$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

SCIENCE - PHYSICS

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCSE SCIENCE - PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Page

Physics 1 - Foundation Tier
 1

Physics 1 - Higher Tier 5
Physics 2 - Foundation Tier 9
Physics 2 - Higher Tier 13
Physics 3 - Foundation Tier 17
Physics 3 - Higher Tier 20

GCSE SCIENCE - PHYSICS 1

FOUNDATION TIER

Question			Marking details	Marks
1.	(a)		visible light - infrared - microwaves all correct - 2 marks 1 or 2 correct - 1 mark	2
	(b)	(i)	17[\%] (accept 100-83)	1
		(ii)	increases / heats up / rises (accept - very hot / gets hot / warms it up)	1
	(c)		ticks in boxes $2,3 \& 4(3 x(1)$ - each additional tick over 3 loses a mark)	3
			Question total	[7]
2.	(a) (b)		2.2 [kW]	1
		(i)	X	1
		(ii)	3960000 J	1
		(iii)	use of 1.6 (1) conversion of 30 min to 0.5 h and multiply (1) Answer $0.8[\mathrm{kWh}]$ scores (2) Answer 48 - 1 mark (1.6×30 - uses the correct power) $0.5 / 1.1 / 500 / 1100 / 800-1$ mark (has converted time correctly) $(1.6 \div 0.5)=1$ mark only	2
		(iv)	0.8 (ecf) $\times 15=12[p]$ mark is for the answer. Don't accept $£ 0.12 \mathrm{p}$	1
			Question total	[6]
3.		(i)	beta Any $2 \times(1)$: - alpha would not penetrate through [that much] air - gamma would not be absorbed by [that much] air - beta blocked by that much air answer must refer to penetration through air or implied through air e.g. alpha would not get that far	1
				2
		(iii)	Any 2 x (1): repeat [the experiment] (accept more results) measure [counts] over a longer period of time take readings at smaller distance intervals start taking readings at 0 (accept increase the range) use a different part of the quarry wall Don't accept: more people do the experiment / better detectors	2
		(iv)	[decay is] random / no pattern / decay at different times / decay is disorganised. (Do not accept unpredictable.)	1
			Question total	[6]

Question			Marking details	Marks
4.	(a)		$1000 \times 25=25000[\mathrm{~kg}]$ mark is for the answer on answer line	1
		(ii)	25000 (ecf) $\times 120$ (1) = $3000000[\mathrm{~J}]$ (1)	2
	(b)		$\frac{1.8}{2} \times 100(1)=90[\%](1)$ Answer 0.9-1 mark	2
	(c)		back up or quick start (1) when demand increases e.g. at breakfast time / break in a sporting event / another power station has broken down (1) Either mark can be awarded on its own but only award 2 marks if they are linked.	2
	(d)	(i)	reduce energy or heat losses / increase efficiency (do not accept just reduce the current or there is no heat loss)	1
		(ii)	[low voltages are] safer / high voltages are dangerous / for safety	1
			Question total	[9]
5.	(a)		30 thousand [years]	1
		(ii)	8.3 [minutes] (ignore reference to light if written)	1
		(iii)	13 [light hours]	1
		(iv)	accept >0.4 [AU] and <1 [AU]	1
	(b)	(i)	absorbing (1)	2
		(ii)	red shifted (1)	
	(c)	(i)		1
		(ii)	B	1
			Question total	[8]

Question			Marking details	Marks
6.	(a)	(i)	Gas (1) because it produces smallest amount / less carbon dioxide or carbon monoxide (1) accept converse argument. Either mark can be awarded on its own but only award 2 marks if they are linked.	2
			Gas (1) because it produces smallest amount / less sulfur dioxide or nitrous oxide (1) (e.g. accept because sulphur dioxide is 1). Accept converse argument. Either mark can be awarded on its own but only award 2 marks if they are linked.	2
	(b)	(i)	heats water / produces steam (accept they use cold water)	1
		(ii)	operates 24 hours a day (accept not always sunny / rocks are always hot / produces electricity in the night / [more] reliable)	1
	(c)	(i)	plots (2) $\pm 1 / 2$ small square division (ignore any other points that are plotted) -1 mark for each incorrect plot up to a max of 2 straight line (1) (ignore any line before the $1^{\text {st }}$ point). Don't accept double lines / whispy / disjointed / wobbly lines or the line missing points.	3
		(ii)	$6.5 \pm 0.05[\mathrm{~km}]$ ecf value must be taken from their graph	1
	(d)		$\frac{2400000}{2000}(1)=1200(1)$	2
			Question total	[12]

HIGHER TIER

Question			Marking details	Marks
1.	(a)	(i)	Gas (1) because it produces smallest amount / less carbon dioxide or carbon monoxide (1) accept converse argument. Either mark can be awarded on its own but only award 2 marks if they are linked.	2
		(ii)	Gas (1) because it produces smallest amount / less sulfur dioxide or nitrous oxide (1) (e.g. accept because sulphur dioxide is 1). Accept converse argument. Either mark can be awarded on its own but only award 2 marks if they are linked.	2
	(b)	(i)	heats water / produces steam (accept they use cold water) operates 24 hours a day (accept not always sunny / rocks are always hot / produces electricity in the night / [more] reliable)	1
		(ii)		1
	(c)	(i)	plots (2) $\pm 1 / 2$ small square division (ignore any other points that are plotted). -1 mark for each incorrect plot up to a max of 2 straight line (1) (ignore any line before the $1^{\text {st }}$ point). Don't accept double lines / whispy / disjointed / wobbly lines or the line missing points.	3
		(ii)	$6.5 \pm 0.05[\mathrm{~km}]$ ecf value must be taken from their graph	1
	(d)		$\frac{2400000}{2000}(1)=1200(1)$	2
			Question total	[12]
2.	(a) (b)		4 (1), 20 (1)	2
			Indicative content:	6
			The advantages of insulating the loft are of primary importance. The money spent is the least, it is recouped in the shortest time and gives the greatest gain in energy loss reduction $(2700 \mathrm{~W})$, this accounts for $£ 800$ of the spending money. The cavity wall insulation is of second priority with an outlay of $£ 1200$, a payback time of just 10 years and the next greatest energy saving of 1700 W . The remaining money of $£ 1200$ is better spent on replacing their doors because of the smaller payback time. The doors have a payback time of 60 years but save only 200 W in total. [The total spend is $£ 3200$ with an annual saving of $£ 340$ giving a payback time of 9.4 years.]	
			5 - $\mathbf{6}$ marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks

\hline \& (c)
(d)
(e)

(f) \& \& \begin{tabular}{l}
3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.

1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar.

0 marks The candidate does not make any attempt or give a relevant answer worthy of credit.

loft / roof, cavity / wall, windows

[2 marks for all correct, 1 mark for 1 or 2 parts correct]

[Inner] wall / house heats the air (1) which becomes less dense / rises (1) Either mark can be awarded on its own but only award 2 marks if they are linked.

Reduced temperature difference between inside and outside (1) results in less money (spent and) saved / less energy used on heating (1)

Either mark can be awarded on its own but only award 2 marks if they are linked.

Units saved $=\frac{12000}{15}\left[\right.$ or $\left.\frac{120}{0.15}\right]=800(1$ conv+substitution, 1 ans $)$
$$
\text { Time }=\frac{800}{1.7}(1) \text { ecf for } 800=[470.588 \text { hours }]
$$

Answer of 470.588 / 470.59/470.6/471/470 - award 3 marks 470.58/470.5/ 0.47- award 2 marks

4.7 - award 1 mark

0.0047 - award 0 marks

Question total

 \&

2

2

2

3

[17]
\end{tabular}

\hline 3. \& (a) \& | (i) |
| :--- |
| (ii) | \& | Alpha and beta completely stopped by any thickness (1), gamma intensity reduced (1) by an amount that depends on the thickness of the concrete (1) |
| :--- |
| \{NB1 for "alpha, beta, gamma all stopped give 1 mark only\} \{NB2 for "gamma stopped if the concrete is thick enough" 1 mark\} |
| e.g. stored underground / vitrification / in tanks of deep water / lead lined or concrete containers / at sea. Don't accept put into space. suitable advantage such as safe from terrorism/secure/away from living things (1) suitable disadvantage such as may get into water supply / containers leak in time / difficult to monitor / earthquakes (1) Don't accept reference to cost or time. (Accept unrelated answer to part (i)) |
| Question total | \& | 3 |
| :--- |
| 1 |
| 2 |
| [6] |

\hline
\end{tabular}

GCSE SCIENCE - PHYSICS 2

FOUNDATION TIER

Question			Marking details	Mark
6.	(a)	(i)	The time/how long it takes/it takes 6000 years for half of the undecayed atoms/mass/amount/activity/count rate to fall by half.	1
		(ii)	The nucleus emits/loses (1) an electron (1) OR identifies the nucleus (1) in which neutron splits into proton and electron (1) Either mark can be awarded on its own but only award 2 marks if they are linked.	2
	(b)	(i)	plots correct (2) [lose 1 for each incorrect plot allow $\pm 1 / 2$ small square division up to a maximum of 2 marks] reasonable curve through the points (1)	3
		(ii) (iii)	Value to be taken from candidate's graph ± 10 [About 130]. Credit an answer of between 120-140 when no line is drawn. $10(1) \underline{\mathbf{x} 6000}(1)=[60000 \text { years }]$	1 2
	(c)	(i)	7400 years (value to be taken from candidate's graph)	1
		(ii)	reduce activities from the graph by a factor of 10 (1), line from 320 on graph to find time (1) or converse, (or reference to) lines drawn on graph at 320 (and down to the time axis). Alternative - for an extended graph and lines drawn at 80 (1) and " 32 " drawn on an extended line (1), award both marks for method either explained or drawn. N.B. No marks can be awarded for the age because of the uncertainty in this method.	2
			Question total	[12]

Question			Marking details	Mark
1.	(a)	(i)	The time/how long it takes/it takes 6000 years for half of the undecayed atoms $/ \mathrm{mass} /$ amount $/$ activity $/$ count rate to fall by half.	1
		(ii)	The nucleus emits/loses (1) an electron (1) OR identifies the nucleus (1) in which neutron splits into proton and electron (1) Either mark can be awarded on its own but only award 2 marks if they are linked.	2
	(b)	(i)	plots correct (2) [lose 1 for each incorrect plot allow $\pm 1 / 2$ small square division up to a maximum of 2 marks] reasonable curve through the points (1)	3
		(ii) (iii)	Value to be taken from candidate's graph ± 10 [About 130]. Credit an answer of between 120-140 when no line is drawn. $10(1) \underline{\mathbf{x} 6000}(1)=[60000 \text { years }]$	1 2
	(c)	(i)	7400 years (value to be taken from candidate's graph)(1)	1
		(ii)	reduce activities from the graph by a factor of 10 (1), line from 320 on graph to find time (1) or converse, (or reference to) lines drawn on graph at 320 (and down to the time axis). Alternative - for an extended graph and lines drawn at 80 (1) and " 32 " drawn on an extended line (1), award both marks for method either explained or drawn. N.B. No marks can be awarded for the age because of the uncertainty in this method.	2
			Question total	[12]

Question		Marking details	Mark
	(i)	Indicative content:	
		The initial velocity of the bus is $5 \mathrm{~m} / \mathrm{s}$. It continues at this velocity for 10 s .	6
		Then it accelerates at a constant rate of $1.5 \mathrm{~m} / \mathrm{s}^{2}$ for 10 s to $20 \mathrm{~m} / \mathrm{s}$. It travels at a constant velocity of $20 \mathrm{~m} / \mathrm{s}$ for 20 s . At 40 s , it decelerates at a decreasing rate until it comes to a rest at 70 s . The mean deceleration is $0.67 \mathrm{~m} / \mathrm{s}^{2}$.	
		5 - $\mathbf{6}$ marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.	
		3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.	
		1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. $\mathbf{0}$ marks The candidate does not make any attempt or give a relevant answer worthy of credit.	
	(ii)	Scales using at least half of each axis [at least one intermediate point required and a sensible scale] (1) point $(10,50)$ [point may not be clear but award if line ends at this point. Ignore intermediate points]. (1) Straight(ish) line to that point and must be from $(0,0)$ [Do not award this mark for an obvious curve] (1). Any line that goes past $(10,50)$ is penalised 1 mark. Straight line to wrongly plotted point gets the line mark.	3
	(iii)	$20(1) \times 20(1)=400[\mathrm{~m}](1)$ Repeated multiplications e.g. $\mathbf{2 0} \times 20, \mathbf{2 0} \times 40, \mathbf{2 0} \times 5$ [1 only]	3
		Question total	[12]

GCSE SCIENCE - PHYSICS 3

FOUNDATION TIER

Question			Marking details	Mark
5.	(a)	(i)	accept any value between 5500 and 6500 K inclusive	,
		(ii)	[ACB is] smaller/cooler or lower temperature/dimmer or converse if referring to Sun but must be clear referring to Sun [any 2×1]	2
		(iii)	Both main sequence stars (accept balanced forces)	1
	(b)	(i)	radiation pressure/outward force becomes greater than gravitational force / inward force N.B. must compare the both. Unbalanced forces must be qualified.	1
		(ii)	becomes larger / expands, brighter, cooler / redder [3 x 1] Award marks if appropriate values for the properties given.	3
	(c)		X marked near white dwarf section	1
			Question total	[9]
6.	(a)		If no external / outside force acts (1) the total momentum remains constant /stays the same / is conserved or momentum before [collison/explosion] equals momentum after (1)	2
	(b)	(i)	$15 \times 800(1)=12000[\mathrm{~kg} \mathrm{~m} / \mathrm{s}]$ (1)	2
		(ii)	Subs 12000 or ecf (1) subs $1600 \mathrm{~kg}(1)$ ans $=7.5[\mathrm{~m} / \mathrm{s}]$ (1)	3
		(iii)	$16000[\mathrm{~N}]$ (1) to the left (1) Award 2 marks for -16 000 or equal and opposite force	2
	(c)	(i)		1
		(ii)	equal and opposite momentum (1) so total momentum is zero (1) Either mark can be awarded on its own but only award 2 marks if they are linked. Award 1 mark only for momentum to the right cancels momentum to the left unless linked to 1 of the other marking points.	2
			Question total	[12]

Question			Marking details	Mark
7.	(a)	(i)	Plots $\pm 1 / 2$ small square division (2), curve (1)	
		(ii)	As the volume increases, the pressure decreases (1) in a non-linear way / decreasing rate (1) (inversely proportional / as volume doubles the pressure is halved award both marks)	2
		(iii)	Around 67000 (take the value that occurs from their line ± 500)	1
	(b)		Indicative content:	
			As the volume increases, the molecules have further to travel between collisions with the container therefore they take a longer time to travel so the rate of change of momentum is reduced. This reduces the force from any one molecule when in collision with the walls. Since pressure $=$ force $/$ area, the decrease in the force gives a reason for a decrease in pressure / increase in area causes pressure.	6
			5-6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.	
			3 - $\mathbf{4}$ marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.	
			1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar.	
			0 marks The candidate does not make any attempt or give a relevant answer worthy of credit.	
			Question total	[12]
			Foundation tier paper total	[60]

HIGHER TIER

Question			Marking details	Mark
1.	(a)		If no external / outside force acts (1) the total momentum remains constant /stays the same / is conserved or momentum before [collison/explosion] equals momentum after (1)	2
	(b)	(i)	$15 \times 800(1)=12000[\mathrm{~kg} \mathrm{~m} / \mathrm{s}]$ (1)	2
		(ii)	Subs 12000 or ecf (1) subs $1600 \mathrm{~kg}(1)$ ans $=7.5[\mathrm{~m} / \mathrm{s}]$ (1)	3
		(iii)	16000 [N (1) to the left (1) Award 2 marks for -16 000 or equal and opposite force	2
	(c)		```KE before collision = 1/2 800 < 15 2 = 90000 [J] (1) KE after collision = 1/21600 x 7.5 2 = 45000 [J] (1) ecf from (b)(ii) KE loss = 45 000 [J](1) Award a maximum of 2 marks```	2
	(d)	(i)		1
		(ii)	equal and opposite momentum (1) so total momentum is zero (1) Either mark can be awarded on its own but only award 2 marks if they are linked. Award 1 mark only for momentum to the right cancels momentum to the left unless linked to 1 of the other marking points.	2
			Question total	[14]

Question			Marking details	Mark
2.	(a)	(i)	Plots $\pm 1 / 2$ small square division (2), curve (1)	3
		(ii)	As the volume increases, the pressure decreases (1) in a non-linear way / decreasing rate (1) (inversely proportional / as volume doubles the pressure is halved award both marks)	2
		(iii)	Around 67000 (take the value that occurs from their line ± 500)	1
	(b)	(i)	Indicative content:	
			As the volume increases, the molecules have further to travel between collisions with the container therefore they take a longer time to travel so the rate of change of momentum is reduced. This reduces the force from any one molecule when in collision with the walls. Since pressure $=$ force $/$ area, the decrease in the force gives a reason for a decrease in pressure / increase in area causes pressure.	6
			5 - $\mathbf{6}$ marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.	
			3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar.	
		(ii)	0 marks The candidate does not make any attempt or give a relevant answer worthy of credit. increased speed / faster / KE increases	1
			Question total	[13]
3.	(a)		Refraction (1). Passing from a less to a more dense medium or material / light slows down (1)	2
	(b)	(i)	point E	1
		(ii)	Award $2 \mathrm{x}(1)$: strikes at an angle greater than the critical angle $/ 42^{\circ}$ for glass (1) directed from a more to a less dense medium (1) angle of reflection is equal to the angle of incidence (1)	2
			Question total	[5]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& \multirow[t]{2}{*}{\begin{tabular}{l}
Mark \\
1
\end{tabular}} \\
\hline \multirow[t]{7}{*}{4.} \& \multirow[t]{7}{*}{\begin{tabular}{l}
(a) \\
(b)
\end{tabular}} \& \multirow[b]{2}{*}{(i)} \& \multirow[t]{2}{*}{\begin{tabular}{l}
U \\
coil A because it has the bigger voltage of the two [both points required for the mark] or it's a step-down transformer or A has less current
\end{tabular}} \& \\
\hline \& \& \& \& 1 \\
\hline \& \& (ii) \& to set up a changing magnetic field [in the iron core] don't accept moving \& 1 \\
\hline \& \& (iii) \& \& 1 \\
\hline \& \& \begin{tabular}{l}
(iv) \\
(v)
\end{tabular} \& The changing magnetic field induces a voltage in coil B (cutting is neutral) \& 1 \\
\hline \& \& \multirow[t]{2}{*}{(v)} \& \[
\frac{230}{12}=\frac{18400}{N 2}[1 \mathrm{sub}] N_{2}=18400 \times \frac{12}{230} \quad N_{2}=960(1)
\] \& 2 \\
\hline \& \& \& Question total \& [7] \\
\hline \multirow[t]{4}{*}{5.} \& \multirow[t]{2}{*}{(a)} \& (i) \& [surface and] longitudinal / P waves [arrive between B and C]. (DO NOT ACCEPT "It is a shadow zone for S waves") \& 1 \\
\hline \& \& \multirow[t]{3}{*}{(ii)} \& Surface waves / none [are detected between C and D]. (Accept it is in the shadow zones of S and P waves) \& \multirow[b]{2}{*}{1

4}

\hline \& \multirow[t]{2}{*}{(b)} \& \& | Any $4 \times(1)$: |
| :--- |
| in the mantle stiffness increases with depth (1) |
| so wave speed increases / refraction (1), |
| solid mantle, liquid core (1) |
| [entering the liquid core] the stiffness decreases / density increases (1) |
| so the wave speed decreases / refracts the other way (1) | \&

\hline \& \& \& Question total \& [6]

\hline \multirow[t]{5}{*}{6.} \& (a) \& (i) \& $$
\frac{36 \pm 0.5(1)}{20(1)}=1.8
$$ \& 2

\hline \& \& \multirow[t]{4}{*}{(ii)} \& Take a very small interval of length (e.g. 5 cm) / draw a tangent and find its gradient \& 1

\hline \& (b) \& \& Line below the one drawn from $60^{\circ} \mathrm{C}$ (1) down to, but never falling below room temp (1) \& 2

\hline \& \multirow[t]{2}{*}{(c)} \& \& | Presence of free electrons (1) which [transfer energy when they] collide (1) |
| :--- |
| Award 1 mark only for moving particles which transfer energy by collisions. | \& 2

\hline \& \& \& Question total \& [7]

\hline
\end{tabular}

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

