM statement.
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• Relevant SAS-output:

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 436.17789431

1 3 407.96849207 0.00072385

2 1 407.88032382 0.00001530

3 1 407.87858406 0.00000001

Convergence criteria met.

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 35.4904 0.3422 28 103.71 <.0001

SEX -0.8289 0.3220 72 -2.57 0.0121

Covariance Parameter

Estimates

Cov Parm Estimate

MOTHC 1.7799

Residual 2.2501

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

SEX 1 72 6.63 0.0121
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• Estimation method is iterative

• Note the significant difference between male and female animals (p = 0.0121)

• With the t-test, ignoring the mother effect, this was p = 0.1024.

• The average difference between males and females is estimated as ̂β = 0.8289

• Covariance parameter estimates:

. σ2
moth represents the variability between mothers: σ̂2

moth = 1.78

. σ2
res represents the variability within mothers: σ̂2

res = 2.25
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4.5 The hierarchical versus marginal model

• Our mixed model was given by

Yij = µ + αi + βxij + εij,

αi ∼ N (0, σ2
moth), εij ∼ N (0, σ2

res), independent

• The above model can be rewritten as

Yij|αi ∼ N (µ + αi + βxij, σ
2
res), independent

αi ∼ N (0, σ2
moth), independent

• Each equation then corresponds to one level in the multilevel data structure

• The model is therefore called the hierarchical model
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• The hierarchical model implies a specific marginal model, i.e., the model which
describes the marginal distribution of the outcomes:

. Normal distribution

. Mean:
E(Yij) = µ + βxij

. Variance:

Var(Yij) = Var(µ + αi + βxij + εij) = Var(αi + εij)

= Var(αi) + Var(εij) = σ2
moth + σ2

res

. Covariance between observations from different mothers i and i∗:

Cov(Yij, Yi∗k) = Cov(µ + αi + βxij + εij, µ + αi∗ + βxi∗k + εi∗k)

= Cov(αi, αi∗) + Cov(αi, εi∗k) + Cov(εij, αi∗) + Cov(εij, εi∗k)

= 0
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. Covariance between observations j and k from the same mother i (j 6= k):

Cov(Yij, Yik) = Cov(µ + αi + βxij + εij, µ + αi + βxik + εik)

= Cov(αi, αi) + Cov(αi, εik) + Cov(εij, αi) + Cov(εij, εik)

= Var(αi) = σ2
moth

• The total variability, correcting for gender differences is decomposed as
within-cluster variability and between-cluster variability:

σ2 = σ2
moth + σ2

res

4.03 = 1.78 + 2.25

• The ‘mother’ factor explains 1.78/4.03 = 44% of the total variability, after
correction for gender

• Observations from different mothers are assumed independent
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• Observations from the same mother are correlated with correlation coefficient

ρI = Corr(Yij, Yik) =
σ2

moth

σ2
moth + σ2

res

=
1.78

1.78 + 2.25
= 0.44

• The correlation ρI is called intraclass correlation

• Note how the mixed model accounts for the correlation in the data through the
random effects αi.

• The correlation will be high in cases with much between-cluster variability, relative
to the within-cluster variability

• The correlation will be low in cases with little between-cluster variability, relative
to the within-cluster variability
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• Graphically:

i i∗ i′

Mother number

DORS

•

•

•

◦

◦

◦average mother i ←

average mother i∗ ←

→ average mother i′

• Much between-cluster variability implies that observations from the same cluster
are ‘more alike’ than observations from different clusters
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Chapter 5

The paired t-test revisited

. Example: The Captopril data

. Analysis in SAS

. The hierarchical versus marginal model

. Conclusion
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5.1 Example: The Captopril data

• A paired t-test analysis of the Captopril data yields:
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• An alternative analysis could be based on a mixed model

• Let Yij be the observation for the ith subject, taken at time point tj = 0, 1:

tj =





0 if before treatment

1 if after treatment

• The mixed model is then of the form:

Yij = µ + αi + βtj + εij,

αi ∼ N (0, σ2
subj), εij ∼ N (0, σ2

res), independent

• The αi are subject-specific effects, reflecting that some patients naturally have
higher BP’s than others, irrespective of the treatment
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• Assuming that subjects are randomly sampled from a population of patients, it is
natural to assume the αi to be random.

• The αi reflect the variability between patients
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5.2 Analysis in SAS

• SAS program:

proc mixed data=capto;

class subject;

model y = time / solution;

random subject;

run;

• Relevant SAS-output:

Class Level Information

Class Levels Values

subject 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Covariance Parameter

Estimates

Cov Parm Estimate

subject 96.5476

Residual 37.1048
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Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 112.33 2.9850 14 37.63 <.0001

time -9.2667 2.2243 14 -4.17 0.0010

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

time 1 14 17.36 0.0010

• The average difference in BP is estimated as ̂β = 9.27

• We obtain the same result as with the paired t-test:

F = t2 =




9.27
8.61√

15




2

= 17.36, 14 degrees of freedom

• Covariance parameter estimates:

. σ2
subj represents the variability between patients: σ̂2

subj = 96.55

. σ2
res represents the variability within patients: σ̂2

res = 37.10
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5.3 The hierarchical versus marginal model

• The mixed model can again be viewed as a hierarchical model:

Yij|αi ∼ N (µ + αi + βtj, σ
2
res), independent

αi ∼ N (0, σ2
subj), independent

• The implied marginal model is again a normal one:

. Expectation E(Yij) = µ + βtj

. Variance σ2 = Var(Yij) = σ2
subj + σ2

res

. Observations from different patients independent

. Observations from the same patient correlated:

ρI = Corr(Yi1, Yi2) =
σ2

subj

σ2
subj + σ2

res
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• In our example, the total variability, not explained by the systematic treatment
effect, equals:

σ2 = σ2
subj + σ2

res = 96.55 + 37.10 = 133.65

• The between-subject variability accounts for 96.55/133.65 = 72.24% of all
variability

• The within-subject correlation is given by

ρI =
σ2

subj

σ2
subj + σ2

res

=
96.55

96.55 + 37.10
= 0.7224

• The above intraclass correlation does not equal the Pearson correlation between
the BP before and after treatment, which equals ρ = 0.7343.

• The reason for this difference is that the Pearson correlation does not assume the
variances of the BP before and after treatment to be equal.
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• The mixed model used assumes constant variance:

σ2 = Var(Yi1) = Var(Yi2) = σ2
subj + σ2

res = 133.65, σ = 11.56

• Summary statistics for both measurements:

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Before 15 112.33333 10.47219 1685 98.00000 130.00000

After 15 103.06667 12.55540 1546 82.00000 125.00000

• Note again that the correlation arises from the large amount of between-subject
variability, relative to the within-subject variability:

ρI = Corr(Yi1, Yi2) =
σ2

subj

σ2
subj + σ2

res
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• Graphically:

⇓ ⇓
Strong correlation Weak correlation
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5.4 Conclusion

• The simplest example of clustered data are paired observations, typically analyzed
using a paired t-test.

• Traditionally, the within-pair correlation is circumvented by taking within-pair
differences ∆i = Yi1 − Yi2 which are then analysed using a one-sample t-test

• Hence, mixed models can be viewed as an extension of the paired t-test to:

. more than 2 observations per cluster

. unbalanced data: unequal number of measurements per cluster

. models with covariates, e.g., ‘sex’, or others

. models with multiple random effects (see later)
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Chapter 6

The growth curves data

. Example

. The model

. Analysis in SAS

. The hierarchical versus marginal model

. ESTIMATE and CONTRAST statements
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6.1 Example

• Taken from Goldstein (1979).

• Research question:
Is growth related to height of

mother ?

• The height of 20 schoolgirls, with small, medium, or tall mothers, was measured
over a 4-year period:

Mothers height Children numbers

Small mothers < 155 cm 1→ 6

Medium mothers [155cm; 164cm] 7→ 13

Tall mothers > 164 cm 14→ 20
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• Individual profiles:
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• Remarks:

. Almost perfect linear relation between Age and Height

. Much variability between girls

. Little variability within girls

. Fixed number of measurements per subject

. Measurements taken at fixed time points
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6.2 The model

• We will assume a linear relation between Age and Height, possibly different for the
different groups.

• With cross-sectional data, the appropriate model would be an ANCOVA model:

. Covariate Age

. Factor Group

. Interaction Age*Group

• With longitudinal data, the observations are clustered within children, implying
within-child correlation

• Correction for the variability between children is done through a random child
effect.
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• As before, let Yij be the jth measurement of height for the ith cluster (child),
taken at time tj (age). Our model is then of the form:

Yij =





β1 + bi + β2tj + εij, if short mother

β3 + bi + β4tj + εij, if medium mother

β5 + bi + β6tj + εij, if tall mother

• As before, it is assumed that random effects bi are normal with mean zero and
variance σ2

child.

• The errors εij are normal with mean zero and variance σ2
res.
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6.3 Analysis in SAS

• SAS program:

proc mixed data = growth;

class group child;

model height = age group age*group / solution;

random child;

run;

• Relevant SAS output:

Covariance Parameter

Estimates

Cov Parm Estimate

CHILD 8.9603

Residual 0.7696

Solution for Fixed Effects

Standard

Effect GROUP Estimate Error DF t Value Pr > |t|

Intercept 83.1229 1.4162 17 58.69 <.0001

AGE 6.2486 0.1049 77 59.59 <.0001

GROUP 1 -1.8229 2.0846 77 -0.87 0.3846

GROUP 2 -0.1486 2.0028 77 -0.07 0.9411

GROUP 3 0 . . . .

AGE*GROUP 1 -0.9786 0.1543 77 -6.34 <.0001

AGE*GROUP 2 -0.6814 0.1483 77 -4.60 <.0001

AGE*GROUP 3 0 . . . .
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Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

AGE 1 77 8385.15 <.0001

GROUP 2 77 0.46 0.6330

AGE*GROUP 2 77 21.66 <.0001

• The hypothesis of interest is H0 : β2 = β4 = β6, which corresponds to testing the
interaction Age*Group

• We find a highly significant difference between the slopes from the three groups
(p < 0.0001)

• Covariance parameter estimates:

. σ2
child represents the variability between children: σ̂2

child = 8.96

. σ2
res represents the variability within children: σ̂2

res = 0.77
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6.4 The hierarchical versus marginal model

• The mixed model can again be viewed as a hierarchical model:

Yij|bi ∼





N (β1 + bi + β2tj, σ
2
res), if short mother

N (β3 + bi + β4tj, σ
2
res), if medium mother

N (β5 + bi + β6tj, σ
2
res), if tall mother

• The implied marginal model is again a normal one:

. Expectation

E(Yij) =





β1 + β2tj, if short mother

β3 + β4tj, if medium mother

β5 + β6tj, if tall mother
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. Variance σ2 = Var(Yij) = σ2
child + σ2

res

. Observations from different children independent

. Observations from the same child correlated:

ρI = Corr(Yi1, Yi2) =
σ2

child

σ2
child + σ2

res

• In our example, the total variability, not explained by the systematic trends, equals:

σ2 = σ2
child + σ2

res = 8.96 + 0.77 = 9.73

• The between-child variability accounts for 8.96/9.73 = 92% of all variability

• The within-child correlation is given by

ρI =
σ2

child

σ2
child + σ2

res

=
8.96

8.96 + 0.77
= 0.9209
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6.5 ESTIMATE and CONTRAST statements

• As in many other SAS procedures, ESTIMATE and CONTRAST statements can
be used to obtain inferences about specific contrasts of the fixed effects.

• Slopes for each group separately, as well as pairwise comparisons are obtained
using the following program:

proc mixed data=growth;

class child group;

model height = group age*group / noint solution;

random child;

contrast ’small-medium’ group*age 1 -1 0;

contrast ’small-tall’ group*age 1 0 -1;

contrast ’medium-tall’ group*age 0 1 -1;

estimate ’small’ group*age 1 0 0 / cl;

estimate ’medium’ group*age 0 1 0 / cl;

estimate ’tall’ group*age 0 0 1 / cl;

run;
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• Note the different parameterization for the fixed effects, when compared to the
original program:

proc mixed data = growth;

class group child;

model height = age group age*group / solution;

random child;

run;

• Relevant SAS output:

Solution for Fixed Effects

Standard

Effect GROUP Estimate Error DF t Value Pr > |t|

GROUP 1 81.3000 1.5297 77 53.15 <.0001

GROUP 2 82.9743 1.4162 77 58.59 <.0001

GROUP 3 83.1229 1.4162 77 58.69 <.0001

AGE*GROUP 1 5.2700 0.1133 77 46.53 <.0001

AGE*GROUP 2 5.5671 0.1049 77 53.10 <.0001

AGE*GROUP 3 6.2486 0.1049 77 59.59 <.0001

Introduction to Biostatistics 72



Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

GROUP 3 77 3234.13 <.0001

AGE*GROUP 3 77 2845.30 <.0001

Estimates

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

small 5.2700 0.1133 77 46.53 <.0001 0.05 5.0445 5.4955

medium 5.5671 0.1049 77 53.10 <.0001 0.05 5.3584 5.7759

tall 6.2486 0.1049 77 59.59 <.0001 0.05 6.0398 6.4574

Contrasts

Num Den

Label DF DF F Value Pr > F

small-medium 1 77 3.71 0.0579

small-tall 1 77 40.20 <.0001

medium-tall 1 77 21.12 <.0001
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• The new parameterization implies completely different tests.

• For example, the tests reported for the Age*Group effect, under both
parameterizations correspond to the hypotheses:

model height = age group age*group; model height = group age*group / noint;

↓ ↓
H0 : β2 = β4 = β6 H0 : β2 = β4 = β6 = 0

• The difference between the slopes is mainly explained from the difference between
the third group on one hand, and the other two groups on the other hand.
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Chapter 7

The linear mixed model

. Random intercepts model

. Remarks

. The linear mixed model

. Analysis in SAS

. The hierarchical versus marginal model

. Conclusion and terminology

Introduction to Biostatistics 75



7.1 Random intercepts model

• The model, used to describe the growth curves, was:

Yij =





(β1 + bi) + β2tij + εij, if short mother

(β3 + bi) + β4tij + εij, if medium mother

(β5 + bi) + β6tij + εij, if tall mother

• This can be interpreted as a ANCOVA model, but with child-specific intercepts bi

• Such a bi represents the deviation of the intercept of a specific child from the
average intercept in the group to which that child belongs, i.e., deviation from β1,
β2, or β3.
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• An alternative way to fit a random intercepts model in PROC MIXED is:

proc mixed data = growth;

class group child;

model height = age group age*group / solution;

random intercept / subject=child;

run;

• The results are identical to those discussed earlier.

• From now on, the mixed model can also be interpreted as a subject-specific
regression model, i.e., a regression model with subject-specific regression
parameters.
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7.2 Remarks

• The growth-curve dataset is an example of a longitudinal dataset

• In longitudinal data, there is a natural ordering of the measurements within
clusters

• The ordering is of primary interest

• Our random-intercepts model implies very strong assumptions:

. Parallel profiles within all 3 groups

. Constant variance σ2 = σ2
child + σ2

res

. Constant correlation within children: σ2
child/(σ2

child + σ2
res)
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• Hence, the marginal model implicitly assumes that the variance remains constant
over time and that the correlation is the same between any two measurements
from the same subject

• In the case of longitudinal data, this is often not realistic

• For example, the covariance and correlation matrix of the residuals from the
ANCOVA model equal:




8.7041 9.6119 11.4005 10.2351 8.5174

9.6119 11.3896 13.1437 11.9719 10.2474

11.4005 13.1437 15.8781 14.3981 12.6611

10.2351 11.9719 14.3981 13.4490 12.0644

8.5174 10.2474 12.6611 12.0644 12.0655







1.0000 0.9654 0.9697 0.9460 0.8311

0.9654 1.0000 0.9774 0.9673 0.8742

0.9697 0.9774 1.0000 0.9853 0.9147

0.9460 0.9673 0.9853 1.0000 0.9471

0.8311 0.8742 0.9147 0.9471 1.0000




• This is the key motivation to further extend our mixed model
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7.3 The linear mixed model

• One way to extend the random-intercepts model is to also allow the slopes to be
subject-specific:

Yij =





(β1 + b1i) + (β2 + b2i)tij + εij, if short mother

(β3 + b1i) + (β4 + b2i)tij + εij, if medium mother

(β5 + b1i) + (β6 + b2i)tij + εij, if tall mother

• As before, the random effects are assumed to be normally distributed with mean
zero:

bi = (b1i, b2i)
′ ∼ N (0, D)

• The residuals εij are still i.i.d. N (0, σ2), independent of the random effects bi.
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• D then equals the 2× 2 covariance matrix of the random effects:

D =




d11 d12

d12 d22




• Interpretation of the parameters:

. d11 equals the variance of the intercepts b1i

. d22 equals the variance of the slopes b2i

. d12 equals the covariance between the intercepts b1i and the slopes b2i.

. The correlation between the intercepts and slopes then equals:

Corr(b1i, b2i) =
d12√

d11

√
d22
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7.4 Analysis in SAS

• SAS program:

proc mixed data=growth;

class child group;

model height=age group age*group;

random intercept age / type=un subject=child g gcorr;

run;

• As before, fixed effects are to be specified in the MODEL statement, while
random effects are specified in the RANDOM statement.

• The option ‘type=un’ requires an unstructured covariance D, i.e., two variances
d11 and d22, and one covariance d12, with only restriction that D is positive
(semi-)definite.

• The options ‘g’ and ‘gcorr’ require the printout of the matrix D (in SAS termed
G) and associated correlation matrix.
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• Relevant SAS output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) CHILD 7.6028

UN(2,1) CHILD -0.4437

UN(2,2) CHILD 0.1331

Residual 0.4758

Estimated G Matrix

Row Effect CHILD Col1 Col2

1 Intercept 1 7.6028 -0.4437

2 AGE 1 -0.4437 0.1331

Estimated G Correlation Matrix

Row Effect CHILD Col1 Col2

1 Intercept 1 1.0000 -0.4412

2 AGE 1 -0.4412 1.0000

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

AGE 1 17 3572.36 <.0001

GROUP 2 60 0.60 0.5514

AGE*GROUP 2 60 9.23 0.0003
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• We still get a highly significant interaction term.

• Covariance parameters:

. d11 represents the variability in subject-specific intercepts: ̂d11 = 7.6028

. d22 represents the variability in subject-specific slopes: ̂d22 = 0.1331

. d12 represents the covariance between subject-specific intercepts and slopes:
̂d12 = −0.4437

. the correlation between subject-specific intercepts and slopes is estimated as:

̂Corr(b1i, b2i) =
̂d12

√
̂d11

√
̂d22

= −0.4412

. σ2 represents the variability within children: σ̂2 = 0.4758
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• Note the differences in test results for the fixed effects, when compared to those
from the earlier random intercepts model:

NOW

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

AGE 1 17 3572.36 <.0001

GROUP 2 60 0.60 0.5514

AGE*GROUP 2 60 9.23 0.0003

BEFORE

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

AGE 1 77 8385.15 <.0001

GROUP 2 77 0.46 0.6330

AGE*GROUP 2 77 21.66 <.0001
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7.5 The hierarchical versus marginal model

• The mixed model can again be viewed as a hierarchical model:

Yij|bi ∼





N [(β1 + b1i) + (β2 + b2i)tj, σ
2], if short mother

N [(β3 + b1i) + (β4 + b2i)tj, σ
2], if medium mother

N [(β5 + b1i) + (β6 + b2i)tj, σ
2], if tall mother

• The implied marginal model is again a normal one:

. The expectation is the same as under the random intercepts model:

E(Yij) =





β1 + β2tj, if short mother

β3 + β4tj, if medium mother

β5 + β6tj, if tall mother
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. Variance:

Var(Yij) = Var(β1 + b1i + β2tj + b2itj + εij)

= Var(b1i + b2itj + εij)

= Var(b2itj) + 2Cov(b1i, b2itj) + Var(b1i) + Var(εij)

= d22t
2
j + 2d12tj + d11 + σ2

. Covariance between observations from different children i and i∗:

Cov(Yij, Yi∗k)

= Cov(β1 + b1i + β2tj + b2itj + εij, β1 + b1i∗ + β2tk + b2i∗tk + εi∗k)

= Cov(b1i + b2itj + εij, b1i∗ + b2i∗tk + εi∗k)

= 0
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. Covariance between observations j and k from the same child i (j 6= k):

Cov(Yij, Yik)

= Cov(β1 + b1i + β2tj + b2itj + εij, β1 + b1i + β2tk + b2itk + εik)

= Cov(b1i + b2itj + εij, b1i + b2itk + εik)

= Cov(b1i, b1i) + Cov(b1i, b2itk) + Cov(b2itj, b1i) + Cov(b2itj, b2itk)

= Var(b1i) + Cov(b1i, b2i)tk + Cov(b2i, b1i)tj + Var(b2i, b2i)tjtk

= d22tjtk + d12(tj + tk) + d11

. Correlation between observations j and k from the same child i (j 6= k):

Corr(Yij, Yik) =
d22tjtk + d12(tj + tk) + d11

√
d22t2j + 2d12tj + d11 + σ2

√
d22t2k + 2d12tk + d11 + σ2
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• Note how extending the random intercepts model with random slopes yields a
more flexible covariance structure.

• Further extension of the random effects structure would allow for even more
flexible variance and correlations functions.

• Note, however, that the covariance structure, implied by the random-effects
model, is not necessarily a good description for the data set at hand.

• For example, the fitted variance function for the growth curves equals:

̂Var(Yij) = ̂d22t
2
j + 2 ̂d12tj + ̂d11 + σ̂2

= 0.1331t2j + 2(−0.4437)tj + 7.6028 + 0.4758

• In SAS, the fitted covariance and correlation matrices can be obtained from the
‘v’ and ‘vcorr’ options in the RANDOM statement:

random intercept age / type=un subject=child v vcorr;
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• Fitted covariance and correlation matrices:




7.5442 7.4230 7.7776 8.1322 8.4869

7.4230 8.3865 8.3983 8.8860 9.3737

7.7776 8.3983 9.4949 9.6398 10.2606

8.1322 8.8860 9.6398 10.8694 11.1474

8.4869 9.3737 10.2606 11.1474 12.5101







1.0000 0.9332 0.9190 0.8981 0.8736

0.9332 1.0000 0.9411 0.9307 0.9151

0.9190 0.9411 1.0000 0.9489 0.9414

0.8981 0.9307 0.9489 1.0000 0.9560

0.8736 0.9151 0.9414 0.9560 1.0000




• The observed covariance and correlation matrix of the residuals from the
ANCOVA model equal:




8.7041 9.6119 11.4005 10.2351 8.5174

9.6119 11.3896 13.1437 11.9719 10.2474

11.4005 13.1437 15.8781 14.3981 12.6611

10.2351 11.9719 14.3981 13.4490 12.0644

8.5174 10.2474 12.6611 12.0644 12.0655







1.0000 0.9654 0.9697 0.9460 0.8311

0.9654 1.0000 0.9774 0.9673 0.8742

0.9697 0.9774 1.0000 0.9853 0.9147

0.9460 0.9673 0.9853 1.0000 0.9471

0.8311 0.8742 0.9147 0.9471 1.0000
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• Graphically:

• Obviously, the variance cannot be described by a quadratic function with
postitive curvature.
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• One way to further extend the marginal covariance structure is to add random
effects to the model, e.g., random coefficients for Age2:

random intercept age age*age / type=un subject=child v vcorr;

• New fitted covariance matrix, compared to observed covariance from ANCOVA
residuals:




8.2014 10.0364 10.9352 10.6322 9.1276

10.0364 12.9310 13.8330 13.5387 11.7826

10.9352 13.8330 15.4548 15.0042 13.2776

10.6322 13.5387 15.0042 15.2944 13.6127

9.1276 11.7826 13.2776 13.6127 13.0531







8.7041 9.6119 11.4005 10.2351 8.5174

9.6119 11.3896 13.1437 11.9719 10.2474

11.4005 13.1437 15.8781 14.3981 12.6611

10.2351 11.9719 14.3981 13.4490 12.0644

8.5174 10.2474 12.6611 12.0644 12.0655




• The fitted variance function is now 4 degree polynomial:

Var(Yij) = d33t
4
j + 2d23t

3
j + d22t

2
j + 2d13t

2
j + 2d12tj + d11 + σ2
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• Estimated random-effects covariance:

Estimated G Matrix

Row Effect CHILD Col1 Col2 Col3

1 Intercept 1 96.3384 -33.4752 2.0725

2 AGE 1 -33.4752 11.5273 -0.7160

3 AGE*AGE 1 2.0725 -0.7160 0.04508

• Graphically:
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• New fitted correlation matrix, compared to observed correlation from ANCOVA
residuals:




1.0000 0.9746 0.9713 0.9493 0.8822

0.9746 1.0000 0.9785 0.9627 0.9069

0.9713 0.9785 1.0000 0.9759 0.9348

0.9493 0.9627 0.9759 1.0000 0.9634

0.8822 0.9069 0.9348 0.9634 1.0000







1.0000 0.9654 0.9697 0.9460 0.8311

0.9654 1.0000 0.9774 0.9673 0.8742

0.9697 0.9774 1.0000 0.9853 0.9147

0.9460 0.9673 0.9853 1.0000 0.9471

0.8311 0.8742 0.9147 0.9471 1.0000




• Conclusion:

The role of random effects is to model the variance and
association structure
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• Adding the quadratic random Age effect again implies some changes in the tests
for the fixed effects, when compared to those from the previous model with only
random intercepts and linear Age effects:

NOW

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

AGE 1 17 3594.53 <.0001

GROUP 2 40 2.21 0.1228

AGE*GROUP 2 40 9.39 0.0005

BEFORE

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

AGE 1 17 3572.36 <.0001

GROUP 2 60 0.60 0.5514

AGE*GROUP 2 60 9.23 0.0003
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7.6 Conclusion and terminology

• The linear mixed model is a linear regression model with two sets of regression
parameters:

. Fixed effects β

. Random effects bi ∼ N (0, D)

• The fixed effects are used to model the average outcome

• The random effects are used to model the covariance structure

• All parameters in D, jointly with the residual variance σ2, are called variance
components
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Chapter 8

The rat data

. Example

. A linear mixed model

. Fitting the model in SAS
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8.1 Example

• Research question (Dentistry, K.U.Leuven):

How does craniofacial growth
depend on testosteron production ?

• Randomized experiment in which 50 male Wistar rats are randomized to:

. Control (15 rats)

. Low dose of Decapeptyl (18 rats)

. High dose of Decapeptyl (17 rats)
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• Treatment starts at the age of 45 days; measurements taken every 10 days, from
day 50 on.

• The responses are distances (pixels) between well defined points on x-ray pictures
of the skull of each rat:
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• Measurements with respect to the roof, base and height of the skull. Here, we
consider only one response, reflecting the height of the skull.

• Individual profiles:
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• Complication: Dropout due to anaesthesia (56%):

# Observations

Age (days) Control Low High Total

50 15 18 17 50

60 13 17 16 46

70 13 15 15 43

80 10 15 13 38

90 7 12 10 29

100 4 10 10 24

110 4 8 10 22

• Remarks:

. Much variability between rats, much less variability within rats

. Fixed number of measurements scheduled per subject, but not all
measurements available due to dropout, for known reason.

. Measurements taken at fixed time points
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8.2 A linear mixed model

• Since linear mixed models assume a linear regression for each cluster separately,
they can also be used for unbalanced data, i.e., data with unequal number of
measurements per cluster.

• Note that this was also the case for the lizard data.

• Individual profiles show very similar evolutions for all rats (apart from
measurement error)

• This suggests a random-intercepts model

• Non-linearity can be accounted for by using a logarithmic transformation of the
time scale:

Ageij −→ tij = ln[1 + (Ageij − 45)/10)]
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• We then get the following model:

Yij = (β0 + bi) + (β1Li + β2Hi + β3Ci)tij + εij

=





β0 + bi + β1tij + εij, if low dose

β0 + bi + β2tij + εij, if high dose

β0 + bi + β3tij + εij, if control.

• Li, Hi, and Ci are indicator variables:

Li =





1 if low dose

0 otherwise
Hi =





1 if high dose

0 otherwise
Ci =





1 if control

0 otherwise
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• Parameter interpretation:

. β0: average response at the start of the treatment (independent of treatment)

. β1, β2, and β3: average time effect for each treatment group

. bi: subject-specific intercepts
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8.3 Fitting the model in SAS

• The following SAS program can be used:

data rats; proc mixed data = rats ;

set rats; class treat rat;

t=log(1+(age-45)/10); model y = treat*t / solution;

run; random intercept / type=un subject=rat g;

contrast ’treatment effect’ treat*t 1 -1 0, treat*t 1 0 -1;

run;

• Note the parameterization of the fixed effects

• Relevant SAS output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) RAT 3.5649

Residual 1.4448

Solution for Fixed Effects

Standard

Effect TREAT Estimate Error DF t Value Pr > |t|

Intercept 68.6074 0.3312 49 207.13 <.0001

t*TREAT con 7.3138 0.2808 199 26.05 <.0001

t*TREAT hig 6.8711 0.2276 199 30.19 <.0001

t*TREAT low 7.5069 0.2252 199 33.34 <.0001
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Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

t*TREAT 3 199 734.11 <.0001

Contrasts

Num Den

Label DF DF F Value Pr > F

treatment effect 2 199 2.32 0.1013

• Note the difference between the test for ‘t*treat’ and the test for the treatment
effect

• A lot of variability between rats, while little variability within rats:

. σ2
rat = 3.565 represents the variability between rats

. σ2
res = 1.445 represents the variability within rats

• No significant difference between the treatment groups with respect to the
average evolution over time (p = 0.1013)

• As before, the variance and correlation structure need to be explored to check
model fit.
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Chapter 9

The BLSA prostate data

. Example

. A linear mixed model

. Fitting the model in SAS
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9.1 Example

• References:

. Carter et al (1992, Cancer Research).

. Carter et al (1992, Journal of the American Medical Association).

. Morrell et al (1995, Journal of the American Statistical Association).

. Pearson et al (1994, Statistics in Medicine).

• Prostate disease is one of the most common and most costly medical problems in
the United States

• Important to look for markers which can detect the disease at an early stage

• Prostate-Specific Antigen is an enzyme produced by both normal and cancerous
prostate cells
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• PSA level is related to the volume of prostate tissue.

• Problem: Patients with Benign Prostatic Hyperplasia also have an increased PSA
level

• Overlap in PSA distribution for cancer and BPH cases seriously complicates the
detection of prostate cancer.

• Research question (hypothesis based on clinical practice):

Can longitudinal PSA profiles be used to detect prostate
cancer in an early stage ?
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• A retrospective case-control study based on frozen serum samples:

. 16 control patients

. 20 BPH cases

. 14 local cancer cases

. 4 metastatic cancer cases

• Complication: No perfect match for age at diagnosis and years of follow-up
possible

• Hence, analyses will have to correct for these age differences between the
diagnostic groups.
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• Individual profiles:

Introduction to Biostatistics 111



• Remarks:

. Much variability between subjects

. Little variability within subjects

. Highly unbalanced data

Introduction to Biostatistics 112



9.2 A linear mixed model

• A model for the prostate data:

ln(PSAij + 1) = β1Agei + β2Ci + β3Bi + β4Li + β5Mi

+ (β6Agei + β7Ci + β8Bi + β9Li + β10Mi) tij
+ (β11Agei + β12Ci + β13Bi + β14Li + β15Mi) t2ij
+ b1i + b2itij + b3it

2
ij + εij.

• Ci, Bi, Li, Mi are indicators for the 4 diagnostic groups.

• Parameter interpretation:

. Average age-corrected quadratic profiles for all groups, modeled through the
fixed effects β

. Random effects b1i, b2i, and b3i allowing subject-specific evolutions to differ
from the average in that diagnostic group, even correcting for age differences
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9.3 Fitting the model in SAS

• SAS program:

proc mixed data=prostate;

class id group;

model lnpsa = group age group*time age*time group*time2 age*time2 / noint solution;

random intercept time time2 / type=un subject=id g gcorr ;

run;

• Note again the particular parameterization for the fixed effects

• Relevant SAS output: Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) XRAY 0.4518

UN(2,1) XRAY -0.5178

UN(2,2) XRAY 0.9153

UN(3,1) XRAY 0.1625

UN(3,2) XRAY -0.3356

UN(3,3) XRAY 0.1308

Residual 0.02820
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Estimated G Matrix

Effect XRAY Col1 Col2 Col3

Intercept 19 0.4518 -0.5178 0.1625

time 19 -0.5178 0.9153 -0.3356

time2 19 0.1625 -0.3356 0.1308

Estimated G Correlation Matrix

Effect XRAY Col1 Col2 Col3

Intercept 19 1.0000 -0.8053 0.6686

time 19 -0.8053 1.0000 -0.9700

time2 19 0.6686 -0.9700 1.0000

Solution for Fixed Effects

Standard

Effect group Estimate Error DF t Value Pr > |t|

group 1 -1.0984 0.9763 299 -1.13 0.2615

group 2 -0.5228 1.0895 299 -0.48 0.6317

group 3 0.2964 1.0587 299 0.28 0.7797

group 4 1.5494 1.0856 299 1.43 0.1546

AGEDIAG 0.02655 0.01423 299 1.87 0.0631

time*group 1 0.5681 1.4725 299 0.39 0.6999

time*group 2 0.3956 1.6377 299 0.24 0.8093

time*group 3 -1.0359 1.5928 299 -0.65 0.5159

time*group 4 -1.6049 1.6258 299 -0.99 0.3244

AGEDIAG*time -0.01117 0.02142 299 -0.52 0.6026

time2*group 1 -0.1295 0.6100 299 -0.21 0.8320

time2*group 2 -0.1585 0.6723 299 -0.24 0.8138

time2*group 3 0.3419 0.6563 299 0.52 0.6028

time2*group 4 0.3951 0.6660 299 0.59 0.5535

AGEDIAG*time2 0.002259 0.008829 299 0.26 0.7982
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Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

group 4 299 15.90 <.0001

AGEDIAG 1 299 3.48 0.0631

time*group 4 299 7.85 <.0001

AGEDIAG*time 1 299 0.27 0.6026

time2*group 4 299 4.44 0.0017

AGEDIAG*time2 1 299 0.07 0.7982

• Note the very strong correlations between random effects

• CONTRAST statements can be used to test for group differences
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• Based on the fixed effects, fitted average profiles can be plotted (at median age at
diagnosis):
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Chapter 10

The Leuven diabetes project

. Introduction

. A variety of multilevel models

. Including covariates at various levels
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10.1 Introduction: the DPL project

• The Diabetes Project Leuven

• In Belgium, general practitioners (GP’s) cannot rely on structured assistance of
dieticians or diabetes nurse educators in their practice.

• The DPL intends to study the effect of implementing a structured model for
chronic diabetes care on patients’ clinical outcomes.

• GP’s will be offered assistance and can redirect patients to the diabetes care team,
consisting of a nurse educator, a dietician, an ophthalmologist and an internal
medicine doctor.
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• In DPL, two programs were implemented and GP’s were randomized to one of two
groups:

. LIP: Low Intervention Program (group A)

. HIP: High Intervention Program (group R)

• We consider the analysis of GP’s in the HIP group:

. 61 GP’s

. 1577 patients

. number of patients per GP varies between 5 and 138, with a median of 47

• Patients were measured twice:

. When the program was initiated (time T0)

. After one year (time T1)
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• The outcome studied here is HbA1c, glycosylated hemoglobin:

. Molecule in red blood cells that attaches to glucose (blood sugar)

. High values reflect more glucose in blood

. In diabetes patients, HbA1c gives a good estimate of how well diabetes is
being managed over the last 2 or 3 months

. Non-diabetics have values between 4% and 6%

. HbA1c above 7% means diabetes is poorly controlled, implying higher risk for
long-term complications.
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10.2 A variety of multilevel models

• Let Yijk be the kth measurement of HbA1, for the jth patient, of the ith GP

• We have 3-level data, hence random effects can enter the models at various levels

• Several models for studying the longitudinal evolutions will be illustrated and
compared:

. No random effects

. Random GP effects

. Random patient effects

. Random effects for GP and patient
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10.2.1 Model 1: No random effects

Yijk = β0 + β1tk + εijk, εijk ∼ N (0, σ2
res)

• SAS program:

proc mixed data=dpla; proc glm data=dpla;

model hba1c = time / solution; model hba1c = time / solution;

run; run;

• Relevant output:

Covariance Parameter

Estimates

Cov Parm Estimate

Residual 1.2309

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 7.1357 0.02823 2966 252.81 <.0001

time -0.3899 0.04076 2966 -9.57 <.0001
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10.2.2 Model 2: Random GP effects

Yijk = β0 + β1tk + ai + εijk, ai ∼ N (0, σ2
GP ), εijk ∼ N (0, σ2

res)

• SAS program:

proc mixed data=dpla;

class mdnr;

model hba1c = time / solution;

random intercept / subject=mdnr;

run;

• Relevant output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept mdnr 0.07093

Residual 1.1709

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 7.1695 0.04519 60 158.66 <.0001

time -0.3873 0.03978 2906 -9.73 <.0001
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10.2.3 Model 3: Random patient effects

Yijk = β0 + β1tk + bj(i) + εijk, bj(i) ∼ N (0, σ2
PAT ), εijk ∼ N (0, σ2

res)

• SAS program:

/* unique patient numbers */ /* patients numbered within GP’s */

proc mixed data=dpla; proc mixed data=dpla;

class md_patient; class mdnr patientnr;

model hba1c = time / solution; model hba1c = time / solution;

random intercept / subject=md_patient; random intercept / subject=patientnr(mdnr);

run; run;

• Relevant output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept patientnr(mdnr) 0.6675

Residual 0.5831

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 7.1392 0.02838 1571 251.54 <.0001

time -0.3785 0.02851 1395 -13.28 <.0001
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10.2.4 Model 4: Random GP and patient effects

Yijk = β0 + β1tk + ai + bj(i) + εijk,

ai ∼ N (0, σ2
GP ), bj(i) ∼ N (0, σ2

PAT ), εijk ∼ N (0, σ2
res)

• SAS program:

proc mixed data=dpla; proc mixed data=dpla;

class mdnr patientnr; class mdnr patientnr;

model hba1c = time / solution; model hba1c = time / solution;

random intercept / subject=mdnr; random mdnr patientnr(mdnr);

random intercept / subject=patientnr(mdnr); run;

run;

• Relevant output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept mdnr 0.05439

Intercept patientnr(mdnr) 0.6171

Residual 0.5837

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 7.1668 0.04241 60 169.00 <.0001

time -0.3780 0.02851 1395 -13.26 <.0001
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10.2.5 Summary of results

Model 1 Model 2 Model 3 Model 4

Parameter Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Fixed effects:

β0 7.1357(0.0282) 7.1695(0.0452) 7.1392(0.0284) 7.1668(0.0424)

β1 −0.3899(0.0408) −0.3873(0.0398) −0.3785(0.0286) −0.3780(0.0285)

Variance components:

σ2
GP 0.0709 0.0544

σ2
PAT 0.6675 0.6171

σ2
res 1.2309 1.1709 0.5831 0.5837
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• No standard errors reported for variance components, since standard Z-tests do
not produce correct tests (see later)

• The various models use different decompositions of the total variability:

. Model 1: σ̂2 = σ̂2
res = 1.2309

. Model 2: σ̂2 = σ̂2
GP + σ̂2

res = 0.0709 + 1.1709 = 1.2418

. Model 3: σ̂2 = σ̂2
PAT + σ̂2

res = 0.6675 + 0.5831 = 1.2506

. Model 4: σ̂2 = σ̂2
GP + σ̂2

PAT + σ̂2
res = 0.0544 + 0.6171 + 0.5837 = 1.2552

• Inclusion of random effects has little effect on estimation of fixed effects but has
severe impact on the standard errors:

. Larger standard errors for between-cluster effects (intercept β0)

. Smaller standard errors for within-cluster effects (time β1)

• There is a significant decrease in HbA1c, under all models
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• The models also imply specific correlation structures.

• For example, the marginal association structure implied by Model 4 equals:

. Observations from different GP’s i and i∗, i 6= i∗, are not correlated:

̂Corr(Yijk, Yi∗j∗k∗) = 0

. Observations from same GP but different patients j and j∗, j 6= j∗, are
correlated:

̂Corr(Yijk, Yij∗k∗) =
σ̂2

GP

σ̂2
GP + σ̂2

PAT + σ̂2
res

=
0.0544

1.2552
= 0.0433

. Observations k and k∗, k 6= k∗, from same patient are correlated:

̂Corr(Yijk, Yijk∗) =
σ̂2

GP + σ̂2
PAT

σ̂2
GP + σ̂2

PAT + σ̂2
res

=
0.0544 + 0.6171

1.2552
= 0.5350
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10.3 Including covariates at various levels

• Additional covariates can be added to explain variability at the different levels, or
to study what patient and/or GP characteristics are related to time trends.

• We exend Model 4 with the following covariates:

. At GP level: Practice form (‘one’, ‘two’, ‘more’)

. At patient level:

• BMI at baseline

• Whether or not patient is a newly diagnosed diabetic (1: yes, 0: no)

• We will investigate the effect of each covariate separately.

• Obviously, models with multiple covariates are possible as well.
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10.3.1 Model 5: Correcting for different practice forms

• SAS program:

proc mixed data=dpla;

class mdnr patientnr practice;

model hba1c = practice time time*practice / solution;

random intercept / subject=mdnr;

random intercept / subject=patientnr(mdnr);

run;

• Relevant output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept mdnr 0.05431

Intercept patientnr(mdnr) 0.6152

Residual 0.5838

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

practice 2 1393 3.08 0.0461

time 1 1393 162.59 <.0001

time*practice 2 1393 1.28 0.2786
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Solution for Fixed Effects

Standard

Effect practice Estimate Error DF t Value Pr > |t|

Intercept 7.1408 0.07505 58 95.14 <.0001

practice Mor -0.1158 0.1105 1393 -1.05 0.2948

practice One 0.1407 0.1001 1393 1.40 0.1603

practice Two 0 . . . .

time -0.3659 0.04976 1393 -7.35 <.0001

time*practice Mor 0.05052 0.07467 1393 0.68 0.4988

time*practice One -0.06162 0.06680 1393 -0.92 0.3565

time*practice Two 0 . . . .

• Since Time is included as a continuous covariate, the main effect of Practice
reflects differences at baseline between the various practice forms

• We find a significant difference at baseline (p = 0.0461) with lower average values
of HbA1c the more GP’s work together in group practices.

• This difference does not change over time, as the practice form has no significant
effect on the change over time (p = 0.2786).
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10.3.2 Model 6: Correcting for different BMI at baseline

• SAS program:

proc mixed data=dpla;

class mdnr patientnr;

model hba1c = bmi0 time time*bmi0 / solution;

random intercept / subject=mdnr;

random intercept / subject=patientnr(mdnr);

run;

• Relevant output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept mdnr 0.05840

Intercept patientnr(mdnr) 0.6048

Residual 0.5468

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

bmi0 1 1323 10.55 0.0012

time 1 1323 0.94 0.3320

bmi0*time 1 1323 1.63 0.2023
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Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 6.6325 0.1654 60 40.09 <.0001

bmi0 0.01750 0.005386 1323 3.25 0.0012

time -0.1573 0.1621 1323 -0.97 0.3320

bmi0*time -0.00685 0.005367 1323 -1.28 0.2023

• We find a significantly higher baseline value for HbA1c as the intial BMI is larger
(p = 0.0012)

• The average time trend is not significantly related to the intial BMI level
(p = 0.2023).
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10.3.3 Model 7: Correcting for new diagnosis

• SAS program:

proc mixed data=dpla;

class mdnr patientnr ;

model hba1c = new0 time time*new0 / solution;

random intercept / subject=mdnr;

random intercept / subject=patientnr(mdnr);

run;

• Relevant output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept mdnr 0.05561

Intercept patientnr(mdnr) 0.6004

Residual 0.5385

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

new0 1 1321 14.67 0.0001

time 1 1321 115.15 <.0001

new0*time 1 1321 52.82 <.0001
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Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 7.1172 0.04367 60 162.97 <.0001

new0 0.4030 0.1052 1321 3.83 0.0001

time -0.3148 0.02934 1321 -10.73 <.0001

new0*time -0.7762 0.1068 1321 -7.27 <.0001

• Since Time is included as a continuous covariate, the main effect of New0 reflects
differences at baseline between newly diagnosed diabetics and others.

• We find a significant difference at baseline (p = 0.0001) with higher average
values of HbA1c for newly diagnosed patients.

• The newly diagnosed patients have a steeper decrease in HbA1c than the others
(p < 0.0001).
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• We can test whether, after one year, both groups are at the same level:

estimate ’equal at T1’ new0 1 time*new0 1;

• Additional output:

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

equal at T1 -0.3732 0.1106 1321 -3.38 0.0008

• Hence, after one year, the newly diagnosed diabetics have lower average values for
HbA1c (p = 0.0008)
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• Graphically:

• This can be explained from the fact that the disease gets worse over time, hence
HbA1c is more difficult to keep under control.
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• We therefore repeat the analysis, correcting for the number of years patients have
been diabetic (0 for newly diagnosed patients).

proc mixed data=dpla;

class mdnr patientnr ;

model hba1c = duration new0 time time*new0 / solution;

random intercept / subject=mdnr;

random intercept / subject=patientnr(mdnr);

estimate ’equal at T1’ new0 1 time*new0 1;

run;

• Relevant output:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept mdnr 0.05210

Intercept patientnr(mdnr) 0.5589

Residual 0.5401

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

duration 1 1320 67.83 <.0001

new0 1 1320 35.88 <.0001

time 1 1320 114.40 <.0001

new0*time 1 1320 52.87 <.0001
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Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 6.8737 0.05181 60 132.67 <.0001

duration 0.03096 0.003759 1320 8.24 <.0001

new0 0.6432 0.1074 1320 5.99 <.0001

time -0.3141 0.02937 1320 -10.70 <.0001

new0*time -0.7773 0.1069 1320 -7.27 <.0001

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

equal at T1 -0.1340 0.1125 1320 -1.19 0.2338

• The difference after one year, between newly diagnosed diabetics and others is no
longer signicant (p = 0.2338) after correction for the number of years patients
have been diabetic.
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Chapter 11

Estimation of Random Effects

. Empirical Bayes estimation

. Example: Leuven diabetes project

. Example: Prostate data

. Average versus cluster-specific prediction
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11.1 Empirical Bayes estimation

• Random effects reflect how specific clusters deviate from the population average

• For example, for the Leuven diabetes project, Model 4 for the outcome Yijk being
the kth measurement of HbA1, for the jth patient, of the ith GP, was given by:

Yijk = β0 + β1tk + ai + bj(i) + εijk,

ai ∼ N (0, σ2
GP ), bj(i) ∼ N (0, σ2

PAT ), εijk ∼ N (0, σ2
res)

• The parameter ai expresses how the average HbA1c level of patients treated by
GP i differs from the overall population average.

• The parameter bj(i) expresses how the average of patient j treated by GP i
differes from the average of that specific GP.
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• Estimation of the random effects can be helpful for detecting outlying profiles or
clusters

• Since these parameters are assumed to be stochastic, Bayesian methods are
applied.

• Posterior means:

âi = E(ai | Yijk, ∀j, k)

̂bj(i) = E(bj(i) | Yijk, ∀k)

• The so-obtained estimates are called Empirical Bayes (EB) estimates. They
are the expected random effects, conditionally on the observed data for that
specific cluster

• In practice histograms and/or scatterplots of EB estimates are used to detect
outlying clusters
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11.2 Example: Leuven diabetes project

• We re-consider Model 4 given by:

Yijk = β0 + β1tk + ai + bj(i) + εijk

• The parameters ai and bj(i) represent GP and patient effects, respectively.

• Histograms and scatterplots will be used to study the EB estimates for ai and bj(i)

• SAS program for calculation of EB estimates:

proc mixed data=dpla;

class mdnr patientnr;

model hba1c = time / solution;

random intercept / subject=mdnr solution;

random intercept / subject=patientnr(mdnr) solution;

ods listing exclude solutionr;

ods output solutionr=out;

run;

Introduction to Biostatistics 144



• The ODS statements are used to write the EB estimates into a SAS output data
set, and to prevent SAS from printing them in the output window.

• EB estimates:

Obs mdnr gpeb

1 2 0.21976

2 5 0.02113

3 6 0.18372

4 7 0.01447

5 8 0.08236

6 10 0.15512

7 11 -0.07875

8 13 -0.25004

9 14 -0.06225

. ... .......

59 155 -0.01637

60 156 0.26761

61 165 -0.23516

Obs mdnr patientnr patienteb

1 2 1 0.00163

2 2 2 -0.03232

3 2 3 2.10624

.. . .. .......

25 2 25 -0.91490

26 2 26 0.13741

27 5 1 -0.06719

28 5 2 -0.61032

29 5 3 0.44199

.... ... .. .......

1569 165 22 -0.43632

1570 165 23 -1.18312

1571 165 24 0.17469

1572 165 25 0.44626
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• Histograms of both sets of EB estimates:

• We notice some patients with extremely large HbA1c values. The largest
estimated bj(i) is ̂b2(140) = 3.46
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• This patient was newly diagnosed, with initial BMI equal to 26.40, intial HbA1c
equal to 14.3%, and no follow-up measurement after one year

• The initial HbA1c level of 14.3% is extremely high:
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• Scatterplot of EB estimates for patients versus GP’s:
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• Plots can also be made in relation with patient or GP characteristics:

©
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• Note how the patient with the largest estimate for bj(i) was treated by the GP
with the largest estimated ai.

• It is therefore worthwhile to repeat the analysis with this subject removed from
the data

• The estimate â140 drops from 0.40 to 0.27 and four other GP’s have now a higher
estimate for their effect ai.

• EB estimates can also be calculated based on other models which include patient
or GP characteristics as covariates/factors

• Extreme EB estimates then reflect that a specific GP or patient within GP is
outlying, while this extreme behaviour cannot be explained by the covariates in
the model.
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11.3 Example: Prostate data

• We re-consider the model

ln(PSAij + 1)

= β1Agei + β2Ci + β3Bi + β4Li + β5Mi

+ (β6Agei + β7Ci + β8Bi + β9Li + β10Mi) tij

+ (β11Agei + β12Ci + β13Bi + β14Li + β15Mi) t2ij

+ b1i + b2itij + b3it
2
ij + εij.

• Again, histograms and scatterplots of components of ̂
bi can be used to detect

model deviations or subjects with ‘exceptional’ evolutions over time
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• Strong negative correlations in agreement with correlation matrix corresponding to
fitted D:

̂Dcorr =




1.000 −0.805 0.669

−0.805 1.000 −0.970

0.669 −0.970 1.000




• Histograms and scatterplots show outliers

• Subjects #22, #28, #39, and #45, have highest four slopes for time2 and
smallest four slopes for time, i.e., with the strongest (quadratic) growth.

• Subjects #22, #28 and #39 have been further examined and have been shown to
be metastatic cancer cases which were misclassified as local cancer cases.

• Subject #45 is the metastatic cancer case with the strongest growth
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11.4 Average versus cluster-specific prediction

• Once the EB estimates have been calculated, predictions can be obtained both at
the cluster level, as well as on the population average level.

• Re-consider Model 4 for the Leuven diabetes project:

Yijk = β0 + β1tk + ai + bj(i) + εijk

• Predictions:

. On population average level:

̂E(Yijk) = ̂β0 + ̂β1tk

. On cluster level:

̂Yijk = ̂β0 + ̂β1tk + âi + ̂bj(i)
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11.5 Example: Leuven diabetes project

• SAS program for predictions under Model 4:

proc mixed data=dpla;

class mdnr patientnr;

model hba1c = time / solution outpm=predmean outp=pred;

random intercept / subject=mdnr solution;

random intercept / subject=patientnr(mdnr) solution;

run;

proc print data=predmean;

proc print data=pred;

run;

• The option ‘predmean’ requests calculation of the predicted means

• The option ‘pred’ requests calculation of predictions at cluster level
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• Table of predicted means
(option ‘predmean’):

Obs hba1c mdnr patientnr time Pred

1 6.4 2 1 0 7.16685

2 8.0 2 1 1 6.78883

3 6.7 2 2 0 7.16685

4 7.6 2 2 1 6.78883

5 11.2 2 3 0 7.16685

6 9.4 2 3 1 6.78883

7 6.8 2 4 0 7.16685

8 6.8 2 4 1 6.78883

2965 7.5 165 24 0 7.16685

2966 6.5 165 24 1 6.78883

2967 7.7 165 25 0 7.16685

2968 7.1 165 25 1 6.78883

• Table with predictions on subject level
(option ‘pred’):

Obs hba1c mdnr patientnr time Pred

1 6.4 2 1 0 7.38824

2 8.0 2 1 1 7.01022

3 6.7 2 2 0 7.35429

4 7.6 2 2 1 6.97628

5 11.2 2 3 0 9.49285

6 9.4 2 3 1 9.11484

7 6.8 2 4 0 7.11667

8 6.8 2 4 1 6.73866

2965 7.5 165 24 0 7.10638

2966 6.5 165 24 1 6.72837

2967 7.7 165 25 0 7.37795

2968 7.1 165 25 1 6.99994
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• Components needed to calculate predictions:

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 7.1668 0.04241 60 169.00 <.0001

time -0.3780 0.02851 1395 -13.26 <.0001

Obs mdnr gpeb

1 2 0.21976

Obs mdnr patientnr patienteb

1 2 1 0.00163

2 2 2 -0.03232

3 2 3 2.10624
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• Population average HbA1c values at baseline and after one year:

̂E(Yij1) = 7.1668 − 0.3780 × 0 = 7.1668
̂E(Yij2) = 7.1668 − 0.3780 × 1 = 6.7888

• Subject-specific predicted HbA1c values for first three patients treated by GP 2:

̂Y211 = 7.1668 + 0.2198 + 0.0016 = 7.3882
̂Y212 = 6.7888 + 0.2198 + 0.0016 = 7.0102
̂Y221 = 7.1668 + 0.2198 − 0.0323 = 7.3543
̂Y222 = 6.7888 + 0.2198 − 0.0323 = 6.9763
̂Y231 = 7.1668 + 0.2198 + 2.1062 = 9.4929
̂Y232 = 6.7888 + 0.2198 + 2.1062 = 9.1148
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Chapter 12

Concluding remarks

. Introduction

. Tests for variance components

. Distributional assumptions for random effects

. Missing data issues
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12.1 Introduction

• Many examples of linear mixed models for longitudinal or clustered data have been
discussed

• Most emphasis was on model formulation, SAS implementation, and
interpretation of results

• A number of issues have not been discussed:

. Estimation methods (ML, REML, . . . )

. Inference (F -test, t-test, LR test, Wald test, . . . )

. Model checking

. Influence analysis

. . . .
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• These topics are much more difficult and technical than in classical linear models
for cross-sectional data, and are therefore outside the scope of this course

• Three illustrations are given:

. Tests for variance components

. Distributional assumptions for random effects

. Missing data issues

• All aspects discussed here equally well apply to generalized linear mixed models
and non-linear mixed models.
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12.2 Tests for variance components

• In a number of situations, it might be of interest to test whether variance
components equal zero.

• For example, consider the Leuven diabetes project, it may be of interest to know
whether there is any variability between GP’s

• As before, let Yijk being the kth measurement of HbA1, for the jth patient, of the
ith GP.

• Model 4 was given by:

Yijk = β0 + β1tk + ai + bj(i) + εijk,

ai ∼ N (0, σ2
GP ), bj(i) ∼ N (0, σ2

PAT ), εijk ∼ N (0, σ2
res)
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• Absence of any heterogeneity between GP’s would be reflected in σ2
GP = 0

• It is therefore of interest to test H0 : σ2
GP = 0 versus HA : σ2

GP > 0

• The default output from SAS is:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept mdnr 0.05439

Intercept patientnr(mdnr) 0.6171

Residual 0.5837

• In contrast to, e.g., fixed effects, SAS does not report standard errors,
test-statistics, nor p-values

• These can be requested by specifying the ‘covtest’ option in the PROC MIXED
statement:

proc mixed data=dpla covtest;
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• The output for the covariance parameters then becomes:

Covariance Parameter Estimates

Standard Z

Cov Parm Subject Estimate Error Value Pr Z

Intercept mdnr 0.05439 0.01858 2.93 0.0017

Intercept patientnr(mdnr) 0.6171 0.03720 16.59 <.0001

Residual 0.5837 0.02256 25.87 <.0001

• The reported p-values are based on the N (0, 1) approximation to the Z-statistic,
which cannot reflect the correct sampling variability in the estimation of the
variance components as these are estimated under the restriction of being positive.

• This so-called boundary problem requires correction of the classical p-values.

• The correction depends on the model, and sometimes requires simulation methods.

• In the above example, the correction reduces to halving the reported p-values.
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• As another example, consider the previous analysis of the growth curves, with
random intercepts, and random linear as well as quadratic Age effects.

• The reported tests for the variance components are:

Covariance Parameter Estimates

Standard Z

Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) CHILD 96.3384 58.5931 1.64 0.0501

UN(2,1) CHILD -33.4752 17.5533 -1.91 0.0565

UN(2,2) CHILD 11.5273 5.3639 2.15 0.0158

UN(3,1) CHILD 2.0725 1.0800 1.92 0.0550

UN(3,2) CHILD -0.7160 0.3313 -2.16 0.0307

UN(3,3) CHILD 0.04508 0.02069 2.18 0.0147

Residual 0.2655 0.05936 4.47 <.0001

• Apart from the boundary problem, the p-value reported for ‘UN(3,3)’ corresponds
to the hypothesis H0 : d33 = 0.
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• Under H0, the random-effects covariance matrix D is of the form:

D =




d11 d12 d13

d12 d22 d23

d13 d23 0




• As a covariance matrix, D needs to be positive (semi-)definite. Hence the only
meaningful hypothesis to test would be H0 : d13 = d23 = d33 = 0, implying that
D is of the form

D =




d11 d12 0

d12 d22 0

0 0 0
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• Conclusion:

The default variance components tests often

do not test meaningful hypotheses,
and/or report wrong p-values

• SAS only reports Wald tests for variance components.

• However the above discussed problems equally well apply to Likelihood Ratio and
Score tests, as the three are asymptotically equivalent.
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12.3 Distributional assumptions for random effects

• We continue the analysis of the Leuven diabetes project, with Model 4

• Histograms of EB estimates of GP and patient effects were:
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• The histograms seem to suggest that the normality assumption for the random
effects ai and bj(i) is questionable.

• However, one should realize that the precision with which ai and bj(i) are
estimated depends on many aspects, and can vary from patient to patient and
from GP to GP

• So, the above histograms do not necessarily reflect non-normality of the random
effects ai and bj(i).

• Outlying EB estimates can be the reflection of a random effect estimated with
very little precision.

• The differences in precision can be corrected for by standardizing the EB estimates.
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• However, standardized EB estimates still do not necessarily reflect the correct
random effects distribution.

• Too illustrate this, consider a small simulation example:

. 1000 profiles with 5 measurements, balanced

. 1000 random intercepts sampled from

1

2
N (−2, 1) +

1

2
N (2, 1)

. Error components εij with variance σ2 = 30

. Data analysed assuming normality for the intercepts
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. Histogram of sampled intercepts and empirical Bayes estimates:

• Apparently, the model assumption sometimes forces the estimates to satisfy the
assumption.
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• Conclusion:

The normality assumption for random effects cannot be
tested within the context of the linear mixed model.

Model extensions are needed.

• Fortunately, inferences about the fixed effects are very robust with respect to
model deviations, provided the data set contains sufficient independent clusters:

. Lizard data: sufficient mothers

. Rat data: sufficient rats

. Growth curves: sufficient children

. Leuven diabetes project: sufficient GP’s
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12.4 Missing data issues

• A key feature of mixed models is that they can be used to model unbalanced data.

• In the context of longitudinal data, this includes situations where not all subjects
have the same number of repeated measurements, or where subjects are measured
at different time points.

• Mixed models are therefore often used in contexts with missing data, e.g., subjects
left the study prematurely.

• However although mixed models can technically handle such unbalanced data sets,
the obtained results can be severely biased in cases where missingness is related to
the outcome studied.
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• General principle:

Dropout related to the outcome can
imply biased results

• Unrelated dropout:

. Subjects moving

. Subjects dying of other causes

. Lost blood samples

. . . .

• If dropout is unrelated to the outcome, the obtained sample can be considered as
a random sub-sample, which is still a random sample from the original population
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• Related dropout:

. ‘Best’ patients most likely to drop out:

⇒ Over-pessimistic
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. ‘Worst’ patients most likely to drop out:

⇒ Over-optimistic
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. ‘Best’ patients most likely to drop out, but dropout rate dependent on
treatment:

⇒ Biased estimation of treatment effect
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Part III

Generalized Linear Mixed Models
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Chapter 13

The toenail data

. Example

. Logistic regression

. A logistic mixed model

. Analysis in SAS
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13.1 Example

• Toenail Dermatophyte Onychomycosis: Common toenail infection, difficult to
treat, affecting more than 2% of population.

• Classical treatments with antifungal compounds need to be administered until the
whole nail has grown out healthy.

• New compounds have been developed which reduce treatment to 3 months

• Randomized, double-blind, parallel group, multicenter study for the comparison of
two such new compounds (A and B) for oral treatment.

• The multicenter nature will be ignored here. An example will be given later, in the
context of the Leuven Diabetes Project.
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• Research question:

Severity relative to treatment of TDO ?

• 2× 189 patients randomized, 36 centers

• Focus here on patients for which the target nail was one of the big toenails

=⇒ 150 and 148 patients only

• 48 weeks of total follow up (12 months)

• 12 weeks of treatment (3 months)

• measurements at months 0, 1, 2, 3, 6, 9, 12.
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• Frequencies at each visit:
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• Complication: Dropout (24%)

# Observations

Time (months) Treatment A Treatment B Total

0 150 148 298

1 149 142 291

2 146 138 284

3 140 131 271

6 131 124 255

9 120 109 229

12 118 108 226

• The toenail data set is an example of a longitudinal study, with unbalanced binary
data
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13.2 Logistic regression

• As in earlier examples, the toenail data are clustered within study participants

• As before, let Yij denote the jth measurement taken on the ith patient

• Ignoring the clustering, a typical analysis for studying the relation between Yij and
some known covariates such as time and treatment would be based on logistic
regression.

• We then assume a Bernoulli distribution: Yij ∼ Bernoulli(πij)

• πij is the probability for outcome Yij to be a ‘success’, i.e., πij = P (Yij = 1).
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• A logistic relation is assumed between πij and the covariates:

logit(πij) = log




πij

1− πij


 = β0 + β1Ti + β2tij + β3Titij

• Notation:

. Ti: treatment indicator for subject i

. tij: time point at which jth measurement is taken for ith subject

• More complex models can be considered as well (e.g. including polynomial time
effects, including covariates, . . . ).

• In SAS, the model can be fitted as follows:

proc genmod data=toenail descending;

model y = treatn time treatn*time / dist=binomial ;

run;
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• Selected output:

The GENMOD Procedure

Model Information

Data Set WORK.TOENAIL

Distribution Binomial

Link Function Logit

Dependent Variable Y

Observations Used 1908

The GENMOD Procedure

Response Profile

Ordered Total

Value Y Frequency

1 1 408

2 0 1500

PROC GENMOD is modeling the probability that Y=’1’.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 1904 1811.8260 0.9516

Scaled Deviance 1904 1811.8260 0.9516

Pearson Chi-Square 1904 1995.2107 1.0479

Scaled Pearson X2 1904 1995.2107 1.0479

Log Likelihood -905.9130

Algorithm converged.
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Analysis Of Parameter Estimates

Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -0.5571 0.1090 -0.7708 -0.3433 26.10 <.0001

treatn 1 0.0240 0.1565 -0.2827 0.3307 0.02 0.8780

time 1 -0.1769 0.0246 -0.2251 -0.1288 51.91 <.0001

treatn*time 1 -0.0783 0.0394 -0.1556 -0.0010 3.95 0.0470

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

• We find a significant difference in evolution between the two treatment groups
(p = 0.0470), where group 1 shows more improvement than treatment group 0.
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13.3 A logistic mixed model

• As for the linear models, the clustering can be accounted for by including random
effects

• We then explicitly model the belief that not all clusters satisfy the same model
with the same parameter values, but intercepts and/or slopes are allowed to be
cluster specific.

• For example, a logistic random-intercepts model is obtained as:

Yij ∼ Bernoulli(πij)

logit(πij) = log




πij

1− πij


 = β0 + bi + β1Ti + β2tij + β3Titij
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• As before, the bi are assumed to be normally distributed: bi ∼ N (0, σ2
b)

• A logistic model with random intercepts and random slopes is obtained as:

Yij ∼ Bernoulli(πij)

logit(πij) = log




πij

1− πij


 = (β0 + b1i) + β1Ti + (β2 + b2i)tij + β3Titij

• As before, the random effects are assumed to follow a bivariate normal distribution
with mean zero:

bi = (b1i, b2i)
′ ∼ N (0, D)

• The logistic mixed model is an example of a generalized linear mixed model
(GLMM)
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• A number of estimation methods is available for fitting GLMM’s:

. Laplace approximation

. Marginal quasi-likelihood (MQL)

. Penalized quasi-likelihood (PQL)

. (Adaptive) Gaussian quadrature

. . . .

• Different estimation methods can lead to (strong) differences in the results

• In this course, PQL will be used.

• Next to the estimation of the fixed effects (β parameters) and variance
components (elements in D), empirical Bayes (EB) estimates for the random
effects bi can be calculated as well.
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13.4 Analysis in SAS

• Logistic mixed models can be fitted within the GLIMMIX procedure.

• Up to SAS version 9.1, the GLIMMIX procedure is not part of the standard SAS
package. It can be downloaded from the SAS website. Once installed, it remains
available for future SAS sessions.

http://www.sas.com/apps/demosdownloads/setupcat.jsp?cat=SAS%2FSTAT+Software

• We consider the random-intercepts model:

Yij ∼ Bernoulli(πij), log




πij

1− πij


 = β0 + bi + β1Ti + β2tij + β3Titij

• The model specification in GLIMMIX is very similar to the way linear mixed
models were specified in the MIXED procedure.
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• SAS program for the random-intercepts model:

proc glimmix data=test;

class idnum;

model onyresp (event=’1’) = treatn time treatn*time / dist=binary solution;

random intercept / subject=idnum;

run;

• Selected output:

Response Profile

Ordered Total

Value onyresp Frequency

1 0 1500

2 1 408

The GLIMMIX procedure is modeling the probability that onyresp=’1’.

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept idnum 4.7116 0.6031
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Solutions for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept -0.7239 0.2370 292 -3.05 0.0025

treatn 0.000918 0.3363 1612 0.00 0.9978

time -0.2883 0.03349 1612 -8.61 <.0001

treatn*time -0.1106 0.05366 1612 -2.06 0.0395

Type III Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

treatn 1 1612 0.00 0.9978

time 1 1612 74.10 <.0001

treatn*time 1 1612 4.25 0.0395

• Ignoring the clustering, the difference in slopes between the two treatment groups
was estimated as −0.0783 (p = 0.0470).

• Under the random-intercepts model this becomes −0.1106 (p = 0.0395).
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• The variance between subjects is estimated as σ̂2
b = 4.7116

• Our model assumes different fixed intercepts and slopes for both groups.

• Direct estimation of these can be done based on the following reparameterization
of the same model:

Yij ∼ Bernoulli(πij), log




πij

1− πij


 =





β1 + bi + β2tij, Treatment A

β3 + bi + β4tij, Treatment B

• The corresponding SAS code becomes:

proc glimmix data=test;

class idnum treatn;

model onyresp (event=’1’) = treatn treatn*time / noint dist=binary solution;

random intercept / subject=idnum;

estimate ’difference slopes’ treatn*time 1 -1;

run;
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• The ESTIMATE statement is used to estimate and test the difference between the
slopes β2 and β4 of both treatment groups.

• Selected output:

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept idnum 4.7116 0.6031

Type III Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

treatn 2 1612 9.26 0.0001

time*treatn 2 1612 82.30 <.0001

Solutions for Fixed Effects

Standard

Effect treatn Estimate Error DF t Value Pr > |t|

treatn 0 -0.7239 0.2370 1612 -3.05 0.0023

treatn 1 -0.7230 0.2386 1612 -3.03 0.0025

time*treatn 0 -0.2883 0.03349 1612 -8.61 <.0001

time*treatn 1 -0.3989 0.04193 1612 -9.51 <.0001
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Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

difference slopes 0.1106 0.05366 1612 2.06 0.0395

• Note again that the standard reported F -tests test whether both intercepts and
both slopes are equal to zero, respectively.

• Summary of model fit:

Effect Parameter Estimate (s.e.)

Intercept group A β1 −0.7239 (0.2370)

Intercept group B β3 −0.7230 (0.2386)

Slope group A β2 −0.2883 (0.0335)

Slope group B β4 −0.3989 (0.0419)

Variance random intercepts σ2
b 4.7116 (0.6031)
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• As an example, a logistic mixed model with uncorrelated random intercepts and
slopes can be fitted with the following SAS code:

proc glimmix data=test ;

class idnum treatn;

model onyresp (event=’1’) = treatn treatn*time / noint dist=binary solution;

random intercept timetrans / type=un(1) subject=idnum;

estimate ’difference slopes’ treatn*time 1 -1;

run;

• The option ‘type=un(1)’ specifies that the covariance matrix D should be
diagonal.

• Selected output:

Covariance Parameter Estimates

Cov Standard

Parm Subject Estimate Error

UN(1,1) idnum 4.6285 0.6143

UN(2,1) idnum 0 .

UN(2,2) idnum 0.0747 0.0184
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Solutions for Fixed Effects

Standard

Effect treatn Estimate Error DF t Value Pr > |t|

treatn 0 -0.6653 0.2375 1325 -2.80 0.0052

treatn 1 -0.6144 0.2396 1325 -2.56 0.0105

time*treatn 0 -0.3528 0.04997 1325 -7.06 <.0001

time*treatn 1 -0.4983 0.05952 1325 -8.37 <.0001

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

difference slopes 0.1455 0.07771 1325 1.87 0.0615

• Under the random-intercepts model, the difference in slopes between the two
treatment groups was estimated as 0.1106 (p = 0.0395).

• Under the model with uncorrelated random intercepts and slopes, this becomes
0.1455 (p = 0.0615).
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• Note that the estimation of the fixed effects is also affected by including the
random slopes:

Random Random
intercepts intercepts & slopes

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept group A β1 −0.7239 (0.2370) −0.6653 (0.2375)

Intercept group B β3 −0.7230 (0.2386) −0.6144 (0.2396)

Slope group A β2 −0.2883 (0.0335) −0.3528 (0.0450)

Slope group B β4 −0.3989 (0.0419) −0.4983 (0.0596)

Variance random intercepts d11 4.7116 (0.6031) 4.6285 (0.6143)

Variance random slopes d22 0.0747 (0.0184)
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Chapter 14

The Leuven diabetes project

. Example

. A three-level logistic mixed regression model

. Analysis in SAS
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14.1 Example

• Linear mixed models were used earlier to study the evolution of HbA1c in DPL
participants, correcting for the clustered nature of the data:

. within general practioners (GP’s)

. within subjects

• A related outcome of scientific interest is whether the GP is able to keep the
HbA1c level under control, i.e., to keep it below 7%

• Hence, the derived outcome of interest is defined as:

Y =





1 if HbA1c < 7%

0 if HbA1c ≥ 7%
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14.2 A three-level logistic mixed regression model

• Let Yijk be the kth binary outcome measure for patient j of GP i

• Ignoring potential important covariates, a model which accounts for the clustering
of the outcomes within patients and GP’s is a three-level logistic mixed model:

Yijk ∼ Bernoulli(πijk)

logit(πijk) = log

 πijk

1−πijk


 = β0 + β1tk + ai + bj(i),

ai ∼ N (0, σ2
GP ), bj(i) ∼ N (0, σ2

PAT )
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• The GP effects bj(i) represent the fact that some GP’s are more succesful in
controling the HbA1c level of their patients than others.

• The patient effects ai represent the fact that controling the HbA1c level is not
equally easy for all patients
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14.3 Analysis in SAS

• The SAS code to fit the three-level logistic mixed model equals:

proc glimmix data=dpla;

class mdnr patientnr ;

model target (event=’1’) = time / dist=binary solution;

random intercept / subject=mdnr solution;

random intercept / subject=patientnr(mdnr) solution;

ods listing exclude solutionr;

ods output solutionr=out;

run;

• The opion ‘solution’ is added to the RANDOM statement to request calculation of
the EB estimates

• As in the MIXED procedure, ODS statements can be used to save the EB
estimates into an output data set, rather than print them in the output screen.
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• Selected SAS output:

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept mdnr 0.1399 0.05275

Intercept patientnr(mdnr) 1.1154 0.1308

Type III Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

time 1 1395 59.07 <.0001

Solutions for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 0.1662 0.07960 60 2.09 0.0410

time 0.6240 0.08119 1395 7.69 <.0001

• As for the continuous outcome, we observe far more variability between patients
than between GP’s;

. Between-GP variability: σ̂2
GP = 0.1399

. Between-patient variability: σ̂2
PAT = 1.1154
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• Overall, the probability of reaching the target HbA1c (< 7%) increases over time
(p < 0.0001)

• Histograms of both sets of EB estimates:
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• The histogram of EB estimates ̂bj(i) of patient effects suggests three clusters of
patients, with approximate cut-offs for ̂bj(i) equal to −0.6 and 0.1

• These clusters reflect the possible patient-specific profiles:

. Patients with Y0 = Y1 = 0 are expected to have small predicted probabilities
for reaching the target. Their prediction ̂bj(i) is expected to be very small
(negative).

. Patients with Y0 = Y1 = 1 are expected to have large predicted probabilities for
reaching the target. Their prediction ̂bj(i) is expected to be very large
(positive).

. Patients who change Y0 = 0 −→ Y1 = 1 or Y0 = 1 −→ Y1 = 0 are expected to
have intermediate predicted probabilities for reaching the target. Their
prediction ̂bj(i) is expected to be of a moderate level.
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• This can be quantified in the following cross-classification:

Y profile ̂bj(i) < −0.6 −0.6 ≤ ̂bj(i) < −0.1 −0.1 ≤ ̂bj(i)

0 −→ 0 345 0 0

0 −→ 1 0 275 0

1 −→ 1 0 0 677

• All patients with HbA1c at target at the start of the study have their HbA1c at
target one year later as well.
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• Scatterplot of patient effects versus GP effects:
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• For each GP, we observe at most 7 different values for the EB estimates for the
patients treated by that GP.

• These 7 values correspond to the 7 different response profiles that can be
observed: 0 −→ 0, 0 −→ 1, 1 −→ 1, 0 −→ ·, 1 −→ ·, · −→ 0, and · −→ 1.

• The negative trends observed in the scatterplot are also a side effect of the
discrete nature of the outcomes.

• Consider two patients, j1 and j2, treated by different GP’s, i1 and i2, with the
same response profile, e.g., 1 −→ 1

• Their subject-specific models are given by:

logit(πi1j1k) = β0 + β1tk + ai1 + bj1(i1), for patient j1

logit(πi2j2k) = β0 + β1tk + ai2 + bj2(i2), for patient j2
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• Since both patients have the same data, we expect their predicted probabilities to
be the same at all time points, implying

ai1 + bj1(i1) = ai2 + bj2(i2)

• Hence, we expect the sum ai + bj(i) of GP and patient effects to be constant,
explaining the strong negative relation between the estimates âi and ̂bj(i).
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Chapter 15

The Epilepsy data

. Example

. Poisson regression

. A Poisson mixed model

. Analysis in SAS
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15.1 Example

• Randomized, double-blind, parallel group multi-center study for the comparison of
placebo with a new anti-epileptic drug (AED), in combination with one or two
other (standard) AED’s.

• Randomization after a 12-week stabilization period.

• 45 patients in placebo group, 44 in active (new) treatment group

• Double-blind weekly measurements during 16 weeks.

• Afterwards, patients enter a long-term open-extension study, with some patients
followed for up to 27 weeks
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• The outcome of interest is the number of epileptic seizures experienced during the
last week, i.e., since the last time the outcome was measured.

• Number of observations and histogram of the weekly outcome measurements:

# Observations

Week Placebo Treatment Total

1 45 44 89

5 42 42 84

10 41 40 81

15 40 38 78

16 40 37 77

17 18 17 35

20 2 8 10

27 0 3 3
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• Average and median profiles for both treatments:

• Unstable behavior due to extreme values and few observations past week 20.
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15.2 Poisson regression

• As in earlier examples, the data are clustered within study participants

• Ignoring the clustering, a typical analysis for studying the relation between a count
outcome Yij and some known covariates such as time and treatment would consist
of Poisson regression.

• We then assume a Poisson distribution: Yij ∼ Poisson(λij)

• The parameter λij is the expected (average) count, i.e., λij = E(Yij).

• A logarithmic relation is assumed between λij and the covariates:

log(λij) =





β1 + β2tij if placebo (group 0)

β3 + β4tij if treated (group 1).
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• More complex models can be considered as well (e.g. including polynomial time
effects, including covariates, . . . ).

• In SAS, the model can be fitted as follows:

proc genmod data=test;

class trt;

model nseizw = trt trt*time / noint dist=poisson ;

estimate ’slope difference’ trt*time 1 -1 ;

run;

• The ESTIMATE statement has been added to estimate the difference between the
two slopes.
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• Selected output:

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 0 0.0000 0.0000 0.0000 0.0000 . .

trt 0 1 1.2662 0.0424 1.1832 1.3493 892.71 <.0001

trt 1 1 1.4531 0.0383 1.3781 1.5282 1439.57 <.0001

time*trt 0 1 -0.0133 0.0043 -0.0218 -0.0048 9.48 0.0021

time*trt 1 1 -0.0328 0.0038 -0.0403 -0.0253 73.86 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

slope difference 0.0195 0.0058 0.05 0.0081 0.0308 11.34 0.0008

• We find a significant difference in the evolution in the two treatment groups
(p = 0.0008), where group 1 shows more improvement than treatment group 0.
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15.3 A Poisson mixed model

• Correction for the clustered nature of the data can again be based on the inclusion
of random effects which model the within-patient correlation.

• For example, consider the random-intercepts model:

Yij ∼ Poisson(λij), log(λij) =





β1 + bi + β2tij if placebo (group 0)

β3 + bi + β4tij if treated (group 1).

• As before, the subject-specific intercepts bi are assumed to follow a normal
distribution N (0, σ2

b).

• Other random effects (slopes) can be introduced as well.
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15.4 Analysis in SAS

• SAS code for the random-intercepts model:

proc glimmix data=test;

class id trt;

model nseizw = trt trt*time / noint dist=poisson solution;

random intercept / subject=id;

estimate ’slope difference’ trt*time 1 -1 ;

run;

• Selected SAS output:

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept id 1.1462 0.1835

Type III Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

trt 2 1328 20.64 <.0001

time*trt 2 1328 9.14 0.0001
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Solutions for Fixed Effects

Standard

Effect trt Estimate Error DF t Value Pr > |t|

trt 0 0.8413 0.1668 1328 5.04 <.0001

trt 1 0.6732 0.1692 1328 3.98 <.0001

time*trt 0 -0.01430 0.004404 1328 -3.25 0.0012

time*trt 1 -0.01200 0.004317 1328 -2.78 0.0055

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

slope difference -0.00230 0.006167 1328 -0.37 0.7094

• In contrast to the significant interaction obtained before, ignoring the longitudinal
nature of the data (p = 0.0008), we no longer find a difference between the two
slopes β2 and β4 (p = 0.7094).

• The between-patient variability is estimated to be σ̂2
b = 1.1462.
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• Summary of model fit:

Effect Parameter Estimate (s.e.)

Intercept Placebo β1 0.8413 (0.1668)

Intercept Active β3 0.6732 (0.1692)

Slope Placebo β2 −0.0143 (0.0044)

Slope Active β4 −0.0120 (0.0043)

Variance random intercepts σ2
b 1.1462 (0.1835)

• A mixed model with subject-specific intercepts as well as time effects would be:

Yij ∼ Poisson(λij), log(λij) =





β1 + b1i + (β2 + b2i)tij if placebo (group 0)

β3 + b1i + (β4 + b2i)tij if treated (group 1).
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• As before, the random effects are assumed to follow a bivariate normal distribution
with mean zero:

bi = (b1i, b2i)
′ ∼ N (0, D)

• New SAS code:

proc glimmix data=test;

class id trt;

model nseizw = trt trt*time / noint dist=poisson solution;

random intercept time / type=un subject=id solution;

estimate ’slope difference’ trt*time 1 -1 ;

ods listing exclude solutionr;

ods output solutionr=out;

• Selected output:

Covariance Parameter Estimates

Cov Standard

Parm Subject Estimate Error

UN(1,1) id 1.2577 0.2173

UN(2,1) id -0.01891 0.008784

UN(2,2) id 0.002419 0.000565

Type III Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

trt 2 1241 20.86 <.0001

time*trt 2 1241 5.08 0.0064
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Solutions for Fixed Effects

Standard

Effect trt Estimate Error DF t Value Pr > |t|

trt 0 0.9251 0.1768 1241 5.23 <.0001

trt 1 0.6844 0.1807 1241 3.79 0.0002

time*trt 0 -0.02687 0.009787 1241 -2.75 0.0061

time*trt 1 -0.01616 0.009976 1241 -1.62 0.1056

Estimates

Standard

Label Estimate Error DF t Value Pr > |t|

slope difference -0.01071 0.01397 1241 -0.77 0.4436

• Under the random-intercepts model, the difference in slopes between the two
treatment groups was estimated as −0.0023 (p = 0.7094).

• Under the current model, this becomes −0.0107 (p = 0.4436).
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• Note that the estimation of the fixed effects is also affected by including the
random slopes:

Random Random
intercepts intercepts & slopes

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept Placebo β1 0.8413 (0.1668) 0.9251 (0.1768)

Intercept Active β3 0.6732 (0.1692) 0.6844 (0.1807)

Slope Placebo β2 −0.0143 (0.0044) −0.0269 (0.0098)

Slope Active β4 −0.0120 (0.0043) −0.0162 (0.0100)

Variance random intercepts d11 1.1462 (0.1835) 1.2577 (0.2173)

Covariance random intercepts & slopes d12 −0.0189 (0.0088)

Variance random slopes d22 0.0024 (0.0006)
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• Scatterplot of estimated subject-specific intercepts and slopes:
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Chapter 16

The hierarchical versus marginal model

. Parameter interpretation in the GLMM

. Marginalizing the mixed model: The toenail data

. Marginalizing the mixed model: The epilepsy data
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16.1 Parameter interpretation in the GLMM

• Let us re-consider one of the linear mixed models, used before for the model
growth curve data:

Yij|bi ∼





N (β1 + bi + β2tj, σ
2
res), if short mother

N (β3 + bi + β4tj, σ
2
res), if medium mother

N (β5 + bi + β6tj, σ
2
res), if tall mother

• This hierchical model implied a very specific marginal model, with mean:

E(Yij) =





β1 + β2tj, if short mother

β3 + β4tj, if medium mother

β5 + β6tj, if tall mother
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• Hence, the fixed effects have a subject-specific interpretation as well as a
population-average interpretation.

• Let us now consider the logistic random-intercepts model

Yij ∼ Bernoulli(πij), log




πij

1− πij


 = β0 + bi + β1tij

• Equivalently, we have

E(Yij|bi) = πij =
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)

• The above model assumes a logistic evolution of the success probability of each
patients, all curves having the same slope β1, but different intercepts β0 + bi.
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• Graphically:
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• The average subject, i.e., the subject with intercept bi = 0, has success probability
given by

E(Yij|bi = 0) =
exp(β0 + 0 + β1t)

1 + exp(β0 + 0 + β1t)
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• The marginal population-average evolution is obtained from averaging over the
random effects:

E(Yij) = E [E(Yij|bi)] = E




exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)


 6= exp(β0 + 0 + β1t)

1 + exp(β0 + 0 + β1t)
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• Conclusion:

Average evolution 6= Evolution average subject

• Parameters in the mixed model have a subject-specific interpretation, not a
population-averaged one.

• The problem arises from the fact that, E[g(Y )] 6= g[E(Y )], unless for linear
functions, such as in the case of linear mixed models:

. Conditional mean: E(Yi|bi) = Xiβ + Zibi

. Average subject: E(Yi|bi = 0) = Xiβ

. Marginal mean: E(Yi) = Xiβ

Introduction to Biostatistics 233



• Calculation of the marginal average population requires computation of

E(Yij) = E [E(Yij|bi)] = E




exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)




=

∫
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)
f (bi) dbi

• This can be done using numerical integration methods, or using sampling based
averaging.

• Note that what has been explained here in the context of logistic mixed models
equally well applies to every other generalized linear or non-linear model.
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16.2 Marginalizing the mixed model: The toenail data

• We re-consider the logistic mixed model with random intercepts.

• The fitted model is given by:

Yij ∼ Bernoulli(πij), πij =





exp(−0.7239+bi−0.2883tij)

1+exp(−0.7239+bi−0.2883tij)
, Treatment A

exp(−0.7230+bi−0.3989tij)

1+exp(−0.7230+bi−0.3989tij)
, Treatment B

• The random effects bi are normally distributed with mean 0 and variance
σ̂2

b = 4.7116.
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• The marginal evolution in both groups is obtained from integrating over the
random effects bi ∼ N (0, 4.7116):

πij =





∫
exp(−0.7239+bi−0.2883tij)

1+exp(−0.7239+bi−0.2883tij)
f (bi) dbi, Treatment A

∫
exp(−0.7230+bi−0.3989tij)

1+exp(−0.7230+bi−0.3989tij)
f (bi) dbi, Treatment B

• SAS code:

data h;

do treat=0 to 1 by 1;

do subject=1 to 1000 by 1;

b=sqrt(4.7116)*rannor(-1) ;

do t=0 to 12 by 0.1;

if treat=0 then y=exp(-0.7239 + b -0.2883*t)/(1+ exp(-0.7239 + b -0.2883*t));

else y=exp(-0.7230 + b -0.3989*t)/(1+ exp(-0.7230 + b -0.3989*t));

output;

end;

end;

end;
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proc sort data=h;

by t treat;

run;

proc means data=h;

var y;

by t treat;

output out=out;

run;

dm "dlgprtsetup orient=L nodisplay";

filename fig ’c:/filename.eps’;

goptions reset=all interpol=join ftext=swiss device=pslepsfc

gsfname=fig gsfmode=replace targetdevice=winprtc;

proc gplot data=out;

plot y*t=treat / haxis=axis1 vaxis=axis2 legend=legend1;

axis1 label=(h=2 ’Time’) value=(h=1.5) order=(0 to 14 by 1) minor=none;

axis2 label=(h=2 A=90 ’P(Y=1)’) value=(h=1.5) order=(0 to 0.4 by 0.1) minor=none;

legend1 label=(h=1.5 ’Treatment: ’) value=(h=1.5 ’A’ ’B’);

title h=2.5 ’ Marginal average evolutions (GLMM)’;

symbol1 c=red i=join w=20 l=1 mode=include;

symbol2 c=blue i=join w=20 l=1 mode=include;

where _stat_=’MEAN’;

run;quit;run;
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• Result:

Introduction to Biostatistics 238



• The evolution of ‘average’ subjects, i.e., subjects with bi = 0 is given by:

πij =





exp(−0.7239+0−0.2883tij)

1+exp(−0.7239+0−0.2883tij)
, Treatment A

exp(−0.7230+0−0.3989tij)

1+exp(−0.7230+0−0.3989tij)
, Treatment B

Introduction to Biostatistics 239



16.3 Marginalizing the mixed model: The epilepsy data

• We re-consider the fitted Poisson mixed model with random intercepts and slopes:

Yij ∼ Poisson(λij)

λij =





exp[0.9251 + b1i + (−0.0269 + b2i)tij] if placebo (group 0)

exp[0.6844 + b1i + (−0.0162 + b2i)tij] if treated (group 1).

• The random-effects vector bi = (b1i, b2i)
′ is N (0, D) distributed, with fitted D:

̂D =




1.2577 −0.0189

−0.0189 0.0024



.

• The non-linear link function again implies that the parameters only have a
subject-specific interpretation.
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• Subject-specific profiles for 20 randomly selected subjects, together with their
average evolution:
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• The marginal average evolutions are obtained from integrating over the random
effects bi:

E(Yij) = E [E(Yij|bi)]

=





∫ ∫
exp[0.9251 + b1i + (−0.0269 + b2i)tij] f (b1i, b2i) db1i db2i

if placebo (group 0)∫ ∫
exp[0.6844 + b1i + (−0.0162 + b2i)tij] f (b1i, b2i) db1i db2i

if treated (group 1).

• As before, the integration can be approximated using sampling based averaging,
which requires generating multivariate random vectors bi ∼ N (0, ̂D)

• Most software packages only allow generating univariate standard normals, which
can then be transformed using the cholesky decomposition of the covariance ̂D
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• The cholesky decomposition L of ̂D is the upper triangular matrix such that
L′L = ̂D

• In SAS, L can easily be calculated using the IML procedure:

proc iml;

d={1.2577 -0.0189 , -0.0189 0.0024};

l=root(d);

print d; print l;

quit;

• Output:

D L

1.2577 -0.0189 1.1214722 -0.016853

-0.0189 0.0024 0 0.0459998

• Let b∗1i and b∗2i be independent and standard normal distributed, and
bi
∗ = (b∗1i, b

∗
2i)
′
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• We then have that

bi ≡ L′bi
∗ =




1.1215 b∗1i + 0 b∗2i

−0.0169 b∗1i + 0.0460 b∗2i



∼ N (0, L′IL) = N (0, ̂D)

• The SAS code for sampling based averaging:

data h;

do treat=0 to 1 by 1;

do subject=1 to 1000 by 1;

b1=rannor(-1);

b2=rannor(-1);

ranint=1.1215*b1;

ranslope=-0.0169*b1 + 0.0460*b2;

do t=0 to 27 by 0.1;

if treat=0 then y=exp(0.9251+ranint +(-0.0269+ranslope)*t);

else y=exp(0.6844+ranint +(-0.0162+ranslope)*t);

output;

end;

end;

end;

Introduction to Biostatistics 244



proc sort data=h;

by t treat;

run;

proc means data=h;

var y;

by t treat;

output out=out;

run;

dm "dlgprtsetup orient=L nodisplay";

filename fig ’c:/filename.eps’;

goptions reset=all interpol=join ftext=swiss device=pslepsfc

gsfname=fig gsfmode=replace targetdevice=winprtc ;

proc gplot data=out;

plot y*t=treat / haxis=axis1 vaxis=axis2 legend=legend1;

axis1 label=(h=2.5 ’Time (weeks)’) value=(h=1.5) order=(0 to 25 by 5) minor=none;

axis2 label=(h=2.5 A=90 ’E(Y)’) value=(h=1.5) order=(0 to 6 by 1) minor=none;

legend1 label=(h=1.5 ’Treatment: ’) value=(h=1.5 ’Placebo’ ’Treated’);

title h=3 ’ Marginal average evolutions (GLMM)’;

symbol1 c=red i=join w=20 l=1 mode=include;

symbol2 c=blue i=join w=20 l=1 mode=include;

where _stat_=’MEAN’;

run;quit;run;
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• Result:
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• The evolution of ‘average’ subjects, i.e., subjects with bi = 0 is given by:

λij =





exp[0.9251 + 0 + (−0.0269 + 0)tij] if placebo (group 0)

exp[0.6844 + 0 + (−0.0162 + 0)tij] if treated (group 1).
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Part IV

Non-linear Mixed Models
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Chapter 17

Introduction

. Linear and generalized linear mixed models revisited

. Non-linear mixed models
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17.1 Linear and generalized linear mixed models revisited

• In linear mixed models, the mean is modeled as a linear function of regression
parameters and random effects. For example,

E(Yij|b1i, b2i) = (β1 + b1i) + (β2 + b2i)tij + εij

• In generalized linear mixed models, apart from a link function, the mean is again
modeled as a linear function of regression parameters and random effects:

. Binary data, for example

E(Yij|b1i, b2i) =
exp[(β1 + b1i) + (β2 + b2i)tij]

1 + exp[(β1 + b1i) + (β2 + b2i)tij]

. Count data, for example

E(Yij|b1i, b2i) = exp[(β1 + b1i) + (β2 + b2i)tij]
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• In some applications, models are needed, in which the mean is no longer modeled
as a function of a linear predictor.

• These are called non-linear mixed models.
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17.2 Non-linear mixed models

• In non-linear mixed models, it is assumed that the conditional mean of Yij, given a
vector bi of random effects is modeled as:

E(Yij|bi) = h(xij, β, bi)

• The vector xij contains known covariates

• The vectors β and bi contain fixed and random effects, respectively

• As before, the random effects are assumed to be normally distributed, with mean
0 and covariance D.

• Non-linear mixed models can be fitted within the SAS procedure NLMIXED.
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Chapter 18

The orange trees

. Introduction

. Analysis in SAS
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18.1 Introduction

• We consider an experiment in which the trunk circumference (in mm) is measured
for 5 orange trees, on 7 different occasions.

• Data:

Response

Day Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

118 30 33 30 32 30

484 58 69 51 62 49

664 87 111 75 112 81

1004 115 156 108 167 125

1231 120 172 115 179 142

1372 142 203 139 209 174

1582 145 203 140 214 177
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• Individual profiles:
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• The following non-linear mixed model has been proposed in the statistical
literature:

Yij =
β1 + bi

1 + exp[−(tij − β2)/β3]
+ εij, bi ∼ N (0, σ2

b ), εij ∼ N (0, σ2)
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18.2 Analysis in SAS

• In SAS PROC NLMIXED, the model can be fitted using either of the following
equivalent programs:

proc nlmixed data=tree;

parms beta1=190 beta2=700 beta3=350 sigmab=10 sigma=10;

num = b + beta1;

ex = exp(-(day-beta2)/beta3);

den = 1 + ex;

model y ~ normal(num/den,sigma**2);

random b ~ normal(0,sigmab**2) subject=tree;

run;

proc nlmixed data=tree;

parms beta1=190 beta2=700 beta3=350 sigmab=10 sigma=10;

num = b;

ex = exp(-(day-beta2)/beta3);

den = 1 + ex;

model y ~ normal(num/den,sigma**2);

random b ~ normal(beta1,sigmab**2) subject=tree;

run;
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• Selected output:

Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient

beta1 192.05 15.6577 4 12.27 0.0003 0.05 148.58 235.53 -6.8E-8

beta2 727.91 35.2487 4 20.65 <.0001 0.05 630.04 825.77 1.383E-8

beta3 348.07 27.0798 4 12.85 0.0002 0.05 272.89 423.26 3.375E-8

sigmab 31.6463 10.2614 4 3.08 0.0368 0.05 3.1560 60.1366 -3.4E-7

sigma 7.8430 1.0125 4 7.75 0.0015 0.05 5.0318 10.6542 -1.92E-6

• Empirical Bayes estimates, and subject-specific predictions can be obtained as
follows:

proc nlmixed data=tree;

parms beta1=190 beta2=700 beta3=350 sigmab=10 sigma=10;

num = b + beta1;

den = 1 + exp(-(day-beta2)/beta3);

ratio = num/den;den = 1 + ex;

model y ~ normal(ratio,sigma**2);

random b ~ normal(0,sigmab**2) subject=tree out=eb;

predict ratio out=ratio;

run;
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• We can now compare the observed data to the subject-specific predictions

ŷij =
̂β1 + ̂bi

1 + exp[−(tij − ̂β2)/
̂β3]
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Chapter 19

The Theophylline data

. Introduction

. Analysis in SAS
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19.1 Introduction

• Pharmacokinetics (PK) is the study of the time course of a drug concentration
in the body, i.e., “what the body does to the drug.”

• Pharmacodynamics (PD) is the study of the relationship of the drug
concentration and pharmacologic effects, i.e., “what a drug does to the body.”

• We consider the PK study in which longitudinally measured blood concentrations
of the anti-asthmatic, orally administered, agent Theophylline are studied

• 12 subjects, dose at t = 0

• Blood samples at 10 time points over the following 25 hours

• Outcome of interest: Theophylline concentration
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• The blood concentration depends on:

. Absorption: the process of a substance entering the body

. Elimination: the process of a substance being removed from the body

. Clearance: the volume of blood cleared of drug, in the kidneys, per unit time

• In the literature, a one-compartment open model with first-order absorption and
elimination has been proposed (t > 0):

Yij = Ci(tij) =
kaikeidi

C`i(kai − kei)
× [exp(−keitij)− exp(−kaitij)] + εij

• Parameter interpretation:

. kai: fractional absorption rate for subject i

. kei: fractional elimination rate for subject i

. C`i: clearance for subject i
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• In order to restrict kai, kei, and C`i to be positive, the model is re-parameterized
as:

C`i = exp(β1 + b1i),

ka,i = exp(β2 + b2i),

ke,i = exp(β3 + b3i).

• b1i, b2i, and b3i are assumed multivariate normal with mean 0 and covariance D
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19.2 Analysis in SAS

• NLMIXED code:

proc nlmixed data=theoph;

parms beta1=-3.22 beta2=0.47 beta3=-2.45

d11=0.03 d12=0 d22=0.4 d13=0 d23=0 d33=0.03 s2=0.5;

cl = exp(beta1 + b1);

ka = exp(beta2 + b2);

ke = exp(beta3 + b3);

pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);

model conc ~ normal(pred,s2);

random b1 b2 b3 ~ normal([0,0,0],[d11,d12,d22,d13,d23,d33]) subject=subject;

predict pred out=theopred; run;

• Note that very accurate starting values are needed for the various parameters.
Otherwise the numerical optimization procedure does not reach convergence

• Starting values can be obtained from fitting non-linear regression models to all
subjects separately, from fitting simplified mixed models, or from trying several
optimization algorithms.
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• Results:

Parameter Estimate (s.e.)

Fixed effects:

β1 (Cl) -3.277 (0.046)

β2 (ka) 0.537 (0.063)

β3 (ke) -2.454 (0.064)

Parameter Estimate (s.e.)

Residual variance:

σ2 0.623 (0.083)

Random-effect (co-)variances:

d11 0.057 (0.022)

d12 -0.012 (0.018)

d22 0.264 (0.054)

d13 0.030 (0.020)

d23 -0.025 (0.017)

d33 0.035 (0.017)

• There seems only weak evidence for correlation between the random effects
b1i, b2i, b3i
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• A model with uncorrelated random effects can be fitted by replacing the previous
PARMS and RANDOM statements by:

parms beta1=-3.22 beta2=0.47 beta3=-2.45 d11=0.03 d22=0.4 d33=0.03 s2=0.5;

random b1 b2 b3 ~ normal([0,0,0],[d11,0,d22,0,0,d33]) subject=subject;

• The increase in approximate log-likelihood is only 0.9.

• This supports our initial statement of weak correlation between the various
random effecs

• As an informal check of our model fit, we can compare the fitted profile for each
subject with its observed data.
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Chapter 20

Remarks

. Marginalizing non-linear mixed models

. Generalized linear mixed models in NLMIXED

. Generalized non-linear mixed models in NLMIXED
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20.1 Marginalizing the mixed model

• It has been discussed that parameters in generalized linear mixed models have
subject-specific rather than population-average interpretations.

• The same holds for non-linear mixed models.

• For example, in the Theophylline analysis, the marginal average evolution equals:

E(Yij) = E{E(Yij|bi)}

= E





kaikeidi

C`i(kai − kei)
× [exp(−keitij)− exp(−kaitij)]

∣∣∣∣∣∣∣∣
bi





= E





exp(β2 + b2i) exp(β3 + b3i)di

exp(β1 + b1i)[exp(β2 + b2i)− exp(β3 + b3i)]

× [exp(− exp(β3 + b3i)tij)− exp(− exp(β2 + b2i)tij)]

∣∣∣∣∣∣∣∣
b1i, b2i, b3i
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• This requires integration over the three-dimensional random-effects distribution of
(b1i, b2i, b3i).

• As before, this can be done using numerical integration methods, or by sample
averaging.

• In some special cases, the fixed effects do represent the average evolution.

• For example, for the model used to describe the orange tree data, we have

E(Yij) = E{E(Yij|bi)} = E





β1 + bi

1 + exp[−(tij − β2)/β3]

∣∣∣∣∣∣∣∣
bi





=
β1

1 + exp[−(tij − β2)/β3]

• Whenever the random effects appear in a linear way in the model, no numerical
integration methods are needed for marginalizing the non-linear mixed model.

Introduction to Biostatistics 271



20.2 Generalized linear mixed models in NLMIXED

• Generalized linear mixed models can also be considered as non-linear mixed
models: The mean is a non-linear function of the covariates:

. Binary data, for example

E(Yij|b1i, b2i) =
exp[(β1 + b1i) + (β2 + b2i)tij]

1 + exp[(β1 + b1i) + (β2 + b2i)tij]

. Count data, for example

E(Yij|b1i, b2i) = exp[(β1 + b1i) + (β2 + b2i)tij]

• These are special cases as, apart from the link function, there is still a linear
predictor of the form xij

′β + zij
′bi
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• Generalized linear mixed models can also be fitted using the NLMIXED procedure.

• For example, the above logistic mixed can be fitted as:

proc nlmixed data=dataset;

parms beta1=-3.22 beta2=0.47 d11=0.03 d12=0 d22=0.4;

teta = beta1 + b1 + beta2*time + b2*time;

expteta = exp(teta);

p = expteta/(1+expteta);

model y ~ binary(p);

random b1 b2 ~ normal([0,0],[d11,d12,d22]) subject=subject;

• For example, the above Poisson mixed can be fitted as:

proc nlmixed data=dataset;

parms beta1=-3.22 beta2=0.47 d11=0.03 d12=0 d22=0.4;

teta = beta1 + b1 + beta2*time + b2*time;

lambda=exp(teta);

model y ~ poisson(lambda);

random b1 b2 ~ normal([0,0],[d11,d12,d22]) subject=subject;
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20.3 Generalized non-linear mixed models in NLMIXED

• The linear predictor in generalized linear mixed models can be replaced by any
function of the covariates, fixed effects, and random effects.

• For example, in dose-response models, the following logistic mixed model with
non-linear predictor is sometimes used:

Yij ∼ Bernoulli(πij)

logit(πij) = log




πij

1− πij


 = β1 + bi + β2 × doseβ3

i

• Such models can equally well be fitted using the NLMIXED procedure
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